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Summary 

 

Background: Several studies over the last decades have suggested that a wide range of 

disease states, as well as the aging process itself, are marked by progressive impairment of the 

involved physiological processes to adapt, resulting in a loss of complexity in the dynamics of 

physiological functions. Therefore, measuring complexity from physiological system signals 

holds enormous promise for providing a new understanding of the mechanisms underlying 

physiological systems and how they change with diseases and aging. Furthermore, since 

physiological systems are continuously exposed to environmental factors, measuring how 

physiological complexity changes during exposure to environmental elements might also 

provide new insights into their effects. Indeed, this approach may be able to unveil subtle but 

important changes in the regulatory mechanisms of physiological systems not detectable by 

traditional analysis methods. 

Objectives: The overall objective of this PhD thesis was to quantify the complexity of the 

dynamics of heart and respiratory system signals, in order to investigate how this complexity 

changes with long-term environmental exposures and chronic diseases, using data from large 

epidemiological and clinical studies, in order to control for most potential confounders of the 

fluctuation behavior of systems signals (e.g., demographic, environmental, clinical, and 

lifestyle factors). We specifically aimed (1) at assessing the influence, first, of long-term 

smoking cessation, and second, of long-term exposure to traffic-related particulate matter of 

less than 10 micrometers in diameter (TPM10), on the regulation of the autonomic 

cardiovascular system and heart rate dynamics in an aging general population, using data 

from the SAPALDIA cohort study; (2) to assess whether the subgrouping of patients with 

recurrent obstructive airway diseases, including mild-to-moderate asthma, severe asthma, and 

COPD, according to their pattern of lung function fluctuation, allows for the identification of 

phenotypes with specific treatable traits, using data from the BIOAIR study.  

Methods: In the SAPALDIA cohort, a population-based Swiss cohort, 1608 participants ≥ 50 

years of age underwent ambulatory 24-hr electrocardiogram monitoring and reported on 

lifestyle and medical history. In each participant, heart rate variability and heart rate dynamics 

were characterized by means of various quantitative analyses of the inter-beat interval time 

series generated from 24-hour electrocardiogram recordings. Each parameter obtained was 

then used as the outcome variable in multivariable linear regression models in order to 

evaluate the association with (1) smoking status and time elapsed since smoking cessation; (2) 
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long-term exposure to TPM10. The models were adjusted for known confounding factors. In 

the BIOAIR study, we conducted a time series clustering analysis based on the fluctuation of 

twice-daily FEV1 measurements recorded over a one year period in a mixed group of 134 

adults with mild-to-moderate asthma, severe asthma, or COPD from the longitudinal Pan-

European BIOAIR study.   

Results: In the SAPALDIA cohort, our findings indicate that smoking triggers adverse 

changes in the regulation of the cardiovascular system, even at low levels of exposure since 

current light smokers exhibited significant changes as compared to lifelong non-smokers. 

Moreover, there was evidence for a dose-response effect. Furthermore, full recovery was 

achieved in former smokers (i.e., normalization to the level of lifelong non-smokers). 

However, while light smokers fully recovered within the 15 first years of cessation, heavy 

former smokers might need up to 15-25 years to fully recover. Regarding long-term exposure 

to TPM10, we did not observe an overall association with heart rate variability/heart rate 

dynamics in the entire study population. However, significant changes in the heart rate 

dynamics were found in subjects without cardiovascular morbidity and significant changes, 

both in the heart rate dynamics and in the heart rate variability, were found in non-obese 

subjects without cardiovascular morbidity. Furthermore, subjects with homozygous GSTM1 

gene deletion appeared to be more susceptible to the effects of TPM10. In the BIOAIR study, 

we identified five phenotypes, of those three distinct phenotypes of severe asthma, in which 

the progressive functional alteration of the lung corresponded to a gradually increasing 

clinical severity and translated into specific risks of exacerbation and treatment response 

features.  

Conclusions: This thesis hopes to demonstrate the importance of multidimensional 

approaches to gain understanding in the complex functioning of the human physiological 

system and of disease processes. Characterization of the complexity in the fluctuation 

behavior of system signals holds enormous promise for providing new understandings of the 

regulatory mechanisms of physiological systems and how they change with diseases. 

However, it is important to combine this kind of approach with classical epidemiological 

approaches in order to disentangle the various contributions of the intrinsic physiological 

dynamics, aging, diseases and comorbidities, lifestyle, and environment. In the SAPALDIA 

cohort study, we were able to disentangle the influence of specific environmental exposures, 

such as particulate matter air pollution and smoking exposure, on the heart rate variability and 

heart rate dynamics, and thus to unveil long-term alterations in former heavy smokers, as well 
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as adverse effects of low level, but long-term, exposure to TPM10 in healthy subjects and in 

subjects with homozygous GSTM1 gene deletion. In the BIOAIR study, we provide evidence 

that airway dynamics contain substantial information, which enables the identification of 

clinically meaningful phenotypes, in which the functional alteration of the lung translates into 

specific treatable traits.  
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1. Introduction 

1.1. Complexity of the dynamics of physiological systems  

Physiological systems generally exhibit complex dynamics which result from the 

interference, cooperation or competition of their constituent parts with one another 

(Schumacher 2004). These properties allow the physiological processes involved to 

continually adapt to extrinsic and intrinsic stimuli. Several studies over the last decades have 

suggested that a wide range of disease states, as well as the aging process itself, are marked by 

progressive impairment of these physiological processes to adapt, resulting in a loss of 

complexity in the dynamics of physiological functions (Lipsitz and Goldberger 1992, 

Goldberger 1997, Costa, Goldberger et al. 2002, Goldberger, Peng et al. 2002). Therefore, 

measuring complexity from physiological system signals holds enormous promise for 

providing a new understanding of the regulatory mechanisms of physiological systems and 

how they change with diseases and aging (Goldberger, Peng et al. 2002). Furthermore, since 

physiological systems are continuously exposed to environmental factors, measuring how 

physiological complexity changes during exposure to environmental elements might also 

provide new insights into their effects. Indeed, this approach may unveil subtle but important 

changes in the regulatory mechanisms of physiological systems not detectable by traditional 

analysis methods. 

 

1.2. Measuring the complexity of physiological system signals 

1.2.1. Nonlinear dynamic systems theory 

Measuring the complexity of physiological system signals is a major contemporary 

challenge. This complexity arises from the interaction of a myriad of structural units and 

regulatory feedback loops which translate into non-random fluctuation behaviors over 

multiple temporal and spatial scales (Costa, Goldberger et al. 2002, Goldberger, Peng et al. 

2002). As a result, dynamics of most physiological outputs are generally marked by a 

combination of nonstationarity and nonlinearity. A stationary process is a process whose 

probability distribution does not change when shifted in time. Consequently, parameters such 

as mean and variance do not change over time. The term nonlinear applies to systems whose 

components interact in a non-additive way (Goldberger, Peng et al. 2002). In other words, a 

nonlinear system is a system in which the change of the output is not proportional to the 

change of the input (Manor and Lipsitz 2013).  

https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Proportionality_(mathematics)
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Consequently, in order to describe and quantify these complex dynamics, analysis 

techniques borrowed from the nonlinear dynamic systems theory have been applied (Costa, 

Goldberger et al. 2002). These techniques allow for the calculation of measures that probe 

different aspects of fluctuation behaviors, and which can be classified into three categories:  

(1) Fractal measures, which assess whether signals exhibit similar kinds of fluctuations 

at different temporal resolutions.  

(2) Entropy measures, which assess the regularity/irregularity or randomness of 

fluctuations.  

(3) Phase space methods, which assess long-term predictability of fluctuations, as well 

as the overall dynamic properties of fluctuations.  

No single measure is sufficient to capture the properties of complex signals. Instead, an 

ensemble of measures is required in order to probe signals of interest for different attributes. 

 

1.2.2. Fractal measures 

Fractal forms are composed of subunits (and sub-subunits, etc.) that resemble the 

structure of the overall object (Figure 1.1 left) (Goldberger, Amaral et al. 2002). This 

property is known as self-similarity (or scale-invariance). A number of complex anatomic 

structures display fractal-like geometry, such as the arterial and venous trees, the ramifying 

tracheobronchial tree and the His-Purkinje network. This fractal-like geometry enables a rapid 

and efficient transport over complex spatially-distributed systems. Analogous to scale-

invariant objects that have a branching structure across multiple length scales, the fractal 

concept can also be applied to fluctuation across multiple time scales (Figure 1.1 right) 

(Goldberger, Amaral et al. 2002). Such processes exhibit similar kinds of fluctuations at 

different temporal resolutions.  
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Figure 1.1. Schematic representation of self-similar structure (left) and self-similar dynamics 

(right). Source: Lancet. 1996 May 11;347(9011):1312-4. 

 

Fractals scaling and related correlation properties of an on object (or of a physiologic 

time series) can be quantified by computing a so-called fractal dimension. A fractal dimension 

is a scaling rule comparing how a pattern’s detail changes with the scale at which it is 

considered. In other words, it measures the degree of complexity by evaluating how fast the 

number of pieces of an object (or the number of data points of a time series) increases or 

decreases as the scale becomes larger or smaller (Figure 1.2). 

 

https://www.ncbi.nlm.nih.gov/pubmed/8622511
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Figure 1.2. Traditional notions of geometry for defining scaling and dimension. The scaling 

rule or fractal dimension D is defined by the relationship N ∝ ϵ
-D

, where the N stands for 

number of pieces, and ϵ for the scale used to get the new pieces. For instance, when scaling a 

filled square by 1/2, there will always be 4 new pieces, each 1/4 the area of the original, and D 

would be equal to 2 (e.g., 4=(1/2)
-2

). 

Source: https://en.wikipedia.org/wiki/Fractal_dimension 

 

The fractal dimension does not have to be an integer (Figure 1.3). 

 

Figure 1.3. The first four iterations of the Koch snowflake, which has an approximate fractal 

dimension of 1.2619. Source: https://en.wikipedia.org/wiki/Fractal_dimension 

 

https://en.wikipedia.org/wiki/Fractal_dimension
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Koch_snowflake
https://en.wikipedia.org/wiki/Hausdorff_dimension
https://en.wikipedia.org/wiki/Hausdorff_dimension
https://en.wikipedia.org/wiki/Fractal_dimension
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In the context of biological signals, fractal analysis had to take into account the 

nonstationarity of signals. Thus, a specific fractal analysis methods has been introduced, the 

detrended fluctuation analysis (DFA) (Peng, Havlin et al. 1995). This method measures the 

presence or absence of fractal correlation properties in signals (namely the “memory effect”). 

The fractal long-range correlations are characterized by a scaling exponent α. A fractal-like 

signal results in α=1 (i.e., information-rich signal). White Gaussian noise (totally random 

signal) results in a value of 0.5.  

 

1.2.3. Entropy measures 

Entropy measures are measures of order/disorder. They have been used to assess the 

regularity/irregularity or randomness of fluctuations (Voss, Schulz et al. 2009). A typical 

measure of entropy is the sample entropy (SampEn). It quantifies the conditional probability 

that two sequences of consecutive data points that are similar to each other will remain similar 

when one consecutive point is included. A limitation of such measures is that order/disorder is 

not systematically associated with complexity. Indeed, an increase in the entropy (disorder) of 

a system is not necessarily always associated with an increase in its complexity (e.g., white 

noise). To help distinguish uncorrelated random signals from more complex (information-

rich) signals, the multiscale entropy (MSE) algorithm was developed (Costa, Goldberger et al. 

2005). This approach is founded on the observation that complex signals encode information 

over multiple time scales, whereas uncorrelated random signals or very periodic signals do 

not.  

1.2.4. Phase space methods 

Some physical or physiological systems may require several independent magnitudes in 

order to fully describe the state of the system. These magnitudes constitute the dimensions of 

a space, called the phase space. Therefore, in the phase space, all possible states of a system 

are represented, with each possible state of the system corresponding to one unique point in 

the phase space. Generally, it is not possible to measure all magnitudes that define a system, 

and commonly, in many scientific studies, only one magnitude/signal is measured. However, 

Takens’ theorem shows that if a proper phase space embedding (i.e., time delay (or time lag) 

embedding into phase space) is performed, into a space of sufficiently high dimension, the 

system’s dynamics can be reconstructed from a single signal (Takens 1981) (Figure 1.4). An 

example of the time delay embedding procedure is provided in Appendix 2. 

https://physionet.org/physiotools/dfa/
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Figure 1.4. Examination of phase space embedding (A) time series formed by x coordinate, 

(B) 2- and 3-dimensional phase space representation. The structure or geometry of the set of 

system states becomes visible after embedding it into a space of proper dimension. 

Source: http://www.scholarpedia.org/article/Attractor_reconstruction 

 

1.2.4.1. Largest Lyapunov exponent 

Detection of chaotic behaviour (i.e., deterministic chaos) in a time series can be done by 

measuring the largest Lyapunov exponent in an appropriate phase space embedding 

(Rosenstein, Collins et al. 1993). Deterministic chaotic systems display dynamics that appear 

to be random in the complete absence of randomness. They have a very sensitive dependence 

on initial conditions, and may be very simple, yet, in the long term, they produce completely 

unpredictable and rapidly divergent behaviour. Such fluctuations cannot be adequately 

measured with statistics based simply on mean and variance. Indeed, it is possible for two 

processes with very different dynamics, for example deterministic chaos and randomness, to 

have outputs with nearly identical means and variances (Figures 1.5 and 1.6) (Boeing 2016). 

The the largest Lyapunov exponent quantifies the exponential divergence of initially close 

state-space trajectories and estimates the amount of chaos in a system. The extent to which 

http://www.scholarpedia.org/article/Attractor_reconstruction
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chaos relates to physiological or pathological dynamics is a subject of active investigation and 

some controversy (Goldberger, Amaral et al. 2000).  

 

 

Figure 1.5. Plot of two time series, one chaotic (blue), and one random (red).  

Source: Systems 2016, 4, 37; 10.3390/systems4040037 

 

 

Figure 1.6. Phase space representation of the time series in Figure 3. (A) is a 2-dimensional 

phase space, (B) is a 3-dimensional phase space.  

Source: Systems 2016, 4, 37; 10.3390/systems4040037 

 

1.2.4.2. Poincaré plot 

A specific application of the phase space representation is the Poincaré plot. Poincaré plot 

is widely used in the analysis of cardiac interbeat interval (RR) dynamics, where each RR 

interval is plotted against the next RR interval (Figure 1.7) (i.e., 2-dimensional phase-space 

representation of RR intervals). The shape of the plot provides information on the behaviour 
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of the system (Woo, Stevenson et al. 1992). The quantitative analysis of the shape can be 

done by calculating the standard deviations SD1 (dispersion of points perpendicular to the axis 

of line-of-identity) and SD2 (dispersion of points along to the axis of line-of-identity).  

 

 

Figure 1.7. Poincaré plot of RR intervals  

Source: https://www.physionet.org/events/hrv-2006/yang.pdf 

 

1.3. Comparing the complexity between physiological systems signals 

Another approach to investigate the dynamics complexity of a given physiological system 

is to assess the similarity between signals of different individuals. If diseases are marked by a 

loss of complexity in the dynamics of physiological functions, the stage or the clinical 

severity of a given disease might be related to the degree of loss of complexity in the 

dynamics of the involved physiological functions. Thus, it can be relevant to identify groups 

of patients with a similar (loss of) complexity, namely, a similar fluctuation behavior.  

 

1.3.1. Time series clustering  

The clustering analysis is an approach which allows for the identification of structure in 

an unlabeled data set by objectively organizing data into homogeneous groups where the 

within-group-object similarity and the between-group-object dissimilarity are maximized 

(Warren-Liao 2005). Time series clustering analysis allows for the consideration of dynamic 

behavior of the object while generating the groups. 

 

 

https://www.physionet.org/events/hrv-2006/yang.pdf
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1.3.2. Quantification of similarity between time series 

Quantification of similarity between time series can be done by measuring the distance 

between them (Moeckel and Murray 1997). However, measuring distance between time series 

generated by dynamical systems requires specific metrics. For instance, a chaotic system 

exhibits sensitive dependence on initial conditions, so that two time series, x and y, generated 

by the same system, but with slightly different initial conditions, will soon diverge from one 

another, producing a large value of distance between x and y. Therefore, using here a 

traditional measure of distance, such as the Euclidean distance, would be too strict. Thus, for 

chaotic dynamical systems, the distance should rather be related to the attractor (small 

distance if similar attractor). An attractor is a set of numerical values toward which a system 

tends to evolve, for a wide variety of starting conditions of the dynamical system. Similarly, 

for stochastic processes (i.e., situations containing a random element, hence unpredictable and 

without a stable pattern or order; all natural events are stochastic phenomenon), distance 

should be related to the probability distributions (small distance if nearby distributions).  

Among the different approaches developed to measure the distance for dynamical 

systems, the transportation distance is particularly interesting in the context of biological 

signals, since it is less sensitive to outliers, perturbations and discretization errors (Moeckel 

and Murray 1997). The transportation distance corresponds to the minimal transportation cost 

to move points from an initial distribution to match a final distribution. In the present work, 

we used a transportation distance called Earth mover’s distance (or Kantorovich–Rubinstein 

distance) (Muskulus and Verduyn-Lunel 2011) to measure the distance between pairs of 

probability distribution of daily lung function measurements recorded over a predetermined 

window of observation (Chapter 3). 

  

1.3.3. Grouping of individuals into clusters  

There are five major categories of clustering methods (Han and Kamber 2001): 

partitioning methods, hierarchical methods, density-based methods, grid-based methods, and 

model-based methods. In the present work, we used an agglomerative hierarchical clustering 

method that groups data objects into a tree of clusters (Warren-Liao 2005) (Chapter 3). This 

method uses the Ward’s minimum variance algorithm which starts by placing each subject in 

its own cluster, then merges the two clusters with the minimum distance (i.e., smallest 

increase in the value of the sum-of-squares variance), and repeats the merging process until all 

the subjects are merged to form one cluster.  
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1.3.4. Describing the clusters  

The clustering approach generates several clusters and their pair-wise comparisons are 

affected by the multiple testing issue. Post-hoc tests for pair-wise multiple comparisons can 

be performed using the Tukey’s test or the Nemenyi test for continuous variables, as 

appropriate. For categorical variables, we recommend a resampling method to address the 

multiple testing issue, setting the family-wise error rate at the 5% level, instead of the 

commonly used Bonferroni correction, which is known to be very conservative. A more 

detailed description of this resampling method is provided in Chapter 3.  

 

1.4. Combining the analysis of the dynamics of physiological system signals with 

classical epidemiological approaches  

The fluctuation behavior of physiological system signals is influenced by several main 

components: the intrinsic physiological dynamics (e.g., circadian rhythm), aging, underlying 

health condition (e.g., obesity, diseases), lifestyle (e.g., physical activity), and environmental 

factors. To disentangle effects of these components, and thus to be able to investigate the 

effect of a specific factor (e.g., disease process, environmental exposure), the analysis of 

fluctuation behavior of physiological system signals should be combined with classical 

epidemiological approaches in order to account for these multitude of influences. In this 

thesis, we exemplify this combination of both approaches in three studies, by using the 

fluctuation behavior of heart and respiratory system signals as a quantitative tool for studying 

long-term environmental exposures and chronic diseases, using data from large 

epidemiological and clinical studies.   

 

1.4.1. Effect of long-term environmental exposures on heart rate variability and heart 

rate dynamics 

Is it possible to fully recover after long-term smoking cessation? 

To the best of our knowledge, the effect of long-term smoking cessation has only been 

investigated in terms of risk of coronary heart disease, and it is not clear when or even 

whether the risk of coronary heart disease reverts to that of lifelong non-smokers. We 

investigated, in an aging general population, whether long-term smoking cessation results in 

normalization of the parameters describing the heart rate variability (HRV) to the level of 

lifelong non-smokers, and whether this normalization is associated with the amount 

previously smoked (Chapter 1). The parameters used to describe the HRV were standard 
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measures of HRV (i.e., time- and frequency-domain measures of HRV), as well as parameters 

calculated with methods from nonlinear dynamics. While standard measures of HRV have 

traditionally been used, the increasing evidence that the regulation of the cardiovascular 

system involves nonlinear control mechanisms has encouraged the quantitative assessment of 

HRV using methods from nonlinear dynamics. These methods have shown new insights into 

HRV changes under various physiological and pathological conditions, providing additional 

prognostic information and complementing traditional time- and frequency-domain analyses. 

 

Are there any adverse effects of long-term exposure to traffic-related PM10? 

To the best of our knowledge, effects of long-term particulate matter (PM) exposure has 

essentially been investigated in terms of risk of coronary heart disease, and there is limited or 

weak available epidemiological evidence that HRV is altered by low-level, but long-term, 

exposure (years). Furthermore, previous studies have provided evidences that population, 

such as the elderly, patients with preexisting cardiovascular disease, diabetes, obese subjects, 

ever smokers, females, or people with reduced antioxidative defenses might be particularly 

susceptible to the adverse effects of air pollution. The American Heart Association recently 

stated that studies on the long-term effects of air pollution on HRV and cardiovascular health 

are a major unresolved issue. We investigated the influence of low-level, but long-term (10 

years), exposure to traffic-related particulate matter (TPM10) on the regulation of the 

autonomic cardiovascular system and heart rate dynamics in an aging general population, as 

well as the a priori selected effect modifiers sex, smoking status, obesity, and gene variation 

in selected glutathione S-transferases (GSTs) (Chapter 2). In the same way as for the 

investigation of smoking exposure, we used standard measures of HRV, as well as parameters 

calculated with methods from nonlinear dynamics.  

 

1.4.2. Investigation of lung function fluctuation behavior in chronic obstructive 

airway diseases for disease phenotyping purposes 

Phenotyping appears especially relevant in severe asthma, COPD and the transition forms 

between these entities, in which the heterogeneity of response to drug therapy and the 

unpredictable nature of exacerbations are a major clinical challenge. For clinicians, 

identification of phenotypes related to specific treatable traits is of primary concern. However, 

to date, clustering approaches to asthma phenotyping have not enabled the identification of 

strong relationship between specific pathological features and particular clinical patterns or 
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treatment responses. The clustering approaches were mainly based on cross-sectional 

information related to demographic, clinical, and biological characteristics, and did not 

considered the fluctuation behavior of the lung function. Airway function dynamics are at the 

intersection between pathophysiological mechanisms and the expression of particular clinical 

patterns or treatment responses. Consequently, investigation of lung function fluctuation 

might give new insight into the relationship between specific pathological features and 

clinically meaningful outcomes. As part of the present work, we conducted a lung function 

fluctuation based clustering (FBC) analysis in a mixed group of 134 adults with mild-to-

moderate asthma, severe asthma, or COPD, with a unique one-year collection of twice-daily 

lung function data, from the longitudinal European BIOAIR (Longitudinal Assessment of 

Clinical Course and BIOmarkers in Severe Chronic AIRway Disease) study (Chapter 3). We 

investigated whether the subgrouping of patients with chronic obstructive airway diseases, 

including mild-to-moderate asthma, severe asthma, and COPD, according to their pattern of 

lung function fluctuation, allows for the identification of phenotypes with specific treatable 

traits.   

 

Pre-requisite for analyzing time series of lung function measurements 

A common issue in a cohort study, and in a telemonitoring setting, is the handling of 

incomplete data sets. Within the BIOAIR study, especially, patients were asked to perform 

daily lung function measurements over one-year-period. Consequently, a pre-requisite of our 

work was the examination of missing data; whether data were missing at random, or related to 

a specific clinical state (e.g., exacerbation, hospitalization), and whether data imputation was 

necessary. The approach we used is described in Appendix 1. 
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2. Objectives 

The overall objective of this PhD thesis was to quantify the complexity of the dynamics 

of heart and respiratory system signals, in order to investigate how this complexity changes 

with long-term environmental exposures and chronic diseases, using data from large 

epidemiological and clinical studies, in order to control for most potential confounders of the 

fluctuation behavior of systems signals (e.g., demographic, environmental, clinical, lifestyle 

factors).  

 

We specifically aimed at:  

1.  Assessing the long-term influence of smoking cessation on the regulation of the 

autonomic cardiovascular system and on the heart rate dynamics in an aging general 

population, using data from the SAPALDIA cohort study:  

a. Whether long-term smoking cessation results in normalization of heart rate 

dynamics (as compared to lifelong non-smokers) 

b. Whether this normalization and the waiting time for it to set in are associated 

with the amount previously smoked 

 

2.  Evaluating the influence of low-level, but long-term (10 years), exposure to traffic-

related particulate matter (TPM10) on the regulation of the autonomic cardiovascular 

system and heart rate dynamics (HRD) in an aging general population, using data from 

the SAPALDIA cohort study:  

a. How is the overall TPM10–HRV/HRD relationship in the entire study 

population? 

b. How that relationship is modified by both the underlying cardiovascular 

condition and the related drug treatments in subjects with cardiovascular 

morbidity? 

c. Is there a modification of effect by sex, smoking status, obesity, and gene 

variation in selected GSTs? 

 

3.  Assessing whether the subgrouping of patients with chronic obstructive airway 

diseases, including mild-to-moderate asthma, severe asthma, and COPD, according to 

their pattern of lung function fluctuation, allows for the identification of phenotypes 

with specific treatable traits, using data from the BIOAIR study: 
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a. How the fluctuation behavior of airway function dynamics varies between 

patients with mild-to-moderate asthma, severe asthma, and COPD  

b. Whether clusters based on lung function fluctuation are related to specific 

pathophysiological features 

c. Whether clusters based on lung function fluctuation are related to particular 

clinical patterns or treatment responses   
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3.1. Abstract 

Aim: To evaluate the long-term influence of smoking cessation on the regulation of the 

autonomic cardiovascular system in an aging general population, using the subpopulation of 

lifelong non-smokers as control group.   

Methods: We analyzed 1481 participants aged ≥ 50 years from the SAPALDIA cohort. In 

each participant, heart rate variability and heart rate dynamics were characterized by means of 

various quantitative analyses of the inter-beat interval time series generated from 24-hour 

electrocardiogram recordings. Each parameter obtained was then used as the outcome variable 

in multivariable linear regression models in order to evaluate the association with smoking 

status and time elapsed since smoking cessation. The models were adjusted for known 

confounding factors and stratified by the time elapsed since smoking cessation. 

Results: Our findings indicate that smoking triggers adverse changes in the regulation of the 

cardiovascular system, even at low levels of exposure since current light smokers exhibited 

significant changes as compared to lifelong non-smokers. Moreover, there was evidence for a 

dose-response effect. Indeed, the changes observed in current heavy smokers were more 

marked as compared to current light smokers. Furthermore, full recovery was achieved in 

former smokers (i.e., normalization to the level of lifelong non-smokers). However, while 

light smokers fully recovered within the 15 first years of cessation, heavy former smokers 

might need up to 15-25 years to fully recover. 

Conclusion: This study supports the substantial benefits of smoking cessation, but also warns 

of important long-term alterations caused by heavy smoking.  

 

Keywords: heart rate variability; nonlinear dynamics; smoking cessation; recovery of 

function 
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3.2. Introduction 

The risk of coronary heart disease in current smokers is increased by a factor of 2.5 to 4 

compared to lifelong non-smokers (Shaper, Pocock et al. 1985, Wannamethee, Shaper et al. 

1995, Health 2004, Teo, Ounpuu et al. 2006, Shields and Wilkins 2013). Smoking cessation 

decreases cardiovascular morbidity and mortality and improves quality of life (Doll and Peto 

1976, Novello 1990, Ockene, Kuller et al. 1990, Lightwood and Glantz 1997, Health 2004, 

Teo, Ounpuu et al. 2006). However, the magnitude of the risk reduction and the length of 

cessation required remain poorly understood. While the risk seems to decrease immediately 

after smoking cessation  (Novello 1990, Ockene, Kuller et al. 1990, Dobson, Alexander et al. 

1991, Tverdal, Thelle et al. 1993, Negri, La Vecchia et al. 1994, Wannamethee, Shaper et al. 

1995, Doll, Peto et al. 2004, Teo, Ounpuu et al. 2006, Honjo, Iso et al. 2010, Mannan, 

Stevenson et al. 2010, Shields, Garner et al. 2013, Shields and Wilkins 2013), it is not clear 

when or even whether the risk reverts to that of lifelong non-smokers. While some studies 

have shown that the risk of coronary heart disease reverts to that of lifelong non-smokers 

within 3-5 years (Novello 1990, Dobson, Alexander et al. 1991, Tverdal, Thelle et al. 1993, 

Mannan, Stevenson et al. 2010) or within 10-20 years (Honjo, Iso et al. 2010, Shields and 

Wilkins 2013), other studies have identified a remaining risk in former smokers after 10 or 

even 20 years of continuous smoking cessation (Negri, La Vecchia et al. 1994, Wannamethee, 

Shaper et al. 1995, Teo, Ounpuu et al. 2006). A remaining risk was exclusively identified in 

former heavy, but not in former light smokers. These findings led us to the hypothesis that 

repeated exposure to tobacco smoke over years could trigger an irreversible change in the 

regulation of the autonomic cardiovascular system.  

Heart rate variability (HRV) is a useful non-invasive measure to assess the autonomic 

regulation of cardiac rhythm (1996). Lower HRV is associated with higher cardiovascular 

morbidity and mortality and has proved itself as an important prognostic tool for several 

cardiovascular conditions (Kleiger, Miller et al. 1987, Bigger, Fleiss et al. 1992, 1996, Tsuji, 

Larson et al. 1996). HRV has been found to increase immediately after smoking cessation 

(Yotsukura, Koide et al. 1998, Minami, Ishimitsu et al. 1999, Munjal, Koval et al. 2009, Harte 

and Meston 2013), to reach a peak after 2 to 7 days, and to gradually decline thereafter  (Harte 

and Meston, 2014; Lewis et al., 2010; Minami et al., 1999; Yotsukura et al., 1998). The 

increase in HRV persisted 1 month after smoking cessation (Stein, Rottman et al. 1996, 

Yotsukura, Koide et al. 1998, Harte and Meston 2013). However, the long term evolution of 

HRV after smoking cessation has, to our best knowledge, only been investigated by Gac et al. 
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(Gac and Sobieszczanska 2014). Based on a cross-sectional study including 145 hypertensive 

subjects the authors reported that former smokers with cessation periods of over five years 

had increased HRV compared to those who actively smoked cigarettes, but decreased HRV 

compared to those who had never smoked. Therefore, a more thorough investigation in a 

larger sample from the general population, and for a longer period of time, is in order.  

While HRV has traditionally been measured using time- and frequency-domain measures, 

there is increasing evidence that the regulation of the cardiovascular system involves 

nonlinear control mechanisms (1996, Rajendra Acharya, Paul Joseph et al. 2006). Thus, a 

quantitative assessment of the inter-beat interval time series generated from 24-hour 

electrocardiogram recordings, using nonlinear time series analysis techniques, appears 

promising (Goldberger and West 1987, Meyer and Stiedl 2003, Rajendra Acharya, Paul 

Joseph et al. 2006, Vandeput, Verheyden et al. 2012), and may help to unveil subtle, but 

important changes in the heart rate dynamics (Goldberger and West 1987, Pincus 1991, 

Pikkujamsa, Makikallio et al. 2001). Only one pilot study has so far examined the influence of 

smoking cessation over a 30-day period on heart rate dynamics using multifractal analysis 

(Lewis, Balaji et al. 2010). Multifractality of cardiac time-series was found to be similar for 

smokers and non-smokers, and seemed unchanged by smoking abstinence or nicotine 

replacement therapy. 

