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Abstract

We obtain new convolutions for quadratic-phase Fourier integral operators (which

include, as subcases, e.g., the fractional Fourier transform and the linear canonical

transform). The structure of these convolutions is based on properties of the mentioned

integral operators and takes profit of weight-functions associated with some amplitude

and Gaussian functions. Therefore, the fundamental properties of that quadratic-

phase Fourier integral operators are also studied (including a Riemann-Lebesgue type

lemma, invertibility results, a Plancherel type theorem and a Parseval type identity).

As applications, we obtain new Young type inequalities, the asymptotic behaviour of

some oscillatory integrals, and the solvability of convolution integral equations.
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1 Introduction

The interest in having new convolutions associated with integral operators is wide and based

on both theoretical and applied aspects. Outside mathematics, the use of different types of

convolutions is very diverse, ranging, e.g., from signal processing to neural networks. Within

mathematics, it is also very profitable to construct new convolutions that will facilitate the

identification of new factorization properties to decouple the convolutions into a (weighted)

product of integrals. Typically, this decoupling has strong consequences and originates new

results in different branches of mathematics (e.g., in harmonic analysis and differential equa-

tions). This last aspect will be exhibited in here, for a large class of integral operators, with
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consequences that will be exemplified for three different topics: (i) Young type inequalities,

(ii) asymptotic behaviour of oscillatory integrals, and (iii) the solvability of classes of integral

equations.

A diversity of convolutions which are suitable for other integral operators can be found

in several recent publications. For other convolutions and integral operators, while not being

exhaustive, we refer the reader to [1, 2, 3, 8, 12, 13, 14, 15, 16, 17, 18, 22, 25, 26, 28]. In

addition, it is relevant to have in mind that the factorization property of convolutions is

crucial in solving corresponding convolution type equations [6, 7, 11, 25]. It is also clear that

convolution type equations are very often used in the modelling of a broad range of different

problems (cf. [9, 10]), and so additional knowledge on their solvability is very welcome.

Throughout this paper, for parameters a, b, c, d, e ∈ R (with b 6= 0), we take

Q(a,b,c,d,e)(x, y) := ax2 + bxy + cy2 + dx+ ey (1.1)

to be the quadratic-phase function within the kernel of our integral operator. In what follows,

for shortening formulas, we will also use the notation Q(a−e)(x, y) := Q(a,b,c,d,e)(x, y). Besides

this, we shall also write Q(a−c)(x, y) := Q(a,b,c,0,0)(x, y). So, this allows us to introduce the

integral operator Q defined by

(Qf)(x) :=
1√
2π

∫

R

eiQ(a−e)(x,y)f(y)dy, (1.2)

where f ∈ L1(R) or f ∈ L2(R), and that we will denominate by quadratic-phase Fourier

integral operator.

Let us make a brief discussion on the integral operator Q by comparing it with other

well-known operators. In first place, we would like to notice that when a = c = d = e = 0

and b = ±1, Q is simply the well-known Fourier and inverse Fourier integral transforms,

respectively. Secondly, when d = e = 0, the kernel generated by (1.1) includes the kernel

of the linear canonical transform as well as of the one of the fractional Fourier transform.

Typically, it is clear that the constant factors incorporated in the integral operators are

considered in view of the final purposes and problems where the operators are used. Still

within in the last comparison, and as about the constant factor appearing in (1.2), there is

a difference between our concept of quadratic-phase Fourier integral operator and the most

frequent choices of constant factors for the linear canonical transform and fractional Fourier

transform. In our case, the factor 1/
√
2π is chosen intentionally since it ensures consequent

convenient computations involving the quadratic-phase Fourier integral operator, as we shall

see later on. The constant
√
−i typically chosen in the particular case of linear canonical
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transform, and
√

(1− i cot(α))/2π for the fractional Fourier transform, are more convenient

in view of the particular properties of those cases.

The paper is divided into four sections and organized as follows. Section 2 presents some

basic theorems for the integral operator Q such as the Riemann-Lebesgue lemma, inversion

formula, Plancherel’s extension, Parseval identity. Section 3 provides new convolution theo-

rems which, in particular cases, turn out to be convolution theorems for the linear canonical

transform, fractional Fourier transform and Fourier transform. In Section 4 we apply the

obtained results in order to derive Young’s convolution inequalities for the proposed convo-

lutions, the asymptotic behaviour of a class of oscillatory integrals, and the solvability of

classes of convolution integral equations.

2 Basic Properties of the Integral Operator

In this section, as a preliminary step to the main content, we will study some basic pro-

perties of the integral operator Q. This will include its mapping properties, as well as a

corresponding inversion formula, a Plancherel’s extension and a Parseval identity.

