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A Tug of War Team Contest

Samuel Häfnera

aUniversity of Basel, Faculty of Business and Economics, Peter Merian-Weg 6, CH-4002 Basel,
Switzerland

Abstract

This paper analyzes a tug of war contest between two teams. In each round of the tug of
war a pair of agents from the opposing teams competes in a private value all-pay auction
with asymmetric type distributions and effort effectiveness. Whichever team arrives first
at a given lead in terms of battle victories over the opponent wins the tug of war. There
exists a unique Markov-perfect equilibrium in bidding strategies that depend on the player’s
valuation and on the history through the current state of the tug of war only. We derive
rich comparative statics for this equilibrium by using the fact that the states of the tug of
war evolve according to a time-homogeneous absorbing Markov chain.

JEL classification: D74, F51, H56

Keywords: Team Contests, Multi-Stage Contests, Tug of War, All-Pay Auction,
Absorbing Markov Chain

1. Introduction

In the basic contest model, a finite number of agents expends efforts in order to win a
fixed, indivisible prize. The allocation of the prize is a function of the efforts expended, and
effort costs accrue irrespective of the final allocation. Canonical examples for contests include
R&D-competition, sports contests, political elections, lobbying games, or wars. Konrad
(2009) provides an exhaustive overview of the literature. The basic model assumes that
competition is between individual agents and that the contest is static. In many contest
situations, however, there is competition between groups of agents rather than between
single agents. Further, a contest is often divided into several battles that take place over
time. These two observations have led to two separate strands of literature. Nevertheless,
the combination of the two, that is, the analysis of competition between groups in dynamic
contests, which is the topic of this paper, has received comparably little attention so far.

This paper considers a contest between two groups, here called teams, that consists of a
sequence of battles between a pair of agents (or units) from the opposing teams. The battles
are linked by a tug of war structure which is represented by a number of states located on a
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June 23, 2015



horizontal line: Depending on the outcome of the battles, the tug of war state moves either
to the left or to the right until one of the final states at the respective ends of the line is
reached. The tug of war starts symmetrically, that is, both teams need to arrive at the same
lead in battle victories over the opponent in order to win. The crucial feature of the tug
of war contest is that the winner is not determined in terms of of absolute gains, but in
terms of gain differences over the adversary. The tug of war is a multi-stage contest with a
potentially infinite number of rounds, because the state might move back and forth several
times during the contest.

Real life tug of war contests, like the sport contests after which they are named, typically
exhibit this pendulum-like character. For example, the dispute over the settlement for the
victims of the Ponzi scheme by Bernard Madoff that started after his firm filed bankruptcy in
2009 lasted for more than four years, exhibited several agreed, blocked and re-agreed deals,
and was called a “legal tug of war” by the Wall Street Journal in 2013.1 Militarized disputes,
too, often exhibit changing advantages of the parties involved. For example, in the Afghan
war that started in 2001, the town of Garmsir in the Helmland province marked the border
between British controlled territory and Taliban controlled territory between 2006 and 2008
and changed hands in these years at least three times. Accordingly, the Washington Post
described this back and forth as a tug of war.2

The battles in our tug of war are modeled as asymmetric private value all-pay auctions.
We assume that each agent of the matched pair has a private valuation for the victory of
his team, called that agents’ type, and that there is no intrinsic value to a victory in battle.
The all-pay auction is asymmetric with respect the distributions of these types, but also
with respect to a commonly known effort effectiveness parameter of the agents. Because we
believe that private values are – at least to some degree – a salient feature of many real life
contests, we focus on the private value all-pay auction case in our analysis. Nevertheless, we
note that the model is flexible enough to also allow the study of public information about
valuations, and alternative contest technologies for the battles. The last section contains a
discussion of such alternatives.

A crucial assumption of our tug of war model is that each team has a countably infinite
number of agents that are called to play sequentially in every round of the tug of war. This
implies that each agent is active only once during the course of the contest, and thus has
an influence on the contest outcome only through the outcome of his specific battle. This
feature guarantees that the kind of discouragement effect familiar from the literature on
dynamic contests (cf. Konrad, 2012) is absent by construction: No agent has future costs
which might affect his choice of action today. The assumption of large teams will thus
sharpen our interpretation of the effort dynamics that we observe across the tug of war
states, and over time. Furthermore, the implication that players do not have an influence on
the course of the course contest except through the outcome of their battles squares with the

1Wall Street Journal, The Law Blog, “Latest Salvo In Legal Tug Of War Over Madoff Settlement”, on
Aug 7, 2013: blogs.wsj.com/law.

2Washington Post, “British Troops, Taliban In a Tug of War Over Afghan Province”, on March 30, 2008:
www.washingtonpost.com.
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reality of, e.g., complex legal disputes that involve specialists competing for partial victories
in their respective fields of expertise only, or with that of long term militarized disputes
where the composition of the troops involved changes over time.

When called upon to play, the players fully observe the public history of the game,
consisting, for every round of the tug of war, in the chosen efforts of the players and the
tug of war state in the following round. We restrict attention to strategies that we call
Markov. Markov strategies only condition on the private type and on the current tug of
war state. We show that there exists a unique equilibrium in such strategies (Proposition
1) that we call Markov-perfect equilibrium. We show existence by establishing strategic
equivalence between the battles of the tug of war, given the other players follow their Markov-
perfect equilibrium strategies, and a simple asymmetric one-shot all-pay auction with scaled
valuations. For this latter game, we can adapt the standard uniqueness result of Amann
and Leininger (1996).

A first observation about the Markov-perfect equilibrium is that battle-winning proba-
bilities are state-independent, i.e. only depend on the type distributions and on the effort
effectiveness parameters of the agents. The result is due to the fact that, in equilibrium,
the agents in battle fight over symmetric and strictly positive gains in the contest-winning
probability. These gains serve as a scaling factor of the valuations to be won for both play-
ers, and because the ex ante equilibrium probability to win the asymmetric all-pay auction
is independent of such a scaling, state-independent battle-winning probabilities follow. As
a consequence, we can use results on simple random walks with two absorbing states to
derive results on the expected duration of the tug of war, and on the contest-winning prob-
abilities of the teams. State-independent battle-winning probabilities imply that in contrast
to other dynamic contests, where early battle victories increase the likelihood of victory in
later rounds (e.g. Klumpp and Polborn, 2006), there is no such momentum effect in our
tug of war. The relation between type distributions, effort effectiveness and battle-winning
probabilities is exhibited in Proposition 2.

The core contribution of this paper consists in four results about expected effort provision
across states and over time. The first result (Proposition 3) shows that expected individual
efforts of either team increase in the stronger team’s closeness to defeat, where we call a
team stronger than the opponent team if it has a battle-winning probability of more than one
half. This monotonicity in effort provision across states is in contrast to the non-monotone
effort dynamics known from single-agent tug of wars (Konrad and Kovenock, 2005; Agastya
and McAfee, 2006, see the next section for more details), and crucially depends on the
assumption that we have teams competing rather than single agents. It can be explained
by the interplay of two opposing effects: a dynamic free-riding effect and a discouragement
effect, with the latter dominating for the weaker team and the former dominating for the
stronger team (and both effects exactly balancing when teams have equal strength). To see
the free-riding effect, consider first the extreme case of an agent from the stronger team
who expects that his team will win all future battles with probability one. Such an agent
has no incentive to exert any effort because his team will win the tug of war anyway – the
agent can free-ride on the future efforts of his fellow team members, unless, of course, when
the agent is called upon to play in the state where battle defeat is equivalent to defeat in
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the tug of war, in which case the effort of the agent is essential. The same dynamic free-
riding affect arises for the stronger team, albeit in diluted form, whenever battle-outcome
probabilities are strictly below one: The closer the stronger team is to victory, the higher is
the probability that a defeat in a given battle is compensated by the efforts of future team
members, thus reducing the incentive to exert effort for the current agent. For an intuition
of the discouragement effect, it is instructive to consider the extreme case of an agent who
expects his team to loose all future battles with probability one. Such an agent has no
incentive to exert any effort because his team will loose the tug of war anyway – the lack
of future efforts of his fellow team members discourages the exertion of effort by the agent
under consideration, unless, of course, when the agent is called upon to play in the state
where battle victory is equivalent to the tug of war victory, in which case the agent has the
strongest possible incentive to exert effort. The same dynamic discouragement effect arises
for agents of the weaker team in diluted form whenever the battle-winning probability is
strictly above zero: The closer the weaker team is to defeat, the more likely it becomes that
a victory in a current battle is squandered by the failure of future team members to win
their battles, thus reducing the incentives to exert effort for the current agent. Crucially,
the dynamic free-riding and the discouragement effect discussed above both pull in the same
direction, implying lower incentives to exert effort for the agents of both teams the closer the
strong team is to victory. As a consequence, the fact that it is not only the expectation of
future battle-winning probabilities but also the effort of ones own opponent which determines
equilibrium effort choices does not upset the intuition.

In spite of varying equilibrium efforts across states, it turns out that the ex ante, i.e.
prior to the contest, expected efforts of a given round t ≥ 0, conditional on the contest not
having ended, are independent of t. This is shown in our second result (Proposition 4). An
intuition for this result is obtained by considering the interplay between state-independent
battle-winning probabilities and the effort monotonicity across states: The former implies
that in any state, the tug of war is more likely to move towards victory of the stronger team
rather than it is to move towards victory of the weaker team, the latter implies that the
expected efforts in the state reached in the first case are lower than in the state reached in
the second case. In equilibrium, the two effects exactly balance. We can show the result
formally by exploiting two facts about equilibrium play: first, the gains in contest winning
probability for which the players in the battles compete are a martingale, and second,
expected equilibrium efforts in a given state are linear in these gains.

