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Spin-dependent coupling between quantum dots and topological quantum wires
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Considering Rashba quantum wires with a proximity-induced superconducting gap as physical realizations of
Majorana bound states and quantum dots, we calculate the overlap of the Majorana wave functions with the local
wave functions on the dot. We determine the spin-dependent tunneling amplitudes between these two localized
states and show that we can tune into a fully spin polarized tunneling regime by changing the distance between
dot and Majorana bound state. Upon directly applying this to the tunneling model Hamiltonian, we calculate the
effective magnetic field on the quantum dot flanked by two Majorana bound states. The direction of the induced
magnetic field on the dot depends on the occupation of the nonlocal fermion formed from the two Majorana end
states which can be used as a readout for such a Majorana qubit.
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I. INTRODUCTION

Majorana bound states (MBSs) [1–8] are promising can-
didates for topological quantum computation. Being spin-
less and chargeless particles, they are robust to disorder
[9–12]. However, these properties that make them a desirable
element for information storage make readout problematic.
Nonetheless, there have been several schemes for storage,
manipulation, and readout of topological quantum computers
using MBSs modeled as a Kitaev chain [13], which is
largely phenomenological [14–22]. A theoretical analysis of
physically realized MBSs for quantum information storage has
yet to be rigorously studied; the details of which, as we show
in this paper, are critical for quantum operations.

Although there are several systems in which MBSs have
been proposed, perhaps the most readily accessible are quan-
tum wires [23,24] because: (1) there is potentially a large
spin-orbit interaction (SOI), (2) advances in material science
allow superconductivity to be easily induced by proximity, and
(3) electrical gating allows the wire to be easily tuned in and out
of the topological regime (see for instance Ref. [25]). When
two ends of two quantum wires are brought close to each
other, the two MBSs at the ends form a nonlocal fermionic
state which can be occupied or unoccupied. If a quantum
dot [26,27], which can be electrically defined in experiments
within the same quantum wire, is brought into proximity of
these Majorana end states, the charge or spin coupling can be
used to readout the parity of the quantum wire junction; such
a scheme was proposed in Ref. [19] wherein MBSs, described
by a Kitaev chain, were coupled to a spinful single-level
quantum dot and later adapted to a spinless single-level dot
in Refs. [21,22].

In this paper we study MBSs formed in a quantum wire
with proximity-induced superconductivity near a quantum dot
[28–37], which is also formed inside a quantum wire, all of
which are subject to an applied magnetic field perpendicular
to the SOI. First calculating the wave functions of the quantum
dot and MBSs, which can be done analytically in the strong
spin-orbit regime, we are able to find the spin dependence
of the quantum dot–MBS coupling which has been largely
neglected [21,22,28,29]. We find that by changing the relative
position between dot and MBSs, one can tune between
spin-independent and fully polarized tunneling for typical

parameters. In the presence of two MBSs, the spin-dependent
tunneling induces an effective magnetic field on the dot
which changes direction when the occupation of the nonlocal
fermion, formed from the two MBSs, changes parity. Thus,
this setup allows the readout of MBS qubits via reading out
the spin of the electron on the quantum dot [19].

We organize the paper as follows: in Sec. II we describe
the quantum wire that hosts two MBSs and a quantum dot.
In Sec. III we calculate the overlap of the MBS and quantum
dot wave functions, and thus the spin-dependent tunneling,
for which we obtain simple analytic expressions in a suitable
limit. Using these results, in Sec. IV we consider two MBSs
coupled to the dot and calculate the effective magnetic field
when the complex fermion state formed from the MBSs is
occupied or unoccupied. In Sec. V we numerically calculate
the spin-dependent coupling and the effective magnetic field
on the dot using a tight-binding model. We conclude in the final
section with a summary of our results and their implications
on proposed quantum dot–MBS computational schemes.

II. MODEL

We consider a quantum wire in proximity to a conventional
superconductor, so superconducting pairing is induced, and
a magnetic field along the longitudinal axis which is per-
pendicular to the spin-orbit direction (see Fig. 1). There is
full spatial control of the chemical potential over the wire
so that the right section and left section are tuned into the
topological and nontopological regimes, respectively, with
appropriate gating; at the intersection resides a MBS. Within
the nontopological section, appropriate gates define a quantum
dot which supports a localized wave function. For a sufficiently
large barrier between the MBS and quantum dot, which we
assume in the following, the MBS wave function can be solved
independently from the quantum dot wave functions within the
same quantum wire. For the remainder of the paper we assume
the temperature to be above the Kondo temperature.

A. Majorana bound state

To find the MBS wave function, we consider the two
sections in the quantum wire, topological (ν = t) and nontopo-
logical (ν = n), to be kept at different chemical potentials, μn
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FIG. 1. A quantum wire with applied magnetic field along the
longitudinal (x) axis and spin-orbit vector along the z axis in which
the boundary between a topological section (red) and nontopological
section (gray) supports a MBS. In the upper panel, a quantum dot
(blue) of size L is defined, within the nontopological section, at a
distance � from the topological section. The second setup (lower
panel) is identical to the first with an additional topological section
which ends a distance d − � from the quantum dot center. The red
and blue curves are schematically the probability amplitudes of the
MBS and quantum dot wave functions, respectively.

and μt , and whose interface is at x = �. The Hamiltonian of
this system is

H =
∫

dx �†(x)(H0 + HSO + Hs + HZ)�(x), (1)

where

H0 = −η3[h̄2∂2
x /2m + μ(x)], HSO = −iασ3∂x,

HZ = 	Zσ1η3, Hs = 	sσ2η2 (2)

are the kinetic, SOI interaction, Zeeman splitting, and
superconducting pairing, terms, respectively. Here �(x) =
[ψ↑(x),ψ↓(x)ψ†

↑(x),ψ†
↓(x)]T is the Nambu spinor in the

quantum wire, μ(x) = μt�(x − �) + μn�(� − x), α is the
SOI constant, 	Z is the Zeeman splitting due to the applied
magnetic field, 	s is the proximity induced superconducting
gap, and ψσ (x) [ψ†

σ (x)] annihilates (creates) an electron of
spin σ =↑ , ↓ quantized along the z axis at position x. The
Pauli matrices σi and ηi act in spin and particle-hole space,
respectively. The condition 	2

Z > μ2
t + 	2

s is necessary to be
in the topological phase [23,24,38,39].

In the following, we consider the SOI energy to be large
[40] compared to the magnetic field (ESO = mα2/h̄2 � 	Z)
and the superconducting gap (ESO � 	s). We tune the right
section of the wire into the topological regime by fixing
the chemical potential to zero, μt = 0, and applying a large
enough magnetic field such that the Zeeman splitting is larger
than the superconducting gap, i.e., 	Z > 	s . We consider two
ways in which the left section can be driven into the nontopo-
logical regime: (1) chemical potential is small compared to
the SOI energy but large enough so that 	2

Z < 	2
s + μ2

n, or

(2) a fully depleted wire, −μn � ESO � 	Z,	s , which is
insulating in the normal phase. Although the second regime
presents a more physical experimental realization [26], we are
unable to analytically progress beyond the zero bulk solutions
to the Hamiltonian, i.e., we cannot satisfy differentiability
of the MBS wave functions at the boundary (Appendix A).
Therefore, we consider the former case which yields simple
analytic results that are instructive in guiding the numerical
methods used to solve the system in the latter regime (see
below).

When the chemical potential is much smaller than the SOI
energy, it is standard to go to the rotating frame of reference
[41], dropping fast oscillating terms, to obtain a linearized
Hamiltonian [39]. Rotating back to the laboratory frame, the
zero energy eigenfunctions are given by (see Appendix A)

�ν
1 =

⎛
⎜⎜⎜⎜⎝

−isgn
(
	s −

√
	2

Z − μ2
ν

)
eiϕν/2

e−iϕν/2

isgn
(
	s −

√
	2

Z − μ2
ν

)
e−iϕν/2

eiϕν/2

⎞
⎟⎟⎟⎟⎠e−κν

1 (x−�),

�ν
2 =

⎛
⎜⎜⎜⎝

e−iϕν/2

−ieiϕν/2

eiϕν/2

ie−iϕν/2

⎞
⎟⎟⎟⎠e−κν

2 (x−�),

�ν
3 =

⎛
⎜⎜⎜⎝

ie2ikSO(x−�)

e−2ikSO(x−�)

−ie−2ikSO(x−�)

e2ikSO(x−�)

⎞
⎟⎟⎟⎠e−κν (x−�),

�ν
4 =

⎛
⎜⎜⎜⎝

e2ikSO(x−�)

ie−2ikSO(x−�)

e−2ikSO(x−�)

−ie2ikSO(x−�)

⎞
⎟⎟⎟⎠e−κν (x−�), (3)

where κν
1 = ±|	s −

√
	2

Z − μ2
ν |/α, κν

2 = ±(	s +√
	2

Z − μ2
ν)/α, κν = ±	s/α, and sin ϕν = μν/	Z for

which we require 	Z � μν . The ± in the real part
of the exponentials refers to ν = t,n, respectively, and
kSO = mα/h̄2 is the SOI wave vector. Here we have neglected
terms μn/α � kSO in the wave functions �n

3 and �n
4 which

renormalize the oscillations due to a shift in the Fermi points.
The wave functions in Eq. (3) are zero-energy eigenvectors

of the Hamiltonian but do not individually satisfy the boundary
conditions. The MBS wave function satisfying continuity
and differentiability at the boundary is �M = �(x − �)�t +
�(� − x)�n, where

�t = N
(

�t
1 − κt

1 + κt

2κt
�t

3 + kSO

κt
�t

4

)
,

�n = N
(

κt − κt
1

2κt
�n

3 + kSO

κt
�n

4

)
, (4)

and where N is an overall normalization factor. See Appendix
A for a full derivation of Eq. (4). The probability amplitude of
the MBS, |�M |2, on the topological section oscillates with half

045440-2



SPIN-DEPENDENT COUPLING BETWEEN QUANTUM DOTS . . . PHYSICAL REVIEW B 96, 045440 (2017)

the spin-orbit wavelength, λSO/2 = π/kSO, and has two decay
lengths given by the superconducting gap 	s and the induced
gap |	Z − 	s |. On the nontopological section, although the
components of the MBS wave function oscillate with the same
λSO/2 periodicity, the probability amplitude is a monotonically
decreasing exponential with decay length α/	s [see Fig. 1 (red
part)]. The shape of MBS wave functions could be mapped
experimentally using the STM techniques [7,8,42,43].

