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Abstract

A multi-stage model on the course of war is presented: Individual battles are

modeled as private value all-pay auctions with asymmetric combatants of two op-

posing teams. These auctions are placed within a multi-stage framework with a

tug-of-war structure. Such framing provides a microfounded rationale for the use of

the popular logit Tullock contest success function in models of militarized conflicts,

yields new theoretical justification for existing empirical findings with respect to

war, and provides new hypotheses regarding strategic battlefield behavior.
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1 Introduction

The history of mankind is a history of war. No age has passed without epic battles; and

no era without bloodshed and death. Even so, and in spite of its disastrous consequences

for combatants and civilians alike, the occurrence and the course of war is still very little

understood.

In recent political science literature, the occurrence of war is explained by a break-

down in peaceful bargaining between nations due to either information incompleteness

(e.g., Reiter 2003; Maoz & Siverson 2008) or to anticipated changes in the bargaining

environment (e.g., Powell 2004b, 2006). The course of war is modeled as a multi-stage

interaction with player’s alternately deciding whether to keep on fighting or to agree on

an allocation proposal made by the opponent (cf. Filson & Werner 2001, 2004, Powell

2004a, Leventoglu & Slantchev 2007). These approaches have certainly increased our

understanding of war and the deliberative aspects that go along with it. However, a

blind spot remains: the particular war or battle incident is not modeled explicitly, but is

represented by either a simple probability measure or by a function which maps actions

into outcome probabilities. It is these probabilities or functions which the participants

resort to when deciding over their actions. Probabilities or contest success functions

(CSF) themselves, however, remain unexplained by the models.

This paper sets out to explain this lottery character of militarized interaction. In

order to do so, a different perspective on war is adopted: if we want to understand

war, we need to understand what happens on the battlefield. This leads to the study of

individual combatant behavior. It is hardly surprising that this has been done before:

going back two centuries in the history of military thought, the work of the Prussian

military theorist Carl von Clausewitz reads like a modern, decision-theoretic analysis of

battlefield behavior: a contestant going to battle will, as von Clausewitz (1982 [1832],

104) argues, consider possible enemy types as a guideline for his actions. In particular,

he argues as follows:

“If we desire to defeat the enemy, we must proportion our efforts to his powers

of resistance."

These “powers of resistance" are two-dimensional. They are given by

“the product of two factors which cannot be separated, namely, the sum of

available means and the strength of [w]ill."

Handling these two dimensions is not straightforward, as one of the two is prone to

uncertainty:

“The sum of available means may be estimated in a measure, as it depends

(although not entirely) upon numbers; but the strength of volition is more
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difficult to determine, and can only be estimated to a certain extent by the

strength of the motives."

And as if foreseeing Bayesian concepts, von Clausewitz (1982 [1832], 109) continues:

“From character, the measures, the situation of the adversary, and the rela-

tions with which he is surrounded, each side will draw conclusions by the law

of probability as to the designs of the other, and act accordingly." (emphasis

added)

Clausewitz indicates that warfare necessitates handling two type dimensions in an ap-

propriate fashion. One of these – material strength – is common knowledge; the other

one – an individual motive – is private information. Acknowledging the fact that both

sides choose their actions interdependently, we are in a modern game theoretic frame-

work. More concretely, Clausewitz’s writing neatly fits into a description of an auc-

tion with asymmetrically effective bid submissions: his “powers of resistance" are in-

terpretable as winning relevant bids which are given by the product of “the strength of

will" – that is of actual bids – and of some efficacy parameter that he calls “the sum

of available means". The “strength of will" depends on individual “motives". These

are interpreted as private combatant valuations. Valuations, in turn, are drawn from

commonly known distributions – as introduced by the agents’ “strength of the motives".

Lastly, we may reasonably assume that bids are paid irrespective of the battle outcome.

Following this reasoning, a battle is structurally equivalent to a modified private value

all-pay auction.

This very idea of a battle is spelled out in the following. It will be combined with

modeling war as a multi-stage contest, with the succession of battles being determined

by a tug-of-war structure. This yields a course of war that has a simple Markov structure

with a Bayesian Nash equilibrium at every stage.

The set-up allows for a description of war by means of the logit Tullock contest

success function – so, the following may be read as a microfoundation of this popular

CSF. Microfoundations in other contexts exist and are found for example in Fullerton &

McAfee (1999) for research tournaments, or in Lagerlöf (2007) for classical rent-seeking

contests.1 In contrast to these, however, the logit CSF gained here does not follow di-

rectly from the stochastic environment chosen but from the strategies employed by the

agents. It emerges as a consequence of equilibrium play.

Beyond that, the results will be used to formulate hypotheses on battlefield behavior.

Some fit in with recent empirical findings, some are novel: Fighting efforts are fiercest

1Further, Baye & Hoppe (2003) find that rent-seeking games, innovation tournaments and patent races

are strategically equivalent and expressible via a Tullock contest success function. Axiomatic studies

are found in Skaperdas (1996), Kooreman & Schoonbeek (1997), or in Clark & Riis (1998). For a more

extensive survey of the literature, see Konrad (2009).
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when the advantaged nation is on the edge of defeat and decrease with its closeness

to victory. These fluctuations in efforts across war states are the more pronounced the

more asymmetric the adversaries are. The materially disadvantaged nation is found

to fight more aggressively, and war duration is negatively correlated with the degree of

asymmetry between warring parties.

The remainder of the paper is organized as follows: Section 2 introduces the basic

ideas and reviews the relevant literature. In Section 3, the model is formalized and the

equilibrium characterized. Comparative statics are presented in Section 4. Section 5

relates the results to war empirics and concludes.

2 Explicitly Modeling War

There are two distinct features of the approach that require some introductory remarks

before the formal model can be stated: (i) war as a tug-of-war and (ii) battle as a private

value all-pay-auction. The following considerations are essential for the model to be set

up.

2.1 War as Tug-of-War

A tug-of-war is a sports contest between two teams pulling on opposite ends of a rope.

The aim is to pull the adversary over a ground mark initially lying between the teams.

The crucial feature of this type of game is that the winner is not declared by means of

absolute gains, but in terms of gain differences over the adversary. Applying this idea

to the case of militarized disputes, war is assumed to consist of a sequence of battles

and a nation is said to be victorious as soon as its battle victories exceed its battle de-

feats by a certain number. That is, contestants need to top the adversary by a given

number of surplus victories - irrespective of absolute victories. Such a design renders a

contest potentially infinitely long but this in turn will yield a structure that is elegantly

analytically tractable.