The objective of the present study was to evaluate the long-term influence of smoking 

cessation on the regulation of the autonomic cardiovascular system in an aging general 

population, using the subpopulation of lifelong non-smokers as control group. We 

investigated whether smoking cessation resulted in long-term normalization of the parameters 

describing the HRV and heart rate dynamics to the level of lifelong non-smokers, and whether 

this normalization was associated with the amount previously smoked.  

 

3.3. Methods 

3.3.1. Ethics statement 

The study was approved by the central Ethics Committee of the Swiss Academy of 

Medical Sciences and the Cantonal Ethics Committees for each of the study areas. Each 

subject was informed in detail about the health examinations and signed an informed consent 

before any of the health examinations was conducted.  
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3.3.2. Study population 

This study is part of the SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and 

Heart Disease in Adults) study which was designed to assess the health effects from long-term 

exposure to air pollutants in the Swiss adult population. The study design has been described 

in detail elsewhere (Martin, Ackermann-Liebrich et al. 1997, Ackermann-Liebrich, Kuna-

Dibbert et al. 2005). In brief, the SAPALDIA cohort (n=9651) was enrolled  in 1991, and 

consisted of a random sample of the Swiss population aged 18 to 60 years, recruited from the 

local registries of inhabitants in eight areas featuring distinct geographical and environmental 

conditions.  

In 2002, the follow-up study included 8047 (83.4%) participants. A random sample of 

1846 out of 4417 participants aged ≥ 50 years underwent a 24-hour electrocardiogram (ECG) 

Holter recording to assess HRV, as previously described in detail (Felber Dietrich, Schindler 

et al. 2006). Exclusion criteria were general or spinal anaesthesia within 8 days before the 

ECG recording (n=5), a myocardial infarction within 3 months prior to the examination (n=2), 

taking digitalis (n=6), and an artificial internal pacemaker (n=0). Participants with recordings 

showing atrial fibrillation (n=12), ECG duration lower than 18 hours (n=73), or of insufficient 

quality (n=6), non-valid data on HRV (n=96) were also excluded (Felber Dietrich, Schindler 

et al. 2006). Participants who smoked pipe, cigars and/or cigarillos, but not cigarettes were 

excluded as well (n=38). Participants who smoked pipe, cigars and/or cigarillos in addition to 

cigarettes were not excluded. Finally, 127 subjects were excluded due to missing data on 

smoking status. Thus, the current study includes 1481 subjects. 

 

3.3.3. Data collection  

Data were collected using an electronic Case Report Form (eCRF) developed specifically 

for the SAPALDIA study. Information about the questionnaires and the measurements can be 

found in the Online Supplement. 

 

3.3.4. Computational methods 

Time series analysis parameters of heart rate variability were calculated for each 

individual time series of inter-beat intervals (RR series) generated from the 24-hour ECG 

recordings.  

Traditional time and frequency domain measures were calculated in agreement with the 

standards of measurement proposed by the Task Force of the European Society of Cardiology 
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and the North American Society of Pacing and Electrophysiology (1996). The time domain 

measure used was the standard deviation of normal interbeat intervals (SDNN). For the 

frequency domain measures, Fast Fourier Transform procedures were used to derive the 

spectral distribution, which resulted in the calculation of total power, low frequency (LF) 

power (0.04–0.15 Hz), high frequency (HF) power (0.15–0.40 Hz), and the ratio between LF 

and HF (LF/HF). Moreover, we utilized the Power Spectral Density and its integral over 

different frequency intervals (PSD1 to 6).   

The nonlinear time series analysis methods utilized to quantify and characterize the heart 

rate dynamics can be classified into three categories (Voss, Schulz et al. 2009): (1) Fractal 

measures, which assess heartbeat fluctuations over multiple time scales; (2) Entropy 

measures, which assess the regularity/irregularity or randomness of heartbeat fluctuations; 

and (3) Phase space methods, which assess long-term predictability of the heartbeat as well 

as the overall dynamic properties of the heartbeat. For the first category, we utilized 

Detrended Fluctuation Analysis (α). For the second category, the methods of choice were the 

Sample Entropy (SampEn), and the Multiscale Entropy. For the third category, we used the 

Largest Lyapunov Exponent, the Correlation Dimension (CD), and two standard deviation 

parameters derived from Poincaré Plots (SD1 and SD2). More details about the choice, 

implementation, and properties of the aforementioned time series analysis methods can be 

found in the Online Supplement. 

 

3.3.5. Definition of smoking status  

To assess the joint impact of the amount smoked and the current smoking status, the 

participants were classified as lifelong non-smokers (total lifetime amount smoked <0.1 pack-

years), former light smokers, current light smokers, former heavy smokers, and current heavy 

smokers. Smokers were defined as heavy smokers if they had smoked ≥20 pack-years. The 

smoked pack-years were calculated by multiplying the number of years smoked by the 

average number of packs smoked per day.  

 

3.3.6. Statistical analysis  

Results are expressed as numbers and percentages for categorical variables and as a mean 

(± standard deviation) or median [25
th

quartile;75
th

quartile] for continuous variables, 

according to their distribution. Differences in distributions according to the smoking status 

were assessed using Chi2 tests for categorical variables, and using one-way ANOVA (if 
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normal distribution) or Kruskal-Wallis test (if non-normal distribution) for continuous 

variables. 

Each parameter describing the HRV, or heart rate dynamics, was used as the outcome 

variable in multivariable linear regression models in order to evaluate the association with 

smoking status. The models were stratified by the time elapsed since cessation (0 years in 

current smokers, within 0 and 15 years, within 15 and 25 years, and ≥ 25 years in formers 

smokers). These time intervals were defined according to the literature, but also to ensure a 

balanced sample size of the resulting strata. Initial inspection of the outcome variable showed 

a skewed distribution of the residuals for the traditional time and frequency domain measures 

and for some of the other time series analysis parameters. These variables were therefore log-

transformed. Results of these analyses are therefore presented as geometric means and percent 

changes in geometric means. All the models were adjusted for known confounding factors 

(Felber Dietrich, Schindler et al. 2006, Adam, Felber Dietrich et al. 2012). These factors 

were: sex (male as reference), age (for an increase of 1 year), alcohol consumption (<1 

glass/day as reference, ≥ 1 glass/day), weekly physical activity – to the point of getting out of 

breath or sweating – (never as reference, between 0.5h and 2h, ≥ 2h/week), daily exposure to 

environmental tobacco smoke (for an increase of 1 hour/day), diabetes (no as reference, yes), 

body mass index (BMI, for an increase of 1 kg/m
2
), BMI

2
, average annual NO2 (for an 

increase of 1 μg/m
3
), number of cardiovascular medications (0 as reference, 1, ≥ 2). This last 

variable was computed using the information on the cardiovascular medication intake (beta-

blockers, angiotensin-converting-enzyme (ACE) inhibitors, angiotensin II receptor 

antagonists, calcium channel blockers, diuretics, antiarrhythmic drugs class I + III, 

sympathomimetics). The number of cardiovascular medications allowed us to summarize the 

information about cardiovascular medication in one variable and to gradually represent the 

severity of the cardiovascular disease.  

The linear interaction between the total lifetime amount smoked (pack-years) and time 

elapsed since cessation (years) was assessed for each outcome. All the models were adjusted 

for the same confounders mentioned above.  

Finally, we performed sensitivity analyses. First, the random effect of the study areas was 

included using multivariable linear mixed models. Second, for each of the parameters 

describing the HRV or heart rate dynamics, we excluded participants with a value lower than 

the 1
th

 percentile or higher than the 99
th

 percentile of the distribution of the parameter. Then, 

we excluded the participants taking at least one cardiovascular medication or with missing 
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information on the number of cardiovascular medications. Finally, since a strong interaction 

between air pollution and ACE inhibitors has been reported in the SAPALDIA cohort (Adam, 

Felber Dietrich et al. 2012), we looked for interaction between smoking status and ACE 

inhibitors. 

All tests were two-sided with a significance level of 0.05. Statistical analysis was 

performed using R, Version 2.10 (2008). We used the packages Lattice (Sarkar 2008), 

gmodels, gplots, ggplot2 (Wickham 2009), prettyR, VIF, nlme (Pinheiro, Bates et al. 2014), 

lm4. 

 

3.4. Results 

3.4.1. Characteristics of the study population 

The study sample consisted of 1481 subjects. The mean age of the subjects was 60.4±6.2 

years. Anthropometric parameters, characteristics related to lifestyle, smoking habits, and 

cardiovascular health are summarized in Table 3.1. There were 699 (47.2%) lifelong non-

smokers, 307 (20.7%) former light smokers, 57 (3.8%) current light smokers, 207 (14.0%) 

former heavy smokers and 211 (14.2%) current heavy smokers. 
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Table 3.1. Characteristics of the study population according to the smoking status 

Characteristic 

Lifelong non-

smokers 

(n=699) 

Former light 

smokers 

(n=307) 

Current light 

smokers 

(n=57) 

Former heavy 

smokers 

(n=207) 

Current heavy 

smokers 

(n=211) 

P-

value 

All 

(n=1481)  

Missing 

Data 

Sex, Men 236 (33.8) 139 (45.3) 15 (26.3) 162 (78.3) 126 (59.7) <0.001 678 (45.8) - 

Age, years 61.1±6.4 59.6±6.1 58.1±5.4 61.2±6.0 59.2±5.9 <0.001 60.4±6.2 - 

Lifestyle factors         

Alcohol, ≥ 1 glass/day 173 (24.8) 86 (28.1) 19 (33.3) 98 (47.3) 95 (45.0) <0.001 471 (31.8) 1 

Physical activity      0.01  13 

None 336 (48.3) 139 (45.4) 28 (49.1) 95 (46.8) 127 (61.7)  725 (49.4)  

[0.5-2h[/week 212 (30.5) 84 (27.5) 15 (26.3) 60 (29.6) 41 (19.9)  412 (28.0)  

≥ 2h/week 148 (21.3) 83 (27.1) 14 (24.6) 48 (23.6) 38 (18.4)  331 (22.5)  

ETS exposure      <0.001  1 

None 597 (85.5) 252 (82.1) 39 (68.4) 164 (79.2) 117 (55.5)  1169 (79.0)  

< 3h/day 73 (10.5) 33 (10.7) 14 (24.6) 24 (11.6) 54 (25.6)  198 (13.4)  

≥ 3h/day 28 (4.0) 22 (7.2) 4 (7.0) 19 (9.2) 40 (19.0)  113 (7.6)  

Smoked packyears 0.0  

[0.0;0.0] 

5.3  

[1.5;12.0] 

8.7  

[3.3;14.7] 

38.9 

[25.4;54.0] 

40.6 

[31.1;56.9] 

<0.001
a
  21.8  

[7.0;40.7] 

- 

Smoking duration, years 0.0  

[0.0;0.0] 

10.0 

[5.0;17.0] 

36.1  

[30.5;40.7] 

28.0 

[21.0;34.0] 

40.1 

[36.4;43.5] 

<0.001
a
 27.0 

[13.0;38.0] 

7 

Age at smoking initiation, 

years 

- 19.0  

[18.0;21.0] 

20.0  

[18.0;25.0] 

18.0  

[16.0;20.0] 

18.0  

[16.0;20.0] 

<0.001
a
 19.0  

[17.0;20.0] 

- 

Age at smoking cessation, 

years 

- 30.0  

[25.0;37.8] 

- 46.0 

[40.0;53.0] 

- <0.001
b
  37.0  

[29.0;47.0] 

7 

Time after smoking 

cessation 

     <0.001
b
   7 

0 year 699 (100) 0 (0.0) 57 (100) 0 (0.0) 211 (100)  967 (65.3)  

]0-15[ years 0 (0.0) 36 (11.9) 0 (0.0) 112 (54.6) 0 (0.0)  148 (10.0)  

[15-25[ years 0 (0.0) 80 (26.5) 0 (0.0) 62 (30.2) 0 (0.0)  142 (9.6)  

≥ 25 years 0 (0.0) 186 (61.6) 0 (0.0) 31 (15.1) 0 (0.0)  217 (14.7)  

Cardiovascular health 

and diabetes 

        

BMI, kg/m
2
 26.4±4.5 26.3±4.3 26.4±4.4 28.6±4.2 26.2±3.9 <0.001 26.7±4.4 2 
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Table 3.1. Characteristics of the study population according to the smoking status (continued) 

Characteristic 

Lifelong non-

smokers 

(n=699) 

Former light 

smokers 

(n=307) 

Current light 

smokers 

(n=57) 

Former heavy 

smokers 

(n=207) 

Current heavy 

smokers 

(n=211) 

P-

value 
All (n=1481)  

Missing 

Data 

Hypertension 325 (46.5) 132 (43.0) 21 (36.8) 122 (58.9) 91 (43.1) 0.002 691 (46.7) - 

Number of 

cardiovascular 

medications 

     0.007  33 

0 487 (71.4) 224 (74.7) 41 (73.2) 126 (62.4) 162 (77.9)  1040 (71.8)  

1 145 (21.3) 58 (19.3) 10 (17.9) 48 (23.8) 38 (18.3)  299 (20.6)  

2-3-4 50 (7.3) 18 (6.0) 5 (8.9) 28 (13.9) 8 (3.8)  109 (7.5)  

Diabetes 30 (4.3) 9 (2.9) 2 (3.5) 13 (6.3) 7 (3.3)  0.44 61 (4.1) - 

Heart rate 

variability 

        

SDNN 137.8 

[117.5;161.9] 

136.5 

[114.3;163.4] 

131.1 

[112.4;148.3] 

124.6 

[108.1;153.2] 

122.8 

[103.1;144.1] 

<0.001 133.6 

[112.5;157.4] 

- 

Total power 4077 

[2826;6128] 

4370 

[2805;6802] 

3708 

[2249;5244] 

4043 

[2714;5766] 

3415 

[2043;4717] 

<0.001 4006 

[2693;5927] 

- 

HF 275.4 

[155.4;461.2] 

283.2 

[158.2;494.1] 

236.7 

[141.5;348.7] 

248.6 

[140.8;467.0] 

232.0 

[137.1;415.9] 

0.06 269.4 

[148.9;459.7] 

- 

LF 984.8 

[606.8;1576.0] 

1071.0 

[635.5;1734.0] 

801.7 

[530.2;1432.0] 

980.5 

[599.3;1742.0] 

858.7 

[491.0;1176.0] 

<0.001 697.0 

[594.0;1578.0] 

- 

Ratio HF/LF 3.6 

[2.4;5.2] 

3.8 

[2.5;5.4] 

3.7 

[2.5;5.3] 

3.9 

[2.4;5.5] 

3.4 

[2.3;5.0] 

0.38 3.6 

[2.4;5.3] 

- 

ETS, Environmental Tobacco Smoke; BMI, body mass index 

Values shown are mean ± standard deviation, median [25
th

quartile; 75
th

quartile] and numbers (percentages) 

Differences in distributions according to the smoking status were assessed using Chi2 tests for categorical variables, and using one-way ANOVA (if 

normal distribution) or Kruskal-Wallis test (if non-normal distribution) for continuous variables 

a 
tested in ever smoker, 

b
 tested in former smoker 
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Lifestyle factors 

All lifestyle factors differed significantly depending on the smoking status of the 

subjects. The current heavy smokers were the least physically active and the most exposed to 

environmental tobacco smoke. Both current and former heavy smokers consumed more 

alcohol than other groups. Former light smokers did not significantly differ from lifelong non-

smokers with regard to alcohol consumption, physical activity, and environmental tobacco 

exposure (p=0.26, p=0.12 and p=0.10 respectively). Heavy smokers started smoking earlier 

than the light smokers (18 [16;20] years vs. 19 [18;21] years, p<0.001). Former heavy 

smokers ceased smoking later than the former light smokers (46.0 [40.0;53.0] years vs. 30.0 

[25.0;37.8] years, p<0.001). 

 

Cardiovascular health, obesity, and diabetes 

The prevalence of diabetes did not significantly differ depending on smoking status 

(p=0.44), unlike the other factors related to cardiovascular health. Former heavy smokers 

exhibited a higher BMI, higher prevalence of hypertension, and were undergoing 

cardiovascular treatment more frequently. The other groups did not differ regarding these 

factors (p=0.92, p=0.41, p=0.47 respectively for BMI, hypertension and number of 

cardiovascular medication).   

 

3.4.2. Exploration of the association between current smoking and heart rate 

dynamics 

Using standard parameters of HRV  

Table 3.2 shows the associations between the smoking status and the time- and 

frequency-domain measures of HRV in multivariable analysis, stratified by the time elapsed 

since cessation. Irrespective of smoking intensity, current smokers showed a significantly 

decreased HRV for SDNN, total power and LF. The HF and ratio LF/HF was significantly 

decreased only in the current heavy smokers. Moreover, there is evidence for a dose-response 

effect, given that SDNN, TP and LF were more markedly decreased in current heavy smokers 

as compared to current light smokers.  
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Table 3.2. Association between smoking status and time-domain and frequency-domain measures of HRV in multivariable analysis, stratified by 

time elapsed since cessation (n=1420 due to missing data on co-variables) 
 SDNN  Total power  HF  LF  Ratio LF/HF  

 %GM, 95%CI p-value %GM, 95%CI p-value %GM, 95%CI p-value %GM, 95%CI p-value %GM, 95%CI p-value 

Time after cessation: 0 year          

Smoking status (ref.=Lifelong non-smoker)  <0.001  <0.001  0.04  <0.001  0.005 

Current light smoker 
-7.3%  

[-13.6;-0.6] 
0.03 

-21.7% 

[-33.5;-7.9] 
0.003 

-19.2% 

[-35.6;1.5] 
0.07 

-20.1% 

[-33.1;-4.6] 
0.01 

-1.1% 

[-15.0;15.1] 
0.88 

Current heavy smoker 
-11.7%  

[-15.4;-7.9] 
<0.001 

-27.1% 

[-34.0;-19.5] 
<0.001 

-12.9% 

[-24.2;-0.01] 
0.05 

-25.3% 

[-32.9;-16.7] 
<0.001 

-14.2% 

[-21.8;-5.9] 
0.001 

Time after cessation: ]0-15[ years  

Smoking status (ref.=Lifelong non-smoker)  0.009  0.06  0.99  0.11  0.04 

Former light smoker 
-2.2%  

[-10.2;6.4] 
0.60 

-11.2%  

[-27.3;8.3] 
0.24 

1.2% 

[-23.5;33.9] 
0.93 

-19.0% 

[-34.8;0.7] 
0.06 

-20.0% 

 [-34.0;-3.0] 
0.02 

Former heavy smoker 
-8.0% 

[-12.9;-2.9] 
0.003 

-13.0% 

[-23.5;-1.2] 
0.03 

0.8% 

[-15.8;20.7] 
0.93 

-6.7% 

[-18.9;7.3] 
0.33 

-7.4% 

[-18.2;4.7] 
0.22 

Time after cessation: [15-25[ years  

Smoking status (ref.=Lifelong non-smoker)  0.43  0.19  0.25  0.17  0.93 

Former light smoker 
2.6% 

[-3.2;8.7] 
0.39 

10.4% 

[-3.8;26.7] 
0.16 

15.8% 

[-4.4;40.4] 
0.13 

14.6% 

[-1.5;33.4] 
0.08 

-1.0% 

[-13.1;12.7] 
0.87 

Former heavy smoker 
-3.1%  

[-9.5;3.9] 
0.38 

-8.2% 

[-22.1;8.0] 
0.30 

-6.5% 

[-25.5;17.4] 
0.56 

-4.0% 

[-19.8;14.9] 
0.66 

2.6% 

[-12.0;19.7] 
0.74 

Time after cessation: ≥ 25 years          

Smoking status (ref.=Lifelong non-smoker)  0.16  0.53  0.64  0.90  0.42 

Former light smoker 
-4.0%  

[-7.9;0.1] 
0.06 

-5.3% 

[-14.1;4.4] 
0.28 

-5.5% 

[-17.5;8.1] 
0.41 

-1.8% 

[-11.7;9.3] 
0.74 

4.0% 

[-5.1;13.9] 
0.40 

Former heavy smoker 
0.07%  

[-8.9;10.0] 
0.99 

-4.3% 

[-23.2;19.2] 
0.70 

5.2% 

[-22.4;42.4] 
0.75 

-4.3% 

[-24.7;21.8] 
0.72 

-9.0% 

[-25.9;11.8] 
0.37 

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, number of 

cardiovascular medication, average annual NO2 

SDNN, standard deviation of all NN intervals; HF, power in the high frequency range; LF, power in the low frequency range 

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (95%CI) 

Participants were classified as never smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy smokers if 

the total lifetime amount smoked was ≥ 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the average 

number of packs smoked per day 
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Using non-standard parameters 

Table 3.3 shows the associations between smoking status and the non-standard 

parameters in multivariable analysis, stratified by the time elapsed since cessation. The first 

category includes the parameters PSD5, exponent α short-term time scale (α3), Multiscale 

entropy low and Largest Lyapunov Exponent, which reflected significant changes in current 

heavy smokers. Compared to lifelong non-smokers, PSD5 was significantly increased in the 

current heavy smokers (0.2±0.08, p=0.02) and α short-term time scale, Multiscale entropy low 

and Lyapunov Largest Exponent were significantly decreased (-0.1±0.03, p<0.001, -

0.02±0.003, p<0.001 and -0.04±0.006, p<0.001 respectively). The second category includes 

the parameters SD1 and SD2 derived from the Poincaré Plot, which were significantly 

decreased both in light and heavy current smokers compared to lifelong non-smokers.   

The parameters α long-term time scale (α4), PSD2, Multiscale entropy high and SampEn1 

did not detect changes in the regulation of the cardiovascular system as a response to current 

tobacco smoke exposure (Online Supplement). 

 

3.4.3. Exploration of the association between long-term smoking cessation and heart 

rate dynamics 

 Using standard parameters of HRV 

SDNN, total power and LF showed a full recovery (i.e., normalization to the level of the 

lifelong non-smokers) in former light smokers within the first 15 years of cessation (Table 

3.2).  

While HF, LF and the ratio LH/HF also showed a full recovery in former heavy smokers 

within the first 15 years of cessation, SDNN and total power remained significantly 

decreased, and the normalization to the level of lifelong non-smokers appeared in the group of 

subjects who had ceased smoking 15-25 years prior. Finally, we found a significant 

interaction between the total lifetime amount smoked (pack-years) and the time elapsed since 

cessation (years) for SDNN, total power, and LF (Online Supplement) which provides 

evidence that the former smokers recovered differently according to the number of packyears 

they had smoked, as suggested by the later results. 
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Table 3.3. Association between smoking status and non-standard parameters in multivariable analysis, stratified by time elapsed since cessation (n=1420 

due to missing data on co-variables) 

 Category 1  Category 2 

 
PSD5 

α short-term time 

scale 
Multiscale entropy low 

Largest Lyapunov 

exponent 

 Poincaré SD1 Poincaré SD2 

 coefficient±se p-value coefficient±se 
p-

value 
coefficient±se p-value coefficient±se p-value 

 
%GM, 95%CI 

p-

value 

coefficient±

se 

p-

value 

Time after cessation: 0 year              

Intercept -3.3±0.8  3.0±0.3  0.1±0.03  0.4±0.07     258.9±42.7  

Smoking status (ref.=Lifelong non-

smoker) 
 0.03  <0.001  <0.001  <0.001 

  
0.004  <0.001 

Current light smoker -0.1±0.1 0.37 -0.03±0.05 0.48 -0.0004±0.005 0.93 0.01±0.01 0.33  -14.8% [-23.8;-4.8] 0.005 -13.7±6.7 0.04 

Current heavy smoker 0.2±0.08 0.02 -0.1±0.03 <0.001 -0.02±0.003 <0.001 -0.04±0.006 <0.001  -7.1% [-13.3;-0.6] 0.03 -23.2±4.1 <0.001 

Time after cessation: ]0;15[ years              

Intercept -3.8±0.8  3.0±0.3  0.1±0.03  0.5±0.07     281.6±43.9  

Smoking status (ref.=Lifelong non-

smoker) 
 0.19  0.14  0.03  0.06 

  
0.87  0.008 

Former light smoker -0.08±0.2 0.63 -0.07±0.06 0.26 -0.01±0.006 0.06 -0.02±0.01 0.17  -0.06% [-13.0;14.8] 0.99 -3.5±8.3 0.67 

Former heavy smoker 0.2±0.1 0.09 -0.06±0.04 0.09 -0.009±0.004 0.04 -0.02±0.008 0.05  -2.3% [-10.6;6.8] 0.60 -16.6±5.3 0.002 

Time after cessation: [15;25[ years              

Intercept -4.8±0.8  2.8±0.3  0.1±0.03  0.4±0.07     287.5±44.1  

Smoking status (ref.=Lifelong non-

smoker) 
 0.20  0.64  0.76  0.07 

  
0.35  0.25 

Former light smoker -0.04±0.1 0.70 -0.03±0.04 0.48 -0.003±0.005 0.57 0.001±0.009 0.91  7.2% [-2.7;18.1] 0.16 6.2±5.8 0.29 

Former heavy smoker 0.2±0.1 0.09 0.03±0.05 0.58 -0.003±0.005 0.62 -0.02±0.01 0.02  -0.4% [-11.2;11.7] 0.94 -8.0±6.8 0.24 

Time after cessation: ≥ 25 years              

Intercept -3.3±0.8  3.0±0.3  0.1±0.03  0.4±0.07     280.4±42.7  

Smoking status (ref.=Lifelong non-

smoker) 
 0.92  0.90  0.90  0.22 

  
0.63  0.23 

Former light smoker -0.0005±0.07 0.99 0.01±0.03 0.70 -0.0001±0.003 0.96 -0.008±0.006 0.21  -3.2% [-9.5;3.5] 0.34 -7.0±4.1 0.09 

Former heavy smoker -0.07±0.2 0.68 0.02±0.06 0.79 -0.003±0.007 0.65 -0.02±0.01 0.19  0.1% [-13.9;16.5] 0.99 0.4±9.3 0.97 

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, number of 

cardiovascular medication, average annual NO2 

PSD, Power Spectral Density 

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (se) 

Participants were classified as never smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy smokers if the 

total lifetime amount smoked was ≥ 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the average number of 

packs smoked per day 
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Using non-standard parameters 

In former light smokers, according to Poincaré parameters SD1 an SD2, a full recovery 

appeared within the first 15 years of smoking cessation. 

All parameters showed a full recovery in former heavy smokers as well. However, while 

this recovery appeared within the first 15 years of cessation for the PSD5, α short-term time 

scale and Poincaré SD1, it appeared later for the Multiscale entropy low, the Largest 

Lyapunov Exponent and the Poincaré SD2. Indeed, the normalization to the level of lifelong 

non-smokers appeared in the group of subjects who had ceased smoking 15-25 years prior for 

Multiscale entropy low and Poincaré SD2, and after 25 years of cessation for the Largest 

Lyapunov Exponent. 

Finally, as well as with the standard parameters of HRV, we found a significant positive 

interaction between the total lifetime amount smoked (pack-years) and the time elapsed since 

cessation (years) for α short-term time scale, Multiscale entropy low, and Poincaré SD2 

(Online Supplement).  

 

3.4.4. Sensitivity analyses 

Exclusion of participants taking at least one cardiovascular medication or with missing 

information on the number of cardiovascular medications showed that LF normalized to the 

level of lifelong non-smokers between 15 to 25 years of smoking cessation in former heavy 

smokers (5.5% [-15.4%;31.6%], p=0.63). The other parameters showed similar results when 

compared to the analysis of the whole cohort (Online Supplement).  

Exclusion of the outliers for each outcome variable showed (i) that former heavy smokers 

needed up to 15 to 25 years to fully recover, when the HRV was assessed by the ratio LF/HF, 

and (ii) that the Largest Lyapunov Exponent normalized to the level of lifelong non-smokers 

between 15 and 25 years of cessation in former heavy smokers (-0.004±0.009, p=0.07). Thus, 

the remaining decrease in former heavy smokers after 15-25 years of cessation in the analysis 

of the whole cohort might be due to outliers (Online Supplement). 

After exclusion of both outliers and participants taking at least one cardiovascular 

medication, or with missing information on the number of cardiovascular medications, our 

results suggested a full normalization of the Largest Lyapunov Exponent within the first 15 

years of smoking cessation (-0.01±0.009, p=0.17). There were no changes in the association 

between the standard parameters of HRV and smoking status (Online Supplement). 
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3.5. Discussion 

3.5.1. Main results 

This study evaluates the long-term influence of smoking cessation on heart rate dynamics 

using standard parameters, Power Spectral Density parameters, and nonlinear time series 

analysis parameters. Our findings provide evidence supporting the following conclusions: 

1.  Smoking triggers adverse changes in the regulation of the cardiovascular system, even 

at low levels of exposure. Indeed, the SDNN, total power, LF, and Poincaré SD1 and 

SD2 parameters were decreased in light and heavy current smokers compared to 

lifelong non-smokers. Moreover, there is evidence for a dose-response effect. 

2.  After cessation, light smokers fully recover within the first 15 years of cessation. 

Indeed, both standard and non-standard parameters normalized to the levels 

characteristic of lifelong non-smokers. 

3.  After cessation, heavy smokers may fully recover as well. However, according to 

SDNN, total power, Multiscale entropy low and Poincaré SD2 the normalization might 

need up to 15 to 25 years.  

Our findings suggested a full normalization of the Lyapunov Largest Exponent only after 25 

years of cessation in former heavy smokers. This supports the hypothesis that nonlinear time 

series analysis techniques may be able to unveil subtle, but important changes in the 

regulation of the cardiovascular system more difficult to detect by traditional analysis 

methods. However, our sensitivity analysis suggested that this remaining significant change 

between 15 and 25 years of smoking cessation might be due to outliers in the data.  

We also noticed that the specific settings used for the calculation of the nonlinear time 

series analysis parameters, e.g., the embedding dimension (Online Supplement), play a role 

as to whether certain effects are detected or not. This suggests that tobacco smoke exposure 

may trigger very specific alterations which might be better described using non-standard 

parameters calculated using certain settings. This property of the non-standard parameters 

makes them potentially suitable tools for exploring the mechanisms underlying the 

modifications in the regulation of the cardiovascular system triggered by tobacco smoke 

exposure. 

Finally, we found a significant interaction between the total lifetime amount smoked and 

the time elapsed since cessation for standard and non-standard parameters. The fact that this 

interaction is positive means that the slope of the regression line relating HRV to cessation 

time is steeper in heavier than in lighter smokers. This suggests that the speed of recovery is 
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faster in former heavy smokers. Nevertheless, it takes longer for them to fully recover because 

they start out from a lower initial value. 

 

3.5.2. Strength and weaknesses of the study (internal validity) 

To the authors’ knowledge, this is the first study examining the influence of long-term 

smoking cessation on parameters describing the HRV and heart rate dynamics. Additional 

strengths of the present study included a) the population-based design, involving a random 

sample of the Swiss population; b) the large number of participants; b) the detailed 

information available on participants, allowing for control of most potential confounders; c) 

the two assessment points, allowing a better understanding of the smoking history of the 

participants; d) the calculation, using long-duration ECG recordings, of a variety of HRV 

parameters, both in the time and frequency domain, and nonlinear time series analysis 

parameters as well; e) the control group of lifelong non-smokers, allowing to assess whether 

there was a full recovery in former smokers.  