B. Quantum dot

There are two characteristic regimes in which one can create
the quantum dot: (1) when the dot size is smaller than the
spin-orbit length lSO = 1/kSO, and (2) when it is larger. In the
first case, the SOI term can be neglected while in the second
case the spin components of the wave function oscillate on
the wave vector kSO [44]. Experimentally, the spatial profile
of the superconductivity and gates between the quantum dot
and MBS wave functions could be complicated. However, we
expect this to contribute only a spin independent factor to
the tunneling, which can be absorbed as a phenomenological
parameter. In order to simplify the calculation, we consider
a fully depleted section of the wire so that we can ignore
the superconducting correlations on the dot. This allows us
to analytically calculate the dot wave function and thus the
spin-dependent tunneling which is the focus of the paper.

Small dot—In the first case, the dot is described by

Hs
D =

∫
dx�†(x)[H0 + HZ + V(x)]�(x), (5)

where V(x) is a confining potential defining the dot. For a
parabolic confinement, V(x) = mω2

0x
2/2 − μd , where μd is a

dot plunger potential, the lowest energy eigenvectors of Hs
D are

Xi(x) = (1/4πL2)1/4 exp(−x2/2L2)χi , where L = √
h̄/mω0

and

χ1 =

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠, χ2 =

⎛
⎜⎝

−1
1
0
0

⎞
⎟⎠,

χ3 =

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠, χ4 =

⎛
⎜⎝

0
0

−1
1

⎞
⎟⎠, (6)

with eigenenergies

ε↑ = ε0 − 	Z, ε↓ = ε0 + 	Z,

−ε↑ = −ε0 + 	Z, − ε↓ = −ε0 − 	Z, (7)

respectively, and ε0 = h̄ω0/2 − μd .
Large dot—In the second case, the Hamiltonian is

Hl
D =

∫
dx�†(x)[H0 + HSO + HZ + V(x)]�(x), (8)

where HSO is the SOI as given in Sec. II A and V(x) is a
parabolic confinement as in the case of the small dot. Treating
the magnetic field perturbatively as compared to the other
energies on the dot, one may show that the Hamiltonian
reduces to Eq. (5) in the rotating frame of reference with
an exponentially renormalized magnetic field according to

ratio of the dot size and SOI length 	̄Z = 	Ze−kSOL [44].
The eigenvectors are Y i(x) = (1/4πL2)1/4 exp(−x2/2L2)ζ i ,
where

ζ 1 =

⎛
⎜⎝

eikSOx

e−ikSOx

0
0

⎞
⎟⎠, ζ 2 =

⎛
⎜⎝

−eikSOx

e−ikSOx

0
0

⎞
⎟⎠,

ζ 3 =

⎛
⎜⎝

0
0

e−ikSOx

eikSOx

⎞
⎟⎠, ζ 4 =

⎛
⎜⎝

0
0

−e−ikSOx

eikSOx

⎞
⎟⎠, (9)

with eigenenergies, respectively,

ε0 − 	̄Z, ε0 + 	̄Z, − ε0 − 	̄Z, − ε0 + 	̄Z. (10)

III. SPIN-DEPENDENT TUNNELING

It is now straightforward to evaluate the tunneling ampli-
tudes between the MBS and quantum dot states which are
proportional to the overlap of the two corresponding wave
functions,

t↑ = t̄0

∫
dx(X1)†�M = t̄0

(∫
dx(X3)†�M

)∗
,

t↓ = t̄0

∫
dx(X2)†�M = t̄0

(∫
dx(X4)†�M

)∗
, (11)

where t̄0 is a phenomenological constant that is defined
according to the potential profile separating the dot and MBS.
The tunneling Hamiltonian between the dot and MBS is
[16,19]

HT =
∑

σ

tσ d†
σ γ + H.c., (12)

where γ is the MBS operator and d†
σ creates an electron with

spin σ , quantized along the axis of the magnetic field (x axis).
In the limit that kSOL � 1, which also implies that L is

much smaller than the MBS decay lengths in the problem, the
tunneling amplitudes are

t↑
t0

≈ (1 + i) cos(2kSO� + π/4)e−κt �,

t↓
t0

≈ −(1 − i) cos(2kSO� − π/4)e−κt �, (13)

where the approximation neglects terms of order 1,κt
1/κ

t �
kSO/κt , and t0 = (πL2/4)1/4kSON t̄0/κ

t is the renormalized
phenomenological constant which fixes the maximum tunnel-
ing. The functions in Eq. (13) are plotted in Fig. 2 as a function
of distance between the dot and topological section �; distances
are measured in units of spin-orbit length lSO = k−1

SO, though
only the dimensionless product of lengths and wave vectors is
relevant. Notice that Re[t↑] = Im[t↑] and Re[t↓] = −Im[t↑],
both of which decay exponentially with κt� and oscillate
with the period λSO/2, which can be attributed to the relative
factor of e2ikSOx between the dot and MBS wave functions.
Furthermore, because there is a difference in phase of π/2
between t↑ and t↓, by changing the distance between the dot
and MBS, the tunneling can go from full polarization of one
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FIG. 2. The real and imaginary components of spin-dependent
tunneling amplitudes t↑ (blue solid) and t↓ (red dashed) for a small
quantum dot, kSOL = 0.1, and κt/kSO = 10

√
3 as a function of

distance � between the dot and the topological section. Both t↑ and t↓
oscillate with periodicity of λSO/2 but with a relative phase difference
of π/2.

spin, either t↑ = 0 or t↓ = 0, to equal magnitude spin tunneling
|t↑| = |t↓|.

When the dot size is comparable to the spin orbit length
kSOL � 1, there is no simple analytical formula for the
tunneling coefficients. Upon comparing the dot and MBS
wave functions, there is a relative factor of eikSOx and we
therefore expect the tunneling amplitudes to oscillate with
the period λSO, which is twice that of the small dot. Indeed,
in Fig. 3 we see an exponential decrease as a function of
� and oscillatory behavior with period λSO with the spin up
and down components differing in phase by π/2. Because
the wave function of the dot is more extended, the overlap of
dot and MBS wave functions is reduced, as compared to the
small dot case, so that the maximum magnitude of tσ /t0 is
small; the magnitude of tσ can be increased by increasing t̄0

0.01

−0.01

0

t σ
/t

0

Re[t↑] = Im[t↑]

Re[t↓] = −Im[t↓]
5 10 15

2π

kSO

FIG. 3. The real and imaginary components of spin-dependent
tunneling amplitudes t↑ (blue solid) and t↓ (red dashed) for a large dot,
kSOL = 10 and κt/kSO = 10

√
3, as a function of distance � between

the dot and the topological section. Both tσ oscillate with the period
λSO and the magnitude of oscillation is smaller as compared with the
case of a small dot. Due to the finite size of the dot, we start with a
separation � = L/2 between the center of the dot and the end of the
topological section.

which roughly corresponds to decreasing the barrier between
the topological end and the quantum dot in an experiment.

IV. EFFECTIVE MAGNETIC FIELD

In this section we extend our setup by considering two ends
of identical topological superconductor sections, separated by
a distance d, flanking opposite sides of a quantum dot [see
Fig. 1(b)], at a distance � from the right MBS. Because the
MBS wave functions are symmetric at the ends of either
topological superconductor section, the overlap of the right
tunneling amplitudes are given by Eq. (13), tσ r = tσ , while the
left tunneling amplitudes are analogously given by

t↑l

t0
≈ (1 − i) cos[2kSO(d − �) + π/4]e−(d−�)κt

,

t↓l

t0
≈ −(1 + i) cos[2kSO(d − �) − π/4]e−(d−�)κt

. (14)

Here we neglect any direct overlap between MBSs in the wire
[45,46] or via the bulk superconductor [47]. The corresponding
tunneling Hamiltonian is written as [19]

HT =
∑
σ,λ

tσλd
†
σ γλ + H.c., (15)

where λ = l,r specifies the left and right MBS, respectively.
Following Ref. [19], we find that a Schrieffer-Wolff transfor-
mation yields [48], to second order in tunneling,

HT =
∑

i=0,x,y,z

(B−
i ff † + B+

i f †f )Si, (16)

where f = γr + iγl (f † = γr − iγl) is the nonlocal fermionic
annihilation (creation) operator formed from the MBSs. We
remind the reader that the axis of quantization here is the
dot axis, along the applied magnetic field (x axis), which
is related to the wire axis of quantization, along the spin
orbit direction (z axis), by a π/2 rotation around the y axis;
hence the spin on the dot, in the frame defined in Fig. 1,
is Si = ∑

σσ ′ d†
σ (R†

yσ
iRy)σσ ′dσ ′ with σ 0 = 12×2 and Ry =

(σ 0 − iσ y)/
√

2. According to Eq. (16), a different overall
shift in energy and effective magnetic field is exerted on the
quantum dot when the fermionic state is occupied (B+

i ) or
unoccupied (B−

i ), where (see Appendix B)

B±
0 = |t↑±|2

ε↑ ± 2δ
+ |t↓±|2

ε↓ ± 2δ
,

B±
x = |t↑±|2

ε↑ ± 2δ
− |t↓±|2

ε↓ ± 2δ
,

B±
y = Im(t∗↑±t↓±)

(
1

ε↑ ± 2δ
+ 1

ε↓ ± 2δ

)
,

B±
z = −Re(t∗↑±t↓±)

