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Abstract. In technical practice often occur multivariable processes with time delay. Time-delays are

mainly caused by the time required to transport mass, energy or information, but they can also be caused by

processing time or accumulation. In a multivariable system each input may influence all system outputs.
The design of a controller for such a system must be quite sophisticated if the system is to be controlled

adequately. One of the possible approaches to control of multivariable time-delay processes is application of

predictive control methods. The paper deals with design of an algorithm for predictive control of
multivariable processes with time-delay. The predictive controller is based on the recursive computation of

predictions which was extended for the time-delay system. The control of a multivariable system with two

steps of time-delay was verified by simulation.

1 Introduction

Typical technological processes require the simultaneous
control of several variables related to one system. Each
input may influence all system outputs. The design of a
controller for such a system must be quite sophisticated
if the system is to be controlled adequately. Simple
decentralized PI or PID controllers largely do not yield
satisfactory results. There are many different advanced
methods of controlling  multi-input-multi-output
(MIMO) systems. The problem of selecting an
appropriate control technique often arises. Perhaps the
most popular way of controlling MIMO processes is by
designing decoupling compensators to suppress the
interactions [1] and the designing multiple SISO
controllers [2] . This requires determining how to pair
the controlled and manipulated variables. One of the
most effective approaches to control of multivariable
systems is model predictive control (MPC) [3], [4], [5].
An advantage of model predictive control is that
multivariable systems can be handled in a
straightforward manner.

In technical practice often occur multivariable
processes with time delay.Time-delays are mainly
caused by the time required to transport mass, energy or
information, but they can also be caused by processing
time or accumulation. Typical examples of such
processes are e.g. liquid storing tanks, distillation
columns or some types of chemical reactors. Time-delay
may be defined as the time interval between the start of
an event at one point in a system and is resulting action
at another point in a system and its resulting action at
another point in the system. One older classification of
techniques for the compensation of time-delayed
processes is introduced in [6], [7] and newer overview of
recent advances and open problems it is possible to find
in [8]. Processes with time-delay in general are difficult
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to control using standard feedback controllers. One of
the possible approaches to control processes with time
delay is predictive control. The predictive control
strategy includes a model of the process in the structure
of the controller. The first time-delay compensation
algorithm was proposed in [9]. This control algorithm
known as the Smith Predictor (SP) contained a dynamic
model of the time-delay process and it can be considered
as the first model predictive algorithm.

When using most of other approaches, the control
actions are taken based on past errors. MPC uses also
future values of the reference signals. It is essentially
based on discrete or sampled models of processes.
Computation of appropriate control algorithms is then
realized especially in the discrete domain. The basic idea
of the generalized predictive control [10], [11] is to use a
model of a controlled process to predict a number of
future outputs of the process. A trajectory of future
manipulated variables is given by solving an
optimization problem incorporating a suitable cost
function and constraints. Only the first element of the
obtained control sequence is applied. The whole
procedure is repeated in following sampling period. This
principle is known as the receding horizon strategy.

An implementation of a multivariable predictive
controller for control of time-delay systems based on a
matrix fraction model is described in this paper. A
computation of predictions for the case with the time-
delay is introduced. The computation is based on a
particular model of the controlled system in the form of
matrix fraction which is commonly used for description
of a range of processes. For the purpose of simplification
it was considered equal time-delay in all particular
transfer functions of the transfer matrix. The proposed
algorithm is then verified by simulation.
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2 Model of the controlled system

Let us consider a two input — two output system. The
two — input/two — output (TITO) processes are the most
often encountered multivariable processes in practice
and many processes with inputs/outputs beyond two can
be treated as several TITO subsystems [12].

A general transfer matrix of a two-input—two-output
system with significant cross-coupling between the
control loops is expressed as:

6(o)- {G”(z) Glz(z)} 0

G, (Z) G, (Z)
¥Y(z)=6G(z)u(z) @)

where U(z) and Y(z) are vectors of the manipulated
variables and the controlled variables, respectively.

U(e)=lu(2w )] YE)=DwEl 0

It may be assumed that the transfer matrix can be
transcribed to the following form of the matrix fraction:

Gz)= A" (" )B(")= B ()4 (™) )

where the polynomial matrices 4 € R,, [z"l], BeR, [z"‘]

are the left coprime factorizations of matrix G(z) and

the matrices A, eRzz[z’llB, eRzz[z’l] are the right
coprime factorizations of G(z). The model can be also
written in the form

A(Z4 )Y(z) = B(zf1 )U(z) 5)

As an example a model with polynomials of second
degree was chosen. This model proved to be effective for
control of several TITO laboratory processes [13], where
controllers based on a model with polynomials of the
first degree failed. The model has sixteen parameters.
The matrices 4 and B are defined as follows

A(z_l ) _ {1 +taz ' vaz?  az ' +az? 2} ©)

-1 -2 -1 -
az” +agz l+a,z" +agz

B(z’l) _ {blz‘1 +b,z7 ™

bz ' +bz”
bz ' +bz?

