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Bone regeneration is a complex process requiring highly orchestrated interactions 
between different cells and signals to form new mineralized tissue. Blood vessels serve 
as a structural template, around which bone development takes place, and also bring 
together the key elements for bone homeostasis into the osteogenic microenvironment, 
including minerals, growth factors and osteogenic progenitor cells. Vascular endothelial 
growth factor (VEGF) is the master regulator of vascular growth and it is required for 
effective coupling of angiogenesis and osteogenesis during both skeletal development 
and postnatal bone repair. Here, we will review the current state of knowledge on the 
molecular cross-talk between angiogenesis and osteogenesis. In particular, we will focus 
on the role of VEGF in coupling these two processes and how VEGF dose can control 
the outcome, addressing in particular: (1) the direct influence of VEGF on osteogenic 
differentiation of mesenchymal progenitors; (2) the angiocrine functions of endothelium 
to regulate osteoprogenitors; (3) the role of immune cells, e.g., myeloid cells and osteo-
clast precursors, recruited by VEGF to the osteogenic microenvironment. Finally, we will 
discuss emerging strategies, based on the current biological understanding, to ensure 
rapid vascularization and efficient bone formation in regenerative medicine.

Keywords: angiogenesis, bone and bones, vascular endothelial growth factor, biomaterials, regenerative medicine, 
bone tissue engineering

inTRODUCTiOn

Bone regeneration entails a complex series of biological events, with the interplay of different cell 
types and the orchestration of several intracellular and extracellular signaling pathways. Bone health 
requires vascular control since blood vessels are key regulators for bone homeostasis, both providing 
nutrients and minerals and serving as structural templates for bone development (Hankenson et al., 
2011). In the bone marrow, the vasculature also provides a niche environment for hematopoietic 
stem cells (HSCs), regulating their quiescence and mobilization. HSC and progenitors have been 
found in the proximity of small arterioles and specialized sinusoids (Kunisaki et al., 2013), where 
different cell types, including endothelial cells, perycites, stromal progenitors and sympathetic 
neuronal cells, contribute to the maintenance of HSC self-renewal [for a comprehensive recent 
review, see Morrison and Scadden (2014)]. In addition to these well-known functions, blood vessels 
have been recently ascribed a so-called angiocrine function, i.e., providing paracrine signals that 
coordinate growth, differentiation, and regeneration of different tissues, including bone, where they 
can promote osteogenesis (Ramasamy et al., 2016). Therefore, angiogenesis and vascular cells can 
affect biological processes in the bone/marrow organ at several different levels.
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FigURe 1 | Coupling of angiogenesis and osteogenesis during intramembranous ossification. (A) Physiological levels of vascular endothelial growth factor (VEGF) 
maintain bone homeostasis, whereas too little VEGF interrupts osteoblast differentiation and too much VEGF increases osteoclast recruitment, leading to bone 
resorption. (B) During bone repair, VEGF is produced by osteoblasts and promotes migration and proliferation of endothelial cells. In turn, endothelial cells secrete 
osteogenic factors, like bone morphogenetic protein (BMP)-2 and BMP-4, which support osteoblast differentiation. (C) VEGF dose dependently regulates Sema3A 
expression in endothelial cells and Sema3A from different sources suppresses osteoclast differentiation and stimulates bone deposition. (D) Sema3A is also 
responsible for the recruitment of neuropilin 1-expressing (Nrp1+) monocytes, which promote vessel stabilization.
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Vascular endothelial growth factor-A (VEGF) A is one of the 
most important regulators of angiogenesis and it is critical for 
both bone development and regeneration. In these processes 
VEGF has a dual role, acting both on endothelial cells to promote 
their migration and proliferation, and stimulating osteogenesis 
through the regulation of osteogenic growth factors (Schipani 
et al., 2009). VEGF is required for endochondral bone formation, 
where it promotes vessel invasion and recruitment of chondro-
clasts into hypertrophic cartilage, enabling the replacement of 
the cartilaginous template by bony callus (Gerber et  al., 1999; 
Carlevaro et al., 2000; Hu and Olsen, 2016a), but also for intram-
embranous ossification (Street et al., 2002; Carvalho et al., 2004; 
Wan et al., 2008; Percival and Richtsmeier, 2013). Angiogenesis 
and osteogenesis are, therefore, intimately connected and they 
must be tightly coupled for physiological bone function. In fact, 
alterations in vascular growth can compromise physiological 
bone healing, e.g., leading to osteonecrosis, osteoporosis, and 
non-union fractures (Dickson et al., 1994; Martinez et al., 2002; 
Feng et al., 2010; Fassbender et al., 2011; Kaushik et al., 2012; Zhao 
et al., 2012). On the other hand, VEGF has also been described to 
inhibit osteoblast differentiation and to compete with PDGF-BB 
for binding to PDGF-Rs, impairing pericyte function, leading to 

