
  

 

 
 

Universität Basel 
Peter Merian-Weg 6 
4052 Basel, Switzerland 
wwz.unibas.ch 

Corresponding Author: 
Prof. Dr. Aya Kachi 
Tel: +41 (0) 61 207 28 41 
Mail: aya.kachi@unibas.ch     
 
 

 
 
 

 
March 2018 

 
 
 
 
 

 
 

Estimating Interdependence Across Space, Time 
and Outcomes in Binary Choice Models Using 

Pseudo Maximum Likelihood Estimators 
 

 
 
 
 
 
 

 
 
 

WWZ Working Paper 2018/11                                 Julian Wucherpfennig, Aya Kachi, Nils-Christian 
                                                                                 Bormann, Philipp Hunziker 

 
 
A publication of the Center of Business and Economics (WWZ), University of Basel.  
 WWZ 2018 and the authors. Reproduction for other purposes than the personal use needs the permission of the authors. 
 
 
 
 
 
 
 
 
 
 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/154353013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Estimating Interdependence Across Space, Time and
Outcomes in Binary Choice Models Using Pseudo

Maximum Likelihood Estimators

Julian Wucherpfennig1, Aya Kachi2, Nils-Christian Bormann3, and Philipp Hunziker∗4

1Hertie School of Governance
2Faculty of Business and Economics, University of Basel

3Department of Politics, University of Exeter
4College of Computer and Information Science & Department of Political Science,

Northeastern University

March 30, 2018
*PLEASE DO NOT CITE WITHOUT PERMISSION OF THE AUTHORS*

Binary outcome models are frequently used in Political Science. However, such
models have proven particularly difficult in dealing with interdependent data structures,
including spatial autocorrelation, temporal autocorrelation, as well as simultaneity aris-
ing from endogenous binary regressors. In each of these cases, the primary source of the
estimation challenge is the fact that jointly determined error terms in the reduced-form
specification are analytically intractable due to a high-dimensional integral. To deal
with this problem, simulation approaches have been proposed, but these are compu-
tationally intensive and impractical for datasets with thousands of observations. As
a way forward, in this paper we demonstrate how to reduce the computational bur-
der significantly by (i) introducing analytically tractable pseudo maximum likelihood
estimators for latent binary choice models that exhibit interdependence across space,
time and/or outcomes, and by (ii) proposing an implementation strategy that increases
computational efficiency considerably. Monte-Carlo experiments demonstrate that our
estimators perform similarly to existing alternatives in terms of error, but require only
a fraction of the computational cost.

∗We would like to thank Frederick Boehmke, Lars-Erik Cederman, Robert Franzese Jr., Dennis Quinn,
Andrea Ruggeri, Emily Schilling, Martin Steinwand, Oliver Westerwinter, Michael Ward and Christopher
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1 Introduction

War vs. peace, vote “yes” vs. “no”—binary data are ubiquitous in political science. Thus, it

is little surprising that binary choice models—e.g. probit and logit models—are amongst the

most common statistical tools for empirical analyses. However, as is true for any other type

of data, political scientists are becoming increasingly aware that observational data generated

through social and political processes exhibits various forms of interdependence.

Take the simple example of international treaty ratification and compliance. A bur-

geoning literature that makes the case that countries are more likely to ratify international

treaties, such as the Kyoto protocol to limit greenhouse gas emissions or the Ottawa conven-

tion on the ban of landmines, if they expect other countries to do the same. This pattern is

often explained by international norms and the logic of public-goods provision (e.g., Nord-

haus 1999; Simmons and Elkins 2004). Accordingly, one country’s decision to ratify is (at

least in part) dependent on decisions of other countries, and vice-versa. Following a large

literature, we refer to this form of interdependence as “spatial interdependence”.

