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Summary

Summary

Background: Several studies over the last decades have suggested that a wide range of
disease states, as well as the aging process itself, are marked by progressive impairment of the
involved physiological processes to adapt, resulting in a loss of complexity in the dynamics of
physiological functions. Therefore, measuring complexity from physiological system signals
holds enormous promise for providing a new understanding of the mechanisms underlying
physiological systems and how they change with diseases and aging. Furthermore, since
physiological systems are continuously exposed to environmental factors, measuring how
physiological complexity changes during exposure to environmental elements might also
provide new insights into their effects. Indeed, this approach may be able to unveil subtle but
important changes in the regulatory mechanisms of physiological systems not detectable by
traditional analysis methods.

Objectives: The overall objective of this PhD thesis was to quantify the complexity of the
dynamics of heart and respiratory system signals, in order to investigate how this complexity
changes with long-term environmental exposures and chronic diseases, using data from large
epidemiological and clinical studies, in order to control for most potential confounders of the
fluctuation behavior of systems signals (e.g., demographic, environmental, clinical, and
lifestyle factors). We specifically aimed (1) at assessing the influence, first, of long-term
smoking cessation, and second, of long-term exposure to traffic-related particulate matter of
less than 10 micrometers in diameter (TPMy), on the regulation of the autonomic
cardiovascular system and heart rate dynamics in an aging general population, using data
from the SAPALDIA cohort study; (2) to assess whether the subgrouping of patients with
recurrent obstructive airway diseases, including mild-to-moderate asthma, severe asthma, and
COPD, according to their pattern of lung function fluctuation, allows for the identification of
phenotypes with specific treatable traits, using data from the BIOAIR study.

Methods: In the SAPALDIA cohort, a population-based Swiss cohort, 1608 participants > 50
years of age underwent ambulatory 24-hr electrocardiogram monitoring and reported on
lifestyle and medical history. In each participant, heart rate variability and heart rate dynamics
were characterized by means of various quantitative analyses of the inter-beat interval time
series generated from 24-hour electrocardiogram recordings. Each parameter obtained was
then used as the outcome variable in multivariable linear regression models in order to

evaluate the association with (1) smoking status and time elapsed since smoking cessation; (2)
13



Summary

long-term exposure to TPMy,. The models were adjusted for known confounding factors. In
the BIOAIR study, we conducted a time series clustering analysis based on the fluctuation of
twice-daily FEV; measurements recorded over a one year period in a mixed group of 134
adults with mild-to-moderate asthma, severe asthma, or COPD from the longitudinal Pan-
European BIOAIR study.

Results: In the SAPALDIA cohort, our findings indicate that smoking triggers adverse
changes in the regulation of the cardiovascular system, even at low levels of exposure since
current light smokers exhibited significant changes as compared to lifelong non-smokers.
Moreover, there was evidence for a dose-response effect. Furthermore, full recovery was
achieved in former smokers (i.e., normalization to the level of lifelong non-smokers).
However, while light smokers fully recovered within the 15 first years of cessation, heavy
former smokers might need up to 15-25 years to fully recover. Regarding long-term exposure
to TPMy, we did not observe an overall association with heart rate variability/heart rate
dynamics in the entire study population. However, significant changes in the heart rate
dynamics were found in subjects without cardiovascular morbidity and significant changes,
both in the heart rate dynamics and in the heart rate variability, were found in non-obese
subjects without cardiovascular morbidity. Furthermore, subjects with homozygous GSTM1
gene deletion appeared to be more susceptible to the effects of TPMy,. In the BIOAIR study,
we identified five phenotypes, of those three distinct phenotypes of severe asthma, in which
the progressive functional alteration of the lung corresponded to a gradually increasing
clinical severity and translated into specific risks of exacerbation and treatment response
features.