The third and the fourth result (Propositions 5 and 6) relate expected summed efforts to
the imbalance of powers and to the lead required to win, respectively. Using the observations
that expected summed efforts are given by the product of the expected length and the
expected efforts in the symmetric position, and that the expected length decreases in the
imbalance of powers (i.e. in the distance of the battle-winning probabilities from one half),
we get that expected summed efforts decline in the imbalance of powers, given that total
efforts in the corresponding simple contest also decrease. On the other hand, we find that, as
we let the lead in battle victories required to win the tug of war go to infinity, the expected
summed efforts over time approach infinity when the teams have equal equilibrium battle-
winning probabilities, but vanish completely when the teams are asymmetric with respect
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to their battle-winning probabilities.
Additionally, we look at the special case of asymmetric uniform type distributions with

the lower bound of the support being zero for both teams. We derive closed form expres-
sions for the equilibrium strategies, the battle-winning probability, and the contest-winning
probability. The ratio of a player’s expected efforts in battle to those of the opponent player
decreases in the effort effectiveness of that player, and increases in the upper bound of his
type distribution. The ratio of a team’s contest-winning probability to that of the opponent
team increases both in the effort effectiveness of that team’s players and in the upper bound
of the type distribution. The lead required to win thereby assumes the role of a discrim-
inatory parameter with respect to the differences in the respective team attributes which
is reminiscent of the role of the discriminatory parameter r in the Tullock contest success
function (Tullock, 1980; Skaperdas, 1996) determining the impact of the difference in the
players’ efforts on their winning-probabilities.

The sharpness of our results owes a great deal to the assumption that the players do
not discount the future. In the discussion, we briefly talk about how the analysis changes
when we drop this assumption. Further, we discuss model variants with alternative contest
technologies in the battles and with public information about valuations, and show that our
results are robust to assuming that the prize has a public good character with commonly
known value to the members of the winning team but not necessarily to assuming differing
contest technologies.

The paper is organized as follows: The next section discusses the related literature.
Section 3 then outlines the general model and defines the equilibrium notions that we use.
Section 4 establishes existence of a unique Markov-perfect equilibrium, and discusses the
properties of the tug of war state evolution induced by the Markov-perfect equilibrium.
Section 5 contains the main results on effort provision. The example of uniform distribution
is analyzed in Section 6. The discussion is in Section 7 , and all proofs are in the appendix.

2. Related Literature

The tug of war model in this paper relates to at least three strands of literature: group
contests, dynamic contest, and asymmetric all-pay auctions. Furthermore, the model is a
contribution to the research program on team contests with pairwise battles initiated by Fu
et al. (2015), which we also discuss in some detail.

In group contest models there are, as the name suggests, groups competing over the
prize, and the probability to win for a group depends on the efforts of its members. An
important class of group contest models assumes that the probability to win the prize de-
pends on the aggregate group efforts. Such contests are analyzed in Katz et al. (1990) and
Baik (1993) assuming that the prize has a pure public good character, in Nitzan (1991)
assuming that the group must divide the prize according to some exogenous sharing rule, or
in Waerneryd (1998) who assumes that the members of the winning group again engage in
wasteful competition over the prize (for further references, see e.g. Section 4.2 in Corchón
2007, or Chapter 6 in Konrad 2009). The main difference of our model to these models is
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that in the tug of war team contest it is not aggregate efforts that are decisive for victory
but individual efforts that are compared pairwise over multiple rounds.

Dynamic contests consist of sequential battles whose outcomes determine the winner. Im-
portant dynamic structures for such contests include elimination tournaments with multiple
players in which players are pairwise matched and only the winner proceeds to the following
round until all but the winner are eliminated (Rosen, 1986; Amegashie, 1999; Gradstein and
Konrad, 1999); races between two players in which the players need to arrive at an absolute
number n ≥ 2 of victories over the opponent in order to win (Harris and Vickers, 1985,
1987; Klumpp and Polborn, 2006; Konrad and Kovenock, 2009); and tug of wars between
two players in which the players need to arrive at a lead n ≥ 2 in battle victories over the
opponent in order to win. Models analyzing the latter include Harris and Vickers (1987)
with battles described by an imperfectly discriminating contest success function, as well as
Konrad and Kovenock (2005) and Agastya and McAfee (2006) with a public information
all-pay auction at every battle. We extend the dynamic contest literature by letting teams
compete in a tug of war.

Also assuming an all-pay auction for the battles, the single-player tug of war models
in Konrad and Kovenock (2005) and Agastya and McAfee (2006) are closest to our tug of
war. The model in Konrad and Kovenock (2005) also assumes that battle victories have
no intrinsic value, but, in contrast to our model, it assumes an endogenous tie-breaking
rule assigning victory to the player with a higher continuation value. In equilibrium, the
players only spend strictly positive efforts in at most two adjacent tipping states located at
the interior of the tug of war, and, apart from the two tipping states, the tug of war moves
with certainty towards victory of the player with the higher continuation value. The model
in Agastya and McAfee (2006) assumes, in addition to a strictly positive winner prize, a
strictly negative loser prize, zero utility when the tug of war proceeds forever, and that in
case of a draw the battle has to be re-fought. Because in equilibrium there may be states
in which the players prefer a battle draw at no effort costs to winning at a strictly positive
cost, the tug of war can get stuck in such states. Given efforts are positive, however, efforts
increase towards each of the two final states and the battle-winning probabilities increase
for the leading team.

Private value all-pay auctions with asymmetries regarding effort effectiveness and value
distributions are analyzed in Amann and Leininger (1996) for the case of differing distri-
butions, by Lien (1990), Clark and Riis (2000) and Feess et al. (2008) for the case of bid
handicaps, and by Kirkegaard (2012) for a combination of the two cases. This paper adds
to the literature by pointing out the relation between equilibrium behavior and the scaling
of valuations, and by placing the auction in the multi-stage framework of a tug of war.

The tug of war model in this paper is an instance of what Fu et al. (2015) call a team
contest with pairwise battles. Such a contest is a group contest in which players are pairwise
matched across groups, and the outcome of these battles then determine the outcome of the
grand contest. In contrast to the tug of war team contest in this paper, Fu et al. (2015)
analyze a best-of-n contest about a common prize between two teams with n ≥ 2 members:
Each member of a team is matched with a member of the other team in one of the n battles,
and battles are private cost all-pay auctions. Every agent has a distinct cost parameter
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Figure 1: Dynamic structure of the tug of war

distribution, and strictly positive battle prizes are allowed. As in this paper, the sequence
of pairwise battles is exogenous. Fu et al. (2015) find that battle-winning probabilities do
not depend on the outcomes of the past battles, and that the ex ante (i.e. prior to the
contest) expected efforts in a given match do not depend on the particular sequencing of
the battles. These findings are particularly striking given that the agents have differing,
commonly known cost parameter distributions.

It is an implication of our result establishing the time independence of ex ante expected
efforts (Proposition 4) that the sequencing of the pairs is immaterial for the ex ante expected
efforts of a given agent in our model, too. In view of our assumption that players in a given
team are ex ante symmetric, however, this should not be surprising. Yet, we believe that
assuming ex ante symmetric agents is an important strength of our setup: The absence of
agent specific factors allows us to characterize the effort dynamics along the course of the
contest, and thus provides a rich picture of the forces driving these dynamics in a tug of war
over time and across states.

3. The Model

We consider a tug of war contest between two opposing teams, labeled A and B. Both
teams have a countably infinite queue of members, labeled t = 0, 1, . . .. The tug of war has
a set of interior states S ≡ {−(n− 1),−(n− 2), . . . , (n− 1)}, and two final states {−n, n},
n ≥ 2. Provided that the contest has not ended before, in round t = 0, 1, 2 . . . of the tug of
war, the two agents with the label t compete for the victory in a battle. If the state of the
contest in round t is st ∈ S and the agent from team A wins the battle, the contest moves
to state st+1 = st + 1 ∈ S and continues with round t+ 1 or, in case st + 1 = n holds, ends
with team A winning the tug of war. Similarly, if agent t from team B wins the battle in
round t, the contest moves to state st+1 = st − 1 ∈ S and continues with round t + 1 or,
in case st+1 = −n holds, ends with team B winning the tug of war. The contest starts in
round t = 0 with initial state s0 = 0, so that whichever team first accumulates n more battle
victories than the other team wins the tug of war. We refer to n as the lead required to win.
Figure 1 illustrates the dynamic structure of a tug of war.

We understand the tug of war as a multi-stage game with observed actions (Fudenberg
and Tirole, 1991), where each round t = 0, 1, ... of the tug of war corresponds to a stage, and
the tug of war ends in random round τ ≥ 1 corresponding to the round in which one of the
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final states is reached, that is, where sτ ∈ {−n, n} holds. At the beginning of each round
t < τ , nature assigns the players from either team i = A,B having label t with an individual
valuation vi,t for the victory of his team in the tug of war. These individual valuations are
independently distributed both within and across teams. Valuations of the players in team i
are drawn according to a distribution function Fi that is independent of t and has a strictly
positive and continuously differentiable density fi on its support [0, vi]. The distribution
functions FA and FB are common knowledge. Actual individual valuations are known to the
holder alone. In round τ , that is, after the tug of war has ended, the valuations of all the
players with labels t ≥ τ realize.

After the valuations have realized in round t < τ , the agents simultaneously choose
efforts in battle. If the agent of team A chooses effort bA,t ∈ R+ and the competing agent of
team B chooses effort bB,t ∈ R+, then the agent of team A wins the battle if

αAbA,t > αBbB,t (1)

holds, whereas the agent of team B wins the battle when the reverse strict inequality holds.
In case equality holds in (1) then agent A wins the battle with probability 1/2. The strictly
positive parameters αA and αB appearing in condition (1) are the common effort effectiveness
parameters of the members of team i = A,B. The effort effectiveness parameters are
common knowledge and constant over time, and transform the chosen effort bi,t into an
effective effort αibi,t with the battle being won by the agent with the higher effective effort.