Because such treaties are frequently the result of long-lasting negotiations, a related

question pertains to the timing of ratification. Indeed, countries with a greater proclivity

are generally expected to ratify sooner (such as Germany which is among the environmental

frontrunners, Weidner and Mez (2008)), while an abstaining countries (such as the U.S. in

both examples mentioned above) is likely to continue this behavior from one year to the next.

Thus, we refer to this type of dependence as “temporal dependence”.

Sceptics of international treaties have argued that in many instances, ratification does

not necessarily occur because countries are willing to accept the constraint on the particular

forms of behavior that is implied by the treaty (e.g., refrain from using landmines). Instead,

countries could ratify if they were to comply even in the absence of the treaty. As such,

treaties merely screen, rather than constrain (see e.g., Von Stein 2005). In this case, the

causal arrow runs from compliance to ratification, rather than the other way around. Put

differently, ratification and compliance are interdependent outcomes, making it difficult to
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evaluate the actual effectiveness of treaties. In this paper, we refer to this pattern as “outcome

interdependence”.

All three forms of (inter-)dependence outlined above— across space, time and outcomes—

suggest that individual observations violate the basic assumption of conventional statistical

tools, including i.i.d. error terms for regression based estimators, or SUTVA for matching

techniques. This violation poses a significant challenge when it comes to valid causal in-

ference. While existing methods to tackle the challenge are relatively well developed for

continuous data, there is a clear gap when it comes to binary data. As we show below,

the main problem stems from a mathematically intractable error term distribution which

prevents researchers from deriving closed form solutions for appropriate likelihood functions.

While some simulation-based techniques exist, these are generally extremely computationally

burdensome, even for small datasets, and thus often impracticable for applied researchers.

Moreover, different forms of (inter-)dependence have generally been treated in isolation, even

though typical political science data is likely to be affected by multiple forms at the same

time.

Therefore the primary goals of our paper is to develop a general toolkit for applied

researchers studying binary data featuring (inter-)dependencies. We do so with an eye on re-

ducing computational burdens significantly in order to accommodate large datasets of several

thousand observations by developing a series of pseudo maximum likelihood estimators. Our

analytical point of departure is a pseudo maximum likelihood estimator for binary spatial

models due to Smirnov (2010), for which the remaining computational burden amounts to

inverting an N-dimensional matrix we refer to as the “interdependence multiplier.” We then

show that this estimation framework lends itself suitable to accommodate other types of in-

terdependence as well, including temporal and outcome interdependence across simultaneous

equations. Finally, we further reduce the estimation costs by proposing an implementation

strategy that avoids direct matrix inversion, and instead relies on a combination of itera-

tive gradient procedures and approximations that yield an estimation algorithm with almost
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linear complexity in N .

The paper proceeds as follows. First, we provide a technical description of the math-

ematical problem associated with the three sources of interdependence in binary dependent

variables. Then we introduce a pseudo maximum likelihood estimator (PMLE) for spatial

models according to Smirnov (2010). Next we derive equivalent pseudo maximum likeli-

hood estimators for accommodating dependence across time, and interdependence between

outcomes. We then discuss our implementation strategy, followed by an evaluation of our

estimators via Monte Carlo simulation. We conclude with a plan for further research.

2 The challenge: The intractable reduced-form error specification

In this section we set out to demonstrate two things. First, we use the binary spatial model

to show why fitting models for binary spatial data is challenging. At its core, the problem is

that the likelihood function for the binary spatial model involves an analytically intractable

integral. Second, we show that this result generalizes to other sources of (inter-)dependence,

namely across time and between outcomes. In fact, it turns out that spatial, temporal, and

outcome (inter-)dependence all give rise to the same reduced form specification for the latent

outcome vector. This result is a double edged sword. On the one hand, it implies that

fitting models on binary data featuring any of these types of (inter-)dependencies will be

challenging. On the other hand, it suggests that solving the estimation challenge for one

type of model will be useful for addressing the other types of (inter-)dependencies as well.

