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Spin and charge signatures of topological superconductivity in Rashba nanowires
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We consider a Rashba nanowire with a proximity gap which can be brought into the topological phase by tuning
external magnetic field or chemical potential. We study spin and charge of the bulk quasiparticle states when
passing through the topological transition for open and closed systems. We show, analytically and numerically,
that the spin of bulk states around the topological gap reverses its sign when crossing the transition due to band
inversion, independent of the presence of Majorana fermions in the system. This spin reversal can be considered
as a bulk signature of topological superconductivity that can be accessed experimentally. We find a similar
behavior for the charge of the bulk quasiparticle states, also exhibiting a sign reversal at the transition. We show
that these signatures are robust against random static disorder.
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Introduction. Topological phases of condensed matter
systems [1,2] have attracted a lot of attention over many
years due to their high promise for applications such as
topological quantum computation [3,4]. One of the hallmarks
of such phases, in particular of topological superconductivity,
are zero-energy modes such as Majorana fermions (MF) that
emerge at the edges of the system. Various candidate materials
can host such topological states [5—21] but one of the most
promising platforms are semiconducting nanowires of InAs or
InSb material, with strong Rashba spin orbit interaction (SOI),
subjected to an external magnetic field and in proximity to
an s-wave superconductor [22,23]. Experimental evidence has
been reported for topological phases in such wires [24-31]
as well as in magnetic atomic chains on superconducting
substrates [32-34]. However, most of the work so far has
focused on the detection of the MFs in these nanowires and not
on their bulk properties. This is quite surprising given the fact
that the unambiguous identification of MFs from transport data
alone can be challenging [35—43]. It is thus of great interest
to look for alternative signatures of topological phases and to
address the question how the bulk states change when passing
from trivial to topological phase and if these changes appear
in physically observable quantities.

In this work, we show that the phase of a topological su-
perconductor can be monitored by bulk states, in particular by
certain spin and charge degrees of freedom. Quite remarkably,
we find that the sign of the spin component along the magnetic
field reverses for low-momentum states close to the Fermi
level when the system passes through the phase transition,
and similarly for the charge of such bulk states. This sign
reversal is a direct consequence of the band inversion at the
transition point and is directly accessible by spin- and energy
resolved measurements. Another remarkable feature is that this
signature is independent of boundary effects and thus unrelated
to the presence of MFs. To demonstrate these findings, we
perform analytical and numerical calculations for both closed
and open systems and for various parameter regimes which are
relevant for InAs or InSb nanowires used in recent experiments
[24-31]. We also demonstrate that these effects are robust
against static random disorder.
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Model. We consider a one-dimensional Rashba nanowire
aligned along the x-axis and placed on top of an s-wave
superconductor in the presence of an external magnetic field
applied along the nanowire axis (see Fig. 1). The system can
be modeled by the tight-binding Hamiltonian

N-1
H =Y [Vl (-t —ido,).¥,; + Hcl]

j=1

N
+ W — T+ Aty + Azo ]y, (D)
j=1

where ¥; = (ch,cN,cjw,—c}T)T is given in standard Nambu
representation. The creation operator cjﬂ acts on an electron
with spin o located at site j in a chain of N sites with lattice
constant a. The Zeeman splitting 2A ; = gup B, is determined
by the g factor and by the strength of the external magnetic field
B,.. The superconducting pairing term A, is induced in the
nanowire via proximity effect by the s-wave superconductor.
The chemical potential of the nanowire w is calculated from
the SOI energy and ¢ is the hopping amplitude. The Pauli
matrices o; (7;) act on spin (particle-hole) space and & is
the spin-flip hopping amplitude used to model the Rashba
SOI. By diagonalizing numerically H, we find the spectrum
E, and corresponding wave functions ®,(j) labeled by the
indexn=1,...,4N.