The payoff to an agent t of team i, who is called into battle, has valuation vi,t, and
chooses effort bi,t, is vi,t − bi,t if his team wins the tug of war, and −bi,t otherwise. Agents
who are not called upon to play receive the payoff vi,t if their team wins the tug of war, and
zero otherwise. This formulation of payoffs embodies the assumptions that agents do not
discount the future, and that battle victories do not feature an intrinsic value for agents.
That is, agents only care about the success of their team on the one hand and their individual
effort costs on the other hand.3

When entering battlefield in round t < τ , the two players are informed about the efforts
expended in the previous rounds and about the states that the tug of war has passed so far.
To formalize this idea, denote by ht, 1 ≤ t < τ , a history of the tug of war consisting of a
sequence {aj}t−1

j=0 of lists aj = (bA,j, bB,j, sj+1) collecting the efforts bi,j expended by players
i = A,B in round j and the tug of war state sj+1 at the end of round j = 0, ..., t−1.4 We let
h0 = ∅, write Ht for the set of all possible such histories ht, and assume that players observe
ht when called upon to play in round t.

In the case n = 1 the game described above reduces to a static private value all-pay
auction described by the tuple T ≡ (αA, αB, FA, FB), specifying the effort effectiveness
parameters and type distributions for the teams. We refer to this game as a simple contest.
We write Tn for the tug of war which has the same effort effectiveness parameters and type

3The assumption that the discount factor is one is important, as such players do not care about the
expected length of the tug of war, given their team wins. We discuss the role of discounting in Section 7.

4Whenever bA,j 6= bB,j the information about sj+1 is redundant; it needs, however, to be explicitly
specified for the case of ties in battle, i.e. bA,j = bB,j
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distributions in all battles as a simple contest T , but requires a lead of n battles to be won.
Much of our analysis will be concerned with understanding the relationship between the
equilibria of simple contests and the equilibria of the associated tug of wars.

A strategy of any agent t of team i = A,B is given by a measurable effort function
βi,t : [0, vi]×Ht → R+ relating the valuation vi,t and the history ht to the effort level bi,t =
βi(vi,t, ht), contingent on being called upon to play in round t. We call β = {βA,t, βB,t}∞t=0 a
strategy profile for the tug of war Tn = (αA, αB, FA, FB)n. Given a strategy profile β and a
history ht, we write Uβ

i,t(bi, vi,t, ht) for the interim utility in the battle of round t < τ for the
agent of team i having valuation vi,t and choosing effort bi.

Because the valuations are independent both within and across teams, all payoff relevant
history is revealed to the players when called upon to play, and hence the move of nature
at the beginning of any round t ≥ 1 after any history ht ∈ Ht marks the initial node of a
proper subgame (Fudenberg and Tirole, 1991) of the tug of war. Consequently, the strategy
profile β is a subgame-perfect equilibrium in the tug of war Tn if, for every round t ≥ 0
and for every feasible history ht ∈ Ht, the strategy pair (βA,t(., ht), βB,t(., ht)) forms a Bayes
Nash equilibrium in the corresponding battle.

Definition 1 (Subgame-Perfect Equilibrium, SPE). A strategy profile β is SPE for a tug
of war Tn if, for i = A,B, we have

βi,t(vi,t, ht) ∈ arg max
bi∈R+

Uβ
i,t(bi, vi,t, ht) (2)

for all t ≥ 0, ht ∈ Ht, vi,t ∈ [0, v̄i].

Let Hs
t = {ht ∈ Ht : st = s} be the set of histories such that the tug of war state in

round t ≥ 0 is s ∈ S. We will focus in the following analysis on Markov strategy profiles β.

Definition 2 (Markov strategy profile). A strategy profile β is Markov if, for both i = A,B
and for all s ∈ S, there is a function βi,s : [0, vi]→ R+ such that

βi,t(., ht) = βi,s(.), ∀t ≥ 0, ht ∈ Hs
t . (3)

The strategies βi,t in Markov profile β depend on the history ht only through the current
state st. We focus on a special class of subgame-perfect equilibrium that we call Markov-
Perfect equilibrium (cf. Maskin and Tirole, 2001):

Definition 3 (Markov-Perfect Equilibrium, MPE). A strategy profile β is MPE for a tug
of war Tn if it is both SPE for Tn and Markov.

In our analysis of the Markov-perfect equilibrium β starting in Section 4.3, we directly
deal with the functions βi,s(.) that we henceforth call Markov effort functions, rather than
always referring to the effort functions βi,t(., .) actually constituting the profile β. Further-
more, because the strategies in the Markov profile β do not depend on the round index t, we
will omit the reference to t in the types vi,t of the corresponding agents, and simply write vi
instead.
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4. The Markov-Perfect Equilibrium

This section establishes uniqueness of the Markov-perfect equilibrium, characterizes the
equilibrium, and derives first comparative static results for the winning probabilities of the
teams and the expected duration of the tug of war.

4.1. Utilities in the MPE

Assuming that the strategy profile β is Markov, we can define the associated ex ante
probability that an agent from team A wins a battle in state s ∈ S. These battle-winning
probabilities are given by

pβs ≡
v̄A∫

0

v̄B∫
0

[
1{αAβA,s(vA) > αBβB,s(vB)}

+
1

2
1{αAβA,s(vA) = αBβB,s(vB)}

]
dFB(vB)dFA(vA) (4)

where 1 is the indicator function. The battle-winning probabilities (4) define a Markov chain
of the state space S ∪ {−n, n}, where the states −n and n are absorbing and for s ∈ S the
probability of transiting from state s to state s+ 1 is pβs and the probability of transiting to
state s − 1 is 1 − pβs . The ex ante probability that team A wins the tug of war given it is
currently in state s is then given by the probability P β

A,s that the Markov chain defined by the

battle-winning probabilities pβs is absorbed in state n when starting from state s. Similarly,
the probability that team B wins the tug of war given it is currently in state s is given by
the probability P β

B,s that the Markov chain defined by the battle-winning probabilities pβs
is absorbed in state −n when starting from state s. We refer to the probability P β

i,s as the
contest-winning probability of the corresponding team given that the current state is s, and
let P β

A,n = P β
B,−n ≡ 1 and P β

A,−n = P β
B,n ≡ 0.

Given that all other players stick to their Markov strategy in the Markov strategy profile
β, the interim utility Uβ

i,t of player t in team i = A,B depends on ht only through st.

Consequently, there are, for all s ∈ S, functions Uβ
i,s : R+× [0, vi]→ R such that the interim

utilities satisfy Uβ
i,t(bi, vi, ht) = Uβ

i,s(bi, vi) for all t ≥ 0 and ht ∈ Hs
t . Taken our informational

assumptions and, crucially, the fact that every agent is called upon to play at most once
into account, the functions Uβ

i,s(bi, vi) are given by

Uβ
A,s(vA, bA) ≡

[
P β
A,s+1vA − bA

] v̄B∫
0

[
1{αAbA > αBβB,s(vB)}

+
1

2
1{αAbA = αBβB,s(vB)}

]
dFB(vB)
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+
[
P β
A,s−1vA − bA

] v̄B∫
0

[
1{αAbA < αBβB,s(vB)}

+
1

2
1{αAbA = αBβB,s(vB)}

]
dFB(vB) (5)

Uβ
B,s(vB, bB) ≡

[
P β
B,s−1vB − bB

] v̄A∫
0

[
1{αBbB > αAβA,s(vA)}

+
1

2
1{αBbB = αAβA,s(vA)}

]
dFA(vA)

+
[
P β
B,s+1vB − bB

] v̄A∫
0

[
1{αBbB < αAβA,s(vA)}

+
1

2
1{αBbB = αAβA,s(vA)}

]
dFA(vA) (6)

The first term on the right side of (5) is the expected payoff P β
A,s+1vA−bA from battle to the

agent of team A given that the tug of war continues in s+ 1 multiplied with the probability
of winning the battle. The second term is the expected payoff P β

A,s−1vA − bA from battle to
the same agent given that the tug of war continues in s− 1 multiplied with the probability
of loosing the battle. The interpretation of (6) is analogous, albeit with inverse signs of the
increments to the state variable s in the contest-winning probability P β

B,s.

4.2. Battle Gains and Scaled Simple Contests

Given a Markov strategy profile β for a tug of war Tn, define the battle gain in state
s ∈ S for team A by

φβA,s ≡ P β
A,s+1 − P

β
A,s−1

and for team B by

φβB,s ≡ P β
B,s−1 − P

β
B,s+1

The interpretation of these expressions is straightforward: The battle gain for team i = A,B
is the gain in contest-winning probability that accrues to team i from winning rather than
loosing a battle in state s. For arbitrary strategy profiles β the battle gain for player A in
a given state s can be different from the battle gain for player B in the same state. This
will occur only if the battle-winning probabilities associated with the strategy profile β yield
strictly positive probability that the tug of war goes on forever without either team winning
the contest. The following lemma shows that this cannot happen in equilibrium.
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Lemma 1. If β is an MPE for a tug of war Tn, then the battle-winning probabilities satisfy

0 < pβs < 1 for all s ∈ S, (7)

and the battle gains satisfy

φβs ≡ φβA,s = φβB,s > 0 for all s ∈ S. (8)

Condition (8) indicates that whatever team A gains in contest-winning probability by
winning a battle is lost by team B and vice versa. Moreover, whether a battle is won or lost
always has a non-zero impact on the contest-winning probability of a team. These properties
imply that the battle between the agents of teams A and B in state s of the tug of war Tn
is a scaled version of the simple contest T in which the payoffs of the players are given by

ui(bi, bj) ≡


φvi − bi if αibi > αjbj
1

2
φvi − bi if αibi = αjbj

−bi if αibi < αjbj

,

where i 6= j ∈ {A,B} and φ > 0. We refer to this game as a scaled simple contest with
(scaling) parameter φ. Using Lemma 1, the definitions of the payoff functions (5)–(6) and
the fact that the best responses for both players do not depend on the prize received in case
of losing the battle, it is straightforward to verify that for a given s ∈ S, the equilibrium
condition (2) is equivalent to the requirement that the Markov effort functions βA,s(.) and
βB,s(.) are a Bayes Nash equilibrium in the associated simple contest with scaling parameter
φβs . We may thus state without further proof:

Lemma 2. A strategy profile β is an MPE in a tug of war Tn if and only if for all s ∈ S
the Markov effort functions βA,s(.) and βB,s(.) are a Bayes Nash equilibrium in the scaled
simple contest T with parameter φβs .

