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Abstract

We study the optimal adaptation to extreme climate events by the central gov-
ernment in a setup where events are dynamically uncertain and the government
does not know the true probabilities of events. We analyze different policy decision
rules minimizing expected welfare losses for sites with different expected damages
from the catastrophic event. We find out under which conditions it is optimal to
wait before implementation of a prevention measures to obtain more information
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1 Introduction

In the past decades, economic studies on climate policy have focused on mitigation. In-

tegrated climate assessment models have been developed, such as (Nordhaus, 2007), and

game theory has been used to assess the potential for stable coalitions for mitigating

climate change (Babonneau et al., 2013). However, so far actual climate policy has not

stopped climate change but rather helped to slow it down. Thus the question of climate

change adaptation is gaining in importance.

Indeed, it is widely accepted that global warming will lead to a higher frequency of

natural disasters in the near future. Thus it is important to understand how countries

may optimally adapt by choosing the right adaptation strategy and the right timing to

implement that strategy.

The literature on adaptation strategies has rapidly increased in recent years. It has

been specifically considered in the context of international cooperation in Buob and

Stephan (2011) and Kane and Shogren (2000). De Bruin and Dellink (2011) focus on

different constraints (including informational) for efficient adaptation.

However a particularly intriguing problem has received little attention so far: Given

that there is still a high level of uncertainty regarding climate change impacts and the

speed of climate change, what adaptation measures should be implemented and at which

time. This problem is of particular interest, as there is a chance to learn by waiting but a

large-scale disaster could cause high costs, if adaptation measures have been delayed too

long.

In this paper, we use a stylized model to analyze this question. In our model, the likeli-

hood of catastrophic events is influenced by climate change but this influence is uncertain.

A social planner can decide between no adaptation, a small and a large adaptation project,

where investment in the large project involves substantial sunk costs. Depending on the

beliefs of the social planner regarding the rate and scale of the climate change and on the

availability of information, different adaptation strategies (that is, a different timing of

the different projects) can be optimal. Our results show that it is frequently optimal for

the planner to wait for some time before implementing adaptation measures. Moreover,
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it might be optimal to start with minor measures and switch to major efforts only later

on, when the effects of climate change become clearer.

The main contribution of this paper is that we account for a rich set of possible

probabilistic structures, which include not only usual one-layered uncertainty over coming

catastrophic events, but also multiple layers of such uncertainty, where the planner does

not know the true probabilistic law governing the likelihood of future disasters. We

explicitly derive decision rules for the implementation of different adaptation measures

under full information concerning probability distribution (Section 3), under perfect and

imperfect learning over time (Section 4) and under fully uncertain climate change, where

the planner does not know and cannot learn the true probability law (Section 5).

2 The Model

We use a simple model of climate change adaptation to study different types of uncertainty.

We assume that a central government minimizes expected total costs, which stem from

damages from potential catastrophic events as well as from adaptation costs. There are

two regions, indexed {1, 2}, which can suffer from natural disasters. Both regions can

have either low or high vulnerability to catastrophic events, t ∈ {L,H}. At each point of

time (T ∈ {0, 1, 2, ..,∞}), one event may happen, affecting both regions simultaneously.

The event may ave low or high associated damages. The risk of a catastrophic event is

uncertain, and there are three possible outcomes with associated probabilities.

E = {0, l, h}, ∀T ∈ {0, 1, 2, ..,∞} : p0(T ) + pl(T ) + ph(T ) = 1, (1)

that is, at every period there are 3 possible outcomes: no catastrophic event, an event

with minor damage m, or an event with major damage h.

The probabilities of these events change with time. To model climate change, we

assume the simple law of the probabilities’ evolution:

~p(T + 1) = ~p(T ) + ~α(~ρ− ~p(T ));

ρ0 + ρl + ρh = 1, ∀T ≥ 0 : pl(T ) + ph(T ) + p0(T ) = 1, (2)
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with ρ being the stationary value of probability for each of the events and ~α governing

the rate of change of probabilities of events.

In each period T , the governmental authority can implement a major or a minor

abatement project to reduce the damages from potential catastrophic events, or it may

choose to do nothing. We thus denote the action space of the government by:

A1,2 = {0,m,A} (3)

with 0 denoting the action of doing nothing, m being a minor prevention measure, and A

a major project. The minor project takes effect in the same period, but has to be renewed

every period. It can prevent only the low type event and does not reduce damages from

the high type event. The major project requires time for completion, having an effect

from the period next after construction is started, but prevents both types of events for

the rest of the time. Projects are mutually exclusive, so only one of the actions from A
can be undertaken in each period.

We assume that the costs of a major project are higher than the cost of a minor

project:

C(A) > C(m) (4)

We further assume that the high type and low type events may cause different damages

for different types of sites, with

DH(h) > DH(l), DL(h) > DL(l), DH(h) > DL(h), DH(l) > DL(l) (5)

where Di denotes damages from event type j ∈ {l, h} at site i ∈ {L,H}, that is, high type

event causes more damage for every type of location than the low one, and every type of

event causes higher damages to the more susceptible site than to the less susceptible one.

These assumptions characterize a setting that is typical for hydrological disasters, such

as floodings. If a flood occurs, it causes costs at different locations that have different

vulnerability (e.g., being more or less elevated compared to a river). A smaller flooding

can be prevented by using simple measures, such as stapling sand bags, but such measures

fail in case of more catastrophic disasters. A high-level disaster might be avoided by larger
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adaptation measures, such as building a dam, however, this takes considerable time (it

cannot be done, once it is clear that a flood will occur).

In the next sections, we analyze the influence of the availability of information regard-

ing the true probability distribution (2) on the optimal timing of the implementation of

adaptation projects.

3 Benchmark case with known probabilities

As a benchmark, we first consider the case where the planner knows both initial prob-

abilities and the rate of their increase. In this case, the problem reduces to a simple

multi-period minimization of expected costs:

min S =
∞∑
T=0

1

(1 + δ)T
(E(D(T )) + C(T )) , (6)

where δ < 1 is the social discount factor, D(T ) denotes total damages on both sites at

period T (which in turn could vary in size and across sites) and ∀T ∈ N : C(T ) =

{C(A), C(m), C(0)} are adaptation costs (which are zero if no action is taken at T ).