(
1

ε↑ ± 2δ
+ 1

ε↓ ± 2δ

)
, (17)

tσ± = tσ l ± tσ r/i, and δ is the splitting due to the overlap of the
MBSs closest to the dot on the right γr and left γl topological
section.
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Let us consider the case when the ends of the topological
sections are sufficiently far apart, δ = 0, for which

B±
0

t0
≈ 1

ε̄↑
{e−κt � cos[2kSO� + π/4]

± eκt (�−d) cos[2kSO(� − d) − π/4]}2

+ 1

ε̄↓
{e−κt � cos[2kSO� − π/4]

∓ eκt (�−d) cos[2kSO(� − d) + π/4]}2,

B±
x

t0
≈ 1

ε̄↑
{e−κt � cos[2kSO� + π/4]

± eκt (�−d) cos[2kSO(� − d) − π/4]}2

− 1

ε̄↓
{e−κt � cos[2kSO� − π/4]

∓ eκt (�−d) cos[2kSO(� − d) + π/4]}2,

B±
y

t0
≈ ε̄↑ + ε̄↓

2ε̄↑ε̄↓
{e−2κt � cos(4kSO�)

− e−2κt (d−�) cos[4kSO(d − �)]

± e−κt d sin[2kSO(2� − d)]}, B±
z = 0, (18)

where the approximations assume kSO � κt
1,κ

t with ε̄σ =
εσ /t0 � 1 for the perturbative Schrieffer-Wolff transforma-
tion to remain valid. Performing the following consecutive
operations brings the system [Fig. 1(b)] back to itself: mirror
operation in the yz plane, time reversal, and a π rotation
around the y axis. These operations take B±

z → −B±
z , while

the other components are invariant. Therefore, B±
z , i.e., the

effective magnetic field along the spin-orbit axis, must be
identically zero even for finite overlap of the MBSs, δ �= 0.
As B+

x �= B−
x and B+

y �= B−
y , these components are sensitive

to the occupancy of the nonlocal fermion. Notice, however,
when the quantum dot is far away from one end, e.g., d → ∞,
the effective magnetic field is insensitive to this quantity,
B+

x = B−
x , B+

y = B−
y , and B+

0 = B−
0 as one may expect.

When the ends of the topological sections are equidistant to
the center of the dot, d = 2�, the components of the effective
magnetic field simplify to

B±
0

t0
= ±B±

x

t0
≈ 8

[1 ∓ sin(4kSO�)]e−2κt �

(ε̄↑ + ε̄↓) ± (ε̄↑ − ε̄↓)
,

B±
y = B±

z = 0. (19)

One may show the system is invariant upon inversion centered
at the dot followed by a π rotation around the x axis wherein
B±

y → −B±
y and therefore must be zero. In Fig. 4 (upper

panel), we plot the fields B±
x as a function of kSO�. As expected,

we see that the component of the effective magnetic field along
the axis of the applied magnetic field oscillates with period
λSO/4 and changes according to the occupation of the nonlocal
fermion.

If the center of the quantum dot is placed slightly asym-
metrically, on the scale of the spin-orbit length, between the
ends of the topological sections, the effective magnetic field
acquires a finite component along the y axis. We plot B±

x and
B±

y for this geometry in Fig. 4 (middle panel) as a function

B
± i

/t
0

d = 2

0.4

−0.4

0

B
± i

/t
0

0

0.4

−0.4

0

0

0.2

−0.2

105

B+
x

B−
x
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y
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y

B
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/t
0
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x
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x
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x
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x

B−
y

B+
y

π/2

π/2

π/2

kSO

kSOd = 10

d = 2 − 0.2lSO

FIG. 4. Effective magnetic field B±
i induced on a small dot

situated (upper panel) equidistant to two MBSs d = 2�, (middle
panel) slightly asymmetrically to the two MBSs d = 2� − 0.2lSO,
and (lower panel) in the case when one fixes the distance between
between MBSs kSOd = 10, as a function of the distance kSO� between
the dot and topological sections for kSOL = 0.1, κt/kSO = 10

√
3,

ε↑ = 9t0, and ε↓ = 11t0. Upper panel: The components B±
x oscillate

with period λSO/4 while the other components are zero. Middle panel:
B±

x and B±
y oscillate with period λSO/4, B±

z = 0. Lower panel: B±
x

(B±
y ) is a symmetric (antisymmetric) function of � around the middle

of the nontopological section kSO� = 5. Both components oscillate
with period λSO/4.

of kSO�. The component of the effective magnetic field along
the x axis is largely unchanged while the component along
y also oscillates with period λSO/4 but smaller amplitude.
Furthermore, the local minima and maxima of B±

x and B±
y are

shifted with respect to each other.
Fixing the distance between two topological sections, we

plot the effective magnetic field as a function of distance
between the dot and the right topological section in the lower
panel of Fig. 4 for the same values as the previous panels. Here
B±

x and B±
y both oscillate with period λSO/4 and B±

y = 0 at
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the center of the nontopological section kSO� = 5 as expected.
Again making use of inversion centered in the middle of the
dot and a π rotation around the x axis, the distance between
the dot and the left fermion (d − �) is exchanged with the right
fermion (�) while the remainder of the geometry is invariant.
Because of the transformations of the effective magnetic field
under this symmetry, we expect B±

x (B±
y ) to be symmetric

(antisymmetric) about � = d/2, which is readily observed
[Fig. 4 (lower panel)].

Large dot—As, in this regime, analytical expressions are
too involved to be displayed, we plot directly the effective
magnetic field induced on the large dot due to coupling
to the MBS states. Analogous to the small dot, B±

i is
plotted in the upper, middle, and lower panels of Fig. 5
when the left and right MBSs are equidistant from the
quantum dot (d = 2�), when the quantum dot is placed slightly
asymmetrically between the MBSs (d = 2� − 0.2lSO), and
fixing the distance between between the MBSs (kSOd = 20),
respectively. Because the same symmetry arguments can be
made, the large dot effective magnetic field is similar to the
small dot with the important difference that the oscillations, as
a function of kSO�, are oscillating with the period λSO/2 rather
than λSO/4. In particular, when d = 2�, only B+

x �= B−
x is

finite; when d = 2� − 0.2lSO, both B+
x �= B−

x and B+
y �= B−

y ;
and fixing kSOd = 20, B±

x is symmetric about kSO� = 10 and
B±

y is antisymmetric about kSO� = 10.
Experimentally, the tunneling must be less than the finite

size energy spacing of the dot, tσ < h̄ω0, which is approxi-
mately 50 μeV in typical experiments. For the small dot, this
corresponds to t0 ≈ 50 μeV and a maximum effective splitting
of about 20 μeV or 200 mK. Similarly, for the large dot, this
corresponds to t0 ≈ 3 meV and a maximum effective splitting
of about 50 μeV or 500 mK. Both of which are well above
typical experimental temperatures of 20 mK.

V. NUMERICAL SIMULATION

In this section we numerically study effects resulting from
the interplay between quantum dot weakly coupled to one or
two wires hosting MBSs in a physical system that one can
experimentally engineer. As discussed above, it is difficult to
determine the exact MBS wave function when the chemical
potential of the nontopological section is in the band gap, so we
have focused above on the situation when the nontopological
section was created only by a slight detuning of the chemical
potential from the SOI energy. In contrast to that, the most
viable way to terminate the topological section is to deplete
a part of the quantum wire. This scenario we can study
numerically by using a tight-binding approach to calculate
the spin-dependent tunneling between the dot and MBS (Sec.
V A) and the spin polarization of the dot, which reflects the
effective magnetic field, in the presence of two MBS wires
(Sec. V B). We confirm that our analytical results capture the
main effects such as oscillations of tunneling amplitude as a
function of distance.

A. Spin-dependent tunneling

We consider an N -site tight-binding Bogoliubov–de-
Gennes Hamiltonian (see Fig. 6), analogous to our analytical
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x

B
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/t
0

155 10

π

π

π

kSO

kSOd = 20

d = 2 − 0.2lSO

FIG. 5. Effective magnetic field B±
i induced on a large dot (upper

panel) situated equidistant to two MBSs d = 2�, (middle panel)
slightly asymmetrically to the two MBSs d = 2� − 0.2lSO, and (lower
panel) in the case when one fixes the distance between between
MBSs kSOd = 20, as a function of the distance kSO� between the
dot and topological sections for kSOL = 10, κt/kSO = 10

√
3, and

ε↑ = ε↓ = t0/10. Upper panel: The components B±
x oscillate with

period λSO/2 while the other components are zero. Middle panel: B±
x

and B±
y oscillate with period λSO/2, B±

z = 0. Lower panel: B±
x (B±

y )
is symmetric (antisymmetric) function of � around the middle of the
nontopological section kSO� = 10.

model,

H =
N−1∑
j=1

�
†
j+1(−t − iα̃σ3)η3�j + H.c.

+
N∑

j=1

	Z�
†
j σ1η3�j − μj�

†
j η3�j + 	s,j�

†
j σ2η2�j,

(20)

where we are in the Nambu basis �
†
j = (ψ†

j↑,ψ
†
j↓,ψj,↑,ψj,↓)

and the operator ψ
†
jσ creates a particle of spin σ at site j .
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s-wave superconductors-wave superconductor

s-wave superconductor
(b)

(a)

α̃

Ld

Nd Nr

Nl

ΔZ

x

z
y

FIG. 6. System setup of the N -site tight-binding model. In
the upper panel, the topological section (red), defined from site
Nr to the end of the chain, is realized due to proximity-induced
superconductivity. The nontopological section (gray) is driven to the
topologically trivial phase by depleting the wire. A quantum dot
(blue) of size Ld defined by gates is located at Nd < Nr . In the lower
panel, the setup is the same with the addition of a second topological
section, realized in the same way, from the beginning of the chain
to Nl < Nd . In both setups, the magnetic field, inducing a Zeeman
splitting 	Z , is applied along the x axis and the spin-orbit vector,
with magnitude α̃, is along the z axis.