-l -2
bz” +bz

A widely used model in general model predictive
control is the CARIMA (controller autoregressive
integrated moving average) model which we can obtain
by adding a disturbance model as

Al (k)= Bl (k) + €z ) all)  ®)

where n is a non-measurable random disturbance that is
assumed to have zero mean value and constant
covariance and

A=) P‘Zl 0 } ©)

0 -z

in case of TITO system.
The nominal model with d steps of time-delay is
considered as

G(z) = Ail(zfl)B(zf1 )zfd =B, (271 )Afl(z*l)z*d (10)

For the purpose of simplification it was considered equal
time-delay in all particular transfer functions of the
transfer matrix. The CARIMA model for time-delay
system then takes the form

A(Zﬁl )y(k) = zfdlf(zf1 )a(k)+ C(zf1 )Afl (zfl )n(k) (11)

3 Implementation of
controller

predictive

The basic idea of MPC is to use a model of a controlled
process to predict N future outputs of the process. A
trajectory of future manipulated variables is given by
solving an optimization problem incorporating a suitable
cost function and constraints. Only the first element of
the obtained control sequence is applied. The whole
procedure is repeated in following sampling period. This
principle is known as the receding horizon strategy. The
computation of a control law of MPC is based on
minimization of the following criterion

N N,
J)="elk+j)* + 2> Aulk+ j)? (12)
j=1 J=1

where e(ktj) is a vector of predicted control errors,
Au(k+j) is a vector of future increments of the
manipulated variable (for the system with two inputs and
two outputs each vector has two elements), N is a length
of the prediction horizon, N, is a length of the control
horizon and A is a weighting factor of control
increments.
A predictor in a vector form is given by

y=GAu+y, (13)

where p is a vector of system predictions along the

horizon of the length N, Au is a vector of control
increments, y, is the free response vector. G is a matrix
of the dynamics. It is given as

i G, 0 - - 0
G G, 0 - 0
G=| : Lo (14)
: G, O
Gy o Gy

where sub-matrices G; have dimension 2x2 and contain
values of the step sequence.

The criterion (12) can be written in a general vector
form
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J=(p-w) (3-w)+ 10u" Au (15)

where w is a vector of the reference trajectory. The
criterion can be modified using the expression (15) to

J=2g" Au+Au" HAu (16)

where the gradient g and the Hess matrix H are defined
by following expressions

g =G"(y,-w) (17)
H=G'G (18)

Handling of constraints is one of main advantages of
predictive control. General formulation of predictive
control with constraints is then as follows

min2gTAu+AuTHAu (19)
Au

owing to
AAu<b (20)

The inequality (20) expresses the constraints in a
compact form.

4 Computation of predictor

An important task is computation of predictions for
arbitrary prediction and control horizons. Dynamics of
most of processes requires horizons of length where it is
not possible to compute predictions in a simple
straightforward way. Recursive expressions for
computation of the free response and the matrix G in
each sampling period had to be derived. There are
several different ways of deriving the prediction
equations for transfer function models. Some papers
make use of Diophantine equations to form the
prediction equations [14]. In [15] matrix methods are
used to compute predictions. We derived a method for
recursive computation of both the free response and the
matrix of the dynamics.

Computation of the predictor for the time-delay
system can be obtained by modification of the predictor
for the corresponding system without a time-delay. At
first we will consider the TITO system without time-
delay and then we will modify the computation of
predictions for the time-delay system.

4.1. TITO system without time-delay

The difference equation of the CARIMA model without
the unknown term can be expressed as:

yl(k+1):(l —al)yl(k)+(al —az)yl(k—1)+ azyl(k—Z)—
- a3y2(k)+ (a3 - a4)y2(k _1)+ a4y2(k - 2)"'
+ by, (k) + byAu, (k= 1)+ byAu, (k) + b,Au, (k 1)
21

J’2(k + 1) = (1 —a ))’2(k)+ (a7 - as)yz(k —1)+ asyz(k —2)—
—a5y1(k)+ (a5 - aG)yl(k —1)+ a6)’1(k —2)+
+ bsAuy (k) + bguy (k = 1)+ by Auy (k )+ beAuy (k — 1)