S-wave superconductor

FIG. 1. A semiconducting nanowire proximity-coupled to an
s-wave superconductor. The Rashba SOI vector « points in the
y direction and an external magnetic field B, is applied in the
x direction. In the topological phase, spin, and chargeless MFs (or-
ange ovals) are localized at the ends, with corresponding probability
density indicated by black lines.
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FIG. 2. The spectrum of Eq. (3) in the trivial (a) and topological
(b) phases for closed systems. The blue/red color of dispersion lines
E;, (k) indicates the negative/positive sign of the spin component
S5, (k) for states of a given An band. Around k = 0, the spin S;;(k)
of states with energies closest to the Fermi level u = 0 in the trivial
phase is opposite to the one in the topological phase. The insets
show the spectrum around k = 0 where such a sign reversal of S};(k)
occurs. We used the following parameters: u = 0, A, = 0.5E,,, and
Az =0.3E,, (Az = 0.7E,) in the trivial (topological) phase, so that
the interior gap A; = 2|Az — Ay | remains the same.

In order to study analytically the bulk states of the system,
we also write H in momentum space. By imposing periodic
boundary conditions, we can introduce the momentum &,

Cjo =D, Croe 7k |/ N, and ¥, = (CkT,CkaT,kl, - CT,,{T)T~
We then obtain H = Y, W, H (k)W with

H(k) = [2t — 2t cos(ka) — 1o + 2@ sin(ka)oy ],
+ Asc.l/—)c + AZUX' (2)

In the continuum limit ka < 1 [45], we get

272

h
H(k) = (% - n+ Olk(f)v)'fz + Ascfx + AZO’X. (3)

The correspondence between the tight-binding and continuum
model is then given by t = /?/(2ma?), where m is an effective
electron mass [40]. The spin-flip hopping amplitude & is
related to the SOI strength by & = «/2a. The corresponding
SOI energy (momentum) is defined as Ey, = @2/t = ma®/2h*
(kso = ma/hz). By diagonalizing H(k) [see Eq. (2) or (3)], we
arrive at analytical expressions for the eigenvalues Ej, (k) and
corresponding eigenstates @, (k) (see Ref. [44]). In total, there
are four bands, labeled by A and 5, where A = 1 (A = 1) labels
bands with positive (negative) energy and n = 1 the bands
closest to the Fermi level, see Fig. 2.

The lowest band n =1 has gaps at k =0, which we
call the interior gap A; = 2|A, — /u? + A2, and at finite
Fermi points k = +kp, which we call the exterior gap
A, =2|E,j(kr)|. The central quantities of interest are the
spin S, [Sy;(k)] and the charge Q, [Q;,(k)] of the bulk
quasiparticles states at given energy E, [E),(k)], defined in
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the tight-binding (continuum) model as

N
Sy =) ®L()NoD,()), “
j=1
Sin(k) = @}, (K)o ®3,(k), )
N
Qn == OI(j)TDu()), (6)
j=1
Qin(k) = =@, (k)T D3, (k). (7)

Here, the spin and charge are measured in units of 7i/2 and
electron charge |e|, respectively. We note that in contrast to
previous works [51,52], our definitions of spin and charge
involve all four components of the wave function. Due to the
periodic boundary conditions the system describes a closed
ring and no MF can occur (for open systems, see below).

Spin and charge inversion at the topological phase
transition. We focus now on the spin and charge of bulk
states of the nanowire in the trivial (A2 < pu? + A2,) and
in the topological (A% > u®+ AZ) phases, see Fig. 2.
The most interesting behavior occurs close to k = 0, where
the topological phase transition takes place as A; = 0 for the
n = 1 band. Quite remarkably, we observe a sign reversal of
the spin component along the magnetic field, S;;(k), when the
system is tuned from trivial to topological phase. In Fig. 2(a),
the system is shown in the trivial phase where S;‘T (k) [S%‘T (k)]
around k = 0 is negative (positive) for the electron (hole)
n = 1 band, while the sign reverses when the system is tuned
into the topological phase by changing the magnetic field,
see Fig. 2(b). This change of sign is a direct consequence
of the band inversion associated with the topological phase
transition. Consequently, by measuring the spin component
S* along the field B,, one can determine whether the system is
in the topological or trivial phase, even in the absence of any
MFs. This finding opens up new experimental perspectives to
identify topological superconductivity by measuring bulk state
properties close to the Fermi level.