the formation of immature blood vessels and to the interruption 
of the coupling of angiogenesis and osteogenesis (Greenberg et al., 
2008; Schonmeyr et al., 2010; Song et al., 2011). Moreover, VEGF 
overexpression may also cause bone resorption due to excessive 
osteoclast recruitment (Helmrich et  al., 2013). These data sug-
gest that VEGF can have opposite effects on bone physiology 
under different circumstances (Figure  1A), but the underlying 
mechanisms through which VEGF regulates bone homeostasis 
are not yet fully understood, posing a challenge to the design of 
rational therapies.

Vascularization also plays a crucial role in bone tissue engi-
neering, which aims at developing bone substitutes to replace 
large tissue losses due to trauma, surgery, or other clinical condi-
tions where physiological bone repair is insufficient. In fact, upon 
implantation in  vivo, a major challenge for clinical-size bone 
substitutes is the maintenance of cell viability in the graft core, 
which critically depends on the rapid invasion by host blood 
vessels. Poor blood perfusion results in cell death due to lack of 
oxygen, nutrients, and waste removal. Furthermore, function-
ally perfused vascular networks also mediate the recruitment of 
osteoprogenitors, HSC and immune cells, which play important 
roles in tissue regeneration and remodeling. Although several 
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different strategies to improve vascularization of osteogenic 
grafts are currently being investigated, success so far has been 
limited. Elucidation of the molecular cross-talk between angio-
genesis and osteogenesis is needed to exploit the therapeutic 
potential of VEGF and to design strategies to improve both 
efficient vascularization and bone formation.

COUPLing OF AngiOgeneSiS AnD 
OSTeOgeneSiS BY vegF DURing 
inTRAMeMBRAnOUS OSSiFiCATiOn

Intramembranous ossification underlies the development of 
craniofacial bones and also the generation of tissue-engineered 
bone grafts, and it strongly relies on coupling of osteogenesis and 
angiogenesis. Contrary to endochondral ossification, in which 
bone develops through a cartilage intermediary, during intram-
embranous ossification progenitors directly differentiate into 
osteoblasts. Osteoprogenitors gather in the area of ossification 
and bone morphogenetic protein (BMP) signaling upregulates 
the transcription factor Runx2, which kickstarts the expression 
of specific proteins, like BSP, osteocalcin, and osteopontin, neces-
sary to produce mineralized matrix (Huang et al., 2007).

Vascular endothelial growth factor has a crucial role in 
intramembranous ossification and its loss causes developmental 
deficits in skull bones and delayed healing during post-natal 
repair. Deletion of Vegf in Osterix-positive osteoblast precursors 
reduced calvarial and mandibular ossification (Wang et al., 2007; 
Hill et  al., 2015; Duan et  al., 2016). During intramembranous 
bone regeneration, exposure to hypoxia in the initial inflam-
matory phase stimulates osteoblasts to release several factors, 
including VEGF, via the HIF-1α pathway, inducing endothelial 
migration and proliferation and vessel permeability (Wang et al., 
2007). The new vessels increase the supply of nutrients, oxygen 
and minerals necessary for osteogenesis and may recruit osteo-
progenitors to the injury site. Furthermore, endothelial cells also 
produce osteogenic factors (e.g., BMP-2 and BMP-4) that pro-
mote osteoblast differentiation, while differentiating osteoblasts 
secrete angiogenic factors (e.g., PDGF-BB and VEGF) to further 
support angiogenesis by a positive feedback loop (Duan et  al., 
2015, 2016) (Figure 1B).