Assume for certainty that one site is of the low type (small susceptibility to damage)

and the other of the high type. If no project at any site is implemented in any period,

expected damages are:

SA={0,0} =
∞∑
T=0

1

(1 + δ)T
{ph(T )(DH(h) +DL(h)) + pl(T )(DH(l) +DL(l))} (7)

If the planner implements project A at one of the sites at time 0, it prevents major and

minor damages altogether starting from the next period for both sites:

SA={A,0} = ph(0)(DH(h) +DL(h)) + pl(0)(DH(l) +DL(l)) + C(A), (8)

If the minor project is implemented on both sites, it prevents only minor event at period

1 and

SA={m,m} = 2C(m) + ph(0)(DH(h) +DL(h))+
∞∑
T=1

1

(1 + δ)T
{ph(T )(DH(h) +DL(h)) + pl(T )(DH(l) +DL(l))} . (9)
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Thus, it is always optimal for the social planner to implement project A in the first period,

if the distribution of types is {H,L} (or {H,H}) and the probability of a catastrophic

event is positive from the beginning and increasing in time.

Now assume that both sites have low vulnerability, that is, we have {L,L} as types.

In this case, it is not optimal to implement any project at time 0. But as the probabilities

change, it might be the case that a project (minor or major) becomes optimal later on.

First, consider a minor project. In (2) probabilities changes are monotonic. Thus if it

is better to implement a minor project at any of the sites than doing nothing at time

T = s, it is also better in all subsequent periods T > s. The time at which it starts being

worthwhile to implement a minor project, can be found on the per period basis, as the

minor project has to be renewed every period:

s0,m(i) : C(m) = pl(s0,m)Di(l) (10)

As by assumption the planner knows true probabilities states, the difference equations (2)

may be solved to yield

~p(T ) = ~p(0)(1− ~α)T − ~ρ(1− ~α)T + ~ρ (11)

and the time, when minor project is worth implementing at site i is:

[s∗0,m(i)] =
ln
(
Di(l)ρl−C(m)
Di(l)(ρl−pl(0))

)
ln (1− αl)

, (12)

where ρl, αl are parameters of probability of the low damage event, superscript ∗ denotes

the benchmark case solution and half-bold square bracket means taking the floor (minimal

integer) from the resulting value, since the discrete time setting.

Similarly, a major project A may be delayed, if it does not pay off at period 0. The

time when a major project starts to dominate the implementation of minor projects is

given by1:

sm,A :
1

(1 + δ)s
(C(A) + ph(s)(DH(h) +DL(h)) + pl(s)(DH(l) +DL(l))) =

∞∑
T=s

1

(1 + δ)T
(2C(m) + ph(T )(DH(h) +DL(h))) . (13)

1observe that sm,A is not a function of location i since the planner is indifferent og where to implement

a major project
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There is a unique solution to (13), given by

[s∗m,A] =
ln
(
− (αh+δ)((2Dh ρh+C(A)−2C(m))δ+Dh ρ−2C(m))

(ph(0)−ρh)(αh+2 δ+1)Dh δ

)
ln (1− αh)

, (14)

where Dh = DH(h) +DL(h) and where αh, ρh are the parameters of the probability of the

high damage event.

Finally, we have to assess when doing nothing is dominated by the major project. For

this we compare expected damages from time s onwards:

s0,A :
1

(1 + δ)s
(C(A) + ph(s)(DH(h) +DL(h)) + pl(s)(DH(l) +DL(l))) =

∞∑
T=s

1

(1 + δ)T
(pl(T )(DH(l) +DL(l)) + ph(T )(DH(h) +DL(h))) (15)

As this equation contains both minor and major events probabilities, the time s0,A cannot

be found explicitly. However, for every set of parameters, the time s0,A is well defined by an

implicit function. To fully define the socially optimal program under known probabilities

evolution we need to know the values of s0,A, sm,A, s0,m(i), defined above.

Assume first that all of them are real, positive and finite. Then the plan of actions is

defined by the ordering of these numbers: as soon as, for example, s0,A < s0,m < sm,A,

only the major project is implemented at one of the sites at period s0,A, while if s0,m < s0,A

first the minor measures are implemented starting with period s0,m and the switch to the

major project is done at sm,A which in this case is lower than the s0,A number.

If some of the values are real and negative, this implies the associated policy has to be

implemented starting from period 0 without the delay. As a tie-breaking rule we assume

that if both s0,A, s0,m are negative, the major project is implemented immediately.

Finally, if some of the values are not real, there does not exist the time, starting from

which the given policy is better than the other. If for example, @sm,A : =(sm,A) = 0, there

is no gain in switching from minor project to the major one at any time.

We summarize these observations in the following proposition.

Proposition 1 (Benchmark social planner solution).

Under the full information about the probabilities with which disasters occur, we have:
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1. As long as s∗0,A, s
∗
m,A, s

∗
0,m(i) exist and are nonnegative:

• At time s∗0,m(H) the minor prevention measures start at the higher risk site,

and later, at s∗0,m(L) ≥ s∗0,m(H), at the low risk site;

• If the ordering s∗0,A ≥ s∗m,A ≥ s∗0,m(L) ≥ s∗0,m(H) ≥ 0 holds, then at the times

s∗0,m(i), only minor measures start and the major project is constructed at one

of the sites at time s∗m,A;

• If 0 ≤ s∗0,A < s∗0,m(i), no minor measures are undertaken and at time s∗0,A, a

major project is constructed at one of the sites;

2. If any of the quadruple s∗0,A, s
∗
m,A, s

∗
0,m(i) is real but negative, the associated project

is implemented from period 0. If both s∗0,m(i), s∗0,A are negative, the major project is

implemented from period 0.

3. If any of the quadruple has a non-zero complex part, the associated project is never

implemented.

We thus see that even without any higher-level uncertainty, the introduction of dy-

namically changing probabilities is sufficient to yield rather complex optimal adaptation

strategies. Depending on the rates of increase and stationary values of the probability

vector, it can be optimal to wait with the implementation of a major project, or even to

wait some time, then implement only minor measures at the higher risk site and switch

to the major project even later on.

4 One layer uncertainty: Known initial and final prob-

abilities

As a second step, we assume that the social planner does not know the true current state

of the probability vector, but knows only initial and final probabilities and the structure

of the law that governs the rate of probabilities changes.

This means, parameters ~p(0), ~ρ are known, but ~α is unknown to the planner in (2).

