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Nuclear-spin-induced localization of edge states in two-dimensional topological insulators
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We investigate the influence of nuclear spins on the resistance of helical edge states of two-dimensional
topological insulators (2DTIs). Via the hyperfine interaction, nuclear spins allow electron backscattering,
otherwise forbidden by time-reversal symmetry. We identify two backscattering mechanisms, depending on
whether the nuclear spins are ordered or not. Their temperature dependence is distinct but both give resistance,
which increases with the edge length, decreasing temperature, and increasing strength of the electron-electron
interaction. Overall, we find that the nuclear spins will typically shut down the conductance of the 2DTI edges
at zero temperature.
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Two-dimensional topological insulators (2DTIs), such as
HgTe/(Hg,Cd)Te [1,2] and InAs/GaSb quantum wells [3,4],
have potential in dissipationless transport and quantum
computation [5,6]. The hallmark of 2DTIs is helical states
propagating along the edges. Since the elastic edge electron
backscattering requires a spin flip, the edge channel conduc-
tance is immune against time-reversal invariant perturbations,
covering dominant disorder forms. Experiments, however, did
not show robustly quantized conductance [2,4,7–10], which
initiated extensive investigations on possible backscattering
mechanisms. Various sources of resistance were proposed,
such as single [11–14] and a bath of [14–17] magnetic
impurities, random magnetic fluxes [18], random Rashba
spin-orbit coupling in the presence of an Overhauser field [19]
or inelastic scattering [20–22], phonons [23], multiparticle
scattering [24–26], or coupling to disorder-localized states
with spin [27].

Here we identify nuclear spins as an omnipresent source
of resistance for 2DTI edge channels. At first sight, this
might come as a surprise given that the strength of the
hyperfine interaction between nuclear spins and itinerant
electrons is very weak [28] and for noninteracting electrons
results in negligible resistance. However, as is well known,
electron-electron interactions strongly amplify the backscat-
tering effects in one-dimensional geometries [29,30]. Indeed,
we find that if the edge channels are long and the electron-
electron interactions are strong, nuclear spins generally are
a relevant resistance source at dilution fridge temperatures.
For typical experimental conditions, the hyperfine-induced
backscattering can be amplified even up to the strong-
coupling regime, resulting in an exponentially small edge
conductance.

The physics beyond this simple observation gets compli-
cated by the fact that nuclear spins can order under certain
conditions such as low temperatures and strong interactions
[31–36]. This ordering is a result of the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction between the nuclear spins,
mediated by the itinerant edge electrons. On one hand, the
ordered nuclear spins become ineffective in backscattering
since the electron-nuclear spin flip-flop requires now an energy
(to emit a magnon) much larger than the temperature. Order-
ing therefore screens nuclear spins (and possibly additional

magnetic impurities) from backscattering electrons, and the
resistance should decrease upon lowering the temperature. On
the other hand, nuclear spin ordering produces a macroscopic
magnetic (Overhauser) field which breaks the time-reversal
symmetry. This field allows for backscattering on ordinary
static potential disorder [henceforth referred to as “impurities”,
not to be confused with the (dis-)order in the nuclear spin
orientation], and the associated resistance increases upon low-
ering the temperature. Finally, because the RKKY interaction
between the nuclear spins is mediated by edge electrons, the
two subsystems enter a complex interdependence, giving rise
to a rich behavior of the edge resistance as a function of
temperature.

Here we determine this temperature behavior by performing
renormalization-group (RG) analysis for the electron-nuclear
system in the presence of interactions and impurities, both
above and below the expected ordering temperature. We find
that for relevant parameter values the most typical scenario is
as follows. At a few kelvins, the nuclear spins are thermally
disordered and induce resistance with a power-law temperature
dependence, which, for sufficiently long edges, evolves into an
exponential well below 1 K. For strongly interacting (say, the
Luttinger liquid parameter K = 0.2) and long edges (the edge
length L of the order of tens of micrometers), this resistance
can be of the order of the quantum resistance. Once the nuclear
spins order (a typical ordering temperature T0 is of the order of
tens of millidegrees Kelvin), they establish a finite Overhauser
field, which allows backscattering on impurities and results in
an exponentially growing resistance. The characteristic tem-
perature dependence of this exponential, markedly different
from the case of a nonhelical, spin-degenerate channel, would
be an indication of both the nuclear spin ordering as well as
the helical nature of the edge channel itself.