Let us denote by S the Schwartz space, and by C0(R) the Banach space of all continuous

functions on R that vanish at infinity, endowed with the supremum norm ‖ · ‖∞. Moreover,

in L1(R) we will be using the norm ‖ · ‖1 defined by

‖f‖1 :=
1√
2π

∫

R

|f(y)|dy,

where the factor 1/
√
2π is here considered just to obtain more direct computations later on.

In the case of 1 < p <∞, the space Lp(R) will be endowed with the norm

‖f‖p :=
(∫

R

|f(y)|p dy
) 1

p

.

Lemma 2.1 (Riemann-Lebesgue lemma). If f ∈ L1(R) then Qf ∈ C0(R), and ‖Qf‖∞ ≤
‖f‖1.

Proof. Since |eiQ(a−e)(x,y)| = 1, it is clear that

‖Qf‖∞ = sup
x∈R

|(Qf)(x)| = sup
x∈R

1√
2π

∣
∣
∣
∣

∫

R

eiQ(a−e)(x,y)f(y)dy

∣
∣
∣
∣

≤ sup
x∈R

1√
2π

∫

R

|eiQ(a−e)(x,y)| |f(y)|dy = ‖f‖1.
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In addition, choosing g(y) := ei(cy
2+ey)f(y) it is clear that g ∈ L1(R) if and only if f ∈ L1(R).

Therefore, using the classic Riemann-Lebesgue lemma, we derive that

|(Qf)(x)| = |ei(ax2+dx)|√
2π

∣
∣
∣
∣

∫

R

eibxyg(y)dy

∣
∣
∣
∣
=

1√
2π

∣
∣
∣
∣

∫

R

eibxyg(y)dy

∣
∣
∣
∣
→ 0,

as x→ ∞, and the proof of the lemma is complete.

The next lemma is known as a version of the Nyquist-Shannon sampling theorem, and

will be useful for proving Theorem 2.3.

Lemma 2.2 (cf., e.g., Theorem 12, [24]). The formula

1

2
[f(x+ 0) + f(x− 0)] = lim

λ→∞

1

π

∫ +∞

−∞
f(t)

sinλ(x− t)

x− t
dt

holds true if
f(x)

1 + |x| belongs to L1(R).

Theorem 2.3 (Inversion theorem). If f ∈ L1(R) and Qf ∈ L1(R), then

f(x) =
b√
2π

∫

R

(Qf)(y)e−iQ(a−e)(y,x)dy, (2.1)

for almost every x ∈ R.

Proof. First, let us prove the inversion formula for f ∈ S. In this case, by Lemma 2.2 and

direct computations, we have

b√
2π

∫

R

(Qf)(y)e−iQ(a−e)(y,x)dy

=
b

2π
lim

λ→+∞

∫ λ

−λ

∫

R

e−iQ(a−e)(y,x)eiQ(a−e)(y,u)f(u)dudy

=
b

2π
e−i(cx2+ex)

∫

R

f(u)ei(cu
2+eu)du lim

λ→+∞

∫ λ

−λ

e−iby(x−u)dy

=
1

π
e−i(cx2+ex) lim

λ→+∞

∫

R

f(u)ei(cu
2+eu) sin bλ(x− u)

x− u
du

= e−i(cx2+ex)f(x)ei(cx
2+ex) = f(x).

Thus, Q is a one-to-one, linear and continuous operator from S onto S (with a continuous

inverse).

We now assume that f ∈ L1(R), and let g ∈ S. A direct computation gives us

∫

R

f(x)(Qg)(x)dx =

∫

R

g(y)(Qf)(y)dy.
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Using this identity and (2.1), for g ∈ S, we have
∫

R

f(x)(Qg)(x)dx =
b√
2π

∫

R

(∫

R

e−iQ(a−e)(y,x)(Qg)(x)dx
)

(Qf)(y)dy

=

∫

R

(Qg)(x)
( b√

2π

∫

R

e−iQ(a−e)(y,x)(Qf)(y)dy
)

dx

=

∫

R

f0(x)(Qg)(x)dx,

where

f0(x) :=
b√
2π

∫

R

(Qf)(y)e−iQ(a−e)(y,x)dy.

By (2.1) the function Qg covers all S when g runs in S. Therefore,
∫

R
(f0(x)− f(x))Φ(x)dx

= 0 for every Φ ∈ S. Since S is dense in L1(R), we obtain that f0(x)− f(x) = 0 for almost

every x ∈ R, as desired.

The uniqueness property below is an immediate consequence of Theorem 2.3.

Corollary 2.4 (Uniqueness). If f ∈ L1(R) and Qf = 0, then f = 0.

In what follows we will be denoting the inverse operator of Q by Q−1:

(Q−1g)(x) :=
b√
2π

∫

R

(Qf)(y)e−iQ(a−e)(y,x)dy

Theorem 2.5 (Plancherel theorem). There is a linear isomorphic operator Q : L2(R) →
L2(R) which is uniquely determined by the requirement that Qf = Qf for every f ∈ S.
The inverse operator is also uniquely determined by having Q

−1
f = Q−1f for every f ∈ S.