2.1 Spatial interdependence

Suppose one is interested in the following model

y∗i = ρ

N∑
j=1

wijy
∗
j + xiβ + ui (1)

yi =


1 if y∗i > 0

0 otherwise

(2)
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whereas y∗i is a continuous latent outcome variable, wij is a spatial lag between unit i and

j indicating how closely the two units are connected in a given space (e.g, geographical

proximity, membership in the same organizations etc.), xi is a 1×k vector of covariates with

parameter vector β, and ui is a zero-mean iid error term with fixed variance. We call this

specification the binary spatial model. Note that in this specification, spatial dependence

occurs on the level of the latent (i.e. not observed) outcome y∗i . This specification follows

Franzese et al. (2016), and it is suitable for cases where actors of our interest can observe or

know more or less what others’ latent characteristics are, and not only their revealed binary

actions.

It is useful to write the latent equation in matrix notation, yielding

y∗(N×1) = ρWy∗ + Xβ + u, (3)

with

WN×N =



0 w12 · · · w1N

w21
. . . . . .

...

...
. . . . . . wN−1,N

wN1 · · · wN,N−1 0


. (4)

W is commonly referred to as the spatial weights matrix. Throughout the paper we assume

that W is row-standardized. Doing so ensures that the spatial process defined in (3) is

stationary as long as |ρ| < 1 (Kelejian and Prucha 2010). Given (3) we can derive the

reduced form as

y∗ = (I− ρW)−1Xβ + (I− ρW)−1u

= (I− ρW)−1Xβ + v,

(5)

where vector v contains the reduced-form error terms with non-spherical covariance matrix

structure due to the multiplier (I− ρW)−1.

Let us now derive the likelihood of the binary spatial model. Given yi is binary, the
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likelihood function assumes the following general form:

L(ρ,β|X,y∗) =
[ N∏
i=1

P (yi = 1)
]yi[ N∏

i=1

P (yi = 0)
](1−yi)

=
[ N∏
i=1

P (yi = 1)
]yi[ N∏

i=1

(
1− P (yi = 1)

)](1−yi)
,

(6)

The main component of the likelihood function – the marginal probability that i takes 1

given X and the parameters – is,

P (y = 1) = P (y∗i > 0)

= P
([

(I− ρW)−1Xβ
]
i
+ vi > 0

)
= P

(
vi > −

[
(I− ρW)−1Xβ

]
i

)
= 1− P

(
vi ≤ −

[
(I− ρW)−1Xβ

]
i

)
= 1− FVi

(
−
[
(I− ρW)−1Xβ

]
i

)
.

(7)

where [·]i indicates the i’th element of vector [·]. FVi(·) is the marginal cdf of random variable

Vi (the reduced form error term for unit i). Therefore, expression FVi

(
−
[
(I− ρW)−1Xβ

]
i

)
is the marginal cdf of Vi evaluated at −

[
(I − ρW)−1Xβ

]
i
. In theory, one can derive the

marginal cdf of Vi based on the definition of a marginal cdf as follows

FVi(−[(I− ρW)−1Xβ]i)

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ −[(I−ρW)−1Xβ]i

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

fV(s1, · · · , si, · · · , sN)ds1 · · · dsi · · · dsN ,

(8)

where fV(s1, · · · , sN) is the joint pdf of the reduced-form error. The estimation challenge

arises because evaluating FVi is generally analytically intractable as long as ρ 6= 0. As a

consequence, direct maximum likelihood estimation of β and ρ is generally infeasible.
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2.2 Temporal dependence

Consider the following time-series model

y∗t = Xtβ + γy∗t−1 + ut (9)

yt =


1 if y∗t > 0

0 otherwise

(10)

where the latent outcome exhibits a first-order temporal autoregressive process, governed by

the correlation parameter γ with |γ| < 1.1 We refer to this model as the binary temporal

autoregressive model. For a discussion of this model in a political science context, see Beck

et al. (2001). Note that we can rewrite the model in matrix notation as follows

y∗(T×1) = Xβ + γTy∗ + u, (11)

where T is defined as

T =



0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0


(12)

