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Payoff Shares in Two-Player Contests

Samuel Häfnera, Georg Nöldekeb

aFaculty of Business and Economics, University of Basel, Switzerland
bFaculty of Business and Economics, University of Basel, Switzerland

Abstract

In contest models with symmetric valuations, equilibrium payoffs are positive
shares of the value of the prize. In contrast to a bargaining situation, these
shares sum to less than one because a share of the value is lost due to rent-
dissipation. We ask: can every such division into payoff shares arise as the
outcome of the unique pure-strategy Nash equilibrium of a simple asymmetric
contest in which contestants differ in the effectiveness of their efforts? For
two-player contests the answer is shown to be positive.

JEL classification: C72, D72, D74.

Keywords: Contests, Pure-Strategy Equilibrium, Rent-Dissipation

1. Introduction

We study pure-strategy Nash equilibria of imperfectly discriminating
contests in which risk-neutral players i simultaneously expend efforts xi ≥ 0
in order to increase their probability pi of winning a prize with value v > 0.

There is an extensive literature discussing the existence, uniqueness, and
comparative statics of pure-strategy Nash equilibria of such contests under
a variety of assumptions on the contest success function, i.e., the map from
the efforts of the players into their winning probabilities.1 Here we focus
on contests with two players and consider the class of asymmetric contest

Email addresses: samuel.haefner@unibas.ch (Samuel Häfner),
georg.noeldeke@unibas.ch (Georg Nöldeke)

1See Konrad (2009) for a survey of the contest literature. Szidarovszky and Okuguchi
(1997) and Cornes and Hartley (2005) contain existence and uniqueness results of relevance
to our analysis; Baik (1994) and Nti (1997) discuss the comparative statics of pure-strategy
Nash equilibria in related models.
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success functions pi = αix
r
i/(α1x

r
1 + α2x

r
2), axiomatized in Clark and Riis

(1998). We show that, for given v, this class is rich enough to support any
positive payoffs for the players, summing to less than the value of the prize,
as the outcome of a unique pure-strategy Nash equilibrium for appropriately
chosen values of the effectiveness parameters αi > 0 and the decisiveness
parameter r > 0. Given the parameters of the contest success function, the
corresponding equilibrium payoff shares are independent of v. The proof is
straightforward and constructive in the sense that for every division of the
value v into payoff shares and a dissipated share we provide the parameter
values which implement the division.

The motivation for our work is familiar from the economic theory of
bargaining (cf. Muthoo, 1999, Chapter 1.2): When a contest is one of many
ingredients of an economic model it is convenient to describe a contest in
terms of its induced equilibrium payoffs rather than dwelling on the intricacies
of the underlying non-cooperative model. Our analysis provides foundations
for such an approach by (i) showing that any linear, but otherwise arbitrary,
sharing rule can be used to describe the outcome of a contest, and (ii) by
exhibiting the simple one-to-one relationship between the parameters of this
sharing rule and the parameters of the contest success function.

For the symmetric version (α1 = α2) of the contest success function the
symmetric version of our result (i.e., any division in which both players obtain
identical, positive equilibrium payoffs summing to less than the prize can
be supported) is immediate from the results in Pérez-Castrillo and Verdier
(1992). The point of our analysis is that introducing a simple asymmetry
in the contest success function suffices to produce a result which provides a
generalization of the asymmetric Nash-bargaining solution to contests.