This study faced some limitations. First, smoking status was assessed using self-reported 

data rather than by means of measurements of biomarkers. However, CO measures were used 

to validate smoking status, which has been shown, in combination with self-reporting, to 

discriminate well between smokers and non-smokers (Stevens and Munoz 2004, Felber 

Dietrich, Schwartz et al. 2007), and to be highly concordant with biomarker measurements 

(Patrick, Cheadle et al. 1994). A second limitation was the absence of information on the use 

of nicotine substitution therapy after smoking cessation. Previous studies have shown that 

abstinence from smoking in combination with the use of nicotine transdermal patches results 

in increased HRV, which further increases after the cessation of substitution therapy (Stein, 

Rottman et al. 1996, Harte and Meston 2013). Therefore, nicotine substitutes might prevent 

former smokers from recovering as quickly as they normally would without the use of 

substitutes. As a consequence, we cannot rule out that some of the effect attributed to time 

since quitting may be confounded by an effect of using nicotine replacement and we might 

have underestimated the improvement in former smokers. Furthermore, no information about 

the type of cigarettes smoked was available within this cohort. Nevertheless, the subjects in 

this study did not use electronic cigarettes since they were introduced into the market in 2004. 

Finally, given the small number of participants who had only quit for a short time, we were 

not able to assess the short-term influence of smoking cessation.  
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3.5.3. Strengths and weaknesses of the study compared to other studies (external 

validity) 

Our findings are in the line with the well-established view that smokers, compared to 

non-smokers, exhibit dysfunctional cardiac autonomic function, as evidenced by lower HRV 

indices, even at low levels of exposure (Raupach, Schafer et al. 2006, Dinas, Koutedakis et al. 

2013, Harte and Meston 2013). 

Moreover, using parameters describing HRV, or heart rate dynamics, we have given 

evidence that long-term smoking cessation allows for a full recovery within 15 years for 

former light smokers, and up to 15-25 years for former heavy smokers. We have only found 

one study assessing the long-term influence of smoking cessation on HRV (Gac and 

Sobieszczanska 2014). Using time-domain measures of HRV, measured in 145 patients with 

hypertension, Gac et al. have found a decreased HRV in current smokers and a partial 

recovery in former smokers. In former smokers, the mean number of cigarettes/24h smoked in 

the past was 16.2±6.5 and the mean time after cessation was 10.8±3.6 years. Therefore, heavy 

smokers who lacked sufficient time post cessation to fully recover may account for the 

remaining decrease in HRV. Furthermore, the long-term effect of smoking cessation has been 

extensively studied with respect to the risk of cardiovascular morbidity and mortality (Doll 

and Peto 1976, Novello 1990, Ockene, Kuller et al. 1990, Lightwood and Glantz 1997, Teo, 

Ounpuu et al. 2006). To the extent that we may translate the increase in HRV to a decrease in 

the risk of coronary heart disease, our findings are consistent with this large body of literature, 

which has demonstrated the substantial benefits of quitting cigarette use for the cardiovascular 

system, irrespective of the amount smoked (Novello 1990, Ockene, Kuller et al. 1990, 

Dobson, Alexander et al. 1991, Tverdal, Thelle et al. 1993, Negri, La Vecchia et al. 1994, 

Wannamethee, Shaper et al. 1995, Doll, Peto et al. 2004, Health 2004, Teo, Ounpuu et al. 

2006, Honjo, Iso et al. 2010, Mannan, Stevenson et al. 2010, Shields, Garner et al. 2013, 

Shields and Wilkins 2013). Our findings are, in particular, highly consistent with the studies 

that stratified the analyses by light and heavy former smokers, since they have shown that (a) 

the risk in former light smokers was similar within 3 years after quitting to those who had 

never smoked (Rosenberg, Palmer et al. 1990, Negri, La Vecchia et al. 1994, Wannamethee, 

Shaper et al. 1995, Teo, Ounpuu et al. 2006); (b) there was a remaining risk in former heavy 

smokers after 10 years of smoking cessation (Rosenberg, Palmer et al. 1990, Negri, La 

Vecchia et al. 1994, Wannamethee, Shaper et al. 1995). Only Teo et al. has identified a still 
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increased risk of acute myocardial infarction in former heavy smokers after 20 years of 

smoking cessation (Teo, Ounpuu et al. 2006).  

 

3.5.4. Relevance of the study results and implications for policymakers 

First, this study provides evidence that smoking triggers adverse changes in the 

regulation of the cardiovascular system, even at low levels of exposure. This constitutes a 

strong argument for health policy makers advocating for more intensive prevention 

campaigns aimed at discouraging smoking.  

Secondly, we show that long-term smoking cessation leads to a normalization of heart 

rate dynamics, therefore reducing the risk of developing cardiovascular disease later in life. 

This underpins the value of public healthcare programs supporting the benefits of smoking 

cessation. 

However, while light smokers fully recovered within the 15 first years of cessation, 

heavy former smokers might need up to 15-25 years to fully recover. Thus, former heavy 

smokers remain exposed longer after cessation to a higher risk of cardiovascular morbidity 

and cardiovascular-related morbidity. In analogy to the recommendations of the American 

Cancer Society (2014) related to lung cancer screening, our data suggest that future studies 

need to demonstrate whether close monitoring of cardiovascular disease in heavy smokers, 

current and/or former, should be recommended as well. 

 

3.6. Conclusion 

In conclusion, findings of the present study indicate that smoking triggers changes in the 

cardiac autonomic function even at low levels of exposure. Moreover, there is evidence for a 

dose-response effect. Furthermore, our findings indicate that long-term smoking cessation 

allows for a full recovery within 15 years in former light smokers, and possibly within 15-25 

years in former heavy smokers. Therefore, our study supports the substantial benefits of 

smoking cessation, but also warns of important alterations caused by heavy smoking.  
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3.8. Online Supplement  

Methods 

Data collection  

SAPALDIA questionnaire 

In 1991, participants were first interviewed by a trained fieldworker using a standardised 

questionnaire. The questionnaire was developed along with the questionnaire of the European 

Community Respiratory Health Survey (Burney, Luczynska et al. 1994). The different 

sections of the questionnaire related to history of respiratory symptoms, allergic diseases, 

living and working environment, exposure to animals, smoking and general health. Additional 

questions concerning smoking habits and environmental tobacco smoke exposure were 

adopted from the MONICA questionnaires (Martin, Ackermann-Liebrich et al. 1997). In 

SAPALDIA 2, the follow-up study, the questionnaire was extended with additional questions 

about chronic diseases, including heart disease, physical activity (derived from the ECRHS II 

and the Questionnaire of the Swiss Health Survey), and present and past medication use was 

recorded in detail (Ackermann-Liebrich, Kuna-Dibbert et al. 2005). 

 

Measurements 

Details about environmental measurements (e.g., NO2, PM10) and biological 

measurements (e.g., blood pressure, weight, height) are reported elsewhere(Martin, 

Ackermann-Liebrich et al. 1997, Ackermann-Liebrich, Kuna-Dibbert et al. 2005). Recording 

of 24 hours ECG have been previously described (Felber Dietrich, Schindler et al. 2006). 

Interbeat interval time series were obtained from the raw ECG Holter recordings via QRS-

complex recognition using the software Impresario, Version 3 (Del Mar Reynolds Medical, 

Inc. Irvine, CA, USA). 

Potentially abnormal or ectopic beats, when recognized by the software, were marked as 

putative artifacts but not removed from the resulting time series. Our algorithms used for the 

calculation of time series analysis parameters as well as of measures of HRV (see 

Computational Methods below) make use of these marks in order to avoid the incorporation 

of possibly faulty values into the computations. 

 

Computational methods 

Traditional time and frequency domain measures were calculated in agreement with the 

standards of measurement proposed by the Task Force of the European Society of Cardiology 



Chapter 1: Long-term smoking cessation, heart rate variability and heart rate dynamics 

59 

 

and the North American Society of Pacing and Electrophysiology (1996). The time domain 

measure used was the standard deviation of normal interbeat intervals (SDNN). For the 

frequency domain measures, Fast Fourier Transform procedures were used to derive the 

spectral distribution, which resulted in the calculation of total power, low frequency (LF) 

power (0.04–0.15 Hz), high frequency (HF) power (0.15–0.40 Hz), and the ratio between LF 

and HF (LF/HF). 

The following time series analysis parameters were calculated using our own 

implementations in R (occasionally accessing C libraries to reduce run time) of well-known 

algorithms. Many of the implementations are based on the TISEAN package (Hegger, Kantz 

et al. 1999): 

 The Largest Lyapunov exponent λ was calculated using an embedding dimension of two, and 

a time lag or delay time of one sample, considering at least 2000 reference points, and 

adjusting the neighbourhood size  to obtain at least 10 neighbours per reference point, such 

that no neighbour was a direct chronological successor of the given reference point (i.e., the 

Theiler window was set to 2). The length of the embedding space trajectories compared for 

the estimation of λ was of 20. The algorithm used is described in (Hegger, Kantz et al. 1999, 

Kantz and schreiber 2004). 

 The correlation dimension was calculated using an embedding dimension of two, and a time 

lag or delay time of one sample. The Theiler window was set to 2. The algorithm used is 

described in (Hegger, Kantz et al. 1999, Kantz and schreiber 2004). 

 The scaling exponent  obtained via detrended fluctuation analysis (DFA) was calculated 

using a geometric window increase with exponent equal to 2 and no overlap of windows. Four 

different time scales were considered: 3-7 samples (α1), 7-13 samples (α2), 4-16 samples (α3), 

and 16-64 samples (α4). The method of DFA is described in (Kantz and schreiber 2004) and 

the citations therein. The data were detrended by means of a moving average method 

(Alvarez-Ramirez 2005). 

 The sample entropy was calculated on the original time series of interbeat intervals as well as 

on coarse-grained time series constructed on the basis of collapsing the original values within 

a window of the size of the scale of interest to one value, namely the average of the 

measurements over the length of the window. The scales considered (sizes of windows) were 

1-20. The parameters SampEn1 to SampEn10 correspond to the scales 1-10. In all cases, the 

sample entropy was calculated using a comparison length of m=2 points, and a tolerance of 
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r=0.2 *sdnn, where sdnn stands for the standard deviation of all normal interbeat intervals, 

according to the algorithm described in (Richman and Moorman 2000) and in the citations 

therein. The multiscale entropy was calculated according to (Costa, Goldberger et al. 2002) 

over all scales considered, that is 1-20. Local slopes of the plot of the sample entropy as a 

function of scale yielded the parameters MultiEnLow (slope within the scales 1-5), and 

MultiEnHigh (slope within the scales 6-20). 

 A power-law relationship between the power spectral density (PSD) of the interbeat interval 

time series and frequency was determined by estimating the slope  of the linear best-fit of 

the PSD as a function of the frequency on a double logarithmic scale. Several parameters 

were obtained, depending on the range of frequencies used. The power spectral density (PSD) 

was estimated according to the method described in (Cusenza 2010). Regressing the power 

spectral for frequencies in the range 0.01 > freq > 0.0001 yielded the parameter PSD1. 

Analogously, PSD2 corresponds to 0.04 > freq > 0.02, PSD3 to 0.45 > freq > 0.0001, PSD4 to 

0.5 > freq > 0.1, PSD5 to 0.5 > freq > 0.2, and PSD6 to 0.5 > freq > 0.3, respectively.  

 

Statistical analysis 

Hierarchical clustering analysis 

To focus our attention on time series analysis parameters that provide orthogonal 

information about the participant’s heart rate dynamics, we performed a clustering analysis.  

To this end, for a given time series analysis parameter, we grouped all the values obtained 

within the cohort to a row in a matrix. Then, we conducted hierarchical clustering on the rows 

of the matrix and identified clusters of time series analysis parameters that, in the context of 

the cohort analysed, seem to encode similar properties. A heat map representation of this 

procedure is depicted in Figure E3.1. With the exception of the standard measures of HRV 

which were all kept, we selected out of each of the identified clusters one parameter per 

computational method as a representative.  
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Figure E3.1. Hierarchical clustering analysis of parameters describing heart rate variability and heart rate dynamics, n=1481 
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Results 

Hierarchical cluster analysis of the parameters of HRV and heart rate dynamics 

By means of hierarchical clustering we identified four main clusters in the heart dynamics 

components (Figure E3.1). The first cluster included the exponent α4, the Multiscale entropy 

high, and PSD3 to 6. In order to keep only one representative parameter per computational 

method in each cluster, we excluded PSD3,4,6 for the following analyses. The second cluster 

included PSD1 and PSD2, the ratio LF/HF, α1 to 3, the Largest Lyapunov Exponent and the 

Multiscale entropy low. We excluded PSD1, α2 and α3. The third cluster included the Poincaré 

parameters SD1 and SD2, CD, and all the traditional parameters of HRV with the exception of 

the ratio LF/HF. Both Poincaré parameters SD1 and SD2 were kept for the following analyses 

since they are usually described together in the literature. The CD was excluded because of its 

specific distribution. Finally, the fourth cluster included all the parameters related to the 

sample entropy. Only one of them, the SampEn1, was retained for the following analyses. 

 

Exploration of the association between current smoking and the heart rate dynamics 

Using non-standard time series analysis parameters 

The parameters exponent α long-term time scale (α4), PSD2, multiscale entropy high and 

SampEn1 did not detect any changes in the regulation of the cardiovascular system as a 

response to current tobacco smoke exposure (Table E3.1). Therefore, their association with 

the long-term smoking cessation was not assessed. 

 

Exploration of the association between long-term smoking cessation and heart rate dynamics 

A significant positive interaction between the total lifetime amount smoked (pack-years) 

and time elapsed since cessation (years) was found for SDNN, total power, LF, α short-term 

time scale, and multiscale entropy low, and Poincaré SD2 (Table E3.2).  
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Table E3.1. Association between smoking status and non-standard parameters of HRV in current smokers (n=1420) 

 α long-term time scale PSD2  Multiscale entropy high  SampEn1  

 coefficient±se p-value coefficient±se p-value coefficient±se p-value %GM, 95%CI p-value 

         
Intercept 1.6±0.2  -2.1±0.4  -0.01±0.005    

Smoking status (ref.=Lifelong non-smokers)  0.72  0.74  0.77  0.25 
Current light smoker 0.004±0.03 0.88 -0.002±0.07 0.98 0.0002±0.0007 0.80 -4.6% [-14.1;6.1] 0.39 
Current heavy smoker 0.01±0.02 0.42 0.03±0.04 0.44 0.0003±0.0004 0.48 4.3% [-2.2;11.2] 0.20 

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, number of 

cardiovascular medication, average annual NO2 

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (se) 

Participants were classified as lifelong non-smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy 

smokers if the total lifetime amount smoked was ≥ 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the 

average number of packs smoked per day 
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Table E3.2. Tests of linear interactions between total lifetime amount smoked (pack-years) and time elapsed since cessation (years) (n=1420) 

Outcome Intercept  Pack-years  Time elapsed since cessation  Interaction  
 coefficient±se  coefficient±se or %GM, 

95%CI 

p-value  coefficient±se or %GM, 

95%CI 

p-

value 

 coefficient±se or %GM, 

95%CI 

p-

value 

 

SDNN   -0.2% 

[-0.3;-0.2] 
<0.001  0.007% 

[-0.1;0.1] 

0.91  0.009% 

[0.002;0.02] 
0.01  

Total power   -0.5% 

[-0.7;-0.3] 
<0.001  0.1% 

[-0.1;0.4] 

0.27  0.02% 

[0.005;0.04] 
0.01  

HF   -0.2% 

[-0.4;0.07] 

0.18  0.09% 

[-0.3;0.4] 

0.63  0.01% 

[-0.01;0.03] 

0.32  

LF   -0.5% 

[-0.7;-0.3] 
<0.001  0.2% 

[-0.05;0.5] 

0.11  0.02% 

[0.005;0.04] 
0.01  

Ratio LF/HF   -0.3% 

[-0.5;-0.2] 
<0.001  0.1% 

[-0.1;0.4] 

0.25  0.01% 

[-0.004;0.03] 

0.16  

PSD5 -3.5±0.7  0.006±0.001 <0.001  -0.001±0.002 0.52  -0.0001±0.0001 0.20  
α short-term time scale 2.9±0.3  -0.003±0.0005 <0.001  0.0009±0.0007 0.21  0.0001±0.00005 0.02  
Multiscale entropy low 0.1±0.03  -0.0004±0.00005 <0.001  0.00007±0.002 0.37  0.00001±0.000005 0.02  
Lyapunov Largest 

Exponent 

0.4±0.06  -0.0007±0.0001 <0.001  -0.00004±0.0002 0.79  0.00001±0.00001 0.22  

Poincaré SD1   -0.06% 

[-0.2;0.06] 

0.32  0.04% 

[-0.1;0.2] 

0.63  0.006% 

[-0.005;0.02] 

0.31  

Poincaré SD2 269.8±35.8  -0.43±0.07 <0.001  0.02±0.1 0.81  0.01±0.007 0.04  
All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, number of cardiovascular 

medication, average annual NO2 

SDNN, standard deviation of all NN intervals; HF, power in the high frequency range; LF, power in the low frequency range; PSD, Power Spectral Density 

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (se) 
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Sensitivity analysis 

Random effect of the study areas 

Inclusion of a random effect for study area did not change the associations between heart 

rate dynamics and smoking status (data not shown). 

 

Exclusion of outliers 

For each of the standard and non-standard parameters, we excluded participants with a 

value lower than the 1
th

 percentile or higher than the 99
th

 percentile of the distribution of the 

parameter. Compared to the main analysis of the standard parameters, this analysis showed an 

additional significant decrease of the ratio LF/HF in former heavy smokers within the first 15 

years of smoking cessation (-13.5% [-22.9%;-3.0%], p=0.01). The ratio LF/HF normalized to 

the level of lifelong non-smokers within 15-25 years of smoking cessation (-1.6% [-

14.5%;13.3%], p=0.83). In regard with the non-standard parameters, a remarkable result was 

the normalization of the Largest Lyapunov Exponent in the former heavy smokers after 15-25 

years of smoking cessation (-0.004±0.009, p=0.07). 

 

Exclusion of the participants taking at least one cardiovascular medication or with missing 

information on the number of cardiovascular medications 

Additional analysis of heart rate dynamics excluding the participants taking at least one 

cardiovascular medication or with missing information on the number of cardiovascular 

medications was performed. Regarding the standard parameters, we obtained the same results 

as in the main analysis, with the additional significant decrease of LF in former heavy 

smokers within the first 15 years of smoking cessation (-16.8% [-29.1%;-2.5%], p=0.02). The 

LF normalized to the level of lifelong non-smokers within 15-25 years of smoking cessation 

(5.5% [-15.4%;31.6%], p=0.63) (Table E3.3).  

There were no noteworthy changes in the association between non-standard parameters 

and smoking status (data not shown). 

 

Exclusion of both outliers and participants taking at least one cardiovascular medication or 

with missing information on the number of cardiovascular medications 

Finally, after exclusion of both outliers and participants taking at least one cardiovascular 

medication, the Largest Lyapunov Exponent exhibited a full recovery within the first 15 years 

of smoking cessation (Table E3.4). 
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There were no noteworthy changes in the association between the standard parameters of 

HRV and smoking status (data not shown). 

 

Interaction between smoking status and ACE inhibitors  

Interaction between smoking status and ACE inhibitors was not significant for any 

outcome (data not shown). 
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Table E3.3. Association between smoking status and time-domain and frequency-domain measures of HRV in multivariable analysis, after 

exclusion of the participants taking at least one cardiovascular medication or with missing information on the number of cardiovascular 

medications, stratified by time elapsed since cessation (n=1020)  
 SDNN  Total power  HF  LF  Ratio LF/HF  

 %GM, 95%CI p-value %GM, 95%CI p-value %GM, 95%CI p-value %GM, 95%CI p-value %GM, 95%CI p-value 

Time after cessation: 0 year          

Smoking status (ref.=Lifelong non-smoker)  <0.001  <0.001  0.03  <0.001  0.04 

Current light smoker 
-12.5%  

[-19.2;-5.2] 
0.001 

-27.5% 

[-39.4;-13.2] 
<0.001 

-20.0% 

[-37.9;3.0] 
0.08 

-25.0% 

[-38.3;-9.0] 
0.004 

-6.3% 

[-20.5;10.5] 
0.44 

Current heavy smoker 
-13.8%  

[-17.8;-9.6] 
<0.001 

-29.1% 

[-36.3;-21.0] 
<0.001 

-15.7% 

[-27.6;-1.8] 
0.03 

-25.5% 

[-33.7;-16.3] 
<0.001 

-11.7% 

[-20.0;-2.5] 
0.01 

Time after cessation: ]0-15[ years  

Smoking status (ref.=Lifelong non-smoker)  <0.001  0.002  0.43  0.05  0.09 

Former light smoker 
-1.5% 

[-10.2;8.2] 
0.76 

-6.2%  

[-24.4;16.4] 
0.56 

9.0% 

[-19.7;47.9] 
0.58 

-11.8% 

[-30.2;11.5] 
0.29 

-19.0% 

 [-34.1;-0.5] 
0.04 

Former heavy smoker 
-12.5% 

[-17.9;-6.8] 
<0.001 

-23.2% 

[-33.7;-11.0] 
<0.001 

-11.0% 

[-27.7;9.6] 
0.27 

-16.8% 

[-29.1;-2.5] 
0.02 

-6.6% 

[-18.8;7.5] 
0.34 

Time after cessation: [15-25[ years  

Smoking status (ref.=Lifelong non-smoker)  0.79  0.72  0.46  0.50  0.74 

Former light smoker 
-0.9% 

[-7.2;5.8] 
0.78 

4.5% 

[-10.2;21.6] 
0.57 

10.4% 

[-10.6;36.4] 
0.36 

9.5% 

[-7.1;29.1] 
0.28 

-0.8% 

[-13.7;14.0] 
0.91 

Former heavy smoker 
-2.8%  

[-11.0;6.1] 
0.52 

6.3%  

[-13.3;30.3] 
0.55 

13.5% 

[-14.5;50.7] 
0.38 

5.5% 

[-15.4;31.6] 
0.63 

-7.0% 

[-22.8;12.0] 
0.44 

Time after cessation: ≥ 25 years          

Smoking status (ref.=Lifelong non-smoker)  0.15  0.43  0.91  0.45  0.27 

Former light smoker 
-4.4%  

[-8.7;0.2] 
0.06 

-6.2% 

[-15.7;4.3] 
0.23 

-2.8% 

[-16.3;12.8] 
0.71 

-3.5% 

[-14.0;8.4] 
0.55 

-0.7% 

[-10.1;9.7] 
0.89 

Former heavy smoker 
1.3%  

[-9.5;13.4] 
0.82 

-7.8% 

[-28.8;19.4] 
0.54 

3.2% 

[-28.1;48.3] 
0.86 

-15.2% 

[-36.0;12.4] 
0.25 

-17.8% 

[-35.5;4.7] 
0.11 

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared,  average annual NO2 

SDNN, standard deviation of all NN intervals; HF, power in the high frequency range; LF, power in the low frequency range 

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (95%CI) 

Participants were classified as lifelong non-smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy smokers if the total 

lifetime amount smoked was ≥ 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the average number of packs smoked 

per day 
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Table E3.4. Association between smoking status and non-standard parameters in multivariable analysis, after exclusion of the outliers and participants taking at least 

one cardiovascular medication or with missing information on the number of cardiovascular medications, stratified by time elapsed since cessation (n=1000) 

 Category 1  Category 2 

 
PSD5 

α short-term time 

scale 
Multiscale entropy low 

Largest Lyapunov 

exponent 

 Poincaré SD1 Poincaré SD2 

 coefficient±se p-value coefficient±se 
p-

value 
coefficient±se p-value coefficient±se p-value 

 
%GM, 95%CI 

p-

value 

coefficient±

se 

p-

value 

Time after cessation: 0 year              

Intercept -2.3±0.8  3.3±0.3  0.2±0.03  0.4±0.07     200.4±44.5  

Smoking status (ref.=Lifelong non-

smoker) 
 0.02  0.06  <0.001  <0.001 

  
0.005  <0.001 

Current light smoker -0.03±0.1 0.82 -0.06±0.04 0.14 -0.004±0.005 0.40 -0.004±0.01 0.75  -12.9% [-22.3;-2.3] 0.02 -19.8±7.3 0.007 

Current heavy smoker 0.2±0.08 0.006 -0.05±0.03 0.05 -0.01±0.003 <0.001 -0.03±0.007 <0.001  -8.4% [-14.4;-1.9] 0.01 -21.9±4.4 <0.001 

Time after cessation: ]0;15[ years              

Intercept -2.5±0.9  3.2±0.3  0.1±0.03  0.4±0.07     242.1±46.7  

Smoking status (ref.=Lifelong non-

smoker) 
 0.16  0.30  0.04  0.34 

  
0.54  <0.001 

Former light smoker -0.004±0.2 0.98 -0.02±0.05 0.70 -0.009±0.006 0.12 -0.008±0.01 0.53  5.4% [-8.2;21.1] 0.45 0.2±8.8 0.98 

Former heavy smoker 0.2±0.1 0.06 -0.06±0.04 0.13 -0.009±0.004 0.03 -0.01±0.009 0.17  -3.5% [-12.3;6.2] 0.46 -23.8±6.1 <0.001 

Time after cessation: [15;25[ years              

Intercept -3.4±0.8  3.2±0.3  0.1±0.03  0.4±0.07     237.6±46.6  

Smoking status (ref.=Lifelong non-

smoker) 
 0.66  0.92  0.17  0.57 

  
0.29  0.63 

Former light smoker 0.06±0.1 0.60 0.005±0.04 0.89 0.0005±0.004 0.91 -0.005±0.009 0.61  5.8% [-4.2;16.8] 0.27 3.7±6.3 0.55 

Former heavy smoker 0.1±0.2 0.44 -0.02±0.05 0.71 -0.01±0.006 0.06 -0.01±0.01 0.35  8.1% [-5.4;23.4] 0.25 -5.9±8.3 0.48 

Time after cessation: ≥ 25 years              

Intercept -2.8±0.8  3.4±0.3  0.1±0.03  0.4±0.07     226.8±45.0  

Smoking status (ref.=Lifelong non-

smoker) 
 0.76  0.47  0.70  0.40 

  
0.67  0.44 

Former light smoker -0.007±0.08 0.93 0.01±0.03 0.68 0.0009±0.003 0.77 -0.009±0.007 0.20  -2.6% [-9.1;4.4] 0.46 -5.1±4.5 0.25 

Former heavy smoker 0.1±0.2 0.47 0.08±0.07 0.23 -0.005±0.007 0.45 -0.008±0.02 0.61  3.7% [-12.3;22.5] 0.68 4.5±10.9 0.68 

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, average annual NO2 

PSD, Power Spectral Density 

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (se) 

Participants were classified as lifelong non-smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy smokers if the total 

lifetime amount smoked was ≥ 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the average number of packs smoked per 

day 
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4.1. Abstract 

Aim: To evaluate the influence of low-level, but long-term exposure (10 years), to traffic-

related particulate matter (TPM10) on the regulation of the autonomic cardiovascular system 

and heart rate dynamics in an aging general population, as well as the a priori selected effect 

modifiers sex, smoking status, obesity, and gene variation in selected glutathione S-

transferases (GSTs). 

Methods: We analyzed data from 1593 participants aged ≥ 50 years from the SAPALDIA 

cohort study. For each participant, heart rate variability and heart rate dynamics were 

characterized by means of various quantitative analyses of the inter-beat interval time series 

generated from 24-hour electrocardiogram recordings. Each parameter obtained was then used 

as the outcome variable in multivariable mixed linear regression models in order to evaluate 

the association with long-term exposure to traffic-related PM10. The models were adjusted for 

known confounding factors. Interaction between long-term exposure to traffic-related PM10 

and the a priori selected effect modifiers were tested.  

Results: We did not observe an overall association between long-term exposure to TPM10 and 

heart rate variability/heart rate dynamics in the entire study population. However, significant 

changes in the heart rate dynamics were found in subjects without cardiovascular morbidity 

and significant changes both in the heart rate dynamics and in heart rate variability were 

found in non-obese subjects without cardiovascular morbidity. Furthermore, subjects with 

homozygous GSTM1 gene deletion appeared to be more susceptible to the effects of TPM10. 

Conclusion: This study provides evidences that long-term exposure to TPM10 triggers 

adverse changes in the regulation of the cardiovascular system. These adverse effects were 

more visible in the healthy subjects, in whom the overall relationship between TPM10 and 

heart rate variability/heart rate dynamics was not modified by an underlying health condition 

and the eventual countering effects of related drug treatments. 

 

Keywords: heart rate variability; nonlinear dynamics; air pollution; particulate matter; 

vehicle emissions 
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4.2. Introduction 

Short- and long-term exposure to particulate matter (PM) air pollution has been 

associated with increased cardiovascular morbidity and mortality, with greater risks in 

susceptible populations, such as the elderly, individuals with diabetes, patients with 

preexisting coronary heart disease, chronic lung disease, or heart failure, and individuals with 

low education or socioeconomic status (Pope, Burnett et al. 2004, Brook, Rajagopalan et al. 

2010, Pieters, Plusquin et al. 2012). Current or previous smokers, obesity and sex could also 

be susceptibility factors (Brook, Rajagopalan et al. 2010).  

Possible mechanisms for these associations include effects on the autonomic nervous 

system. Heart rate variability (HRV) is a useful non-invasive measure to assess the autonomic 

regulation of cardiac rhythm (1996). Lower HRV is associated with higher cardiovascular 

morbidity and mortality, and has proved itself as an important prognostic tool for several 

cardiovascular conditions (Kleiger, Miller et al. 1987, Bigger, Fleiss et al. 1992, 1996, Tsuji, 

Larson et al. 1996). There is strong overall epidemiological evidence that short-term PM 

exposure (days) is associated with reductions in most indices of HRV, and the association 

might be more pronounced among the elderly, patients with preexisting cardiovascular 

disease or diabetes, or people with reduced antioxidative defenses (Park, O'Neill et al. 2005, 

Brook, Rajagopalan et al. 2010, Pieters, Plusquin et al. 2012, Mordukhovich, Coull et al. 

2015). In particular, recent observations have shown a strong effect modification of the HRV-

PM relationship, as well as of the HRV-second-hand smoke and HRV-BMI relationships, by 

genes that modulate endogenous oxidative stress, such as glutathione S-transferase (GST) 

(Schwartz, Park et al. 2005, Park, O'Neill et al. 2006, Baccarelli, Cassano et al. 2008, Probst-

Hensch, Imboden et al. 2008, Adam, Imboden et al. 2017), suggesting that air pollutants 

might impact in part through inflammatory and oxidative stress pathways.  

Although long-term PM exposure is known to have a stronger effect on cardiovascular 

morbidity and mortality than acute exposure, there is limited or weak available 

epidemiological evidence that HRV is altered by low-level, but long-term exposure (years) 

(Brook, Rajagopalan et al. 2010). Indeed, studies on the chronic impact of PM air pollution on 

HRV are scarce (Adam, Felber Dietrich et al. 2012, Adam, Imboden et al. 2014, 

Mordukhovich, Coull et al. 2015) and the American Heart Association recently stated that 

studies on the long-term effects of air pollution on HRV and cardiovascular health are a major 

unresolved issue. 
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Finally, there is increasing evidence that the regulation of the cardiovascular system 

involves nonlinear control mechanisms (1996, Rajendra Acharya, Paul Joseph et al. 2006) 

which can best be characterized using nonlinear time series analysis techniques (Goldberger 

and West 1987, Pincus 1991, Pikkujamsa, Makikallio et al. 2001, Meyer and Stiedl 2003, 

Rajendra Acharya, Paul Joseph et al. 2006, Vandeput, Verheyden et al. 2012). The recent 

implementation of such methods to evaluate the influence of current smoking and smoking 

cessation on heart rate dynamics, in the large epidemiological dataset of SAPALDIA, which 

allowed for the control of the most potential confounders, enabled us to unveil long-term 

alterations in former heavy smokers who might need up to 15-25 years to fully recover. 