The hopping amplitude t = h̄2/(2ma2) is set to 1 and taken
as the energy unit and the SOI strength α̃ is fixed to 0.5 for
the remainder of the paper. The magnetic field (with Zeeman
energy 	Z) is aligned along the x axis and is constant. The
SOI vector points along z axis, analogous to the previous
section. The chemical potential μj is μt for j > Nr (i.e., the
topological section), μn for j < Nd − Ld/2 and Nd + Ld/2 <

j � Nr (the nontopological section excluding the dot), and μd

for Nd − Ld/2 � j � Nd + Ld/2 which defines the quantum
dot. The superconducting pairing is zero in the nontopological
section 	s,j = 0, for j � Nr and 	s otherwise.

We take a wire of length N = 350 lattice sites. Sites beyond
Nr = 200 are driven into the topological phase by taking
	s = 0.06, 	Z = 0.12, μt = 2. In the nontopological section
of the wire the chemical potential is μn = 2.27 except on
the dot, which is of size Ld = 31, where μd = 2.245. Upon
diagonalizing the Hamiltonian, we find the position-dependent
wave functions and corresponding eigenenergies which are
plotted in Fig. 7. The dot wave function, centered at Nd = 50, is
Gaussian-like with oscillations at λSO/2 = π/α̃ ≈ 2π which
correspond to roughly half the spin-orbit wavelength. There
are two MBSs, one at each end of the topological section.
Within the topological section, the MBS oscillates with period
λSO/2. On the left side, the MBS wave function “leaks” into the
normal section and has oscillations, also given by the SOI and a
smaller relative amplitude proportional to the magnetic field as
expected from the analytics [see Eq. (A13)]. It is precisely this
leakage and oscillations that results in a position dependent
tunneling, and subsequent magnetic field, that we discuss
below. In the spectrum, there are two zero energy modes in
the center of the plot (see the insert in Fig. 7) corresponding
to the MBSs at the ends of the wire. The next two lowest lying
energies above zero energy are the spin up and down, nearly
degenerate states on the dot. Because the dot size is much

FIG. 7. Local density of states (LDOS) of the wire with one
topological section [Fig. 6(a)]. The lowest quantum dot level (blue)
is centered at Nd = 50 and of the size Ld = 31 while the MBS wave
functions (red) are peaked roughly at the beginning (Nr = 200) and at
the end (N = 350) of the topological section. Here 	s = 0.06, 	Z =
0.12, μn = 2.27, μt = 2, and μd = 2.245. Inset: Energy spectrum
indicates two MBS levels (red) at zero energy, two quantum dot
levels (blue) with energies at Ẽ↑ ≈ Ẽ↓, and the next lowest energy
levels of the dot (black).

larger than the spin-orbit length, the magnetic field on the dot
is exponentially suppressed and the Zeeman splitting on the
dot is nearly zero [44].

To extract the spin-dependent tunneling amplitude t̃σ with
σ =↑ , ↓, we model the dot–MBS system as two weakly
coupled levels. Here, because we do not have access to the
quantization axis of the dot, σ labels the two dot levels. If
MBSs leak into the dot, the dot level is shifted from ε̃σ to
Ẽσ =

√
ε̃2
σ + 2t̃ 2

σ where ε̃σ is the energy of the spin σ level
when the dot is far from the MBS. Thus, we can extract the
spin-dependent coupling |t̃σ | =

√
(Ẽ2

σ − ε̃2
σ )/2, which we plot

as a function of distance between the dot and MBS in Fig. 8. As
expected, the tunneling amplitude |t̃σ | decreases exponentially
and oscillates with period λSO/2 as the distance between the
dot and MBS increases. Furthermore, the tunneling amplitudes
are offset from each other by a phase π/2, in agreement with

FIG. 8. Tunneling amplitudes |t̃↑| and |t̃↓| between the quantum
dot and MBS [Fig. 6(a)] as a function of the distance between the
position of the dot and the end of the topological section of the wire.
All parameters are the same as in Fig. 7.
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FIG. 9. Local density of states of a chain with two identical
topological sections [Fig. 6(b)] between N = 1 and Nl = 200 and
between Nr = 400 and the end of the chain (N = 600). The quantum
dot wave function (blue) is centered around the dot position Nd = 300
and there are four MBSs at the interfaces of the topological and
nontopological sections. Inset: Energy spectrum indicates four zero
energy states corresponding to the MBSs (red), the lowest energy
dot levels (blue), and second lowest dot levels (black). The system
parameters are the same as in Fig. 7.

the analytics. Because we are only probing the change in
energy of the dot level, we can only determine the magnitude
of the spin-dependent tunneling; we expect that t̃σ to oscillate
with periodicity λSO.

B. Effective magnetic field

Next, we extend our model [see Eq. (20)] and add an
additional topological section to the left of the dot [see
Fig. 6(b)]. The site-dependent parameters are redefined as
follows: The chemical potential is μt for j � Nl and j > Nr

where Nl now defines the end of the second topological section,
μn for Nl < j < Nd − Ld/2 and Nd + Ld/2 < j � Nr , and
μd for Nd − Ld/2 � j � Nd + Ld/2. The superconducting
pairing is zero, 	s,j = 0, for Nl < j � Nr and 	s otherwise.

We now take N = 600, Nd = 300 with Nr and Nl free to
vary. All other parameters are left unchanged. The sites with
j � Nl and j > Nr are in the topological regime. Plotting
the wave functions (see Fig. 9), we see, accordingly, that
there are indeed four MBS states at the four interfaces of
the topological with nontopological sections, all of which sit
at zero energy. The characteristics of MBS and dot level wave
functions (delay lengths and period of oscillations) are the
same as in the previous subsection.

To extract the effective magnetic field on the dot, we
calculate the spin of the dot by summing the expectation of the
spin operator, Ŝx = σ1η3, Ŝy = σ2, and Ŝz = σ3η3, at all sites
where the dot level has finite weight. In Fig. 10 we present
the spin on the dot, S̃i = ∑

j Ỹ
†
j Ŝi Ỹj (measured in units of

h̄/2) with Ỹj the dot wave function at site j , as a function
of the distance between the dot and MBSs. Analogous to the
previous section, we have considered nearly symmetrically
placed topological sections so that the MBS on the left and
right are equidistant to the dot up to one lattice constant, i.e.,
Nd − Nl − 1 = Nr − Nd − 1. Similar to the analytic results,

FIG. 10. The spin components of the lowest quantum dot level
along the y and x axes, respectively, as a function of the distance
between the dot and end of the left and right topological sections,
which are kept equidistant to the dot up to one lattice constant,
Nd − Nl − 1 = Nr − Nd − 1. Both components oscillate with period
λSO/2, and depend exponentially on the distance between the dot and
the MBSs. The spin projection on the y axis goes to zero when the
dot is far from MBSs while the x component saturates at the value
determined by the external magnetic field (black solid line around
≈ 0.271). We note that the component S̃z is always zero due to the
symmetry of the problem.

we see oscillations in spin on the dot with period λSO/2 along
the x and y axes while the spin along the SOI axis is exactly
zero. The offset of S̃x in Fig. 10 is the result of a residual
magnetic field coming from the applied external Zeeman field
along the x direction (see Appendix C for details). We note
that in Fig. 10, because Ld is odd and Nr − Nl is even, the
dot is closer to the left topological section than to the right
topological section by one lattice constant. As a result, S̃y �= 0,
which is consistent with our analytical predictions. If the dot
is placed equidistantly between the two topological sections,
S̃y is zero.

In contrast to the analytic results, there are two important
differences in the tight-binding calculation: (1) we are unable
to account for many-body interactions and therefore cannot
differentiate between a filled and unfilled nonlocal fermion
nor can we include a finite Coulomb interaction on the
dot; and (2) the difference in physical realizations of the
topological-nontoplogical junctions. Despite these differences
between the models, we find a striking similarity in the spin-
dependent tunneling and effective magnetic field. We attribute
this to the equality of the symmetries in the analytic and
numerical models. Therefore, we expect any MBS–quantum
dot system that obeys such symmetries, regardless of how the
topological and nontopological regimes are realized, to display
similar behavior of the spin-dependent tunneling and effective
magnetic field.
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VI. CONCLUSIONS AND OUTLOOK

We have shown analytically and numerically that the
tunneling amplitudes between MBSs and a nearby quantum dot
are spin dependent and also depend on the distance between the
dot and topological section hosting MBSs. Generally, the spin
up and down tunneling amplitudes are oscillating on the scale
of the SOI length. In particular, depending on this distance,
the tunnel amplitudes can be made to be completely spin
polarized. Analogously, the effective magnetic field induced
on a quantum dot by two MBSs depends on the distance
between topological sections and quantum dot and, unlike the
tunneling, on the occupancy of the nonlocal fermion formed
from the MBSs. Any phenomenological Hamiltonian between
MBSs and quantum dots must include a spin dependence
in the tunneling in order to be applied to Rashba quantum
wires. Furthermore, this warrants a reconsideration of the
assumption of spin-independent tunneling between quantum
dots and MBS for a broad range of parameters and systems.

When the SOI length is large and the boundary between
topological and nontopological sections or quantum dot are
mobile, one could use the relative positions of the two as a way
to fine tune the spin dependence of the tunneling. Alternatively,
if the relative positions are fixed or the SOI length is smaller
than the experimental precision, the spin dependence cannot be
adjusted and thus may be a source of error. This is especially
problematic when combining braiding and readout of MBS
qubits using quantum dots [19]. That is, after a braiding
operation, the distance between the MBS and quantum dot
must be brought back to a precise position. If not, the qubit
readout must be recalibrated. Additionally, the quantum dot
may be at a distance where the tunneling to one of the levels
is small. In MBS-spin qubit quantum computation schemes
[19], the operation speed scales as ε0h̄/Im(t∗↑t↓). Whereas in
MBS–quantum dot computation schemes, when only a single
level of the dot is accessible [18,21], the operation speed is
limited by the single-level coupling to the MBS, e.g., if the

spin up level is closest to chemical potential then the operation
speed scales as ε↑h̄/|t↑|2. In both cases, a small coupling can
have a significant detrimental effect on the operation speed.