DiReCT vegF eFFeCTS On OSTeOgeniC 
DiFFeRenTiATiOn OF MeSenCHYMAL 
PROgeniTORS AnD BOne 
RegeneRATiOn

Some non-endothelial cells also express VEGF receptors, 
including osteoprogenitors, pericytes, and osteoclasts. Although 
osteoblast expression of VEGF receptors is variable, several 
reports indicate that VEGF can directly affect osteoblast dif-
ferentiation maintaining postnatal bone homeostasis through 
autocrine and intracrine mechanisms. VEGF overexpression 
in human mesenchymal stromal/progenitor cells (MSCs) 
increased the deposition of mineralized extracellular matrix 
(ECM), while overexpression of sFLT-1, a secreted blocker of 
VEGF, reduced mineralization (Mayer et al., 2005). Moreover, 

mice with deletions of VEGF receptors Vegfr1 or Vegfr2 in 
osteoblastic cells showed low bone density and reduced number 
of osteoprogenitors in the bone marrow, indicating that both 
receptors in osteoblastic cells are important for postnatal bone 
formation (Liu et  al., 2012). As mentioned above, matur-
ing osteoblasts are one of the main sources of VEGF during 
intramembranous bone formation. Hu and Olsen showed that 
at the injury sites of a cortical bone defect, osteogenic cells, 
including osteoprogenitors, pre-osteoblasts and mature osteo-
blasts, are important sources of VEGF and that VEGF deletion 
specifically in osteoblasts disrupts the coupling of angiogenesis 
and osteogenesis and delays the healing process (Hu and Olsen, 
2016a) (Figures 1A,B). Although the best-characterized func-
tions of VEGF require its secretion, intracellular VEGF has 
been recently described to control transcriptional regulation 
and cell survival also through intracrine signaling (Liu et  al., 
2011; Liu and Olsen, 2014). Osteoblast-specific and conditional 
VEGF knockout mice exhibited an osteoporosis-like phenotype, 
with decreased bone mass and increased bone marrow fat (Liu 
et al., 2012). Here VEGF acted as a regulator of stem cell fate: it 
stimulated osteoblastic and blocked adipogenic differentiation 
by an intracellular mechanism involving the transcription fac-
tors RUNX2 and PPARy2, rather than by paracrine signaling 
(Liu et al., 2012; Berendsen and Olsen, 2014, 2015). However, 
the precise mechanisms by which intracrine VEGF regulates 
osteoprogenitor fate are not yet fully understood.

OSTeOgeneSiS PROMOTiOn BY 
enDOTHeLiAL AngiOCRine FACTORS

The microvascular circulation has an important role in sustaining 
the homeostasis of resident stem cells and guiding the regen-
eration and repair of adult organs (Rafii et al., 2016). A recently 
described concept is that vascular cells, besides their role as build-
ing blocks of the nutrient transport network, may also regulate 
the function of tissue-specific cells in the vicinity of blood vessels 
in several organs, through the release of paracrine signals. Tissue-
specific endothelial cells mastermind this complex task supplying 
stimulatory or inhibitory growth factors, morphogens, ECM 
components, and chemokines that are collectively defined as 
angiocrine factors (Rafii et al., 2016). In the skeletal system, blood 
vessels are heterogeneous and functionally specialized. Recent 
studies have divided bone capillaries in two main subtypes: type 
H vessels are mainly present in the metaphysis of long bones and 
are highly positive for CD31 and Endomucin (CD31hiEmcnhi); 
type L, which are an extension of type H vessels, form sinusoidal 
vessels within the hematopoietic bone cavity and are less strongly 
positive for CD31 and Endomucin (CD31loEmcnlo). Type-H 
endothelium displays high proliferative activity and secretes fac-
tors that regulate osteoblast function and chondrocyte prolifera-
tion (Sivaraj and Adams, 2016; Langen et al., 2017). Furthermore, 
osteoprogenitor cells are selectively positioned around type-H, 
but not type-L, capillaries (Kusumbe et al., 2014).

