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A hard proximity-induced superconducting gap has recently been observed in semiconductor nanowire systems
at low magnetic fields. However, in the topological regime at high magnetic fields, a soft gap emerges and
represents a fundamental obstacle to topologically protected quantum information processing with Majorana
bound states. Here we show that in a setup of double Rashba nanowires that are coupled to an s-wave
superconductor and subjected to an external magnetic field along the wires, the topological threshold can be
significantly reduced by the destructive interference of direct and crossed-Andreev pairing in this setup, precisely
down to the magnetic field regime in which current experimental technology allows for a hard superconducting
gap. We also show that the resulting Majorana bound states exhibit sufficiently short localization lengths, which
makes them ideal candidates for future braiding experiments.
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I. INTRODUCTION

Majorana bound states (MBSs) form the building blocks
of a topologically protected qubit. Over the last years, first-
generation Majorana devices were fabricated based on an
s-wave superconductor (SC) proximity-coupled either to a
nanowire (NW) with Rashba spin-orbit interaction (SOI) in
the presence of a strong magnetic field [1-6] or to a chain
of magnetic atoms [7-13]. These devices provided the first
experimental signatures of MBSs in the form of zero-bias
conductance peaks [3—6,11-13]. Today, the most important
open challenge is to perform manipulations on the MBSs
which should ultimately allow for the confirmation of their
non-Abelian braiding statistics. For this purpose, NW devices
appear particularly promising, as they provide a simple means
of moving MBSs by the use of local gates [14]. Unfortunately,
despite the plethora of experimental breakthroughs, a long-
standing [15,16] and still unresolved [17,18] obstacle to
NW-based braiding experiments is that the proximity-induced
superconducting gap in the NW is well defined only for
weak magnetic fields in the trivial regime (“hard gap”). For
strong magnetic fields in the topological regime, a finite
subgap conductance emerges (“soft gap”) which destroys the
topological protection [19-23].

Here we show that in a double-NW setup the topological
threshold can be reduced to the low magnetic field regime
in which current experimental technology allows for a hard
superconducting gap. More concretely, we consider two
parallel Rashba NWs that are proximity-coupled to an s-wave
SC and subjected to a magnetic field along the NWs; see
Fig. 1(a). The SC induces both direct and crossed-Andreev
pairing. We demonstrate that this double-NW setup exhibits
a new, previously overlooked Majorana phase that emerges
at low magnetic fields. Specifically, for any finite crossed-
Andreev pairing strength, we show that the system can host
a single MBS at each end even when the Zeeman splitting is
smaller than the strength of induced direct pairing. Notably,
this phase can be realized if the direct pairing strength
exceeds that of crossed-Andreev pairing, which is always the
case in the absence of strong electron-electron interactions
[24-31]. In the limit when direct and crossed-Andreev pairing
strengths are equal, we find that even an infinitesimal magnetic
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field can drive the system into the proposed topological
phase. Interestingly, we also find that these MBSs exhibit
a sufficiently short localization length, making them ideal
for experiments on quantum information processing. Our
theoretical proposal can readily be realized and scaled to a
larger qubit architectures [32—40] in InSb/Al NW networks
or can alternatively be fabricated lithographically in two-
dimensional InAs/Al heterostructures [41]. Consequently, it
may be foundational for future experiments aimed at a
controlled manipulation of MBSs.

II. MODEL

We consider a system of two parallel Rashba NWs labeled
by T = 1,1, which are positioned along the x direction and
coupled to one another via an s-wave SC; see Fig. 1(a). The
kinetic part of the Hamiltonian is given by
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Here, W, (x) denotes the annihilation operator of an electron
with mass m and spin o/2 = £1/2 at position x in the T-wire
and u. is the chemical potential in the 7-wire. The Rashba
SOI field ¢, = a,Z in the t-wire is of strength «; and points
along the z direction,
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where o, , . are Pauli matrices acting in spin space. We assume
that o7 > oy > 0. The chemical potentials in both NWs are
tuned to the crossing point of the spin-polarized bands, ., = 0.
(We will address the important case when w, # 0 below.)
The electron bulk spectrum of Hy + Hj, is given by E (k) =
B2 (k — 0kso+)?/2m — Ego -, where kg, ; = ma, /h? is the SOI
wave vector and E, ; = hzkgo ./2m the SOI energy in the
t-wire; see Fig. 1(b). Applymg an external magnetic field
B = Bx of magnitude B parallel to the NWs induces a Zeeman

splitting described by

H; = Z AZf/dx \pla(ax)oo”\ljta/ﬂ (3)
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FIG. 1. (a) Two Rashba NWs (gray) labeled by 7 = 1,1 are
aligned along the x direction and proximity-coupled to an s-wave
SC (red). Their separation in the z direction is given by d. Both
NWs are subjected to a magnetic field B which points along the x
axis. The Rashba SOI field &, in the t-wire points along the z axis.
(b) Energy spectrum in the limit of strong SOL, E,, ; > Az, A;, A,
with solid (dashed) lines corresponding to electron (hole) bands. The
chemical potential 1, is tuned to the crossing point of spin-up (blue)
and spin-down (green) bands in both NWs. The proximity-induced
superconductivity generates a coupling between states with opposite
momenta and spins belonging to the same NW (with strength A;)
or to different NWs (with strength A.). For |E, 1 — E;, 1] > A,
the crossed-Andreev pairing potential A. couples only the interior
branches of the spectrum at k = 0. Also, the magnetic field couples
states of opposite spins at k = 0 in each NW (with strength Az, ).

where Az, = g.upB/2 is the Zeeman splitting in the t-wire,
with g the corresponding g factor and p g the Bohr magneton.
Assuming that the NWs are effectively one-dimensional,
orbital magnetic field effects are neglected.