The planner has a distribution of subjective beliefs over the values of ~α from which the
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subjective probability of each event at time T is drawn. Then using (11) the subjective

probability at time T is:

~θ(T ) = ~p(0)(1− ~ξ)T − ~ρ(1− ~ξ)T + ~ρ,

θl(T ) + θh(T ) + θ0(T ) = 1, ~θ(0) = ~p(0), (16)

where ~θ(T ) is the set of subjective probabilities at time T and ~ξ is the planner’s current

set of beliefs upon the value of correction coefficients in the probability law (2).

To complete the model we also need the rule for the update of planner’s beliefs. We

assume that if neither minor nor major events occur before period T , the set of beliefs

remains unchanged. As soon as a major or minor event occurs, this leads to a decrease

in uncertainty over the probabilities increase coefficients ~α.

4.1 Perfect learning case

As the simplest case, we first consider the situation when the arrival of one event of type

{l, h} is sufficient for the planner to learn the true value of the associated ~α2. In this case

the updating rule is particularly simple:

p(ξ = α) = 1, p(ξ = α|{l, h}) = 0, (17)

that is, the initial belief is that the planner knows the true α, but this is updated to the

true value after observation of a single event. In this case, as long as no events occurred,

the policy follows the same scheme as in Proposition 1, but with the times of introduction

of projects being computed according to probabilities ~θ rather than ~p.

As soon as the information arrives (the event happens), the consequent problem is

reduced to the benchmark case above, but starting from the period when the event has

occurred. Provided no actions have been undertaken before this time e, the problem is

fully equivalent to the one from Proposition 1.

We list the timing of projects’ implementation here without derivations as those are

fully equivalent to the benchmark case. The timing of the implementation of the minor

2such form of perfect learning is an oversimplification but is widely used in flood protection literature,

see e. g. van der Pol et al. (2014)
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project at site i is:

[sθ0,m(i)] =
ln
(
Di(l)ρl−C(m)
Di(l)(ρl−pl(0))

)
ln (1− ξl)

(18)

differing from (10) by subjective rate ξl only. The superscript θ denotes timing of projects

under the subjective probabilities ~θ. The switch from minor measures to the major project

is given by:

[sθm,A] =
ln
(
− (ξh+δ)((2Dh ρh+C(A)−2C(m))δ+Dh ρ−2C(m))

(ph(0)−ρh)(ξh+2 δ+1)Dh δ

)
ln (1− ξh)

(19)

and the time of major project implementation without prior minor prevention measures

is given by the equation alike (15) but with ξl,h instead αl,h.

Proposition 2 (Solution with perfect learning).

In the perfect learning case the solution to the social planner’s problem is:

1. As long as no event occurs, the implementation of minor or major projects follows

the scheme from Proposition 1 with subjective values ~θ, ~ξ. Timing rules are denoted

sθj,j;

2. As soon as one of events {l, h} occurs at time e ≥ 0, the policy is switched to the

equivalent of Proposition 1, provided e < sθj,j and timing rules are sej,j = e+ s∗j,j;

3. If the event occurs after major project is implemented, the policy rule is the same

as in 1.;

4. If the event occurs after only one or two minor projects are implemented, the im-

plementation of major project follows the timing rule sem,A = e+ s∗m,A.

4.2 Imperfect learning case

As a contrasting case, we assume that the observation of one catastrophic event is not

enough to achieve the full certainty over the ~α. On the contrary, the planner can never be

sure that her estimate is giving the true vector, but every observation of a catastrophic

event reduces the risk of an estimation error.
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We assume the planner uses the following Bayesian updating mechanics: As soon as

an event arrives, the planner learns the probability of the event at that time, p(e), but

not the rate of change of the probability, α. Then the subjective probability evolution

will always be different from the true one, no matter how much events will arrive, but

with every event it comes closer to the true one. The concept is illustrated by Figure 1.

Figure 1: Convergence of subjective probabilities to the true one

To obtain a solution of this decision problem, we start at the point of Proposition

2: as soon as no event occurs, the implementation follows the same scheme as under

perfect learning with subjective probabilities ~θ. As soon as one of the events occurs, the

probability rule is updated, and error costs go down. In contrast to the perfect learning

case, there is an option to wait until the next event to gain more information. Still

qualitatively the solution and timing rules are similar to the perfect learning case.

In particular, if k is the number of events observed before the implementation and

Tk is the period when the last of catastrophic events has been observed, the subjective
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probability vector is given by

~θk(T ) = ~p(Tk)(1− ~ξ)T−Tk − ~ρ(1− ~ξ)T−Tk + ~ρ (20)

and timing rules are obtained in the same way as before. We denote them by sθkj,j.

Proposition 3 (Solution with imperfect learning).

In case the planner is able to update his/her beliefs at every catastrophic event, the fol-

lowing timing rules of projects implementation hold:

1. As long as no event (major or minor) occurs, the timing is given by sθj,j;

2. As soon as any number of events occur before the implementation, the timing is

updated to sθkj,j after time Tk. As long as sθj,j > T1, it follows that sθkj,j < sθj,j.

Thus the inclusion of one-parameter uncertainty regarding the probabilities of disasters

into the baseline model does not change the results qualitatively.

5 Two-layered uncertainty

So far, we have used simple types of uncertainty, where the social planner still has sub-

stantial knowledge regarding the likelihood of disasters and how it changes over time, due

to climate change. In these cases, learning has only limited value.

In this section, we consider more sophisticated cases, where the social planner has to

learn the probabilities to a substantial extent from observing disasters. Given that climate

change alters the distribution of extreme events, this is a plausible scenario, as old (pre-

climate change) knowledge regarding the likelihood of disasters becomes unreliable.

5.1 Bayesian updating with unique static distribution of prob-

abilities

First assume that the social planner does not know the probability distribution of ph, pl, p0

but believes that it is static. This is a plausible future scenario, where some climate change
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has occurred, altering the likelihood of catastrophic events, but these impacts have been

stabilized by mitigation measures.