These equations can be written into a matrix form

ylk+1)= Apk)+ Ayl —1)+ A, p(k-2)+

22
+ B Au(k)+ B,Au(k —1) (22)
where
Al:{l—a1 —a3}A2=[al—a2 a3—a4}
-a; l-a, a;—a, a,—ag
4= Fz ““} (23)
s g
b b b, b
B=|" °|B=|" " (24)
bs b, by b

It was necessary to directly compute three steps-
ahead predictions in a straightforward way by
establishing of previous predictions to later predictions.
The model order defines that computation of one step-
ahead prediction is based on the three past values of the
system output.

ke +1)= A, p(k)+ A, plk —1)+ A, p(k —2)+

+ B, Au(k)+ B, Au(k —1)
j)(k+2): Aly(k+1)+A2y(k)+A3y(k—1)+
+ B, Au(k +1)+ B, Au(k)
Plle+3)= A, y(k+2)+ A, p(k +1)+ A, y(k)+
+BlAu(k+2)+ BzAu(k+1)

(25)

The three steps ahead predictions can be expressed
using (13) as follows

Plk+1)
Pk +2)|=GAu+y, (26)
Pk +3)

It is possible to divide computation of the predictions
to recursion of the free response and recursion of the
matrix of the dynamics. The free response vector
predictions can be expressed as:

Pun Do q9n 9o |93 G | Ds th N (k)
Py 9» 9 9o |93 904 |9os 9o | _ ) (k)
Yo = Py Pxn [Aul(k _1)} n 4 9n | 9n G |G G | WE=T) _
0 Pu_ Pu || Au, (k - 1) a1 94 | 943 9aa | 95 Y46 | V2 (k - l)
Psi Ps 45 9 | s s | s s | Wk=2)
Ps1 Ps2 961 962 | 463 Yoa | o5 ‘]65_;)’2(1{_2)
4 0, 0, 0, y(k) I .V(k)
=P, A”(k71)+ 0, 0, 0y y(kfl) :PA”(k71)+Q y(kfl)
Py 0, 0, Oy .V(k - 2) .V(k - 2)
@7)

The coefficients of the matrices P and @ for further
predictions are computed recursively. Based on the three
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previous predictions it is repeatedly computed the next
row of the matrices P and @ in the following way:

P, = |:P71 P72:| =AP,+AP, + AP, (28)
Ps1 Pg
_ _‘I71 Q72_ _ )
0, = =A4,0,+4,0, + 4,0, (29)
1951 452 |
_473 Q74_
0, = =A4,0,+4,0, + 4,0, (30)
| 933 434 |
_ _CI75 ‘176_ _ 31
0= =A,04+A4,0,, + 4,05 (D
dss s |

The recursion of the matrix G is similar. The next
element of the first column is repeatedly computed and
the remaining columns are shifted. This procedure is
performed repeatedly until the prediction horizon is
achieved. If the control horizon is lower than the
prediction horizon a number of columns in the matrix is
reduced. The technique is apparent from the equations

(32) and (33).
_gu gn| O 0 ]
gy &»| 0 0 A”l(k)
GAu = 851 83 | & 8 A”z(k) _
gy x| 8&u 8n A“l(’“'l)
851 852 | 831 83 A”z(k+l) (32)
1861 862 | 841 a2 |
G 0
1 Au(k)
=G, G,
Aulk +1)
G, G,
G, = {g“ g72}=A]G3+A2G2+A3G] (33)
8s1 8w

The predictions can be written in a compact matrix
form

Pk + j)= Gaulk + j—1)+ PAu(k —1)+ Qy(k — j +1)
_ (34)
J<N

4.2. TITO system with time-delay

The nominal model with two steps time-delay is
considered as

G(Z):A'1 (Z_l )B(Z"l)z'2 =B, (Z_l )Al_1 (z'l)z_2 (35)

The CARIMA model for time-delay system takes the
form (11) In our case d is equal to 2. In order to compute
the control action it is necessary to determine the
predictions from d+1 (2+1 in our case) to d+N, (2+N,).

jz(k+3)
Pk +4)
j;(k+5)

=GAu+y, (36)

The computation of free response is then modified to

_g31 8| 81 8 | Psi Ps T (k 1)
841 8u | 861 82 | Ps1 Psr A”z(k 1)

y = 81 82| &1 &n | Pn Pn ( 2) +
’ 861 862 | 831 82 | P31 Pso A”z(k 2)
81 8| 81 8Bun | Pa P A“l(k 3)
1881 832 | o1 &2 | Pin ploz__Auz(k - 3)_