Superconductivity is induced in the NWs through a tunnel
coupling with an s-wave SC. The tunneling of both electrons
of a Cooper pair into the same NW is described by

A; )
Hd = Z T/d'x[\pfff(lo'y)ﬂo'/\p‘[o” +H_C_]’ (4)
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where A; > 0 is the pairing potential of the induced direct
superconductivity in NW t. Additionally, we allow for
crossed-Andreev pairing, where a Cooper pair splits and one
electron tunnels into each NW; this process is described by

Ac :
H. = 7 Z /dx[wra(la}*)ao’\pfo’ + H'C']a (5)

7,0,0'

where A, > 0 is the induced crossed-Andreev pairing poten-
tial. The total Hamiltonian is givenby H = Hy + H,, + Hz +
H; + H..In Appendix A we provide microscopic expressions
for A; and A, for the special case of weak tunnel coupling
between the NWs and the SC, y « Ay., where y is the
energy scale of the NW-SC tunnel coupling and Ay, is the
superconducting order parameter of the s-wave SC. There,
we show that the ratio v/A;A7/A. can be tuned by varying
the NW separation d but always satisfies ./ AjA7;/A; > 1 in
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the absence of strong electron-electron interactions [31]. For
our discussions in the main part, we focus on the experimen-
tally most relevant regime, |Es, 1 — E, 1| > Az, Ar, A >
|[A] — Ajfl,|Az1 — Agzil, corresponding to the limit of strong
and different SOI energies, with the differences in the proxim-
ity gaps and Zeeman energies being the smallest energy scales
in the system. This allows us to replace A;,Az; — Ay, Az,
and to compensate the effects of interwire tunneling, Hr =
—T'Y",, [dx[W] (x)¥z (x) + H.c.] with tunneling strength
" > 0, by tuning the NW chemical potentials to an appropriate
sweet spot; see the stability analysis below. Notably, interwire
tunneling can be substantial compared to the strength of
crossed-Andreev pairing, |A./I'| = tanh(d /&;.)| cot(kF scd)|
with &, the coherence length and kF ;. the Fermi momentum
of the s-wave SC; see Appendix A. Without appropriately
tuning the chemical potentials, interwire tunneling pushes
the topological threshold to significantly higher magnetic
fields, and not much is gained. For that reason, the low-field
topological threshold did not emerge in previous studies [42].

III. TOPOLOGICAL PHASE DIAGRAM

First, we resolve the topological phase diagram of our
model. We note that for Ay >0 (Az = 0) the Hamilto-
nian H is placed in symmetry class BDI (DIII) with a
Z (Z,) topological invariant [43]. We begin by linearizing
the Hamiltonian Hy + H,, around its Fermi points at k = 0
and k = +2k,, . and consider the effects of magnetic field
and superconductivity perturbatively; see Appendix B. When
|Eso,1 — Eg.11 > Ac, the crossed-Andreev pairing couples
only the interior branches; see Fig. 1(b). We find that the
spectrum is gapless at k = 0 provided

A2 = (Ag£ Az (6)

There is no gap closing at finite-momentum for |E;,; —
Eso,ﬂ > Az, Ad’ Ac~

Based on Eq. (6), we are now in the position to determine the
topological phases themselves; see Fig. 2. When Az = 0 and
A, > Ay, the system is a time-reversal symmetric topological
superconductor and hosts a Kramers pair of MBSs at each end
[27]. For Az = 0 and all remaining values of A, it is a trivial
superconductor. Since the number of MBSs is a topological
invariant, it cannot change without closing the energy gap.
Consequently, for A, > A; + Az the system must be in a
topological phase with two MBSs at each end, while for A; —
Az > A, it must be in a trivial phase. Moreover, for A, = 0
and Az > A, each NW independently hosts a pair of MBSs
at its ends [1,2]. Thus, we conclude that the system must
exhibit a topological phase with two MBSs at each end for
Az — Ay > A.. Finally, from an explicit calculation of the
MBS wave functions, we find that the system hosts one MBS
oneachendfor Ay + Az > A, > |Ay — Ayl

We now discuss this one-MBS phase in more detail. There
are three remarkable aspects: (1) For any finite crossed-
Andreev pairing strength A., the one-MBS phase occurs
even for Zeeman splittings smaller than the direct pairing
strength, Az < A,. Notably, for A, = A, an infinitesimal
magnetic field can drive the system into the one-MBS phase.
This behavior originates from the destructive interference
of direct and crossed-Andreev pairing, which lowers the
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FIG. 2. Topological phase diagram as a function of the Zeeman
splitting Az and the strength of the induced crossed-Andreev
pairing A, for the regime |E;, 1 — E¢, 1| > Az, A, A > |A —
A1l,|Az1 — Agzi|. There are two topological phases hosting one MBS
(blue) and two MBSs (red) at each end. The trivial phase (white) does
not host any MBSs. To take advantage of the low-field topological
threshold, the setup shown in Fig. 1(a) should be operated in the
one-MBS phase for Ay, + Az > A, > |Ay — Ag|.

topological threshold to Az = A; — A.. (2) The one-MBS
phase is realized for A, < A,. This means that it can be
achieved in a noninteracting system which, consequently,
constitutes a powerful advantage over systems at strictly zero
field which host Kramers pairs of MBSs. The latter usually
rely on the presence of strong electron-electron interactions
that are difficult to control experimentally [27-30]. Also, the
definition of a topological qubit in time-reversal invariant
topological superconductors is potentially problematic as it
requires additional symmetry conditions [44,45]. Compared
to that, the one-MBS phase allows for the standard definition
of a topological qubit for topological superconductors without
time-reversal symmetry. (3) The one-MBS phase exists in
the limit of strong SOI, which ensures sufficiently short
localization length and immediate accessibility with current
experimental technology. The weak-SOI limit [42] is experi-
mentally less feasible, as it leads to large localization lengths
of the MBSs requiring ultralong NWs.

IV. LOCALIZATION LENGTHS

We continue the discussion of the one-MBS phase by
computing the localization lengths of the MBS wave functions.
We assume that the NW length is much longer than the MBS
localization lengths, so that MBSs at opposite ends do not
overlap [46—48]. The MBS wave functions then correspond
to zero-energy eigenstates of the Hamiltonian H and can be
determined independently for each end; see Appendix C.

We find that the MBS wave functions are characterized by
the localization lengths determined by the two branches of
the spectrum [49,50]. The localization lengths corresponding
to the exterior (e) branches at k = *+kp, = +2k;,, of the
spectrum are given by the superconducting coherence lengths,
&,; = hup, /A4, where vp, = hkg, . /m is the Fermi velocity
in NW 7. The localization length due to the interior (i) branch
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of the spectrum is given by

& = ZHUFIUFi{(UFl +up)(Az — Ay)

+ Ik —vr(Az — AP +dvrrvpaz) L ()

The total localization length is given by £ = max{§;,&..}.