In political science, the idea of modeling war as a tug-of-war is found in Smith (1998)

and in Smith & Stam (2003, 2004). These models assume that a tug-of-war structure

is a suitable analogy for militarized disputes and defend this assertion with the argu-

ments that wars usually exhibit changing positional advantages and that our every-day

vocabulary of militarized disputes is replete with notions that link war to this kind of

sports contest. Other formulations of multi-stage contests with a tug-of-war structure

are found in Konrad & Kovenock (2005) or Agastya & McAfee (2006).

Contrary to the approaches above, however, the following approach will not model

war as a succession of interactions between entire teams, but rather as interactions

between individual units of two opposing teams. In every such battle, a new unit is sent

to field. The aim of the units is to win a battle in order to get their team closer to overall
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victory. To keep the analysis as simple as possible, the units will be assumed to consist

of one single combatant.

2.2 Battle as All-Pay-Auction

Returning to Clausewitz’s understanding of battle, combatant behavior is understood as

the product of interdependent reasoning over innate and adversarial strength attributes.

The attributes considered are material strength as well as motivational strength. Such a

two-dimensional description is certainly not too remote from current military research:

for example, Biddle (2004) advocates the use of differentiated capability measures in

order to explain war success and failure. In military psychology and psychiatry on the

other hand, the denominations of troop morale, troop cohesion and esprit de corps refer

to individual and group states that are seen to be highly important for battlefield success

(cf. Manning 1994, Siebold 2006, Newsome 2007). These concepts date back to military

classics such as du Picq (2008 [1880]) and Marshall (2000 [1947]), both of which analyze

and emphasize troop morale and other psychological states as key ingredients to victory.

The Clausewitzian analysis prompts an understanding of battle as being structurally

equivalent to a private value all-pay auction. Two considerations diverge from the

canonically symmetric all-pay auction model: Firstly, contestants feature asymmetry

in their individual strength levels (differing available means in Clausewitzian terms),

which is assumed to affect the actual bid needed in order to win. Secondly, contestants

need not be symmetrically motivated; that is, in auction theoretic terms, they feature

asymmetries in their value distributions (differing strengths of motives, as Clausewitz

says). Each of these asymmetries has been analyzed individually in Amman & Leininger

(1996), and in Feess, Muehlheusser & Walzl (2008), respectively – but not yet jointly, and

not yet in a multistage setting.

Another noteworthy departure from traditional modeling approaches consists in the

role of information. The existing literature on multi-stage auctions generally assumes

commonly known valuations at every stage (cf. Agastya & McAfee 2006, and Konrad &

Kovenock 2005, 2009, 2010). Such an assumption makes sense, of course, if we think of a

succession of auctions with personally identical players at every stage. Framed like this,

the players’ behavior in the first stage is fully type-revealing, and there is no uncertainty

in the subsequent stages. The scenario for war is different. War is unlikely to involve

a succession of interactions between personally identical players, and hence commonly

known valuations are not assumed.

In the war scenario, uncertainty at every stage is established by two distinct features

of the model: firstly, teams are modeled to send their members randomly to field, and

secondly, valuations are modeled to be independent both within and across teams. The

first feature is motivated by the idea of a residual uncertainty that every team faces

regarding the factual valuations of its members. The second feature accompanies the
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S=-(n-1) S=-(n-2) S=-(n-3) S=(n-3) S=(n-2) S=(n-1)

[

defeatA

victoryB

] [

victoryA

defeatB

]

Figure 1: Tug-of-War Structure

assumption that there is no interdependence between individual valuations for victory

and some objective value of the goal of war. Both these assumptions have supportive

evidence in the aforementioned war psychiatry findings which relate individual combat-

ant motivation more to – notably stochastic – personal and troop circumstances than to

specified war objectives (c.f. especially the extended discussion of soldier motivation in

Newsome 2007, Chapter 5).

Lastly, note that an all-pay auction constitutes a special case of a contest featuring

a discontinuous contest success function. The contestant employing the highest effort

wins with a probability of one. Thus, there is no uncertainty incorporated in the success

function itself. Of course, this might seem too simple and be at odds with the real terms

of war, where imponderabilities besides fighting efforts abound. However, by ignoring

these very stochastic effects, analysis can focus on strategy choice that is solely based on

the attributes of the two warring nations.

3 The Model

War is regarded as a tug-of-war between two opposing teams i ∈ {A,B}, both with a

potentially infinite number of members. In every battle, each team sends one member

randomly to field. After battle, both members rejoin their respective teams, and again a

new fighter is chosen randomly by each team. A team is said to have won the contest, if

its number of battle victories exceeds the number of victories by the opposing team by a

certain number, n.

If team i leads by z battles, it is said to be in individual state k i = z; if it runs behind

z battles, it is said to be in state k i = −z; if both are equal, both are said to be in state

k i = 0. Hence, by construction if team A is in state kA, team B is in state kB =−kA, and

vice versa.

Combining individual state denotations yields what will be called the war state. A

war state is described by S := kA = −kB referring to team A as being in its individual

state kA and team B being in its individual state kB =−kA. A graphical intuition for this

notation is given in Figure 1. S increases in team A’s victories, and decreases in team B’s

victories respectively. War is over if either team A wins in S = (n−1) or if team B wins in

S =−(n−1). The distinction between individual states and war states, respectively, will

prove to be helpful in analysis, for it allows us to firstly trace the individual and then

the interdependent decision problem.
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Members of each team i attach a certain individual valuation vi to final team victory

– that is, battle victories are merely instrumental in nature and do not feature an intrin-

sic value for agents. Valuations vi refer to the Clausewitzean notion of motives. Motives

vi are best interpreted as the member’s willingness to pay for their team’s overall war

victory. Since players are utility maximizer, they will never fully pay up to their vi, but

optimize efforts with respect to anticipated adversarial actions.

Individual valuations vi are assumed to be independently and uniformly distributed

on a support [0,vi], vi ∈R+. Valuations are not only independent within but across teams

as well. Distributions of possible valuations are denoted by Fi and supposed to be public

knowledge. Actual individual valuation draws, however, are known to the holder alone.

The width of the distribution support, [0,vi], parallels the Clausewitzen idea of the

strength of motives. The upper bound of the support, vi, will further on be denoted as

the motivational strength of a team and the notions of valuation and motivation will be

used interchangeably.