Hamiltonian and backscattering action. We model the edge
electrons and the nuclear spins (see the inset of Fig. 1) with
the Hamiltonian, H = Hel + Hhf. The electrons are described
as a helical Tomonaga-Luttinger liquid,

Hel =
∫

h̄dr

2π

{
uK[∂rθ (r)]2 + u

K
[∂rφ(r)]2

}
, (1)

where θ and φ are bosonic fields, functions of the edge
coordinate r , parametrizing the left-moving up-spin L↑ and
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FIG. 1. Temperature (T ) dependence of the resistance induced
by thermally disordered nuclei for various edge lengths L. The
localization-delocalization transition (from a power law to an expo-
nential) is visible when L > ξhf (the two topmost curves). Inset: 2DTI
helical edges with the up-spin (blue) and the down-spin (red) electrons
moving in opposite directions (routes are separated for clarity). The
spin quantization (z) axis is perpendicular to the 2DTI plane. The
nuclear spins at the boundaries (green arrows) are ordered [33,34]
below the transition temperature T0, and become randomly oriented
(not shown) above it. For clarity, spins are drawn only at one edge.

right-moving down-spin R↓ fermionic fields. The parameter
K relates the renormalized velocity u = vF /K to the Fermi
velocity vF (with the Fermi energy εF ≡ h̄vF kF /2 and the
Fermi wave vector kF ). The bosonization requires a short-
distance cutoff, taken as a = h̄vF /�, the transverse decay
length of the edge electron wave function defined by �, the
2DTI bulk gap.

The hyperfine interaction,

Hhf = A0

ρnuc

∑
n

δ(x − xn)
σ

2
· In, (2)

describes the coupling of the electron spin σ/2 to nuclear spins
In at positions xn labeled by index n. Here A0 is the hyperfine
coupling, and ρnuc = 8/a3

0 is the nuclear density with the
lattice constant a0. For simplicity, we assume a homonuclear
system, and neglect the variation of the edge electron wave
function in the transverse direction such that it is given by
1/

√
Wa, with the quantum well thickness W . This reduces

the problem dimensionality, as now electrons interact with
effective spins of the whole cross section, a sum of N⊥ nuclear
spins (each with magnitude I ). In Eq. (2) we take the Fermi
contact hyperfine interaction, with dipole-dipole and orbital
contributions [37] much weaker (see Supplemental Material
for a comparison [38]). Whereas the dipole-dipole interaction
between the nuclear spins is not considered in Eqs. (1) and (2),
we include it in our analysis as the spin dissipation mechanism
for the nuclei [38,39].

Unless stated otherwise, we adopt parameters of
InAs/GaSb, namely, vF = 4.6 × 104 m/s [40,41], a0 = 6.1 Å,
� = 3.4 meV, a = 9 nm [42], W = 20 nm [10,42], K = 0.2
(the reported values vary from 0.2 to 0.9 [11,12,42–46]),
kF = 7.9 × 107 m−1 [4], A0 = 50 μeV [28,47–50], I = 3
(the approximate average of all constituent isotopes), and
N⊥ = 3900.

We derive the nuclear spin contribution to the electronic
imaginary-time action as

δS

h̄
= −D

∫
u|τ−τ ′|>a

v2
F dr dτ dτ ′

8πa3
e−ω|τ−τ ′|

× cos[2φ(r,τ ) − 2φ(r,τ ′)], (3)

with D a prefactor and h̄ω the energy cost of nuclear spin flip
accompanying the electron backscattering. We specify these
two factors for various mechanisms below, and analyze the
resistance building the RG equations [29,30] based on Eqs. (1)
and (3).

Elastic backscattering on disordered nuclear spins. We first
consider thermally disordered nuclear spins (i.e., randomly
oriented, including those within a cross section), which is
the most typical situation. Averaging over such random spins,
we get Dhf = A2

0I (I + 1)/(3πN⊥�2), and since they can be
flipped at no cost, ωhf = 0. We note that the backscattering
becomes stronger upon decreasing N⊥, and is RG relevant for
K < 3/2, so that electrons with repulsive interactions (K < 1)
get localized. The resistance of an edge longer than the associ-
ated localization length ξhf = a(K2Dhf)−1/(3−2K) grows expo-
nentially below the localization temperature Thf ≡ h̄u/(kBξhf).
For our parameters, ξhf ≈ 17 μm and Thf ≈ 100 mK give
scales at which this resistance source becomes important.
It shows that backscattering by thermally disordered nuclear
spins can strongly affect edge states.