It is evident that this model is mathematically almost equivalent to the binary spatial model

from the past section, the sole difference being that now we impose a weights matrix where

the first minor diagonal (all the 1’s) maps y∗t−1 to y∗t . The reduced form of the autoregressive

model is given by

y∗(T×1) = (I− γT)−1Xβ + (I− γT)−1u. (13)

Given this result, it is clear that this model gives rise to the same difficulties in ML estimation

as the binary spatial model.
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2.3 Dependence across outcomes

Finally, consider the following simultaneous equation model with two binary-choice processes,

y∗i1 = xi1β1 + λy∗i2 + ui1 (14)

y∗i2 = xi2β2 + λy∗i1 + ui2 (15)

yil =


1 if y∗il > 0

0 otherwise

for l = 1, 2, (16)

with interdependence parameters |λ| < 1. We can write this model in the now-familiar matrix

form

y∗(2N×1) = Ay∗ + Xβ + u, (17)

whereas y∗ = [y∗11, . . . , y
∗
N1, y

∗
12, . . . , y

∗
N2]′, β = [β1, β2]′, and

X =

 X1 O

O X2

 . (18)

The weights matrix is now given as

A(2N×2N) =



0 0 0 λ 0 0

0
. . . 0 0

. . . 0

0 0 0 0 0 λ

λ 0 0 0 0 0

0
. . . 0 0

. . . 0

0 0 λ 0 0 0


=



A1 A2

“1st region” “2nd region”

A3 A4

“3rd region” “4th region”


. (19)

The reduced form follows as

y∗ = (I−A)−1Xβ + (I−A)−1u (20)
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Again, it is clear that the structure of this specification is essentially the equal to the one of

the binary spatial model, and lead to the same estimation challenge.

2.4 Combining dependencies

So far, we have established that spatial, temporal, and outcome (inter-)dependence all give

rise to the same reduced form specification for the latent outcome vector y∗, and are thus all

impossible to fit via direct ML estimation. However, the similarity in functional form also

means that it is very straightforward to combine different dependency structures, yielding

models exhibiting multiple types of dependencies among observations. In the following we

give three examples of hybrid models that are potentially useful in applied research.

The first hybrid model we consider is the binary spatio-temporal autoregressive model

(STAR), which combines the binary spatial model with the temporal autoregressive binary

model, yielding a panel setup (see e.g. Franzese et al. 2016). The binary STAR model is

given by

y∗(NT×1) = Qy∗ + Xβ + u, (21)

where y∗ = [y∗.1, . . . , y
∗
.T ]′ and y∗.t = [y∗1t, . . . , y

∗
Nt]
′. Hence, the cross-sectional y∗.t vectors

are stacked “on top of each other”. The X matrix is constructed analogously. The weights

matrix Q is given by

QNT×NT = ρ



W 0 0 · · · 0

0 W 0 · · · 0

0 0 W · · · 0

...
...

...
. . .

...

0 0 0 · · · W


+ γ



0 0 0 · · · 0

IN 0 0 · · · 0

0 IN 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0


, (22)

where W is the N ×N spatial weights matrix and IN is the N ×N identity matrix.

Another potentially useful model is the binary simultaneous equation panel model,
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where two related binary choice processes are repeated over time. This model is given by

y∗(2NT×1) = Qy∗ + Xβ + u, (23)

where y∗ = [y∗.11, y
∗
.21 . . . , y∗.1T , y

∗
.2T ]′ and y∗.lt = [y∗1lt, . . . , y

∗
NlT ]′. Hence, the cross-sectional

latent outcomes are first stacked by choice type, and then by time period. Here, the weights

matrix is block diagonal:

Q2NT×2NT =



A 0 · · · 0

0 A · · · 0

...
...

. . .
...