In battle, contestants exert some level of effort, b i,S. This is equivalent to the bid

in the classical auction setting: Effort is modeled as a function that has valuation as

an argument – βi,S : [0,vi] → R, vi 7→ b i,S = βi,S(vi). The notion of effort level captures

the Clausewitzian concept of the strength of will which is determined by motives in war.

With the terminology used hereafter, b i,S will be denoted as observed battlefield efforts.

Further, members of each respective team are homogeneous in their abilities to fight,

but fighting abilities differ between teams. Members of team i are said to have fighting

ability αi ∈ R+ which refers to their (common) ability to transform observed battlefield

efforts into effective battlefield efforts. This captures the Clausewitzian idea of material

strength, which is to be seen as a measure for the effectiveness of observed battle efforts.

It will be these effective efforts upon which victory and defeat are decided: A is denoted

the winner of the battle if his effective battlefield efforts exceed those of participant

B, that is, if αAβA,S(vA) > αBβB,S(vB). Translated back into Clausewitzian terms, this

means that the player with the higher level of powers of resistance is victorious.

Lastly, agents are assumed to be risk-neutral, and utility functions to be additively

separable in the valuation of final victory (if obtained) and the cost of the effort expended.

Costs of efforts are assumed to correspond to the effort level chosen, that is, c(b i,S)= b i,S.

3.1 The Course of War

To start, the case with teams needing n = 2 surplus victories in order to win war is

considered. Section 3.2 will then deliver a generalization to any arbitrary n ≥ 2. Teams

begin the contest symmetrically, that is, both teams begin in a state where they fight for

the option of imposing decisive defeat upon the opponent in the round to come. For the

victorious team, this following round yields the possibility of winning decisively. For the

losing team in the preceding round, the second round yields the option of starting anew
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– should it win – in a symmetric situation. Hence, in the second round the tug-of-war

is either over or starts anew in the initial setting. For analysis then, three individual

states k i = {−1,0,1} and three war states S = kA = {−1,0,1} are of interest.

A combatant going to battle faces the following payoff structure:

Ui,ki
(vi, b i,ki

)=







Vi,ki+1 −b i,ki
if αib i,k >α jβ j,−ki

(v j)

Vi,ki−1 −b i,ki
else

(1)

with Vi,ki
denoting the value of the individual state k i to the combatant of team i re-

turning from battle to that very state.

How do we have to think about Vi,ki
? Remember that battles do not feature intrinsic

value to combatants. Hence competition in battle is about positions only – that is, agents

fight over a more advantageous state for their team in the round to come. The value of

the round to come hinges on the expected outcomes of even further battles over which the

present combatants have no control. To capture this let Vi,ki
with k i = {−1,0,1}, i = {A,B}

be written as follows:

Vi,1 = pi,1vi + (1− pi,1)Vi,0 (2)

Vi,0 = pi,0Vi,1 + (1− pi,0)Vi,−1 (3)

Vi,−1 = pi,−1Vi,0 + (1− pi,−1)0 (4)

The state value is computed as the weighted sum of the value of the next-higher

state and the value of the next-lower state which will be reached after the consecutive

battle with a battle outcome probability of pi,ki
and 1− pi,ki

, respectively. There is no

discounting assumed. For example, returning from battle in individual state k i = 0

yields the value of state k i = 1 with probability pi,0, and the value of state k i =−1 with

probability (1− pi,0). As will be shown shortly, battle outcome probabilities are properly

defined in equilibrium and are hence anticipatable.

Rearranging terms leads to:

Vi,1 =
pi,1(1− pi,−1(1− pi,0))

1− pi,−1(1− pi,0)− pi,0(1− pi,1)
vi (5)

Vi,0 =
pi,0 pi,1

1− pi,−1(1− pi,0)− pi,0(1− pi,1)
vi (6)

Vi,−1 =
pi,−1 pi,0 pi,1

1− pi,−1(1− pi,0)− pi,0(1− pi,1)
vi (7)

In order to ease notation, let Vi,ki
be defined as

Vi,ki
=ϕi,ki

vi (8)

where ϕi,ki
vi denotes the individual state value for a participant as a fraction ϕi,ki

of

vi. In order to complete the description, define further ϕi,2 := 1, and ϕi,−2 := 0 as the

fraction of the valuation gained when the overall war is won, or lost respectively.
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Hence, in the case of the winning battle, gains to participant i in state k i consist

in a fraction ϕi,ki+1 of the overall valuation for victory, whereas losing yields a (lower)

fraction ϕi,ki−1. The game thus yields a payoff of ϕi,ki−1vi with certainty and, in the case

of winning, an additional payoff of
(

ϕi,ki+1 −ϕi,ki−1

)

vi.

A closer look at this latter expression is necessary. In order to do so, it is convenient to

switch from individual state notation (k i) to war state notation (S = kA =−kB). Keeping

in mind that pA,kA
= (1− pB,kB

),∀kA =−kB, simple algebra is applied to arrive at:

Lemma 1. Let φi,ki
:= ϕi,ki+1 −ϕi,ki−1, i ∈ {A,B} denote the fraction of the additional

payoff φi,ki
vi in the case of winning a battle in individual state k i for agents of team

i. Then, in every war state S = kA = −kB, additional payoff fractions are equal for both

team’s agents and are given by:

φS :=φA,kA
=φB,kB

(9)

Lemma 1 states that additional payoffs are equal for both agents for a given battle.

This result is important: Expression (9) facilitates analysis, and the optimizing problem

for each candidate can finally be stated. Recalling that uniform distribution of valua-

tions is assumed and replacing individual state indices in ϕi,ki
by war state indices S,

the respective battle-utilities are written as:

UA,S(vA , bA,S)=

β−1
B,S

(
αA

αB

bA,S)

vB

φSvA +ϕA,S−1vA −bA,S (10)

UB,S(vB, bB,S)=

β−1
A,S

(
αB

αA

bB,S)

vA

φSvB +ϕB,−(S−1)vB −bB,S (11)

Equations (10) and (11) depict respective additional gains from winning the contest

multiplied by the probability of winning given a certain effort level b i,S plus the valua-

tion fraction received in the case of defeat minus the cost of the efforts to be expended.

The fraction that is gained in the case of defeat is obtained with certainty and will hence

not be relevant for the optimizing problem.