We now want to compare the MBS localization length in
the double-NW setup to the one in the standard setup of a
single Rashba NW coupled to an s-wave SC and subjected to
a magnetic field along the NW axis [1,2]. Assuming that the
NW chemical potential is tuned to the crossing point of the
spin-polarized bands of the Rashba spectrum, this single-NW
setup hosts a MBS at each end provided Az > A,. The MBS
localization length is & = max{livp/(Az — Ag),ive/ A4},
where v is the Fermi velocity in the NW [49]. In general,
we find that the MBS localization length of the double-NW
setup is always shorter than that in the single-NW setup
for a fixed Zeeman splitting, & < & when A. > 0. To give
numerical estimates, we choose typical experimental values
for semiconducting NWs, A; = 0.1 meV, g = 2, and vp| =
vr = 1.5 x 10* m/s and vpy = 2.5 x 10* m/s. Furthermore,
we take Az =0.13 meV for the Zeeman splitting which
corresponds to a field strength of ~2.2 T. For the MBS
localization length in the single-NW setup we find & ~
330 nm. In contrast, the double-NW setup with a strength of
crossed-Andreev pairing A, = 0.08 meV yields a reduction
of the MBS localization length to & ~ 160 nm. Inversely, a
localization length of £ ~ 330 nm which is comparable to the
single-NW case is achieved already for a Zeeman splitting
of Az =0.27 meV corresponding to a field strength of
~1 T. The double-NW setup thus allows for MBS localization
lengths that are comparable to the single-NW setup despite a
significant reduction of the magnetic field strength by ~1.2 T.

V. STABILITY ANALYSIS

Next, we study the stability of the one-MBS phase with
respect to interwire tunneling and rotations of the SOI vector
away from the directions specified in Fig. 1. First, we show that
the effects of interwire tunneling on the low-field topological
threshold can be compensated by tuning the NW chemical
potentials (. to an appropriate sweet spot and we estimate
the precision of this tuning. For general p, and finite interwire
tunneling, we find that the low-field topological threshold from
the trivial to the one-MBS phase occurs at the critical Zeeman
splitting

AY o ={2(A7 + A2+ T?) + i + it
— (BAGAL + [4A2 + (w1 + )]s — i)
FAT [ + pill4Ag A + Ty + 1)) 71 /2. (8)

The critical Zeeman splitting is minimizedto Az . = Ay — A,
at the sweet spot y, = I'. For |u.| > T, the critical Zeeman
splitting increases and approaches A% . = A} 4 u? when
lmz| > |u|; see Fig. 3(a) and Fig. 4 in Appendix D. To
tune the chemical potentials to the desired sweet spot, we
fix pu7 and determine Az . as a function of u; (e.g., by the
emergence of a zero-bias conductance peak). This procedure
is repeated for different values of wi. The case u, =T is
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FIG. 3. (a) Top panel: Color-scale plot of the topological thresh-
old Az ./A, for the one-MBS phase as a function of u./A, for
A./A; =05,T/A; = 1. Bottom panel: Az /A, as a function of
m1/Ay for uy =T (red) and pi/Ay; =4 (blue). The topological
threshold Az . exhibits a global minimum for u, = I'. (b) Topolog-
ical phase diagram as a function of Az/A; and A./A; (obtained
from a tight-binding diagonalization of 800 sites per NW) for finite
interwire tunneling. We have E, /A = 6.25, E,i/A; = 12.25,
Ai/Ay=13,T/A; =1, uy = ui =T'. Colors are the same as in
Fig. 2. Black dashed lines denote the approximate phase boundaries
for u, = 0. For u; = pi = I' the one-MBS phase itself and its phase
boundary to the trivial phase remain stable. In contrast, for u, = 0,
the topological threshold separating the trivial and one-MBS phase
is pushed to higher magnetic fields. (c) Same phase diagram as in
(b) but with the two SOI vectors not being parallel to each other but
still orthogonal to the magnetic field. We take u, =0, I' =0, and
6 = m/6 for the relative angle between the SOI vectors. Unlike the
one-MBS phase, the two-MBS phases are unstable against rotations
of the SOI direction.

achieved for the global minimum of Az . as a function of
and p. The required precision of this tuning is determined

J
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by the width of Az . as a function of u,, which is on the
scale of A.. Importantly, without this tuning the lowering of
the topological threshold between the trivial and one-MBS
phase does not occur [42] as the phase boundary separating
the one- and two-MBS phases shifts to larger magnetic fields;
see Fig. 3(b). In Appendix D we show that the compensation
is still possible in the regime of low Zeeman splittings for
A; ~ |A| — A7| but requires an asymmetric tuning of the
chemical potentials.

Second, we address the case when the SOI vec-
tors in the two NWs are not parallel but still orthogo-
nal to the magnetic field vector. We replace H — H —
i) goh [dx Wl (o)), 0V and set o) =a, o] =
0, aj = @cosb, oc% = @ sinf. The new Hamiltonian is in
symmetry class D with a Z, topological invariant [43] and a
tight-binding diagonalization reveals a stable one-MBS phase
and unstable two-MBS phases that turn trivial for sinf # 0;
see Fig. 3(c) and Appendix E.

Finally, we have verified by a numerical tight-binding
diagonalization as above that the one-MBS phase is stable
against Gaussian disorder with mean (£.) = 0 and a standard
deviation that is smaller than the gap.

VI. CONCLUSIONS

We have shown that in a double-NW setup the destructive
interference of direct and crossed-Andreev pairing signif-
icantly reduces the topological threshold compared to the
standard single-NW setups [1,2]. Moreover, we have demon-
strated that the resulting MBSs exhibit localization lengths
that can be shorter than those of the standard single-NW
setups. Consequently, they represent ideal candidates for future
experiments on quantum information processing with MBSs.
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APPENDIX A: MICROSCOPIC MODEL OF THE PROXIMITY EFFECT

In this appendix, we provide a microscopic derivation of the system parameters of our model Hamiltonian H = Hy + H,, +
Hz + H; + H. + Hr presented in the main text for a weak tunnel coupling between the NWs and the SC, following methods
similar to those found in Refs. [31,51]. We assume that the NWs are of infinite length, so that the momentum k, in the x direction
is conserved. The momentum-space representation of the bare Hamiltonian of the NWs is given by

dk,
HO + Hm + HZ = Z f 277 q}io(kx)(ér - arkxaz + AZar)aa’\pTU’(kx)v

7,0,0

(AD)

where we have introduced the single-particle dispersion in the absence of SOI and magnetic field, &, = k2/2m — .. The Pauli ma-
trices o, . are acting spin space. The NWs are coupled to an s-wave SC of finite width d. We describe the SC by the Hamiltonian

HSC=;/

2 2

dk, [
dz |Vl (ky,
o [ vl

Age dk, (4 : .
F 50N [ 5 [ el i e Ve (k) + Hic
o,0' 0

07k
- - Msc “I’[sc o kxv
2myg, + 2mg, H o (ke,2)

(A2)

where my. and pu,. are the effective mass and chemical potential of the SC, respectively, and A,. is the superconducting
pairing potential. Notably, we neglect the Zeeman splitting due to the applied in-plane field on the superconductor; this is
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a good approximation at weak magnetic fields if the Zeeman splitting of the superconductor is much smaller than its bulk
gap. We also allow for electrons to tunnel locally between SC and NW, assuming that this process preserves both spin and

momentum,

2

dk, -
Ht = - Z/ tr[qllT—g(anZr)qlxc,a(kX7Zr) + H-C~]’
7,0

(A3)

where #; is a nanowire-dependent tunneling amplitude and z, denotes the position of the t-wire. We choose a symmetric
configuration z; = z,, and z; = d — z,, while assuming that the wires are located close to the edges of the superconductor, z,, < d.
The total Hamiltonian can be diagonalized by introducing a Bogoliubov transformation. The resulting Bogoliubov—de Gennes