We note that there is also a residual spin component along
the SOl axis S”(k), the sign of which, however, is the same both
in the topological and trivial phase and thus cannot be used
to distinguish phases. Moreover, due to the symmetry of the
system, the spin projection S*(k) is always zero. In Ref. [44],
we provide the analysis of all spin components S'(k) as a
function of momentum k. We finally note that similar behavior
as for spin is found also for the quasiparticle charge as shown in
Ref. [44]. Indeed, close to k = 0 and for the negative value of 1
in the topological (trivial) phase, Q1(k) is positive (negative)
while Q11(k)is negative (positive). For positive values of u, the
situation is opposite. Again, this sign reversal can be used as a
detection tool for topological superconductivity, independent
of MFs. In Ref. [44], we also demonstrate that our results hold
for nanowires with several subbands.

Phase diagram. To test if the spin S; and charge Q,j of
the bulk states with momentum close to k = 0 allows one to
distinguish reliably between trivial and topological phase, we
determine the phase diagram as a function of magnetic field A z
and chemical potential u at fixed momentum, see Fig. 3, again
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FIG. 3. Phase diagram as function of chemical potential
and magnetic field Az by measuring (a) the x component of
the quasiparticle spin S7; and (b) the quasiparticle charge Qi1 at
fixed momentum k = 0.05k,, and fixed superconducting pairing
Ay = 0.5E,. Indeed, the phase boundary at the topological transition
line Az = /A2 + pu? (dashed line) is very well visible. A similar
phase diagram is found for the states above u (S7; and Qy), differing
only in a global minus sign due to particle-hole symmetry.

for the closed system without MFs. The results are obtained
for the bulk states from the 11 band, using Eq. (3). The phase
transitionat A% = A2, + u?is clearly indicated by the reversal
of signs of both the spin S}; and charge Q;i. Moreover, the
boundary separating the two phases is sharp. We note that the
charge reverses its sign at £ = 0. In contrast to the topological
phase transition, this phase boundary is smooth.

The analytical expressions for charge and spin of the bulk
states, obtained from Egs. (5) and (7), are too lengthy to
be shown here. However, since we are mainly interested in
the features around k = 0, we can expand these formulas for
small momenta away from the phase transition (for simplicity,
we also put i = 0). For the A1 bands, we get in leading
order,

: . (k)?
Sip(k) = Asign(Az — Asc)|:] - m}, ®)
, R*k?
0,1(k) = Asign(Az — ASC)M . 9

We can clearly see that around k =0 the sign of Sj; is
proportional to the sign of the topological gap Az — As.
Thus one can consider Si‘i(k) as an order parameter that
distinguishes between topological and trivial phases. One also
notices that the sign of the quasiparticle charge is proportional
to the sign of the topological gap, however, it changes only
quadratically in k.

So far, we have studied systems with strong SOI, which is
generally believed to be the case for InSb or InAs nanowire
[24]. However, the sharpness of the boundary between two
phases determined by S}; depends on the strength of the SOI
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FIG. 4. Spin projection Sj; [(a) and (b)] and charge Q1
[(a’) and (b’)] of bulk states as a function of the chemical potential
w for two values of momenta [(a) and (a’)] k = 3.3 um™' and
[(b) and (b’)] k = 0.6 um~' for various values of the SOI strength:
o =0.1,02,04,...,2.2,2.28,2.4 eVA. The parameters of the Sys-
tem are Ay, = 0.5 meV and Az = 0.7 meV. The sign of charge
and spin reverses as the system undergoes the topological phase
transition at u© = £0.5 meV (denoted by gray dashed vertical lines).
The boundary between phases is most pronounced for the states close
to k = 0 and almost independent of the SOIL.