In lieu of a quantum wire, one could use a magnetic atomic
chain deposited on the surface of a superconductor which has
been theoretically [49–52] and experimentally [7,8] shown to
support MBS end states. The local helical magnetic field of
the helical chain is equivalent to the SOI and homogeneous
magnetic field. An auxiliary two level atom coupled to the
ends of two such chains, analogous to the dot in our quantum
wires setup, could be used to probe these MBSs. We foresee
two mechanisms by which the auxiliary atom can couple to
the chain: the overlap of wave function of the orbital levels
in the auxiliary atom with either the hybridized conduction
bands in the atomic chain or with the bulk quasiparticles in
the superconductor. When there is a direct tunneling between
the orbital levels of the chain and the dot, we expect only the
magnitude of the tunneling between MBSs and levels in the
auxiliary atom to vary as a function of the distance between
the two because there is no analog of the SOI or magnetic
field outside the chain. If there is a SOI in the superconductor,
the spin dependence of the tunneling could depend on the
distance between the chain and auxiliary atoms, analogous to
the role of the SOI in the quantum wire. We also note that
instead of a quantum dot levels, alternatively, one can also use
finite-energy bound states inside the superconducting gap, for
example, occurring due to change in the direction of the SOI
vector [53]. Again, we expect that the overlap between such
bound states and MBSs decays exponentially with the distance
as well as oscillates on the scale set by the SOI length.
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APPENDIX A: MAJORANA BOUND STATE WAVE FUNCTIONS

1. Small deviations of the chemical potential from the SOI energy

In this Appendix we derive the MBS wave function given in the main text [see Eq. (4)]. The general wave functions on the
left (nontopological section) and right (topological section) side are written as

�t = At�t
1 + Bt�t

2 + Ct�t
3 + Dt�t

4, �n = An�n
1 + Bn�n

2 + Cn�n
3 + Dn�n

4, (A1)

respectively, where the coefficients must be real if the solutions are MBSs. To satisfy continuity, the coefficients must satisfy the
equations

At + Ct = − cos ϕnA
n − sin ϕnB

n + Cn, At + Ct = cos ϕnA
n + sin ϕnB

n + Cn,

which we have obtained by taking the imaginary part of the first component and the real part of the second component,
respectively. This implies that cos ϕnA

n + sin ϕnB
n = 0 and Cn = At + Ct . Using the former condition, differentiability of the

solutions requires

−(
κn

1 − κn
2

)
cos ϕnA

n + κnCn + 2kSODn = −κt
1A

t − κtCt + 2kSODt,(
κn

1 − κn
2

)
cos ϕnA

n + κnCn + 2kSODn = −κt
1A

t − κtCt + 2kSODt. (A2)

Therefore, because κn
1 �= κn

2 and ϕn �= 0, An = Bn = 0. Continuity further implies, after taking the real and imaginary parts of
the first and second components, respectively,

Dn = Bt + Dt, Dn = −Bt + Dt, (A3)
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so that Bt = 0 and Dn = Dt . With Eq. (A2), one may show that Ct = −At (κn + κt
1)/(κn + κt ) and Cn = At (κt − κt

1)/(κn + κt ).
Finally, invoking differentiability, one finds

−2kSOCn + Dtκn = −κSOCt − κtDt , (A4)

and Dt = 2kSO(Cn − Ct )/(κn + κt ) = 2kSO/(κn + κt ). Thus, we recover Eq. (4) in the main part.

2. Chemical potential is in the band gap (depletion)

When the nontopological section is characterized by the chemical potential being inside the band gap such that this section is
depleted, the wave functions are different than ones found above. In order to find these wave functions, we assume that μl is much
larger than the SOI energy, the superconducting gap, and the magnetic field (the last two are put to zero in the nontopological
section). In this case, we find that the eigenstates of the Hamiltonian are

�±
k = ψ±eikx, X±

k = χ±eikx, (A5)

with energies (k2/2m − μl) ± αk and −[(k2/2m − μl) ± αk], respectively, where (ψ+)T = (1, 0, 0, 0), (ψ−)T = (0, 1, 0, 0),
(χ+)T = (0, 0, 1, 0), and (χ−)T = (0, 0, 0, 1). The zero energy solutions of Eq. (A5) require k ≡ k∓ = ∓kSO − iκF , where
κF = √

2mμl/h̄ and we have chosen solutions that vanish as x → −∞. It is easiest to match the topological section by finding
linear superpositions that are MBSs,

�n
1 = −i�+ + �− + iX+ + X−, �n

2 = �+ − i�− + X+ + iX−, �n
3 = i�+ + �− − iX+ + X−,

�n
4 = �− + i�− + X+ − iX−, (A6)

where �± = �±
∓k and X± = X±

∓k .
Because these are now of the form of the MBSs in the nontopological section, it is straightforward to find conditions for

continuity of the MBSs at the boundary which are An = 0, Cn = Ct + At , Bt = Bn, and Dt = Dn, where the coefficients have
been defined analogous to Eq. (A1). Upon solving the conditions for differentiability, we find Bt = 0,

Ct = −At 3k2
SO + κ2

F + κF κt + κF κt
1 + κtκt

1

9k2
SO + (κF + κt )2

, Dt = At
kSO

(
κF − κt + 3κt

1

)
9k2

SO + (κF + κt )2
. (A7)

Therefore, the MBS wave function is given by

�t = At

(
�t

1 − 3k2
SO + κ2

F + κF κt + κF κt
1 + κtκt

1

9k2
SO + (κF + κt )2

�t
3 + kSO

(
κF − κt + 3κt

1

)
9k2

SO + (κF + κt )2
�t

4

)
, (A8)

�n = At

(
6k2

SO + (κt )2 + κF κt − κF κt
1 − κtκt

1

9k2
SO + (κF + κt )2

�n
3 + kSO

(
κF − κt + 3κt

1

)
9k2

SO + (κF + κt )2
�n

4

)
. (A9)

Adding a magnetic field perturbatively, to first order in the Zeeman energy 	Z the energies are unchanged, while the
eigenvectors are transformed as

�±
k → ψ̃±

k = �±
k ± 	Z�∓

k /2αk, X±
k → χ̃±

k = X±
k ± 	ZX∓

k /2αk. (A10)

The zero energy solutions are thus ψ̃± = ψ̃±
∓k and χ̃± = χ̃±

∓k . It is convenient to define

�̃± = ψ̃± ∓ 	Zψ̃∓/k∓, X̃± = χ̃± ± 	Zχ̃∓/k±, (A11)

so that, to leading order in the Zeeman splitting, ψ̃±|x=� = ψ± and χ̃±|x=� = χ±. We find the zero energy MBSs analogously,

�̃n
1 = −i�̃+ + �̃− + iX̃+ + X̃−, �n

2 = �̃+ − i�̃− + X̃+ + iX̃−, �n
3 = i�̃+ + �̃− − iX̃+ + X̃−,

�n
4 = �̃− + i�̃− + X̃+ − iX̃−, (A12)

or in a more suggestive form

�̄n
1 =

⎛
⎜⎜⎝

−ie−ikSO(x−�) + iS+

eikSO(x−�) + S−

ieikSO(x−�) − iS−

e−ikSO(x−�) + S+

⎞
⎟⎟⎠eκF (x−�), �̄n

2 =

⎛
⎜⎜⎝

e−ikSO(x−�) + S+

−ieikSO(x−�) + iS−

eikSO(x−�) + S−

ie−ikSO(x−�) − iS+

⎞
⎟⎟⎠eκF (x−�),

�̄n
3 =

⎛
⎜⎜⎝

ie−ikSO(x−�) + iS+

eikSO(x−�) − S−

−ieikSO(x−�) − iS−

e−ikSO(x−�) − S+

⎞
⎟⎟⎠eκF (x−�), �̄n

4 =

⎛
⎜⎜⎝

e−ikSO(x−�) − S+

ieikSO(x−�) + iS−

eikSO(x−�) − S−

−ie−ikSO(x−�) − iS+

⎞
⎟⎟⎠eκF (x−�), (A13)
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where S± = 	Z sin[(x − �)kSO]/αk±. Because the MBSs now have contributions from both left and right moving branches in the
nontopological section of the wire, |�̄i |2 oscillates with periodicity proportional to kSO and amplitude 	Z . Therefore, Eq. (A13)
suggests, in contrast to the small chemical potential, the probability of the MBS wave function satisfying the boundary conditions
also oscillates in the nontopological section. Although we find continuous and differentiable solutions when the magnetic field
is zero, the condition of differentiability breaks down for finite magnetic field as alluded to in Sec. II of the main text. We focus
on an analytic study in the regime of a small chemical potential and study the large chemical potential regime in Sec. V, where
we use a numerical tight-binding approach.