In order to find the utility maximizing efforts bA,S and bB,S, respectively, FOC’s for

both candidates with respect to their efforts are taken. Replacing b i,S by the bidding

function βi,S(vi) leads to the following system of differential equations:

FOCbA,S
: vA = vB

αB

αA

β′
B,S

(

β−1
B,S

(

αA

αB

βA,S (vA)

))

φ−1
S (12)

FOCbB,S
: vB = vA

αA

αB

β′
A,S

(

β−1
A,S

(

αB

αA

βB,S (vB)

))

φ−1
S (13)
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Equilibrium analysis will be restricted to bidding functions meeting this differential

equation system. The route of looking at differential equation systems of this type is

fairly common in the literature on all-pay auctions. For example, Amman & Leininger

(1996) thus analyze asymmetric value distributions, and the special case with φS = 1,

vA = vB = 1, and αA 6= αB is treated in Feess et al. (2008). Proceeding by “guessing and

verifying" leads to:

Proposition 1. The unique equilibrium effort functions2 complying with (12) and (13)

are:

βA,S(vA)=φS

αB

αAvA +αBvB

vBv

1−
αAvA +αBvB

αAvA
A

v

αAvA +αBvB

αAvA
A

(14)

βB,S(vB)=φS

αA

αAvA +αBvB

vAv

1−
αAvA +αBvB

αBvB
B

v

αAvA +αBvB

αBvB
B

(15)

Proof. Since (12) and (13) constitute an ordinary differential equation (ODE) system, we

know that, if a continuous and locally differentiable solution trajectory for a given ODE

system for a given boundary condition exists, the solution is unique for that boundary

condition (cf. Theorem 3.1 in Hale 2009). The only possible boundary condition for the

problem is given by βA,S(0)=βB,S(0)= 0: no participant with zero valuation will expend

strictly positive efforts, since this necessarily leads to negative utility. Therefore, if there

is a solution meeting the boundary condition βA,S(0) = βB,S(0) = 0, the solution is the

unique candidate to constitute an equilibrium. Note that (14) and (15) are continuous,

locally differentiable and meet the specified boundary condition, and that plugging (14)

and (15) into (12) and (13) indeed verifies that the functions presented in Proposition

1 constitute a solution. Hence, (14) and (15) constitute the unique candidate for an

equilibrium.

In order to constitute an equilibrium, (14) and (15) need to apply with incentive

compatibility and a rationality constraint (cf. Myerson 1981). The rationality constraint

requires that equilibrium utility U∗(0)≥ 0. This condition is met since we have βA,S(0)=

βB,S(0) = 0; i.e., no efforts are expended with zero valuation. On the other hand, incen-

tive compatibility implies non-decreasing effort functions (cf. Krishna 2002). Obviously,

(14) and (15) are non-decreasing in vA , and vB respectively. Hence, (14) and (15) indeed

constitute an equilibrium and this equilibrium is unique for the conditions specified in

(12) and (13).

2Note that the equilibrium functions obtained correspond to the well-known symmetric equilibrium if

αA =αB = 1 and vA = vB = 1 (cf. Krishna 2002).

10



Hence, for a given set of parameters (αA,αB,vA,vB), equilibrium efforts only change

in φS across states. In order to derive φS, expected battle winning probabilities pi,ki

with randomly chosen combatants are computed.

Lemma 2. Expected battle outcome probabilities pi for team i playing against team j,

i, j ∈ {A,B}, i 6= j, are war state independent and given by:

pi :=

∫vi

0

β−1
j,S

(

αi

α j

βi,S(vi)

)

v j

dFi(vi)=
αivi

αivi +α jv j

,∀S (16)

Proof. Note that, assuming uniform distribution, the probability of winning for combat-

ant i is given by:

P
(

αiβi,S(vi)>α jβ j,S(v j)
)

=

β−1
j,S

(

αi

α j

βi,S(vi)

)

v j

. (17)

Computing the expected value of this probability along with plugging in equilibrium

effort functions (14) and (15) yields the result.

Agents on the battlefield behave in a way that results in equal outcome probabilities

across all war states. Such war-state independent battle outcome probabilities are strik-

ing, since incentives change with respect to war states: with Lemma 2, additional payoff

fractions, φS, can now be derived, and it turns out that they are not independent of the

war state S.3

Proposition 2. The state variables φS , S = {−1,0,1} are given by:

φS =



































































α2
A

v2
A

α2
A

v2
A +α2

B
v2

B

if S =−1

αAvAαBvB

α2
A

v2
A +α2

B
v2

B

if S = 0

α2
B

v2
B

α2
A

v2
A +α2

B
v2

B

if S = 1

(18)

Proof. Substitute (16) into the definition of φS as given in (9).

This concludes equilibrium analysis for n = 2. By Propositions 1 and 2, the equilib-

rium is fully characterized.

3For an extended discussion on φS, refer to Section 4.1.2.
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3.2 Generalization to n ≥ 2

The results obtained in Lemmata 1 and 2 as well as those obtained in Proposition 1

carry over to the more general case of n ≥ 2 surplus battle victories needed in order to

win war.

Note that a sufficient condition for the feasibility of such a generalization is that the

fraction φS, S ∈ {−n+1, ..., n−1} of the additional payoff φSvi in the case of winning is

equal for agents of both teams for a given S and for all n. Proposition 3 states that this

is indeed the case:

Proposition 3. (Generalization of Lemma 1) Take the case of n surplus battle victories

needed in order to win war. Then, the fractions φi,S, S ∈ {−n+1, ..., n−1} of the additional

payoff φi,Svi as stated in Lemma 1 are equal for agents of both teams i = {A,B} for a given

S.

Proof. See Appendix A.

As a consequence of Proposition 3, equilibrium bidding functions are as given in

Proposition 1, and battle outcome probabilities remain constant across war states and

are as given in Lemma 2. Finally, to get an analogon to Proposition 2 for the generalized

n-case, it is a matter of simple algebra to compute values of φS by repeating the steps

taken to arrive at Lemma 1 and resorting to battle outcome probabilities pA. So, in

any case of n, φS is properly defined and this in turn allows for a direct analysis of the

general n-case in the following.