Lemma 2 directs our attention to the equilibria of scaled simple contests. For the case
αA = αB and distributions FA and FB with supports [0, 1] uniqueness of equilibrium for
the associated unscaled contest is immediate from Amann and Leininger (1996). Their
arguments extend in a straightforward fashion to the case of differing effort effectiveness,
distributions with unequal support, and a strictly positive scaling parameter φ different from
1, yielding the following result.

Lemma 3. Given a simple contest T = (αA, αB, FA, FB), let ki : [0, v̄i] → [0, v̄j] be the
unique positive solution to the differential equation

k′i(vi) =
αj
αi

ki(vi)

vi

fi(vi)

fj(ki(vi))
(9)

satisfying the boundary condition ki(v̄i) = v̄j for i 6= j ∈ {A,B}. Further, let

β∗i (vi) =
αj
αi

vi∫
0

ki(v)fi(v)dv.
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Then the simple contest T with scaling parameter φ > 0 has a unique Bayes Nash equilibrium
with equilibrium strategy

βφi (vi) = φβ∗i (vi) (10)

for i = A,B and vi ∈ [0, vi].

Setting φ = 1 in Lemma 3 provides us with a useful interpretation of the strategies β∗i :
These are nothing but the unique equilibrium strategies of the (unscaled) simple contest
T . Throughout the following we let 0 < p < 1 denote the equilibrium contest-winning
probability in a simple contest T . This is given by

p ≡
vA∫
0

FB(kA(v))dFA(v) (11)

because (cf. the proof of Lemma 3 in the appendix) player A wins the simple contest outright
whenever vB < kA(vA) holds and ties occur with probability zero. Throughout the following
we refer to p as the strength (of team A) in the simple contest T . (We sometimes refer to
(1 − p) as the strength of team B.) Further, we say that both teams have equal strength
when they are equally likely to win the simple contest, that is, when p = 1/2 holds. When
p > 1/2 team A is stronger than team B. When p < 1/2 team B is stronger than team A.
Note that it is an immediate implication of (10) that the ex ante probability that player A
wins a scaled simple contest with scaling factor φ > 0 is independent of φ and given by p.

4.3. Characterization Result

Lemmas 1–3 allow us to demonstrate that there is a unique MPE to any tug of war
Tn = (αA, αB, FA, FB)n. Further, they provide a full characterization of this equilibrium in
terms of the equilibrium strategies, the strength of team A in the underlying simple contest
T , and in terms of the parameter n of the tug of war.

By the result in Lemma 1 that guarantees that equilibrium battle gains satisfy φβs > 0
and the fact that the ex ante probability p that player A wins a scaled simple contest is
independent of the parameter φ > 0, it follows from Lemma 2 that the equilibrium battle-
winning probabilities satisfy pβs = p for all s ∈ S. Together with the specification of a
starting state s ∈ S, the probability 0 < p < 1 can be taken to define a simple random walk
on the integers. The contest-winning probability P β

A,s then corresponds to the probability

of the event that this random walk hits n before it hits −n and P β
B,s is the probability of

the event that the random walk hits −n before it hits n. Interpreting s + n as the initial
wealth of an agent and 2n as his target level of wealth, this corresponds to the classical
gambler’s ruin problem as described and analyzed in Feller (1968, Chapter XIV). It follows
that equilibrium contest-winning probabilities for the tug of war are uniquely determined
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and given by

P ∗A,s ≡



1−

1− p
p

s+n

1−

1− p
p

2n if p 6= 1

2

s+n
2n

if p =
1

2

(12)

P ∗B,s ≡ 1− P ∗A,s (13)

for all s ∈ S.5 The corresponding equilibrium battle gains are then given by

φ∗s ≡



1− p
p

s+n−1

−

1− p
p

s+n+1

1−

1− p
p

2n if p 6= 1

2

1
n

if p =
1

2

(14)

Substituting φ∗s into (10) and applying the sufficiency part of Lemma 2 yields the following
result.

Proposition 1. Let T be a simple contest with equilibrium strategies β∗i and strength p, and
consider the corresponding tug of war Tn with n ≥ 2. Then, there is a unique MPE β. In
this MPE, for all s ∈ S, the battle gains are given by φ∗s that depend on p as described in
(14), and the equilibrium Markov effort functions are given by

βi,s(vi) = φ∗sβ
∗
i (vi) (15)

for all s ∈ S and i = A,B.

4.4. The Determination of Strength

It is clear from Proposition 1 and the description of the equilibrium battle gains φ∗s in (14)
that p, the strength of team A, plays an essential role in determining equilibrium behavior
and the resulting dynamics in a tug of war. Hence, it is instructive to relate the strength of
team A to the parameters describing a simple contest. Because uniqueness of equilibrium in
a symmetric game implies symmetry of equilibrium, it immediately follows that the teams
have equal strength if the effort effectiveness parameters and the distributions of valuations
are identical. For the case of asymmetric simple contests, Lemma 1 in Kirkegaard (2012) is
directly applicable and yields the following result:

5We arrive at (12) from Equation 2.4 in Feller (1968, p. 345) by dividing both numerator and denominator
by (q/p)a, and letting q = 1 − p, a = 2n and z = s − n with the latter two substitutions being due to the
fact that our states are labeled with {−n, ..., n} whereas Feller (1968) uses labels {0, ..., 2n}.
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Proposition 2. Consider a simple contest T = (αA, αB, FA, FB):

(1) Let the simple contest T satisfy αA = αB and FA = FB. Then teams A and B have
equal strength.

(2) Given the other parameters of a simple contest, the strength of team A is strictly
increasing in αA and strictly decreasing in αB. In particular, in a simple contest with
FA = FB, team A (B) is stronger than team B (A) if and only if αA > αB (αA < αB)
holds.

(3) Let the simple contest T satisfy αA = αB. If FA is strictly greater (smaller) than FB
in the usual stochastic order, then team A (B) is stronger than team B (A).

Our approach in the following will be to state results in terms of p, serving as a summary
statistic for the equilibrium in the associated simple contest, and the parameter n. This
allows us to focus on the aspects of the problem which are intrinsic to the dynamic structure
of the team contest, rather than on the equilibrium analysis of the simple contest, which
has been thoroughly investigated in the literature (Lien, 1990; Amann and Leininger, 1996;
Feess et al., 2008; Kirkegaard, 2012). Section 6 complements the results from Propositions 1
and 2 by providing closed-form solutions for the equilibrium Markov effort functions βi,s and
for the battle-winning probability p for the case in which the valuation for both teams are
uniformly distributed, allowing for asymmetries both in the effort effectiveness parameters
αi and in the support of the uniform distributions.6

4.5. Contest-Winning Probabilities and Expected Contest Duration

In Section 5 we explore the consequences of Proposition 1 for expected efforts in the
equilibrium of a tug of war. Before turning to this task we note that by using standard
results from the analysis of the gambler’s ruin problem both the ex ante contest-winning
probabilities and the expected duration of the tug of war in the MPE can be determined
explicitly as a function of p and n. In addition, we note some comparative static properties.

As the starting state of the tug of war is s0 = 0, the ex ante probability that team A
wins the contest is obtained by setting s = 0 in the expression for P ∗A,s given in (12). It is
straightforward that this can be rewritten as in the statement of the following result and
satisfies the monotonicity properties asserted:7

Corollary 1. Let p be the strength of team A in the simple contest T . Then the ex ante
probability that team A wins the tug of war Tn is given by

P ∗A,0 =
pn

pn + (1− p)n
(16)

which is strictly increasing in p, and strictly increasing (decreasing) in n for p > 1/2 (p <
1/2).

6For the case of identical effort effectiveness parameters Amann and Leininger (1996) provide further
examples in which the equilibrium strategies for a simple contest can be determined explicitly.

7To see the monotonicity properties, observe that from equation (16) we can write 1/P ∗
A,0 = 1 + ((1 −

p)/p)n which is strictly decreasing in p, and strictly increasing (decreasing) in n for p > 1/2 (p < 1/2).
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It is obvious from (16) that P ∗A,0 = 1/2 holds if p = 1/2, so that when both teams have
equal strength the contest-winning probability is independent of the lead n needed to win
the tug of war. When team A is stronger than team B, the contest-winning probability
of team A is strictly increasing in the lead n (exceeding in particular, the battle-winning
probability p for n ≥ 2). Thus, n can be interpreted as a decisiveness parameter, magnifying
the differences in team strength that are driven by asymmetries in the simple contest (cf.
Proposition 2). Corollary 1 will be of particular interest in Section 6, where we look at the
special case of uniform distributions and derive an explicit expression for p.

The duration τ of a tug of war is the number of battles taking place until one of the
teams wins the contest. In terms of the random walk described by the parameters p and n
(and the initial state s0 = 0) τ corresponds to the hitting time for the set {−n, n} and we
can again apply results from the analysis of the gambler’s ruin problem to characterize the
expected duration of the tug of war.

Corollary 2. Let p be the strength of team A in the simple contest T . Then the expected
duration of the tug of war Tn, n ≥ 2, is given by

E[τ ] =


n

(
1

2p− 1

)(
pn − (1− p)n

(1− p)n + pn

)
if p 6= 1

2

n2 if p =
1

2

, (17)

which is strictly increasing in n, and strictly increasing (decreasing) in p for p < 1/2 (p >
1/2).

It is immediate from (17) that for a given n the expected duration of the tug of war
depends only on the absolute value of the difference between the strength of the two teams
I(p) = |2p− 1|, but not on which team is the stronger one, with a greater imbalance of
strength I(p) implying a shorter expected duration.

As an aside, the implication that a higher imbalance of strength leads to shorter expected
duration is in line with empirical findings regarding militarized disputes: Slantchev (2004)
presents evidence that wars tend to last the longer the lower is the material asymmetry
between the warring parties.