APPENDIX B: EFFECTIVE COUPLING BETWEEN DOT AND MBSS

In this Appendix we calculate the effective exchange Hamiltonian between the quantum dot levels and MBSs by generalizing
the work done in Ref. [19], which calculated the an effective exchange Hamiltonian for spin-independent tunneling amplitudes,
for spin-dependent ones t̃λσ . Following that reference, we take consider a system of two finite size TSC where γ̃λ and γ̃ ′

λ are the
MBSs in the left and right ends, respectively, of wire λ where the total Hamiltonian describing this system is defined by

H = H̃M + HD + H̃T ,

H̃M = i
∑

λ

δ̃λγ̃
′
λγ̃λ,

HD =
∑

σ

εσ d†
σ dσ + Unσnσ̄ /2,

H̃T =
∑
σ,λ

d†
σ (it̃ ′σλγ̃

′
λ + t̃σλγ̃λ) + (t̃∗σλγ̃λ − it ′∗σλγ̃

′
λ)dσ . (B1)

Here δ̃λ is the splitting of the MBSs in TSC λ, U is the Coulomb repulsion on the dot, and t̃ ′σλ (t̃σλ) is the matrix element for
an electron with spin σ on the dot tunneling to the MBS in the left (right) end of the λth TSC. We rewrite the Majorana bound
states as f̃λ = (γ̃ ′

λ + iγ̃λ)/2 so that f̃
†
λ f̃λ = (1 + iγ̃ ′

λγ̃λ)/2 and iδ̃λγ̃
′
λγ̃λ = δ̃λ(2f̃

†
λ f̃λ − 1). The logical values of the MBS qubit are

written in terms of the parity of the left and right wires. Using γ̃ ′
λ = f̃λ + f̃

†
λ and γ̃λ = (f̃λ − f̃

†
λ )/i, the tunneling Hamiltonian

is transformed into

H̃T =
∑
σλ

d†
σ [it̃σλ(f̃λ + f̃

†
λ ) − it ′σλ(f̃λ − f̃

†
λ )] + [−it ′∗σλ(f̃λ − f̃

†
λ ) − it̃∗σλ(f̃λ + f̃

†
λ )]dσ

=
∑
σλ

i(t̃ ′∗σλ − t̃∗λ )f̃ †
λ dσ − i(t̃ ′∗σλ + t̃∗σλ)f̃λdσ + i(t̃σλ − t̃ ′λ)d†

σ f̃λ + i(t̃ ′σλ + t̃σλ)d†
σ f̃

†
λ

=
∑
σλ

it̃∗σλ−f̃
†
λ dσ − it̃∗σλ+f̃λdσ − it̃σλ−d†

σ f̃λ + it̃σλ+d†
σ f̃

†
λ , (B2)

where t̃σλ± = t̃ ′σλ ± t̃σλ. Here the term proportional to t̃σλ− and its complex conjugate correspond to normal tunneling while the
term proportional to t̃σλ+ and its complex conjugate correspond to Andreev reflection. Using a Schrieffer-Wolff transformation
[48,54], one may show that the operators Aσλ − A

†
σλ and Bσλ − B

†
σλ eliminate the tunneling Hamiltonian H̃T = −∑

σλ[Aσλ −
A

†
σλ + Bσλ − B

†
σλ,H̃M + HD], to first order in t̃σλ±, where

Aσλ = i(t̃∗σλ − t̃ ′∗σλ)

[
1

εσ − 2δ̃λ

− Unσ̄

(εσ − 2δ̃λ)(εσ + U − 2δ̃λ)

]
f̃

†
λ dσ

= −it̃∗σλ−

[
1

εσ − 2δ̃λ

− Unσ̄

(εσ − 2δ̃λ)(εσ + U − 2δ̃λ)

]
f̃

†
λ dσ ,

Bσλ = i(t̃∗σλ + t̃ ′∗σλ)

[
1

εσ + 2δ̃λ

− Unσ̄

(εσ + 2δ̃λ)(εσ + U + 2δ̃λ)

]
f̃λdσ

= it̃∗σλ+

[
1

εσ + 2δ̃λ

− Unσ̄

(εσ + 2δ̃λ)(εσ + U + 2δ̃λ)

]
f̃λdσ . (B3)

We must now calculate [Aρλ,H̃T ] and [Bρλ,H̃T ], involving the commutation relations

[f̃ †
λ dρ,H̃T ] = i

∑
σκ

[f̃ †
λ dρ,t̃

∗
σκ−f̃ †

κ dσ − t̃∗σκ+f̃κdσ − t̃σ κ−d†
σ f̃κ + t̃σ κ+d†

σ f̃ †
κ ]

= i
∑
σκ

δ̃κλt̃
∗
σκ+dρdσ − t̃σ κ−(δ̃ρσ f̃

†
λ f̃κ − δ̃λκd

†
σ dρ) + t̃σ κ+δ̃ρσ f̃

†
λ f̃ †

κ ,
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[f̃λdρ,H̃T ] = i
∑
σκ

[f̃λdρ,t̃
∗
σκ−f̃ †

κ dσ − t̃∗σκ+f̃κdσ − t̃σ κ−d†
σ f̃κ + t̃σ κ+d†

σ f̃ †
κ ]

= i
∑
σκ

−t̃∗σκ−δ̃κλdρdσ − t̃σ κ−δ̃ρσ f̃λf̃κ + t̃σ κ+(δ̃ρσ f̃λf̃
†
κ − δ̃κλd

†
σ dρ). (B4)

Note that [Unρ̄f̃
†
λ dρ,H̃T ] = Unρ̄[f̃ †

λ dρ,H̃T ] + [Unρ̄,H̃T ]f̃ †
λ dρ and

[nρ̄,H̃T ] = i
∑
σλ

[nρ̄,t̃
∗
σλ−f̃

†
λ dσ − t̃∗σλ+f̃λdσ − t̃σλ−d†

σ f̃λ + t̃σλ+d†
σ f̃

†
λ ]

= i
∑
σλ

t̃∗σλ−δ̃ρ̄σ dρ̄ f̃
†
λ − t̃∗σλ+δ̃ρ̄σ dρ̄ f̃λ − t̃σλ−δ̃ρ̄σ d†

σ f̃λ + t̃σλ+δ̃ρ̄σ d†
σ f̃

†
λ . (B5)

Taking the large on-site charging limit, U → ∞, we find

∑
ρλ

[Aρλ,H̃T ] = −i
∑
ρλ

t̃∗ρλ−

[(
1

ερ − 2δ̃λ

− nρ̄

ερ − 2δ̃λ

)
[f̃ †

λ dρ,H̃T ] − [nρ̄,H̃T ]f̃ †
λ dρ

ερ − 2δ̃λ

]

= −i
∑
ρλ

t̃∗ρλ−
ερ − 2δ̃λ

[nρ[f̃ †
λ dρ,H̃T ] − [nρ̄,H̃T ]f̃ †

λ dρ]

=
∑
σρκλ

t̃∗ρλ−
ερ − 2δ̃λ

[nρ(t̃∗σκ+δ̃κλdρdσ − t̃σ κ−(δ̃ρσ f̃
†
λ f̃κ − δ̃κλd

†
σ dρ) + t̃σ κ+δ̃ρσ f̃

†
λ f̃ †

κ )

− (t̃∗σκ−δ̃ρ̄σ dρ̄ f̃
†
κ − t̃∗σκ+δ̃ρ̄σ dρ̄ f̃κ − t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃ †
λ dρ],

∑
ρλ

[Bρλ,H̃T ] = i
∑
ρλ

t̃∗ρλ+

[(
1

ερ + 2δ̃λ

− nρ̄

ερ + 2δ̃λ

)
[f̃λdρ,H̃T ] − [nρ̄,H̃T ]f̃λdρ

ερ + 2δ̃λ

]

= i
∑
ρλ

t̃∗ρλ+
ερ + 2δ̃λ

[nρ[f̃λdρ,H̃T ] − [nρ̄,H̃T ]f̃λdρ]

= −
∑
σρκλ

t̃∗ρλ+
ερ + 2δ̃λ

{nρ[−t̃∗σκ−δ̃κλdρdσ − t̃σ κ−δ̃ρσ f̃λf̃κ + t̃σ κ+(δ̃ρσ f̃λf̃
†
κ − δ̃κλd

†
σ dρ)]

− (t̃∗σκ−δ̃ρ̄σ dρ̄ f̃
†
κ − t̃∗σκ+δ̃ρ̄σ dρ̄ f̃κ − t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃λdρ}. (B6)

Notice that, for Ô = f̃
†
λ , f̃λ, nρ[Ôdρ,H̃T ] = −nρH̃T Ôdρ . The only term that survives from H̃T is proportional to d†

ρ so that this
term has no spin flip processes:

−nρH̃T f̃
†
λ dρ = i(t̃ρκ−nρd

†
ρf̃κ − t̃ρκ+d†

ρf̃
†
κ )f̃ †

λ dρ = i(t̃ρκ−f̃κ f̃
†
λ − t̃ρκ+f̃ †

κ f̃
†
λ )nρ,

−nρH̃T f̃λdρ = −i(−t̃ρκ+nρd
†
ρf̃

†
κ + t̃ρκ−d†

ρf̃κ )f̃λdρ = −i(−t̃ρκ+f̃ †
κ f̃λ + t̃ρκ−f̃κ f̃λ)nρ. (B7)

Therefore, these terms do not involve spin flips and

∑
ρλ

[Aρλ,H̃T ] = −i
∑
ρλ

t̃∗ρλ−

[(
1

ερ − 2δ̃λ

− nρ̄

ερ − 2δ̃λ

)
[f̃ †

λ dρ,H̃T ] − [nρ̄,H̃T ]f̃ †
λ dρ

ερ − 2δ̃λ

]

= −i
∑
ρλ

t̃∗ρλ−
ερ − 2δ̃λ

[nρ[f̃ †
λ dρ,H̃T ] − [nρ̄,H̃T ]f̃ †

λ dρ]

=
∑
σρκλ

t̃∗ρλ−
ερ − 2δ̃λ

[(t̃σ κ−f̃κ f̃
†
λ − t̃σ κ+f̃ †

κ f̃
†
λ )δ̃σρnρ

− (t̃∗σκ−δ̃ρ̄σ dρ̄ f̃
†
κ − t̃∗σκ+δ̃ρ̄σ dρ̄ f̃κ − t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃ †
λ dρ]

=
∑
σρκλ

t̃∗ρλ−
ερ − 2δ̃λ

[t̃σ κ−δ̃σρnρf̃κ f̃
†
λ − t̃σ κ+δ̃σρnρf̃

†
κ f̃

†
λ − (−t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃ †
λ dρ],

∑
ρλ

[Bρλ,H̃T ] = i
∑
ρλ

t̃∗ρλ+

[(
1

ερ + 2δ̃λ

− nρ̄

ερ + 2δ̃λ

)
[f̃λdρ,H̃T ] − [nρ̄,H̃T ]f̃λdρ

ερ + 2δ̃λ

]
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= i
∑
ρλ

t̃∗ρλ+
ερ + 2δ̃λ

[nρ[f̃λdρ,H̃T ] − [nρ̄,H̃T ]f̃λdρ]

