brought to you by

Event Pattern Identification in Anonymized System Logs

Siavash Ghiasvand[§] and Florina M. Ciorba*

§Technische Universität Dresden, Germany ★University of Basel, Switzerland

There are detectable patterns in the system logs.

Such patterns help system administrators detect irregular activities.

System logs may contain sensitive and confidential data (e.g., user credentials). Protecting privacy is a major goal.

Data mining methods are well known for system log analysis [2].

Most data mining methods employ statistical approaches.

Anonymization can efficiently reduce the size (in Bytes) of system logs. Data in anonymized logs is still useful for further analysis [3] (e.g., failure early-detection).

Motivation and Challenges

2.

The

Method

More than 77% of system logs are related to 23 different events.				
10% of system logs are responsible for more than 90% of syslog network traffic.				
25% of system logs are related to a single event and can safely be ignored.				
The most alarming events are among the less than 1% of all system logs.				
Events related to several errors, including "file system" failures, are located among the 74% of all system logs.				

Event ¹ frequency	Event patterns	Total events	Percentage
1 - 5	358	630	0.04%
6 - 100	233	12,885	0.85%
101 - 200	52	7,493	0.49%
201 - 300	442	91,000	5.98%
301 - 400	12	3,902	0.26%
401 - 500	86	35,694	2.34%
501 - 1000	40	29,414	1.93%
1001 - 4000	55	83,848	5.51%
4002 - 10000	13	73,207	4.81%
10001 - 100000	22	803,452	52.77%
100001 - 150000	1	381,172	25.03%
ALL	1312	1,522,697	

System log form	Data size in Bytes
Raw system log	99,079,741
De-identified	98,006,233
De-identified + Hashed (anonymized)	50,250,651
Double hashing	4,386,137
Smart hashing	150,000 – 400,000

Based on system logs, collected during 10 days on 99 nodes of Taurus² HPC system

 \succ (root) CMD (/usr/lib64/sa/sa1 1 1) Accepted publickey for siavash from 192.43.85.67 port 742 ssh2 pam_unix(sshd:session): session closed for user Siavash Normal exit (1 job run) pam_unix(sshd:session): session closed for user Siavash (admin) CMD (/usr/libgz/ra1 3 5)

Raw system log entries (list of events)

(#USER#) CMD (#CMND#)

Accepted publickey for #USER# from #IPV4# port #PORT# ssh2

pam_unix(sshd:session): session closed for user #USER#

Normal exit (1 job run)

pam_unix(sshd:session): session closed for user #USER#

 \succ (#USER#) CMD (#CMND#)

Anonymized (cleansed) system log entries

RACIITS

Filtered data requires ~95% less storage space.

Data filtering, significantly speedsup the identification process.

Removing the **25%** of most frequent events, resulted in ~50%

Events timeline based on raw system logs

Center for Information Services & High Performance Computing