In this case, the Bayesian updating rule with the use of conjugate prior can be described

by the categorical distribution Cat(k, ~p) (generalized Bernoulli distribution for k possible

outcomes):

f(x = i|p) = pi,

k∑
i=1

pi = 1. (21)

Using more compact notation, the probability mass function is

f(x|p) =
k∏
i=1

p
[x=i]
i , (22)

where [x = i] is the Iverson bracket evaluating to 1 if x = i and 0 otherwise. The

conjugate prior distribution for the categorical one is the Dirichlet distribution Dir(k, ~β)

with probability mass defined as:

f(xi, βi) =
1

B(~β)

k∏
i=1

xβi−1i , (23)

where B(~β) is the normalizing constant given by the mutlinomial Beta-function:

B(~β) =

∏k
i=1 Γ(βi)

Γ(
∑k

i=1 βi)
, Γ(n) = (n− 1)! . (24)

The Bayesian updating rule for probabilities vector θ is

p(θ|X, ~β) =
p(X|θ)p(θ|~β)

p(X|~β)
, (25)

with p(x) given by categorical distribution Cat(k, ~p) (22), p(θ|~β), the prior distribution,

given by our conjugate prior Dir(k, ~β) in (23), p(X|θ) being the likelihood function, defined

by the choice of the prior distribution and p(X|~β) being the marginal likelihood function

given by the Dirichlet-multinomial distribution

p(X|~β) =
Γ(
∑k

i=1 βi)

Γ(N +
∑k

i=1 βi)

k∏
i=1

Γ(ci + βi)

Γ(βi)
. (26)
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This choice of a prior distribution yields particularly simple posterior predictive proba-

bilities of the form:

p(x̃ = i|X, ~β) =
ci + βi

N +
∑k

i=1 βi
(27)

In our case, we have k = 3, as only 3 outcomes are possible. The prior probability vector

is

~p =


pBh

pBl

pB0

 , and pBh + pBl + pB0 = 1. (28)

The observations sample is updated every period depending on how many events have been

observed so far. We denote the number of events observed up to time T as #h
T ,#

l
T ,#

0
T :

#h
T+#l

T+#0
T = T for high, low and no event types respectively. The predictive probability

at period T :

~pB(T + 1) =


#h

T+βh(0)

T+
∑3

i=1 βi(0)
#l

T+βl(0)

T+
∑3

i=1 βi(0)
#0

T+β0(0)

T+
∑3

i=1 βi(0)

 . (29)

The update of hyperparameters value is:

~β(T ) =


βh(T − 1) + [x = h]

βl(T − 1) + [x = l]

β0(T − 1) + [x = 0]

 , (30)

where we again use the Iverson bracket notation.

Note that hyperparameters ~β are estimations of probabilities of events at time T (up

to a normalization), dependant on the sampled data.

The vector ~β(0) represents the prior estimation of occurrences of all types of events. In

our case, this can be set with usage of knowledge of previous occurrences of catastrophic

events and not just in a uniform way, as in the usual procedure. Observe also, that the

vector (29) gives the predictive probability for the next period only, while the probability

to observe exactly n events in the category k till time T is given by a more complicated

multinomial law.
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Now we can calculate the optimal timing of implementation under Bayesian updating

with a single static prior. For that, we use the same concept of expected loss minimization

as before. The subjective probabilities of a social planner are different, depending on how

much events have been observed. Thus we can estimate the optimal time to construct the

project (minor or major).

For a minor project (to be renewed every period), the question is: what is the threshold

value of subjective probability of a minor event that makes the implementation of a minor

project at site i optimal? The answer is simple (using relationship (10)):

p̂Bl =
C(m)

Di(l)
=⇒ sB0,m(i) = f(p̂Bl ) (31)

We do not explicitly derive the timing as a function of probability estimate, since it

is of the very same form as in (12) and (18). However, under Bayesian updating, the

probabilities are no longer monotonic and thus it cannot be stated that once it is optimal

to implement project m at site i at time s, it is always optimal onwards.

The decision rule for the social planner under Bayesian updating is the following.

Given the observed frequency of events up to time T , the planner chooses one of five

possible actions {0,m(1),m(2),m(1)m(2), A} in the following manner:

• As soon as the observed frequency of minor event at time T exceeds

#l(T ) ≥ (T +
3∑
i=1

βi(0))
Di(l)

C(m)
− βl(0), (32)

the minor project is implemented at site i.

• As soon as (32) holds and the observed frequency of the major event at time T

exceeds

#h(T ) ≥

DL(l)
(
(C(A)δ − C(m))(T +

∑3
i=1 βi(0))− βh(0)(DL(h) +DH(h))

)
DL(l)(DL(h) +DH(h))

−

DH(l)C(m)(T +
∑3

i=1 βi(0))

DL(l)(DL(h) +DH(h))
, (33)

the major project A is implemented at one of the sites.
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• If both (32) and (33) do not hold, the planner chooses to wait at least one more

period and repeats the procedure in T + 1.

5.2 Bayesian updating with competing scenarios

We now modify the above approach to allow the planner to have several competing sce-

narios over the true state of nature. However, we still assume that each of these scenarios

is static.

We assume that the planner believes that observations of disasters could result from

several different distributions and does not know which of these distributions is correct.

Over time, observations will show which of the distributions is the most likely one; how-

ever, waiting for this knowledge could cause substantial costs.

In our model, we assume each event may have both low and high probabilities (this

can be easily extended to any finite number of priors):

XT
H0∼Cat(p0, k), XT

H1∼Cat(p1, k). (34)

As a prior distribution of beliefs, we assume an uninformed social planner, that is, both

hypotheses have the same probability, P (Hi) = 1/2. After observing an event type

{0, l, h}, those probabilities are updated according to the Bayes rule:

P (Hi|XT ) =
piP (Hi|XT−1)∑N
i=0 p

iP (Hi|XT1)
, (35)

with N being the number of hypotheses tested.

Depending on the sequence of realized events before T , the likelihood of one or another

scenario increases. The exact values can be defined by event trees. We condense this with

the following notation:

PT (Hi|#h(T ),#l(T ),#0(T )) =
(pih)

#h(T ) (pil)
#l(T ) (pi0)

#0(T ) P0(Hi)∑N
i=0 (pih)

#h(T ) (pil)
#l(T ) (pi0)

#0(T ) P0(Hi)
, (36)

with N denoting the number of hypotheses (scenarios) over the true probabilities of events.

In the limit, it is possible to define the continuous set of such scenarios for all possible

probabilities’ values from 0 to 1.
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At each period the social planner thus observes the event and modifies her believes

in each of the scenarios. The expected social losses at time s are then given by a linear

combination of losses under different scenarios with weights associated with probabilities

of hypotheses:

S(H0, H1, .., HN)
def
=

N∑
i=0

Ps(Hi)S(~pi), (37)

where the weight of each scenario is computed via (36).