as seen from Eq. (8). To understand this dependence better,
we study the evolution of §J; and ;7 as a function of u for
two different values of &, see Fig. 4. Generally, we observe
that the boundary between the topological and trivial phase
is sharper for small values of k and almost insensitive to the
SOI strength. To conclude, the reversal of the sign of Q;1 and
S35 is well visible at small & for all values of SOL

Open systems with MF’s. So far, we have considered closed
systems not supporting MFs. In realistic setups, nanowires
are open with finite length and momentum is not a good
quantum number. In addition, finite systems in the topological
phase host MFs at the wire ends and it is apriori not clear
if their presence does not mask the signatures of topological
phase transition found for closed systems above. Thus we
focus now on such finite systems using realistic parameters
[24,46]. First, we compare results obtained from Eq. (2) for
closed systems with periodic boundary conditions with the
ones obtained from tight-binding calculations using Eq. (1) for
open systems with vanishing boundary conditions, see Fig. 5.
Our numerical simulations give excellent agreement between
the two models for parameters for which A; < A,. In the
opposite regime, the exterior and interior branches are mixed,
thus, one needs to involve momentum-resolved measurements.
Thus, the spin component S* and its reversal can serve as a
detection tool also in open systems. We obtain similar results
also for the quasiparticle charge Q,, see Ref. [44]. All this
confirms that the topological phase transition of the bulk can
be detected in the same way. The sign reversal of spin and
charge does not depend on boundaries of the system, and is
thus independent of the presence of MFs. This provides an
advantage over detecting the topological phase via the presence
of MFs, which could either leak into the lead [45] or be masked
by disorder effects [37—40]. To show that our results are robust
against disorder, we add random on-site fluctuations to pu,
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FIG. 5. The energy spectrum and spin S* in the trivial (a) and
topological (b) phase for open and closed systems. We find excellent
agreement between E, (red circles) and S*(E,) = S; (blue circles)
obtained from the tight-binding model for open systems supporting
MFs [see Eq. (1)] and E;1(k) (orange solid line) and S;;(k) obtained
for closed systems without MFs [see Eq. (2)]. The topological phase
transition is clearly indicated by the sign reversal of S* also in open
systems. The trivial phase is plotted for Az = 0.4 meV while the
topological one for Az = 0.6 meV. The other parameters are fixed
as A =0.5meV, u =0, =09eV A(Eso ~ 1 meV), N = 1200,
and m = 0.015m,, with m, being the bare electron mass, for InSb
nanowires (¢ = 10 meV, a = 15 nm). In addition, we consider a
random on-site disorder potential of strength |§ut;] < 1 meV. The
spin S*(E,) (green circles) corresponding to E, (brown circles) of
the disordered nanowire undergoes the same reversal of sign as in the
clean case, demonstrating its robustness.
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ie.set u; = pu + du; in Eq. (1). We find that even for disorder
strengths exceeding the proximity gap A, the reversal of
sign in spin is hardly affected, see Fig. 5. In Ref. [44],
we study effects of static potential and magnetic disorder
on the charge and spin signature in more detail. Again, we
conclude that the proposed signature could be used to
characterize the topological phase transition.

Conclusions. We have shown that the topological phase
transition in Rashba nanowires is characterized by a sign
reversal of the spin component along the magnetic field and
of the charge of bulk states with momenta close to k = 0.
Importantly, these findings are independent of the presence
of MFs and rely only on bulk properties of the system.
The boundary between phases is quite sharp but depends on
the parameters of the system such as the SOI strength. These
results open a way for mapping the phase diagram of the
Rashba nanowire and bring a clear signature of the topological
phase transition. Two types of experiments could be carried
out to detect the spin or charge reversal at the topological
phase transition point. The first one is based on spin-polarized
STM spectroscopy which allows one to inject a current in the
lowest bands [32-34,47]. Depending on the polarization of the
STM probe, a current will flow or not in the trivial phase and
the opposite situation will occur in the topological phase. The
second possibility is to couple the nanowire to a quantum dot
[20,30,36,48,49], which then can be used for energy-selective
spin read-out [50].
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