5. Equilibrium Efforts

In this section we explore the consequences of Proposition 1 for the expected efforts in
the MPE of the tug or war. We begin by investigating how expected efforts depend on the
state, then consider expected efforts conditional on the round of the tug of war and, finally,
look at total expected efforts over the duration of the war.

5.1. Expected Efforts across States

Let

e∗i =

∫ v̄i

0

β∗i (vi)dFi(vi)
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Figure 2: Normalized Expected Efforts ei,s/ei,0 across States

denote the expected equilibrium efforts in the simple contest T . From Proposition 1, con-
ditional on the state s, the expected equilibrium efforts of the players in the tug of war Tn
are

ei,s ≡ φ∗se
∗
i . (18)

The expected efforts in state s in the tug of war depend on the state s only through the
battle gain given by φ∗s and do so in a linear way. In particular, we can use (14) to obtain

ei,s = rsei,0, (19)

where r = (1 − p)/p is the relative strength (of team B). The following result is then
immediate.

Proposition 3. If team A is stronger than team B, then expected efforts ei,s in the tug of
war Tn are strictly decreasing in s for both teams i = A,B. If team B is stronger than team
A, then expected efforts ei,s in the tug of war Tn are strictly increasing in s for both teams
i = A,B. If both teams i = A,B have equal strength, then expected efforts ei,s in the tug of
war Tn are independent of the state.

Proposition 3 establishes that expected equilibrium efforts decrease monotonically in the
stronger team’s closeness to victory. In order to get a picture of the comparative statics of
these effort dynamics in the strength parameter p, we refer to Figure 2. Figure 2 depicts
normalized expected efforts ei,s/ei,0 – which are equal for both i = A,B, as is evident from
(19) – across the states s ∈ {−4, ..., 4} for p = 0.55, and p = 0.6. Clearly, the expected
efforts of both teams decrease in s. Furthermore, Figure 2 suggests that an increase in the
imbalance of strength increases the volatility of efforts across states in the sense that the
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ratio between normalized expected efforts in the states −s and s is higher with p = 0.6 than
it is with more equal teams under p = 0.55 for any s ∈ {1, 2, 3, 4}. Considering (19), we
see that this is indeed the case and that it holds for any tug of war with n ≥ 2 because,
for p > 1/2 (p < 1/2), rs increases (decreases) in p for any negative s ∈ S and decreases
(increases) in p for positive s ∈ S.

For later purposes, it is also instructive to see how the absolute value of ei,s changes when
we change n. Using equations (14), (18), and the definition of relative strength r = (1−p)/p
we may express the expected equilibrium efforts in state s ∈ S as

ei,s =

{
rn+s+1−rn+s−1

r2n−1
e∗i if r 6= 1

1
n
e∗i if r = 1

. (20)

It is straightforward to verify that this expression is strictly decreasing in n with ei,s con-
verging to zero as n goes to infinity. This is intuitive: one would expect the value of winning
any fixed battle to be decreasing in the lead that is required to win the contest, and to
become insignificant as n goes to infinity.

5.2. Expected Efforts over Time

Conditional on the tug of war not having ended, the expected effort of team i in round t
of the contest is given by E[ei,st | t < τ ], where we extend the definition of ei,s from equation
(18) to all integers s, st is the state of the random walk defined by p and the initial condition
s0 = 0 , and τ is the hitting time for the set {−n, n}. When both teams have equal strength,
it is clear that we have

E[ei,st | t < τ ] = ei,0 for all t = 0, 1, 2, ... (21)

because – as noted above – in this case the expected efforts in the tug of war satisfy ei,s = e∗i /n
independent of state. Somewhat surprisingly, equation (21) holds for all tug of wars. The
underlying cause for this result is that the equilibrium battle gains are a martingale. This
is made clear in the proof of the following proposition, given in the appendix.

Proposition 4. E[ei,st | t < τ ] is independent of t, that is, (21) holds for all tug of wars Tn.

The result provides the basis for our analysis of total expected efforts over the duration
of the tug of war to which we turn now.

5.3. Expected Total Efforts over the Duration of the Tug of War

Let

hi ≡ E

[
τ−1∑
t=0

ei,st

]
.

denote the expected summed efforts of the members of team i over the duration of a tug of
war. We will refer to hi as the expected total effort of team i in the following. Building on
the argument proving Proposition 4 we can show that hi is simply the product of team i’s
expected equilibrium efforts in the initial state s0 = 0 and the expected duration of the tug
of war:
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Lemma 4. Expected total efforts in a tug of war Tn are given by

hi = E[τ ]ei,0. (22)

The result in Lemma 4 allows us to address the question how p and n affect expected
total efforts. Consider the effect of strength first. We have seen in Corollary 2 that expected
duration is strictly decreasing in the imbalance of strength. So, in view of Lemma 4 and
(18), the proof to the following Proposition establishes that φ∗0, too, strictly decreases in
the imbalance of powers I(p). This implies that for two simple contests T and T ′ with
associated strength and expected efforts (p, e∗A, e

∗
B) and (p′, e∗

′
A , e

∗′
B) satisfying I(p) > I(p′),

e∗A ≤ e∗,
′

A , and e∗B ≤ e∗,
′

B , we have ei,0 < e′i,0 in the corresponding tug of wars Tn and T ′n.
Consequently, in expectation a higher imbalance of strength not only implies a shorter tug
of war, but also one in which battles are fought less intensely:

Proposition 5. Consider two simple contests T and T ′ such that the associated strength
and expected efforts (p, e∗A, e

∗
B) and (p′, e∗

′
A , e

∗′
B) satisfy I(p) > I(p′), e∗A ≤ e∗,

′
A , and e∗B ≤ e∗,

′
B .

Then for any n ≥ 2 expected total efforts hi and h′i in the tug of wars Tn and T ′n satisfy
hi < h′i for i = A,B.

Now consider the effect of n on expected total efforts. This effect is clear when both
teams have equal strength: from (17) and (20), we have E[τ ]ei,0 = ne∗i , so that for any
given underlying simple contest T with strength p = 1/2 expected total efforts are strictly
increasing in the parameter n of the associated tug of war Tn. The situation is radically
different when one of the teams is stronger than the other one, that is, when p 6= 1/2 or,
equivalently, when r 6= 1 holds in the simple contest T . In this case for large n the expected
duration of the tug of war Tn increases at rate n because the increase in decisiveness of
the contest brought about by an increase in n implies that the term multiplying n in (17)
converges to a strictly positive constant. On the other hand, as is shown in the proof to the
next proposition, the expected effort per round of the contest, ei,0, decays at a geometric
rate when n is large enough and approaches zero when n goes to infinity. Consequently, for
large enough n expected total efforts are strictly decreasing in n and converge to zero as n
goes to infinity. Heuristically speaking, for large n the equilibrium is characterized by the
steady and almost effortless accumulation of battle wins by the stronger teams:

Proposition 6. Take a simple contest T . Then it holds for the expected total efforts si in
the associated tug of war Tn:

(a) If I(p) = 0, then hi is strictly increasing in n with limn→∞ hi =∞.

(b) If I(p) 6= 0, then ∃N such that for all n > N , hi is strictly decreasing in n, and
limn→∞ hi = 0.

6. An Example: Uniform Distributions

This section discusses the special case of uniform type distributions. The uniform dis-
tribution allows us to explicitly derive the equilibrium Markov effort functions, which, in
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turn, yield explicit solutions for the battle-winning probability p and the contest-winning
probabilities P ∗i,0.8

6.1. Game and Equilibrium

Individual valuations vi are uniformly and independently distributed on support [0, vi],
with vi > 0. If Fi has a larger support than Fj, that is if vi > vj, then Fi stochastically
dominates Fj in the usual order. We refer to a simple uniform contest by the tuple T u =
(αA, αB, vA, vB). As before, T un with n ≥ 2 denotes the corresponding uniform tug of war.

By Proposition 1, we know that a Markov-perfect equilibrium in increasing Markov effort
functions βi,s with P ∗i,s ∈ (0, 1) and φ∗s > 0 exists for the tug of war T un . Assuming that
the agent of team B expends efforts bB ≥ 0 in state s ∈ S according to a Markov effort
function βB,s that is strictly increasing on [0, vB], agent A expending efforts bA ≥ 0 wins the
battle, and thus receives φsvA, with probability FB(β−1

B,s(αAbA/αB)). Consequently, because
the distribution of valuations of agent B is uniform on [0, vB], we can write the battle utility
of an agent of team A with valuation vA and effort bA in state s as

UA,s(vA, bA) = β−1
B,s

(
αA
αB

bA

)
φsvA
vB

+ PA,s−1vA − bA.

Accordingly, the utility for player B is

UB,s(vB, bB) = β−1
A,s

(
αB
αA

bB

)
φsvB
vA

+ PB,s+1vB − bB.

The unique and strictly increasing equilibrium Markov effort functions βi,s given in the next
proposition jointly solve the first-order conditions derived from the battle utilities Ui,s for
all vi ∈ [0, vi], i = A,B.

Proposition 7. In the uniform tug of war T un , n ≥ 2, the equilibrium Markov effort function
for an agent of team i playing against an agent of team j in state s ∈ S is given by

βi,s(vi) = φ∗s
αj

αivi + αjvj
vjv

1−
αivi+αjvj

αivi
i v

αivi+αjvj
αivi

i

with battle-gains φ∗s as given in (14), and the battle-winning probability given by

p =
αAvA

αAvA + αBvB
. (23)

8The uniform all-pay auction with asymmetric supports and effort effectiveness parameters is also ana-
lyzed in Clark and Riis (2000), albeit without explicit solution for the equilibrium strategies.
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When we set αA = αB = 1 and vA = vB = 1, then the equilibrium effort functions
β∗i (vi) = βi,s(vi)/φ

∗
s of the corresponding simple contest T u collapse to the well-known

equilibrium functions β∗i (vi) = v2
i /2 of the symmetric all-pay auction with valuations drawn

uniformly from [0, 1] for both i = A,B (cf. Krishna, 2002, page 32). The battle-winning
probability p in (23) is derived by computing

p =

∫ vA

0

β∗−1
B

(
αA
αB

β∗A(v)

)
dv

vBvA

and depends on the product of the agents’ attributes αi and vi. That is, with respect to
battle-winning probabilities, the effort effectiveness parameter αi and the upper bound vi
are substitutes: a high upper bound can compensate for low effort effectiveness, and vice
versa.