= −
∑
σρκλ

t̃∗ρλ+
ερ + 2δ̃λ

[−t̃σ κ+δ̃σρnρf̃
†
κ f̃λ + t̃σ κ−δ̃σρnρf̃κ f̃λ

− (t̃∗σκ−δ̃ρ̄σ dρ̄ f̃
†
κ − t̃∗σκ+δ̃ρ̄σ dρ̄ f̃κ − t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃λdρ]

= −
∑
σρκλ

t̃∗ρλ+
ερ + 2δ̃λ

[−t̃σ κ+δ̃σρnρf̃
†
κ f̃λ + t̃σ κ−δ̃σρnρf̃κ f̃λ − (−t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃λdρ]. (B8)

Let us consider processes when only one wire is involved in then tunneling, κ = λ:

∑
ρλ

[Aρλ,H̃T ] =
∑
σρκλ

t̃∗ρλ−
ερ − 2δ̃λ

[t̃σ κ−δ̃σρnρf̃κ f̃
†
λ − t̃σ κ+δ̃σρnρf̃

†
κ f̃

†
λ − (−t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃ †
λ dρ]

=
∑
ρλ

t̃∗ρλ−
ερ − 2δ̃λ

[t̃ρλ−nρf̃λf̃
†
λ + t̃ρ̄λ−d

†
ρ̄ f̃λf̃

†
λ dρ],

∑
ρλ

[Bρλ,H̃T ] = −
∑
σρκλ

t̃∗ρλ+
ερ + 2δ̃λ

[−t̃σ κ+δ̃σρnρf̃
†
κ f̃λ + t̃σ κ−δ̃σρnρf̃κ f̃λ − (−t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃λdρ]

= −
∑
ρλ

t̃∗ρλ+
ερ + 2δ̃

[−t̃ρλ+nρf̃
†
λ f̃λ − t̃ρ̄λ+f̃λd

†
ρ̄ f̃

†
λ f̃λdρ]

=
∑
ρλ

t̃∗ρλ+
ερ + 2δ̃

[t̃ρλ+nρf̃
†
λ f̃λ + t̃ρ̄λ+d

†
ρ̄ f̃

†
λ f̃λdρ]. (B9)

Summing these together with their Hermitian conjugate, we get

H̃s =
∑
ρλ

2nρ

( |t̃ρλ+|2
ερ + 2δ̃λ

f̃
†
λ f̃λ + |t̃ρλ−|2

ερ − 2δ̃λ

f̃λf̃
†
λ

)
+ d

†
ρ̄dρ

(
t̃∗ρλ+ t̃ρ̄λ+
ερ + 2δ̃λ

f̃
†
λ f̃λ + t̃∗ρλ− t̃ρ̄λ−

ερ − 2δ̃λ

f̃λf̃
†
λ

)

+ d
†
ρ̄dρ

(
t̃∗ρλ+ t̃ρ̄λ+
ερ̄ + 2δ̃λ

f̃
†
λ f̃λ + t̃∗ρλ− t̃ρ̄λ−

ερ̄ − 2δ̃λ

f̃λf̃
†
λ

)

=
∑
ρλ

2nρ

( |t̃ρλ+|2
ερ + 2δ̃λ

f̃
†
λ f̃λ + |t̃ρλ−|2

ερ − 2δ̃λ

f̃λf̃
†
λ

)
+ d†

ρdρ̄

(
t̃∗ρ̄λ+ t̃ρλ+
ερ̄ + 2δ̃λ

f̃
†
λ f̃λ + t̃∗ρ̄λ− t̃ρλ−

ερ̄ − 2δ̃λ

f̃λf̃
†
λ

)

+ d†
ρdρ̄

(
t̃∗ρ̄λ+ t̃ρλ+
ερ + 2δ̃λ

f̃
†
λ f̃λ + t̃∗ρ̄λ− t̃ρλ−

ερ − 2δ̃λ

f̃λf̃
†
λ

)

=
∑
ρλ

[
2nρ

( |t̃ρλ+|2
ερ + 2δ̃λ

− |t̃ρλ−|2
ερ − 2δ̃λ

)
+ d†

ρdρ̄

(
t̃∗ρ̄λ+ t̃ρλ+
ερ̄ + 2δ̃λ

+ t̃∗ρ̄λ+ t̃ρλ+
ερ + 2δ̃λ

− t̃∗ρ̄λ− t̃ρλ−
ερ̄ − 2δ̃λ

− t̃∗ρ̄λ− t̃ρλ−
ερ − 2δ̃λ

)]
f̃

†
λ f̃λ

+ 2nρ

|t̃ρλ−|2
ερ − 2δ̃λ

+ d†
ρdρ̄

(
t̃∗ρ̄λ− t̃ρλ−
ερ̄ − 2δ̃λ

+ t̃∗ρ̄λ− t̃ρλ−
ερ − 2δ̃λ

)
. (B10)

Processes involving two wires, κ = λ̄, are calculated from

∑
ρλ

[Aρλ,H̃T ] =
∑
σρκλ

t̃∗ρλ−
ερ − 2δ̃λ

[t̃σ κ−δ̃σρnρf̃κ f̃
†
λ − t̃σ κ+δ̃σρnρf̃

†
κ f̃

†
λ − (−t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃ †
λ dρ]

=
∑
ρλ

t̃∗ρλ−
ερ − 2δ̃λ

[t̃ρλ̄−nρf̃λ̄f̃
†
λ − t̃ρλ̄+nρf̃

†
λ̄
f̃

†
λ − (−t̃ρ̄λ̄−d

†
ρ̄ f̃λ̄ + t̃ρ̄λ̄+d

†
ρ̄ f̃

†
λ̄

)f̃ †
λ dρ]

∑
ρλ

[Bρλ,H̃T ] = −
∑
σρκλ

t̃∗ρλ+
ερ + 2δ̃λ

[−t̃σ κ+δ̃σρnρf̃
†
κ f̃λ + t̃σ κ−δ̃σρnρf̃κ f̃λ − (−t̃σ κ−δ̃ρ̄σ d†

σ f̃κ + t̃σ κ+δ̃ρ̄σ d†
σ f̃ †

κ )f̃λdρ]
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= −
∑
ρλ

t̃∗ρλ+
ερ + 2δ̃λ

[−t̃ρλ̄+nρf̃
†
λ̄
f̃λ + t̃ρλ̄−nρf̃λ̄f̃λ − (−t̃ρ̄λ̄−d

†
ρ̄ f̃λ̄ + t̃ρ̄λ̄+d

†
ρ̄ f̃

†
λ̄

)f̃λdρ]

=
∑
ρλ

t̃∗ρλ+
ερ + 2δ̃λ

[t̃ρλ̄+nρf̃
†
λ̄
f̃λ − t̃ρλ̄−nρf̃λ̄f̃λ + (−t̃ρ̄λ̄−d

†
ρ̄ f̃λ̄ + t̃ρ̄λ̄+d

†
ρ̄ f̃

†
λ̄

)f̃λdρ]. (B11)

Because we will have to add the Hermitian conjugates of these terms, we note that⎡
⎣∑

ρλ

t̃∗ρλ−
ερ − 2δ̃λ

t̃ρλ̄−nρf̃λ̄f̃
†
λ

⎤
⎦

†

=
∑
ρλ

t̃∗ρλ−
ερ − 2δ̃λ̄

t̃ρλ̄−nρf̃λ̄f̃
†
λ ,

⎡
⎣∑

ρλ

t̃∗ρλ+
ερ + 2δ̃λ

t̃ρλ̄+nρf̃
†
λ̄
f̃λ

⎤
⎦

†

=
∑
ρλ

t̃∗ρλ+
ερ + 2δ̃λ̄

t̃ρλ̄+nρf̃
†
λ̄
f̃λ,

⎡
⎣∑

ρλ

t̃∗ρλ−
ερ − 2δ̃λ

t̃ρ̄λ̄−d
†
ρ̄dρf̃λ̄f̃

†
λ

⎤
⎦

†

=
∑
ρλ

t̃∗ρλ−
ερ̄ − 2δ̃λ̄

t̃ρ̄λ̄−d
†
ρ̄dρf̃λ̄f̃

†
λ ,

⎡
⎣∑

ρλ

t̃∗ρλ+
ερ + 2δ̃λ

t̃ρ̄λ̄+d
†
ρ̄dρf̃

†
λ̄
f̃λ

⎤
⎦

†

=
∑
ρλ

t̃∗ρλ+
ερ̄ + 2δ̃λ̄

t̃ρ̄λ̄+d
†
ρ̄dρf̃

†
λ̄
f̃λ, (B12)

so that the contribution from the transfer of the fermions [Figs. 2(c) and 2(d)] is