(Meier-Girard et al. 2016).  

By applying the same kind of approach, the present study aimed first at evaluating the 

influence of low-level, but long-term (10 years), exposure to traffic-related particulate matter 

(TPM10) on the regulation of the autonomic cardiovascular system and heart rate dynamics in 

an aging general population. Second, we specifically focused our investigation on the sub-

populations with or without cardiovascular morbidity (i.e., cardiovascular disease and/or 

hypertension). Finally, we investigated the a priori selected effect modifiers - sex, smoking 

status, obesity, and gene variation in selected glutathione S-transferases (GSTs) - in the entire 

population, as well as in the sub-populations with or without cardiovascular morbidity.  

 

4.3. Methods 

4.3.1. Ethics statement 

The study was approved by the Central Ethics Committee of the Swiss Academy of 

Medical Sciences and the Cantonal Ethics Committees for each of the study areas. Each 

subject was informed in detail about the health examinations and signed and written informed 

consent before any of the health examinations were conducted.  

 

4.3.2. Study population 

This study is part of the SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and 

Heart Disease in Adults) study which was designed to assess the health effects of long-term 

exposure to air pollutants in the Swiss adult population. The study design has been described 

in detail elsewhere (Ackermann-Liebrich et al., 2005; Martin et al., 1997). In brief, the 

SAPALDIA cohort (n=9651) was enrolled  in 1991, and consisted of a random sample of the 
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Swiss population aged 18 to 60 years, recruited from the local registries of inhabitants in eight 

areas featuring distinct geographical and environmental conditions.  

In 2002, the follow-up study included 8047 (83.4%) participants. A random sample of 

1846 out of 4417 participants, aged ≥ 50 years underwent a 24-hour electrocardiogram (ECG) 

Holter recording to assess HRV, as previously described in detail (Felber Dietrich et al., 

2006). Exclusion criteria were general or spinal anaesthesia within 8 days before the ECG 

recording (n=5), a myocardial infarction within 3 months prior to the examination (n=2), 

taking digitalis (n=6), and an artificial internal pacemaker (n=0). Participants with recordings 

showing atrial fibrillation (n=12), ECG duration lower than 18 hours (n=73), or of insufficient 

quality (n=6), non-valid data on HRV (n=96) were also excluded (Felber Dietrich et al., 

2006). This current analysis is restricted to 1593 participants with valid data on HRV, 

cardiovascular risk factors, and TPM10 exposure. 

 

4.3.3. Questionnaires and measurements 

Information about questionnaires and biological measurements (i.e., body mass index, 

blood pressure, heart rate, uric acid, high-sensitivity C-reactive protein) has been reported 

elsewhere (Martin, Ackermann-Liebrich et al. 1997, Ackermann-Liebrich, Kuna-Dibbert et al. 

2005, Felber Dietrich, Schindler et al. 2006). 

 

HRV measurements and measures of heart rate dynamics 

Time series analysis parameters of heart rate variability were calculated for each 

individual time series of inter-beat intervals (RR series) generated from the 24-hour ECG 

recordings.  

The traditional time domain measure used was the standard deviation of normal interbeat 

intervals (SDNN) (1996). Additionally, a power-law relationship between the power spectral 

density (PSD) of the interbeat interval time series and frequency was determined by 

estimating the slope  of the linear best-fit of the PSD as a function of the frequency on a 

double logarithmic scale. In our previous study, related to heart rate dynamics and smoking 

exposure, we found a positive association between slope  and smoking exposure (Girard, 

Delgado-Eckert et al. 2015).   

We used nonlinear time series analysis methods to quantify and characterize the heart rate 

dynamics. The following heart rate dynamics (HRD) parameters were calculated: 
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 Exponent α: we used detrended fractal analysis (DFA) to measure the presence or 

absence of fractal correlation properties in signals (namely the “memory effect”). This 

method has been validated for interbeat intervals time series (Peng, Havlin et al. 

1995). The fractal long-range correlations are characterized by a scaling exponent α. A 

fractal-like signal results in α=1. White Gaussian noise (totally random signal) results 

in a value of 0.5. In healthy young subjects, it is closer to 1, and this value falls within 

different ranges for various types of cardiac abnormalities. In our previous study, 

related to heart rate dynamics and smoking exposure, we found an inverse association 

between α and smoking exposure (Girard, Delgado-Eckert et al. 2015). 

 Largest Lyapunov exponent: detection of chaos in a time series can be done by 

measuring the largest Lyapunov exponent in the appropriate phase space embedding 

(Rosenstein, Collins et al. 1993). It quantifies the exponential divergence of initially 

close state-space trajectories and estimates the amount of chaos in a system. The 

extent to which chaos relates to physiological or pathological dynamics is a subject of 

active investigation and some controversy (Goldberger, Amaral et al. 2000). In our 

previous study, related to heart rate dynamics and smoking exposure, we found an 

inverse association between the largest Lyapunov exponent and smoking exposure 

(Girard, Delgado-Eckert et al. 2015). 

More details about the choice, implementation, and properties of the aforementioned time 

series analysis methods are described in the Online Supplement. 

 

Air pollutant exposure estimation 

TPM10 estimates were obtained over ten years (1990-2000) using a dispersion modeling 

approach (Liu, Curjuric et al. 2007). In accordance with previous investigations of traffic-

related PM10 as part of the SAPALDIA cohort study (Adam, Felber Dietrich et al. 2012, 

Adam, Imboden et al. 2014), mean of the 10 indicators was used to obtain the average 

concentration of TPM10 over 10 years. 

 

Genotyping 

The genotyping has been described in detail elsewhere (Probst-Hensch, Imboden et al. 

2008). In brief, all subjects were genotyped for GSTM1 (UniGene ID Hs.301961; UniGene 

2008a) and GSTT1 (UniGene Hs.268573; UniGene 2008b) gene deletions. 
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4.3.4. Statistical analysis 

All tests were two-sided with a significance level of 0.05. Statistical analysis was 

performed using R, Version 3.3.3 (2008). 

 

Descriptive analysis 

Results are expressed as numbers and percentages for categorical variables and as a mean 

± standard deviation or median [25
th

quartile; 75
th

quartile] for continuous variables, according 

to their distribution.  

 

Multivariable analysis 

Each parameter describing the HRV, or heart rate dynamics, was used as the outcome 

variable in multivariable linear regression models in order to evaluate the association with 

long-term exposure to TPM10 (for an increase of 10 µg/m
3
 of TPM10). Initial inspection of the 

outcome variable showed a skewed distribution of the residuals for the traditional time and 

frequency domain measures and for some of the other time series analysis parameters. These 

variables were therefore log-transformed. Results of these analyses are therefore presented as 

geometric means and percent changes in geometric means. All the models were adjusted for 

known confounding factors (Felber Dietrich, Schindler et al. 2006, Adam, Felber Dietrich et 

al. 2012, Adam, Imboden et al. 2014). These factors were: sex (male as reference), age (for an 

increase of 1 year), age
2
, body mass index (BMI, for an increase of 1 kg/m

2
), BMI

2
, alcohol 

consumption (<1 glass/day as reference, ≥ 1 glass/day), weekly physical activity – to the point 

of getting out of breath or sweating – (never as reference, between 0.5h and 2h, ≥ 2h/week), 

daily exposure to environmental tobacco smoke (for an increase of 1 hour/day), diabetes (no 

as reference, yes), smoking group (lifelong non-smoker as reference, former light smoker, 

former heavy smoker, current light smoker, current heavy smoker), uric acid concentration 

(µmol/l), high-sensitivity C-reactive protein (mg/l), street and railway noise exposure (mean 

dB(A) per night), seasonal effects (sine and cosine functions of the day of examination with a 

period of 1 year), education level (high as reference, middle, low), employment category 

(employed as reference, unemployed, house person, pensioner), occupational exposure (no as 

reference, yes if current exposure to dust, gas/smoke/aerosols/fumes/vapors at the working 

place), cardiovascular morbidity (no as reference, yes). Cardiovascular morbidity was defined 

as “no” if there was no evidence for cardiovascular disease or hypertension (i.e., the subject 

had no physician diagnosed heart disease, no major cardiovascular medication intake, and no 
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hypertension). Major cardiovascular medication consisted of beta-blockers, angiotensin-

converting-enzyme (ACE) inhibitors, angiotensin II receptor antagonists, calcium channel 

blockers, diuretic medications, antiarrhythmic drugs class I + III, sympathomimetic 

medications. Absence of hypertension was defined as absence of a physician diagnosis of 

hypertension, blood pressure in the hypertensive range, and antihypertensive medication.  

 

Investigation of susceptible groups 

Modifying effect of cardiovascular morbidity, sex, as well as of inflammation and 

oxidative stress related parameters such as smoking status (defined as ever smoker or lifelong 

non-smoker), obesity (defined as BMI ≥ 30 kg/m
2
), and known polymorphisms in the 

GSTM1, GSTT1, and GSTP1 genes previously found to modify the smoking-HRV 

association in the SAPALDIA cohort study (Probst-Hensch, Imboden et al. 2008) were 

assessed for each outcome. 

 

Sensitive analysis 

Given previous evidence of higher air pollution susceptibility for patients with diabetes, 

participants with an according physician diagnosis of diabetes were excluded in a sensitivity 

analysis.  

According to previous work on the SAPALDIA cohort, which provided evidence that 

participants under ACE inhibitor therapy represented a specific subgroup susceptible to the 

adverse effects of TPM10 on the traditional parameters of HRV (Adam, Felber Dietrich et al. 

2012), a sensitive analysis was conducted to assess the TPM10-HRV/HRD relationship by 

excluding patients under ACE inhibitors therapy from the entire study population. 

 

Investigation of the PM10-HRV/HRD relationship 

In addition, we investigated the PM10-HRV/HRD relationship. Methods and results are 

provided in the Online Supplement.  

 

4.4. Results 

4.4.1. Study population 

The study population consisted of 1593 subjects. The mean age of the subjects was 

60.5±6.2 years. Demographic characteristics, lifestyle factors, cardiovascular health and 

diabetes, long-term exposure to air pollution, and GST genotypes are summarized in Table 
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4.1. A more detailed description has been reported elsewhere (Adam, Felber Dietrich et al. 

2012, Girard, Delgado-Eckert et al. 2015). 

 

Table 4.1. Characteristics of the study population and subpopulations investigated 

Characteristic Entire study 

population 

(n=1593) 

MD Subpopulation 

without 

cardiovascular 

morbidity (n=510) 

MD 

Demographic characteristics 

 

   

Age, years 60.5±6.2 - 59.6±6.01 - 

Sex, Men 773 (48.5) - 200 (39.2) - 

BMI, kg/m
2
 26.7±4.34 3 25.1±3.78 - 

Education 

 

-  - 

low 144 (9.0)  48 (9.4)  

middle 1048 (65.8)  325 (63.7)  

 high 401 (25.2)  137 (26.9)  

 Employment 

 

10  6 

 employed 862 (54.5)  291 (57.7)  

 house person 352 (22.2)  121 (24)  

 unemployed 81 (5.1)  21 (4.2)  

 pensioner 288 (18.2)  71 (14.1)  

 Lifestyle factors      

Smoking status 

 

60  12 

 lifelong non-smoker 692 (45.1)  230 (46.2)  

 current light smoker 65 (4.2)  28 (5.6)  

 current heavy smoker 222 (14.5)  71 (14.3)  

 former light smoker 314 (20.5)  112 (22.5)  

 former heavy smoker 240 (15.7)  57 (11.4)  

 Time elapsed since cessation, years 

 

7  3 

 <15  154 (28.2)  46 (27.7)  

 15-25  150 (27.4)  44 (26.5)  

 ≥ 25  243 (44.4)  76 (45.8)  

 Daily ETS exposure, hours 

 

2  2 

 none 1253 (78.8)  407 (80.1)  

 <3 216 (13.6)  63 (12.4)  

 ≥ 3 122 (7.7)  38 (7.5)  

 Alcohol, ≥ 1 glass/day 731 (45.9) 2 211 (41.5) 2 

 Weekly physical activity 

 

14  5 

 none 666 (42.2)  203 (40.2)  

 30min-1h 516 (32.7)  183 (36.2)  

 2h or more 397 (25.1)  119 (23.6)  

 Noise exposure, dB(A) 56.6±7.31 7 57±7.11 3 

 Cardiovascular health and diabetes      

Diabetes 80 (5.0) - 9 (1.8) - 

 Heart disease diagnosed by a doctor 126 (7.9) - 0 (0) -  
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Table 4.1. Characteristics of the study population and subpopulations investigated 

(continued) 

Characteristic Entire study 

population 

(n=1593) 

MD Subpopulation 

without 

cardiovascular 

morbidity (n=510) 

MD 

Hypertension  861 (54.0) - 0 (0) -  

Major cardiovascular medication (≥1) 403 (31.7) 321 0 (0) -  

ACE inhibitor therapy 102 (8.0) 321 0 (0) -  

Uric acid, µmol/l 326±85.93 56 300±77.01 15 

 hs-CRP, mg/l 1.2 [0.6;2.6] 56 1 [0.5;2] 15 

 Heart rate (bpm) 74.2±9.1 1 74.6±7.85 1  

SDNN (msec) 136.5±35.22 - 140.5±34.49 -  

Air pollutants exposure      

Occupational exposure 400 (25.2) 3 131 (25.8) 2 

 PM10, µg/m
3
 20.9 [17.8;25.1] 9 20.2 [17.1;24.7] 5 

 Traffic-related PM10, µg /m
3
 1.9 [1.2;3.1] 9 1.5 [1.1;2.9] 5 

 GST genotypes      

GSTM1 deletion 781 (52.3) 100 240 (50.3) 33  

GSTT1 deletion 261 (17.5) 100 79 (16.6) 33  

GSTM1T1 deletion 145 (9.7) 100 41 (8.6) 33  

ACE inhibitor, angiotensin-converting-enzyme inhibitor; BMI, body mass index; ETS, 

Environmental Tobacco Smoke; hs-CRP, high-sensitivity C-reactive protein; GST, 

glutathione S-transferase; MD, missing data; PM, particulate matter; SDNN, standard 

deviation of all NN intervals 

Values shown are mean ± standard deviation, median [25
th

quartile; 75
th

quartile] and numbers 

(percentages) 

 

4.4.2. Relationship between long-term exposure to TPM10 and heart rate 

variability/heart rate dynamics 

There was no significant association between long-term exposure to TPM10 and 

HRV/HRD parameters (Table 4.2), as well as when stratifying by sex, smoking status, 

obesity, and GST genotypes (Online Supplement). 

However, stratification by cardiovascular morbidity revealed significant associations 

between TPM10 and the HRD parameters slope  (0.8±0.3, p=0.01, interaction 

TPM10*cardiovascular morbidity: p=0.04) and largest Lyapunov exponent (-0.06±0.03, 

p=0.03, interaction TPM10*cardiovascular morbidity: p=0.08) in subjects without 

cardiovascular morbidity (Table 4.3, Figure 4.1).  
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Table 4.2. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area)  

 Entire study population (n=1237*) 

 intercept %GM, 95%CI 

or coefficient±SE 
p-value 

SDNN  -6.5 [-17.2;5.7] 0.27 

α  -3.5 [-12.0;5.3] 0.42 

Slope  -4.0±2.8 -0.03±0.2 0.89 

Largest Lyapunov exponent 0.2±0.2 -0.01±0.02 0.63 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, 

diabetes, and cardiovascular morbidity 

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 
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Table 4.3. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area) stratified by cardiovascular morbidity 

 Cardiovascular morbidity (n=775*)  No cardiovascular morbidity (n=462*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 
p-value 

 intercept %GM, 95%CI 

or coefficient±SE 
p-value 

 p-value 

SDNN  -2.2 [-16.2;12.7] 0.76   -14.3 [-29.0;6.3] 0.15  0.36 

α  -0.3 [-11.8;12.7] 0.96   -8.8 [-20.1;2.0] 0.11  0.24 

Slope  -3.4±3.7 -0.3±0.3 0.36  -3.8±4.4 0.8±0.3 0.01  0.04 

Largest Lyapunov exponent 0.3±0.3 0.02±0.02 0.47  0.4±0.4 -0.06±0.03 0.03  0.08 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, and 

diabetes 

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and cardiovascular morbidity  
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Figure 4.1. Percent change in geometric mean (GM) and 95% confidence interval (95%CI) or 

coefficient and 95%CI of SDNN, α, slope , and largest Lyapunov exponent, for an increase 

of 10 µg/m
3
 of traffic-related PM10, in models stratified by cardiovascular morbidity in the 

entire study population (A), and by obesity (B) and GSTM1 (C) in the subpopulation without 

cardiovascular morbidity 

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals 
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4.4.3. Investigation of the subgroup without cardiovascular morbidity 

TPM10 effects became particularly visible in non-obese subjects both in the HRV 

parameter (SDNN: -20.0% [-33.7%;0.2%], p=0.05, interaction TPM10*obesity: p=0.01) and in 

the HRD parameters (α: -10.8% [-21.7%;0.06%], p=0.05; slope : 0.8±0.3, p=0.02; largest 

Lyapunov exponent: -0.08±0.03, p=0.01) (Table 4.4, Figure 4.1). This finding suggests that 

TPM10 effects might be more visible in subjects without any comorbidity (“healthy subjects”). 

There was no effect modification by sex (Online Supplement Table E4.1) and no clear 

effect modification by smoking status (Online Supplement Table E4.2). 

We found strong significant associations between TPM10 and HRV/HRD parameters 

(SDNN: -25.6% [-42.9%;-2.5%], p =0.03; slope : 1.2±0.4, p<0.001) in subjects with 

homozygous GSTM1 gene deletion (Table 4.5, Figure 4.1). These findings are consistent 

with the hypothesis that air pollutants might impact in part through oxidative stress pathways. 

Conversely, the HRD parameter α was significantly decreased (-16.0% [-26.6%;-3.9%], 

p=0.01) in subjects without GSTM1 deficiency. That might be explained by the fact that those 

subjects are likely to be more healthy (not likely to have systemic inflammation and oxidative 

stress) and thus, similarly to our findings in non-obese subjects, TPM10 effects might be 

visible in such subjects as well.  

 When stratifying by GSTT1 genotype, we observed significant associations in subjects 

without GSTT1 deficiency (Online Supplement Table E4.3). However, coefficients in 

subjects with homozygous GSTT1 gene deletion were similar to that in subjects without 

GSTT1 deficiency, and confidence intervals were very broad. The small sample size of the 

subgroup of subjects with homozygous GSTM1 gene deletion (n=69) might have limited the 

statistical power of our analyses. Consequently, there is no evidence of effect modification by 

GSTT1 genotype. 
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Table 4.4. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area) stratified by obesity  

Entire study population Non-obese (n=974*)  Obese (n=263*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -6.7 [-18.2;8.5] 0.33   -6.5 [-27.5;20.7] 0.61  0.72 

α  -2.7 [-10.9;6.1] 0.53   -2.9 [-19.5;17.2] 0.76  0.88 

Slope  -4.4±3.5 -0.05±0.2 0.82  -12.4±7.2 0.3±0.4 0.54  0.34 

Largest Lyapunov exponent -0.3±0.3 -0.005±0.02 0.98  1.0±0.7 -0.03±0.04 0.41  0.21 

Subpopulation without 

cardiovascular morbidity 

Non-obese (n=415*)  Obese (n=47*)  Interaction
¥
 

intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -20.0 [-33.7;0.2] 0.05   27.4 [-26.5;120.6] 0.38  0.01 

α  -10.8 [-21.7;0.06] 0.05   33.6 [-3.8;85.6] 0.08  0.13 

Power spectral density -0.9±4.9 0.8±0.3 0.02  -21.9±26.3 1.8±1.2 0.14  0.56 

Largest Lyapunov exponent -0.07±0.4 -0.08±0.03 0.01  2.8±2.1 0.05±0.1 0.60  0.11 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, 

diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and obesity  
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Table 4.5. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area) stratified by GSTM1 genotype 

Entire study population Deletion in GSTM1 (n=620*)  No deletion in GSTM1 (n=572*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -10.4 [-24.0;5.6] 0.19   -3.0 [-16.2;12.3] 0.69  0.38 

α  2.5 [-9.0;16.2] 0.68   -8.1 [-18.6;2.2] 0.12  0.23 

Slope  -5.0±4.0 0.2±0.3 0.48  0.6±4.1 -0.07±0.3 0.82  0.65 

Largest Lyapunov exponent 0.2±0.4 -0.009±0.03 0.76  0.1±0.3 -0.01±0.02 0.66  0.79 

Subpopulation without 

cardiovascular morbidity 

Deletion in GSTM1 (n=227*)  No deletion in GSTM1 (n=217*)  Interaction
¥
 

intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -25.6 [-42.9;-2.5] 0.03   -2.8 [-24.6;25.2] 0.82  0.11 

α  2.4 [-10.3;16.9] 0.72   -16.0 [-26.6;-3.9] 0.01  0.21 

Slope  1.3±5.8 1.2±0.4 <0.001  0.2±6.5 0.3±0.5 0.59  0.29 

Largest Lyapunov exponent 1.2±0.6 -0.06±.04 0.16  -0.2±0.6 -0.08±0.04 0.08  0.57 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, 

diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and GSTM1 genotype  
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4.4.4. Sensitive analyses 

As previously shown in the SAPALDIA cohort study, there was a strong decrease in 

SDNN (-49.9% [-74.4%;-6.8%], p=0.03) in subjects under ACE inhibitor therapy (Online 

Supplement Table E4.4). In contrast, we did not find any particular changes in the HRD 

parameters. The relationship between long-term exposure to TPM10 and HRV/HRD 

parameters was not modified by exclusion of patients under ACE inhibitor therapy from the 

entire study population (data not shown).  

Exclusion of subjects with diabetes made associations even stronger in non-obese 

subjects for SDNN (-20.9 [-34.6;-1.5], p=0.04) and α (-11.3 [-22.3;-0.5], p=0.04) (Online 

Supplement Table E4.5), as well as in subjects without GSTT1 deletion for α (-11.3 [-22.3;-

0.1], p=0.05) and slope  (0.8±0.4, p=0.05) (Online Supplement Table E4.6). 

 

4.4.5. Relationship between long-term exposure to PM10 and heart rate 

variability/heart rate dynamics 

Findings with PM10 were very similar to that found by investigating the relationship 

between long-term exposure to TPM10 and HRV/HRD, though the effect size of PM10 was 

smaller than that of TPM10, and resulted in the same conclusions (Online Supplement). 

 

4.5. Discussion 

4.5.1. Main findings  

This study evaluates the influence of long-term exposure to TPM10 on HRV and heart 

rate dynamics. While we did not find any overall association in the entire study population, 

we observed strong significant associations of long-term exposure to TPM10 with the HRD 

parameters slope  and largest Lyapunov exponent in subjects without cardiovascular 

morbidity. These findings might be explained by the fact that the relative contribution of both 

the underlying health condition and the countering effects of drug treatments on the TPM10–

HRV/HRD relationship might render this relationship so variable that the overall TPM10–

HRV/HRD relationship in such subjects might be null. In contrast, the TPM10–HRV/HRD 

relationship might become more visible in subjects without cardiovascular disease and related 

drug treatments. 

This hypothesis is supported by the fact that TPM10 effects became even more visible in 

the subgroup of non-obese subjects without cardiovascular morbidity, as shown by both HRV 

and HRD parameters. Again, in these subjects, the underlying health condition and the 
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countering effects of drug treatments (e.g., statins) might have rendered the overall TPM10–

HRV/HRD relationship null.  

Additionally, our findings support the hypothesis that TPM10 might impact in part 

through oxidative stress pathways. We found significant associations between TPM10 and 

HRV/HRD parameters in subjects with homozygous GSTM1 gene deletion (as shown by 

SDNN and slope ).  

Finally, the fact that adverse effects of TPM10 were revealed in subjects without 

cardiovascular morbidity only by HRD parameters supports the hypothesis that measuring 

changes in complexity in heart rate dynamics in response to exposure to environmental 

elements, might unveil subtle but important changes in the regulatory mechanisms of the 

cardiovascular system not detectable by traditional analysis methods. 

 

4.5.2. Strengths and weaknesses of the study (internal validity) 

To the best of our knowledge, this is the first study examining the influence of low-level, 

but long-term, particulate matter air pollution exposure on parameters describing the HRV 

and heart rate dynamics (using nonlinear time series analysis methods). Additional strengths 

of the present study included the population-based design, involving a random sample of the 

Swiss population; the large number of participants; and the detailed information available on 

participants, allowing for the control of most potential confounders. 

A limitation of this study was the absence of a physiological interpretation of the 

parameters calculated with methods from nonlinear dynamics. Physiological interpretation of 

such metrics constitutes a major limitation for their use (1996, Goldberger, Amaral et al. 

2000, Francesco, Maria Grazia et al. 2012, Manor and Lipsitz 2013). Though it is reasonable 

to assume that these concepts from mathematics could help gain insight into mechanisms 

underlying systems fluctuation behavior (e.g., modulations of heart period), efforts are needed 

to improve our understanding of their physiological correlates. In the present study, this 

uncertain knowledge limited the interpretation of associations between parameters, and their 

translation into risk of cardiac events. Another limitation was the small sample size of some 

subgroups, as well as the low prevalence of some genotypes, which limited statistical power 

of the explanatory analyses.  
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4.5.3. Strengths and weaknesses of the study compared to other studies (external 

validity) 

To the best of our knowledge, the association between long-term traffic-related 

particulate matter exposure and HRV has only been examined in the SAPALDIA cohort study 

(TPM10 levels averaged over a 10 year period) (Adam, Felber Dietrich et al. 2012, Adam, 

Imboden et al. 2014), and by Mordukhovich et al., who evaluated sub-chronic (3-84 days) and 

longer-term (1 year) PM2.5 or black carbon (a marker of traffic pollution) exposure in relation 

to HRV (Mordukhovich, Coull et al. 2015). These studies did not observe any consistent 

overall association. 

Interestingly, in the present study, by examining the TPM10-HRV/HRD relationship in 

the subgroup of subjects without cardiovascular morbidity (i.e., no hypertension or heart 

disease), we observed significant changes in the heart rate dynamics, whereas we found no 

significant association in the subgroup with cardiovascular morbidity. These findings 

corroborate those from Barclay et al. who did not observe any hematological or 

electrocardiogram response to ambient air pollution in patients with cardiac failure, thought to 

be a susceptible group (Barclay, Miller et al. 2009), in contrast to their earlier findings in 

healthy elderly people (Seaton, Soutar et al. 1999). They concluded that modern cardiac 

therapy was likely to give a measure of protection against the adverse cardiac effects of 

pollution. 

Several studies have provided evidence that the relation between HRV and cardiovascular 

drug therapies varies and depends on the type of therapy. Adam et al. observed that the 

adjusted HRV of subjects treated with ACE inhibitors or beta blockers was generally 

increased, while the HRV of subjects treated with angiotensin receptor blockers, calcium 

channel blockers, or diuretics, was decreased when compared with the average HRV levels of 

participants without any heart medication intake (Adam, Felber Dietrich et al. 2012). 

Furthermore, they provided suggestive evidence that participants under ACE inhibitor 

treatment may represent a specific subgroup susceptible to the adverse effects of TPM10 on 

HRV. In some other studies, beta blockers (Gold, Litonjua et al. 2000, Park, O'Neill et al. 

2005), calcium channel blockers (Park, O'Neill et al. 2005) and statins (Schwartz, Park et al. 

2005) have been shown to attenuate the effects of air pollutants; while another study found no 

evidence of effect modification by beta blockers (Schwartz, Litonjua et al. 2005). These 

findings suggest that response to long-term TPM10 exposure might result from the relative 

contribution of both the underlying cardiovascular condition and the countering effects of 
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drug treatments, and might therefore explain the heterogeneous effects of short- and long-term 

PM air pollution found in subjects with a cardiovascular morbidity (Holguin, Tellez-Rojo et 

al. 2003, Chuang, Chan et al. 2005, Park, O'Neill et al. 2005, Schwartz, Litonjua et al. 2005, 

Pieters, Plusquin et al. 2012, Buteau and Goldberg 2016).  

The TPM10-HRV/HRD relationship became even more visible while we investigated 

healthier subjects in the subgroup of subjects without cardiovascular morbidity (i.e., non-

obese subjects, and subjects without diabetes). These findings are consistent with those from 

Yingying et al., who found greater reductions in HRV in relation to PM10 exposure in subjects 

with low Framingham risk score (i.e., low global cardiac risks) (Feng, Huang et al. 2015).  

Finally, we found strong and significant associations in subjects with homozygous 

GSTM1 gene deletion, which is in the line with previous studies that provided evidences that 

air pollutants might impact in part through oxidative stress pathways (Schwartz, Park et al. 

2005, Probst-Hensch, Imboden et al. 2008, Pieters, Plusquin et al. 2012). 

 

4.5.4. Relevance of the study results and implications for policymakers 

First, this study provides evidence of the adverse effects of long-term exposure to TPM10 

on HRV and heart rate dynamics in healthy subjects, believed to be less susceptible than 

specific subpopulations with morbidities (e.g., the elderly, patients with preexisting 

cardiovascular disease or diabetes, obese subjects) though. This constitutes a strong argument 

for health policy makers advocating for more intensive prevention campaigns aimed at 

reducing traffic-related pollution. However, further studies are needed to see whether these 

alterations in HRV/HRD in healthy people lead to increased mortality and morbidity later in 

life. 

Second, this study provides evidence that the TPM10-HRV/HRD relationship in subjects 

with cardiovascular morbidity might be modified by both the underlying cardiovascular 

condition and the related treatments. Thus, some cardiac therapies, for a given underlying 

cardiovascular condition, might be protective against the adverse cardiac effects of pollution, 

whereas some other cardiac therapies/conditions might render subjects particularly susceptible 

to those effects. Further studies investigating the TPM10-HRV/HRD relationship in subjects 

with cardiovascular morbidity are necessary. 
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4.6. Conclusion 

In conclusion, findings from the present study indicate that long-term exposure to TPM10, 

even at low level, triggers adverse changes in the regulation of the cardiovascular system and 

in the heart rate dynamics. These adverse effects were more visible in healthy subjects, in 

whom the overall TPM10-HRV/HRD relationship was not modified by an underlying health 

condition and the eventual countering effects of related drug treatments. Therefore, our 

findings constitute a strong argument for health policy makers advocating for more intensive 

prevention campaigns aimed at reducing traffic-related pollution. Finally, we provide some 

evidence that subjects with homozygous GSTM1 gene deletion might be more susceptible to 

the effects of TPM10. 
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4.8. Online Supplement 

Methods 

HRV measurements and measures of heart rate dynamics 

The following time series analysis parameters were calculated using our own 

implementations in R (occasionally accessing C libraries to reduce run time) of well-known 

algorithms. Many of the implementations are based on the TISEAN package (Hegger, Kantz 

et al. 1999): 

 A power-law relationship between the power spectral density (PSD) of the interbeat interval 

time series and frequency was determined by estimating the slope  of the linear best-fit of 

the PSD as a function of the frequency on a double logarithmic scale. Several parameters 

were obtained, depending on the range of frequencies used. The power spectral density (PSD) 

was estimated according to the method described in (Cusenza 2010). Regressing the power 

spectral for frequencies in the range 0.01 > freq > 0.0001 yielded the parameter PSD1. 