3.3 War Winning Probabilities

With state-independent battle outcome probabilities, war boils down to a random walk

over war states S = {−(n−1), ..., n−1} that ends with a victory of the respective lead-

ing team in either of the fringe states S = {−(n− 1), n− 1}. Assuming war to start in

middle state S = 0, the problem of overall winning probabilities for war is structurally

equivalent to the so-called Gambler’s Ruin Problem with two gamblers initially equally

endowed with n units.4 Consequently, overall outcome probabilities are to be described

as follows:

Proposition 4. The overall winning probability, πn
i
, of nation i endowed with mate-

rial strength αi and motivational support [0,vi] faced with nation j characterized by α j

4The Gambler’s Ruin Problem describes a repeated lottery game between two players, A and B, each of

whom is endowed with some (finite) capital endowment. At every stage, one unit of capital is transferred

from A to B with some probability, or from B to A with the respective complementary probability. The

game ends as soon as the first player is bankrupt (cf. Takacs 1969).
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and
[

0,v j

]

in a tug-of-war contest with symmetric initial positions and a difference of n

victories needed in order to win is given by:

πn
i =

pn
i

pn
i
+ pn

j

=
αn

i
vn

i

αn
i
vn

i +αn
j
vn

j

(19)

Proof. The probability πn
i

of prevailing in war with symmetric initial positions and with

n surplus battles needed in order to win is equal to the complementary absorption prob-

ability with equal starting endowment n as given in Stern (1975):

πn
i =

1−

(

1− pi

pi

)n

1−

(

1− pi

pi

)2n
(20)

Rearranging leads to Proposition 9.

Overall outcome probabilities take the shape of the logit Tullock contest success

function. This CSF is highly popular in models of militarized conflicts (cf. Garfinkel &

Skaperdas (2000); Hirschleifer (2000); Anbarci et al. (2002); Slantchev (2005)). Further,

we find it extensively used in rent-seeking analysis (see Nitzan (1994) for an overview).

Snyder (1989) applies the idea to political election contests. Usually, forms with n ≤ 2

are studied. See Baye, Kovenock & de Vries (1994) for a mixed strategy equilibrium with

n > 2.

4 Comparative Statics

Let D = (αA,αB,vA,vB), D ∈ R4
+ denote a description of the exogenous attributes of the

two teams in the game and additionally let pA|D and pB|D = 1−pA|D stand for the battle

outcome probabilities generated by description D as in (16). By definition, pA|D ∈ (0,1).

Whenever reasonable, reference to D in pA|D will be dispensed with and simply pA be

written.

Definition 1. Team i is called advantaged over team j, or favorite respectively, if its

probability of succeeding in battle exceeds that of its opponent, i.e. if pi > p j. Further, a

team i is called motivationally or materially advantaged if vi > v j, or αi >α j respectively.

By setting

pi

p j

=
αivi

α jv j

(21)

it is obvious that the question of advantage is driven by material strength and moti-

vational support alike. Being materially disadvantaged does not imply an overall dis-

advantag as material incapability can be compensated directly by featuring a larger

motivational support.
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(vA, vB) = (1, 1)

vA,B

bi,−1

1

10
vA,B

bi,0

1

10
vA,B

bi,1

1

10

(αA, αB) = (0.5, 1)

(vA, vB) = (1, 1)

vA,B

bi,−1

1

10
vA,B

bi,0

1

10
vA,B

bi,1

1

10

(αA, αB) = (1, 1)

(vA, vB) = (0.5, 1)

vA,B

bi,−1

1

10
vA,B

bi,0

1

10
vA,B

bi,1

1

10

βBβA

Figure 2: Bidding Behavior with Differing Asymmetries

4.1 Asymmetry and Battlefield Behavior

In the following, a short description of individual battlefield behavior is given. Then,

expected individual and aggregate behavior is scrutinized. And beyond that, effects on

war duration by shifts in the balance of powers will be analyzed. The term effort will

always refer to observed battlefield effort.

4.1.1 Individual Efforts

The factors affecting individual efforts are best looked at by distinguishing between

effects of material asymmetry on the one hand and effects of motivational asymmetry on

the other hand. This will be done by reference to Figure 2. Figure 2 depicts the (n = 2)-

case with equilibrium efforts b i,S depending on valuation vi for both candidates i, for

war states S ∈ {−1,0,1}, and for differing degrees of asymmetry.

A graphical intuition for the effect of differing degrees in material asymmetry is ob-

tained by comparing the shape of effort functions across equal war states S for differing

(αA,αB)-values as in the first and second row of Figure 2. With motivational symmetry

but material asymmetry, the bidding function of the advantaged party becomes flatter,

whereas the underdog with relatively high valuation exerts higher efforts than in the

symmetrical case. Taking into account that the underdog needs relatively more effort in

order to win, this makes perfect sense: the underdog exerts relatively little effort when

valuations are low since his chances of winning are limited by low material strength. An
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underdog holding a high valuation, however, acts more aggressively as he compensates

for the material handicap in order to optimize expected battle utility. So, in terms of ef-

fort employed, the aspect of participant type becomes more important with the underdog

than with the advantaged party.

With respect to motivational asymmetry, similar effects are observed. The subfigures

in the third row of Figure (2) show the effort strategy of the advantaged participant to

flatten out and the disadvantaged participant with relatively high valuations to fight

more aggressively than in the symmetrical case. The advantaged participant expends

less effort, since he can expect an overall lower willingness to pay for victory with mem-

bers of the adversarial team. On the other hand, underdogs i with valuations close to

the upper bound vi play optimally by expending greater efforts than favorite combatants

with equal valuations: underdog types with high valuations adopt equilibrium efforts of

favorite types j with valuations similarly close to the respective upper bound v j as a

guide. This is so in equilibrium, since, by expending less effort, the underdog would

lessen his chances of winning by more than he would save on effort expenditure.

4.1.2 Expected Efforts

Since the idea of randomness in choosing agents is a key assumption of the model, the

scrutiny of expected behavior is of particular interest. Not only does such analysis yield

the sharpest results, but it furthermore yields potentially testable hypotheses against

the background of an assumed participant description D.

It will prove to be fruitful to write the expressions of interest with respect to the

battle winning probabilities of team A: Let expected individual efforts (Eβi,S) and total

expected efforts (Eβtot,S) in war state S be written as

EβA,S =φS

pA(1− pA)

1+ pA

vA (22)

EβB,S =φS

pA(1− pA)

2− pA

vB (23)

Eβtot,S =φS pA(1− pA)

[

vA

1+ pA

+
vB

2− pA

]

(24)

Absolute Strength Levels A first observation concerns the ratio between respective

strength levels for a description D = (αA,αB,vA ,vB); i.e., the ratios between material

strength levels on the one hand and motivational strength levels on the other hand.