Proof. Recall that S is dense in L2(R). Thus, as the map f 7→ Qf is continuous (relative

to the L2−norm) from the dense subspace S of L2(R) onto S, it has a unique continuous

extension Q : L2(R) → L2(R). Theorem 2.5 is proved.

Thanks to the uniqueness of the extension operator, one can formulate another theorem

in a more detailed way by exhibiting the explicit form of the operator in L2.

Theorem 2.6 (Plancherel theorem). Let f be a complex-valued function in L2(R) and let

Q(x, k) :=
1√
2π

∫

|y|<k

f(y)eiQ(a−e)(x,y)dy.

Then, as k → ∞, Q(x, k) converges strongly (over R) to a function, say Qf , of L2(R);

reciprocally,

f(x, k) :=
b√
2π

∫

|y|<k

Qf(y)e−iQ(a−e)(y,x)dy.

converges strongly to f .
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Theorem 2.7 (Parseval type identity). (i) For any f, g ∈ L2(R), the following identity

holds

〈Qf,Qg〉 = 1

|b| 〈f, g〉,

where 〈·, ·〉 denotes the usual inner product in L2(R) given by 〈f, g〉 :=
∫

R
f(x) g(x) dx. In

the special case of f = g, we then have

‖Qf‖22 =
1

|b|‖f‖
2
2. (2.2)

(ii) If |b| = 1, then Q defines a unitary operator in L2(R).

Proof. Consider b > 0. One can prove this theorem by different ways, directly or indirectly.

Directly, by Lemma 2.2 and simple computations, we have

〈Qf,Qg〉 =

∫

R

(Qf)(x) (Qg)(x)dx

=
1

2π

∫

R

∫

R

∫

R

eiQ(a−e)(x,y)e−iQ(a−e)(x,u)f(y)g(u)dydudx

=
1

2π

∫

R

∫

R

ei(cy
2+ey) e−i(cu2+eu)f(y)g(u)dydu

∫

R

eibx(y−u)dx

=
1

2π

∫

R

∫

R

ei(cy
2+ey) e−i(cu2+eu)f(y)g(u)dydu

(

lim
λ→∞

∫ λ

−λ

eibx(y−u)dx

)

=
1

b

∫

R

ei(cy
2+ey)f(y)

(

lim
λ→∞

1

π

∫

R

[
e−i(cu2+eu)g(u)

]sin bλ(y − u)

y − u
du

)

dy

=
1

b

∫

R

ei(cy
2+ey)f(y)e−i(cy2+ey)g(y)dy =

1

b

∫

R

f(y)g(y)dy =
1

b
〈f, g〉.

Similarly, if b < 0 then 〈Qf,Qg〉 = 1
−b
〈f, g〉. Thus, proposition (i) is proved. Having now

in mind that Q is surjective (cf. Theorem 2.5), and proposition (i), it follows that (ii) holds

true.

3 New Convolutions

We will introduce new convolutions somehow associated with the integral operator Q which

will exhibit very significant factorization identities. Later on, in the next section, we will

exemplify the use of such convolutions and their factorizations.

In what follows, we will use the following well-known identity

1√
2π

∫

R

eixte−kt2dt =
1√
2k
e−

1
4k

x2

(k > 0) (3.1)

for every x ∈ R (see [21, 24]).
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Theorem 3.1. If f, g ∈ L1(R) and Ω1(x) := e−
1
2
x2−aix2

, then the new element f
Ω1
⋆
Q
g below

introduced defines a convolution followed by the norm inequality and its factorization identity:

(f
Ω1
⋆
Q
g)(x) :=

b

2π

∫

R

∫

R

f(u)g(v)ei(cu
2+cv2−cx2+eu+ev−ex)− (bx−bu−bv−d)2

2 dudv, (3.2)

‖f Ω1
⋆
Q
g‖1 ≤ ‖f‖1‖g‖1, Q(f

Ω1
⋆
Q
g)(x) = Ω1(x) (Qf)(x) (Qg)(x).