Analogously, PSD2 corresponds to 0.04 > freq > 0.02, PSD3 to 0.45 > freq > 0.0001, PSD4 to 

0.5 > freq > 0.1, PSD5 to 0.5 > freq > 0.2, and PSD6 to 0.5 > freq > 0.3, respectively. 

According to our previous work on heart rate dynamics and smoking exposure, we considered 

PSD5 in the present study (Girard, Delgado-Eckert et al. 2015).  

 The Largest Lyapunov exponent λ was calculated using an embedding dimension of two, and 

a time lag or delay time of one sample, considering at least 2000 reference points, and 

adjusting the neighbourhood size  to obtain at least 10 neighbours per reference point, such 

that no neighbour was a direct chronological successor of the given reference point (i.e., the 

Theiler window was set to 2). The length of the embedding space trajectories compared for 

the estimation of λ was of 20. The algorithm used is described in (Hegger, Kantz et al. 1999, 

Kantz and schreiber 2004). 

 The scaling exponent  obtained via detrended fluctuation analysis (DFA) was calculated 

using a geometric window increase with exponent equal to 2 and no overlap of windows. Four 

different time scales were considered: 3-7 samples (α1), 7-13 samples (α2), 4-16 samples (α3), 

and 16-64 samples (α4). According to our previous work on heart rate dynamics and smoking 

exposure, we considered α3 in the present study (Girard, Delgado-Eckert et al. 2015). The 

method of DFA is described in (Kantz and schreiber 2004) and the citations therein. The data 

were detrended by means of a moving average method (Alvarez-Ramirez 2005).
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Results 

Table E4.1. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area) stratified by sex  

Entire study population Male (n=590*)  Female (n=647*)  Interaction
¥
  

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -5.2 [-21.2;16.7] 0.58   -6.8 [-19.6;7.9] 0.34  0.59 

α  -2.4 [-11.8;8.0] 0.64   -6.1 [-17.0;4.7] 0.26  0.89 

Slope  -1.0±4.5 -0.1±0.3 0.68  -4.2±3.5 0.07±0.3 0.79  0.54 

Largest Lyapunov exponent 0.7±0.4 -0.01±0.02 0.56  -0.3±0.3 -0.02±0.02 0.53  0.50 

Subpopulation without 

cardiovascular morbidity 

Male (n=180*)  Female (n=282*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -30.2 [-50.7;5.1] 0.08   -4.2 [-23.1;19.5] 0.70  0.12 

α  -8.1 [-21.9;8.3] 0.31   -6.4 [-16.7;5.2] 0.27  0.72 

Slope  -4.0±7.5 0.1±0.6 0.84  -3.4±5.4 1.2±0.4 <0.001  0.28 

Largest Lyapunov exponent 1.5±0.6 -0.09±0.05 0.06  -0.5±0.5 -0.07±0.04 0.06  0.28 

All the models are adjusted for age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, uric acid, 

high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, diabetes,  and 

cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and sex  
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Table E4.2. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area) stratified by smoking status 

Entire study population Ever smoker (n=675*)  Lifelong non-smoker (n=562*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -5.8 [-18.8;9.4] 0.43   -6.9 [-22.6;10.8] 0.42  0.51 

α  -2.8 [-11.4;6.7] 0.55   -7.0 [-21.8;7.0] 0.33  0.96 

Slope  -1.3±4.0 0.1±0.3 0.60  -6.9±3.8 -0.3±0.3 0.36  0.73 

Largest Lyapunov exponent 0.3±0.3 -0.009±0.03 0.75  -0.04±0.3 0.0009±0.03 0.97  0.86 

Subpopulation without 

cardiovascular morbidity 

Ever smoker (n=248*)  Lifelong non-smoker (n=214*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -11.2 [-31.5;15.0] 0.37   -22.9 [-40.3;-0.4] 0.05  0.51 

α  1.2 [-11.2;15.3] 0.86   -15.5 [-24.4 ;-1.1] 0.04  0.06 

Slope  -3.9±6.6 1.0±0.5 0.03  -4.6±5.8 0.6±0.5 0.23  0.70 

Largest Lyapunov exponent 0.9±0.6 -0.05±0.04 0.20  -0.08±0.5 -0.07±0.04 0.08  0.52 

All the models are adjusted for gender, age, BMI, environmental tobacco smoke exposure, alcohol consumption, physical activity, uric acid, high-

sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, diabetes,  and 

cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and smoking status  
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Table E4.3. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area) stratified by GSTT1 genotype 

Entire study population Deletion in GSTT1 (n=199*)  No deletion in GSTT1 (n=993*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -6.0 [-30.7;26.4] 0.68   -7.1 [-19.0;6.8] 0.29  0.33 

α  10.4 [-17.2;39.5] 0.46   -6.0 [-13.7;3.0] 0.17  0.02 

Slope  -0.03±6.6 -0.3±0.4 0.55  -4.5±3.2 0.08±0.3 0.75  0.81 

Largest Lyapunov exponent 0.5±0.7 0.08±0.05 0.15  0.2±0.3 -0.02±0.02 0.28  0.08 

Subpopulation without 

cardiovascular morbidity 

Deletion in GSTT1 (n=69*)  No deletion in GSTT1 (n=375*)  Interaction
¥
 

intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -35.0 [-59.9;21.5] 0.18   -17.5 [-33.3;4.2] 0.10  0.05 

α  -8.1 [-23.6;44.7] 0.79   -11.0 [-22.0;0.2] 0.05  0.06 

Slope  -16.9±11.4 0.2±0.9 0.84  -3.2±5.0 0.7±0.4 0.06  0.59 

Largest Lyapunov exponent -0.5±1.0 -0.06±0.09 0.50  0.2±0.4 -0.07±0.03 0.03  0.59 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, 

diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and GSTT1 genotype  
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Sensitive analyses 

Table E4.4. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area) stratified by ACE inhibitor intake in the entire study population 

 ACE inhibitor (n=90*)  No ACE inhibitor (n=1038*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -49.9 [-74.4;-6.8] 0.03   -2.6 [-13.6;9.8] 0.66  0.16 

α  3.9 [-25.2;69.9] 0.82   -3.9 [-12.4;4.7] 0.36  0.64 

Slope  -5.5±12.8 -0.1±0.8 0.89  -2.8±3.0 -0.001±0.2 0.99  0.68 

Largest Lyapunov exponent 1.0±1.4 0.02±0.07 0.83  0.2±0.3 -0.02±0.02 0.33  0.80 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, 

diabetes, and cardiovascular morbidity 

ACE inhibitor, angiotensin-converting-enzyme inhibitor; SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and ACE inhibitor  
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Table E4.5. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area) stratified by obesity in the subpopulation without cardiovascular morbidity and without 

diabetes  

 Non-obese (n=408*)  Obese (n=46*)  Interaction
¥
 

intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -20.9 [-34.6;-1.5] 0.04   27.4 [-26.9;122.0] 0.39  0.01 

α  -11.3 [-22.3;-0.5] 0.04   33.6 [-4.1;86.3] 0.09  0.09 

Slope  -0.4±5.0 0.8±0.3 0.02  -21.9±26.5 1.8±1.2 0.15  0.56 

Largest Lyapunov exponent -0.02±0.4 -0.08±0.03 0.01  2.8±2.2 0.05±0.1 0.61  0.11 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, and occupational exposure 

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and obesity  
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Table E4.6. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM10 in linear mixed effects 

regression models (random intercepts for study area) stratified by GSTT1 genotype in the subpopulation without cardiovascular morbidity and 

without diabetes 

 Deletion in GSTT1 (n=69*)  No deletion in GSTT1 (n=367*)  Interaction
¥
 

intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -35.0 [-59.9;21.5] 0.18   -19.0 [-34.8;2.2] 0.07  0.05 

α  -8.1 [-23.6;44.7] 0.79   -11.3 [-22.3;-0.1] 0.05  0.05 

Slope  -16.9±11.4 0.2±0.9 0.84  -2.8±5.1 0.8±0.4 0.05  0.64 

Largest Lyapunov exponent -0.5±1.0 -0.06±0.09 0.50  0.2±0.4 -0.08±0.03 0.03  0.59 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, and occupational exposure 

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and GSTT1 genotype  
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Investigation of the PM10-HRV/HRD relationship 

Air pollutant exposure estimation 

PM10 estimates were obtained over ten years (1990-2000) using a dispersion modeling approach (Liu, Curjuric et al. 2007). The same as for 

investigations of traffic-related PM10, mean of the 10 indicators was used to obtain the average concentration of PM10 over 10 years. 

 

Results 

Table E4.7. Association between HRV and heart rate dynamics parameters (outcome variable) and PM10 in linear mixed effects regression models 

(random intercepts for study area)  

 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, 

diabetes, and cardiovascular morbidity  

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

 

 Entire study population (n=1237*) 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value 

SDNN  -1.1 [-3.6;1.3] 0.35 

α  -0.7 [-3.4;1.1] 0.47 

Power spectral density -4.2±2.8 -0.04±0.04 0.25 

Largest Lyapunov exponent 0.2±0.2 -0.0008±0.004 0.84 
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Table E4.8. Association between HRV and heart rate dynamics parameters (outcome variable) and PM10 in linear mixed effects regression models 

(random intercepts for study area) stratified by the presence of cardiovascular morbidity 

 Cardiovascular morbidity (n=775*)  No cardiovascular morbidity (n=462*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  0.4 [-2.8;3.2] 0.77   -2.6 [-6.0;1.0] 0.14  0.21 

α  0.4 [-2.5;3.0] 0.79   -2.0 [-5.7;0.04] 0.06  0.11 

Power spectral density -3.5±3.7 -0.1±0.005 0.02  -3.8±4.4 0.1±0.6 0.02  0.01 

Largest Lyapunov exponent 0.3±0.3 0.006±0.004 0.19  0.4±0.4 -0.009±0.005 0.06  0.05 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, and 

diabetes 

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and cardiovascular morbidity  
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Table E4.9. Association between HRV and heart rate dynamics parameters (outcome variable) and PM10 in linear mixed effects regression models 

(random intercepts for study area) stratified by sex  

Entire study population Male (n=590*)  Female (n=647*)  Interaction
¥
  

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -1.3 [-5.3;2.7] 0.48   -1.3 [-4.0;1.4] 0.33  0.75 

α  -0.6 [-2.4;1.3] 0.55   -0.6 [-3.9;1.6] 0.64  0.23 

Power spectral density -1.2±4.5 -0.1±0.05 0.08  -4.1±3.5 0.02±0.05 0.69  0.11 

Largest Lyapunov exponent 0.7±0.4 -0.002±0.004 0.67  -0.3±0.3 -0.0009±0.005 0.84  0.38 

Subpopulation without 

cardiovascular morbidity 

Male (n=180*)  Female (n=282*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -6.2 [-11.3;0.3] 0.06   -1.5 [-5.2;2.3] 0.44  0.15 

α  -1.8 [-4.9;0.8] 0.17   -1.5 [-3.5;0.5] 0.14  0.66 

Power spectral density -4.0±7.5 -0.01±0.09 0.88  -3.4±5.4 0.2±0.07 <0.001  0.05 

Largest Lyapunov exponent 1.5±0.6 -0.02±0.008 0.04  -0.4±0.5 -0.008±0.006 0.23  0.16 

All the models are adjusted for age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, uric acid, 

high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, diabetes,  and 

cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and sex  
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Table E4.10. Association between HRV and heart rate dynamics parameters (outcome variable) and PM10 in linear mixed effects regression models 

(random intercepts for study area) stratified by smoking status 

Entire study population Ever smoker (n=675*)  Lifelong non-smoker (n=562*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -1.0 [-3.6;1.8] 0.49   -0.9 [-4.9;2.4] 0.59  0.61 

α  -0.6 [-2.3;1.1] 0.48   -0.8 [-6.5;2.1] 0.64  0.57 

Power spectral density -1.7±4.0 -0.04±0.05 0.38  -6.7±3.8 -0.04±0.06 0.42  0.65 

Largest Lyapunov exponent 0.3±0.3 -0.004±0.006 0.48  -

0.03±0.3 

0.005±0.005 0.33  0.32 

Subpopulation without 

cardiovascular morbidity 

Ever smoker (n=248*)  Lifelong non-smoker (n=214*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -1.7 [-6.0;2.8] 0.45   -4.8 [-8.9;-0.6] 0.03  0.35 

α  -1.0 [-3.3 ;1.3] 0.37   -1.5 [-3.8;0.8] 0.20  0.35 

Power spectral density -4.7±6.7 0.1±0.08 0.13  -4.3±5.8 0.1±0.08 0.07  0.72 

Largest Lyapunov exponent 0.9±0.6 -0.01±0.007 0.15  -0.1±0.5 -0.01±0.007 0.16  0.89 

All the models are adjusted for gender, age, BMI, environmental tobacco smoke exposure, alcohol consumption, physical activity, uric acid, high-

sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, diabetes,  and 

cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and smoking status 
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Table E4.11. Association between HRV and heart rate dynamics parameters (outcome variable) and PM10 in linear mixed effects regression models 

(random intercepts for study area) stratified by obesity  

Entire study population Non-obese (n=974*)  Obese (n=263*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -1.2 [-3.9;1.7] 0.38   -2.1 [-6.9;3.0] 0.41  0.75 

α  -0.8 [-3.0;1.0] 0.38   0.4 [-3.3;4.1] 0.85  0.88 

Power spectral density -4.5±3.5 -0.05±0.04 0.25  -12.4±7.2 0.03±0.09 0.70  0.20 

Largest Lyapunov exponent -0.3±0.3 -0.0002±0.004 0.96  1.1±0.7 -0.001±0.008 0.87  0.48 

Subpopulation without 

cardiovascular morbidity 

Non-obese (n=415*)  Obese (n=47*)  Interaction
¥
 

intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -3.8 [-7.1;-0.04] 0.05   7.5 [-2.7;18.7] 0.15  0.03 

α  -2.5 [-6.2;-0.4] 0.02   5.1 [-1.1;11.7] 0.10  0.05 

Power spectral density -0.6±4.9 0.2±0.06 0.01  -25.0±28.2 0.1±0.2 0.54  0.35 

Largest Lyapunov exponent -0.09±0.4 -0.01±0.005 0.01  3.8±2.2 0.03±0.02 0.15  0.03 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, 

diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

SDNN, standard deviation of all NN intervals 

Values shown are as percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and obesity 
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Table E4.12. Association between HRV and heart rate dynamics parameters (outcome variable) and PM10 in linear mixed effects regression models 

(random intercepts for study area) stratified by GSTM1 genotype  

Entire study population Deletion in GSTM1 (n=620*)  No deletion in GSTM1 (n=572*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -0.9 [-4.1;2.2] 0.54   -1.4 [-4.2;1.4] 0.32  0.91 

α  0.01 [-2.5;2.4] 0.99   -1.2 [-4.6;1.1] 0.31  0.77 

Power spectral density -5.4±4.0 -0.03±0.06 0.60  0.6±4.1 -0.01±0.06 0.79  0.61 

Largest Lyapunov exponent 0.2±0.3 -0.003±0.006 0.61  0.1±0.3 -0.0008±0.005 0.87  0.52 

Subpopulation without 

cardiovascular morbidity 

Deletion in GSTM1 (n=227*)  No deletion in GSTM1 (n=217*)  Interaction
¥
 

intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -4.4 [-8.9;0.7] 0.08   -2.3 [-6.5;2.0] 0.29  0.29 

α  -1.1 [-4.0;1.3] 0.36   -3.0 [-6.6;-0.5] 0.02  0.80 

Power spectral density 1.2±5.8 0.2±0.08 0.03  0.4±6.4 0.1±0.08 0.14  0.79 

Largest Lyapunov exponent 1.2±0.6 -0.009±0.007 0.22  -0.2±0.6 -0.01±0.007 0.08  0.98 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, 

diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and GSTM1 
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Table E4.13. Association between HRV and heart rate dynamics parameters (outcome variable) and PM10 in linear mixed effects regression models 

(random intercepts for study area) stratified by GSTT1 genotype 

Entire study population Deletion in GSTT1 (n=199*)  No deletion in GSTT1 (n=993*)  Interaction
¥
 

 intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -3.2 [-8.8;2.7] 0.28   -0.8 [-3.6;2.0] 0.57  0.65 

α  6.3 [1.4;10.6] 0.02   -1.5 [-3.8;0.2] 0.08  <0.001 

Power spectral density -0.07±6.6 0.01±0.09 0.87  -4.8±3.2 -0.04±0.04 0.38  0.63 

Largest Lyapunov exponent -0.5±0.6 0.02±0.009 0.02  0.2±0.3 -0.003±0.004 0.34  0.01 

Subpopulation without 

cardiovascular morbidity 

Deletion in GSTT1 (n=69*)  No deletion in GSTT1 (n=375*)  Interaction
¥
 

intercept %GM, 95%CI 

or coefficient±SE 

p-value  intercept %GM, 95%CI 

or coefficient±SE 

p-value  p-value 

SDNN  -6.8 [-16.6;3.0] 0.16   -2.9 [-6.7;1.2] 0.15  0.53 

α  3.7 [-2.2;9.1] 0.19   -2.9 [-6.8;-0.8] 0.01  0.02 

Power spectral density -14.5±10.6 0.4±0.2 0.01  -3.4±5.0 0.1±0.06 0.10  0.23 

Largest Lyapunov exponent -0.3±0.9 -0.006±0.02 0.71  0.2±0.4 -0.01±0.006 0.06  0.52 

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, 

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, 

diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity) 

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals 

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient ± standard error (SE) 

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models) 

¥ 
Interaction between

 
TPM10 and GSTT1 
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5.1. At a glance commentary  

Scientific Knowledge on the Subject: Phenotyping appears especially relevant in severe 

asthma, COPD and the transition forms between these entities, in which the heterogeneity of 

response to drug therapy and the unpredictable nature of exacerbations are a major clinical 

challenge. For clinicians, identification of phenotypes related to specific treatable traits is of 

primary concern. Airway function dynamics are at the intersection between 

pathophysiological mechanisms and the expression of particular clinical patterns or treatment 

responses. Consequently, investigation of lung function fluctuation might give new insight 

into the relationship between specific pathological features and clinically meaningful 

outcomes.  

What This Study Adds to the Field: The present study uses a novel clustering approach, 

based on the fluctuations of a single lung function parameter, namely, the twice-daily FEV1 

recorded over one year. We identify five phenotypes, of those three distinct phenotypes of 

severe asthma, in which the progressive functional alteration of the lung corresponds to a 

gradually increasing clinical severity and translates into specific risks of exacerbation and 

treatment response features. Such phenotypes might help identify patients who may benefit 

from different treatment strategies, further clinical investigations in a referral center, and/or 

closer monitoring, for example in a telemonitoring setting. 
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5.2. Abstract 

Rationale: Identification of phenotypes related to specific treatable traits is of primary 

concern in asthma and COPD. Airway function dynamics are at the intersection between 

pathophysiological mechanisms and the expression of particular clinical patterns or treatment 

responses. Consequently, investigation of lung function fluctuation might give new insight 

into the relationship between specific pathological features and clinically meaningful 

outcomes.  

Objective: To evaluate whether the subgrouping of patients with obstructive airway diseases, 

including mild-to-moderate asthma, severe asthma, and COPD, according to their pattern of 

lung function fluctuation, allows for the identification of phenotypes with specific treatable 

traits.  

Methods: We conducted a time series clustering analysis based on the fluctuation of twice-

daily FEV1 measurements recorded over a one year period in a mixed group of 134 adults with 

mild-to-moderate asthma, severe asthma, or COPD from the longitudinal Pan-European 

BIOAIR study.   

Measurements and Main Results: We identified a group of mild-to-moderate asthmatics 

(M), three distinct groups of severe asthmatics (S1, S2, S3) and a group with COPD patients 

(C). These 5 groups presented a gradually increasing clinical severity and functional alteration 

of the lung (from M to C) and identified phenotypes of patients with high exacerbation risks 

(S2, S3), of patients high likelihood to respond to steroids (S2, S3), but also of patients with 

severe functional alterations (C) disallowing a clinical response to steroids despite an 

appropriate cellular anti-inflammatory response.  

Conclusions: Lung function fluctuation based clustering identifies phenotypes of severe 

asthmatics in which the functional alteration of the lung translates into specific risks of 

exacerbation and treatment response features. 
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5.3. Introduction 

Asthma and COPD are increasingly recognized as entities in a continuum of 

heterogeneous obstructive airway disease (Zeki, Schivo et al. 2011, Carolan and Sutherland 

2013, 2015) with distinct phenotypes (Siroux and Garcia-Aymerich 2011, Wenzel 2012). For 

clinicians, there is a great need to identify phenotypes with direct relevance to choice of 

treatment and risk of worsening. Especially in severe asthma (Heaney and Robinson 2005, 

Wenzel 2012), COPD, and the transition forms between these entities (Chung 2013), in which 

the unpredictable nature of exacerbations and the heterogeneity of response to drug therapy 

are a major clinical challenge (Moore and Peters 2006, Donaldson, Seemungal et al. 2012, 

Kupczyk, Haque et al. 2013, Phipatanakul, Mauger et al. 2016). Clinical treatment success is 

determined both by anti-inflammatory and lung functional response to bronchodilators. It is 

still poorly understood why some patients benefit more from step-up treatment with long-

acting bronchodilators than from anti-inflammatory treatment; and why certain patients have a 

poor overall response.  

The information content in airway function dynamics is high and largely underestimated. 

It is recognized that airway function dynamics are influenced by airway inflammation, but 

also independently by mechanical factors in the lung and airways (Tschumperlin and Drazen 

2006). For instance, rapid bronchial obstruction, due to exaggerated bronchial responsiveness, 

contributes to a specific dynamic behavior, and such patients might be clinically characterized 

by a high exacerbation risk. On the other hand, irreversible obstruction, due to mechanical 

impairments, contributes to another specific dynamic behavior, and such patients might be 

clinically characterized by a poor response to bronchodilator due to the mechanical 

impairment (Stern, de Jongste et al. 2011, Thamrin, Frey et al. 2016). That suggests that 

functional alterations are reflected in lung function fluctuation and might translate into 

particular clinical patterns or treatment responses. Indeed, lung function fluctuation has been 

found to be associated with disease progression and control (Frey and Suki 2008, Thamrin, 

Nydegger et al. 2011), risk of exacerbations (Frey, Brodbeck et al. 2005, Thamrin, Zindel et 

al. 2011, Donaldson, Seemungal et al. 2012), and treatment response (Kaminsky, Wang et al. 

2016). Therefore, its characterization might give new insights into the relationship between 

specific pathological features and clinically meaningful outcomes.  

Consequently, we  hypothesized that a lung function fluctuation based clustering (FBC) 

approach (Delgado, Kumar et al. 2015) might help identify subgroups of patients with distinct 

lung functional abnormalities, which may be related to specific treatable traits (i.e., specific 
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treatable mechanisms related to specific symptom features). The FBC method identifies 

clusters of patients with similar patterns of lung function fluctuation over a predetermined 

window of observation. We conducted the FBC analysis in a mixed group of 134 adults with 

mild-to-moderate asthma, severe asthma, or COPD, with a unique one-year collection of 

twice-daily lung function data, from the longitudinal European BIOAIR (Longitudinal 

Assessment of Clinical Course and BIOmarkers in Severe Chronic AIRway Disease) 

multicenter study. 

The aim of this study was to assess whether the subgrouping of patients with obstructive 

airway diseases, including mild-to-moderate asthma, severe asthma, and COPD, according to 

their pattern of lung function fluctuation, allows for the identification of phenotypes with 

specific treatable traits. 

 

5.4. Methods 

5.4.1. Study design 

This is a post-hoc analysis of the Pan-European BIOAIR study which was designed to 

characterize the course of severe chronic airway diseases over time. The design has been 

described in detail elsewhere (Kupczyk, Haque et al. 2013). Briefly, 169 adults with asthma, 

and 64 with COPD were included. Patients with asthma were screened at visit 1 (Figure 5.1) 

and allocated to mild-to-moderate asthma (n=76) and severe asthma (n=93) groups according 

to established criteria aligned with current guidelines (Kupczyk, Haque et al. 2013, Chung, 

Wenzel et al. 2014). Patients underwent a treatment optimization period of 4 weeks (from 

visit 1 to visit 2), which was followed by a 2-week double blind placebo-controlled oral 

prednisone intervention (0.5 mg/kg body weight, from visit 2 to visit 3) permitting assessment 

of lung function and biomarker responses to oral corticosteroid (OCS) intervention. Finally, 

patients were followed up for 12 months (from visit 3 to visit 6). 
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Figure 5.1. Design of the BIOAIR study 

 

5.4.2. Data collection and measurements 

Lung function measurements, including FEV1 and PEF, clinical symptoms and 

medication use were recorded daily throughout the entire study using an electronic diary 

(Vitalograph Electronic PEF/FEV1 Diary, XM version, Vitalograph Ltd, Buckingham, UK) 

(Kupczyk, Haque et al. 2013). Detailed information about lung function measurements 

performed during visits and questionnaires completed by patients can be found in the Online 

Supplement.  

 

5.4.3. Lung function fluctuation based clustering of patients  

Patients with a similar fluctuation behavior in the twice-daily measurements of FEV1 

from the one-year follow-up (visit 3 to visit 6) were grouped into clusters, using the FBC 

approach (Delgado-Eckert, Fuchs et al. 2017) (Online Supplement). The measurements 

performed during the interventional phases of the study (i.e., treatment optimization and oral 

steroid intervention) where not included in the clustering analysis. FEV1 was expressed as the 

age, sex, height and ethnicity adjusted z-score (denoted zFEV1) (Quanjer, Stanojevic et al. 

2012).  

 

5.4.4. Statistical analysis 

Results are expressed as numbers and percentages for categorical variables, and as mean 

(± standard deviation) or median [25
th

 percentile; 75
th

 percentile] for continuous variables, 

according to their distribution. 
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In each of the clusters identified, an enrichment analysis was performed using the 

hypergeometric test (Agresti 1992) in order to assess whether there was a significant 

enrichment (i.e., over-representation) of mild-to-moderate asthmatics, severe asthmatics, or 

patients with COPD.  

Comparisons between defined groups were provided using the one-way ANOVA or the 

Kruskal-Wallis test, as appropriate, for continuous variables, and the Chi
2
 or the Fisher’s 

exact test, as appropriate, for categorical variables. Post-hoc tests for pair-wise multiple 

comparisons were performed using the Tukey’s test or the Nemenyi test for continuous 

variables, as appropriate. For categorical variables, the multiple testing issue was addressed 

using an enrichment analysis (hypergeometric test) combined to a resampling method, setting 

the family-wise error rate at the 5% level (Online Supplement). We were then able to assess 

whether there was a significant over-representation of a given parameter in a given group as 

compared to the entire analysis population. 

Response to OCS intervention (visit 2 to visit 3) was defined as ≥ 10 percent 

improvement of predicted FEV1 (Phipatanakul, Mauger et al. 2016).   

All tests were two-sided with a significance level of 0.05. Statistical analysis was 

performed using R, Version 3.2.1 (2008). 

 

5.5. Results 

5.5.1. Description of the analysis population 

Among the 233 patients included in the BIOAIR study, 6 were excluded at screening, 12 

were lost to follow-up before beginning the 1-year follow-up, and 29 did not perform any 

self-measurements of FEV1. Furthermore, 52 patients were excluded from the analysis 

population because they did not have the minimum number of FEV1 measurements required 

for the cluster analysis (Online Supplement). Patients excluded (n=99) did not significantly 

differ from the 134 patients analyzed (Online Supplement). 

Among the 134 patients analyzed, there were 53 (39.6%) mild-to-moderate asthmatics, 

54 (40.3%) severe asthmatics, and 27 (20.1%) patients with COPD. The mean age of the 

subjects was 51.7±13.6 years. Characteristics at study inclusion, according to the airway 

disease (i.e., mild-to-moderate asthma, severe asthma, COPD), are summarized in Table 5.1. 

The mean number of FEV1 measurements per patient during follow-up was 428±170.  
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Table 5.1. Characteristics of patients at inclusion according to the airway disease (n=134) 

 Mild-to-moderate asthma 

(N=53) 

MD Severe asthma 

(N=54) 

MD COPD 

(N=27) 

MD p-value* 

Clinical characteristics        

Age, years 42.6±12.6 - 50.6±10.5 - 64.8±7.9 - <0.001 

Gender, male 20 (37.7%) - 21 (38.9%) - 19 (70.4%) - 0.01 

BMI, kg/m
2
 25.1±4.0 - 28.5±5.1 - 27.0±4.7 - <0.001 

Age of disease onset, years 18.0 [5.5;33.0] 2 33.0 [20.3;43.3] 4 60.0 [51.0;66.0] 2 <0.001 

ACQ, Juniper 0.9 [0.4;1.3] 2 2.0 [1.2;2.7] 4 NA NA <0.001 

QoL, SGRQ 15.4 [10.5;29.6] 11 41.6 [31.9;57.1] 5 39.6 [32.5;50.6] 4 <0.001 

Atopy 24 (47.1%) 2 20 (40.0%) 4 0 (0%)† 1 0.47‡ 

Lung function        

Reversibility, percentage change 10.5±6.0 1 8.5±6.0 1 3.0±3.8 - <0.001 

FeNO, ppb 32.9 [20.6;51.5] 23 33.9 [13.5;71.0] 28 10.8 [8.05;13.3] 16 0.004 
FEV1, z-score -1.4±1.3 2 -2.0±1.3 1 -3.3±0.7 1 <0.001 

FEV1, % predicted 82.2±16.9 2 71.5±19.5 1 45.9±10.8 1 <0.001 

FVC, z-score -0.2±0.9 2 -1.1±1.2 1 -1.4±0.8 1 <0.001 

FVC, % predicted 97.0±12.4 2 85.2±16.6 1 78.2±11.8 1 <0.001 

FEV1/FVC -1.7±1.2 2 -1.7±1.5 1 -3.5±1.1 1 <0.001 

DLCO, %predicted corrected 94.5±14.5 5 86.0±16.6 8 59.4±20.0 1 <0.001 

FRC, %predicted corrected 96.1 [82.4;119.7] 6 92.6 [82.2;113.5] 9 126.2 [104.0;147.1] 3 <0.001 

IVC, %predicted corrected 102.3±14.1 6 96.8±19.1 1 89.4±11.2 3 0.007 

TLC, %predicted corrected 104.3±12.5 2 103.1±15.4 1 109.2±18.0 - 0.22 

RV, %predicted corrected 104.6 [92.5;126.1] 3 118.0 [97.8;139.4] 1 150.7 [111.6;174.1] - 0.001 

RV/TLC 1.0 [0.9;1.2] 3 1.2 [1.0;1.4] 1 1.4 [1.2;1.6] - <0.001 

Inflammatory response        

hs-CRP, mg/l 2.0 [1.0;3.6] 5 3.4 [1.6;9.2] 6 6.0 [2.5;8.2] - 0.03 

Sputum cells, ×10
6
 0.6 [0.2;2.0] 14 0.7 [0.4;2.9] 14 1.1 [0.7;2.4] 12 0.14 

Sputum eosinophils, % 1.2 [0.1;7.2] 17 4.8 [0.7;26.6] 16 0.6 [0.03;1.6] 13 0.002 

Sputum neutrophils, % 40.1 [15.3;58.6] 17 26.1 [15.3;48.1] 16 54.9 [34.8;73.1] 13 0.10 
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Table 5.1. Characteristics of patients at inclusion according to the airway disease (n=134) (continued) 

 Mild-to-moderate asthma 

(N=53) 

MD Severe asthma 

(N=54) 

MD COPD 

(N=27) 

MD p-value* 

White blood cells, ×10
9
/l 6.5±1.6 2 8.2±2.5 1 8.1±2.0 - <0.001 

Blood eosinophils, ×10
9
/l 0.3 [0.2;0.4] 2 0.3 [0.1;0.5] 2 0.2 [0.1;0.3] - 0.21 

Blood neutrophils, ×10
9
/l 3.5 [2.6;4.4] 5 4.8 [3.6;6.7] 3 4.9 [3.8;6.4] 1 <0.001 

Values shown are mean ± standard deviation, median [25
th 

percentile; 75
th 

percentile], and numbers (percentages) 

ACQ, Asthma Control Questionnaire; BMI, body mass index; hs-CRP, high-sensitivity C-reactive protein; DLCO, diffusing capacity of the lung for 

carbon monoxide; FeNO, fraction of exhaled nitric oxide; FEV1, forced expiratory volume in one second; FRC, forced residual volume; FVC, 

forced vital capacity; IVC, inspiratory vital capacity; MD, missing data; NA, not applicable; QoL, quality of life; RV, residual volume; SGRQ, St 

George’s Respiratory Questionnaire; TLC, total lung capacity 

*Comparison between groups using the one-way ANOVA or the Kruskal-Wallis test, as appropriate, for continuous variables, and using the Chi
2
 or 

the Fisher’s exact test, as appropriate, for categorical variables; †Inclusion criteria; ‡Comparison between mild-to-moderate asthmatics and severe 

asthmatics 
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5.5.2. The fluctuation based clustering analysis identifies four clusters  

The FBC analysis identified four clusters, which consisted of 12 (9.0%), 49 (36.7%), 31 

(23.1%), and 42 (31.3%) subjects. 

