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Abstract Recurring contraction-relaxation cycles exert a massive mechanical load 
on muscle fibers. Training adaptation therefore entails the promotion of a series of 
biological programs aimed at inducing a better stress response but also at optimiz-
ing repair processes. Muscle regeneration is controlled by an intricate, tightly coor-
dinated engagement of muscle fibers, satellite cells, macrophages and other cell 
types. In this review, we discuss some of the recent insights into the regulation of 
muscle repair and regeneration in exercised muscle, elucidate the role of the peroxi-
some proliferator-activated receptor γ coactivator 1α (PGC-1α) in this context, and 
speculate about potential implications for the treatment of muscle diseases.

 Introduction

Skeletal muscle is a highly plastic organ that adapts its properties depending on 
contractile demand. These adaptations are not only affected by mechanical loading, 
e.g., as seen after a period of inactivity or training, but also by the availability of 
nutrients and hormones, temperature or oxygen levels, which collectively determine 
the balance between protein synthesis and degradation, mitochondrial activity, con-
tractile function, a shift in fiber type distribution and other biological programs. For 
example, endurance training promotes mitochondrial function and oxidative metab-
olism, a shift towards high endurance muscle fibers and tissue vascularization, 
among other changes. The peroxisome proliferator-activated receptor γ coactivator 
1α (PGC-1α) is an important driver of endurance training adaptation (Lin et  al. 
2002, 2005; Handschin 2010). Accordingly, PGC-1α strongly boosts oxidative 
metabolism, a fiber type shift, glucose uptake, vascularization and other properties 
of endurance-trained fibers by co-activating a variety of transcription factors in a 
complex transcriptional network (Handschin 2010; Kupr and Handschin 2015).
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Exercise is one of the best interventions to preserve muscle mass through its 
strong anti-atrophic effects. As one of the main effectors of exercise adaptation, 
PGC-1α also reduces the pathological consequences of muscle wasting. For exam-
ple, elevation of PGC-1α in skeletal muscle reduces fiber damage and atrophy and 
improves muscle functionality in etiologically diverse muscle wasting contexts such 
as hind limb unloading (Cannavino et al. 2014), denervation or fasting (Sandri et al. 
2006), or even Duchenne muscular dystrophy (DMD; Handschin et al. 2007; Selsby 
et al. 2012; Hollinger et al. 2013). Several mechanisms have been proposed to be 
involved in the therapeutic effect of PGC-1α in muscle pathologies, for example, the 
inhibition of the transcriptional activity of forkhead box O3 (FoxO3) and thereby 
the induction of E3 ubiquitin ligases muscle ring finger 1 (MuRF-1) and muscle 
atrophy f-box (MAFbx) that promote protein degradation and fiber atrophy (Sandri 
et al. 2006). However, other consequences of increased PGC-1α activity have also 
been implicated; therefore, the exact mechanisms that underlie the beneficial effect 
of elevation of PGC-1α remain unclear. More recently, the involvement of inflam-
mation, both in muscle fibers and through activation of resident macrophages and 
satellite cells (SCs), the lineage-committed adult muscle stem cells, has been stud-
ied in more detail in this context.

 Repair and Regeneration After Muscle Damage

For proper muscle regeneration, a series of highly coordinated events take place that 
entail a tightly orchestrated cross-talk between different cell types to ensure proper 
initiation, activation, cell type transition and, ultimately, termination of various cel-
lular programs. Initially, in response to injury, muscle cells and tissue-resident mac-
rophages secrete cytokines and chemokines such as tumor necrosis factor α (TNFα) 
and C-C motif ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) to 
attract additional immune cells (Pillon et al. 2013). Neutrophils are among the first 
leukocytes infiltrating the damaged area, and they subsequently release chemotactic 
signals to promote the tissue infiltration by circulating monocytes (Saclier et  al. 
2013a). During the initial inflammatory response, monocytes polarize into classical 
M1-type-activated macrophages and remove tissue debris by phagocytosis. The 
concomitantly secreted cytokine and chemokine cocktail not only further attracts 
monocytes but also activates SC proliferation and commitment (Saclier et  al. 
2013b). The SCs are located in the niche between the sarcolemma and the basal 
lamina and express different factors depending on the state of the myogenic process. 
Quiescent SCs are characterized by high levels of paired-box 7 (Pax7). Upon activa-
tion, e.g., by muscle injury, proliferation and commitment are initiated by a switch 
to myogenic regulatory factor 5 (Myf5) and MyoD expression, ultimately resulting 
in the differentiation into myoblasts and subsequent fusion to myofibers with ele-
vated myogenin and MRF4 (Charge and Rudnicki 2004). This differentiation pro-
cess is promoted by the shift in macrophage polarization into the alternatively 
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activated M2 types that release anti-inflammatory factors (Saclier et al. 2013b). The 
requirement for a tight orchestration of these different phases is illustrated, for 
example, by the fibrotic tissue accumulation in the case of a disruption of the regen-
eration process by a prolongation of the initial pro-inflammatory context, thereby 
resulting in impaired muscle function. Inversely, a reduced phase involving M1 
macrophages may impair regeneration by increased formation of necrotic tissue and 
inhibition of proliferation of myogenic cells. Therefore, the tight coordination of the 
transition from M1 to M2 macrophages is critical for proper regeneration.