The model predicts quantitatively the same behavior for an armed conflict between

materially weak adversaries as it does for materially stronger candidates - given that

the balance of powers in terms of material attributes is the same. Such is not the case

for motivational attributes. Given a certain ratio of team motivation, expected efforts

increase in absolute levels of team motivation:
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Proposition 5. (Absolute strength levels) Take any description D = (αA,αB, vA,vB).

(a) Keep a certain material strength ratio,
αA

αB

, fixed. Then, expected individual and

expected total efforts do not change ceteris paribus in absolute levels of (αA,αB).

(b) Keep a certain motivational strength ratio,
vA

vB

, fixed. Then, expected individual and

expected total efforts increase ceteris paribus in absolute levels of (vA ,vB).

Proof. Note that by (16), pA is homogeneous of degree zero in (αA,αB) as well as in

(vA,vB). By (18), φi, as well is homogeneous of degree zero in (αA,αB) and in (vA,vB).

Hence, by (22), (23), and (24), expected efforts only change in pA and in vi, and thus do

not change if both αA and αB are multiplied by some constant c. This proves (a). On the

other hand, if both vA and vB are multiplied by some constant c, pA does not change,

but as expected individual and total efforts are homogeneous of degree 1 in (vA ,vB), both

measures change by factor c. This proves (b).

Relative Aggressiveness Let us switch to the analysis of expected behavior under

differing advantages in both αi and vi. As it turns out, weakness in material strength

leads to aggression, whereas weakness in motivational strength leads to moderation:

Proposition 6. (Relative Aggressiveness) Take any description D = (αA,αB, vA ,vB). Gen-

erally,

∂
EβA,S

EβB,S

∂αA

< 0,

∂
EβA,S

EβB,S

∂vA

> 0,∀S. (25)

And especially

(a) If αA >αB,vA = vB, then EβA,S < EβB,S,∀S.

(b) If αA =αB,vA > vB, then EβA,S > EβB,S,∀S.

Proof. See B.

Proposition 6 holds for all war states and for all n, since by (22) and (23),
EβA,S

EβB,S
is

independent of S. A ceteris paribus increase in innate material strength, αi, yields a

more favorable strength ratio
αi

α j
and leads to decreasing own expected efforts relative

to the efforts of the adversary. Taking a description D with equal motivational strength,

vA = vB, yields the sharpest result in this vein, since then combatants of the materially

advantaged team expend relatively less expected effort than their underdog counter-

parts. The same effect with inverse signs is observed for motivational attributes. Here,

the greater the advantage, the more efforts are expended relatively: combatants of a

favorite team that is favorite only because of motivational advantages fight more ag-

gressively than their adversaries.
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Embattled Favorite With perfectly symmetric teams, we can see by inspection of

(22), (23), and (18) that expected efforts are the same for both teams and across all war

states. Above, we have seen that with differing balances of power, expected efforts differ

between teams within a certain war state. This is not the end of the story: asymmetry

between teams affects expected efforts across war states, as well. In particular, greatest

expected individual and total efforts are observed when the favorite team is on the edge

of defeat.

Proposition 7. (Embattled Favorite) Take any description D = (αA,αB,vA, vB) with re-

spective pA|D > pB|D and n surplus battles needed in order to win war, then

φ−(n−1) >φ−(n−2) > . . .>φn−2 >φn−1 (26)

and hence

Eβi,−(n−1) > Eβi,−(n−2) > . . .> Eβi,n−2 > Eβi,n−1, i ∈ {A,B} (27)

Eβtot,−(n−1) > Eβtot,−(n−2) > . . .> Eβtot,n−2 > Eβtot,n−1 (28)

Proof. See C.

Expected individual and total efforts decrease monotonically in the favorite’s close-

ness to victory. To make sense of this effect, we must take a closer look at the war state

variable φS. φS refers to the difference in winning and losing fractions of war victory

valuations and has been shown to be equal for both participants for a given war state S.

An intuition for the differences φS goes as follows: Note that it is φS alone that

affects behavior across states for a given description D. Hence, we can interpret φS as

an incentive to expend effort. This incentive looses more force, the closer the advantaged

team comes to decisive victory: to the advantaged team, losing while being the front

runner bears a comparably small risk of overall defeat, since the chances of returning to

the decisive fringe state remain intact. For the disadvantaged, the incentive to expend

effort while being on the edge of defeat is small as there is little chance of winning in

future battles. Contrarily, if the disadvantaged participant is closer to victory, he then

has a strong incentive to strive, since there is little chance that his team will ever return

to such a favorable position again. Likewise, the advantaged participant faces high

stakes on the edge of defeat.

Effort Volatility Battlefield behavior exhibits greatest effort when the favorite team

is on the edge defeat and the least effort when it is close to victory – we shall refer to

this fact as fringe state volatility. We will see that fringe state volatility is positively

dependent on asymmetries between nations.
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In order to compare strength asymmetry and effort volatility, it is convenient to in-

troduce a measure for the degree of dispersion in any two variables (x, y) that is capable

of analogously capturing the ideas of strength asymmetry and effort volatility in a rea-

sonable way. A useful measure is the absolute logarithmic difference between x and

y:

Definition 2. Let

δ(x, y) :=

∣

∣

∣

∣

ln

(

x

y

)∣

∣

∣

∣

with x, y ∈R+ (29)

denote a measure for the dispersion between x and y.5

Approximately, δ(x, y) describes the absolute percentage difference between x and y.

δ(x, y) is symmetric in the sense that δ(x, y)= δ(y, x), homogeneous of degree zero in (x, y)

and increasing in max{x, y} as well as decreasing in min{x, y}. As we are dealing with

ratio measures, this is very convenient.

With this, the imbalance of powers between two teams are defined by resorting to

battle outcome probabilities. Let

I(pA) := δ(pA,1− pA)= |ln(pA)− ln(1− pA)| (30)

stand for the degree of imbalance between A and B. I(pA) features a global minimum

at pA = (1− pA)= 0.5 and exhibits positive slopes with pA 6= 0.5.