Proof. First, we prove the norm inequality. Performing the change of variables t := bx −
bu − bv − d and using (3.1), we obtain

‖f Ω1
⋆
Q
g‖1 ≤

|b|
(2π)3/2

∫

R

|f(u)|du
∫

R

|g(v)|dv
∫

R

e−
(bx−bu−bv−d)2

2 dx

=
‖f‖1‖g‖1√

2π

∫

R

e−
t2

2 dt = ‖f‖1‖g‖1,

which proves the norm inequality. We shall now prove the factorization identity. Using

(3.1), we have

Ω1(x)(Qf)(x)(Qg)(x)

= e−
1
2
x2−aix2 1√

2π

∫

R

eiQ(a−e)(x,u)f(u)du
1√
2π

∫

R

eiQ(a−e)(x,v)g(v)dv

= e−aix2 1√
2π

∫

R

e−
1
2
t2+ixtdt

1

2π

∫

R

∫

R

eiQ(a−e)(x,u)eiQ(a−e)(x,v)f(u)g(v)dudv

=
1

2π
√
2π

∫

R

∫

R

∫

R

ei(ax
2+cu2+cv2+bx(u+v+ t

b
+ d

b
)+dx+eu+ev)e−

1
2
t2f(u)g(v)dudvdt.

Let u = u, v = v and s = u+ v + t
b
+ d

b
. We then have

Ω1(x)(Qf)(x)(Qg)(x) =
b

2π
√
2π

∫

R

∫

R

∫

R

eiQ(a−e)(x,s)×

ei(cu
2+cv2−cs2+eu+ev−es)− (bs−bu−bv−d)2

2 f(u)g(v)dudvds

=
1√
2π

∫

R

eiQ(a−e)(x,s)

{

b

2π

∫

R

∫

R

f(u)g(v)×

ei(cu
2+cv2−cs2+eu+ev−es)− (bs−bu−bv−d)2

2 dudv

}

ds

=
1√
2π

∫

R

eiQ(a−e)(x,s)(f
Ω1
⋆
Q
g)(s)ds = Q(f

Ω1
⋆
Q
g)(x).

The theorem is proved.

Remark 3.2. (a) When a = c = d = e = 0, and b = ±1, Q is the well-known Fourier trans-

form and inverse Fourier transform, respectively, and Ω1(x) = e−
1
2
x2
. Then, the convolution
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in (3.2) takes the form

(f
Ω1
⋆
Q
g)(x) =

±1√
2π

∫

R

∫

R

e−
(x−u−v)2

2 f(u)g(v)dudv,

and so are convolutions associated with the Fourier transform.

(b) Let a = c = cot(α)/2, b = − sec(α). In such a particular case we see that Q is simply

the fractional Fourier transform, and (3.2) takes the form

(f
Ω1
⋆
Q
g)(x) =

b

2π

∫

R

∫

R

eia(u
2+v2−x2)− b2

2
(x−u−v)2f(u)g(v)dudv,

which is therefore a convolution associated with the fractional Fourier transform.

(c) Let d = e = 0. Then, Q is the linear canonical transform and (3.2) turns to be

(f
Ω1
⋆
Q
g)(x) =

b

2π

∫

R

∫

R

eic(u
2+v2−x2)− b2

2
(x−u−v)2f(u)g(v)dudv,

being therefore a convolution associated with the linear canonical transform.

Theorem 3.3. If f, g ∈ L1(R) and Ω2(x) := e−
1
2
x2−aix2−dix, then the following element f

Ω2⊗
Q
g

is a convolution followed by its norm inequality and factorization identity:

(f
Ω2⊗
Q
g)(x) :=

b

2π

∫

R

∫

R

ei(cu
2+cv2−cx2+eu+ev−ex)− (bx−bu−bv)2

2 f(u)g(v)dudv, (3.3)

‖f
Ω2⊗
Q
g‖1 ≤ ‖f‖1‖g‖1, Q(f

Ω2⊗
Q
g)(x) = Ω2(x) (Qf)(x) (Qg)(x).

Proof. The proof of the norm inequality can be obtained in the same way as in the case of

convolution (3.2), and so it is here omitted. For proving the factorization identity, we start

by interpreting the right-hand side of the factorization identity:

Ω2(x)(Qf)(x)(Qg)(x)

= e−
1
2
x2−aix2−dix 1√

2π

∫

R

eiQ(a−e)(x,u)f(u)du
1√
2π

∫

R

eiQ(a−e)(x,v)g(v)dv

= e−aix2−dix 1√
2π

∫

R

e−
1
2
t2+ixtdt

1√
2π

∫

R

eiQ(a−e)(x,u)f(u)du
1√
2π

∫

R

eiQ(a−e)(x,v)g(v)dv

=
1

2π
√
2π

∫

R

∫

R

∫

R

ei(ax
2+cu2+cv2+bx(u+v+ t

b
)+dx+eu+ev)e−

1
2
t2f(u)g(v)dudvdt.

Then, taking u = u, v = v and s = u+ v + t
b
, we obtain

Ω2(x)(Qf)(x)(Qg)(x) =
b

2π
√
2π

∫

R

∫

R

∫

R

eiQ(a−e)(x,s)×

ei(cu
2+cv2−cs2+eu+ev−es)− (bs−bu−bv)2

2 f(u)g(v)dudvds
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=
1√
2π

∫

R

eiQ(a−e)(x,s)

{

b

2π

∫

R

∫

R

f(u)g(v)×

ei(cu
2+cv2−cs2+eu+ev−es)− (bs−bu−bv)2

2 dudv

}

ds

=
1√
2π

∫

R

eiQ(a−e)(x,s)(f
Ω2⊗
Q
g)(s)ds = Q(f

Ω2⊗
Q
g)(x).