Bone morphogenetic proteins have been described as one of 
the main classes of molecules regulated by VEGF in both osteo-
blasts and endothelial cells (Maes et al., 2010; Yang et al., 2013). 
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For example, it has been reported that in conditional knockout 
mice, BMP-2 deletion specifically in osteoblasts caused reduction 
in both VEGF levels and microcapillaries in the bone marrow, 
together with MSC numbers and their ability to form CFU-f and 
CFU-O colonies (Yang et al., 2013). On the other hand, VEGF can 
activate endogenous BMP-2 expression in vessel-associated MSC 
through the activation of the Akt/β-catenin pathways (Maes et al., 
2010). BMP-2 produced by osteoblasts acts in an autocrine man-
ner and stimulates osteoblasts to differentiate, produce VEGF, 
and further increase BMP-2 protein expression (Yang et al., 2013).

On the other hand, VEGF can upregulate BMP expression also 
in endothelial cells (Figure 1B), inducing osteogenic differentia-
tion and matrix mineralization. Interestingly, both inactivation 
and overexpression of Noggin, a secreted BMP antagonist, spe-
cifically in osteoblasts led to reduced bone mass, indicating the 
importance of Noggin levels during bone formation (Ramasamy 
et al., 2014). Expression of Noggin in endothelial cells is controlled 
by Notch signaling. Mutants lacking Notch activity specifically 
in endothelial cells exhibited a significant reduction in Noggin 
expression, which impaired osteogenesis and chondrocyte differ-
entiation through its angiocrine function. Moreover, angiogenesis 
defects induced by decreased VEGF expression in chondrocytes 
could be prevented by Noggin administration. Therefore, the 
cross-talk between the endothelium and other cell types ensures 
the coupling of angiogenesis and bone formation in the skeletal 
system (Ramasamy et al., 2014).

Increasing evidence suggests that numerous other factors 
in addition to BMPs regulate bone remodeling, as well as bone 
development and repair. VEGF appears to have a central role 
during these processes and its cross-talk with other factors needs 
to be elucidated. The Semaphorin (Sema) class of molecules has 
been described to both regulate VEGF-induced angiogenesis 
and bone homeostasis. The Semaphorin family includes eight 
subclasses of glycoproteins originally described as axon guidance 
molecules during neuronal development (Kolodkin et al., 1993; 
Luo et al., 1993). Semaphorins have been also involved in several 
other biological processes, including bone biology, angiogenesis, 
cancer progression, and immune disorders (Behar et al., 1996; 
Miao et  al., 1999; Roth et  al., 2009; Chaudhary et  al., 2014; 
McKenna et  al., 2014). In particular, both Sema3A and VEGF 
share signaling through neuropilin 1 (Nrp1). In fact, Nrp1 is a 
coreceptor for the VEGF165 isoform to regulate endothelial cell 
migration during angiogenesis via VEGFR2 and it is also essen-
tial for VEGF-induced vascular permeability and arteriogenesis. 
On the other hand, recent studies have shown the importance 
of Sema3A in the regulation of bone homeostasis (Figure 1C). 
Hayashi et al. showed that Sema3A has an osteoprotective effect 
by both suppressing osteoclast bone resorption and increasing 
osteoblastic bone formation, as evidenced by the severe osteo-
penic phenotype of Sema3A knock-out mice (Hayashi et  al., 
2012; Fukuda et  al., 2013). Mechanistically, Sema3A activates 
the canonical Wnt/β-catenin pathway in the process of osteoblast 
differentiation and suppresses macrophage-colony-stimulating 
factor (M-CSF)-induced osteoclast differentiation through the 
Rho A signaling pathway (Hayashi et  al., 2012). Interestingly, 
more recently it has been found that VEGF can dose depend-
ently inhibit endothelial expression of Sema3A in skeletal muscle 

(Groppa et al., 2015), suggesting the possibility that dysregula-
tion of Sema3A expression by VEGF delivery could also affect 
bone formation.