 Effects of Exercise and PGC-1α on SCs

In several pathological conditions such as DMD, cancer cachexia and aging, oxida-
tive muscle fibers are preferentially spared, suggesting that these muscle fibers are 
more protected from muscle damage and degradation. Interestingly, the SC pool in 
highly oxidative muscle fibers is larger (Gibson and Schultz 1982; Dinulovic et al. 
2016b), which could contribute to an improved regeneration after muscle damage. 
Therefore, inducing a shift towards an oxidative phenotype of the muscle by, for 
example, exercise (Rowe et al. 2014a), which is also accompanied by a higher SC 
content (Shefer et al. 2010; Kurosaka et al. 2012; Fry et al. 2014; Abreu et al. 2017), 
could be a strategy to ameliorate the progression of these pathologies. Even in old 
muscle, the aging-induced loss of SCs and differentiation potential can be preserved 
by voluntary wheel running or forced treadmill exercise by increased Wnt signaling 
(Fujimaki et al. 2014; Cisterna et al. 2016). The rejuvenating effect of exercise on 
SC function was demonstrated in aged trained mice that recovered to a similar 
extent as young sedentary animals after muscle injury (Joanisse et al. 2016), indicat-
ing that the reduced regenerative capacity of aging muscles could be restored by 
exercise.

Curiously, even though many of the exercise-induced adaptations in muscle, 
such as the fiber type shift and oxidative metabolism, are regulated by PGC-1α (Lin 
et  al. 2002, 2005; Handschin 2010); the number of SCs in mice overexpressing 
PGC-1α specifically in muscle (MCKα) is lower than in wild-type animals and thus 
diametrically opposite to the higher number seen after exercise or in oxidative mus-
cles (Dinulovic et al. 2016b). Importantly however, despite the reduced SC pool, 
regeneration is not impaired and the proliferative potential of the SCs is even 
enhanced in these mice (Dinulovic et al. 2016b). These observations suggest that 
PGC-1α indirectly affects SC function by co-activating factors that activate SCs or 
induce a change in the SC niche (Fig. 1).

The composition of the extracellular matrix (ECM) and the basal lamina deter-
mines the efficacy of the niche to modulate SC proliferation and differentiation. For 
example, fibronectin (FN) is an important niche protein involved in the activation 
and proliferation of SCs (Bentzinger et al. 2013). Accordingly, the impaired regen-
erative capacity in aging muscle is associated with reduced levels of FN and can be 
restored by treating mice with FN (Lukjanenko et  al. 2016). It is conceivable, 
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 therefore, that the enhanced proliferative potential of SCs of MCKα mice is linked 
to FN function, since higher levels of FN are observed in the muscles of these ani-
mals (Dinulovic et al. 2016b). The increase in matrix metalloproteinases 2 (MMP2) 
and MMP9 induced by exercise further underscores the importance of niche remod-
eling, since the ensuing ECM degradation could subsequently facilitate the migra-
tion of SCs (Garg and Boppart 2016) whereas MMP-controlled vascularization 
enhances the delivery of nutrients and growth factors to the niche (Gustafsson 
2011). Accordingly, differentiating SCs are closer to capillaries compared to quies-
cent SCs (Christov et al. 2007). Inversely, SCs are more distantly located from cap-
illaries in old compared to young men (Nederveen et al. 2016), suggesting that the 
reduced transport of signaling molecules to the niche could contribute to the reduced 
regenerating potential observed in aging muscles. The angiogenesis induced by 
exercise or PGC-1α (Gustafsson 2011; Rowe et al. 2014b) results in a closer prox-
imity of SCs to capillaries; hence there is improved transport of circulating factors 
to the niche and ultimately enhanced regenerative processes.