0 0 · · · A


, (24)

with A as defined in the previous section.

Finally, we consider the binary simultaneous equation spatial model, where two related

binary outcomes are each spatially interdependent. Here we have

y∗(2N×1) = Qy∗ + Xβ + u, (25)

with y∗ defined as in the previous section. The weights matrix now assumes the form

Q2N×2N =



ρ1W

λ 0 0

0
. . . 0

0 0 λ

λ 0 0

ρ2W0
. . . 0

0 0 λ


(26)

whereas W is the spatial weights matrix.
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3 A pseudo maximum likelihood estimator for (inter-)dependent
binary outcomes

Having established that direct ML estimation is infeasible for binary models featuring (inter-

)dependencies, it is clear that we require an alternative approach. One option is simulation.

Franzese et al. (2016) and Calabrese and Elkink (2014b) provide extensive reviews of the spa-

tial probit literature, and useful comparisons of several simulation-based estimation methods

like recursive-importance-sampling (RIS) and Bayesian MCMC approaches (see also Cal-

abrese and Elkink (2014a) for cases with asymmetric link functions accommodating rare

events). Similarly, Beck et al. (2001) discuss a Bayesian estimation strategy for the binary

temporal autoregressive model. The main drawback of simulation-based approaches is that

they are computationally intensive, and often require tedious hyperparameter tuning (es-

pecially in the MCMC case). For this reason, this section introduces a pseudo maximum

likelihood (PML) method as a feasible way to overcome technical challenges associated with

estimating binary (inter-)dependence models. The method was originally proposed for binary

spatial models by (Smirnov 2010), but we show in this section that it is applicable for all

three types of (inter)-dependence.

3.1 PMLE for the binary spatial model

Recall the reduced form for the binary spatial model is given by

y∗ = (I− ρW)−1Xβ + (I− ρW)−1u

= (I− ρW)−1Xβ + v.

(27)

Denote the spatial multiplier by Z,

Z(N×N) = (I− ρW)−1, (28)
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and, by D, an N ×N matrix that contains diagonal elements of Z. All off-diagonal elements

of D are zero. The spatial multiplier indicates the degree of local and global spillovers of

an exogenous shock that unit i receives (Anselin 2003); in other words, zij =
∂y∗i
∂uj

, where

zij is the ijth element of Z. The diagonal matrix D indicates “private effects,” borrowing

Smirnov’s (2010) term, of exogenous shocks on the individual latent outcomes. The relative

effect captured by D is “private” in that it indicates the magnitude of the effect that unit i

receives from an exogenous shock that occurred to unit i itself; in other words, di =
∂y∗i
∂ui

.

On the other hand, the off-diagonal elements of Z, i.e. Z −D, represent “aggregate

spatial effects” of an exogenous shock. Note that all diagonal elements of Z −D are zero.

One could interpret it as an aggregate spillover effects that unit i receives from an exogenous

shock through all the other units.

The reduced form can now be re-written as

y∗(N×1) = ZXβ + (Z−D)u︸ ︷︷ ︸
“Social effects”

+ Du︸︷︷︸
“Private effects”

, (29)

or, for each unit i,

y∗i =
∑
j

βzijxj +
∑
j

[Z−D]ijuj + diui. (30)

We can now rewrite the probability of unit i seeing a positive outcome as

P (yi = 1) = P (y∗i ≥ 0)

= P (
∑
j

βzijxj +
∑
j

[Z−D]ijuj + diui ≥ 0)

= P

(
uit ≤

∑
j βzijxj

|di|
+

∑
j[Z−D]ijuj

|di|

)
.

(31)

The above expression holds regardless of the sign of di, a diagonal element of the spatial

multiplier, as long as the distribution for ui is symmetric.