Cluster 1 consisted of 10 (83.3%) mild-to-moderate asthmatics and 2 (16.7%) severe 

asthmatics. There was a significant over-representation (i.e., significant enrichment) of mild-

to-moderate asthmatics (p<0.001); the cluster was therefore labeled “mild-type lung function 

fluctuation” (Table 5.2).  

Cluster 2 consisted of 29 (59.2%) mild-to-moderate asthmatics, 18 (36.7%) severe 

asthmatics, and 2 (4.1%) patients with COPD. There was a significant over-representation of 

mild-to-moderate asthmatics (p<0.001), but given the mixture with severe asthmatics and 

patients with COPD, the cluster was labeled “moderate-type lung function fluctuation”.  

Cluster 3 consisted of 10 (32.3%) mild-to-moderate asthmatics, 16 (51.6%) severe 

asthmatics, and 5 (16.1%) patients with COPD. There was a significant over-representation of 

severe asthmatics (p=0.048); the cluster was therefore labeled “severe-type lung function 

fluctuation”.  

Cluster 4 consisted of 4 (9.5%) mild-to-moderate asthmatics, 18 (42.9%) severe 

asthmatics, and 20 (47.6%) patients with COPD. There was a significant over-representation 

of patients with COPD (p<0.001); the cluster was therefore labeled “COPD-type lung 

function fluctuation”. 
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Table 5.2. Over-representation of airway diseases in each of the clusters identified (n=134) 

 Cluster 1  

(N=12) 

p-value Cluster 2  

(N=49) 

p-value Cluster 3  

(N=31) 

p-value Cluster 4  

(N=42) 

p-value 

Airway disease         

Mild-to-moderate asthma 10 (83.3%) <0.001 29 (59.2%) <0.001 10 (32.3%) 0.77 4 (9.5%) 0.99 

Severe asthma 2 (16.7%) 0.93 18 (36.7%) 0.67 16 (51.6%) 0.048 18 (42.9%) 0.27 

COPD 0 (0.0%) 0.94 2 (4.1%) 0.99 5 (16.1%) 0.64 20 (47.6%) <0.001 

p-value from the hypergeometric test 
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5.5.3. Phenotyping based on the combination of clinical classification (i.e., mild-to-

moderate asthma, severe asthma, and COPD) and lung function fluctuation based 

clusters unveils three subgroups of severe asthmatics 

Most of the mild-to-moderate asthmatics (n=39/53, 73.6%) were assigned to the clusters 

“mild-type lung function fluctuation” and “moderate-type lung function fluctuation”; they 

were defined as group M (Table 5.3, Figure 5.2). Mild-to-moderate asthmatics who were 

assigned to the clusters “severe-type lung function fluctuation” (n=10, labelled group MS) and 

“COPD-type lung function fluctuation” (n=4) were not further investigated, due to the small 

sample size of these groups. Description of group MS is provided in the Online Supplement. 

Most patients with COPD (n=20/27, 74.0%) were assigned to the cluster “COPD-type 

lung function fluctuation”; they were defined as group C. COPD patients who were assigned 

to the clusters “moderate-type lung function fluctuation” (n=2) and “severe-type lung function 

fluctuation” (n=5) were not further investigated, due to the small sample size of these groups. 

Severe asthmatics were spread across the clusters “moderate-type lung function 

fluctuation” (n=18/54, 33.3%), “severe-type lung function fluctuation” (n=16/54, 29.6%), and 

“COPD-type lung function fluctuation” (n=18/54, 33.3%). These 3 groups were labeled S1, 

S2, and S3, respectively. Severe asthmatics who were assigned to the cluster “mild-type lung 

function fluctuation” (n=2) were not further investigated, due to the small sample size of this 

group.  

Description of groups M, S1, S2, S3, and C is provided in Table 5.4 and Figures 5.3-5.5. 
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Table 5.3. Distribution of mild-to-moderate asthmatics, severe asthmatics, and patients with COPD according to clusters (n=134) 

 Cluster 1 (N=12) 

called «mild-type lung 

function fluctuation» 

Cluster 2 (N=49) 

called «moderate-type lung 

function fluctuation» 

Cluster 3 (N=31) 

called «severe-type lung 

function fluctuation» 

Cluster 4 (N=42) 

called «COPD-type lung 

function fluctuation» 

Mild-to-moderate 

asthmatics (N=53) 

10 (18.9%) 

Group M 

29 (54.7%) 

Group M 

10 (18.9%) 4 (7.5%) 

Severe asthmatics 

(N=54) 

2 (3.7%) 18 (33.3%) 

Group S1 

16 (29.6%) 

Group S2 

18 (33.3%) 

Group S3 

Patients with COPD 

(N=27) 

0 2 (7.4%) 5 (18.5%) 20 (74.1%) 

Group C 

Values shown are and numbers (percentages) 
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Figure 5.2. Subgrouping of mild-to-moderate asthmatics, severe asthmatics and patients with 

COPD (i.e., clinical classification) according to their pattern of lung function fluctuation (i.e., 

data-driven classification) 
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Table 5.4. Characteristics of patients according to subgroups M, S1, S2, S3, and C (n=111) 

  Group M 

(N=39) 

MD Group S1 

(N=18) 

MD Group S2  

(N=16) 

MD Group S3  

(N=18) 

MD Group C 

(N=20) 

MD p-value 

* 

Airway disease  Mild-to-moderate 

asthma 

 Severe asthma  Severe asthma  Severe asthma  COPD   

Clinical characteristics             

Age, years  43.2±13.7 ‡ - 51.2±11.5 ‡ - 53.6±10.3 † ‡ - 47.8±9.3 ‡ - 65.1±7.5 † - <0.001 

Gender, male  14 (35.9%)  - 8 (44.4%) - 6 (37.5%) - 7 (38.9%) - 13 (65.0%)  - 0.28 

BMI, kg/m
2
  24.9±3.3 - 27.3±4.5 - 28.5±4.9 - 29.9±6.0 † - 26.9±5.3 - 0.003 

Age of disease onset, years  18.5 [5.3;32.5] ‡ 1 34.0 [24.3;43.8] 

‡ 

- 24.5 [13.3;37.5] 

‡ 

2 35.0 [19.0;45.0] 

‡ 

2 60.5 [52.5;65.5] 

† 

2 <0.001 

Atopy  18 (47.4%) 1 5 (33.3%) 3 8 (50.0%)  - 7 (38.9%)  - 0 (0%) §  - 0.73 ll 

QoL, SGRQ  11.4 [6.8;20.7] ‡ 8 39.3 [26.0;42.6] 

† 

3 43.7 [37.7;48.8] 

† 

4 51.1 [33.1;59.9] 

† 

1 40.3 [34.2;56.2] 

† 

7 <0.001 

ACQ, Juniper  0.3 [0.1;0.6] - 1.4 [0.9;2.0] † - 2.0 [1.3;2.6] † 1 2.4 [2.0;3.0] † 2 NA - <0.001 

Number of exacerbation during 

follow-up 

 0 [0;1] - 1 [0;2] - 1 [1;2] - 2 [1;2] † - 0 [0;1 ] - <0.001 

At least one exacerbation during 

follow-up 

 13 (33.3%) - 10 (55.6%) - 13 (81.2%)  - 13 (72.2%)  - 8 (40.0%) - 0.005 

Lung function             

Reversibility, percentage change  10.2 [7.7;14.1] ‡ 1 9.1 [5.6;12.9] ‡ - 5.5 [0.9;9.3] 1 7.6 [4.6;14.9] ‡ - 3.1 [0.8;4.4] † - <0.001 

FeNO, ppb  21.3 [14.3;32.2] 12 21.4 [14.5;42.3] 10 40.5 [23.7;53.8] 7 29.7 [10.1;59.9] 8 11.2 [7.0;13.8] 11 0.001 

FEV1, z-score  -0.7±1.1 ‡ - -1.4±0.9 †‡ - -2.1±1.0 †‡ - -2.6±1.2 †‡ - -3.5±0.6 † - <0.001 

FEV1, % predicted  96.5±15.8 ‡ - 83.4±13.6 †‡ - 73.7±16.9 †‡ - 66.7±19.8 †‡ - 44.6±10.4 † - <0.001 

FVC, z-score  0.04±0.9 ‡ - -1.0±1.3 †‡ - -1.3±1.1 † - -1.3±1.0 † - -2.0±0.7 † - <0.001 

FVC, % predicted  100.5±11.6 ‡ - 86.6±16.2 †‡ - 82.2±14.4 †‡ - 82.3±13.8 †‡ - 70.1±11.1 † - <0.001 

FEV1/FVC  -1.0±1.2 ‡ - -0.7±1.4 ‡ - -1.5±1.4 ‡ - -2.4±1.4 †‡ - -3.5±0.9 † - <0.001 

DLCO, %predicted corrected  94.8±13.2 ‡ 2 86.5±10.8 ‡ 6 91.8±17.7 ‡ - 80.4±18.3 † ‡ 1 56.3±21.3 † ‡ - <0.001 
FRC, %predicted corrected  101.3±22.3 ‡ 2 91.9±24.8 ‡ 6 98.2±24.8 ‡ - 99.9±26.5 ‡ 2 128.3±30.0 † 2 <0.001 

IVC, %predicted corrected  107.2±10.2 ‡ 4 98.0±13.4 - 95.5±16.8 1 92.3±22.5 † - 89.8±11.4 † 2 <0.001 

TLC, %predicted corrected  105.5±10.9 1 97.5±14.4 ‡ 1 105.8±12.5 - 103.3±16.7 - 111.3±17.9  - 0.07 

RV, %predicted corrected  104.5±29.2 ‡ 2 105.0±34.8 ‡ 1 130.6±29.3 - 129.5±44.2 - 158.8±46.3  - <0.001 

RV/TLC  0.98±0.2 ‡ 2 1.1±0.2 ‡ 1 1.2±0.2 † - 1.2±0.3 † - 1.4±0.2 † 2 <0.001 

Inflammatory biomarkers              

Sputum cells, ×10
6
  0.6 [0.2;1.3] 8 2.2 [0.6;4.0] 6 1.0 [0.4;2.0] 5 1.1 [0.6;3.8] 4 1.1 [0.4;1.5] 7 0.14 

Sputum eosinophils, %  1.3 [0.1;4.7] 9 1.5 [0.7;17.8] 6 4.9 [1.2;18.1] 6 4.5 [1.0;10.4] 8 2.1 [0.2;5.8] 9 0.26 

Sputum eosinophilia ≥ 2%  12 (40.0%) 9 5 (41.7%) 6 6 (60.0%) 6 6 (60.0%) 8 6 (54.5%) 9 0.68 
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Table 5.4. Characteristics of patients according to subgroups M, S1, S2, S3, and C (n=111) (continued) 

  Group M 

(N=39) 

MD Group S1 

(N=18) 

MD Group S2  

(N=16) 

MD Group S3  

(N=18) 

MD Group C 

(N=20) 

MD p-value 

* 

Airway disease  Mild-to-moderate 

asthma 

 Severe asthma  Severe asthma  Severe asthma  COPD   

Sputum neutrophils, %  46.0 [17.6;67.0] 9 51.3 [26.7;69.4] 6 25.1 [23.4;58.6] 6 56.5 [45.0;63.6] 8 68.3 [54.2;74.2] 9 0.14 

Sputum neutrophilia ≥ 40%  17 (56.7%) 9 7 (58.3%) 6 3 (30.0%) 6 8 (80.0%) 8 10 (90.9%) 9 0.04 

Mixed granulocytic 

inflammation, % 

  6 (20.0%)  9 3 (25.0%) 6 2 (20.0%) 6 5 (50.0%)  8 5 (45.5%)  9 0.27 

hs-CRP, mg/l  0.8 [0.4;2.2] ‡ 7 2.6 [1.6;2.9] 3 2.2 [0.8;5.1] 1 4.2 [2.3;5.6] † 1 4.0 [2.4;5.9] † 3 <0.001 

White blood cells, ×10
9
/l  6.3±1.5 1 7.0±1.9 - 8.1±2.4 † - 8.8±2.6 † - 7.7±2.3 - <0.001 

Blood eosinophils, ×10
9
/l  0.3 [0.2;0.3] 1 0.3 [0.1;0.4] - 0.4 [0.1;0.5] 1 0.2 [0.1;0.3] - 0.2 [0.2;0.3] - 0.82 

Blood neutrophils, ×10
9
/l  3.4 [3.0;4.2] 1 3.7 [2.9;5.3] - 5.9 [3.5;6.3] - 5.4 [4.3;6.9] † - 4.4 [3.7;5.5] - <0.001 

Response to treatment             

Response to oral 

corticosteroids 

 3 (7.7%) - 3 (16.7%) - 4 (25.0%) - 8 (44.4%) - 3 (15.0%) - 0.02 

Biomarkers             

sRAGE, pg/ml  1602 [1197;1897] 7 1694 [1310;2209] 3 1287 [952.6;2054] 1 1319 [1114;1508] 1 1145 [854;1386] 4 0.03 

MMP-3 pg/mL  11910 [8062;16200] 7 15840 [5561;22400] 3 19960 

[13410;25500] 

1 23170 

[9236;66400] 

1 18680 

[14710;26380] 

4 0.04 

DPPIV pg/mL  113200±35220 7 108500±37970 3 87530±34646 1 95320±52699 1 82250±31184 4 0.05 

YKL-40 (or Chitinase 3-

Like 1), pg/ml 

 15470 [12080;18410] 

‡ 

7 15120 [13100;33000] 3 27720 

[19500;41550] 

1 15400 

[10710;25020] ‡ 

1 37380 

[21420;54580] † 

4 <0.001 

Values shown are mean ± standard deviation, median [25
th 

percentile;75
th 

percentile], and numbers (percentages)  

ACQ, Asthma Control Questionnaire; BMI, body mass index; CD40 L, CD 40 ligand; hs-CRP, high-sensitivity C-reactive protein; DLCO, diffusing capacity of 

the lung for carbon monoxide; FeNO, fraction of exhaled nitric oxide; FEV1, forced expiratory volume in one second; FRC, forced residual volume; FVC, 

forced vital capacity; IVC, inspiratory vital capacity; MD, missing data; NA, not applicable; OCS, oral corticosteroid; QoL, quality of life; RV, residual 

volume; SGRQ, St George’s Respiratory Questionnaire; sRAGE, soluble receptor for advanced glycation end products; TLC, total lung capacity 

*
Comparison between groups using the one-way ANOVA or the Kruskal-Wallis test, as appropriate, for continuous variables, and using the Chi

2
 or the Fisher’s 

exact test, as appropriate, for categorical variables;
 
†As compared to group M; ‡As compared to group C; §Inclusion criteria; ll Comparaison between groups 

M, S1, S2, and S3 
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     A                     B                    C 

 

Figure 5.3. Distribution of clinical characteristics according to groups M, S1, S2, S3, and C  

(A) Score of St George’s Respiratory Questionnaire, (B) Score of Asthma control Questionnaire, (C) Frequency of patients who experienced at least one 

exacerbation during follow-up  

Group M includes mild-to-moderates asthmatics, groups S1, S2, and S3 include severe asthmatics, group C includes COPD patients 
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     A                     B                     C 

 

Figure 5.4. Distribution of lung function features according to groups M, S1, S2, S3, and C  

(A) FEV1, (B) RV/TLC, (C) DLCO 

Group M includes mild-to-moderates asthmatics, groups S1, S2, and S3 include severe asthmatics, group C includes COPD patients 
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    A                       B   

 

    C                        D  

 

Figure 5.5. Distribution of inflammatory biomarkers according to groups M, S1, S2, S3, and C  

(A) High-sensitivity C-reactive protein, (B) Blood neutrophils, (C) Frequency of patients with sputum 

neutrophilia ≥ 40%, (D) FeNO 

Group M includes mild-to-moderates asthmatics, groups S1, S2, and S3 include severe asthmatics, group C 

includes COPD patients 
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Group M 

Group M (n=39) was characterized by a significant over-representation of patients with 

early-onset disease (i.e., <18 years old) (19 (50.0%) in M as compared to 30 (28.8%) in the 

entire analysis population, adjusted p-value<0.001) and by a significant over-representation of 

patients with atopy (i.e., skin prick tests >9mm
2
) (18 (47.4%) in M as compared to 38 (43.4%) 

in the entire analysis population, adjusted p-value=0.02). Independent of group, we found that 

atopic condition was associated with an early-onset disease in patients with asthma (median 

age of onset was 16.0 [5.0;32.0] years in subjects with atopy vs. 33.0 [20.5;46.5] years in 

subject without atopy, adjusted p-value<0.001). Score of Asthma Control Questionnaire 

(ACQ) (0.3 [0.1;0.6]) was significantly lower as compared to S1 (1.4 [0.9;2.0], adjusted p-

value=0.006), S2 (2.0 [1.3;2.6], adjusted p-value<0.001), and S3 (2.4 [2.0;3.0], adjusted p-

value<0.001). Quality of life, i.e., score of St George’s Respiratory Questionnaire, (11.4 

[6.8;20.7]) was significantly better compared to S1 (39.3 [26.0;42.6], adjusted p-value=0.049), 

S2 (43.7 [37.7;48.8], adjusted p-value=0.001), S3 (51.1 [33.1;59.9], adjusted p-value<0.001), 

and C (40.3 [34.2;56.2], adjusted p-value<0.001). Response to OCS was poor with a 

significant over-representation of non-responders (36 (92.3%) in M compared to 90 (81.0%) 

in the entire analysis population, adjusted p-value=0.004). This is probably due to the fact that 

the optimal lung function was gained already with the use of inhaled corticosteroids during 

the treatment optimization period. 

  

Group S1 

Group S1 (n=18) was characterized by a significant over-representation of patients with 

late-onset disease (16 (88.9%) in S1 compared to 74 (71.1%) in the entire analysis population, 

adjusted p-value<0.001). With regard to demographic characteristics (i.e., age, gender, and 

BMI) and inflammatory biomarkers, patients were similar to those in group M. However, they 

exhibited increased airway obstruction with zFEV1 (-2.1±1.0) and zFVC (-1.3±1.1) 

significantly lower compared to M (-0.7±1.1, adjusted p-value<0.001, and 0.04±0.9, adjusted 

p-value<0.001, respectively). Three patients (16.7%) responded to OCS.  

 

Group S2 

Patients in group S2 (n=16) were significantly older than in M (53.6±10.3 years vs. 

43.2±13.7 years, adjusted p-value=0.02). There was a significant over-representation of 

patients who had at least one exacerbation during follow-up (13 (81.2%) in S2 compared to 57 
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(51.4%) in the entire analysis population, adjusted p-value=0.002). Patients exhibited a 

decreased pulmonary function with zFEV1 (-2.1±1.0) and zFVC (-1.3±1.1) significantly lower 

compared to group M (-0.7±1.1, adjusted p-value<0.001, and 0.04±0.9, adjusted p-

value<0.001, respectively), and a hyperinflation characterized by a ratio RV/TLC 

significantly higher compared to group M (1.2±0.2 vs. 0.98±0.2, adjusted p-value=0.009). 

There were signs of airway inflammation with higher levels of sputum eosinophils (4.9 

[1.2;18.1] %) compared to M (1.3 [0.1;4.7] %), though not significant (adjusted p-

value=0.39). Fraction of exhaled nitric oxide (FeNO) (29.7 [10.1;59.9] ppb) was significantly 

higher compared to group C (11.2 [7.0;13.8] ppb, adjusted p-value=0.002). In response to 

OCS, these parameters decreased to the levels of that in M (Online Supplement). Four 

(25.0%) patients responded to OCS.  

 

Group S3 

Group S3 (n=18) was characterized by a significantly higher BMI compared to M 

(29.9±6.0 kg/m
2
 vs. 24.9±3.3 kg/m

2
, adjusted p-value=0.002), with a significant over-

representation of obese subjects (i.e., BMI ≥ 30 kg/m
2
) (9 (50.0%) in S3 compared to 28 

(25.0%) in the entire analysis population, adjusted p-value=0.003). There was a significant 

over-representation of patients who had a least one exacerbation during follow-up (13 

(72.2%) in S3 compared to 57 (51.4%) in the entire analysis population, adjusted p-

value=0.01), as well as a significantly higher number of exacerbations compared to M (2 [1;2] 

vs. 0 [0;1], adjusted p-value=0.046). Patients exhibited decreased pulmonary function with 

zFEV1 (-2.6±1.2), zFVC (-1.3±1.0), and IVC (92.3%±22.5%) significantly lower compared to 

M (-0.7±1.1, adjusted p-value<0.001, 0.04±0.9, adjusted p-value<0.001, and 107.2%±10.2%, 

adjusted p-value=0.006, respectively), a hyperinflation characterized by a ratio RV/TLC 

(1.2±0.3) significantly higher compared to M (0.98±0.2, adjusted p-value=0.003), as well as a 

loss of diffusion capacity, which was significantly lower compared to M (DLCO: 

80.4%±18.3% vs. 94.8%±13.2%, adjusted p-value=0.02). There were signs of airway 

inflammation with significantly higher levels of blood neutrophils (5.4 [4.3;6.9] 10
9
/l) and 

CRP (4.2 [2.3;5.6] mg/l) compared to M (3.4 [3.0;4.2], adjusted p-value=0.003, and 0.8 

[0.4;2.2] mg/l, adjusted p-value=0.03, respectively), higher levels of sputum eosinophils (4.5 

[1.0;10.4] %) compared to M (1.3 [0.1;4.7] %), though not significant, a significant over-

representation of patients with sputum neutrophils ≥ 40% (8 (80.0%) in S3 compared to 45 

(61.6%) in the entire analysis population, adjusted p-value=0.045), and a mixed granulocytic 
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inflammation (i.e., combined increase in sputum eosinophils ≥ 2% and sputum neutrophils ≥ 

40% (Moore, Meyers et al. 2010)) (5 (50.0%) in S3 compared to 21 (28.8%) in the entire 

analysis population, adjusted p-value=0.03). In response to OCS, these parameters decreased 

to the levels of that in M (Online Supplement). There was significant over-representation of 

OCS responders (8 (44.4%) in S3 compared to 21 (18.9%) in the entire analysis population, 

adjusted p-value<0.001). 

 

Group C 

Group C (n=20) was markedly different from the other groups and mainly consisted of 

older patients (65.1±7.5 years), predominantly males (13 (65.0%) in C compared to 48 

(43.2%) in the entire analysis population, adjusted p-value=0.008), with late-onset disease 

(age of onset: 60.5 [52.5;65.5] years). Patients exhibited severe reductions in pulmonary 

function. Lung function was markedly decreased with zFEV1 (-3.5±0.6) and zFEV1/zFVC (-

3.5±0.9) which were significantly lower compared to each of the 4 groups of asthmatics, and 

zFVC (-2.0±0.7) significantly lower compared to M (0.04±0.9, adjusted p-value<0.001) and 

S1 (-1.0±1.3, adjusted p-value<0.02). Patients presented with a fixed obstruction characterized 

by reversibility (3.1% [0.8%;4.4%]) significantly lower compared to M (10.2% 

[7.7%;14.1%], adjusted p-value<0.001), S1 (9.1% [5.6%;12.9%], adjusted p-value=0.005) and 

S3 (7.6% [4.6%;14.9%], adjusted p-value=0.04). Lung function mechanics revealed a 

hyperinflation characterized by FRC (128.3%±30.0%) significantly higher compared to each 

of the 4 groups of asthmatics, and RV/TLC (1.4±0.2) significantly higher compared to M 

(0.98±0.2, adjusted p-value<0.001) and S1 (1.1±0.2, adjusted p-value<0.001). Diffusion 

capacity (DLCO: 56.3%±21.3%) was significantly lower compared to each of the 4 groups of 

asthmatics. Similar to S3, there were signs of airway inflammation with CRP levels being 

significantly higher (4.0 [2.4;5.9] mg/l) compared to M (0.8 [0.4;2.2] mg/l, adjusted p-

value=0.008), a significant over-representation of patients with sputum neutrophils ≥ 40% (10 

(90.9%) in C compared to 45 (61.6%) in the entire analysis population, p=0.003), and a mixed 

granulocytic inflammation (5 (45.5%) in C compared to 21 (28.8%) in the entire analysis 

population, adjusted p-value=0.049). In response to OCS, these parameters decreased to the 

levels of that in M (Online Supplement). Three (15.0%) patients responded to OCS. There 

were also meaningful and distinct differences with respect to certain biomarkers between 

groups S3 and C, as displayed in Table 4, and discussed in the Online Supplement. 
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5.6. Discussion 

5.6.1. Main results 

Our approach to phenotyping based on lung function fluctuations allowed for the 

identification of 5 groups (M, S1, S2, S3, and C) corresponding to relevant phenotypes with a 

gradual severity regarding clinical, inflammatory, and pulmonary features, distinct 

exacerbation rate, and traits suggesting specific treatment response features (Figure 5.6).  

In particular, we found a gradually increasing clinical severity from M to C, characterized 

by a gradual decrease in quality of life and asthma control, and a higher number of 

exacerbations in S2 and S3.  

Related to the increasing clinical severity from M to C, we found increasing changes in 

lung function (i.e., increased airway obstruction, increased hyperinflation, and a loss of 

diffusion capacity) which might be due to progressive structural changes. Airways gradually 

reached a more rigid, narrow state, and became less reversible to β2-mimetics. Particularly, in 

S3, seriously impaired lung function combined with the severe clinical phenotype and signs of 

inflammation might be related to obesity since this group mainly consisted of obese subjects.  

Response to OCS differed according to groups and seemed to result from the relative 

pathophysiological contributions of airway obstruction, inflammation, and irreversible 

mechanical impairment. Response in M was weak, probably due to a ceiling effect. Indeed, 

since this group of patients had minimal airway obstruction, they were probably controlled 

with inhaled corticosteroids, reducing any benefit of adding OCS. From S1 to S3, where 

degree of obstruction and signs of inflammation gradually increased, we found a gradually 

increasing response to OCS, with a particularly good response in S3. In C, irreversible 

mechanical impairment of the lung might have rendered patients clinically unresponsive to 

OCS despite a satisfactory anti-inflammatory response. Thus, in these patients the mechanical 

impairment dominated the clinical picture. 
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Figure 5.6. Predominant (A) clinical, (B) pulmonary and (C) inflammatory features, and (D) 

response to oral corticosteroid according to groups M, S1, S2, S3, and C 

CRP, high-sensitivity C-reactive protein; FeNO, fraction of exhaled nitric oxide; OCS, oral 

corticosteroid 

Group M includes mild-to-moderates asthmatics, groups S1, S2, and S3 include severe 

asthmatics, group C includes COPD patients 
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5.6.2. Strengths and weaknesses of the study (internal validity) 

The BIOAIR cohort, due to its unique design, enabled, for the first time, comparison of 

patients with mild-to-moderate asthma, severe asthma, and COPD in regards to their lung 

function fluctuation over a one year period. Additional strengths of the study are a) the use of 

a single variable to perform the clustering analysis, thereby circumventing the issue of 

variable selection, which renders many clustering approaches subjective; b) the use of a time-

related variable to perform the clustering analysis, instead of parameters measured at a single 

point in time; c) the detailed information available about the patients, allowing for an 

extensive description of the groups identified; d)  the 2-week double blind placebo-controlled 

OCS intervention, allowing for the assessment of response to treatment.  However, despite the 

high number of patients included in the study, the power of the analysis might have been 

limited sometime by the multiple testing correction.  

 

5.6.3. Strengths and weaknesses of the study compared to other studies (external 

validity) 

Our results are in line with the view that pulmonary function is an important determinant 

of disease severity in asthma and COPD (Sorkness, Bleecker et al. 2008, Moore, Meyers et al. 

2010). Indeed, solely on the basis of lung function fluctuations, we have identified a range of 

groups with gradual phenotype severity. Similarly, in the SARP study, lung function best 

differentiated the mildest from the most severe groups (Moore, Meyers et al. 2010).  

Furthermore, alterations in pulmonary function may reflect specific underlying 

pathophysiological mechanisms. It has been shown that persistent airflow obstruction is 

increasingly common as asthma severity increases (Pascual and Peters 2009, Konstantellou, 

Papaioannou et al. 2015), and has been described as the manifestation of progressive 

structural changes in the airway walls (Thamrin, Nydegger et al. 2011). Sorkness et al. 

(Sorkness, Bleecker et al. 2008) found that severe asthmatics have a greater component of air 

trapping, relative to the airflow limitation component, contributing to airway obstruction. 

Therefore, the greater airway obstruction combined with the hyperinflation found in groups S2 

and S3 are in accordance with features of persistent airflow obstruction, air trapping, and 

airway remodeling described in more severe asthma phenotypes. Interestingly, Choi et al. 

identified four clusters very similar to M, S1, S2, and S3, using an imaging-based clustering 

approach (Choi, Hoffman et al. 2017). In particular, our group S2 was similar to their luminal 

narrowing-dominant cluster, and S3 was similar to their wall thickening-dominant cluster.   
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Finally, we identified a group of severe asthmatics (S3) characterized by an over-

representation of obese subjects; meaning that obesity might be associated with a specific 

pattern of lung function fluctuation. There is strong evidence that obesity increases the 

prevalence and incidence of asthma, and reduces asthma control (Hakala, Stenius-Aarniala et 

al. 2000, Stenius-Aarniala, Poussa et al. 2000, Saint-Pierre, Bourdin et al. 2006, Beuther and 

Sutherland 2007, Mosen, Schatz et al. 2008). A more limited body of evidence suggests that 

obesity may also increase the severity of asthma (Peters-Golden, Swern et al. 2006, Saint-

Pierre, Bourdin et al. 2006, Taylor, Mannino et al. 2008). Our findings are in accordance with 

these observations, since S3 was characterized by a particularly low quality of life, poor 

asthma control, exacerbations, and notably altered pulmonary function. Alteration of 

pulmonary function included airway obstruction, hyperinflation, and low diffusion capacity, 

which concord with reduced lung volumes and changes in airway resistance described in the 

literature (Zerah, Harf et al. 1993, Collins, Hoberty et al. 1995). Moreover, we found signs of 

inflammation which are consistent with the low-grade systemic inflammation described in 

obese subjects (Shore 2008), as well as a mixed granulocytic inflammation which has been 

previously described in very severe asthma (Moore, Meyers et al. 2010). These findings 

support the hypothesis that obesity might be associated with a specific type of asthma, related 

to specific alterations in lung function, and clinically presenting a greater and/or more 

difficult to control disease state (Mosen, Schatz et al. 2008, Umetsu 2016), which may better 

profit from a multidimensional treatment approach (Sodlerlund, Fischer et al. 2009, Frey, 

Latzin et al. 2015). 