 Effects of Exercise and PGC-1α on Macrophages 
and Inflammation

In contrast to the numerous studies on the effects of exercise on SCs, literature on 
exercise-induced changes on macrophages is scarce. Most studies investigating 
macrophage infiltration in the context of regeneration post-exercise were performed 
in humans after damaging eccentric exercise (Przybyla et al. 2006; Mahoney et al. 
2008; MacNeil et al. 2011), and less is known about the effects of endurance exer-
cise on macrophage infiltration. As infiltration of immune cells is tightly coordi-
nated, the timing of tissue collection is crucial and complicates the experimental 

Fig. 1 Pre-conditioning of the muscle for faster regeneration. Schematic representation of the 
exercise- and PGC-1α-induced muscle cross-talk to macrophages and satellite cells (SC) that cre-
ates an environment that could prime the tissue for improved regeneration in response to damage. 
ECM extracellular matrix, BL basal lamina, Mɸ Macrophage
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setup. In response to resistance exercise, infiltration of CD68+ macrophages is 
increased after 48 h (Mahoney et al. 2008; MacNeil et al. 2011) and unchanged in 
the early (3 h) and late (72 h) phases of recovery (Przybyla et al. 2006; Mahoney 
et al. 2008; MacNeil et al. 2011). The expected switch to CD163+ M2 macrophages 
is observed after 72 h, i.e., during the later stage of regeneration (Przybyla et al. 
2006). In contrast to the infiltration of macrophages seen 48 h post-resistance exer-
cise in humans, endurance exercise had no effect on the number of macrophages at 
that time point in rats (Kurosaka et al. 2012). Therefore, the timing of macrophage 
activation, infiltration and polarization depends on the type of exercise, training 
intensity and most likely other factors that remain to be elucidated.

In skeletal muscle fibers, PGC-1α reduces the expression of pro-inflammatory 
gene expression by inhibiting the transcriptional activity of the nuclear factor κB 
(NF-κB; Eisele et al. 2013). Nevertheless, somewhat unexpectedly, sustained over-
expression of PGC-1α in muscle increases the number of tissue-resident macro-
phages in uninjured muscle (Rowe et al. 2014b; Dinulovic et al. 2016a). However, 
these macrophages have a predominant M2 phenotype (Dinulovic et  al. 2016a), 
indicating that PGC-1α induces an anti-inflammatory environment and may thereby 
modulate the response to muscle damage. Interestingly, in contrast to the glycolytic 
phenotype of M1 macrophages, M2 macrophages have a more oxidative phenotype 
(Galvan-Pena and O’Neill 2014; Kelly and O’Neill 2015), analogous to the meta-
bolic phenotype of muscle overexpressing PGC-1α or PGC-1β. The metabolic shift 
required for the anti-inflammatory phenotype of macrophages is mediated by 
PGC-1β (Vats et al. 2006).

Although the mechanisms by which PGC-1α affects macrophage polarization 
leading to the higher number of M2 macrophages in muscle is unknown, mediators 
of PGC-1α-dependent macrophage attraction and/or activation have been described 
(Fig. 1). PGC-1α induces the transcription of secreted phosphoprotein 1 (SPP1), 
which in turn is involved in the recruitment of macrophages and activation of epi-
thelial cells to ensure functional neovascularization (Rowe et al. 2014b). In the con-
text of acute exercise, PGC-1α controls the expression of the B-type natriuretic 
peptide (BNP), which promotes macrophage activation in a paracrine manner 
(Furrer et al. 2017). While M1 macrophage activation is resolved more rapidly in 
damaged PGC-1α-overexpressing muscles (Dinulovic et  al. 2016a), the mecha-
nisms by which muscle PGC-1α affects infiltration and polarization in this context 
are still unclear.

 Exercise-Induced Pre-conditioning for Faster Muscle 
Regeneration

As described above, exercise and muscle PGC-1α induce several adaptations such 
as an increase in the SC pool, remodeling of the SC niche, enhancement of the pro-
liferation and differentiation potential of SCs as well as a higher number of 
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tissue- resident macrophages that could all contribute to an improved regenerative 
capacity of the muscle. It is conceivable that exercise creates an environment within 
the muscle and the niche that could prime the muscle for improved regeneration in 
response to muscle damage. This hypothesis of exercise-induced pre-conditioning 
is supported by various observations. For example, the altered tissue-resident mac-
rophage population in muscles overexpressing PGC-1α could contribute to the 
improved SC proliferation and commitment in damaged muscles of these mice, 
since a variety of cytokines and growth factors that activate SCs are secreted by both 
muscle and macrophages. M1 macrophages release interleukin 6 (IL-6), insulin-like 
growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF), whereas 
M2 macrophages mainly secrete IGF-1 and VEGF (Wu et al. 2010; Lu et al. 2011; 
Tonkin et al. 2015). IL-6 and IGF-1 are important for the activation and prolifera-
tion of SC (Charge and Rudnicki 2004; Serrano et al. 2008) and may thereby con-
tribute not only to the repair and regeneration but, in the case of resistance training, 
also the hypertrophic response to exercise. Besides the direct effect of IL-6 on SCs, 
changes in IL-6 levels may also be involved in the remodeling of the niche, as IL-6 
KO mice show lower levels of FN (Serrano et al. 2008). These reduced FN levels 
contribute to impaired regeneration, which is in line with the FN-dependent decrease 
in regeneration observed in aging (Lukjanenko et al. 2016). Therefore, the number 
of macrophages as well as the proportion of M1 and M2 macrophages in a trained 
muscle could play a role in the pre-conditioning of the muscle.