Analogously, volatility V (pA) in efforts is understood as dispersion between expected

efforts in the two fringe states S = {−(n−1), n−1}:

V (pA) := δ(Eβi,−(n−1),Eβi,n−1)= δ(Eβtot,−(n−1),Eβtot,n−1) (31)

=
∣

∣ln
[

φ−(n−1)(pA)
]

− ln
[

φn−1(pA)
]∣

∣ (32)

We can now return to the claim that an increase in the imbalance of powers leads to a

higher fringe state volatility in efforts:

Proposition 8. (Effort Volatility) Take any description D = (αA,αB,vA ,vB) with respec-

tive battle outcome probability pA|D and n surplus battle victories needed in order to

win. Then volatility V (pA) between expected individual as well as between expected total

efforts in fringe war states S = {−(n−1), n−1} is increasing in the imbalance of powers

I(pA).

Proof. See D.

5Note that δ(x, y) is a reformulation of the Thompson metric for the two-dimensional case, d(x, y) =

max{ln( x
y
), ln(

y

x
)}.
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Figure 3: Expected Efforts with vA = vB = 1 and changing pA

We can make sense of this observation with a consideration similar to that above:

The higher the asymmetries between contestants are, the higher are the relative battle

outcome probabilities of the favorite team. This implies that the stakes of the favorite on

the edge of defeat increase in its superiority over its opponent. Analogously, incentives

to expend efforts in the decisive state before victory decrease, since chances of returning

to that very state increase.

This concludes the comparative statics analysis with respect to efforts. To sum up,

changes in the balance of power lead to differing expected battlefield efforts on the one

hand and to a certain volatility in observed battlefield efforts across war states on the

other hand. In particular, expected individual and total efforts increase with the under-

dog’s closeness to victory.

A graphical intuition for these effects is provided in Figure 4.1.2. The three subfig-

ures depict expected individual as well as total effort levels with respect to pA in the

three war states S = {−1,0,1} for the n = 3 case. Motivational strength for both teams is

assumed to be vA = vB = 1, and hence the changes in pA are due to changes in material

strength ratio levels only. That is, for pA > 0.5, team A is materially favorite and for

pA < 0.5, material advantages lie with team B.

With an increasing imbalance of powers – that is, with pA moving away from pA = 0.5

in either direction – expected individual efforts of the favorite come to rest below those

of the underdog. The underdog behaves more aggressively. Further, the state with the

embattled favorite exhibits the highest total and individual efforts of all states. And

lastly, comparing effort levels for given pA ’s across all three states reveals the volatility

effect brought about by the imbalance of powers.

4.2 War Winning Probabilities

With state-independent battle outcome probabilities, war boils down to a random walk

over war states S = {−(n−1), ..., n−1} that ends with a victory of the respective lead-

19



ing team in either of the fringe states S = {−(n− 1), n− 1}. Assuming war to start in

middle state S = 0, the problem of overall winning probabilities for war is structurally

equivalent to the so-called Gambler’s Ruin Problem with two gamblers initially equally

endowed with n units.6 Consequently, overall outcome probabilities are to be described

as follows:

Proposition 9. The overall winning probability, P(i|S = 0), of player i in a tug-of-war

contest with symmetric initial positions and a difference of n victories needed in order to

win is given by:

P(i|S = 0)=
pn

i

pn
i
+ pn

j

(33)

Proof. The probability πn
i

of prevailing in war with symmetric initial positions and with

n surplus battles needed in order to win is equal to the complementary absorption prob-

ability with equal starting endowment n as given in Stern (1975):

πn
i =

1−

(

1− pi

pi

)n

1−

(

1− pi

pi

)2n
(34)

Rearranging leads to Proposition 9.

4.3 Asymmetry and War Duration

By taking a closer look at overall winning probabilities, the expected length of war comes

into focus. Again, thinking of war as analogous to the Gambler’s Ruin Problem proves to

be fruitful. Expected war duration can be expressed in terms of the number n of surplus

battles needed and battle winning probabilities pA:

Proposition 10. (War duration) Take any description D = (αA,αB,vA,vB), and respec-

tive battle outcome probability pA |D . Then:

(a) The expected length L(n, pA) of war with symmetric initial positions and with n sur-

plus battles needed in order to win is given by

L(n, pA)=















n

(

1

1−2pA

)

(

(1− pA)n − pn
A

(1− pA)n + pn
A

)

if pA 6=
1

2

n2 if pA =
1

2

(35)

6The Gambler’s Ruin Problem describes a repeated lottery game between two players, A and B, each of

whom is endowed with some (finite) capital endowment. At every stage, one unit of capital is transferred

from A to B with some probability, or from B to A with the respective complementary probability. The

game ends as soon as the first player is bankrupt Takacs (1969).
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(b) Expected war duration L(n, pA) decreases in the imbalance of powers I(pA).

Proof. See E.

An intuition for this observation goes as follows: the more asymmetric teams are

in terms of advantages, the higher are the probabilities that war moves in one rather

than in the other direction. The advantaged team is expected to win battles more fre-

quently than the disadvantaged team, and, as a consequence, a decisive fringe war state

is reached earlier.

5 Conclusion

A multi-stage private value all-pay auction has been presented and solved for subgame

perfect equilibria. The aim of this analysis has been twofold: firstly, endogenizing the

lottery character of war; and secondly, providing empirically testable hypotheses on bat-

tlefield behavior as well as on the length of war. Thereby, the combination of modeling

militarized dispute with a tug-of-war structure and framing individual battles as a mod-

ified private value all-pay auction in the spirit of Clausewitz has proven to be fruitful.

The setup chosen has allowed some light to be shed on the relationship between the

logit Tullock CSF and the all-pay auction - an endeavor that is certainly interesting

for general contest theory, as well. What this model essentially boils down to is an

understanding of the Tullock CSF as the product of a discrete random walk between two

absorption states. Transition probabilities are described by the strength parameters of

the two teams and come about from equilibrium play in repeated private value all-pay

auctions that are linked by a tug-of-war structure.

With this result, possibilities for future research in the context of war open up: a

nation going to war might previously decide on how to optimally choose its parameters

given specified costs. Higher order decision problems regarding the choice of material

and motivational strength attributes are certainly natural extensions to the analysis

done in this paper.

Further, the model presented is in line with several existing empirical findings: ca-

pabilities are often used in order to explain war outcomes – an elaborate and highly

differentiated view on the explanatory power of material strength is found in Biddle

(2004), for example. Material strength enters the model with the parameter αi, which

is positively correlated with chances of winning both in battle as well as in war. Moti-

vation, on the other hand, is seen as an additional ingredient to victory – treatments

thereof are found for example in Manning (1994), Siebold (2006), or Newsome (2007).