6.2. Contest-Winning Probabilities and Equilibrium Efforts

By plugging the battle-winning probability p into the expression of P ∗A,0 which we derived
earlier in Corollary 1 we get:

Proposition 8. The ex ante probability that team A wins the uniform tug of war Tn is given
by

P ∗A,0 =
(αAvA)n

(αAvA)n + (αBvB)n
. (24)

The ratio of the contest-winning probabilities of the two teams is given by

P ∗A,0
1− P ∗A,0

=

(
αAvA
αBvB

)n
. (25)

That is, the lead required to win assumes the role of a discriminatory parameter deter-
mining the influence of two teams’ strength attributes on the contest-winning probability,
where the effort effectiveness parameter and the upper bound on the type distribution enter
multiplicatively. As observed in the introduction, the role of n is thus reminiscent of the role
of the discriminatory parameter r in the Tullock contest success function that we discuss in
some more detail in section 7.1 below.

Further, the assumption of uniform distribution allows us to state an additional result
on the ratio of expected efforts in a battle. Computing ei,s =

∫ vi
0
βi,s(v)dFi(v) yields

eA,s
eB,s

=
vA
vB

αAvA + 2αBvB
2αAvA + αBvB

. (26)

Not surprising, the ratio is independent of the state s, as expected efforts are linear in φ∗s.
It is easy to see that with symmetric teams (that is, with αA = αB and vA = vB) we
have eA,s = eB,s. Furthermore, if we assume equal effort effectiveness αA = αB, vA > vB
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Figure 3: Expected efforts ei,s, s ∈ {−1, 0, 1} depending on p = 1/(1 + αB/αA)

is equivalent to eA,s > eB,s in every state s, and if we assume equal motivation vA = vB,
αA > αB is equivalent to eA,s < eB,s in every state s. Furthermore, by taking the partial
derivatives of eA,s/eB,s it is straightforward to verify that the monotonicity properties stated
in the next proposition hold.

Proposition 9. The ratio eA,s/eB,s of expected efforts in battle decreases (increases) in αA
(αB), and increases (decreases) in vA (vB). In particular:

(a) If vi = vj and αi = αj holds, then ei,s = ej,s,∀s ∈ S.

(b) If vi = vj holds, then: αi > αj ⇔ ei,s < ej,s, ∀s ∈ S.

(c) If αi = αj holds, then: vi > vj ⇔ ei,s > ej,s, ∀s ∈ S.

We finish this section by graphically assessing the result on the ratio of expected efforts
of Proposition 9, and the result on effort monotonicity across states of Proposition 3. This
is done in Figure 3 for a uniform tug of war with n = 2, uniform type distributions on
[0, 1] for both teams i = A,B, and a varying effort effectiveness ratio αA/αB. The three
sub-figures depict expected individual efforts ei,s for both teams i = A,B, as well as total
efforts etot,s ≡ eA,s + eB,s depending on p = 1/(1 + αB/αA) ∈ (0, 1) in the three tug of
war states s = {−1, 0, 1}. When p > 0.5 we have αA > αB, and when p < 0.5 we have
αA < αB. In line with Proposition 9, we see that with non-zero imbalance of strength (i.e.
with p 6= 1/2) the expected individual efforts of the agents of the strong team are below
the efforts of the agents of the weak team in every state. The agents of the weak team
behave more aggressively. In line with Proposition 3, we see that efforts are monotone over
the states, and in particular, that the state with the stronger team closer to victory has
the lowest total and individual efforts of all states, whereas the state with the weaker team
closer to victory has the highest total and individual efforts.

7. Discussion

7.1. Alternative Contest Technologies and Team prizes

The two crucial features of the equilibrium in the scaled simple contest with scaling factor
φ > 0 that allow us to obtain the results in Sections 4.3–4.5 and 5 are that the equilibrium
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winning probability p is independent of φ and that the equilibrium efforts ei are linear in
φ. From the former it follows that the tug of war has a Markov-perfect equilibrium with
state-independent winning probabilities, and from the second it follows that the efforts in
that equilibrium are linear in the battle gains φ.

In view of this observation, we now assess the robustness of the results derived in Sections
4.3–4.5 and 5 to alternative contest technologies in the battles and to public information
about valuations. We do so by assuming that teams i = A,B compete for a prize that has
public good character for the members of the winning team and is of commonly known value
vi > 0 to each member of team i.9 We divide the analysis into perfectly and imperfectly
discriminating contest technologies.

Perfectly discriminating contest technologies in battle

A contest technology is called perfectly discriminating if the relation between effort and
prize allocation is – apart from knife-edge cases – deterministic. We restrict attention to
variants of the all-pay auction, and first consider an all-pay auction with public valuations
vi > 0, scaling factor φ > 0, and asymmetric effort effectiveness parameters αA, αB > 0.
Like in the private value case, the probability to win for a player of team A when the players
choose effort levels bA, bB ≥ 0 is given by

w(bA, bB) =


1 if αAbA > αBbB

1/2 if αAbA = αBbB

0 if αAbA < αBbB

, (27)

and the probability to win for a player of team B is given by 1− w(bA, bB). Existence and
uniqueness of the mixed strategy equilibrium in the case αA = αB = 1 and φ = 1 is well
understood, and analyzed in Hillman and Riley (1989) for two players, in Baye et al. (1996)
for more than two players, and in Siegel (2009, 2014) for alternative cost functions. The
case αA 6= αB albeit with vA = vB and φ = 1 is treated in in Franke et al. (2014). It is
straightforward to extend the analysis of Franke et al. (2014) to the case vA 6= vB and φ > 0,
and to show that the required equilibrium properties, that is, invariance of p in φ > 0 and
linearity of expected efforts in φ > 0, hold for general αA, αB, vA, vB, φ > 0. We do so in
Appendix B.

Introducing other kind of asymmetries into the contest success function might destroy
linearity of expected equilibrium efforts in φ and invariance of p in φ. For example, these
features do not hold in the equilibrium of an all-pay auction that gives one player a head
start h > 0 in terms of efforts, as in the contest success function

w(bA, bB) =


1 if bA + h > bB

1/2 if bA + h = bB

0 if bA + h < bB

. (28)

9It is important that team prizes are consistent with the assumption that players in a given team are ex
ante symmetric. Dropping this assumption (as would e.g. be the case for individual but commonly known
valuations) would of course raise the question of strategic sequencing of the players in the teams – something
that we cannot address with the present model.
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The unique equilibrium (which is either pure or mixed, depending on the parameter values)
for vA, vB, φ, h > 0 is derived in Appendix B from which it is easily verified that expected
equilibrium efforts are not linear in φ, and that winning probabilities are not independent
of φ.

Imperfectly discriminating contest technologies in battle

A contest technology is called imperfectly discriminating if the relation between effort
and prize allocation is not deterministic. In the following, we think of an imperfectly dis-
criminating contest technology in terms of a contest success function w : R2

+ → [0, 1] that
is continuously differentiable on R2

++ and that satisfies w(bA, bB) ∈ (0, 1) if bA, bB > 0,
w(0, bB) = 0 for all bB > 0 and w(bA, 0) = 1 for all bA > 0. The function w(bA, bB) returns
the battle winning probability of agent A when the efforts are bA, bB ≥ 0. As before, we
assume that there are no draws, so that the battle-winning probability for agent B is given
by 1 − w(bA, bB). In Appendix B we establish that, for any vA, vB, φ > 0 and assuming
that a pure-strategy equilibrium exists, homogeneity of degree zero of the contest success
function w(bA, bB) is necessary and sufficient for equilibrium efforts that are linear in φ and
equilibrium winning probabilities that are invariant to changes in φ. General contest success
functions that are homogeneous of degree zero are studied in Baik (2004). A well-studied
class of such functions can be parameterized by

w(bA, bB) =


αA(bA)r

αA(bA)r + αB(bB)r
if bA + bB > 0

1/2 if bA + bB = 0
, (29)

where αA, αB > 0 are effectiveness parameters and r > 0 is called the discriminatory pa-
rameter. With αA = αB, above is the so-called Tullock contest success function that was
first analyzed by Tullock (1980) and later axiomatized in Skaperdas (1996). The form with
αA 6= αB is axiomatized in Clark and Riis (1998). Existence and uniqueness of the pure-
strategy equilibrium is well-understood (Pérez-Castrillo and Verdier, 1992; Nti, 1997; Cornes
and Hartley, 2005; Häfner and Nöldeke, 2014), and in general requires that the discrimina-
tory parameter r is not too high.

On the other hand, homogeneity of degree zero is not satisfied by the following simple
variant w(bA, bB) of (29) that gives player A a head start h > 0,

w(bA, bB) =
αA(bA)r + h

αA(bA)r + αB(bB)r + h
. (30)

Other variants w(bA, bB) of (29) that are not homogeneous of degree zero include for example
those with a player specific discriminatory parameter ri > 0 as analyzed in Cornes and
Hartley (2005).

7.2. The Role of Discounting

The crucial feature of the tug of war equilibrium that we have used for our analysis is
that the battle gains are equal for both agents at any state s ∈ S. This is established in
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Lemma 1. The assumption that agents do not discount the future thereby plays a crucial
role, as is shown next.

Suppose β is an MPE of a tug of war with n ≥ 2, let δ ∈ (0, 1] be the common discount
factor to all agents, and as before denote the hitting time of the set the final states {−n, n}
by τ . For a given state s ∈ S, let Eβ

A[δτ |s] denote the expected discount factor of the prize
given the tug of war is absorbed in state n, i.e. given team A wins. Similarly, let Eβ

B[δτ |s]
be the expected discount factor for the prize given that team B wins. Then the battle gains
for the two player in battle, given state s ∈ S, are given by

φβA,s = P β
A,s+1E

β
A[δτ |s+ 1]− P β

A,s−1E
β
A[δτ |s− 1]

φβB,s = P β
B,s−1E

β
B[δτ |s− 1]− P β

B,s+1E
β
B[δτ |s+ 1].