2. Model

Risk neutral players i = 1, 2 simultaneously choose efforts xi ≥ 0 at cost
xi. Both players assign value v > 0 to winning the prize (and value 0 to not
winning the prize). Player i’s payoff function is

Ui(x1, x2) = pi(x1, x2) · v − xi, (1)
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where the probability pi(x1, x2) that player i wins the prize is given by the
contest success function

pi(x1, x2) =


αix

r
i

α1xr1 + α2xr2
if x1 + x2 > 0

αi

α1 + α2

if x1 = x2 = 0

, (2)

with αi > 0 and r > 0.2 As payoff functions are homogenous of degree zero
in α1 and α2, it is without loss of generality to assume α1 + α2 = 1 and we
will do so throughout the following. Let

P = {(α1, α2, r) ∈ R3
++ : α1 + α2 = 1} (3)

denote the corresponding set of feasible parameters for the contest success
function. The parameters of a contest are (α1, α2, r, v) ∈ P × R++. A pure-
strategy Nash equilibrium, or simply equilibrium, of a contest is a strategy
profile (x∗1, x

∗
2) ∈ R2

+ satisfying

x∗1 ∈ argmax
x1≥0

U1(x1, x
∗
2) and x∗2 ∈ argmax

x2≥0
U2(x

∗
1, x2). (4)

Every equilibrium (x∗1, x
∗
2) gives rise to a division of the value of the

prize into equilibrium payoffs u∗i = Ui(x
∗
1, x

∗
2) for the two players and a rent-

dissipation term d∗ = v − u∗1 − u∗2. Each player i can assure a positive payoff
by choosing the strategy xi = 0 and for any strategy combination (x1, x2) the
sum of the two players’ payoffs is less than v. Hence, for every equilibrium
(x∗1, x

∗
2) there exist (s∗1, s

∗
2, s

∗
3) ∈ ∆, where

∆ = {(s1, s2, s3) ∈ R3
+ : s1 + s2 + s3 = 1}, (5)

such that u∗1 = s∗1 · v, u∗2 = s∗2 · v, and d∗ = s∗3 · v. That is, we can view any
equilibrium (x∗1, x

∗
2) of the contest as inducing a division of the value of the

prize into payoff shares s∗1 and s∗2 for the two contestants and a dissipated
share s∗3. We refer to these shares as equilibrium shares.

2Our main result, Proposition 1 remains unchanged for any specification of pi(0, 0) ≥ 0
satisfying p1(0, 0) + p2(0, 0) ≤ 1.
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3. Result

Proposition 1. For any (s∗1, s
∗
2, s

∗
3) ∈ ∆ satisfying s∗3 > 0 there exists a

unique (α1, α2, r) ∈ P such that any contest with parameters (α1, α2, r, v)
has a unique pure-strategy Nash equilibrium (x∗1, x

∗
2) with equilibrium shares

(s∗1, s
∗
2, s

∗
3).

To prove this proposition we establish two lemmas. Lemma 1 delineates
the set P∗ ⊂ P of parameters of the contest success function for which a
unique equilibrium exists and determines equilibrium strategies and shares as
functions of the parameters. Lemma 2 then completes the proof by exhibiting,
for any shares in ∆ satisfying s3 > 0, the unique parameters in P∗ yielding
these shares as equilibrium shares.

Lemma 1. A contest with parameters (α1, α2, r, v) ∈ P × R++ has a pure-
strategy Nash equilibrium if and only if (α1, α2, r) ∈ P∗ holds, where

P∗ =

{
(α1, α2, r) ∈ P : r ≤ 1

max{α1, α2}

}
. (6)

If a pure-strategy Nash equilibrium exists, it is unique with equilibrium efforts

x∗1 = x∗2 = α1α2rv (7)

and equilibrium shares

s∗1 = α1 − α1α2r (8)

s∗2 = α2 − α1α2r (9)

s∗3 = 2α1α2r. (10)

Most of the proof of Lemma 1, which we have relegated to the appendix,
is straightforward. Taking the existence of equilibrium for granted, unique-
ness can be established directly by considering the appropriate first order
conditions.3 These imply (Mills, 1959) that equilibrium efforts are identical