The predictive probability of the catastrophic event in this case depends on the weights

assigned to different hypotheses and always lies in between the extreme values, giving for

predictive probability of event k

p̂Sk ∈ [min
i∈N
{pik},max

i∈N
{pik}]. (38)

The efficiency of this decision rule is fully defined by the initial choice of probabilities

of events in competing scenarios. As long as these are sufficiently diverse, the scenario-

based decision rule would cover the probabilities estimates provided by Bayesian updating

above. However the speed of convergence of the estimate will be different.

To illustrate this, consider a numerical example. Assume there are only two competing

scenarios. We set the initial data as given in Table 1.

Probability Hypotheses 0 Hypotheses 1 Hypotheses A

ph 0.001 0.01 0.6

pl 0.1 0.05 0.05

p0 0.899 0.94 0.35

Table 1: Probabilities of events for competing scenarios

In the setting H0, H1, both scenarios are rather close in the chosen probability vectors,

while choosing scenarios H0, HA gives rather diverse setup. We can also use all three

scenarios simultaneously.

Figure 2 shows that the more diverse scenarios are taken into account, the more

dynamic predictive probabilities can be. At the same time, there is only marginal value in

16



(a) Hypotheses 0&1 at T=10 (b) Hypotheses 0&A at T=10 (c) Hypotheses 0,1,A at T=10

Figure 2: Probabilities of high (red) and low (blue) events as functions of number of

events (n1, n2) at T = 10

adding more scenarios. Consider the example where the additional scenarios are assigned

probabilities in between the maximal and minimal values. In this case, the additional

scenario will smooth the probabilities estimates and each next additional scenario will do

so to a lesser extent. Figure 3 illustrates the concept for the transition from 2 to 3 and

to 4 scenarios.

Formally the information gain from an additional scenario can be expressed in terms

of prior probabilities assumed under existing scenarios. This can be positive or negative

depending on the position of the new scenario within the existing spectrum. However

the changes in resulting predictive probabilities follow the diminishing return: each next

scenario adds a smaller learning boost to the predictive probabilities than all preceding

ones, as this change is a linear combination of differences with existing scenarios.

Now consider the comparison with the unique Bayesian updating from Subsec. 5.1.

Assume the initial prior probabilities for Bayesian update are set at the low level of

H0. The Table 2 gives predictive probabilities after 10 periods with different number of

observed minor and major events.

From this table, we can see that the predictive probability under scenarios quickly

converges to one of the scenarios, but cannot (by construction) exceed that level. Under
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(a) Scenarios 0&1 at T=10 (b) Scenarios 1&2 at T=10 (c) Scenarios 0&1&2 at T=10

Figure 3: ph under 2 (blue), 3 (red) and 4 (green) competing scenarios at T = 10

#h(10) #l(10) {p̂h, p̂l, p̂0} under Bayes {p̂h, p̂l, p̂0} under H0, H1 {p̂h, p̂l, p̂0} under H0, HA

1 1 {0.091, 0.1, 0.809} {0.008, 0.056, 0.934} {0.082, 0.093, 0.824}
2 2 {0.182, 0.19, 0.627} {0.009, 0.051, 0.938} {0.598, 0.05, 0.351}
3 3 {0.273, 0.282, 0.445} {0.01, 0.05, 0.94} {0.599, 0.05, 0.35}
1 4 {0.091, 0.373, 0.536} {0.005, 0.08, 0.915} {0.15, 0.087, 0.761}
4 1 {0.364, 0.1, 0.536} {0.01, 0.05, 0.94} {0.599, 0.05, 0.35}

Table 2: Predictive probabilities at T=10

Bayesian updating the probability is updated faster, but at the cost of a higher risk of

overestimation.

This numerical example illustrates that, for given observed events up to time T , the

procedure of Subsec. 5.1 yields a more dynamic update of the probabilities. This is not

particular to this example, but a general feature of the procedure.

To see this, note that the scenario-based updating rule yields probability estimates

that cannot possibly exceed the extremes set by the prior beliefs regarding the scenarios.

In contrast, the Bayesian updating procedure is not limiting the posteriori predictions

by initial beliefs. However, if the set of scenarios is rich enough (as in the example of

H0, HA), the scenario procedure can induce higher estimates of disaster probabilities.
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As the decision on implementation of both projects is based on the threshold levels

of probabilities, the usual Bayesian updating can thus result in a faster or a slower im-

plementation of a project, depending on the diversity of scenarios included into the (35)

decision rule. Denote the difference in priors for scenario rule by the vector ∆:

~∆
def
= max

i,j∈S


pih − p

j
h

pil − p
j
l

pi0 − p
j
0

 , (39)

with S being the set of included scenarios. The speed of the probability updates in the

scenario rule depends on the level of this ∆ in the following way:

p̂Sk (T + 1)− p̂Sk (T ) =
N∑
i=1

pik(0)
(
P i
T+1(∆)− P i

T (∆)
)
, (40)

where P i
T (∆) is the weight (probability) of scenario i at T , given by (35).

In contrast, the speed of probability updates in the unique Bayes rule does not depend

on ∆, but only on number of observed events:

p̂Bk (T + 1)− p̂Bk (T ) =
(T + 1)#k(T + 1)− (T + 2)#k(T )− pk(0)

(T + 1)(T + 2)
(41)

Comparing (40) and (41) yields the following result:

Proposition 4. For any N ≤ ∞ there exist an increasing sequence of ∆s such that:

1. For ∆ < ∆1, the Bayesian procedure (29) yields a faster update of the predictive

probabilities with regard to the number of observed events;

2. For ∆2 > ∆ > ∆1, the scenario-based rule (35) yields a faster update of probabilities;

3. For each next ∆s+1 > ∆ > ∆s, the relationship reverts in sign

The sequence ∆s is finite and is given by the roots of the equation

p̂Sk (T + 1)− p̂Sk (T ) = p̂Bk (T + 1)− p̂Bk (T ). (42)
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Proof. First observe that the equation (42) is a polynomial in ∆ and contains only powers

T,#k(T ) that are natural numbers. Thus it has finitely many real roots.

Ordering these (real-valued) roots in an increasing sequence yields ∆s. Comparing

(40) with (41) for every difference in scenarios’ priors shows that, for a small diversity of

scenarios, the update is faster under the unique Bayes rule. By the property of polynomial

roots, it changes its sign at every interval between roots, hence claims 2. and 3. follow.