ReCRUiTMenT OF OSTeOCLASTS AnD 
iMMUne CeLLS BY vegF

Vascular endothelial growth factor is not only a key inducer of 
endothelial proliferation and vascular growth but also has direct 
and indirect effects on bone development by affecting various cell 
types involved in the process. MSC, osteoprogenitors, osteoblast, 
and osteoclasts all express both VEGF and VEGF receptors and 
respond to VEGF signaling by increased recruitment, differen-
tiation, and activity (Dirckx et al., 2013). Moreover, VEGF also 
recruits different populations of monocytes and macrophages 
(Barleon et al., 1996). In the inflammatory phase of physiological 
bone repair, VEGF expression is induced by hypoxia in osteogenic 
cells (Street et al., 2000), leading to the recruitment of immune cells.  
In fact, mice lacking vegf expression by osteoblasts have decreased 
macrophages in a tibia cortical defect as well as reduced vascular 
density (Hu and Olsen, 2016a). Furthermore, VEGF also has a 
role in osteoclast function: M-CSF, receptor activator of nuclear 
factor kappa-B ligand, and VEGF are necessary for recruiting and 
programming osteoclast differentiation and they are released by 
both osteoblasts and endothelial cells (Kristensen et  al., 2013). 
Osteopetrotic mice are deficient in osteoclasts, monocytes, and 
macrophages due to a mutation in M-CSF, but VEGF delivery 
increases osteoclastogenesis and bone resorption, while a VEGF 
antagonist suppresses this process (Niida et al., 1999). These data 
revealed for the first time that VEGF can substitute for M-CSF in 
osteoclast recruitment and differentiation. Recently, it has been 
shown that VEGF recruits osteoclast progenitors in arthritic 
joints through VEGFR-1 (Flt-1) and subsequent phosphorylation 
of focal adhesion kinase (Matsumoto et  al., 2002). VEGF can 
also directly stimulate osteoclastic bone resorption and survival 
of mature osteoclasts via VEGFR-2 (Flk-1) (Nakagawa et  al., 
2000; Yang et al., 2008). Furthermore, VEGF overexpression by 
genetically modified bone marrow-derived MSC caused excessive 
osteoclast recruitment and bone resorption in tissue-engineered 
osteogenic constructs (Helmrich et al., 2013) (Figure 1A).

A specific population of monocytes coexpressing CD11b and 
Nrp1, named neuropilin-expressing monocytes (NEMs), pro-
mote smooth muscle cell recruitment and arteriogenesis by TGF-
β1 and PDGF-BB secretion during VEGF-induced angiogenesis 
(Zacchigna et al., 2008) and also accelerate vascular stabilization, 
i.e., the ability of newly induced vessels to persist independently 
of further VEGF stimulation (Groppa et al., 2015). It has been 
recently shown that Sema3A is specifically responsible for NEM 
recruitment (Figure 1D) and that VEGF dose dependently inhib-
its vessel stabilization by impairing both endothelial Sema3A 
expression and NEM recruitment, leading to decreased TGF-β1 
and endothelial SMAD2/3 activation (Groppa et al., 2015). High 
VEGF doses also have an antipericyte effect by competing with 
PDGF-BB for PDGF-Rβ binding (Greenberg et al., 2008). Control 
of VEGF dose is therefore crucial both for vessel stabilization and 
pericyte coverage, both of which have been shown to be important 
for osteogenesis/angiogenesis coupling (Hu and Olsen, 2016b).
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STRATegieS FOR RAPiD 
vASCULARiZATiOn AnD eFFiCienT 
BOne FORMATiOn in RegeneRATive 
MeDiCine