We now proceed to explicit formulas. At zero bias, we
identify three regimes, depending on which is the shortest
among the thermal length λT ≡ h̄u/(kBT ), the localization
length ξhf, and the edge length L. First, for λT < L,ξhf, we get

Rhf(T ) ∝ R0
πDhfL

2a

(
KkBT

�

)2K−2

, (4)

with R0 ≡ h/e2. Second, if ξhf < λT ,L, the edge is gapped,
with a thermally activated resistance,

Rhf(T ) ∝ R0
πDhfL

2a
e�hf/(kBT ), (5)

and the gap �hf = �(2K3Dhf)
1/(3−2K) ≈ 1.2 μeV. Finally, if

L < ξhf,λT , we obtain

Rhf(L) ∝ R0
πDhfL

2a

(
L

a

)2−2K

. (6)

Here we give the resistance R of the helical Tomonaga-
Luttinger liquid. Other resistances possibly contribute, in
series, to the total edge resistance Rtot. Most notable is the
contact resistance, equal to R0 for a single channel wire.
Note that we discuss R, not Rtot, throughout this Rapid
Communication. The resistance given by Eqs. (4)–(6) is
plotted in Fig. 1, as a function of the temperature. Upon
decreasing the temperature T from a few kelvins, the resistance
first increases as a power law, and then saturates (for short
edges) or grows exponentially (for long edges).

Let us now consider a finite bias voltage V , plotting the
differential resistance of an edge shorter than ξhf in Fig. 2. At
high bias, λV ≡ h̄u/(eV ) < L,λT , the differential resistance
is given by Eq. (4) upon the replacement λT → λV . It grows
with a decreasing voltage as a power law, before it saturates at
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FIG. 2. Bias voltage (V ) dependence of the differential resistance
for L = 10 μm and disordered nuclei for various temperatures.

a value determined by the shorter of λT and L, Eqs. (4) and (6),
respectively. A fractional power-law dependence of the edge
conductance on both the temperature and the bias voltage has
been observed in InAs/GaSb 2DTIs with short edges [42],
although not attributed to nuclear spins.

Nuclear spin order. We now consider the scenario in which
nuclear spins are ordered. The ordering, predicted to oc-
cur generally in quasi-one-dimensional finite-size conductors
[32–34,36,51,52], is stabilized by the RKKY interaction
mediated by edge electrons [38]. This interaction results in
nuclear spins aligning ferromagnetically within a cross section,
along a vector which rotates in space upon moving along the
edge with a period π/kF . Performing the spin-wave analysis
along the line of Refs. [34,36,52], we find that the transition
temperature is higher for a helical conductor (T0 ≈ 42 mK
for our parameters) than a spin-degenerate wire, indicating
that the system tendency toward ordering is higher for a
helical conductor. Further, whereas nuclear ordering in a
spin-degenerate wire leads to a partial gap [35,53], in a helical
edge it is energetically favorable not to open a gap at the Fermi
surface [54]. Nevertheless, the resistance is still influenced by
the nuclear ordering, as we now show.

To this end, we write Eq. (2) as a sum, Hhf = 〈Hhf〉 + He-mag,
of the expectation value in the ordered nuclear state [55],

〈Hhf〉 = A0Im2kF

2πa

∫
dr cos [2φ(r) − 4kF r], (7)

being an Overhauser field, and the remainder, being the
electron-magnon interaction,

He-mag ≈ A0

2L2

√
Im2kF

2N⊥

∑
q,q ′

1

i
(b†q ′ + b−q ′ )

×L
†
↑(q)R↓(q + q ′ − 2kF ) + H.c., (8)

with b
†
q creating a magnon with momentum q. In the above,

m2kF
is the order parameter, m2kF

= 1 for completely ordered
nuclear spins, and we define the transition temperature by
m2kF

(T0) = 1/2. We now analyze the resistance arising from
Eqs. (7) and (8) separately.

Anderson-type localization in the ordered phase. Even
though the Overhauser field, Eq. (7), itself does not lead

to backscattering at the Fermi surface, it breaks the time-
reversal symmetry and thus lifts the protection of the edge
states against impurities. Backscattering can then arise as
a second-order process, with the spin flip provided by the
Overhauser field and the momentum provided by impurities.
We quantify its strength by performing the lowest-order
Schrieffer-Wolff transformation [56] and an average over
impurities [30], and obtain Eq. (3), with ωhx = 0, Dhx ≡
DbA

2
0I

2m2
2kF

/(128πa�2ε2
F ). Inserting numbers, we find that

the nuclear order-assisted backscattering on impurities is
comparable in strength to backscattering on disordered nuclear
spins for an impurity strength Db corresponding to a bulk mean
free path λmfp ∼ 0.1–1 μm [2,42]. Because the associated lo-
calization temperature Thx ∼ 90–220 mK is similar in value to
Thf, it is typically larger than T0. Equation (5) then applies (with
the replacement {Dhf,�hf} → {Dhx,�hx}), describing the edge
resistance with �hx = �(2K3Dhx)

1/(3−2K)
. The temperature

dependence of �hx, entering through m2kF
(T ), as well as its

dependence on εF and on Db are the essential differences
allowing one to distinguish between the two scenarios, and
uncover the nuclear ordering transition.