Note that there is a stochastic element left in the argument of the probability in the
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above expression:
∑

j[Z−D]ijuj. Because E(ui) = 0 by assumption, we can write

E

[∑
j

[Z−D]ijtuj

]
= 0. (32)

This implies that the effects of exogenous shocks that unit i receives via the spatial multi-

plier component zij, i 6= j are not systematic, and have no systematic effect on the choice

probability P (yi = 1). Smirnov’s (2010) key proposal is to approximate
∑

j[Z − D]ijuj in

(31) by its expectation, i.e., zero. This step massively simplifies the likelihood function. To

see why, note that P (yit = 1) can now be written as follows:

P (yi = 1) = P (y∗i ≥ 0)

= P

(
ui ≤

∑
j βzijxj

|di|

)
= Fu

(∑
j βzijxj

|di|

)
,

(33)

where Fu(.) is the cdf of the univariate distribution of ui, which is typically the standard

normal (yielding a Probit model) or a standard logistic (yielding a Logit model).

With this approximation, we can write the pseudo likelihood in closed form. If ui

follows the standard logistic distribution, for instance, we have

PL(ρ,β|X,y∗) =

[
N∏
P (yi = 1)

]yi [ N∏
(1− P (yi = 1))

](1−yi)

∝

[
N∏ exp ((

∑
j βzijxj)/|di|)

1 + exp ((
∑

j βzijxj)/|di|)

]yi

×

[
N∏ 1

1 + exp ((
∑

j βzijxj)/|di|)

](1−yi)

.

(34)
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3.2 PMLE for the temporal autoregressive model

Recall the reduced form for the binary temporal autoregressive model, given by

y∗(T×1) = (I− γT)−1Xβ + (I− γT)−1u. (35)

Next, let

Z(T×T ) = (I− γT)−1, (36)

denote the dependency multiplier. Applying the logic of the previous section, we can decom-

pose the reduced-form error term into two parts

y∗ = ZXβ + Zu

= ZXβ + (Z−D)u︸ ︷︷ ︸
distributed

+ Du︸︷︷︸
contemporaneous

.
(37)

The distributed effect captures the effect of exogenous shocks that occurred in the past and

were carried over to the outcome of time t. These are distributed because this term focuses

on the effect that is carried across multiple time periods (“neighbors” in time). On the other

hand, the contemporaneous effects capture the effect of an exogenous shock that occurred

in the current time period on the current outcome. Note that due to the lower-diagonal

structure of T, D = I, and thus di = 1. Again substituting (Z−D)u with its expectation,

we arrive at the following expression for the probability of a positive outcome:

Pr(yt = 1)

= Pr(y∗t > 0)

= Pr (ut < [ZXβ]t) ,

(38)
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and the pseudo likelihood function, for instance with a logit link function, is given by

L(γ,β|X,y) =

[
T∏
P (yt = 1)

]yt [ T∏
(1− P (yt = 1))

](1−yt)

∝

[
T∏

1− 1

1 + exp (−[ZXβ]t)

]yt

×

[
T∏ 1

1 + exp (−[ZXβ]t)

](1−yt)

.

(39)

3.3 PMLE for the simultaneous outcome model

As established earlier, the reduced form for the binary simultaneous outcome model is given

by

y∗ = (I−A)−1Xβ + (I−A)−1u (40)

Applying the same decomposition to the reduced form error as in the previous sections yields

y∗ = (I−A)−1Xβ + (I−A)−1u

= ZXβ + (Z−D)u︸ ︷︷ ︸
plural effects

+ Du︸︷︷︸
singular effects

.
(41)

The singular effect captures the effect of exogenous shocks on outcome type l directly. The

plural effect captures exogenous shocks that apply to outcome type ¬l and spill over to

outcome type l. Given the error decomposition, the pseudo likelihood estimator may be

derived in the exact same way as in the previous two sections. The same applies for any of

the discussed hybrid models.