(BdG) equations are given by

Z[(Sr — k0, + Az0y)gorltror(ky) — trusc,a(kxazr)] = Eu.o(ky),

Z[_(gr - athaz + AZTGX)G’U + ttvsc,o(kx»zr)] = Evnr(kx),

o

17,0’

7,0’

82 k2
Z - = + — — Mse usc,a(kxyz) + iAsc‘(ay)aa’vsc,a’(_kxvz) - l‘I(S(Z - Zr)ura(kx) = Eusc,o(kxvz)a
2mge 2mg

82 k2
Z - - - + Mse vxc,a(kx 7Z) - iAxc(Uy)aa’usc,a’(_kx 7Z) + tl—(S(Z - Zr)vta(kx) = Evsc,(r(kx 7Z)' (A4)
2mge 2mgc

Here, ur[scjc (Vr[scle) 18 the wave function describing an electron (hole) of spin o in the t-wire (in the SC). Inside the SC (i.e.,
for 0 < z < d), we must solve the BdG equations for a conventional s-wave SC:

7 K
- + — Mse )Nz — ASL'nyGy wsc(kx’z) = EI/fsc(k)mZ)’
2mge 2myc

(AS5)

where Vs (ky,2) = [tse 1 (ky,2),tse, | (ks 2) Use 1 (—kx,2), Vs, | (—kx,2)]” s a spinor wave function. Solving independently in the
left (z < zy), middle (z,, < z < d — zy), and right (z > z,,) regions, the wave function can be expressed as

Vi(z < Zw) = €1 Xe,t SIN(P12) + C2Xe,y SIN(P12) + €3 X014 SIN(P-2) + Caxn,y SIN(P-2),

wm(Zw <z < d— Zw) — CSXe,Teip+z + C6Xe,l,eip+z + C7Xe,T‘e_ip+z + CSXe,ie_iPHC

+coxnre?* + croxn €+ crixnre P+ craxny e PE,

Y (2 > Zw) = C13Xe,t SIN[p(d — 2)] + craXe,y sSin[py(d — 2)] + c15xn.1 sin[p_(d — 2)] + ci6Xn,y sin[p_(d — 2)],

where p2 = 2m (s £iQ) — k2, with Q2 = A2, — E2. The
spinors are defined as y. = (9,0,0,v9)7, Xe,, = (0,up, —
v0,0)",  xn1r = 0, — vo,u0,0)", and xu, = (v,0,0,up)”,
where u( and vy are the BCS coherence factors,

1 i2
MO(U()) = 5(1 + E)

The nanowires enter only through the boundary conditions.
These boundary conditions, which must be imposed at z =
Z; (vanishing boundary conditions at z =0 and z =d are
accounted for already), are given by

Yi(z1) = Ym(z1),

Y (21) = Ym(20),
[0:Ym(z1) — Wi 2]/ kr = 270G (E .k )Yn(z1),
[0:m(21) — 0x ¥ 2D/ kr = 2yin.GR(E.k)¥i(z1),  (A8)

where  GR(E k)=(E — &, + ackyo: — Azen.0, +i07) !
is the retarded Green’s function of the t-wire in the absence of

(A7)

(A6)

(

tunneling. The boundary conditions Eq. (A8) can be rearranged
into the form Mc¢ = 0, where M is a 16 x 16 matrix and c is a
16-component vector of unknown coefficients. The excitation
spectrum of the junction is determined by solving the equation
det M = O for E(k,).

‘We now map the exact BAdG solution to the effective pairing
model in the limit of weak coupling. We adopt the following
approximations. First, we assume that the chemical potential
of the SC is the largest energy scale of the problem (i, >
Eso, Az, Ase,pir). This allows us to approximate

P+ = \/zmsc(,usc + ZQ) - k;% ~ kF,sc + iQ/UF,SCs (A9)

where kp sc = +/2Mscfhse and vp 5o = kp sc/m;c are the Fermi
momentum and velocity of the SC, respectively. When differ-
entiating the wave function [on the left-hand side of Eq. (A8)],
we approximate pi = kp,.; however, in the exponentials
[entering through . (ky,z:)], wekeep p1 = kpsc £ i2/VF 5¢
(this gives the exponentially growing/decaying parts of the
wave function). The weak-tunneling limit is assumed by
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taking y; < Ay, where y; is a nanowire-dependent tunneling
energy scale given by y; = 12 /v ;. In this limit, the relevant
pairing energies are small (£ < A;.) and we can expand the
coherence factors as

140\ Ay
uo(vo) = 5 z

However, even with these simplifications, the matrix M
[defined below Eq. (A8)] is too complicated to be displayed
explicitly here.

Also due to the complicated nature of the matrix M, we
can only evaluate det M numerically; this means that the
energy spectrum E(ky,u.,0;,Az.,v:,d) must be effectively
“guessed” to be mapped out over all of parameter space (i.e., it
would be very computationally expensive to numerically map
out the spectrum as function of all parameters of the problem).
Luckily, it is actually quite straightforward to guess the correct
spectrum.

The superconductor induces four effective terms in the
Hamiltonian of the NWs. Induced pairing terms are of the
direct type,

(A10)

dks it i
H; = Z AI/ p (W, (k)W (=k,) +Hel, (ALl
i |
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and the crossed-Andreev type,

dk, -
H, = ACZ/ - (W], (k)W (k) + Hel.  (Al2)

In addition, the superconductor induces single-particle cou-
plings, which can be of the intrawire type,

dk,
Hyy == 3w / ST, (k)W k) + Hel, (AL3)
and of the interwire type,
Hp = —T Z /

With these proximity-induced terms, we propose to describe
the nanowires with an effective Hamiltonian of the form

dk,
(Wl (ko )Weo (k) +Hel.  (Al4)
21

1 [ dk,
H=2 / O (ke Y H ek )P (ky ), (A15)

2 21

where ® = (\Dll,\Pli,\Ilfl,\I/T ‘~Iln,\11ﬁ,\llj \Il;ri)T and the effective Hamiltonian density Her is given by