H̃o =
∑
ρλ

[(
1

ερ − 2δ̃λ̄

+ 1

ερ − 2δ̃λ

)
t̃ρλ− t̃∗

ρλ̄−f̃λf̃
†
λ̄

+
(

1

ερ + 2δ̃λ̄

+ 1

ερ + 2δ̃λ

)
t̃ρλ+ t̃∗

ρλ̄+f̃
†
λ f̃λ̄

]
nρ

+
[(

1

ερ − 2δ̃λ̄

+ 1

ερ̄ − 2δ̃λ

)
t̃∗
ρλ̄− t̃ρ̄λ−f̃λf̃

†
λ̄

+
(

1

ερ + 2δ̃λ̄

+ 1

ερ̄ + 2δ̃λ

)
t̃∗
ρλ̄+ t̃ρ̄λ+f̃

†
λ f̃λ̄

]
d
†
ρ̄dρ

=
∑
ρλ

[(
1

ερ − 2δ̃λ

+ 1

ερ − 2δ̃λ̄

)
t̃ρλ̄− t̃∗ρλ−f̃λ̄f̃

†
λ +

(
1

ερ + 2δ̃λ̄

+ 1

ερ + 2δ̃λ

)
t̃ρλ+ t̃∗

ρλ̄+f̃
†
λ f̃λ̄

]
nρ

+
[(

1

ερ − 2δ̃λ

+ 1

ερ̄ − 2δ̃λ̄

)
t̃∗ρλ− t̃ρ̄λ̄−f̃λ̄f̃

†
λ +

(
1

ερ + 2δ̃λ̄

+ 1

ερ̄ + 2δ̃λ

)
t̃∗
ρλ̄+ t̃ρ̄λ+f̃

†
λ f̃λ̄

]
d
†
ρ̄dρ

=
∑
ρλ

{[(
1

ερ + 2δ̃λ̄

+ 1

ερ + 2δ̃λ

)
t̃ρλ+ t̃∗

ρλ̄+ −
(

1

ερ − 2δ̃λ

+ 1

ερ − 2δ̃λ̄

)
t̃ρλ̄− t̃∗ρλ−

]
nρ

+
[(

1

ερ + 2δ̃λ̄

+ 1

ερ̄ + 2δ̃λ

)
t̃∗
ρλ̄+ t̃ρ̄λ+ −

(
1

ερ − 2δ̃λ

+ 1

ερ̄ − 2δ̃λ̄

)
t̃∗ρλ− t̃ρ̄λ̄−

]
d
†
ρ̄dρ

}
f̃

†
λ f̃λ̄

=
∑
ρλ

{[(
1

ερ + 2δ̃λ̄

+ 1

ερ + 2δ̃λ

)
t̃ρλ+ t̃∗

ρλ̄+ −
(

1

ερ − 2δ̃λ

+ 1

ερ − 2δ̃λ̄

)
t̃ρλ̄− t̃∗ρλ−

]
nρ

+
[(

1

ερ̄ + 2δ̃λ̄

+ 1

ερ + 2δ̃λ

)
t̃∗
ρ̄λ̄+ t̃ρλ+ −

(
1

ερ̄ − 2δ̃λ

+ 1

ερ − 2δ̃λ̄

)
t̃∗ρ̄λ− t̃ρλ̄−

]
d†

ρdρ̄

}
f̃

†
λ f̃λ̄. (B13)

Instead of forming Dirac fermions in the same wire, one can instead form a full fermion from the MBSs closest together (inner
fermion) and a fermion from the MBSs furthest apart (outer fermion) as in the main text fr = (γ ′

r + iγl)/2 and fl = (γ ′
l + iγr )/2,

respectively. The MBSs are, in turn, written as γ ′
λ = fλ + f

†
λ and γλ = (fλ̄ − f

†
λ̄

)/i.
The tunneling Hamiltonian can then be written as

HT =
∑
σ,λ

it ′σλd
†
σ (fλ + f

†
λ ) − itσλd

†
σ (fλ̄ − f

†
λ̄

) − it∗σλ(fλ̄ − f
†
λ̄

)dσ − it ′σλ(fλ + f
†
λ )dσ

=
∑
σ,λ

id†
σ [(t ′σλ − tλ̄)fλ + (t ′σλ + tσ λ̄)f †

λ ] − i[(t ′∗σλ + t∗
σ λ̄

)fλ + (t ′∗σλ − t∗
σ λ̄

)f †
λ ]dσ

=
∑
σ,λ

−itσλ−d†
σ fλ + it∗σλ−f

†
λ dσ + itσλ+d†

σ f
†
λ − it∗σλ+fλdσ , (B14)
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where we have defined tσλ± = tσ λ̄ ± t ′σλ. Furthermore, we redefine the MBS coupling in the wire so that HM = ∑
λ δλ(2f

†
λ fλ − 1),

where δr (δl) now parametrizes the overlap between the inner (outer) MBSs. With this redefinition, we see that the transformed
Hamiltonian is, term by term, identical to Eq. (2) with the exchange of tilded to untilded variables. Therefore, upon performing
the same Schrieffer-Wolff transformation we find

Hs =
∑
ρλ

[
2nρ

( |tρλ+|2
ερ + 2δλ

− |tρλ−|2
ερ − 2δλ

)
+ d†

ρdρ̄

(
t∗ρ̄λ+tρλ+
ερ̄ + 2δλ

+ t∗ρ̄λ+tρλ+
ερ + 2δλ

− t∗ρ̄λ−tρλ−
ερ̄ − 2δλ

− t∗ρ̄λ−tρλ−
ερ − 2δλ

)]
f

†
λ fλ

+ 2nρ

|tρλ−|2
ερ − 2δλ

+ d†
ρdρ̄

(
t∗ρ̄λ−tρλ−
ερ̄ − 2δλ

+ t∗ρ̄λ−tρλ−
ερ − 2δλ

)
, (B15)

Ho =
∑
ρλ

{[(
1

ερ + 2δλ̄

+ 1

ερ + 2δλ

)
tρλ+t∗

ρλ̄+ −
(

1

ερ − 2δλ

+ 1

ερ − 2δλ̄

)
tρλ̄−t∗ρλ−

]
nρ

+
[(

1

ερ̄ + 2δλ̄

+ 1

ερ + 2δλ

)
t∗
ρ̄λ̄+tρλ+ −

(
1

ερ̄ − 2δλ

+ 1

ερ − 2δλ̄

)
t∗ρ̄λ−tρλ̄−

]
d†

ρdρ̄

}
f

†
λ fλ̄. (B16)

In the case considered in the main text, we consider coupling only to the inner MBSs, so that t ′σ l = tσ r = 0, tσ l±=0, and thus
Ho = 0 and

Hs =
∑

ρ

[
2nρ

|tρ+|2
ερ + 2δ

+ d†
ρdρ̄

(
t∗ρ̄+tρ+
ερ̄ + 2δ

+ t∗ρ̄+tρ+
ερ + 2δ

)]
f †f +

[
2nρ

|tρ−|2
ερ − 2δ

+ d†
ρdρ̄

(
t∗ρ̄−tρ−
ερ̄ − 2δ

+ t∗ρ̄−tρ−
ερ − 2δ

)]
ff †, (B17)

where tσ± ≡ tσ r±, δ ≡ δr , and f ≡ fr . Performing the summation in spin, we find

∑
ρ

2nρ

|tρ±|2
ερ ± 2δ

= 2n↑
|t↑±|2

ε↑ ± 2δ
± 2n↓

|t↓±|2
ε↓ ± 2δ

= (S0 + Sx)
|t↑±|2

ε↑ ± 2δ
+ (S0 − Sx)

|t↓±|2
ε↓ ± 2δ

= S0

( |t↑±|2
ε↑ ± 2δ

+ |t↓±|2
ε↓ ± 2δ

)
+ Sx

( |t↑±|2
ε↑ ± 2δ

− |t↓±|2
ε↓ ± 2δ

)
≡ S0B

±
0 + SxB

±
x ,

∑
ρ

d†
ρdρ̄

(
t∗ρ̄+tρ+
ερ̄ ± 2δ

+ t∗ρ̄+tρ+
ερ ± 2δ

)
= d

†
↑d↓

(
t∗↓±t↑±
ε↓ ± 2δ

+ t∗↓±t↑±
ε↑ ± 2δ

)
+ d

†
↓d↑

(
t∗↑±t↓±
ε↑ ± 2δ

+ t∗↑±t↓±
ε↓ ± 2δ

)

= −Sz + iSy

2

(
t∗↓±t↑±
ε↓ ± 2δ

+ t∗↓±t↑±
ε↑ ± 2δ

)
− Sz + iSy

2

(
t∗↑±t↓±
ε↑ ± 2δ

+ t∗↑±t↓±
ε↓ ± 2δ

)

= −Sz

2

(
t∗↓±t↑±
ε↓ ± 2δ

+ t∗↓±t↑±
ε↑ ± 2δ

+ t∗↑±t↓±
ε↑ ± 2δ

+ t∗↑±t↓±
ε↓ ± 2δ

)

+ i
Sy

2

(
t∗↓±t↑±
ε↓ ± 2δ

+ t∗↓±t↑±
ε↑ ± 2δ

− t∗↑±t↓±
ε↑ ± 2δ

− t∗↑±t↓±
ε↓ ± 2δ

)

= −SzRe(t∗↑±t↓±)

(
1

ε↑ ± 2δ
+ 1

ε↓ ± 2δ

)
+ SyIm(t∗↑±t↓±)

(
1

ε↑ ± 2δ
+ 1

ε↓ ± 2δ

)

≡ SzB
±
z + SyB

±
y . (B18)

Upon identifying t ′σr = tσ r/i and HT = Hs , we obtain Eq. (16) with effective magnetic field B±
i given by Eq. (17).

APPENDIX C: NUMERICAL CALCULATION OF SPIN ON THE DOT

In this Appendix we plot the x component of spin on the dot Sj,x as a function of position defined by Sj,x = Ỹ
†
j Ŝx Ỹj (in units

of h̄/2), with Ỹj the dot wave function at site j for the lowest positive energy level of the dot found numerically (see Fig. 11).
Here the quantum dot is far away from MBSs, so the only nonzero spin projection of the dot level is Sx , see Fig. 10. In general,
the spin oscillates at a period set by the SOI. For weak magnetic fields, these oscillations are close to be symmetric around zero so
that the average spin projection on the dot is almost zero [see Fig. 11 (left panel)]. For strong magnetic fields, there is asymmetry
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FIG. 11. The spin component Sx of the lowest positive energy level of the dot (blue solid line) as a function of the position within the dot
when the magnetic field is weak (	Z = 0.04, left panel) and strong (	Z = 0.12, right panel). The black dashed line stands for the symmetric
axis of the blue curve corresponding to the average spin projection Sx on the dot. The system parameters are the same as in Fig. 9.

around zero, resulting in the average spin polarization along the magnetic field [see Fig. 11 (right panel)]. This explains the offset
in Sx component of the average spin of the dot shown in Fig. 10 in the main text [44].
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