3For 0 < r ≤ 1 existence and uniqueness of equilibrium follows from Szidarovszky
and Okuguchi (1997) or Cornes and Hartley (2005, Theorem 3). For the case 1 < r ≤
1/max{α1, α2} existence and uniqueness can be established along the same lines as in
Pérez-Castrillo and Verdier (1992) or the proof of Proposition 4 in Cornes and Hartley
(2005, Appendix 3). We provide a direct proof to make the paper self-contained.
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and given by (7). Equations (8) and (9) for the equilibrium payoff shares s∗1
and s∗2 are then immediate: with equal efforts the probability that contestant
i wins the prize is αi, so that s∗i = αi − x∗i /v. Similarly, equal equilibrium
efforts imply that the dissipated rent is twice the individual effort, yielding
the expression for s∗3 in (10). Further, as equilibrium payoff shares must be
positive, it is apparent from (8) and (9) that r ≤ 1/max{α1, α2} is necessary
for the existence of equilibrium. Showing that the same condition suffices for
the existence of equilibrium is more subtle as player’s payoff functions are
not concave in own effort for r > 1.

Lemma 2. For any (s∗1, s
∗
2, s

∗
3) ∈ ∆ satisfying s∗3 > 0 there exists a unique

(α1, α2, r) ∈ P∗, given by

α1 =
1 + s∗2 − s∗1

2
(11)

α2 =
1 + s∗1 − s∗2

2
(12)

r =
2s∗3

(1 + s∗2 − s∗1)(1 + s∗1 − s∗2)
, (13)

such that equations (8) – (10) hold.

Proof of Lemma 2. First, we show that (α1, α2, r) as given by (11) – (13) is in
P∗: Adding equations (11) and (12) yields α1 + α2 = 1. From (s∗1, s

∗
2, s

∗
3) ∈ ∆

and s∗3 > 0 we have |s∗2 − s∗1| < 1, so that (11) – (13) imply α1 > 0, α2 > 0,
and r > 0. Hence, (α1, α2, r) ∈ P . Given (11) and (12), equation (13) can be
written as

r =
s∗3

2α1α2

=
s∗3

2 min{α1, α2}max{α1, α2}
. (14)

Because

s∗3 = 1− s∗1 − s∗2 ≤ min{1 + s∗1 − s∗2, 1 + s∗2 − s∗1} = 2 min{α1, α2} (15)

equation (14) then implies r ≤ 1/max{α1, α2}, yielding (α1, α2, r) ∈ P∗.
Second, we show that the parameter values given in (11) – (13) are the

unique parameter values in P∗ such that (8) – (10) hold. Replacing (α1, α2, r)
in (8) – (10) by the expressions on the right sides of (11) – (13) and simplifying
shows that equations (8) – (10) are satisfied. Vice versa, suppose that for
(α1, α2, r) ∈ P∗ equations (8) – (10) hold. Subtracting equation (9) from
equation (8), we find α1 − α2 = s∗1 − s∗2. Using α1 + α2 = 1 this yields (11)
and (12). From (10) we have r = s∗3/(2α1α2). Replacing α1 and α2 by the
right sides of (11) and (12) then yields (13).
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4. Discussion

For given parameters (α1, α2, r) ∈ P∗ of the contest success function, the
resulting equilibrium shares (s∗1, s

∗
2, s

∗
3) are independent of the value of the

prize v. Consequently, Proposition 1 may be interpreted as the statement
that any linear sharing rule in which players receive a positive share of the
prize as a payoff and a strictly positive share of the prize is dissipated can
arise as an equilibrium outcome of the asymmetric two-person contest we
consider.