This Proposition tells us that there is no single optimal choice of the diversity of initial

priors and quantity of scenarios. Rather, there always exist a range of initial beliefs, where

unique Bayes rule yields faster update and vice versa.

As an illustration, consider the case of two scenarios with initial priors as of H0 above

and HA with ∆ = δ being the difference in initial probability of high type event. Figure

4 illustrates two threshold lines, δ1, δ2 such that the probabilities update is faster under

Baeysian rule for δ < δ1 and δ > δ2.

Figure 4: Thresholds of initial priors difference for two scenarios

At some number of observed major events, those two threshold coincide, yielding faster

updating for the unique Bayes rule after this number of observations.

5.3 Two-layers Bayesian updating

Finally, we assume that the social planner uses the information about events both to

update her belief in scenarios H0, H1 and to update the estimated probability vectors.
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This leads to a combination of the decision rules defined in two previous subsection and

is done rather easily. At some point probabilities under both priors would converge to

a single vector, and the scenario which describes this vector is chosen as a governing

one, yielding the scenario of Subsec. 5.1. We are interested in how much better the

social planner performs with this more complex updating structure versus the simple one

described above.

The updating procedure now is described by the Dirichlet mixture of priors3. In what

follows, we closely follow the approach of Ye et al. (2011) and related papers:

PT (Hi|#h(T ),#l(T ),#0(T )) =

(pih(T ))
#h(T ) (pil(T ))

#l(T ) (pi0(T ))
#0(T ) P0(Hi)∑N

i=1 (pih(T ))
#h(T ) (pil(T ))

#l(T ) (pi0(T ))
#0(T ) P0(Hi)

, (43)

with

pij(T ) =
#j
T + pij(0)

T + 1
. (44)

The predictive probability (taking major event for certainty):

p̂Dh (T ) = PT (H0)p̂
0
h(T ) + PT (H1)p̂

1
h(T ) =

(p0h(T ))
#h(T )+1

(p0l (T ))
#l(T ) (p00(T ))

#0(T ) P0(H0)

(p0h(T ))
#h(T ) (p0l (T ))

#l(T ) (p00(T ))
#0(T ) P0(H0) + (p1h(T ))

#h(T ) (p1l (T ))
#l(T ) (p10(T ))

#0(T ) P0(H1)
+

(p1h(T ))
#h(T )+1

(p1l (T ))
#l(T ) (p10(T ))

#0(T ) P0(H1)

(p0h(T ))
#h(T ) (p0l (T ))

#l(T ) (p00(T ))
#0(T ) P0(H0) + (p1h(T ))

#h(T ) (p1l (T ))
#l(T ) (p10(T ))

#0(T ) P0(H1)

(45)

where superscript D denotes Dirichlet mixture computation procedure.

The number of events, necessary to make major project implementation under the

more complicated rule is (for the case of N = 2):

#h(T ) ≥ PT (H0)#
0
h(T ) + PT (H1)#

1
h(T ), (46)

3Dirichlet mixtures is the tool extensively used in Mathematical Biology and related areas. Some

overview may be found in Marin and Robert (2007)
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where superscripts 0, 1 indicate the threshold number of major events observed that is

necessary for a major project implementation under scenarios 0, 1. As the sum of proba-

bilities of both scenarios cannot exceed one, the threshold probability giving the decision

to implement a project is always a linear combination of probabilities under the two

different priors.

The changes in predictive probabilities over time:

p̂Dh (T + 1)− p̂Dh (T ) =
(
PT+1(H0)p̂

0
h(T + 1)− PT (H0)p̂

0
h(T )

)
+
(
PT+1(H1)p̂

1
h(T + 1)− PT (H1)p̂

1
h(T )

)
(47)

combine changes due to unique Bayes updating, (29) and scenario-based rule, (35).

It thus follows that the speed of such an update lies in between the two previous

rules. In particular, it comes closer to unique Bayes updating, once this is changing faster

than the scenario procedure and vice versa. This Dirichlet mixture procedure thus helps

to improve upon the shortcomings of both previous procedures: it allows for predictive

probabilities to change over time without scenario spectrum limitations, and at the same

time it allows for the diversity of priors.

In case of close initial priors (small ∆) this procedure grants faster probabilities update,

since initial priors do not play that much role as in the scenario-based rule. In case of

extremely diverse priors (high ∆ value) it yields more conservative estimate, since weights

of scenarios are not updated that fast, and approaches unique Bayes updating. We thus

observe:

Corollary 1. The Dirichlet mixture procedure defined by (43) grants predictive proba-

bilities convergence speed in between the unique Bayes rule (29) and scenario-based rule

(35):

p̂Dk (T + 1)− p̂Dk (T ) ∈ [p̂Sk (T + 1)− p̂Sk (T ), p̂Bk (T + 1)− p̂Bk (T )] (48)

In particular, it holds for any ∆s in the sequence defined by Prop. 4:

1. For ∆ > ∆s : p̂Sk (T + 1)− p̂Sk (T ) > p̂Dk (T + 1)− p̂Dk (T )→ p̂Bk (T + 1)− p̂Bk (T )

2. For ∆ < ∆s : p̂Bk (T + 1)− p̂Bk (T ) > p̂Dk (T + 1)− p̂Dk (T )→ p̂Sk (T + 1)− p̂Sk (T )
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Proof. The first claim follows from the comparison of (40), (41) and (47): the latter

combines changes of the former two and thus lies in between them.

Two other claims follows from Prop. 4: once an increasing sequence of ∆s exists,

it always holds either 1. or 2. The equivalent to (42) for Dirichlet mixture is again a

polynomial equation with finitely many real roots which lie within intervals of changes of

the polynomial (42).

This last result demonstrates that once the planner is faced with a two-layered uncer-

tainty, there is no need to choose either unique but dynamically updating belief or the

set of pre-defined scenarios. In fact the planner may combine the two at relatively small

additional computational costs.

Once we assume risk-neutral authority, it follows that the Dirichlet procedure would

be expected welfare-improving over both unique Bayes and scenario rule, since it pro-

vides ample flexibility to account for arbitrary number of dynamically changing scenarios.

However, once the costs of research are taken into account, it might be the case that

the simplest Bayes rule (29) may be preferred. We postpone this discussion to future

extensions of the model.