Of note, several of these factors, such as IL-6, IGF-1 and VEGF, are also myo-
kines that are produced and secreted from muscle after exercise (Schnyder and 
Handschin 2015). Collectively, the local levels of such signaling molecules could, 
therefore, affect the activation of both macrophages and SCs. For example, eleva-
tion of VEGF stimulates angiogenesis and thereby increases vascularization 
(Gustafsson 2011; Rowe et al. 2014b). The increase in VEGF is directly regulated 
by PGC-1α in muscle fibers (Arany et al. 2008; Baresic et al. 2014; Rowe et al. 
2014b) and potentially also indirectly through the stimulation of M2 macrophage 
accumulation (Dinulovic et al. 2016a). The resulting increase in tissue vasculariza-
tion improves activation of SCs and facilitates infiltration of immune cells.

Besides paracrine effects of muscle and macrophages, exercise-regulated modu-
lation of intrinsic SC properties also influences the proliferation and differentiation 
potential. For example, isolated SCs of muscles exposed to functional overload fuse 
better than control SCs (Fujimaki et al. 2016), suggesting that the differentiation 
potential of SCs is improved by exercise in a manner that is maintained even after 
removal from the niche. Inactivation of Notch signaling and stimulation of Wnt 
signaling contribute to improved fusion of trained SCs (Fujimaki et al. 2016), but 
the exact mechanisms of this priming of SC memory is unclear. Recently, a G0alert 
state of SCs in the contralateral, non-damaged leg of mice with a pharmacologically 
induced muscle injury has been proposed to be linked to mammalian target of 
rapamycin complex 1 (mTORC1) activity (Rodgers et  al. 2014). This SC pool 
exhibits an accelerated proliferative response upon activation. Similar to these 
observations in SCs, muscles may also have a memory in terms of the post-exercise 
inflammatory response: in human volunteers, MCP-1 levels as well as CD68+ 

R. Furrer and C. Handschin



63

macrophages were higher two days after a repeated bout compared to the first bout 
of exercise (Deyhle et  al. 2015). While the mechanisms underlying this finding 
remain enigmatic, similar exacerbated macrophage activation is observed upon 
elevation of BNP by PGC-1α in exercised muscle (Furrer et al. 2017). Moreover, in 
muscles overexpressing PGC-1α, a larger area of cardiotoxin-damaged muscle is 
covered by macrophages and thus undergoing regeneration (Dinulovic et al. 2016a). 
In addition, after chronic muscle damage by multiple cardiotoxin injections, fiber 
size was recovered more efficiently and fibrotic tissue was reduced by PGC-1α 
overexpression (Dinulovic et al. 2016a, b), indicating that exercise- and PGC-1α-
induced intrinsic and extrinsic adaptations contributed to enhanced regenerative 
capacity. Importantly, improved regeneration upon cardiotoxin-induced muscle 
damage occurred despite strong downregulation of PGC-1α expression (Dinulovic 
et al. 2016a, b). These data strongly imply a pre-conditioning effect to help trained 
muscle to cope with damage that includes a broad spectrum of functional modula-
tion of SCs, endothelial cells and macrophages as well as cellular cross-talk that 
together create an environment that primes the muscle for faster regeneration.

 Conclusion

Overexpression of PGC-1α in skeletal muscle ameliorates the symptoms of many 
different muscle diseases. Similarly, in those pathologies in which patients are exer-
cise tolerant, training confers a beneficial effect on muscle functionality. While 
many different properties of exercise and PGC-1α most likely contribute to this 
therapeutic effect, the modulation and orchestration of macrophages and SCs could 
directly improve repair and regeneration in these diseases. Therefore, a more careful 
elucidation of the cell autonomous changes and cellular cross-talk that optimize 
repair and regeneration of damaged muscle tissue after exercise could provide novel 
targets and avenues to treat a wide variety of different muscle diseases.
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