4 Speeding up computation

In the previous section, we have derived pseudo likelihood functions for binary (inter-)dependence

models that can be evaluated directly, thus permitting a pseudo maximum likelihood (PML)

strategy that does not require simulation. However, naive implementations of the proposed
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PML estimator may still be prohibitively costly to run. To see why, let us assume that we

attempt to fit a model with the following reduced form

y∗N×N = (I−Q)−1Xβ + (I−Q)−1u, (42)

which yields a pseudo likelihood function consisting of N terms of the following form

P (yi = 1) = P (y∗i ≥ 0)

= Fu

(
[ZXβ]i
|di|

)
,

(43)

with Z = (I − Q)−1 and di = [Z]ii. Perhaps the most straightforward implementation of

expression (43) is to invert I−Q directly using a decomposition-based solver, then multiplying

Z with Xβ, and dividing by diag(Z). However, this strategy is typically very slow, as most

decomposition-based solvers operate with almost cubic complexity in N .

We propose two (mutually compatible) strategies for avoiding the full inversion of

I−Q. The first is trivial, but is worth spelling out nonetheless. If Q is block diagonal, which

will be the case in any panel model without a temporal autoregressive component (e.g. the

binary simultaneous equation panel model introduced earlier), then its inverse is the block

diagonal matrix of block-wise inverses. More formally,

if Q =



B1 0 · · · 0

0 B2
. . .

...

...
. . . . . . 0

0 · · · 0 BT


, then B−1 =



Q−1
1 0 · · · 0

0 B−1
2

. . .
...

...
. . . . . . 0

0 · · · 0 B−1
T


.

The second strategy is useful whenever Q can be decomposed as Q = αM, where α

is a scalar. Note that this is the case for all three models proposed earlier (spatial, temporal,

simultaneous equation), as well as any panel model based on any of these. In this strategy,

we completely avoid inverting I−Q, and instead compute ZXβ and D = diag(Z) separately.
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We compute µ = ZXβ by solving the linear system (I −Q)µ = Xβ for µ. This we can do

without inversion by using gradient-based iterative procedures. A key advantage of doing so

is that iterative procedures are especially efficient if Q is sparse, which is usually the case.

We propose using the conjugate gradient method if Q is symmetric, and the slightly slower

biconjugate gradient stabilized method otherwise (see Saad 2003). Both these methods have

time complexity that is linear in the number of non-zero elements in Q, and are thus far

more efficient than directly inverting I−Q.

To obtain D, we make use of the fact that Z can be written as a Neumann series

(LeSage and Pace 2009, ch. 2)

Z = I +
∞∑
l=1

(αM)l. (44)

Thus, an approximation for D may be obtained via

D ≈ D̃ = diag(I) +
L∑
l=1

diag
(
αlMl

)
. (45)

Note that we can precompute the series {M,M2, . . . ,ML} prior to optimization. Thus, the

time complexity of evaluating D̃ during optimization is linear in N .

5 Evaluation and comparison of estimation strategies

Next, we evaluate the performance of our proposed pseudo maximum likelihood (PML) esti-

mator for a spatial probit model and a temporal autoregressive probit model. In both cases,

we compare the performance of our estimator to that of some well-recognized alternatives.2

5.1 Monte Carlo simulation for the spatial probit model

In this section, we present simulation results for a spatial probit data generating process

(DGP) as specified in (3), with ui ∼ N(0, 1). Throughout the experiments we set the

offset β0 to 0.5 and β1 to 1. The covariate vector x is drawn from the standard normal.

The spatial autocorrelation parameter, ρs, is set to 0 (no spatial autocorrelation), 0.25 and
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0.5, respectively in across experiments. The spatial weights matrix W is captures queen-

neighborhoods on a square lattice and is row-normalized.

We compare our estimator (PMLE) with three alternatives: (1) A simple GLM probit

model where the observed spatial lag Wy is added as a covariate. (2) The Bayesian spatial

probit model proposed by LeSage (2000) and implemented by Wilhelm and Godinho de

Matos (2013).3 (3) The GMM-based spatial probit model by Klier and McMillen (2008).