The theorem is proved.

Theorem 3.4. If f, g ∈ L1(R) and Ω3(x) := e−
1
2
x2
, then the element f

Ω3⊙
Q
g below introduced

defines a convolution followed by a norm inequality and its factorization identity:

(f
Ω3⊙
Q
g)(

x√
2
) :=

b√
2π

∫

R

∫

R

e
i(cu2+cv2−c x2

2
+eu+ev− ex√

2
)− (bx−bu−bv−2d+d

√
2)2

2 f(u)g(v)dudv, (3.4)

‖f
Ω3⊙
Q
g‖1 ≤ ‖f‖1‖g‖1, Q(f

Ω3⊙
Q
g)(

√
2x) = Ω3(x)(Qf)(x)(Qg)(x).

Proof. The norm inequality can be deduced in the same way as above, and so we omit its

proof. Now, we realize that

Ω3(x)(Qf)(x)(Qg)(x)

= e−
1
2
x2 1√

2π

∫

R

eiQ(a−e)(x,u)f(u)du
1√
2π

∫

R

eiQ(a−e)(x,v)g(v)dv

=
1√
2π

∫

R

e−
1
2
t2+ixtdt

1

2π

∫

R

∫

R

eiQ(a−e)(x,u)eiQ(a−e)(x,v)f(u)g(v)dudv

=
1

2π
√
2π

∫

R

∫

R

∫

R

ei(2ax
2+cu2+cv2+bx(u+v+ t

b
+ 2d

b
− d

√
2

b
)+d

√
2x+eu+ev)e−

1
2
t2f(u)g(v)dudvdt.

Then, taking u = u, v = v and s = u+ v + t
b
+ 2d

b
− d

√
2

b
, we obtain

Ω3(x)(Qf)(x)(Qg)(x) =
b

2π
√
2π

∫

R

∫

R

∫

R

e
iQ(a−e)(

√
2x, s√

2
)
f(u)g(v)×

e
i(cu2+cv2−c s2

2
+eu+ev− es√

2
)− (bs−bu−bv−2d+d

√
2)2

2 dudvds

=
1√
2π

∫

R

e
iQ(a−e)(

√
2x, s√

2
)

{

b√
2π

∫

R

∫

R

f(u)g(v)×

e
i(cu2+cv2−c s2

2
+eu+ev− es√

2
)− (bs−bu−bv−2d+d

√
2)2

2 dudv

}

d(
s√
2
)

=
1√
2π

∫

R

e
iQ(a−e)(

√
2x, s√

2
)
(f ⊙

Q
g)(

s√
2
)d(

s√
2
) = Q(f ⊙

Q
g)(

√
2x).

The theorem is proved.

9



For shortness of notation, let us consider Ech(t) := e−i(at2+dt) and Egd(t) := e−
|b|
2
t2 , where

Ech, Egd are the chirp and Gaussian functions, respectively. Moreover, let us also define

Ω4(t) := Ech(t) · Egd(t).

Theorem 3.5. Assume that a = −c and d = −e. If f, g ∈ L1(R), then the element

f
Ω4

⊠
Q
g below considered defines a convolution followed by its norm inequality and factorization

identity:

(f
Ω4

⊠
Q
g)(x) :=

√

|b|[Ech(x)]−1

2π

∫

R

∫

R

Egd(x− u− v)[Ech(u) f(u)][Ech(v) g(v)]dudv, (3.5)

‖f
Ω4

⊠
Q
g‖1 ≤ ‖f‖1‖g‖1, Q(f

Ω4

⊠
Q
g)(x) = Ω4(x) (Qf)(x) (Qg)(x). (3.6)

Proof. The norm inequality can be obtained by proceeding similarly as in the previous

theorems, and so we ignore this step in here. A first direct computation yields

Ω4(x)(Qf)(x)(Qg)(x)

= e−i(ax2+dx)e−
|b|
2
x2 1

2π

∫

R

∫

R

eiQ(a−e)(x,u)eiQ(a−e)(x,v)f(u)g(v)dudv

= e−i(ax2+dx)
√

|b| 1√
2π

∫

R

eibxt−
|b|
2
t2dt

1

2π

∫

R

∫

R

eiQ(a−e)(x,u)eiQ(a−e)(x,v)f(u)g(v)dudv

=
1

2π
√
2π

√

|b|
∫

R

∫

R

∫

R

ei(ax
2+bx(u+v+t)+cu2+cv2+dx+eu+ev)e−

|b|
2
t2f(u)g(v)dudvdt.