5.4 Value of climate research

By this we denote the gain in reduction of damages achieved by the change in the prior

probability distributions. Assume the additional climate research may yield better esti-

mates of planner’s priors ~β in unique updating case first. Assume this research costs ν

for each step in the direction of “true” values. The distance from subjective prior to the

true state may be defined as

D =
|~β(0)− ~p(0)|
|~β(0)|

(49)

then the cost of climate research might be given by νD and the benefits are given by the

change in timing from (32), (33) resulting from the update of priors.

The ultimate problem is, that within the Bayesian framework there is no true proba-

bility, so one cannot define ~p(0) other than as the long-run resulting estimate. This last
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is given by

p∞i =
#i
T

T
(50)

with T →∞ and i denoting the type of event. Given the categorical nature of the event

at hand, this long-run estimate need not to be constant and is updated every period in a

non-monotonic fashion, but with lower increments.

If the initial prior is chosen at exactly this value, no new information may be gained

from observing future events. However, there is no way for the planner to know, whether

the chosen prior is close to this value or not, since the long-run probability estimate

is defined by future events. Still, if the prior is close to this estimate, the changes in

probabilities from period to period will be small, indicating that new information has less

value.

To see that, insert as a prior into (29) the vector (50). This will immediately yield the

predictive probabilities

~p∞(T + 1) =


#h

T

T
#l

T

T
#0

T

T

 (51)

valid for any T , and this prediction cannot be further improved. Still, probabilities will

change every period, since the number of observed events will change. The change in priors

monotonically and linearly affects the resulting predictive probabilities, as the Figure 5

illustrates for the case of probability of major catastrophic event.

We thus infer that to reach the same probability level as given by the long-run es-

timate (50), the planner has to overestimate the probability of a catastrophic event. In

case of underestimation the long-run predictive estimate cannot be achieved at all. In

both other cases there is exactly one point, when the predictive probability based on

subjective prior crosses the long-run estimate and diverges from it afterwards. Looking

at Eqs. (32),(33) we can easily conclude that the more pessimistic is the initial prior, the

lower number of observed events are required to implement the project (major or minor)

resulting in sooner implementation time. Overly pessimistic prior may even result in im-

mediate implementation. In this case the planner runs a risk of implementing too soon,
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Figure 5: The effect of change in priors on unique Bayesian updates

since the prior probability estimate may decrease with time, rendering the immediate

implementation suboptimal.

We conclude that additional climate research has the more value, the more extreme

(optimistic or pessimistic) is the initial prior belief of the planner.

Observe that the same line of reasoning holds for any Bayesian updating rule from

those discussed above. The value of climate research is the same for even the most

complicated updating rule and is given by the difference between solid and dotted lines

on the Figure 5 times expected damages both for minor and major events. As it was

mentioned, the competing scenarios rule diversifies risks, putting weight to different levels

of optimism, but the convergence of predictive probabilities to the long-run estimate (50)

is slower, than for unique Bayesian updating. Thus the prior climate research may be seen

as a substitute to more complicated updating rules, and the choice of which procedure

to follow would depend on the comparison of climate research costs and costs of wrong

decision (soon or late) upon implementation.

Corollary 2. The value of additional climate research is the greater, the further is initial

prior form the long-run estimate given by (50). If time preferences of the planner are such
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that δ << 1, the updating rule with diversified scenarios is preferable. If, on the other

hand, δ → 1, the unique updating rule with additional climate research is preferable.

5.5 Value of information

At last we concentrate on the question of irreversibility. The minor project has to be

renewed every period, so as soon as the threshold predictive probability (31) is reached,

the minor project is implemented under any Bayesian rule. However the decision to

implement major project is irreversible. At the same time under Bayesian updating it is

no longer the case that probabilities estimates are always increasing. It thus could be the

case that once the threshold probability for major project is reached at T , it decreases

below that level at T + 1 making the decision to implement project A at T suboptimal.

To study this situation we employ the Arrow-Fisher-Henry-Hanemann (AFHH) quasi-

option approach, which measures the value of new potential information in irreversible

setting. By definition the quasi-option value is the difference in value of an action given

prior and posterior predictive probabilities. In the original simple setting this would mean

the difference

E(minSA,0)−minE(SA,0) > 0 (52)

and this is always positive. However in Bayesian setting the new information consists not

in the learning the state of nature, but in the update of probabilities’ values over periods.

In the model with Bayesian updating described throughout this section there are

exactly three possible events at each period T . Thus the posterior predictive probability

of a major event may have one of two values. For the case of unique Bayesian updating

(29) it is given by:

p̂h(T + 1) =


βh(0)+#h

T∑3
i=1 βi(0)+1+T

, [x 6= h];

βh(0)+#h
T+1∑3

i=1 βi(0)+1+T
, [x = h]

(53)

26



The probability of high type event predicted at period T is given by p̂h(T ) in (29). Thus

the expected change of predictive probability is

p̂h(T + 1)− p̂h(T ) =

−
βh(0)+#h

T

(
∑3

i=1 βi(0)+T )(
∑3

i=1 βi(0)+1+T )
, [x 6= h];∑3

i=1 βi(0)+T−βh(0)−#h
T

(
∑3

i=1 βi(0)+T )(
∑3

i=1 βi(0)+1+T )
, [x = h]

(54)

The value of new information in period T + 1 given no project is implemented in period

T is:

V AFHH(T ) = ET
(
SA={A,0}(T + 1)|~̂p(T )

)
− ET

(
SA={A,0}(T + 1)|~̂p(T + 1)

)
(55)

since S measures expected costs rather than value. There are three possible events arriving

at T + 1 and changing predictive probabilities in a way described by (53), thus there are

three possible values of V AFHH(T ).