The effect of discounting is best seen by considering the tug of war state s = n− 1 in which
a battle victory for team A implies tug of war victory for team A. The finding in the proof
to Lemma 1 that in equilibrium the tug of war ends with a probability of one, and hence
that we have PA,s = 1−PB,s, is also valid with discounting, and it follows that in any MPE
β the battle gains in state n− 1 are given by

φβA,n−1 = 1− P β
A,n−2E

β
A[δτ |n− 2]

φβB,n−1 = (1− P β
A,n−2)Eβ

B[δτ |n− 2].

From these expressions we see that with δ = 1, we are in the symmetric situation analyzed
hitherto, but looking at the other extreme, we see that limδ→0 φ

β
A,n−1 = 1 and limδ→0 φ

β
B,n−1 =

0 holds. Quite intuitively, when the agents discount the future and the expected duration
conditional on the own team winning the tug of war differ, then the battle gains cannot be
equal. Discounting in the tug of war drives a wedge between the battle gains of the two
agents on battlefield. This is in contrast to the best-of-n team contest of Fu et al. (2015),
where the duration of the contest is fixed to n rounds and thus a discount factor δ < 0 that
is the same for all agents does not affect the fact the battle gains are equal.

8. Conclusion

This paper has presented team contest with pairwise battles that are linked by a tug of
war structure. The battles are modeled as asymmetric private value all-pay auctions with
team specific value distributions and effort effectiveness. There exists a unique Markov-
perfect equilibrium with strategies depending on individual types and on the history of play
through the current state only. The setup has allowed to analyze the effort dynamics across
time and across states, focusing on the incentives arising from such a dynamic structure. For
the special case of asymmetric uniform distributions, we have derived closed form solutions
for the equilibrium strategies. We have further shown that the results are robust to assuming
a winner prize that is a public good of commonly known value for the members of the winning
team, but not necessarily to alternative contest-technologies in battles. Further, the critical
role of the assumption that players do not discount the future has been emphasized. Both
caveats leave ample room for future research.
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Appendix A. Proofs

Appendix A.1. Proofs of Section 4

Proof of Lemma 1. We first establish (7). Suppose there exists an equilibrium β, and a
state s such that pβs = 0 holds. (The argument excluding the possibility pβs = 1 is analogous,
exchanging the roles of A and B in the following.) By (4) this implies that the inequality
αAβA,s(vA) < αBβB,s(vB) holds with probability 1. In particular, we have βB,s(vB) > 0 for
almost all vB. Further, because team A loses the battle with probability 1, (5) together with
the equilibrium condition (2) implies βA,s(vA) = 0 for almost all vA. But then an agent of
team B wins the battle with probability 1 with any strictly positive choice of effort. However,
for βB(vB) > 0, and any ε ∈ (0, 1), we have Uβ

B,s(vB, ε · βB,s(vB)) − Uβ
B,s(vB, βB,s(vB)) =

(1 − ε)βB,s(vB) > 0 for almost all vB, implying the existence of a profitable deviation. We
have a contradiction.

We now turn to (8). It is an immediate consequence of condition (7) that the Markov
chain induced by the battle-winning probabilities pβs is absorbing (with −n and n being the
two absorbing states). This in turn implies (see Chapter 11.2 in Grinstead and Snell, 1997)
that the contest-winning probabilities satisfy P β

A,s + P β
B,s = 1 for all s ∈ S, yielding

φβA,s = φβB,s for all s ∈ S.

To show that the battle gains are not only identical but also strictly positive, consider the
contest-winning probabilities for team A. For s ∈ S these are linked to the battle-winning
probabilities by the recursion

P β
A,s = pβsPA,s+1 + (1− pβs )PA,s−1

with boundary conditions P β
A,−n = 0 and P β

A,n = 1. Observe that we can write

P β
A,s − P

β
A,s−1 = pβsP

β
A,s+1 + (1− pβs )P β

A,s−1 − P
β
A,s−1

= pβs (P β
A,s+1 − P

β
A,s) + pβs (P β

A,s − P
β
A,s−1)

implying that [
P β
A,s+1 − P

β
A,s

]
=

1− pβs
pβs

[
P β
A,s − P

β
A,s−1

]
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holds for all s ∈ S. Since
[
P β
A,−(n−1) − P

β
A,−n

]
= P β

A,−(n−1) > 0 (as a consequence of (7)),

it follows by induction that
[
P β
A,s+1 − P

β
A,s

]
> 0, ∀s ∈ S (again, as a consequence of (7)).

That is, P β
A,s is strictly increasing in s, and hence φβs > 0 holds for all s ∈ S.

Proof of Lemma 3. The same arguments as in the proofs of Lemmas 1–5 in Amann and
Leininger (1996) yield that equilibrium strategies βA and βB for the scaled simple con-
test with parameter φ > 0 are continuous, increasing, and satisfy the boundary conditions
βA(0) = βB(0) = 0 and

αAβA(v̄A) = αBβB(v̄B) (A.1)

with the equality in (A.1) indicating that the maximal effective equilibrium efforts are
identical. Further, letting vi = max{vi : βi(vi) = 0} for i = A,B, we have that βi is
strictly increasing on [vi, v̄i] and min{vA, vB} = 0. This ensures that there exists a function
kA : [0, v̄A]→ [0, v̄B] solving the equation

αBβB(kA(vA)) = αAβA(vA) (A.2)

for all vA ∈ [0, v̄A]. If vA = vB = 0, then kA is uniquely defined and strictly increasing. If
vB > 0, we set kA(0) = vB, resulting again in a uniquely defined and strictly increasing kA.
If vA > 0, then kA is uniquely defined from (A.2), satisfies kA(vA) = 0 for vA ≤ vA, and is
strictly increasing for vA ≥ vA.

Consider v̂A > vA. By construction of the function kA, type v̂A of player A and type
v̂B = kA(v̂A) > vB choose the same effective effort. By the monotonicity properties of
the functions βA, βB, and kA noted above, it follows that player B choosing the effort
bB = βB(kA(v̂A)) will win the auction if and only if the realized type of player A, vA,
satisfies vA < v̂A and will loose the auction if and only if vA > v̂A holds. Consequently, the
payoff to player B with valuation vB = kA(vA) who chooses the effort bB = βB(kA(v̂A)) is

φFA(v̂A)kA(vA)− βB(kA(v̂A)).

Equilibrium requires that player B with valuation vB = kA(vA) finds it optimal to choose
the effort βB(kA(vA)). Taking the appropriate first order condition with respect to v̂A yields

φfA(vA)kA(vA)− β′B(kA(vA))k′A(vA) = 0. (A.3)

Similarly, if player A with valuation vA chooses the effort bA = β(v̂A), his probability of
winning the auction is FB(kA(v̂A)) and the resulting payoff is

φFB(kA(v̂A))vA − βA(v̂A).

The corresponding first order condition with respect to v̂A yields

φfB(kA(vA))k′A(vA)vA − β′A(vA) = 0. (A.4)

Differentiating (A.2) yields

αBβ
′
B(kA(vA))k′A(vA) = αAβ

′
A(vA).
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Using this equation to eliminate β′A from (A.4), solving the resulting equation for β′B, and
substituting into (A.3) then yields that in every equilibrium kA must satisfy condition (9).
That is,

k′A(vA) =
αB
αA

kA(vA)

vA

fA(vA)

fB(kA(vA))
(A.5)

must hold, with (A.1) and (A.2) providing the initial condition kA(v̄A) = v̄B. The same
argument as given in the proof of Theorem 1 in Amann and Leininger (1996) then imply
that kA is uniquely defined. Substituting from (A.5) into (A.4) and integrating yields the
unique candidate for an equilibrium strategy of player A as given in (10). Exchanging the
roles of players A and B in this argument provides the corresponding characterization of
the equilibrium strategy of player B, yielding a unique equilibrium candidate. Existence of
equilibrium is implied by Theorem 7 in Athey (2001).

Proof of Corollary 2. The expression for E[τ ] in (17) is a straightforward rearrangement of
the standard formula for the expected length of play in a gambler’s ruin problem (cf. Stern,
1975). For the case p 6= 1/2, Corollary 1 implies that the term multiplying n is strictly
increasing in n, yielding the claim that the expected duration is strictly increasing in n.

For p 6= 1/2 denote the right side of (17) by L(p, n). For p, q 6= 1/2 the equality
L(p, n) = L(q, n) is equivalent to

[q − p] [qnpn − (1− p)n(1− q)n] = [1− q − p] [pn(1− q)n − (1− p)nqn] .

For n ≥ 2 this equality only holds for q = p or q = (1−p). In particular, for 1/2 < p < q < 1
we have L(p, n) 6= L(q, n). Because L(1/2, n) = n2 > L(1, n) = n holds and L is continuous
in p, it follows that L is strictly decreasing in p for p > 1/2. An analogous argument for the
case p < 1/2 finishes the proof.

Appendix A.2. Proofs of Section 5

Proof of Proposition 4. In light of (19) it suffices to show

E[rst | t < τ ] = 1 for all t. (A.6)

Towards this we first observe that λt ≡ rst is a martingale with respect to st as

E[λt+1 | λ0, . . . , λt] = E[λt+1 | λt] = pλtr + (1− p)λtr−1 = λt.

Second, applying the optional stopping theorem (cf. Theorem 5.7.4 in Durret, 2010), we
obtain

E[λτ ] = E[λ0] = 1, (A.7)

and that the corresponding stopped process

λ̄t =

{
λt if t < τ

λτ if t ≥ τ
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satisfies
E[λ̄t] = 1 for all t. (A.8)

Third, from Samuels (1975) the random variables τ and λτ are independent, implying

E[λτ | τ ≤ t] = E[λτ ]. (A.9)

Observing that

E[λ̄t] = P (τ ≤ t)E[λτ | τ ≤ t] + P (τ > t)E[λt | τ > t],

we can use equations (A.7)–(A.9) to rewrite this as

1 = P (τ ≤ t) + P (τ > t)E[λt | τ > t].