Then, considering u = u, v = v and s = u+ v + t, we obtain

Ω4(x)(Qf)(x)(Qg)(x) =
1

2π
√
2π

√

|b|
∫

R

∫

R

∫

R

eiQ(a−e)(x,s)×

ei(cu
2+cv2−cs2+eu+ev−es)− |b|

2
(s−u−v)2f(u)g(v)dudvds

=
1√
2π

∫

R

eiQ(a−e)(x,s){
√

|b| [Ech(s)]−1

2π

∫

R

∫

R

Egd(s− u− v)×

[Ech(u) f(u)][Ech(v) f(v)]dudv}ds

=
1√
2π

∫

R

eiQ(a−e)(x,s)(f
Ω4

⊠
Q
g)(s)ds = Q(f

Ω4

⊠
Q
g)(x).

The proof of the theorem is complete.

Remark 3.6. Similarly to what was mentioned in Remark 3.2, we can see that (3.3)–

(3.5) take the form of other convolutions associated with the Fourier transform, fractional

Fourier transform, and linear canonical transform, in corresponding special cases, when Q

assumes the form of the Fourier transform, fractional Fourier transform, and linear canonical

transform, respectively.
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4 Applications

In this final section, we exemplify some possibilities of application for the convolutions and

integral operators considered above. In fact, we will obtain new Young type inequalities,

norm decay rates of oscillatory integrals and solutions of convolution integral equations.

4.1 Young Type Convolution Inequalities

In this subsection, we will obtain certain norm inequalities for the convolutions (3.2)-(3.5)

in a very general framework. For this purpose, we recall the Minkowski’s integral inequality

[∫

Θ2

∣
∣
∣
∣

∫

Θ1

F (x, y) dµ1(x)

∣
∣
∣
∣

s

dµ2(y)

]1
s

≤
∫

Θ1

(∫

Θ2

|F (x, y)|s dµ2(y)

)1
s

dµ1(x), (4.1)

where we have two measure spaces (Θ1, µ1) and (Θ2, µ2) and a measurable function F (·, ·) :
Θ1 ×Θ2 −→ C. Let 1 ≤ p, q, r ≤ ∞ satisfy

1

p
+

1

q
=

1

r
+ 1.

The Banach spaces involved here are Lp(R), Lq(R), Lr(R). For shortening the notation below,

let us use the common symbol ⊛ for the four notations previously used: ⋆,⊗,⊙,⊠. We shall

prove that:

‖f ⊛ g‖r ≤ C1‖f‖p ‖g‖q, provided f ∈ Lp(R), g ∈ Lq(R); (4.2)

‖f ⊛ g‖s ≤ C2‖f‖1 ‖g‖1 for any s ≥ 1, provided f, g ∈ L1(R), (4.3)

where C1, C2 are some positive constants. In here we would like to emphasize the power of

the last inequality which is valid for any s, and so it is very different from the classic cases.

Let us prove those inequalities only for the convolution (3.5), and omit that ones for

(3.2), (3.3), (3.4) and (3.5), since the proofs are analogous. A key point in all the proofs

arises from the rapid decreasing behaviour of the Gaussian function Egd.

Proof of inequality (4.2). By changing the variable t := u+ v, we have

h(x) : = (f
Ω4

⊠
Q
g)(x)

=

√

|b| [Ech(x)]−1

2π

∫

R

∫

R

Egd(x− u− v)[Ech(u) f(u)] [Ech(v) f(v)](v)dudv

=

√

|b| [Ech(x)]−1

2π

∫

R

Egd(x− t)dt

(∫

R

[
Ech(t− v)f(t− v)

] [
Ech(v)g(v)

]
dv

)

11



=

√

|b| [Ech(x)]−1

2π

∫

R

Egd(s− t)F (t)dt, (4.4)

where

F (t) :=

∫

R

[
Ech(t− v)f(t− v)

] [
Ech(v)g(v)

]
dv.

Evidently, Ech f ∈ Lp(R), Ech g ∈ Lq(R). Applying the well-known Young’s convolution

inequality for the classic case [4, 5] gives F ∈ Lr(R). Remind that |E−1
ch (x)| = 1, and Egd ∈

L1(R). Again, applying Young’s inequality for the case 1
r
+ 1

1
= 1

r
+ 1, we derive that

the function defined by the right-hand side of (4.4) belongs to Lr(R). This means that

h ∈ Lr(R). �

Proof of inequality (4.3). Since Egd is a rapidly decreasing function, Egd ∈ Ls(R) for any

s ≥ 1, and
∫

R

|Egd(±x± u± v)|sdx = ‖Egd‖ss (u, v are fixed in R).