We repeat the experiments for sample sizes of N = {256, 1024, 4096}. For each exper-

iment, we record the root mean squared error (RMSE) associated with all three parameters

for each model. We also keep track of estimation times, since one of our goals objectives

in this paper is to reduce the computational burden associated with existing methods. We

repeat each experiment 50 times.

Table 1 reports the RMSE estimates across all experiments. It is evident that our

method, the Bayesian model, and the GMM method perform almost identically in terms of

RMSE. As expected, the “naive” GLM model tends to incur relatively large errors. Perhaps

more interestingly, Figure 1 summarizes the average estimation time for each experiment

and model. It is on this metric where the benefits of using the PMLE become evident:

While estimation times for the GMM and Bayesian models approach prohibitively high values

for high N , the PMLE model is estimated almost instantly. In fact, we had to abort the

estimation loop for the Bayesian models for N = 4096 because completing the experiments

would have taken more than a day.

5.2 Monte Carlo simulation for the temporal autoregressive probit model

Next, we provide simulation results for the temporal autoregressive probit model, as defined

in Section 2.2, with ui ∼ N(0, 1). We set up the experiments equivalently to those for the

spatial probit model in the previous section. We compare out estimator (PMLE) with two

alternatives: (1) A simple GLM probit model that does not account for temporal autocor-

relation. (2) A GLM probit model where the observed outcome is included as an additional

regression
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Figure 1: Estimation times (in seconds) for the spatial probit experiments.

Table 2 summarizes the RMSE estimates for the experiments. We find that our

estimator exhibits the least error by far – not only for the temporal autocorrelation parameter

(γ), but also for β1. Figure 2 summarizes estimation times. Again, we find that our estimator

performs extremely well, typically converging to a solution in under a second, even for N =

4096.

6 Conclusion

In this paper, we suggested pseudo maximum likelihood estimators (PMLE) as simpler

solutions—particularly from applied the researcher’s perspective—to the estimation prob-

lems that arise from various sources of interdependence in binary data. The primary source

of the estimation challenge is the fact that the jointly determined error terms in the reduced-

form specification are analytically intractable due to an N-dimensional integral; hence we

cannot obtain an analytical form of the likelihood with respect to the structural-form errors,
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Figure 2: Estimation times (in seconds) for the temporal probit experiments.

for which we know the distributional characteristics. We discussed the problem as generally

as possible, considering three sources of interdependence in data: (1) spatial interdepen-

dence, (2) temporal autocorrelation, and (3) simultaneity arising from endogenous binary

regressors in simultaneous equations. To deal with this problem, the previous literature

has proposed simulation approaches, but these are extremely computationally intensive and

generally impractical for standard datasets of medium to large size.

As a way forward, we demonstrated how to reduce computational burdens significantly

by (i) introducing analytically tractable pseudo maximum likelihood estimators (PMLE) for

binary choice models that exhibit (inter-)dependence across space, time and/or outcomes,

and by (ii) proposing an implementation strategy that increases computational efficiency

considerably. Our first-cut Monte Carlo experiments demonstrate that (a) omitting inter-

dependence induces bias in binary choice models, (b) our estimators are generally able to

recover the parameters of the DGP, and (c) our estimators require only a fraction of the

20



computational cost of simulation-based methods.

That said, there are still at least two major tasks that need to be completed in future

iterations of this paper:

• Monte Carlo analyses for the simultaneous equation model and the hybrid models

• An a pplication along the lines sketched in the introduction. This project was originally

motivated by a set of complex theory in ethnic conflict; however we would like to

illustrate the methods with more self-explanatory topics that incorporates all sources

of interdependence.
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Notes

1The following results generalize trivially to higher-order processes.

2At the moment, we do not yet have simulation results for the simultaneous outcome

model; they are forthcoming.

3We run the MCMC algorithm with default settings for 1000 iterations.
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