1’ 11°

1—

1 A 2 1 2 1—1,
Hiko) = (&1 — wo(%)nz +E - 6m)(7’>nz - alkx( +2’ )az - aka(T’)az

1+t 1—1 I1+7 1—1
+ AZl( ) )nzox + AZl< ) Z)nzax - Acfxn)'ay - fonz - Al( ) Z)nyay - A1< ) Z)nyay (A]6)

with the Pauli matrices 7, y ., 7x,y.z, Ox,y,; acting in nanowire,
particle-hole, and spin space, respectively. In the special case
when Az, = 0, the Hamiltonian obeys both time-reversal and
particle-hole symmetry with operators Ur = oy, Up = 1,,and
transformations U} H*(k)Ur = H(—k,), ULH*(k)Up =
—H(—k,), respectively. Furthermore, U;Ur = —1, UjUp =
1. Hence, for Az, =0 the Hamiltonian is placed in the
DIII symmetry class with a Z, topological invariant [43].
In general, the Hamiltonian also exhibits an effective time-
reversal symmetry described by U = n,0, with (U})? = 1.
Therefore, for Az; # 0 the Hamiltonian is placed in the
symmetry class BDI with a Z topological invariant [43].
However, we note that the effective time-reversal symmetry
U7 is unstable when the SOI vectors are not parallel but still
orthogonal to the magnetic field vector,

1 I
kxoz< z L& )az + kﬁ( . & ) [cos(§)0, + sin(@)n, a1,

(A17)

where 6 € [0,27)is the relative angle between the SOI vectors.
Moreover, the effective time-reversal symmetry Uy is also
unstable if we allow for a magnetic field vector component

[
that is aligned with one of the SOI vectors,

1+, 1—1, .
Az (T) n:0x + Azi( 2 )nz[008(¢)6x + sin(¢)o. ],

(A18)

with ¢ € [0,27). In the presence of either one of these
perturbations with sin(6) # 0 or sin(¢) # 0, the Hamiltonian
is in the symmetry class D with a Z; topological invariant [43].

The effective parameters A;, A., Su;, and I' were
determined as functions of the tunneling strength y, and
wire separation d in the absence of spin-orbit coupling and
Zeeman splitting in a previous work [31]. In the simplified
limit sin’(krz,,) = 1, they are given by (&, = vV s/ A is the
superconducting coherence length)

_ 2)/: Sinh(Zd/ESC)
" cosh(2d /&) — cos(2kpd)’

4 /yryisinh(d /&) cos(kpd)
~ cosh(2d /&) — cos(Rkpd)
2y, sin(2kpd)

" cosh(2d /&) — cos(2krd)’

_4/vivicoshd /&) sin(krd)
cosh(2d /&) — cos(Rkpd)

Spr =

(A19)
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Because the effective proximity-induced parameters should
depend only on properties of the superconductor and the
tunneling amplitude, let us make the ansatz that all four of
the proximity-induced effective parameters given in Eq. (A19)
remain unchanged when spin-orbit coupling and a Zeeman
splitting are added to the nanowires. That is, we substitute
Eq. (A19) to describe the effective parameters of Eq. (A16).
We then find that if we substitute the energy eigenvalues E of
Eq. (A16) into the boundary conditions Eq. (A8), these choices
of E ensure that det M = 0; this means that the eigenvalues
of the effective Hamiltonian (A16) correspond to the energy
spectrum obtained by solving the BdG equations.

APPENDIX B: ENERGY SPECTRUM IN THE
STRONG-SOI REGIME

In this appendix, we compute the bulk energy spectrum
of the model H = Hy + Hy, + Hz + H; + H, proposed in
the main text [27,42,52]. Additionally, we will determine the
gapless points of the spectrum which potentially correspond
to topological phase boundaries. We assume the regime of
strong SO, E, ; > Az,A;,A., and that the deviations in the
proximity-induced gaps are the smallest energy scale [27,52],
Ar > |Ay — Ajland Az > |Az1 — Az |. This allows us to
set Ay = A;, Az = Az, and to neglect the effects of interwire
tunneling as they can always be compensated by an appropriate
adjustment of the nanowire chemical potentials.

We find that the bulk energy spectrum is given by
E? = (hvp-k)* 4+ A],

PHYSICAL REVIEW B 96, 035306 (2017)

We begin by expanding the electron operator according to
[53,54]

(o+

\.Il.[g(x) = RTU(x)ei lekﬁx + LIU(X)eiQkFrxa

B

where R;,(x) and L.,(x) are slowly varying right and left
moving fields with spin o/2 in the t-wire. Furthermore, we
recall that kp, = 2k, .. Next, we distinguish between three
regimes.

1. Strongly detuned SOI energies

The first case corresponds to strongly detuned nanowire
SOI energies, |Eg 1 — Eg 1l > Az,Aq,Ac. In this case
the crossed-Andreev pairing couples the two nanowires
only at k=0. The Hamiltonian is given by H =
(1/2) f dx W (x)H(x)¥(x) with the Hamiltonian density

H(x) = hvpik(1 +)p./2 + hvptk(l = ©)p./2
+ Azn (o px +0y0y)/2
+ Actiny(0xpy — 0y0x)/2 + Agnyoypx  (B2)

and the basis W = (Ry1, Li1, Ryi. Ly, R}, L}, Rl LT,
Rit, L1y R, Lyp, Rl;, LT, RI, LL). The Pauli matrices
Tey.zs Nxy,zs Ox,yzs Px,yz act in nanowire, electron-hole,
spin, and right-left mover space, respectively. Furthermore,
k = —id, denotes the momentum operator whose eigenvalues
are k and measured with respect to the Fermi points at
0, £ kpr = £2ks0 -, and vp; = hiks, - /m is the Fermi velocity
in the T-wire.

EZ, = MR (v} + vi)k* +2(Ag £ A +2A7

2

2
£ 482 vp — PR+ 4 A £ AZP) + 4 (vF, — )R],

where the first (second) equation corresponds to exterior
(interior) branch of the spectrum. We find that the spectrum
is gapless at k = O provided A, = |A; &= Az|. There exist no
gapless closing points for k # 0.

2. Weakly detuned SOI energies

The second case corresponds to weakly detuned nanowire
SOI energies, |Es, 1 — E, 11 K Az, Ay, Ac. In this limit, we
neglect the difference in spin-orbit energies, vr = Up| = Upi.
The crossed-Andreev pairing now couples the two nanowires
bothatk = Oand k = £kp = £2k,,. The Hamiltonian density
is given by

H(x) = hUFi(\pz + Azn (oxpx + pry)/z
— Actenyoypx + Aanyoy px,

and the bulk spectrum is modified to

E2 = (hupk)® + (Mg £ A,
E3, = (hupk)* + (A £ 1Ay £ Az]), (B4)

(B3)

(

where the first (second) equation corresponds to exterior
(interior) branch of the spectrum. Besides the gap closing
at k =0 when A, =|A; = Az|, we find an additional gap
closing at k = +kp = 2k;, when A, = A,. For Az =0
this gap closing does not correspond to a topological phase
transition because the SOI interaction can be removed by
a gauge transformation. For Az > 0 we also find from a
numerical tight-binding diagonalization that the number of
MBSs is unchanged across the gap closing line A, = Ay; see
also Fig. 6(b).