 

5.6.4. Relevance of the study results for disease management and monitoring 

strategies  

Our findings might help identify patients who could benefit from different treatment 

strategies, further clinical investigations in a referral center, and/or closer monitoring.  In 

particular, the lung function measurements might be implemented in a telemonitoring setting 

for diagnostic purpose (e.g., graduation of asthma severity, or asthma-COPD-overlap-

syndrome), or for monitoring purpose (e.g., in patients with severe phenotypes, especially if 

there is a high risk exacerbation, periods of closer monitoring could be recommended, for 

instance after implementing a new treatment strategy). While conventional disease 

phenotyping usually relies on many characterizing parameters, which tend to be expensive 

and limited to in-hospital assessment (Delgado, Kumar et al. 2015), fluctuation in FEV1 can 
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be implemented in a simple and cost-effective way in a telemonitoring setting with an 

appropriate adherence measure (Kupczyk, Haque et al. 2013).  

Furthermore, asthma and COPD patients phenotyping based on airway dynamics might 

have in the near future relevant research applications. First, the characterization of structural 

alterations of the lung according to such phenotypes, using imaging techniques, might 

improve the understanding of disease pathogenesis (Choi, Hoffman et al. 2017). Second, 

evaluation of new treatment strategies according to such phenotypes in future controlled 

treatment trials might be of great value.  

 

5.7. Conclusion 

The present study uses a novel clustering approach, solely based on the lung function 

fluctuation recordings over one year. This approach identifies phenotypes, in which the 

progressive functional alteration of the lung corresponds to a gradually increasing clinical 

severity, and which may translates into specific treatable traits. 
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5.9. Online Supplement 

Methods 

Data collection and measurements 

Data were collected using an electronic Case Report Form (eCRF) developed specifically 

for the BIOAIR study. A reversibility test, as well as skin prick tests to common 

aeroallergens, were performed at the screening visit. At inclusion (visit 1), an extensive 

spirometry (inspiratory vital capacity (IVC), total lung capacity (TLC), and residual volume 

(RV)) was performed according to published guidelines (Quanjer, Tammeling et al. 1993), as 

well as diffusion capacity measurements (forced residual volume (FRC), and diffusing 

capacity of the lung for carbon monoxide (DLCO)) according to the technique described by 

Kerstjens et al. (Kerstjens, Brand et al. 1992). Induced sputum was obtained at inclusion and 

at the end of the optimization period (visit 2) using inclusion and exclusion criteria according 

to published recommendations (Paggiaro, Chanez et al. 2002). At each visit (from visit 1 to 

visit 6) the fraction of exhaled nitric oxide (FeNO) using a NIOX analyser (Aerocrine AB, 

Solna, Sweden) was measured according to guidelines (1999), as well as ordinary spirometry 

indices (forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and 

FEV1/FVC) with calibrated spirometers using pneumotachometry according to standardised 

guidelines (Quanjer, Tammeling et al. 1993). Serum CRP levels were measured using a 

standardised high sensitivity assay with a clinical Cobas c502 (8000) instrument (Roche 

Diagnostics). Multiplex assays for (Lumican, metalloproteinase-3 (MMP-3), Dipeptidyl 

peptidase-4 (DPPIV), soluble receptor for advanced glycation end products (sRAGE), YKL-

40 (or Chitinase 3-Like 1) were performed using human Luminex® screening assay reagents 

from R&D Systems (Bio-Techne, Abingdon, UK). Patients completed at each visit the St. 

George’s respiratory questionnaire (SGRQ) (Jones, Quirk et al. 1992), and the Juniper’s 

Asthma Control Questionnaire (ACQ) (Juniper, O'Byrne et al. 1999). 

 

Lung function fluctuation based clustering of patients 

The FBC method consists of identifying clusters of patients with similar patterns of lung 

function fluctuation by comparing each patient’s empirical distribution of daily lung function 

measurements recorded over a predetermined window of observation. The FBC method has 

been described in detail elsewhere (Delgado-Eckert, Fuchs et al. 2017). In brief, the FBC 

method consists of the following steps: 

1. Quantification of similarity in lung function fluctuation between individuals 
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2. Grouping of individuals into clusters such that similarity between members of the 

same clusters is strong and between different clusters is weak. 

Furthermore, the FBC method includes a data-driven process for determining the 

tolerable amount of missing measurements. This data-driven process has been described in 

detail elsewhere (Delgado-Eckert, Fuchs et al. 2017). In brief, a highly compliant subset of 

patients (i.e., with a high number of FEV1 measurements), the so-called “gold standard”, was 

selected. Patients were defined as having a high number of FEV1 measurements if their 

individual set of FEV1 measurements contained at least as many measurements as the 60
th

 

percentile of the overall distribution of the number of FEV1 measurements from the entire 

analysis population. Then, within the gold standard, in order to quantify similarities in lung 

function fluctuation between individuals, the distribution of z-score FEV1 values of a given 

patient was compared with the distributions of all other patients in the gold standard. This 

pair-wise comparison was done using the Earth mover’s distance (EMD). A low value of 

EMD indicates high similarity in lung function fluctuation between two individuals. Patients 

were grouped into clusters such that the similarity between members of the same clusters was 

strong, and between different clusters was weak using the Ward’s minimum-variance 

hierarchical clustering method. Afterwards, a cluster stability analysis was performed in order 

to assess whether further patients who had fewer measurements could be included in the 

analysis without disturbing the clusters identified. The outcome of this stability analysis 

enabled us to establish the minimum number of FEV1 measurements required to ensure the 

stability of the clusters. Finally, patients who performed the minimum number of FEV1 

measurements required were added to the gold standard, and the cluster analysis was repeated 

with this larger subset to obtain the final clusters. 

 

Statistical analysis 

For categorical variables, we chose a resampling method to address the multiple testing 

issues instead of the commonly used Bonferroni correction, which is known to be very 

conservative. The resampling method consisted in randomly selecting artificial groups from 

the analysis population, with the same sample sizes as the groups M, S1, S2, S3, and C, in 

which the tests were performed. We then applied the enrichment test to each of the 5 artificial 

groups (i.e., groups M’, S1’, S2’, S3’, and C’). The resampling was done 10 000 times (i.e., 5 

artificial groups 10 000 times randomly selected out of the analysis population), and the 

enrichment test was performed in the 5 artificial groups in each iteration.  
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We then adjusted the significance level of the individual tests such that no more than 5% 

of the 10 000 tests conducted on artificial groups were significant. In other words, we set the 

family-wise error rate at the 5% level. The adjusted significance levels of the individual tests 

were then used when analyzing the actual groups M, S1, S2, S3, and C. 

Phenotypes identified (based on patients’ lung function fluctuation over the one-year 

follow-up period) were described at baseline (i.e., at the end of the treatment optimization 

period (visit 2)), and at study end (visit 6) in order to explore the characteristics of the 

phenotypes found as a function of time.  

 

Results 

Selection of the analysis population according to the determined tolerable amount of missing 

measurements 

Mean number of FEV1 measurements in the 186 patients initially included in the 

clustering analysis was 310±238. The 60
th

 percentile of the distribution of number of FEV1 

measurements was equal to 481 measurements. Thus, the highly compliant subset of patients 

consisted of patients who performed at least 481 FEV1 measurements during follow-up, 

namely 59 patients. As a result of the cluster stability analysis, we were able to decrease this 

threshold by 90%, namely 49 measurements were required, instead of 481 measurements. 

Thus, after the cluster stability analysis, all those patients who performed at least 49 

measurements during the follow-up could be considered. The analysis population consisted, 

therefore, of 134 patients.  

 

Characteristics of patients excluded from the analysis population (n=99) 

Regarding patients with severe asthma, zFEV1 and zFVC were significantly lower in 

patients excluded than in patients from the analysis population (zFEV1: -2.7±1.3 vs. -2.0±1.3, 

p=0.01; zFVC: -1.8±1.3 vs. -1.1±1.2, p=0.02) (Table E5.1). Regarding patients with COPD, 

zFVC, FRC and IVC were significantly lower in patients excluded than in patients from the 

analysis population (zFVC: -2.3±1.2 vs. -1.4±0.8, p=0.003; FRC: 94.9% [80.3%;125.4%] vs. 

126.2% [104.0%;147.1%, p=0.01; IVC: 72.7% [64.0%;90.7%] vs. 90.2% [81.7%;96.7%], 

p=0.008). 
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Table E5.1. Characteristics of patients excluded from the analysis population (n=99) 

 Mild-to-moderate 

asthma 

(N=23) 

MD p-value* Severe asthma 

(N=39) 

MD p-value† COPD 

(N=37) 

MD p-value‡ 

Clinical characteristics          

Age, years 44.0 [30.5;51.5] - 0.82 53.0 [35.5;64.0] - 0.98 67.0 [57.0;70.0] - 0.73 

Gender, male 10 (43.5%) - 0.64 18 (46.2%) - 0.48 29 (78.4%) - 0.46 

BMI, kg/m
2
 25.0 [23.0;27.5] - 0.59 27.0 [24.5;32.0] - 0.92 26.0 [23.0;31.0] - 0.76 

Age of disease onset, years 26.2±19.3 11 0.53 28.3±18.1 9 0.56 54.1±10.9 9 0.16 

ACQ, Juniper 1.3±0.7 8 0.07 2.2±1.2 9 0.47 NA NA NA 

QoL, SGRQ 22.1 [16.7;31.6] 7 0.17 48.8 [32.5;62.8] 5 0.48 43.1 [33.3;58.9] 8 0.45 

Atopy 5 (21.7%)  - 0.04 10 (25.6%) - 0.16 0 (0.0%) § - NA 

Lung function          

Reversibility, % of change 11.0±4.3 2 0.74 10.6±9.6 1 0.24 4.2±3.5 2 0.22 

FeNO, ppb 44.0 [34.8;53.6] 17 0.32 33.8 [23.2;41.5] 21 0.93 15.0 [9.3;26.8] 24 0.25 

FEV1, z-score -1.4±1.3 7 0.80 -2.7±1.3 3 0.01 -3.5±1.0 3 0.37 

FVC, z-score -0.5±1.2 7 0.40 -1.8±1.3 3 0.02 -2.3±1.2 3 0.003 

FEV1/FVC, z-score -1.7±1.0 7 0.84 -2.0±1.4 3 0.48 -3.1±1.4 3 0.13 

DLCO, %predicted corrected 90.3 [88.3;94.2] 16 0.80 83.1 [71.3;99.3] 15 0.74 57.7 [43.0;67.6] 17 0.71 

FRC, %predicted corrected 87.7 [72.3;101.2] 15 0.24 92.4 [78.2;108.1] 15 0.59 94.9 [80.3;125.4] 8 0.01 

IVC, %predicted corrected 101.4 [93.0;106.5] 13 0.46 87.2 [75.5;101.9] 11 0.10 72.7 [64.0;90.7] 11 0.008 

TLC, %predicted corrected 109.2 [103.8;115.4] 9 0.20 97.0 [90.4;109.2] 10 0.27 105.1 [90.6;116.0] 8 0.32 

RV, %predicted corrected 116.7 [108.9;140.4] 10 0.19 121.6 [95.6;143.3] 10 0.72 148.7 [116.0;171.0] 8 0.99 

RV/TLC 1.1 [1.0;1.2] 10 0.24 1.3 [1.0;1.4] 10 0.20 1.4 [1.2;1.6] 8 0.24 

Inflammatory response          

hs-CRP, mg/litre 1.3 [0.08;3.0] 15 0.28 2.8 [0.3;7.6] 16 0.19 5.0 [1.4;9.5] 18 0.90 

Sputum cells, ×10
6
 1.3 [0.3;4.0] 7 0.36 0.9 [0.4;2.2] 17 0.76 1.8 [0.3;4.2] 13 0.97 

Sputum eosinophils, % 1.6 [0.3;8.1] 7 0.91 1.5 [0.0,8.3] 16 0.14 0.2 [0.0;2.3] 13 0.68 

Sputum neutrophils, % 30.8 [17.8;51.0] 7 0.66 36.5 [9.1;64.5] 16 0.50 63.6 [41.9;83.4] 13 0.52 

White blood cells, ×10
9
/l 7.3±1.5 5 0.07 8.4±3.2 4 0.80 7.8±1.6 8 0.86 
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Table E5.1. Characteristics of patients excluded from the analysis population (n=99) (continued) 

 Mild-to-moderate 

asthma 

(N=23) 

MD p-value* Severe asthma 

(N=39) 

MD p-value† COPD 

(N=37) 

MD p-value‡ 

Blood eosinophils, ×10
9
/l 0.3 [0.2;0.3] 7 0.99 0.2 [0.1;0.6] 4 0.54 0.2 [0.1;0.3] 9 0.82 

Blood neutrophils, ×10
9
/l 4.0 [3.6;4.2] 7 0.26 4.5 [3.7;6.7] 4 0.99 4.9 [3.6;5.6] 10 0.37 

Values shown are mean ± standard deviation, median [25
th 

percentile; 75
th 

percentile] and numbers (percentages)  

ACQ, Asthma Control Questionnaire; BMI, body mass index; hs-CRP, high-sensitivity C-reactive protein; DLCO, diffusing capacity of the lung for 

carbon monoxide; FeNO, fraction of exhaled nitric oxide; FEV1, forced expiratory volume in one second; FRC, forced residual volume; FVC, 

forced vital capacity; IVC, inspiratory vital capacity; MD, missing data; NA, not applicable; QoL, quality of life; RV, residual volume; SGRQ, St 

George’s Respiratory Questionnaire; TLC, total lung capacity 

*Compared with mild-to-moderate asthmatics from analysis population; †Compared with severe asthmatics from analysis population; ‡Compared 

with COPD patients from analysis population; §Inclusion criteria 
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Description of group MS (n=10) 

Characteristics of patients according to groups M, MS, S1, and S2 are provided in Table 

E5.2. Group MS was similar to group M regarding age, BMI and number of exacerbations. 

There was a gradual increase in the scores of QoL and ACQ (meaning a gradual decrease in 

QoL and asthma control) from group M - MS - S1 - S2. Finally, group MS exhibited a poor 

lung function, similar to that found in patients from group S2. 
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Table E5.2. Characteristics of patients according to subgroups M, S1, S2, and C (n=111) 

  Group M 

(N=39) 

MD Group MS 

(N=10) 

MD Group S1 

(N=18) 

MD Group S2 

(N=16)  

MD p-value 

Airway disease  Mild-to-moderate 

asthma 

 Mild-to-moderate 

asthma 

 Severe asthma  Severe asthma   

Clinical characteristics           

Age, years  41.0 [32.0;52.5] ‡ - 42.0 [36.0;44.0] - 52.5 [44.3;60.3] - 55.5 [44.3;60.5] † - 0.01 

Gender, male  14 (35.9%)  - 4 (40.0%) - 8 (44.4%) - 6 (37.5%) - 0.93 

BMI, kg/m
2
  24.0 [23.0;26.0] ‡ - 24.0 [20.3;28.5] - 26.5 [25.3;28.0] - 28.0 [26.3;30.0] † - 0.01 

Age of disease onset, years  18.5 [5.3;32.5]  1 32.0 [7.0;38.0] 1 34.0 [24.3;43.8]  - 24.5 [13.3;37.5] 2 0.10 

Atopy  18 (47.4%) 1 3 (33.3%) 1 5 (33.3%) 3 8 (50.0%)  - 0.73 

QoL, SGRQ  11.4 [6.8;20.7] ‡ 8 25.4 [16.4;35.7] 2 39.3 [26.0;42.6]  3† 43.7 [37.7;48.8] † 4 <0.001 

ACQ, Juniper  0.3 [0.1;0.6] ‡ - 1.0 [0.9;1.3] † 1 1.4 [0.9;2.0] † - 2.0 [1.3;2.6] † 1 <0.001 

Number of exacerbation during follow-

up 

 0 [0;1] ‡ - 0 [0;0] ‡ - 1 [0;2] - 1 [1;2] † - <0.001 

At least one exacerbation during 

follow-up 

 13 (33.3%) - 1 (10.0%) - 10 (55.6%) - 13 (81.2%)  - <0.001 

Lung function           

Reversibility, percentage change  10.2 [7.7;14.1]  1 7.1 [6.0;10.6] - 9.1 [5.6;12.9]  - 5.5 [0.9;9.3] 1 0.06 

FeNO, ppb  21.3 [14.3;32.2] 12 28.4 [14.4;41.2] 6 21.4 [14.5;42.3] 10 40.5 [23.7;53.8] 7 0.15 

FEV1, z-score  -0.8 [-1.3;-0.1] ‡ - -2.0 [-2.8;-1.7] † 1 -1.4 [-1.7;-0.9]  - -2.4 [-2.7;-1.8] † - <0.001 

FEV1, % predicted  95.4 [89.5;104.2] ‡ - 73.5 [67.2;79.6] † - 83.9 [75.4;92.4] - 70.3 [60.7;80.6] † - <0.001 
FVC, z-score  0.1 [-0.5;0.4] ‡ - -1.4 [-1.5;-0.3]  1 -1.1 [-1.5;-0.3] † - -1.4 [-2.0;-0.5] † - <0.001 
FVC, % predicted  101.5 [92.9;105.3] ‡ - 82.6 [80.6;96.6]  1 85.2 [78.9;96.3] † - 81.4 [72.9;92.34] † - <0.001 

FEV1/FVC  -1.1 [-1.9;-0.2] - -1.7 [-2.6;-1.3] 1 -0.8 [-1.7;0.03] - -1.8 [-2.4;-1.2] - 0.08 

DLCO, %predicted corrected  95.4 [86.4;103.9] 2 92.0 [82.2;107.0] 2 84.8 [83.1;92.8] 6 88.2 [81.9;98.8] - 0.22 

FRC, %predicted corrected  96.1 [82.7;115.4] 2 107.9 [83.4;147.9] 2 93.2 [48.0;110.9] 6 89.9 [81.7;112.0] - 0.61 

IVC, %predicted corrected  108.9 [101.6;112.7] ‡ 4 90.6 [87.3;96.7] † - 98.0 [92.2;100.7] † - 93.7 [85.3;107.0] † 1 <0.001 

TLC, %predicted corrected  107.0 [95.5;112.3] 1 101.1 [92.8;113.6] - 94.3 [86.9;106.5] † 1 106.1 [97.4;110.8] - 0.18 

RV, %predicted corrected  103.8 [92.1;124.7] 2 123.2 [94.0;166.3] - 95.1 [86.9;121.7] 1 119.7 [112.3;150.2] - 0.07 

RV/TLC  1.0 [0.9;1.1] ‡ 2 1.2 [1.0;1.5] - 1.1 [0.9;1.2] 1 1.2 [1.1;1.4] † - 0.005 

Inflammatory biomarkers            

Sputum cells, ×10
6
  0.6 [0.2;1.3] 8 0.6 [0.3;3.0] 3 2.2 [0.6;4.0] 6 1.0 [0.4;2.0] 5 0.19 

Sputum eosinophils, %  1.3 [0.1;4.7] 9 1.4 [0.5;3.5] 3 1.5 [0.7;17.8] 6 4.9 [1.2;18.1] 6 0.21 

Sputum eosinophilia ≥ 2%  12 (40.0%) 9 3 (42.9%) 3 5 (41.7%) 6 6 (60.0%) 6 0.73 
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Table E5.2. Characteristics of patients according to subgroups M, S1, S2, and C (n=111) (continued) 

  Group M 

(N=39) 

MD Group MS 

(N=10) 

MD Group S1 

(N=18) 

MD Group S2 

(N=16)  

MD p-value 

Airway disease  Mild-to-moderate 

asthma 

 Mild-to-moderate asthma  Severe asthma  Severe asthma   

Sputum neutrophils, %  46.0 [17.6;67.0] 9 44.5 [35.5;73.9] 3 51.3 [26.7;69.4] 6 25.1 [23.4;58.6] 6 0.62 

Sputum neutrophilia ≥ 40%  17 (56.7%) 9 4 (57.1%) 3 7 (58.3%) 6 3 (30.0%) 6 0.49 

Mixed granulocytic inflammation, %   6 (20.0%)  9 1 (14.3%) 3 3 (25.0%) 6 2 (20.0%) 6 0.76 

hs-CRP, mg/l  0.8 [0.4;2.2]  7 1.8 [1.4;5.0 ] 1 2.6 [1.6;2.9] 3 2.2 [0.8;5.1] 1 0.06 

White blood cells, ×10
9
/l  5.9 [5.4;6.8] 1 6.5 [6.1;8.0] - 6.6 [5.7;8.0] - 8.6 [6.0;9.8] - 0.05 

Blood eosinophils, ×10
9
/l  0.3 [0.2;0.3] 1 0.2 [0.1;0.5] - 0.3 [0.1;0.4] - 0.4 [0.1;0.5] 1 0.74 

Blood neutrophils, ×10
9
/l  3.4 [3.0;4.2] 1 4.0 [3.3;4.7] - 3.7 [2.9;5.3] - 5.9 [3.5;6.3] - 0.09 

Response to treatment           

Response to oral corticosteroids  3 (7.7%) - 2 (22.2%) - 3 (16.7%) - 4 (25.0%) - 0.26 

Values shown are mean ± standard deviation, median [25
th 

percentile; 75
th 

percentile] and numbers (percentages) 

ACQ, Asthma Control Questionnaire; BMI, body mass index; hs-CRP, high-sensitivity C-reactive protein; DLCO, diffusing capacity of the lung for 

carbon monoxide; FeNO, fraction of exhaled nitric oxide; FEV1, forced expiratory volume in one second; FRC, forced residual volume; FVC, 

forced vital capacity; IVC, inspiratory vital capacity; MD, missing data; QoL, quality of life; RV, residual volume; SGRQ, St George’s Respiratory 

Questionnaire; TLC, total lung capacity 

‡ significant difference as compared to S2; † significant difference as compared to M 
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Inflammatory response to oral corticosteroids 

After the OCS intervention, FeNO decreased (from 40.5 [23.7;53.8] ppb to 27.5 

[29.3;44.6] ppb) in group S2 so that there was no significant difference between groups 

anymore (p=0.40) (Figure E5.1). CRP levels decreased in groups S3 (from 4.2 [2.3;5.6] mg/l 

to 1.1 [0.6;5.0] mg/l) and C (from 4.0 [2.4;5.9] to 1.2 [0.5;4.1] mg/l) so that there was no 

significant difference between groups anymore (p=0.12). Finally, blood neutrophils levels 

increased in all groups so that there was no significant difference between groups anymore 

(p=0.29). 

 

A                      B   

 

C                        D  

 

Figure E5.1. Distribution of (A) blood eosinophils, (B) blood neutrophils, (C) FeNO, and (D) 

CRP, before and after a 2-week double blind placebo-controlled oral prednisone intervention, 

according to groups M, S1, S2, S3, and C  

hs-CRP, high-sensitivity C-reactive protein; FeNO, fraction of exhaled nitric oxide; OCS, oral 

corticosteroid 

Group M includes mild-to-moderates asthmatics, groups S1, S2, and S3 include severe 

asthmatics, group C includes COPD patients 
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Stability of characteristics of phenotypes (comparison of characteristics at baseline and study 

end) 

Characteristics of phenotypes were stable from baseline to study end according to clinical 

characteristics (i.e., quality of life and asthma control) and lung function (i.e., FEV1, 

hyperinflation, loss of diffusion capacity) (Table E5.3, Figures E5.2-E5.4). However, the 

patients showed more intragroup variability in their inflammatory biomarker characteristics. 

Consequently, phenotypes obtained using the FBC method seem to be predominantly 

determined by lung mechanics, namely, lung mechanics are the phenotype determining 

characteristic.  



Chapter 3: Phenotyping based on lung function fluctuation clusters in asthma and COPD  

145 

 

     A                              B   

 
Figure E5.2. Distribution of clinical characteristics at baseline and at study end, according to groups M, S1, S2, S3, and C 

(A) Score of St George’s Respiratory Questionnaire, (B) Score of Asthma control Questionnaire 

Group M includes mild-to-moderates asthmatics, groups S1, S2, and S3 include severe asthmatics, group C includes COPD patients 
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    A                    B                          C 

 

Figure E5.3. Distribution of lung function features at baseline and at study end, according to groups M, S1, S2, S3, and C 

(A) FEV1, (B) RV/TLC, (C) DLCO 

Group M includes mild-to-moderates asthmatics, groups S1, S2, and S3 include severe asthmatics, group C includes COPD patients 
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 A                          B   

 

  C                     D  

 

Figure E5.4. Distribution of inflammatory biomarkers at baseline and at study end, according 

to groups M, S1, S2, S3, and C 

(A) Blood eosinophils, (B) Blood neutrophils, (C) Sputum eosinophils, (D) Sputum 

neutrophils 

Group M includes mild-to-moderates asthmatics, groups S1, S2, and S3 include severe 

asthmatics, group C includes COPD patients 
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Table E5.3. Characteristics of patients at the end of follow-up (visit 6) according to subgroups M, S1, S2, S3, and C (n=111) 
  Group M 

(N=39) 

MD Group S1 

(N=18) 

MD Group S2  

(N=16) 

MD Group S3  

(N=18) 

MD Group C 

(N=20) 

MD p-value 

* 

Airway disease  Mild-to-moderate 

asthma 

 Severe asthma  Severe asthma  Severe asthma  COPD   

Clinical characteristics             

QoL, SGRQ  7.1 [1.8;16.7] ‡ 8 27.0 [17.6;39.8] 2 53.1 [33.2;55.3] † 4 50.6 [34.7;59.1] † 1 41.8 [34.5;55.3] † 7 <0.001 

ACQ, Juniper  0.8 [0.3;0.9] 1 1.6 [0.7;2.5] 1 2.4 [1.4;2.7] † 1 2.6 [1.8;3.2] † 2 NA  <0.001 

Lung function             

FEV1, z-score  -0.8±1.1 ‡ 1 -0.4±0.8 ‡ 1 -2.4±0.8 † ‡ 1 -2.4±1.3 † ‡ 1 -3.6±0.6 † 2 <0.001 
FVC, z-score  -0.01±0.8 ‡ 1 -0.9±0.8  † 1 -1.0±0.6 † 1 -1.2±1.2 † 1 -1.6±0.6 † 2 <0.001 

FEV1/FVC  -1.3±1.2 ‡ 1 -0.9±1.2 ‡ 1 -2.3±1.0 † ‡ 1 -2.2±1.4 † ‡ 1 -3.9±0.7 ‡ 2 <0.001 
DLCO, %predicted corrected  95.4 [86.8;109.5] 6 88.1 [79.4;96.5] 6 82.0 [75.8;102.4] 2 88.1 [71.8;90.6] 2 52.2 [33.6;78.9] 4 <0.001 

FRC, %predicted corrected  101.6±19.9 ‡ 6 107.9±30.3 7 95.5±22.0 ‡ 3 92.7±20.9 ‡ 3 128.4±30.6 † 6 0.001 

IVC, %predicted corrected  107.9±13.2 ‡ 4 96.7±12.5 3 95.3±10.6 6 97.5±18.5 3 90.2±10.6 † 4 <0.001 

TLC, %predicted corrected  107.6±12.6 3 101.8±14.5 2 1015.0±11.9 3 101.8±15.1 2 114.1±17.1 3 0.07 

RV, %predicted corrected  111.2±29.7 ‡ 3 114.7±39.1 ‡ 2 132.5±30.3 3 118.9±30.5 ‡ 2 163.0±45.6 † 3 <0.001 

RV/TLC  1.0±0.2 ‡ 3 1.1±0.2 ‡ 2 1.3±0.2 † 3 1.2±0.2 ‡ 2 1.4±0.2 † 3 <0.001 

Inflammatory response              

Sputum cells, ×10
6
  0.7 [0.3;1.8] 19 1.2 [0.5;5.3] 8 0.8 [0.5;2.3] 7 1.3 [0.4;2.1] 9 3.3 [1.0;6.3] 14 0.50 

Sputum eosinophils, %  0.8 [0.3;4.0] 20 3.9 [0.6;12.7] 8 7.3 [0.1;16.3] 7 8.8 [0.8;20.4] 9 0.0 [0.0;2.5] 15 0.17 

Sputum eosinophilia ≥ 2%  6 (31.6%) 20 5 (50.0%) 8 6 (66.7%) 7 6 (66.7%) 9 2 (40.0%) 15 0.33 

Sputum neutrophils, %  42.2 [10.7;64.9] 20 47.3 [29.5;65.5] 8 16.8 [13.7;67.2] 7 56.2 [32.6;72.0] 9 48.0 [35.4;81.4] 15 0.35 

Sputum neutrophilia ≥ 40%  10 (52.6%) 20 5 (50.0%) 8 3 (33.3%) 7 6 (66.7%) 9 3 (60.0%) 15 0.71 

Mixed granulocytic 

inflammation, % 

  3 (15.8%) 20 2 (20.0%) 8 2 (22.2%) 7 3 (33.3%) 9 1 (20.0%) 15 0.89 

hs-CRP, mg/l  2.4 [1.0;5.4] 4 3.6 [3.1;4.6] 6 3.1 [0.8;6.7] 1 4.7 [2.4;5.7] 2 3.1 [1.1;6.5] 2 0.50 

White blood cells, ×10
9
/l  6.3±1.3 ‡ 2 6.9±2.1 1 8.0±2.5 † 1 9.0±2.8 † 2 7.8±1.8 † 2 <0.001 

Blood eosinophils, ×10
9
/l  0.2 [0.2;0.3] 3 0.4 [0.2;0.5] 1 0.5 [0.2;0.7] 1 0.2 [0.2;0.4] 2 0.2 [0.1;0.3] 2 0.21 

Blood neutrophils, ×10
9
/l  3.5 [3.0;4.2] ‡ 3 3.8 [2.7;4.5] 2 4.7 [2.9;5.7] 1 5.4 [4.2;6.6] † 2 4.5 [3.9;5.8] † 2 <0.001 

Values shown are mean ± standard deviation, median [25
th 

percentile; 75
th 

percentile], and numbers (percentages) 

ACQ, Asthma Control Questionnaire; hs-CRP, high-sensitivity C-reactive protein; DLCO, diffusing capacity of the lung for carbon monoxide; FEV1, 

forced expiratory volume in one second; FRC, forced residual volume; FVC, forced vital capacity; IVC, inspiratory vital capacity; MD, missing 

data; NA, not applicable; QoL, quality of life; RV, residual volume; SGRQ, St George’s Respiratory Questionnaire; TLC, total lung capacity 
*
Comparison between groups using the one-way ANOVA or the Kruskal-Wallis test, as appropriate, for continuous variables, and using the Chi

2
 or 

the Fisher’s exact test, as appropriate, for categorical variables;
 
†As compared to group M; ‡As compared to group C 
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Differences between groups regarding specific biomarkers 

Groups M, S1, S2, S3, and C significantly differed regarding DPPIV, MMP-3, sRAGE, 

Chitinase 3-Like 1. Pair-wise multiple comparisons showed significantly higher chitinase 

levels in group C (37380 [21420;54580]) compared to group M (15470 [12080;18410], p-

value=0.006) and to group S3 (15400 [10710;25020], p-value=0.049). All the other pair-wise 

multiple comparisons were not significant. 