The equilibrium between VEGF-triggered angiogenesis, osteogen-
esis and bone resorption is clearly key to engineer vascularized 
bone. The design of rational strategies, to fully exploit the potency 
of VEGF as an angiogenic regulator and at the same time to ensure 
robust bone formation, should take in consideration this complex 
cross-talk. Several clinical conditions require replacement of the 
damaged or lost bone tissue due to trauma or surgery, or also in idi-
opathic conditions such as avascular necrosis of the lunate, scaph-
oid, and talus bones, where endogenous bone repair is insufficient. 
Several regenerative medicine approaches have been investigated 
to restore vascularization and promote bone regeneration, includ-
ing combinations of biomaterials with angiogenic growth factors 
and/or genetically modified progenitors. More recently, protein 
engineering approaches have enabled the generation of natural 
matrices decorated with bound growth factors that are presented 
to cells in their physiological context during bone repair (Martino 
et al., 2015). In fact, the effectiveness of most morphogens critically 
depends on their concentration in the microenvironment of target 
cells and the delivery profile is controlled by the total dose incor-
porated into the material, the kinetics of release and the stability of 
the protein. In most current strategies, release kinetics is defined 
by non-specific interactions between the protein and the material. 
However, boost release may lead to non-physiological, excessive 
microenvironmental doses, which in the case of VEGF promote 
the formation of aberrant and hyperpermeable vascular structures 
(Ozawa et al., 2004) and excessive osteoclast recruitment (Helmrich 
et al., 2013). Furthermore, after injury the clotting process gener-
ates a fibrin-based matrix rich in many growth factors (Bao et al., 
2009), which is conducive to cell migration, morphogen presenta-
tion and progenitor differentiation. Therefore, current strategies 
aim at mimicking ECM embedding to reproduce physiological 
presentation of angiogenic signals within the bone defects. For 
example, a highly tunable fibrin-based platform has been recently 
optimized to precisely control the dose and duration of VEGF 
protein delivery in tissues (Sacchi et  al., 2014). VEGF could be 
released only by enzymatic cleavage by invading cells in  vivo 
and optimized delivery ensured normal, stable, and functional 
angiogenesis over a 500-fold dose range and improved perfusion 
of ischemic tissues. In a conceptually different strategy, a recom-
binant fibronectin fragment was engineered to contain the natural 
binding sites for fibrin, integrins, and growth factors (Martino 
et al., 2011). Delivery of this fragment within a fibrin construct 

together with BMP-2 and PDGF-BB significantly increased bone 
healing in a rat calvarial defect at very low and otherwise inef-
fective doses, thanks to their presentation in the physiological 
matrix context. Along similar lines, but with a reverse approach, 
engineering with a short domain of placenta growth factor-2 
endowed any growth factor with superaffinity for ECM proteins 
(Martino et al., 2014). Such engineering of VEGF, PDGF-BB, and 
BMP-2 greatly improved both angiogenesis and bone formation 
in a calvarial defect. Therefore, biomaterials can be more than just 
carriers and can be engineered to reproduce an ECM-like environ-
ment decorated with growth factors, through either covalent or 
affinity-based interactions, that present physiological signals to 
endogenous promoters and promote bone healing.

COnCLUSiOn

Vascular endothelial growth factor has a critical role in bone 
development and postnatal bone repair (Maharaj and D’Amore, 
2007; Wilson et al., 2010; Liu et al., 2012). However, VEGF levels 
should be tightly controlled, since non-physiological doses may 
impair bone regeneration, directly affecting osteoblast differen-
tiation and increasing bone resorption (Helmrich et al., 2013; Hu 
and Olsen, 2016a). Current studies of VEGF functions should 
aim at further elucidating the molecular crosstalk between 
angiogenesis and osteogenesis, clarifying the association between 
VEGF dose and bone function and VEGF effects on progenitor 
cells and bone matrix protein synthesis. This knowledge will pro-
vide rational bases for the design of novel therapeutic strategies 
to generate large-size vascularized bone grafts. To offer the basis 
for clinically applicable strategies, new approaches should also 
offer safety and regulatory advantages, such as providing “off-the-
shelf ” products, avoidance of genetic modification of implanted 
cells, and controlled duration of factor delivery.
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