3. Intermediate regime

The last case corresponds to the intermediate regime, when
|Eso,1 — Eg.1l ~ Az, Ay, Ac. To determine the gapless points
of the spectrum, we consider for this case the full quadratic
Hamiltonian given by H = (1/2) [ dx O (x)H(x)P(x) with
Hamiltonian density

H(x) = h2k*n,/2m — oy k(1 + 1.)0./2 — ajk(l — 1.)0,/2

+ Azn.ox — Agnyoy, — AcTiny0, (BS)

035306-7
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and basis ® = (\Iln,\1’11,‘I’L,\IIII,‘IJIMI’H,\I’%LI,‘I’ITI). We fo-
cus on the gap closing points at finite momentum, because
the zero momentum gap closing points are not affected by the

SOL. Furthermore, because a finite magnetic field cannot open

J

E3.(A;=0)= <

2m 2

2\ Rl +el) 12k
+ + A+ AL £ k(o + o)

PHYSICAL REVIEW B 96, 035306 (2017)

an energy gap at finite momentum in the regime of strong
SOI, we can restrict ourselves to the case when Ay = 0. Our
findings will be equally valid for the case when Az # 0. First,
we determine the bulk energy spectrum,

2m

_ 2129\ 2
:I:\/<k[oc1 _ai][k(al;om) _ hk i|> n Ag(kz[al —ai]2+4A,21)- (B6)

Next, we find that the spectrum is gapless provided that

B2\’ R2k?
Az = Ai — (—2m ) - kzoqai + <—2m )k(al + «og)

k>

+iAy [2(—) — k(ay + al)i|. B7)
2m

The spectrum is also gapless for the same condition, but with

k — —k. Because A, > 0, we need to require that

nk?

2<—> — k(o + o) =0. (B8)
2m

Solving this expression (and the corresponding one with k —

—k) for k yields the two gap-closing points

2 -
k*:i%(“‘;rm). (B9)

Inserting this result back into Eq. (B7), we find the gap-closing
condition for k # 0,

Ewi—E.,i\°
AC'ZA:EAd\/1+4(%> :
d

We note that A’ > Ay, so that the gap closing occurs for
larger values of the strength of the crossed-Andreev pairing as
compared to the regime when |E, 1 — E;, 1| K Az, Ay, A..
Additionally, we emphasize once more that the result in
Eq. (B10) is valid also for Az # 0 in the limit of strong SOL.
Finally, we point out that the topological phase diagram for
the regime |E, 1 — E, i| ~ Az,A4,A. is given in Fig. 5(b).

(B10)

J

2m

APPENDIX C: MAJORANA BOUND STATE WAVE
FUNCTIONS IN THE STRONG-SOI REGIME

In this appendix, we compute the zero-energy MBS wave
functions of the model H = Hy + H,, + H7z + H; + H.. As
in the last section and the main text, we assume the regime
of strong SOI, E, ; > Az,A;,A., and that the fluctuations
in the proximity-induced gaps are the smallest energy scale,
A > |Ay — Ajland Az > |Az1 — Az |. This allows us to
once again set Ay = A, Az = Az, and to neglect the effects
of interwire tunneling as they can always be compensated by
an appropriate adjustment of the nanowire chemical potentials.

We begin by assuming that the nanowire length is much
longer than the localization length of the MBSs. This means
that the MBSs at opposite ends of the system do not overlap
and can hence be treated independently. Next, we choose the
origin of our coordinate system so that one of the boundaries
of the system is located at x = 0 and focus on this boundary
when computing the wave functions. We discuss two regimes:

1. Strongly detuned SOI energies

The first regime corresponds to strongly detuned
nanowire SOI energies, |Es, 1 — E;, 1] > Az,Aq,A.. With-
out loss of generality, we choose o7 > ;. For A, +
Az > A, > |Ay — Az, we find a single MBS given by
y =Y, [ dx ¢ (x) @.(x), where ®F = (W, W1, W], W)
is the electron spinor and ¢, = (¢, 1,¢,1,¢;‘1,¢:‘T) the wave
function vector in the t-wire. The latter is (up to normalization)
given by

$ro(x) =

2

Xie

3

41 (1 - ,) VA820p1UpT + (A — Az (Wr1 — vpr) + (A — AZ(VpT — vF1)

2 ZACUFi
iﬂ(lfff)/“(efx/éez*i(fknx _ efx/&)’ (CD)
with the localization lengths corresponding to the interior (i) and exterior (e) branches of the spectrum given by
2%1)1:1 Uri
(e2))

P = :
VAAZUR1Up + (Mg — A2 (e — ) + (Az = Ad)(Vr1 + vpD)
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For Az > Agand A, < Az — Ay, we find two MBSs givenby y = Y [dx ¢;(x) . (x) and y' = Y__ [ dx ¢.(x) P.(x),
where the wave function vector ¢, = (¢, ,¢.;,(¢;,)",(#.;)*) is (up to normalization) given by

, -1
$e () = | — +<

1+ 1:) \/4A3UF1UFI + (Mg — A7) (r1 — Up1)* + (Az — A))(VF1 — Upi)

2 2A UF
% ieir[(l—a)/4(e—x/§e,—idkp,x _ e—x/é,.’)’ (C3)
with the localization length
;o 2hvpvEi
§ ()

(Az = A1 + gp) = \[4820r 051 + (Ag — A2)*(Wr1 — Ve

For A. > Ay + Az, we again find two MBSs. They are givenby y = > [dx ¢-(x) @.(x)and y” = Y__ [ dx ¢! (x) P (x),
where the wave function vector ¢, = (¢;,,¢";,(#7))*,(¢;)*) is (up to normalization) given by

o0 = | 55+

with the localization length

1+ 7;) \/4A3UF1UF1 + (Mg + A7) (r1 — V1) + (A + Az)(UF1 — Upi)

SN
i

We point out that the found MBSs are orthogonal to each other
and correspond to independent solutions of the Hamiltonian,

because ) . ¢, (x)¢.(x) =0 and ) _ ¢, (x) ¢! (x) =0. We

2 ZACl)Fl
X @O D/A(gx e —iokrex _ p=x/E]y (€5)
_ ZhUFIUFj
= 5 5 5 : (Co6)
\/4ACUF1UFT + (Ag + Az) (vr1 — vp1)” — (Ag + Az)(UF1 + UpT)
[
with the localization lengths
’ FZUF ’ ZhUF
gl = &= (C10)
Az —(Ac+ Ag) Ac+ Aqg

also note that the remaining parameter regimes which we did
not discuss here correspond to topologically trivial phases.