 

Discussion 

Representativeness of the analysis population as compared to the entire population 

Excluded severe asthmatics had significantly lower levels of zFEV1 and zFVC compared 

to severe asthmatics from the analysis population (-2.7±1.3 vs. -2.0±1.3, p=0.01 and -1.8±1.3 

vs. -1.1±1.2, p=0.02, respectively). That might have balanced out the differences in lung 

function with the mild-to-moderate asthmatics. However, we still found significantly lower 

levels of zFEV1 and zFVC in groups S2 and S3 compared to group M.  

Similarly, excluded COPD patients had significantly lower levels of zFVC, FRC, and 

IVC compared to COPD patients from the analysis population (-2.3±1.2 vs. -1.4±0.8, 

p=0.003; 94.9% [80.3%;125.4%] vs. 126.2 [104.0%;147.1%], p=0.01, and 72.7% 

[64.0%;90.7%] vs. 90.2% [81.7%;96.7%] , p=0.008, respectively). That might have balanced 

out the differences in lung function with the mild-to-moderate asthmatics. However, we still 

found significantly lower levels of zFVC, FRC, and IVC in group C compared to group M. 

 

Inflammatory response to OCS 

Before OCS intervention, groups significantly differed according to blood neutrophils, 

sputum neutrophils, FeNO, and CRP. Groups S2, S3, and C globally exhibited a higher degree 

of inflammation compared to groups M and S1. In response to OCS, all groups exhibited a 

satisfactory anti-inflammatory response. The decrease in the inflammatory biomarkers levels 

was even higher while the degree of inflammation before OCS intervention was high. 

Consequently, there was a normalization of the inflammatory biomarkers levels in each group 

to that of the group M after the OCS intervention. 

 

Stability of characteristics of phenotypes 

It is interesting to note, that the lung mechanical characteristics of phenotypes M, S1, S2, 

S3, and C are stable over time, whereas their inflammatory characteristics are more variable, 
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which is in accordance with previous findings documented in BIOAIR (Kupczyk, Dahlen et 

al. 2014). It was not the purpose of this study to investigate whether FBC performed at 

baseline would reveal similar clusters when performed at study exit. Nevertheless, our data 

support the hypothesis that the FBC clusters are characterized by similar lung mechanical 

properties at the start and end of the observation period. Furthermore, dissociations between 

airway dynamics and airway inflammation has been seen also in other studies, highlighting 

that structure and function of airways relates to more than inflammatory cell profiles 

(Grainge, Lau et al. 2011). 

 

Differences between groups regarding specific biomarkers 

 As described, four of the serum biomarkers measures showed significantly different levels 

among groups M, S1, S2, S3 and C. The expression of Dipeptidyl peptidase-4 (DPPIV, or 

CD26) is increased following IL-13 stimulation in bronchial epithelial cells and its levels in 

the circulation have therefore been proposed to be a biomarker of type-2 driven inflammation 

and response to anti-IL-13 therapy (Lancet Respir Med. 2015;3:692). In the current 

investigation its levels are highest in group M and lowest in group C, yet do not follow the 

same pattern as other proposed markers of type-2 inflammation such as blood or sputum 

eosinophils, or exhaled NO. However, although not extensively investigated, previous 

investigations of DPP4 as a circulating biomarker do suggest that generally, its levels are 

lower in more severe, steroid dependent asthma compared to milder disease (Ranade et al. 

ATS poster 2016, James et al. ERS poster 2016) which may be in line with the current 

observations.   

Matrix metalloproteinase-3 is one member of a family of extracellular matrix degrading 

enzymes which are believed to play a role in airway disease due to effects on tissue 

remodeling and repair and their ability to regulate the kinetics and function of inflammatory 

cells. Although circulating MMP-3 has not been thoroughly investigated as a biomarker of 

airway disease, one characteristic of possible relevance to the current findings is the fact that 

serum MMP-3 levels are strongly increased by corticosteroid use (Hathout et al. Sci Rep. 

2016; 6: 31727). Serum MMP-3 levels were greatest in groups S2, S3 and C, which were those 

taking the highest doses of corticosteroids. 

In human and animal studies of airway disease, RAGE and its ligands are often increased, 

whereas soluble RAGE is decreased. Inverse associations between circulating concentrations 

of total soluble RAGE, and surrogate markers of disease risk or burden observations in other 
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chronic inflammatory conditions have led to the view that soluble RAGE is somehow a 

protective factor (Sukkar, Ullah et al. 2012). It has been shown that a deficiency in sRAGE is 

specifically associated with neutrophilic airway inflammation in asthma and COPD (Sukkar, 

Wood et al. 2012), which is in accordance with the neutrophilic-dominant inflammation 

observed in groups S3 and C. While it is not known whether deficiency in sRAGE occurs as a 

consequence of neutrophilic inflammation, or whether it is a causative factor that underlies 

neutrophilic inflammation, these findings highlight the possibility that sRAGE might be a 

useful biomarker, and a possible future therapeutic target in severe, neutrophilic asthma. 

The chitinase-like protein YKL-40 is known to be increased in both severe asthma and 

COPD, where it has been associated with neutrophilic inflammation, but also markers of 

airway remodeling such as bronchial wall thickness (Chupp, Lee et al. 2007, Konradsen, 

James et al. 2013, Hinks, Brown et al. 2016, James, Reinius et al. 2016). Accordingly, YKL-

40 has also been shown to increase the proliferation of cultured human airway smooth muscle 

cells in vitro (Bara, Ozier et al. 2012). Although not statistically significant, it is of interest 

that the pattern of serum YKL-40 appears to be different among S1, S2 and S3, whereby levels 

are highest in S2. Although this is not the group with the highest sputum neutrophils or lowest 

diffusion capacity, one may speculate that this could be related to the fact that these subjects 

are older, have high blood neutrophils, have had their respiratory disease for longer, or are the 

least reversible, possibly suggesting a more fixed airway obstruction, although the underlying 

reasons require further validation. 
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6. General discussion  

 This PhD thesis investigates the fluctuation behavior of heart and respiratory system 

signals, and how it changes with long-term environmental exposures and chronic diseases. 

The investigations of the fluctuation behavior of physiological systems using mathematical 

tools have already provided significant new insights into disease pathogenesis. Until recently, 

however, such mathematical tools have not been implemented in large epidemiological or 

clinical datasets, allowing for the control of the most potential confounders. This translation 

of involved mathematical techniques into the clinical and epidemiological fields underscores 

the uniqueness of this work. It results from stimulating teamwork, in a group with mixed 

expertise in computational, clinical physiology, and epidemiology. This valuable exchange 

enabled us to develop original approaches to unravel the important effects of environmental 

factors on the cardiovascular system, as well as to unveil relevant phenotypes of patients with 

severe asthma. With the emergence of new fields of research, such as systems biology and 

systems medicine, such interdisciplinarity is becoming essential. 

 

6.1. Main findings 

This PhD thesis demonstrates original applications in the assessment of dynamics of 

cardiovascular and respiratory systems in health and disease, and provides relevant new 

findings.  

The first application evaluates the long-term influence of smoking cessation on heart rate 

variability and heart rate dynamics, in an aging general population, using the subpopulation of 

lifelong non-smokers as control group. This application is an illustration of how complexity in 

biological signals can be measured, with the constitution of a “toolkit” of parameters to probe 

different aspects of the signals dynamics; here the cardiac interbeat interval dynamics. We 

investigated whether we could objectify perturbations in heart rate dynamics of current 

smokers as compared to lifelong non-smokers, and whether there was a normalization of the 

dynamics after smoking cessation. We were able to provide evidence that:  

(1) Smoking triggers adverse changes in the regulation of the cardiovascular system, even 

at low levels of exposure, with a dose-response effect. The effect of current smoking was 

suggested with standard measures of HRV, and strengthened by measures derived from 

nonlinear theories. Moreover, we observed that power spectral density, αshort-term time scale, 

multiscale entropy, and largest Lyapunov exponent were significantly modified in current 

heavy smokers, as compared to lifelong non-smokers, but not in current light smokers. This 
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finding suggested that more properties of the dynamics got altered when the smoking 

exposure increased. Namely, heavy exposure might trigger specific alterations in the 

dynamics of the cardiovascular system, in addition to those triggered at lower levels of 

exposure. 

(2) Light smokers fully recover within the first 15 years of cessation.  

(3) Heavy smokers also fully recover, but might need up to 15 to 25 years. Our findings 

suggested a full normalization of the Lyapunov Largest Exponent after only 25 years of 

cessation in former heavy smokers. This supports the hypothesis that nonlinear time series 

analysis techniques may be able to unveil subtle, but important, changes in the regulation of 

the cardiovascular system; more difficult to detect by traditional analysis methods. To the 

extent that we may translate perturbations in the heart rate dynamics to an increase in the risk 

of coronary heart disease, this finding is consistent with Teo et al.’s findings, which identified 

a still increased risk of acute myocardial infarction in former heavy smokers after 20 years of 

smoking cessation (Teo, Ounpuu et al. 2006).  

The second application evaluates the influence of long-term exposure to TPM10 on HRV 

and heart rate dynamics. While we did not find any overall association in the entire study 

population, we observed strong significant associations of long-term exposure to TPM10 with 

the HRD parameters in subjects without cardiovascular morbidity, and even stronger 

associations, with both HRV and HRD parameters, in non-obese subjects without 

cardiovascular morbidity. These findings suggest that the relative contribution of both the 

underlying health condition and the countering effects of drug treatments on the TPM10–

HRV/HRD relationship might render this relationship so variable that the overall TPM10–

HRV/HRD relationship in such subjects might be null. Therefore, adverse effects of TPM10, 

even if they are present in subjects with comorbidity, might be more visible in healthy 

subjects. Additionally, our findings are in the line with previous studies that have provided 

evidences that TPM10 might impact in part through oxidative stress pathways. Finally, the fact 

that adverse effects of TPM10 were revealed in subjects without cardiovascular morbidity, 

only by HRD parameters, supports the hypothesis that, measuring changes in complexity in 

heart rate dynamics during exposure to environmental elements, might unveil subtle but 

important changes in the regulatory mechanisms of the cardiovascular system not detectable 

by traditional analysis methods. 

The third application evaluates whether the subgrouping of patients with chronic obstructive 

airway diseases, including mild-to-moderate asthma, severe asthma, and COPD, according to 
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their profile of airway dynamics, allows for the identification of phenotypes with specific 

treatable traits. This application is an illustration of how complexity in biological signals can 

be compared, and used for disease phenotyping. We investigated how an unlabeled data set 

with patients with mild-to-moderate asthma, severe asthma, and COPD, organizes into 

groups, on the basis of patients’ lung function fluctuation. Combination of the resulting lung 

function fluctuation based clusters with the initial clinical classification (i.e., mild-to-

moderate asthma, severe asthma, and COPD) allowed for the identification of 5 groups (M, 

S1, S2, S3, and C) corresponding to relevant phenotypes. Phenotypes were characterized by a 

gradually increasing clinical severity and functional alteration of the lung from M to C, with a 

high exacerbation risk in S2 and S3. Response to OCS differed according to groups and 

seemed to result from the relative pathophysiological contributions of airway obstruction, 

inflammation, and irreversible mechanical impairment. Response in M was weak, probably 

due to a ceiling effect. Indeed, since this group of patients had minimal airway obstruction, 

they were probably controlled with inhaled corticosteroids, reducing any benefit of adding 

OCS. From S1 to S3, where degree of obstruction and signs of inflammation gradually 

increased, we found a gradually increasing response to OCS, with a particularly good response 

in S3. In C, irreversible mechanical impairment of the lung might have rendered patients 

clinically unresponsive to OCS despite a satisfactory anti-inflammatory response. Thus, in 

these patients the mechanical impairment dominated the clinical picture. Our approach 

provided evidence that airway dynamics contain substantial information, which enables the 

identification of phenotypes, in which the functional alteration of the lung translates into 

specific pathological features and clinically meaningful outcomes.  

 

6.2. Strengths and limitations 

Particular strengths of our applications were the original approaches used to answer 

original research questions, with data from two large and unique datasets. 

 

6.2.1. Effects of long-term environmental exposures on heart rate variability and 

heart rate dynamics  

A unique dataset 

The SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and Heart Disease in 

Adults) study was designed to assess the health effects of long-term exposure to air pollutants 

in the Swiss adult population. Main strengths of this study include the population-based 
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design, the large number of participants who underwent a 24-hour electrocardiogram Holter 

recording to assess HRV, the 10-year follow-up period and detailed information available on 

participants, allowing for the control of most potential confounders.  

 

Original research questions 

The unique design of the SAPALDIA study enabled us to examine, for the first time, the 

influence of long-term smoking cessation, as well as the influence of long-term exposure to 

TPM10 on the regulation of the cardiovascular system and heart rate dynamics.  

  

An original approach 

To answer these research questions, we calculated traditional measures of HRV, and, in 

addition, we generated a toolkit of parameters derived from nonlinear dynamics methods in 

order to probe different dynamics properties of heart rate variability. This approach allowed 

us to strengthen findings from the traditional measures of HRV, to unveil long-term 

alterations caused by heavy smoking exposure, as well as alterations caused by long-term 

exposure to TPM10 in the subjects without cardiovascular morbidity.  

 

Limitations 

A limitation of this work is the absence of a physiological interpretation of the parameters 

calculated with methods from nonlinear dynamics. Physiological interpretation of such 

metrics constitutes a major limitation for their use (1996, Goldberger, Amaral et al. 2000, 

Francesco, Maria Grazia et al. 2012, Manor and Lipsitz 2013). Though it is reasonable to 

assume that these concepts from mathematics could help gain insight into the regulatory 

mechanisms of physiological systems, efforts are needed to improve our understanding of 

their physiological correlates. In the case of the present work, this uncertain knowledge 

limited the interpretation of associations between parameters and risk of cardiac events.  

 

6.2.2. Lung function fluctuation based phenotypes in asthma and COPD 

A unique design 

The Pan-European BIOAIR (Longitudinal Assessment of Clinical Course and 

BIOmarkers in Severe Chronic AIRway Disease) study was designed to characterize the 

course of severe chronic airway diseases over time. The unique aspect of this study was the 

twice-daily collection of lung function measurements over a one-year period. Additional 
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strengths of this study include the mixed population of adults with mild-to-moderate asthma, 

severe asthma, and COPD; a 2-week double blind placebo-controlled oral corticosteroid 

intervention, allowing for the assessment of response to treatment; and the detailed 

information available about the patients.  

 

A currently unmet need 

For clinicians, the identification of asthma and COPD phenotypes related to specific 

treatable traits is of primary concern. Especially in severe asthma (Heaney and Robinson 

2005, Wenzel 2012), COPD, and the transition forms between these entities (Chung 2013), in 

which the unpredictable nature of exacerbations and the heterogeneity of response to drug 

therapy present a major clinical challenge (Moore and Peters 2006, Donaldson, Seemungal et 

al. 2012, Kupczyk, Haque et al. 2013, Phipatanakul, Mauger et al. 2016).  

 

An original approach 

The BIOAIR study, due to its unique design, enabled, for the first time, a comparison of 

patients with mild-to-moderate asthma, severe asthma, and COPD, on the basis of their 

airway dynamics over a one-year period. This was achieved using a novel clustering 

approach, developed by our group (Delgado-Eckert, Fuchs et al. 2017), called fluctuation-

based clustering (FBC). Classical clustering approaches usually rely on a cross-sectional 

bunch of clinical and biological variables (Haldar, Pavord et al. 2008, Smith, Drake et al. 

2008, Weatherall, Travers et al. 2009, Moore, Meyers et al. 2010, Fitzpatrick, Teague et al. 

2011, Siroux, Basagana et al. 2011, Just, Gouvis-Echraghi et al. 2012, Boudier, Curjuric et al. 

2013, Moore 2013, Prosperi, Sahiner et al. 2013, Schatz, Hsu et al. 2013, Wu, Bleecker et al. 

2014). However, characterizing patients with dynamical diseases, such as asthma and COPD, 

at a single point in time, is prone to misclassification. Instead, serial measurements of a single 

biomarker, as used in the FBC approach, may enable a more accurate classification of 

patients, and could better account for the temporal stability of a given phenotype. 

Furthermore, since fluctuation in FEV1 describes the patient’s response to day-to-day real life 

stimuli, the FBC approach may account for the interaction with the given environment over 

the observation time period. This is particularly important for asthma phenotyping, since both 

intrinsic features of the disease and environmental stimuli might determine disease 

phenotypes. 
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Limitations 

This work faced some limitations. First, the FBC approach is not based on correlation 

properties of the lung function measurements, but on their distribution (Delgado-Eckert, 

Fuchs et al. 2017). Consequently, it neglects the time dimension, but it gains robustness with 

respect to missing data. Indeed, calculating correlation from data with missing data points 

would be prone to error, and thus, would not be appropriate in clinical context, where missing 

data are a frequent issue. Second, we were not able to assess the stability of the phenotypes 

identified. Namely, to assess whether a similar FBC analysis performed at another time point 

would generate similar phenotypes and how allocation to clusters would change. Given that 

the FBC analysis was performed on the entire follow-up period, we were not able to repeat 

the analysis at another time point.  

 

6.3. Clinical and public health relevance and recommendations 

The investigation of the change in complexity dynamics of physiological signals has 

many possible applications that are of clinical and public health relevance, in a wide range of 

domains, such as aging, disease, and environment. As part of the present work, our 

investigation of the effect of environmental exposures on HRV and heart rate dynamics, as 

well as the investigation of lung function fluctuation behaviour for asthma and COPD 

phenotyping, provided findings of relevance for public health and clinical research. 

 

6.3.1. Effects of long-term environmental exposures on heart rate variability and 

heart rate dynamics: applications of relevance for public health  

Findings from our study related to smoking cessation and HRV/HRD support the 

substantial benefits of smoking cessation, but also warn of important alterations caused by 

heavy smoking. It constitutes a strong argument for health policy makers advocating for more 

intensive prevention campaigns aimed at discouraging smoking, and underpins the value of 

public healthcare programs supporting the benefits of smoking cessation. Furthermore, we 

could show that heavy former smokers might need up to 15-25 years to fully recover after 

smoking cessation. Thus, former heavy smokers remain exposed longer after cessation to a 

higher risk of cardiovascular morbidity and cardiovascular-related morbidity. Analogous to 

the recommendations of the American Cancer Society (2014) related to lung cancer screening, 

our data suggest that close monitoring of cardiovascular disease in current and former heavy 
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smokers might be warranted. In such patients, characterization of HRV and heart rate 

dynamics might be relevant for cardiac events risk stratification after smoking cessation.  

Findings from our study related to long-term exposure to TPM10 and HRV/HRD provides 

evidence of adverse effects of air pollution in healthy subjects, believed to be less susceptible 

than specific subpopulations with comorbidities (e.g., the elderly, patients with preexisting 

cardiovascular disease or diabetes, obese subjects) though. This constitutes a strong argument 

for health policy makers advocating for more intensive prevention campaigns aimed at 

reducing traffic-related pollution. Additionally, our findings suggest that the TPM10-

HRV/HRD relationship in subjects with cardiovascular morbidity might be modified by both 

the underlying cardiovascular condition and the related treatments. Thus, some cardiac 

therapies, for a given underlying cardiovascular condition, might be protective against the 

adverse cardiac effects of pollution, whereas some other cardiac therapies/conditions might 

render subjects particularly susceptible to those effects.  

 

6.3.2. Lung function fluctuation based phenotypes in asthma and COPD: an 

application of clinical relevance  

Research implications  

Asthma and COPD patients’ phenotyping based on airway dynamics might, in the near 

future, have relevant research applications. First, further investigations of such phenotypes, 

and characterization of related endotypes, might help in our understanding of the underlying 

mechanisms of disease pathogenesis, leading to more targeted therapies and personalized 

approaches to asthma management. 

Future study designs might include phenotypes-based interventions, such as: 

 The characterization of structural alterations of the lung, using imaging techniques, 

in patients with severe phenotypes. Structural alterations may reflect specific 

underlying pathophysiological mechanisms and their investigation, specifically in 

severe phenotypes, might improve our understanding of disease pathogenesis. Choi 

et al. identified four clusters very similar to our phenotypes M, S1, S2, and S3, using 

an imaging-based clustering approach (Choi, Hoffman et al. 2017). In particular, our 

group S2 was similar to their luminal narrowing-dominant cluster, and our group S3 

was similar to their wall thickening-dominant cluster.  

 The evaluation of new treatment strategies. The severe phenotypes S2 and S3 

identified in the BIOAIR study were characterized by patients with high 
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exacerbation risk and a good response to oral corticosteroids. These patients might 

particularly benefit from a controller medication, especially from more targeted 

immunosuppressant treatments. 

 

Clinical implications  

In the longer-term, we also see promising clinical applications. In particular, the 

implementation of lung function measurements in telemonitoring settings for: 

 Diagnostic purposes - In a situation of unclear asthma history, unclear graduation of 

asthma severity, or suspicion of asthma-COPD-overlap-syndrome (ACOS), a twice-

daily lung function monitoring for a given period of observation might help 

determine which diagnosis would support the observed lung function fluctuations. 

 Monitoring purposes - In patients with severe phenotypes, especially if there is a 

high risk exacerbation, periods of closer monitoring could be recommended, for 

instance after implementing a new treatment strategy.  

The implementation of the FBC approach in telemonitoring settings appears feasible. 

While conventional disease phenotyping usually relies on many characterizing parameters, 

which tend to be expensive and limited to in-hospital assessment, fluctuation of FEV1 can be 

implemented in a simple and cost-effective way in a telemonitoring setting with an 

appropriate adherence measure (Kupczyk, Haque et al. 2013). Moreover, in order to increase 

its feasibility and the clinical applicability, the FBC approach includes a data-driven 

algorithm which determines the tolerable amount of missing measurements. Finally, our lung 

function based clustering could be repeated in a large database, generated from existing 

datasets of patients with chronic obstructive airway diseases. After validation of the 

phenotypes identified, this database could be used as a reference database, to automatize data 

analysis. Thus, a patient with a complete telemonitoring dataset could be instantaneously 

attributed to a phenotype. 

 

6.4. Outlook 

6.4.1. Effects of long-term environmental exposures on heart rate variability and 

heart rate dynamics 

Regarding the investigation of the influence of smoking cessation on HRV/HRD, further 

studies are needed: 



General discussion 

161 

 

 to improve our understanding of the physiological correlates of the modifications 

of dynamics properties triggered by smoking exposure; 

 to investigate whether the late normalization in former heavy smokers, especially 

in the Lyapunov Largest Exponent, suggested by our findings is observed in other 

datasets, and whether a persistent decrease in Lyapunov Largest Exponent might 

be associated with an increased risk of coronary heart disease; 

 to evaluate the benefits of close monitoring of cardiovascular disease in current 

and former heavy smokers, and whether, in such patients, characterization of heart 

rate dynamics might be relevant for cardiac events risk stratification after smoking 

cessation. 

 

Regarding the investigation of the influence of long-term exposure to TPM10 on 

HRV/HRD, further studies are needed: 

 to see whether these alterations in HRV/HRD in healthy people lead to increased 

mortality and morbidity later in life; 

 to investigate how the TPM10-HRV/HRD relationship in subjects with 

cardiovascular morbidity is modified depending on the underlying cardiovascular 

condition and the related drug treatments.  

 

6.4.2. Lung function fluctuation based phenotypes in asthma and COPD 

Regarding the lung function fluctuation phenotyping in asthma and COPD, our group is 

planning the following future investigations as part of the BIOAIR study: 

 The examination of the minimal window of observation needed to ensure the 

correct phenotyping of patients in order to facilitate implementation into clinical 

practice and telemonitoring settings; 

 The exploration of the long-term stability of the phenotypes. So far, long-term 

stability of asthma phenotypes is poorly understood. The determination of the 

minimal window of observation needed for the correct phenotyping of patients 

would allow for the phenotyping of patients and the assessment of the temporal 

evolution of the phenotypes, using a gliding window along the follow-up period. 

The size of the gliding window will be determined by the size of the minimal 

observation window needed to ensure the correct phenotyping of patients. The 
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stability of the clusters will be assessed using Jaccard's similarity coefficient, which is 

a measure of overlap between groups. Moreover, the cluster membership of 

individual participants will be traced as a function of time.  

 The identification of factors likely to influence phenotypting. Especially, the 

observation period (e.g., influence of seasonality), the time and frequency of the 

measurements (e.g., influence of the circadian rhythm). 

 

6.5. Conclusion 

This thesis attempts to demonstrate the importance of multidimensional approaches to 

understand the complex functioning of our physiological system and of diseases process. 

Characterization of the complexity in the fluctuation behavior of system signals holds 

enormous promise for providing new understandings of the regulatory mechanisms of 

physiological systems and how they change with diseases. However, it is important to 

combine this kind of approach with classical epidemiological approaches in order to 

disentangle the various contributions of the intrinsic physiological dynamics, aging, diseases 

and comorbidities, lifestyle, and environment. In the SAPALDIA cohort study, we were able 

to disentangle the influence of specific environmental exposures, such as particulate matter air 

pollution and smoking exposure, on the HRV and heart rate dynamics, and thus to unveil 

long-term alterations in former heavy smokers, as well as adverse effects of low level, but 

long-term, exposure to TPM10 in healthy subjects and in subjects with homozygous GSTM1 

gene deletion. In the BIOAIR study, we provide evidence that airway dynamics contain 

substantial information, which enables the identification of clinically meaningful phenotypes, 

in which the functional alteration of the lung translates into specific treatable traits.  
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8. Appendix 

8.1. Appendix 1: Handling missing data 

The FBC approach was conceived with the aim of a clinical application. Consequently, 

special attention was given to the fact that this approach should be adapted for times series 

containing missing values. This constraint motivated the use of the Earth mover’s distance to 

quantify the similarity between individuals. Thus, comparison of the signals is not based on 

correlation properties of signals, but on the probability distribution of the data points. 

Consequently, it neglects the time dimension, but it is quite robust with respect to missing 

data. Therefore, with the FBC approach, no extensive handling of missing data is required.  

In the context of lung function measured twice-daily by subjects using a lung function 

meter, time series are typically characterized by short continuous segments of missing values 

(gaps ≤ 3 data points), which correspond to patients intermittent/punctual omissions. In this 

case, the local mean imputation allows for a substantial increase of the signal continuity, in a 

simple manner, without distorting the distribution of the variable. Method for local mean 

imputation is given in Table A8.1.  

 

Table A8.1. Method for local mean imputation 

Gap length Representation of the gap Steps for local mean imputation 

1 missing value X1, X2, X3, M1, X4, X5, X6 M1 = mean(X3,X4) 

   

2 missing values X1, X2, X3, M1, M2, X4, X5, X6  

 X1, X2, X3, M, X4, X5, X6 M = mean(X2,X3,X4,X5) 

 X1, X2, X3, M1, M, M2, X4, X5, X6 M1 = mean(X3,M) 

  M2 = mean(X4,M) 

3 missing values X1, X2, X3, M1, M2, M3, X4, X5, X6 M2 = mean(X2,X3,X4,X5) 

  M1 = mean(X3,M2) 

  M3 = mean(X4,M2) 

M, Missing value; X, measurement 
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In order to examine the missing values contained in the time series of z-score FEV1 used 

for the FBC analysis, and to evaluate whether we should perform the local mean imputation, 

we defined three fragmentation indexes.  

 

Index 1: Distribution of length of uninterrupted segments of missing values 

Median segments length was 1 [min: 1, 25
th

quartile: 1, 75
th

quartile: 2, maximum: 73] 

(Figure A8.1). Therefore, the uninterrupted segments of missing values were mostly smaller 

than 3 missing values. 

 

 

Figure A8.1. Distribution of length of uninterrupted segments of missing values 

 

Index 2: Distribution of relative length of uninterrupted segments of missing values 

 

 

 

A gap corresponds to an uninterrupted segment of missing values. 

 

Median segments relative length was 2% [min: 0.4%, 25
th

quartile: 1%, 75
th

quartile: 4%, 

maximum: 100%] (Figure A8.2). Therefore, the uninterrupted segments of missing values 

were mostly very short. 
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Figure A8.2. Distribution of relative length of uninterrupted segments with missing values 

 

Index 3: Index of fragmentation (for X ≤ 3) 

 

 

A gap corresponds to an uninterrupted segment with missing values. 

 

For X≤ 3, median index of fragmentation was 100% [min: 0%, 25
th

quartile: 77%, 75
th

quartile: 

100%, maximum: 100%] (Figure A8.3). Therefore, most of the uninterrupted segments of 

missing values counted ≤ 3 missing values.  

 

Figure A8.3. Distribution of index of fragmentation, for X ≤ 3 
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According to the three indexes, the local mean imputation should substantially improve 

the continuity of the time series.  

 

Finally, in order to evaluate how the continuity of the time series improved using the 

local mean imputation, we calculated the three fragmentation indexes for the uninterrupted 

segments of measurement in the time series before and after imputation.  

 

Index 1: Distribution of length of uninterrupted segments of measurements 

Table A8.2. Distribution of length of uninterrupted segments of measurements before and 

after imputation 

 Minimum First quartile Median Third quartile Maximum 

Before imputation  1 1 2 6 58 

After imputation 1 1 8 27 91 

 

 

Figure A8.4. Distribution of length of uninterrupted segments of measurements before and 

after local mean imputation  
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Index 2: Distribution of relative length of uninterrupted segments of measurements 

Table A8.3. Distribution of relative length of uninterrupted segments of measurements before 

and after imputation 

 Minimum First quartile Median Third quartile Maximum 

Before imputation  0.7% 3% 7% 20% 100% 

After imputation 1% 4% 30% 100% 100% 

 

 

Figure A8.5. Distribution of relative length of uninterrupted segments of measurements 

before and after local mean imputation  

 

Index 3: Index of fragmentation (X ≥ 10) 

Table A8.4. Distribution of index of fragmentation, for X ≥ 10, before and after local mean 

imputation 

 Minimum First quartile Median Third quartile Maximum 

Before imputation  0% 15% 48% 100% 100% 

After imputation 0% 50% 100% 100% 100% 
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Figure A8.6. Distribution of index of fragmentation, for X ≥ 10, before and after local mean 

imputation  

 

According to the three indexes, the local mean imputation substantially improved the 

continuity of the time series. 
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8.2. Appendix 2: Time delay embedding  

Given a time delay t=2, and an embedding dimension d=3, the embedding procedure 

consists in starting at the very first value X1 of the time series and grouping three (d=3) 

consecutive values that are separated by t into a vector (here, given that t=2 and d=3, that 

would be the vector (X1,X3,X5)), then moving to the next entry in the time series, that is X2, 

and repeating the grouping procedure resulting in the vector (X2,X4,X6). The embedded time 

series is the series of vectors (X1,X3,X5), (X2,X4,X6), etc. 
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8.3. Appendix 3: Additional manuscript 

Another stimulating aspect of my PhD work was using the knowledge gained as a part of my 

studies to contribute to other studies from our interdisciplinary research group. The 

manuscript of a successful project is provided in this appendix. 
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Physiological phenotyping of pediatric chronic obstructive airway diseases 

S. Nyilas, F. Singer, N. Kumar, S. Yammine, D. Meier-Girard, C. Koerner-Rettberg, C. 

Casaulta, U. Frey, P. Latzin.  

 

Journal of Applied Physiology 2016 Jul 1;121(1):324-32 

http://www.ncbi.nlm.nih.gov/pubmed/27231309
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