Given the expression (8) it is straightforward to compute:

ET
(
SA={A,0}(T + 1)|~̂p(T )

)
− ET

(
SA={A,0}(T + 1)|~̂p(T + 1)

)
=

1

1 + δ
(p̂h(T )(DH(h) +DL(h)) + p̂l(T )(DH(l) +DL(l)) + C(A))−

1

1 + δ
(p̂h(T + 1)(DH(h) +DL(h)) + p̂l(T + 1)(DH(l) +DL(l)) + C(A)) =

1

1 + δ
((DH(h) +DL(h))(p̂h(T )− p̂h(T + 1)) + (DH(l) +DL(l))(p̂l(T )− p̂l(T + 1)))

(56)
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However values of posterior predictive probabilities are different given which of the events

0, l, h realize from T to T + 1. Thus we arrive to three different values:

ET
(
SA={A,0}(T + 1)|~̂p(T )

)
− ET

(
SA={A,0}(T + 1)|~̂p(T + 1)

)
ET+1=h

=

1

1 + δ
(DH(h) +DL(h))

βh(0) + #h
T −

∑3
i=1 βi(0)− T

(
∑3

i=1 βi(0) + T )(
∑3

i=1 βi(0) + 1 + T )
+

1

1 + δ
(DH(l) +DL(l))

βl(0) + #l
T

(
∑3

i=1 βi(0) + T )(
∑3

i=1 βi(0) + 1 + T )
(57a)

ET
(
SA={A,0}(T + 1)|~̂p(T )

)
− ET

(
SA={A,0}(T + 1)|~̂p(T + 1)

)
ET+1=l

=

1

1 + δ
(DH(h) +DL(h))

βh(0) + #h
T

(
∑3

i=1 βi(0) + T )(
∑3

i=1 βi(0) + 1 + T )
+

1

1 + δ
(DH(l) +DL(l))

βl(0) + #l
T −

∑3
i=1 βi(0)− T

(
∑3

i=1 βi(0) + T )(
∑3

i=1 βi(0) + 1 + T )
(57b)

ET
(
SA={A,0}(T + 1)|~̂p(T )

)
− ET

(
SA={A,0}(T + 1)|~̂p(T + 1)

)
ET+1=0

=

1

1 + δ
(DH(h) +DL(h))

βh(0) + #h
T

(
∑3

i=1 βi(0) + T )(
∑3

i=1 βi(0) + 1 + T )
+

1

1 + δ
(DH(l) +DL(l))

βl(0) + #l
T

(
∑3

i=1 βi(0) + T )(
∑3

i=1 βi(0) + 1 + T )
(57c)

The probability of each of the outcomes estimated at period T is given by ~̂p(T ),

so the expected V AFHH(T ) value is strictly zero since the linearity of damage function

functional S. This comes with no surprise, since Bayesian updating rule uses all available

information at any T , and AFHH value of waiting one more period amounts to some

update of probability vector. Thus if the decision upon implementation of A is optimal

at T , it is not optimal to wait longer.

The value to postpone investments into major project till next period is positive only

if no major nor minor event occurs at T , since this drives predictive probabilities of catas-

trophic events down. Otherwise the postponement value is negative: if the probability p̂h

reaches a threshold level at T , the observation of one more event will drive this probability

up, increasing the value of investing in project A at T rather than at T + 1.

Now take into account the expected costs of information update and the reduction in

costs of the project, p̂h(T )(DH(h)+DL(h))+p̂l(T )(DH(l)+DL(hl))−C(A) δ
1+δ

. This gives
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together with Arrow-Fisher value the total postponement value, as defined in Mensink

and Requate (2005). As soon as the threshold probability is reached the last expression

is zero (it is optimal to invest now). Thus we conclude that the irreversibility of project

A does not increase the time of learning per se. This does not mean the immediate

implementation is optimal, since certain number of events have to be observed for the

probability to reach the threshold value. At last observe that the same procedure as above

is valid for scenarios-based updating and two-layers updating, but with more complicated

derivations. We thus conclude with the proposition:

Proposition 5 (Effect of irreversibility of major project).

Under Bayesian updating procedures (29), (36), (43) the Arrow-Fisher quasi-option value

implies the following:

1. As long as the planner is risk-neutral the irreversibility of a project is included into

Bayesian estimates.

2. As soon as there is some degree of risk-aversion, the threshold probability decreases

because of potential risks.

3. At the threshold level the expected costs of updating the information are exceeding

the potential benefits even if no catastrophic event is expected in the near future.

The total postponement value is zero once the threshold probability is reached and positive

before that.

So we have demonstrated that optimal management under Bayesian updating rules

includes the value of irreversibility. Observe that this is not the case with one layer

uncertainty described in Sec.4.

6 Conclusion

In this paper, we have advanced and studied a simple model of adaptation to catas-

trophic events under uncertainty regarding the impact of climate change on the proba-

bility of these events. In particular, we have investigated different assumptions regarding

29



the uncertainty of the impacts of climate change; do we know how fast probabilities of

catastrophic events change, to which value they will adjust, or do we have to learn which

of a set of climate impact scenarios is the true one by observing impacts.

Our model is inspired by the case of flood protection, where climate change is likely to

require substantial adaptation measures. However, the general setup can be transferred

easily to other cases of climate change impacts.

In the benchmark case of our model, where the social planner knows the true prob-

abilities and their evolution, there is an optimal (and usually non-zero) delay for major

adaptation projects, that is, it is usually optimal to wait for some time (depending on the

rate of probabilities’ increase) before starting with major adaptation measures.

If we allow for some uncertainty over the climate change probabilities, the outcome

is not so clear. Under the perfect and imperfect learning described in Sec. 4, the timing

of both minor and major projects can be defined in the same way as for the benchmark

case. Depending on the initial beliefs of the planner over the evolution of nature, ex-post

social damages may be higher or lower than in the benchmark case. Our results imply

that (in this sense) it is optimal for the planner to err on the pessimistic scenario, as this

involves a lower risk of investing too late (i.e., after the major catastrophic event already

happened).

Finally, we investigated the optimal decision rule of the social planner for two-layered

uncertainty. Under this assumption, the planner does not know at all the true probability

and cannot learn it. The key factor determining the timing of projects is thus the number

of events that have to be observed before adaptation becomes optimal. We demonstrate,

that using a unique prior is not the optimal decision rule for the planner, and work out

the procedure which combines initial priors of several scenarios and active learning over

weights of each scenario and priors updating.

Altogether, our analysis shows that under the (realistic) assumption that climate

change impacts cannot be foreseen with certainty, adaptation is a rather complex prob-

lem. In particular, the way how we handle climate change uncertainty has a substantial

impact on optimal abatement strategies. Should we account for different scenarios, as the

IPCC does, and strive to learn which of these scenarios holds true? Or should we rather
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assume that there is a single probability of climate impacts, which we can pin down more

exactly over time? The results of this paper suggest that each of these approaches leads

to different optimal adaptation strategies, as they imply different speeds of learning and

different propensities to invest too early or too late.
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