2. Weakly detuned SOI energies

The second regime corresponds to weakly detuned
nanowire SOI energies, |Es, 1 — E;, 1| K Az,Aq,A.. For
simplicity, we assume that E,,; = E;,1. For Ay + Az >
A, > |Ay; — Azland A, # Ay, wefind asingle MBS given by
y = >, [ dx ¢:(x) ®-(x) with the wave function vector ¢, =
(¢r1,¢:1,87,,¢77) in the T-wire given (up to normalization) by

d)‘[(r(-x) — ieiT[(l70)/4(67)(/597[0'/(,,% _ efx/E,-) (C7)
and the localization lengths corresponding to the interior (i)
and exterior (e) branches of the spectrum

h .
£ = —AF(ZLAJ) if A, > Ay,
r .
—Az—?ZZ—AL-) if A, < Ay,
AU if A > Ay,
g =58 (C8)
A A if Ar < Ay

For A. <|As— Az, Az > Ay, and A, # A; we find
two MBSs given by y =Y [dx ¢.(x)®.(x) and y' =
Y. [ dx ¢.(x) D-(x), where the wave function vector ¢, =
(#;1,9.1, (@)%, (¢.7)") is (up to normalization) given by

¢, (x) = iTe ™IV (em¥/Emiokex _ p=x/Ey - (C9)

We point out that the solutions for the two-MBS phase are
independent, because ¢, (x) ¢, (x) = 0. The parameter regimes
which were not discussed correspond to topologically trivial
phases.

APPENDIX D: INTERWIRE TUNNELING

In this appendix, we study the effects of tunneling between
NWs in the model which we presented in the main text. These
interwire tunneling processes are described by

Hr = —T Z/dx[\llig(x)\llfa(x) +He], (D

where I' > 0 is a spin-independent tunneling amplitude.
The full Hamiltonian of our system in then given by H =
Hy+ Hy,, + H; + H; + H. + Hr. In this section, we will
analytically show the following: (1) The effects of interwire
tunneling on the topological phase transition between the
trivial and the one-MBS phase can always be compensated by
an appropriate adjustment of the nanowire chemical potentials
when Az, A; > |A| — A1l|,|Az1 — Azg|. For low Zeeman
splittings, Az, < A, this compensation is possible even
if Az; ~|Az1 —Ayi|l and A; ~ |A; — Ag|. (2) The latter
adjustment of the nanowire chemical potentials expands the
one-MBS phase by pushing the topological threshold from the
one-MBS into the two-MBS phase to higher Zeeman splittings.

We first discuss the limit when Az, A; > |A| —
Ail,|Az1 — Az7]. As a starting point, we set Az = Ay,

035306-9
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(®) 2 MBS (b) 1 MBS

1.5
1.0F
= =
< <
~ ~
N N
< <
0.5
0 MBS
1 1 1 0.0 1 1 1
-5 0 5 -5 0 5
p1/Dqg p1/Aq

FIG. 4. (a) Topological phase diagram as a function of Az/A, and /A, (obtained from a tight-binding diagonalization of 800 sites
per NW) for finite interwire tunneling, I'/A, = 1. We have set E,, . /A; = 6.25, A./A; = 0.5, and nui/A,; = 1. Colors are the same as in
Fig. 2 of the main text. We see that without tuning the chemical potentials to the sweet spot 1, = I" the topological threshold A . is shifted
to significantly higher magnetic fields and not much is gained in a double-NW setup compared to single NWs. (b) Same topological phase
diagram as in (a) but for i/ A, = 4. Once more, we see that without the tuning to the sweet spot i, = I' no low-field topological threshold is

observed.

A4 = A; and redisplay the full Hamiltonian in the presence of
interwire tunneling, H = fdx Wi (x)H(x)W(x)/2 with U =
(W] Wl Wy, Wy, Wl Wl Wy W) and the Hamiltonian
density

Rk? .
Hx) = % — u |n, — ako, + Azn.ox — AdnyO'y

—Actenyoy, — L. D2)

The Pauli matrices oy y ;, Try., and 7y, . act in spin,
nanowire, and electron-hole space, respectively. Because we
are solely interested in the modification of the zero-momentum
gap closing condition A% = (A, £ Ay) for finite interwire
tunneling, we have also set « = «; = «j. Our model can
now be mapped onto a model of effectively two decoupled
topological NWs. To see this, we introduce the basis

Ul =l 4w vl aw]

i1

+ AW, W A+ AW T)/V2.

We will interpret A = %1 as an effective nanowire index that
(together with the spin index) labels the energy bands of the
system in the absence of superconductivity and magnetic fields
fields, Ay = A, = Az = 0. We choose u = I'. In this new
basis the Hamiltonian density can then be rewritten as H =

=2 [dx ‘Aﬁi(x)ﬁx(x)q'x(x)/Z with

(D3)

272
Hy(x) = (W - Meff,/\) n, — Aako;
J

+ Azn,0, — AActr a0y0y, (D4)
where we have introduced the effective chemical potentials
Mefi,n = 0 and pegr7 = 2I0 as well as the effective pairing
potentials Aegr; = Ay — A; and Agp7 = Ag + A This is
precisely the Hamiltonian of two decoupled topological NWs
labeled by the effective nanowire index A. Thus, the system
hosts one MBS at each end for low magnetic fields when

AY > Ay + ey = (Aa — A (D5)

and two MBSs at each end for large magnetic fields when

Ay > AL+ ke = (Mg + A+ @02 (D6)
Consequently, by an appropriate adjustment of the nanowire
chemical potentials (for example by an external gate voltage),
we still observe the proposed one-MBS phase for low
magnetic fields. Also, the one-MBS phase now even extends to
significantly stronger fields. Moreover, without a proper tuning
of the chemical potentials, || >> T, the topological threshold
is shifted to higher magnetic fields and not much is gained; see
also Figs. 4(a) and 4(b).