Applying (4.1) gives

[∫

R

∣
∣
∣
∣

∫

R2

Egd(x− v − u)f(u)g(v)dudv

∣
∣
∣
∣

s

dx

]1/s

≤
∫

R2

(∫

R

∣
∣Egd(x− v − u)

∣
∣
s ∣
∣f(u)

∣
∣
s ∣
∣g(v)

∣
∣
s
dx

)1/s

dudv

=

∫

R2

(∫

R

∣
∣Egd(x− v − u)

∣
∣
s
dx

)1/s ∣
∣f(u)

∣
∣
∣
∣g(v)

∣
∣dudv

= ‖Egd‖s
∫

R2

∣
∣f(u)

∣
∣
∣
∣g(v)

∣
∣dudv = ‖Egd‖s 2π‖f‖1 ‖g‖1.

We thus obtain inequality (4.3). �

There is a notable difference on the image and domain spaces between the here proposed

convolutions and previously constructed convolutions, associated with the fractional Fourier

transform and the linear canonical transform, as indicated by the theorem below.

Theorem 4.1. The convolutions (3.2), (3.3), (3.4), and (3.5), possess their Young’s convo-

lution inequalities given by (4.2) and (4.3).

In other words, if f ∈ Lp(R) and g ∈ Lq(R), then each one of the proposed convolutions

defines a new function in Lr(R), where 1/p+1/q = 1/r+1. Moreover, if f, g ∈ L1(R), then

each one of those convolutions also defines a function in Ls(R), for any s ≥ 1.

Remark 4.2. (a) Using a direct notation, we may write:

Lp(R) ⊛ Lq(R) ⊆ Lr(R), where
1

p
+

1

q
=

1

r
+ 1; (4.5)
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L1(R) ⊛ L1(R) ⊆ Ls(R), for any s ≥ 1. (4.6)

Letting p = q = r = 1 in inclusion (4.5), or let s = 1 in inclusion (4.6), we retrieve the norm

inequalities proved by Theorems 3.1, 3.3, 3.4, and 3.5, with the explicit constant C1 = C2 = 1

(cf. inequalities (4.2)–(4.3)).

(b) Choosing s = 2 in (4.3), we see that if f, g ∈ L1(R), then the convolution defines a

function in the space L1(R) ∩ L2(R). This result is in accordance with the known circum-

stance that a convolution f ∗ g inherits the best properties of both f and g. In particular,

since a convolution can be seen as a filtering, averaging, inner product and as, somehow,

a smoothing action, a Young type convolution inequality (4.3) is a striking feature for new

convolutions. Having in mind that in the literature only the corresponding situation for the

Fourier case is known, inequality (4.3) exhibits a remarkable property associated with the

proposed convolutions.

(c) Even in the case of the classical Fourier convolution, one has only the Young’s

convolution inequality (4.2), and (4.3) for s = 1. Therefore, the Young’s inequality (4.3) is

a specific characteristic of the convolutions here introduced.

The following corollary is an immediate consequence of the above theorem.

Corollary 4.3. The Banach space L1(R), equipped with each one of convolutions (3.2),

(3.3), (3.4), and (3.5), becomes a normed ring.

4.2 Norm Decay Rate of Oscillatory Integrals

The general oscillatory integral theory has its origins at the heart of Harmonic Analysis,

in which the Fourier’s case is the original and probably the best example of an oscillatory

integral, and leads us to consider more general oscillatory integrals. In recent years, there

have been many efforts for estimating norm decay rates of Fourier oscillatory integrals (see

e.g. [19, 20, 23, 27] and references therein).

The possible best norm decay rate of the quadratic-phase Fourier integral operator Q

can be seen as an immediate consequence of the identity (2.2). So, in a more global way, let

us consider the quadratic-phase Fourier oscillatory integral operator

(Tλφ)(x) :=

∫

R

eiλQ(a−e)(x,y)ψ(x, y)φ(y)dy, (4.7)

where Q(a−e)(x, y) defined by (1.1) is called the phase, and ψ(x, y) being a smooth compactly

supported function on R2 is said to be amplitude (cf. [19, 20, 23, 27]). Recall that b 6= 0.
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The idea is to understand the behaviour of the norm of Tλ when λ is varying through R.

The case of λ = 0 is obvious (as a degenerated case) and so it is omitted (in fact, it is even

enough to consider λ > 0).

Theorem 4.4. Tλ can be extended to a bounded linear operator defined in L2(R) with norm

‖Tλ‖2 ≤
C

√

|λ|
where C is independent on λ.