The restriction to sharing rules featuring a non-zero amount of rent
dissipation, arising from our assumption that the decisiveness parameter
r is strictly positive, is natural when considering a contest rather than a
bargaining situation. Linearity of the sharing rule holds because the contest
success functions we consider is homogeneous of degree zero in effort which
corresponds to Axiom A6 both in Skaperdas (1996) and Clark and Riis (1998).
More general contest success function, e.g. of the commonly considered
ratio-form pi = fi(xi)/(f1(x1) + f2(x2)) (Szidarovszky and Okuguchi, 1997;
Cornes and Hartley, 2005), will implement additional, non-linear sharing
rules. Given the complexity of characterizing pure-strategy equilibria for
such contest success function, it seems unlikely that a sharp characterization
analogous to Proposition 1 can be obtained for such an extension. Similarly,
while it would be desirable to extend our result to asymmetric contests with
more than two players, the straightforward generalization of our result is
precluded because multiplicity of equilibria is endemic in such games. The
question which linear sharing rules are implementable in n-player contests by
homogenous contest success functions when our uniqueness requirement is
relaxed appears more tractable. We leave this for further research.

Appendix

Proof of Lemma 1. There can be no equilibrium with either or both efforts
equal to zero: Suppose, without loss of generality, that x2 = 0. Then we have
U1(x1, x2) = 1− x1 for x1 > 0 and U1(0, x2) = α1 < 1, so that player 1 has
no best response. Hence, every equilibrium satisfies (x1, x2) ∈ R2

++. As the
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payoff functions are differentiable on R2
++, the first order conditions

∂U1(x1, x2)

∂x1
=

α1α2rx
r−1
1 xr2

(α1xr1 + α2xr2)
2v − 1 = 0 (16)

∂U2(x1, x2)

∂x2
=

α1α2rx
r−1
2 xr1

(α1xr1 + α2xr2)
2v − 1 = 0 (17)

are then necessary for (x1, x2) to be an equilibrium. This yields x1 = x2.
Substituting back into (16) and (17) we obtain (x∗1, x

∗
2) as given in (7) as the

unique candidate for an equilibrium with corresponding equilibrium utilities

u∗1 = U1(x
∗
1, x

∗
2) = [α1 − α1α2r] v (18)

u∗2 = U2(x
∗
1, x

∗
2) = [α2 − α1α2r] v. (19)

The expressions for the equilibrium shares in (8) – (10) are then immediate.
Because player i can secure a payoff of zero by choosing xi = 0, any

equilibrium must satisfy min{u∗1, u∗2} ≥ 0. From (18) and (19) this condition
is equivalent to r ≤ 1/max{α1, α2}. To finish the proof it remains to show
that this condition is also sufficient for (x∗1, x

∗
2) to be an equilibrium. Towards

this end, consider the second derivatives (well-defined on R2
++)

∂2U1(x1, x2)

∂x21
= A1(x1, x2) [α2(r − 1)xr2 − α1(r + 1)xr1] (20)

∂2U2(x1, x2)

∂x22
= A2(x1, x2) [α1(r − 1)xr1 − α2(r + 1)xr2] , (21)

where A1(x1, x2) = (α1α2rx
r−2
1 xr2v)/(α1x

r
1 + α2x

r
2)

3 > 0 and A2(x1, x2) =
(α1α2rx

r−2
2 xr1v)/(α1x

r
1 + α2x

r
2)

3 > 0. The sign of these derivatives is the sign
of the terms in square brackets in (20) and (21). For 0 < r ≤ 1 these terms
are strictly negative, so that the payoff of a player is concave in own effort,
ensuring that the solution to the first order conditions (16) and (17) satisfies
the equilibrium conditions (4). For r > 1 the terms in square brackets in (20)
and (21) have exactly one sign change in x1 and x2, respectively, from positive
to negative, so that the same holds for the second derivatives. Consequently,
the first derivatives are unimodal (first increasing, then decreasing) in own
effort. Hence, if (for given x2 > 0) the first order condition (16) has a
solution x̂1 > 0 satisfying U1(x̂1, x2) ≥ U1(0, x2) = 0, then this solution
solves maxx1≥0 U1(x1, x2) and, similarly, if (for given x1 > 0) the first order
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condition (17) has a solution x̂2 > 0 satisfying U2(x1, x̂2) ≥ U1(x1, 0) = 0,
then this solution solves maxx2≥0 U2(x1, x2). From this the desired result is
immediate.
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