This relationship, as well, is depicted in the expressions of battle and overall war out-

come probabilities. And thirdly, the empirical observation that the duration of war is
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negatively correlated with the imbalance of powers between nations (cf. ?) has been

successfully replicated.

Last but not least, new hypotheses on battlefield behavior have been presented.

These hypotheses refer to expected behavior with respect to war states and with re-

spect to the strength ratios between adversaries. Propositions 5 to 8 may be directly

taken to empirical research: The model predicts aggressiveness of the material under-

dog, increasing fighting intensity when the favorite is losing ground and high fighting

volatility accompanying a high imbalance of powers.
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A Proof of Proposition 3

Proof. As shown in Proposition 1 and Lemma 2, equality in φS for both agents in battle

leads to equilibrium effort functions that are linear in φS and to battle outcome proba-

bilities pi, i ∈ {A,B} that are independent of war state S. In the following, it is shown

that the implication works in the opposite direction, too: Assuming state independent

outcome probabilities implies equality in φS for both teams’ agents; hence, stating team

independent φS is equivalent to stating war state independent battle outcome probabil-

ities pA = 1− pB.

Let Vi,S be values of war state S to a randomly chosen agent of team i with valuation

vi and let us assume that outcome probabilities are war state independent and given by

pA = 1− pB. Then VA,S is given by

VA,S =















vA if S = n

pAVA,n+1 + (1− pA)VA,n−1 if S ∈ {−n+1, ..., n−1}

0 if S =−n

(36)

And analogously, VB,S can be written as

VA,S =















vB if S =−n

(1− pA)VB,n+1 + pAVB,n−1 if S ∈ {−n+1, ..., n−1}

0 if S = n

(37)
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The additional payoff in case of winning in war state S ∈ {−n+1, ..., n−1} for an agent of

team i ∈ {A,B} can be expressed by differences in state values, φA,SvA =VA,S+1 −VA,S−1,

and φB,SvB =VB,S−1 −VB,S+1, respectively.

Taking these differences in state values as defined in (36) and (37) yields two (2n−1)-

equation systems for {A,B}-agents with 2n−1 unknown φi,S:

φA,S =



















1− pA

∑n−2
z=−n+1φA,z if S = n−1

pAφA,S+1 + (1− pA)φA,S−1 if S ∈ {−n+2, ..., n−2}
pA

1− pA

φA,−n+2 if S =−n+1

(38)

φB,S =



















1− pA

∑n−2
z=−n+1φB,z if S = n−1

pAφB,S+1 + (1− pA)φB,S−1 if S ∈ {−n+2, ..., n−2}
pA

1− pA

φB,−n+2 if S =−n+1

(39)

From this, it is obvious that φA,S = φB,S = φS must hold. Hence, surplus payoffs are

equal.

B Proof of Proposition 6

Proof. Take (22),(23) and the definition of pA from Lemma 2 to write

EβA,S

EβB,S

=
vA

vB

αAvA +2αBvB

2αAvA +αBvB

(40)

Note that the RHS is independent of S. Hence for ∀S,0< D <∞:

∂
EβA,S

EβB,S

∂αA

=−
3αBv2

A

(αBvB +2αAvA)
2
< 0 (41)

∂
EβA,S

EβB,S

∂vA

=
2

(

α2
B

v2
B +αAαBvAvB +α2

A
v2

A

)

vB (αBvB +2αAvA)
2

> 0 (42)

Setting vA = vB, we have

EβA,S

EβB,S

=
αA +2αB

2αA +αB

(43)

Now obviously,

αA >αB ⇒
EβA,S

EβB,S

< 1⇔ EβA,S < EβB,S (44)

This proves (a). The proof for (b) repeats the last two steps analogously.
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C Proof of Proposition 7

Proof. By the definitions given in (22), (23), and (24), for a given description D and

respective pA |D , individual as well as total expected efforts vary linearly across states

in φS alone. So, only war state variables φS have to be looked at. Rewriting (38) and

setting φA,S =φS yields for S ∈ {−n+1, ..., n−2}

φS =
pA

1− pA

φS′ with S′
= S+1 (45)

Hence, it must hold for a favorite team A, i.e. pA > 0.5, that

φS >φS′ with S′
= S+1 (46)

That is, φS (and consequently expected efforts) increases the closer the favorite team A

is to defeat.

D Proof of Proposition 8

Proof. Using (45) with Definition 2 we have

V (pA)= δ(Eβi,−n(−1),Eβi,n−1)| = δ(Eβtot,−(n−1),Eβtot,n−1)| (47)

=

∣

∣

∣

∣

ln
φ−(n−1)

φn−1

∣

∣

∣

∣

(48)

=

∣

∣

∣

∣

ln

((

pA

1− pA

)2n−2)∣

∣

∣

∣

(49)

= (2n−2) |ln(pA)− ln(1− pA)| (50)

For 0 < pA < 1, V (pA) exhibits a minimum at pA = 0.5 and positive slopes for pA 6=

0.5. Hence V (pA) behaves analogously to I(pA) in the sense that the signs of partial

derivatives w.r.t pA are equal for a given pA 6= 0.5, and V (pA) = I(pA) = 0 for pA = 0.5.

So, an increase in I(pA) is equivalent to an increase in V (pA), and vice versa.

E Proof of Proposition 10

Proof. The expected length L(n, pA) of war with symmetric initial positions and with n

surplus battles needed in order to win is equal to the expected length of the Gambler’s

Ruin lottery game with equal starting endowment n as given in Stern (1975):

L(n, pA)=



































n

(

2pA

1−2pA

)











1−2











1−

(

1− pA

pA

)n

1−

(

1− pA

pA

)2n





















if pA 6=
1

2

n2 if pA =
1

2

(51)
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Rearranging:

=















n

(

1

1−2pA

)

(

(1− pA)n − pn
A

(1− pA)n + pn
A

)

if pA 6=
1

2

n2 if pA =
1

2

(52)

This shows (a). Further, it is a simple exercise in algebra to show that

dL(n, pA)

dpA

=











> 0 if pA <
1

2

< 0 if pA >
1

2

(53)

Hence, L(n, pA) behaves analogously to I(pA). This proves (b).
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