Because 1 − P (τ ≤ t) = P (τ > t) > 0 holds, this implies E[λt | τ > t] = 1, finishing the
proof.

Proof of Lemma 4. We have

E

[
τ−1∑
t=0

ei,st

]
=
∞∑
T=0

P (τ = T )

(
T−1∑
t=0

E [ei,st | τ = T ]

)
.

Using arguments analogous to the ones appearing in the proof of Proposition 4 we may infer
E [ei,st | τ = T ] = ei,0 for all t and T . Consequently, we have

hi =
∞∑
T=0

P (τ = T )

(
T−1∑
t=0

E [ei,st | τ = T ]

)
=
∞∑
T=0

P (τ = T )Tei,0 = E[τ ]ei,0,

which is (22).

Proof of Proposition 5. Fix a tug of war Tn with n ≥ 2. We need to show the following: For
r > 1, φ∗0 is strictly decreasing in r, and for r < 1, φ∗0 is strictly increasing in r. Using the
fact that

∑n−1
k=0 r

2k = (1− r2n)/(1− r2), we can rewrite φ∗0, defined in (14), as

φ∗0 =
rn−1∑n−1
k=0 r

2k
.

From the quotient rule the sign of the partial derivative of this expression with respect to r
is identical to the sign of

(n− 1)rn−2

[
n−1∑
k=0

r2k

]
− rn−1

[
n−1∑
k=0

2kr2k−1

]
=

n−1∑
k=0

(n− 1− 2k) r2k+n−2.

The expression on the right side of the equality sign is clearly strictly positive for sufficiently
small positive r and strictly negative for sufficiently large r. Further, it is equal to zero at
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r = 1 (as
∑n−1

k=0(n − 1) = n(n − 1) = 2
∑n−1

k=0 k). Since we have one sign change in the
sequence {n− 1− 2k}n−1

k=0 , Descartes’ rule of signs implies

n−1∑
k=0

(n− 1− 2k) r2k+n−2 > 0

for all 0 < r < 1 and
n−1∑
k=0

(n− 1− 2k) r2k+n−2 < 0

for all r > 1, verifying the monotonicity properties.

Proof of Proposition 6. We need to show that, for r 6= 1, ei,s decreases to zero as n ap-
proaches infinity, and that it does so at a geometric rate given n is high enough. Writing
ei,s(n) to indicate the dependence of the ei,s on n, the fact that limn→∞ ei,s(n) = 0 holds for
r 6= 1 is immediate from (20). Further, (20) implies

ei,s(n+ 1)

ei,s(n)
=
r2n+1 − r
r2n+2 − 1

which is easily seen to be strictly smaller than 1 for all strictly positive r 6= 1, and from
which we see that for large n the rate of decay to zero is geometric.

Appendix B. Alternative Contest Technologies

The following sections provide the formal background of the claims made in the text of
Section 7.1.

Perfectly discriminating contest technologies

We look at all-pay auctions, consider mixed strategies over non-negative bids and denote
the c.d.f. of player i’s bid distribution by Gi(x), x ≥ 0. For a given contest success
function w(bA, bB) and a scaling factor φ > 0, the utilities Ui(bi) for the agents i = A,B
having valuation vi > 0 when choosing effort bi given the opponent plays according to Gj,
j 6= i ∈ {A,B} are

UA(bA) =

∞∫
0

w(bA, bB)dGB(bB)φvA − bA (B.1)

UB(bB) =

∞∫
0

(1− w(bA, bB))dGA(bA)φvB − bB. (B.2)

Let (G∗A, G
∗
B) denote the mixed-strategy Nash equilibrium, and assume the contest success

function w(bA, bB) is as given in (27). Following the arguments in the proof of Lemma 3.1
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in Franke et al. (2014), we get that equilibrium behavior in such an all-pay auction is equal
to the equilibrium behavior in an all-pay auction in which expended efforts are equal to
effective efforts and the valuations for players i = A,B are given by φαivi. Let

ei =

∞∫
0

bdGi(b)

denote the expected efforts of player i. Then, the properties of the equilibrium that are
stated in the next proposition follow directly from the equilibrium characterization given in
Baye et al. (1996).

Lemma 5. In the public information all-pay auction with w given in (27) and with vA, vB,
φ > 0, there exists a unique equilibrium (G∗A, G

∗
B). For αivi ≥ αjvj, i 6= j ∈ {A,B}, expected

equilibrium efforts are given by ei = φαjvj/2 and ej = φ(αjvj)
2/(2αivi), and the winning

probability for player A is given by p = 1− αjvj/(2αivi).

The next result presents the equilibrium of an all-pay auction with public information
about valuations where the contest success function is as in (28), giving a head start of h > 0
to player A. The characterization of the equilibrium is verified by plugging the respective
equilibrium strategies into (B.1) – (B.2) to see that neither agents can profitably deviate.
Uniqueness follows immediately from Corollary 1 in Siegel (2014).

Lemma 6. In the public information all-pay auction with contest success function (28) and
with vA, vB, φ > 0, there exists a unique equilibrium. If h ≥ φvB, the equilibrium is in pure
strategies in which bidders i = A,B submit bids bi = 0, and equilibrium utilities are given
by U∗A = v1, U∗B = 0. If h < φvB, two cases need to be distinguished:

(a) φ(vB − vA) < h. Equilibrium strategies G∗i , G
∗
j : R+ → [0, 1] are given by

G∗A(x) =


x+ h

φvB
for x ∈ [0, φvB − h)

1 for x ≥ φvB − h
(B.3)

G∗B(x) =


φ(vA − vB) + h

φvA
for x ∈ [0, h)

φ(vA − vB) + x

φvA
for x ∈ [h, φvB)

1 for x ≥ φvB

. (B.4)

and the equilibrium utilities are given by U∗A = φ(vA − bB) + h and UB = 0.

(b) φ(vB − vA) ≥ h. Equilibrium strategies G∗i , G
∗
j : R+ → [0, 1] are given by

G∗A(x) =


φ(vB − vA) + x

φvB
for x ∈ [0, φvA)

1 for x ≥ φvA

(B.5)
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G∗B(x) =


0 for x ∈ [0, h)
x− h
φvA

for x ∈ [h, φvA + h)

1 for x ≥ φvA + h

. (B.6)

and the equilibrium utilities are given by U∗A = 0 and U∗B = φ(vB − vA)− h.

For example computing eA using (B.3), it is immediate that expected efforts ei are not
linear in φ. Further, it follows from (B.1) that the equilibrium winning probability p of
player A satisfies

p =
eA + U∗A
φvA

, (B.7)

and is hence clearly not constant in φ.

Imperfectly discriminating battle technologies

We consider pure strategies that consist in efforts bA, bB ≥ 0 for the respective agents
i = A,B. For a given scaling parameter φ > 0, the utilities Ui(bA, bB) for the agents i = A,B
having valuations vA, vB > 0 when pure strategies bA, bB ≥ 0 are chosen are given by

UA(bA, bB) = w(bA, bB)φvA − bA (B.8)

UB(bA.bB) = (1− w(bA, bB))φvB − bB. (B.9)

Let (b∗A, b
∗
B) denote the pure-strategy Nash equilibrium. The following result states that

a contest success function w(bA, bB) that is homogeneous of degree zero is necessary and
sufficient for equilibrium efforts that are linear in φ and equilibrium winning probabilities
that are invariant to changes in φ.

Lemma 7. Suppose the imperfectly discriminating scaled contest with contest success func-
tion w(bA, bB) and vA, vB, φ > 0 has a pure-strategy equilibrium with efforts (b∗A, b

∗
B). Then,

the equilibrim efforts are linear in φ and the battle-winning probability p = w(b∗A, b
∗
B) is

independent of φ if and only if w(bA, bB) is homogeneous of degree zero in (bA, bB).

Proof of Lemma 7. The fact that homogeneity of degree zero in w is necessary is obvious. In
order to show sufficiency, we first observe that any equilibrium satisfies b∗A, b

∗
B > 0: suppose

we have b∗A > b∗B = 0 (the argument excluding b∗B > b∗A = 0 is analogous). Then player
A wins with probability one and can lower his effort bA marginally without reducing his
winning probability. We have a profitable deviation, and hence contradiction. If, on the
other hand, we suppose b∗A = b∗B = 0, then there is at least one player that can strictly
increase his winning probability to one by marginally increasing his efforts. Again, we have
profitable deviation, and hence a contradiction. Consequently, the equilibrium efforts b∗i > 0
satisfy the first order conditions

w1(b∗A, b
∗
B)φvA = 1 (B.10)

−w2(b∗A, b
∗
B)φvB = 1, (B.11)
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where w1 and w2 denote derivatives of w with respect to the first and second argument
respectively. These conditions can be rearranged to get

w1(b∗A, b
∗
B)b∗A + w2(b∗A, b

∗
B)b∗B =

b∗A
φvA
− b∗B
φvB

(B.12)

The proof continues by contradiction: We assume that w is homogeneous of degree zero but
that equilibrium efforts b∗i are not linear in φ > 0 (which is equivalent to assuming that p is
not constant in φ). By Euler’s Theorem it follows that the left-hand side of (B.12) is zero,
and hence that we have

b∗A
b∗B

=
vA
vB
. (B.13)

Using above relation, we get from (B.10) that

w1(b∗A, b
∗
A · vB/vA)φvA = 1 (B.14)

must hold. Let (b∗A, b
∗
B) and (b∗

′
A , b

∗′
B) be the equilibrium efforts for scaling factors φ and

φ′, respectively, where the valuations vA, vB are kept constant. By non-linearity of the
equilibrium efforts in φ there must exist values φ 6= φ′ > 0 such that it holds for the values
λ, λ′ satisfying φ = λφ and b∗A = λ′b∗

′
A that λ 6= λ′. Because w1 is homogeneous of degree

−1, this contradicts the equality in (B.14), thus finishing the proof.
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