Magnon-mediated backscattering. We finally consider
magnons in the nuclear spin system, described by Eq. (8).
Unlike in the previous cases, the electron spin flip by a magnon
now leads to a finite energy exchange. Because our magnons
are essentially dispersionless away from zero momentum,
we take this energy as momentum independent, h̄ωmag ≡
2I |J x

2kF
|m2kF

/N⊥ with the RKKY coupling J x
2kF

[38]. This
approximation allows us to reformulate the magnon-induced
backscattering as an effective electron-phonon problem [57],
and derive Eq. (3) with Dmag = A2

0I/(2πN⊥�2) and ω =
ωmag. From the RG analysis [30,57] we are then able to
calculate the resistance due to the magnon emission as

Rem
mag(T ) ∝ R0

πDmagL

2a

[
Kh̄ωmag(T )

�

]2K−3

, (9)

which drops with a decreasing temperature as a power law
of the magnon energy. Equation (9) is formally valid for
T < Tx with Tx defined by ωmag(Tx) = (K2Dmag)1/(4−2K)u/a,
a condition on the validity of the perturbative RG calculation.
We estimate the resistance due to the magnon absorption Rabs

mag
by Eqs. (4)–(6), upon the replacement Dhf → Dhf(1 − m2kF

).
This essentially means we neglect the magnon energy absorbed
by electrons, and consider the contribution from only the
disordered nuclear spins, which are present, among all the
nuclei, with the weight (1 − m2kF

) ∝ T 3−2K . We note that, as a
consistency check, the total resistance due to magnons, Rmag ≡
Rem

mag + Rabs
mag should obey a physically motivated upper limit

being Rmag � Rhf, stating that backscatterings penalized by
paying an energy cannot lead to a resistance larger than if the
energy penalty is removed.

Experimental consequences. To make specific predictions
which can be examined in experiments, in Fig. 3 we summarize
the temperature dependence of the edge resistance, as follows
from the presented analysis. Decreasing the temperature from
well above T0, the resistance first grows as a power law,
which changes into an exponential at Thf (the black solid
curve; additional possibilities were discussed above). The
trend reverses at around T0 (nuclear ordering temperature),
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FIG. 3. Temperature (T ) dependence of the resistance R for L =
25 μm (so that L > ξhf) and λmfp = 1 μm. Above T0, R is given
by Eqs. (4) and (5) for T > Thf and T < Thf, respectively. Below
T0, R consists of three contributions due to magnon emission Rem

mag,
magnon absorption Rabs

mag, and nuclear order-assisted backscattering
on impurities Rhx. The gray curve is the upper limit on Rem

mag + Rabs
mag

(see the text for explanations). The T dependence of ωmag is given
by ωmag(T ) ∝ T −(2−2K)[1 − (T/T0)3−2K/2] for T < T0. Inset: Length
(L) dependence of R for various T .

resulting in a local maximum here. Below T0, the resistance is
first mainly due to magnons. The magnon emission typically
dominates the absorption, and the resistance decays as a power
law (the blue curve). Finally, at even lower T the resistance
is dominated by nuclear order-assisted backscattering on
impurities and grows exponentially (the red curve).

As the behavior for L < ξhf is very similar (not shown),
we conclude that the power-law increase at high T , the peak

around T0, and the exponential growth at T → 0 are robust
features of the nuclear-spin-induced resistance of a 2DTI
edge. In addition, assuming that the value of the parameter
K is known for a given sample, one can verify the power-law
dependencies of the resistance on the voltage V and the edge
length L.

The theoretically proposed backscattering mechanisms
[11–27], including our work here, generally lead to differ-
ent V, L, and T dependence of the edge resistance. They
can therefore be, in principle, discriminated experimentally.
However, the majority of these mechanisms depend strongly
on the Luttinger interaction parameter K , which is typically
unknown in current experiments. A direct comparison of
theories to experiments is then difficult, while the extraction
of the value of K is highly nontrivial for the very same
reason [14]. Specifically for our mechanism, it should be most
relevant for measurements satisfying conditions of mesoscopic
length, L�1 μm, dilution fridge temperature, T �1 K, and
very strong interactions, K�1. Since a setup allowing for
the investigations of the length dependence was realized
recently in InAs/GaSb [58], we believe that the experimental
verification of this mechanism is feasible.

In conclusion, our most important finding is that, generally,
the nuclear spins suppress the conductance of a long 2DTI edge
to zero at very low temperatures. The scaling with exponentials
or V 2K−2, L3−2K , and T 2K−2 power laws, as summarized in
Figs. 2 and 3, allows one to distinguish the nuclear spins from
alternative mechanisms for the 2DTI edge resistance.
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