Proof. Let M ⊂ R2 denote the compact support of ψ, and let χM(x) and χM(y) stand

for the characteristic functions with variable x and y, respectively. It is easily seen that

Tλφ ∈ L2(R), provided φ ∈ L2(R). Indeed, having in mind that ψ(x, y) is uniformly bounded

on M ×M (there is a constant C such that |ψ(x, y)| ≤ C < ∞), and using (4.1) and the

Cauchy-Bunyakovsky-Schwarz inequality, we have
∫

R

|(Tλφ(x))|2dx =

∫

R

dx

∣
∣
∣
∣

∫

R

eiλQ(a−e)(x,y)χM(x)χM (y)ψ(x, y)φ(y)dy

∣
∣
∣
∣

2

≤









∫

R

χM(y)|φ(y)|dy








∫

R

χM(x)|ψ(x, y)|2dx
︸ ︷︷ ︸

bounded by C








1/2








2

≤ C

(∫

R

χM(y)|φ(y)|dy
)2

≤ C

(∫

M

χM(y)dy

)

.

(∫

M

|φ(y)|2dy
)

<∞.

We shall prove the decay rate. By the assumption, ψ(x, y) can be seen as an L2-integrable

function with variable y ∈ R for x ∈ M fixed, by ψ(x, y) = χM(y).ψ(x, y) for y ∈ R.

Moreover, for any f ∈ L2(R), ψ(x, y) · f(y) is also L2(R)-integrable in the variable y ∈ R,

for x ∈M fixed, as
∫

R

|χM(y)ψ(x, y)f(y)|2dy =
∫

R

|χM(y)ψ(x, y)|2 |f(y)|2dy ≤ C

∫

R

|f(y)|2dy <∞.

Therefore, we can write (Tλf)(x) = (Qλ(a−e)ψf)(x) where Qλ(a−e) is defined in the same

way as Q(a−e) by (1.2), but with the phase λQ(a−e)(x, y). We can use (2.2) and apply the

Minkowski and Cauchy-Bunyakovsky-Schwarz inequalities to have

‖(Tλf)(x)‖22 = ‖(Qλ(a−e)ψf)(x)‖22 =
1

|bλ|‖〈(ψf)(y), (ψf)(y)〉‖
2
2

=
1

|bλ|

∫

R

dx

∣
∣
∣
∣

∫

R

χM (x)χM(y)ψ(x, y)f(y)ψ(x, y)f(y)dy

∣
∣
∣
∣

2

≤ 1

|bλ|

∫

R

χM(y)|f(y)|2dy
(∫

R

χM(x)|ψ(x, y)|4dx
)1/2

≤ C

|λ|‖f‖
2
2.

Therefore, we have the desired decay rate.
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4.3 Solvability of Integral Equations

In view to exemplify other applicability of our previously presented convolutions, we will

now consider some classes of integral equations associated with the convolutions proposed

in Theorems 3.1-3.5. This will illustrate one of the possible applications of the above-proved

theorems. We recall that we are using ⊛ for denoting any of the previously introduced

convolutions: ⋆,⊗,⊙,⊠. Consider the convolution equation

λϕ(x) + (k ⊛ ϕ)(x) = p(x), (4.8)

where λ ∈ C, k, p are given in L1(R), and ϕ is to be determined there. In equation (4.8),

when the convolution ⊛ is taken one of the possibilities (3.2), (3.3), (3.4), or (3.5), then let

us also use Ω∗ to be the corresponding function in

{
Ω1,Ω2,Ω3,Ω4

}
,

respectively. We now shall use the notation S(x) := λ+ Ω∗(x) · (Qk)(x).

Theorem 4.5. Assume that S(x) 6= 0 for every x ∈ R and Qk
S

∈ L1(R). Equation (4.8) has

a solution in L1(R) if and only if

Q−1

(
Qk

S

)

∈ L1(R). (4.9)

Moreover, if the condition (4.9) holds, then the solution of (4.8) is given in explicit form by

ϕ = Q−1
(
Qk
S

)
∈ L1(R).

Proof. Necessity. Suppose that equation (4.8) has a solution ϕ ∈ L1(R). Applying Q to

both sides of (4.8), we obtain

λ(Qϕ)(x) + Ω∗(x)(Qϕ)(x)(Qk)(x) = (Qp)(x),

i.e., S(x)(Qϕ)(x) = (Qp)(x). Having in mind that S(x) 6= 0 for all x ∈ R, we get Qϕ = Qp
S
.

Taking profit that Qp
S

∈ L1(R), we receive

ϕ = Q−1

(
Qp

S

)

∈ L1(R).

Sufficiency. Let ϕ = Q−1(Qp
S
) ∈ L1(R). By ϕ ∈ L1(R) we get S(x)(Qϕ)(x) = (Qp)(x).

Using the factorization identity of the convolution, we obtain

Q

(

λϕ(x) + k ⊛ ϕ
)

= (Qp)(x).

Thanks to the uniqueness theorem of Q, we conclude that ϕ(x) fulfills equation (4.8) for

almost every x ∈ R. The theorem is proved.
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