951 452 | 953 954 | 955 9s6 yl(k)
961 Y962 | 963 Y64 | 965 Y66 J’2(k)

+ dn 497 | 913 934 | 975 4976 yl(k - 1) _
91 4o | 933 9as | 935 s yz(k - 1)
991 4o | Qo3 Y954 | o5 YGos | N1 (k - 2)

L9101 9102 | G103 Des | D105 ‘I106__y2(k - 2)_
_Gz G, P A”(k - 1) 0, 0, Q33_ i .V(k)
=G, G, P, A”(k - 2) Oy Qn Qp| V- 1) =
G, G5 P A”(k - 3) 0, 0O Q53_ _.V(k - 2)

Au(k —1) y(k)
=P Au(k-2)|+ Q)| y(k-1)
Aulk -3) y(k-2)

(37

The computation of forced response (32) remains the
same. Recursive computation of the matrices is
analogical to the recursive computation described in
section 4.1.

4.2. Modified predictor for arbitrary time-delay

The predictor modified for an arbitrary time —delay is
then given as follows.

ple+1+d)

plk+2+4d)
Pk +3+d)

=GAu+y, (38)
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(39)
The computation of the forced response is again
given by equation (32)
5 Simulation example

As simulation example was chosen a system with
two steps of time-delay

G(z) =A" (Z_l )B(Z_l )2_2 (40)
described by polynomial matrices (41) —(42)

~0.0220z" +0.179727 |
1-0.4564z"' —0.0830z " |

(41)

01484z 40219727 |
~0.0371z7 —0.3489277 |
(42)

A(z’l )_ 1-0.5827z7" +0.1745z
0.0167z7" —0.0886z2

0.2783z7" +0.3107272

-1 -2
B(z_l ): {— 0.0035z"! +0.09552

Control responses are in figures land 2.

The tuning parameters that are lengths of the
prediction and control horizons and the weighting
coefficient 4 were tuned experimentally. There is a lack
of clear theory relating to the closed loop behaviour to
design parameters. The length of the prediction horizon
was set to N = 10. The length of the control horizon was
also set to V, = 10. The coefficient 4 was taken as equal
to 0,5.

k

Fig. 1. Simulation results — controlled variable.
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Fig. 2. Simulation results — manipulated variable.

6 Conclusions

The algorithm for control of the multivariable time-delay
systems based on model predictive control was designed.
The predictive controller is based on the recursive
computation of predictions by direct use of the CARIMA
model. The computation of predictions was extended for
the time-delay system. The control of a multivariable
system with two steps of time-delay was verified by
simulation. The simulation verification provided good
control results. Asymptotic tracking of the reference
signal was achieved. The control was rather sensitive to
tuning parameters. Experimental tuning of the controller
was quite complicated.

References

1. P.R. Krishnawamy, et al., Ind. Eng. Chem. Res., 30,
662 (1991)

2. W. L. Luyben, Ing. Eng. Chem. Process Des. Dev.,
25, 654 (1986)



MATEC Web of Conferences 125, 02023 (2017)

DOI: 10.1051/matecconf/201712502023

CSCC 2017

3. E.F. Camacho, C. Bordons, Model Predictive
Control (Springer-Verlag, London, 2004)

4. M. Morari, J.H. Lee, Computers and Chemical
Engineering, 23, 667 (1999)

5. J. Mikles, M. Fikar, Process Modelling,
Optimisation and Control (Berlin: Springer-Verlag,
2008)

6. A. O’Dwyer, Proc. of the 3™ IMACS/IEE
International Multiconference on Circuits, Systems,
Communications and Computers, 176, Athens,
Greece (1999)

7. A. O’Dwyer, Proc. of the 3™ IMACS/IEE
International Multiconference on Circuits, Systems,
Communications and Computers, 187, Athens,
Greece (1999)

8. J. P. Richard, Automatica, 39, 1667 (2003)

9. 0O.J. Smith, Chem. Eng. Progress, 53, 217, (1957)

10. D. W. Clarke, C. Mohtadi, P. S. Tuffs, Automatica,
23,137 (1987)

11. D. W. Clarke, C. Mohtadi, P. S. Tuffs, Automatica,
23,149 (1987)

12. F. G. Shinskey, Process Control System (McGraw-
Hill. New York, 1996)

13. M. Kubal¢ik, V. Bobal, IMechE Part I: J. Systems
and Control Engineering, 220(17), 641 (2006)

14. W.H. Kwon, H. Choj, D.G. Byun, S. Noh,
Automatica, 28, 1235, (1992)

15. J.A. Rossiter, Model Based Predictive Control: a

Practical Approach (CRC Press, 2003)