Next, we comment on the case when A; ~ |A; — Aj|. In
this case the choice

r 20 and r |21
= — an i= —
M1 A; M1 Al

D7

ensures that the effects of interwire tunneling can still be compensated provided A z; << A.. However, we note that the topological
phase transition from the trivial to the one-MBS phase at A, = 0 is renormalized to

1 A
Aye=5 A%+A%+r2<2+—1+

A Ay

ﬁ) - \/(AIAI[A% + A2] 4+ T2[A, + A1P)? — 4A]A3 (A AT 4 4T2)

>0. (D8
AD (D8)
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1 MBS

Az/Ag Az/A

FIG. 5. (a) Topological phase diagram as a function of Az /A, and A./A, for the regime of weakly detuned SOI energies, | E;, 1 — Ej, 1| <
Az, A, A.. The color coding scheme is the same as in Fig. 2 in the main text. The dashed black line denotes a gap closing at finite momentum.
We have chosen E;, . /A; = 2and ity = 1 = 0. The two-MBS phase which appeared for A, > A; + Az when |E, | — E, 1| > Az, AL AL
turns into a trivial phase. All other topological phases remain unchanged. (b) Topological phase diagram as a function of Az/A; and A./A,
for the regime, |E;, 1 — Eo 1] ~ Az, Ar,Ac.. We have chosen E, | /A =2, Eg,1/A =4.5, uy = ui =0, Aj/A,; = 1.3. We note that both
two-MBS phases disappear for A, > A*; see Eq. (B10).

APPENDIX E: NUMERICAL RESULTS

In this final section, we study the tight-binding model which corresponds to the continuum model presented in the main text
[46,47,50]. The tight-binding Hamiltonian is given by

N N—1 N
H = Z Z &lj[_ﬂrnz + Ay + AZrax]‘]fr,j + Z I/~fj,j.~.1[_t - iarUz]nz&r,j + H.c. + Z I/};j(Ac-77)c)1r/71,j +H.c.,
T\ j=I j=1 j=1

where N is the number of lattice sites per wire and ¥, ; =
(wij,T,lpj‘j,i,w,,M, — ¢, j,4) is the electron spinor at site j
in the 7-wire with v ; , the annihilation operator of a spin o
electron at site j in the t-wire. Moreover, (., A;, o, Az, are
the chemical potentials, direct pairing strengths, SOI strengths,
and Zeeman splittings in wire 7, respectively. Finally, A, is
the strength of the crossed-Andreev pairing, ¢ is the hopping
amplitude, and the Pauli matrices oy, . (1) act in spin
(particle-hole) space.

1. Topological phase diagram

First, we perform a numerical diagonalization to obtain
the topological phase diagram for the regime of weakly
detuned SOI energies, |Ey, 1 — E, il < Azc,Ar,A., and
for the intermediate regime, |Es, 1 — Eg, 1] ~ Az, Ar, Ac.
The results are shown in Fig. 5. In the limit of weakly
detuned SOI energies, we find that the two-MBS phase which
for |Eso,l - Eso,T| > Az, A, Acwith Ay = Ay, Az = Ay,
appeared when A, > A, + Az, completely turns into a
topologically trivial phase; see Fig. 5(a). Compared to that,
in the intermediate regime, we find that the same two-MBS
phase turns into a trivial phase once A. > A¥ where AY was
defined in Eq. (B10); see Fig. 5(b).

2. Stability analysis

Second, we analyze the stability of the one-MBS phase
against different perturbations.

(ED

Misalignments of the magnetic fields. First, we discuss
rotations of the magnetic field in the x-z plane for the
regime of strongly detuned SOI energies, |E, 1 — E;, 1| >
Az, Ar,A.. We replace our tight-binding Hamiltonian ac-
cording to

N
H—>H+Y Y ¥ (8007, (E2)
T j=1

and set Az =0,A),, = Ay for the l-wire and Ayj =
Az cos(p),A,; = Az sin(¢) for the I-wire, where ¢ € [0,27)
is the angle of the magnetic field acting on the 1-wire with
respect to the x axis in the x-z plane. For sin(¢) # 0, this places
the setup in symmetry class D with a Z, topological invariant
[43]. From a numerical tight-binding diagonalization, we find
that the one-MBS phase remains stable, while the two-MBS
phases turn into trivial phases for sin(¢) # 0; see Fig. 6(a).
Additionally, we observe that the one-MBS phase expands to
larger magnetic fields.

Misalignments of the SOI vectors. The case of misaligned
SOI vectors in the two wires was discussed in the main text. To
obtain the topological phase diagram shown in Fig. 3(c) in the
main text, we modify our tight-binding Hamiltonian according
to

N
H—>H+iY > 9l elomni,, (E3)

T j=1
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(a) 3

Agz/A

FIG. 6. (a) Topological phase diagram as a functionof Az /A, and A./A, for the regime of strongly detuned SOI energies, | E;, |

PHYSICAL REVIEW B 96, 035306 (2017)

Ay /Ay

- Eso,i| >

Az:,A;,A., and a rotation of the magnetic field in the T-wire by ¢ = 0.2. The color-coding scheme is the same as in Fig. 2 in the main text.
We have chosen E;, /A = 6.25, E;,1/A; = 12.25, N = 800, A1/A; = 1.3, u; =0, and pj = 0. While the one-MBS remains stable, the
two-MBS phases are unstable against rotations of the magnetic field with sin(¢) # 0. (b) Same topological phase diagram as in (a) but with
finite interwire tunneling, I'’/A,; = 1. Moreover, we also set ¢ = 0 and p, = 0. Consequently, the effects of interwire tunneling are [unlike
in Fig. 3(b) of the main text] not compensated and the topological threshold from the trivial to the one-MBS phase is pushed to substantially
higher magnetic fields. Thus, to get the maximum advantage of the double-nanowire setup, it is crucial to compensate for these shifts due to

interwire tunneling.

and set oy = a, af =0 for the 1-wire and a7 = @ cos(d),
of = asin(9) for the 1-wire with @ being the angle of the
SOI vector in the I-wire relative to the z axis in the yz
plane. As a result, we confirm that the one-MBS phase
remains stable against misalignments of the SOI vectors. In
contrast to that, the two-MBS phase is unstable except special
line Az = 0, where time-reversal symmetry guarantees the
presence of Kramers doublets [27,42,52,55-62]. If Az # 0,
the two MBSs localized at the same end are protected from
hybridization by some additional symmetry. However, as
noticed above such effective time-reversal symmetries are not
stable against general perturbations [63—66], resulting in lifting
of the degeneracy of two zero-energy bound states.

Interwire tunneling. Lastly, we provide additional informa-
tion on our analysis for the case of finite interwire tunneling

presented in the main text. In this case, the tight-binding
Hamiltonian is modified according to

N
H— H+ Z Jf;r,j(_rnz)lﬁl,j +H.c., (E4)
j=1

where I' > 0 is the spin-independent tunneling amplitude. As
discussed in the previous section, we find that the effects
of interwire tunneling on the topological phase transition
separating the trivial and one-MBS phase can be completely
compensated by setting u, = I'. Without this tuning the
topological threshold separating the trivial and one-MBS
phase is pushed to significantly larger magnetic fields; see
see Fig. 6(b).
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