Conclusions: This thesis hopes to demonstrate the importance of multidimensional
approaches to gain understanding in the complex functioning of the human physiological
system and of disease processes. Characterization of the complexity in the fluctuation
behavior of system signals holds enormous promise for providing new understandings of the
regulatory mechanisms of physiological systems and how they change with diseases.
However, it is important to combine this kind of approach with classical epidemiological
approaches in order to disentangle the various contributions of the intrinsic physiological
dynamics, aging, diseases and comorbidities, lifestyle, and environment. In the SAPALDIA
cohort study, we were able to disentangle the influence of specific environmental exposures,
such as particulate matter air pollution and smoking exposure, on the heart rate variability and

heart rate dynamics, and thus to unveil long-term alterations in former heavy smokers, as well
14
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as adverse effects of low level, but long-term, exposure to TPMy in healthy subjects and in
subjects with homozygous GSTML1 gene deletion. In the BIOAIR study, we provide evidence
that airway dynamics contain substantial information, which enables the identification of

clinically meaningful phenotypes, in which the functional alteration of the lung translates into

specific treatable traits.
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Introduction

1. Introduction
1.1. Complexity of the dynamics of physiological systems

Physiological systems generally exhibit complex dynamics which result from the
interference, cooperation or competition of their constituent parts with one another
(Schumacher 2004). These properties allow the physiological processes involved to
continually adapt to extrinsic and intrinsic stimuli. Several studies over the last decades have
suggested that a wide range of disease states, as well as the aging process itself, are marked by
progressive impairment of these physiological processes to adapt, resulting in a loss of
complexity in the dynamics of physiological functions (Lipsitz and Goldberger 1992,
Goldberger 1997, Costa, Goldberger et al. 2002, Goldberger, Peng et al. 2002). Therefore,
measuring complexity from physiological system signals holds enormous promise for
providing a new understanding of the regulatory mechanisms of physiological systems and
how they change with diseases and aging (Goldberger, Peng et al. 2002). Furthermore, since
physiological systems are continuously exposed to environmental factors, measuring how
physiological complexity changes during exposure to environmental elements might also
provide new insights into their effects. Indeed, this approach may unveil subtle but important
changes in the regulatory mechanisms of physiological systems not detectable by traditional

analysis methods.

1.2. Measuring the complexity of physiological system signals
1.2.1. Nonlinear dynamic systems theory

Measuring the complexity of physiological system signals is a major contemporary
challenge. This complexity arises from the interaction of a myriad of structural units and
regulatory feedback loops which translate into non-random fluctuation behaviors over
multiple temporal and spatial scales (Costa, Goldberger et al. 2002, Goldberger, Peng et al.
2002). As a result, dynamics of most physiological outputs are generally marked by a
combination of nonstationarity and nonlinearity. A stationary process is a process whose
probability distribution does not change when shifted in time. Consequently, parameters such
as mean and variance do not change over time. The term nonlinear applies to systems whose
components interact in a non-additive way (Goldberger, Peng et al. 2002). In other words, a
nonlinear system is a system in which the change of the output is not proportional to the
change of the input (Manor and Lipsitz 2013).
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Consequently, in order to describe and quantify these complex dynamics, analysis
techniques borrowed from the nonlinear dynamic systems theory have been applied (Costa,
Goldberger et al. 2002). These techniques allow for the calculation of measures that probe
different aspects of fluctuation behaviors, and which can be classified into three categories:

(1) Fractal measures, which assess whether signals exhibit similar kinds of fluctuations

at different temporal resolutions.

(2) Entropy measures, which assess the regularity/irregularity or randomness of

fluctuations.

(3) Phase space methods, which assess long-term predictability of fluctuations, as well

as the overall dynamic properties of fluctuations.
No single measure is sufficient to capture the properties of complex signals. Instead, an

ensemble of measures is required in order to probe signals of interest for different attributes.

1.2.2. Fractal measures

Fractal forms are composed of subunits (and sub-subunits, etc.) that resemble the
structure of the overall object (Figure 1.1 left) (Goldberger, Amaral et al. 2002). This
property is known as self-similarity (or scale-invariance). A number of complex anatomic
structures display fractal-like geometry, such as the arterial and venous trees, the ramifying
tracheobronchial tree and the His-Purkinje network. This fractal-like geometry enables a rapid
and efficient transport over complex spatially-distributed systems. Analogous to scale-
invariant objects that have a branching structure across multiple length scales, the fractal
concept can also be applied to fluctuation across multiple time scales (Figure 1.1 right)
(Goldberger, Amaral et al. 2002). Such processes exhibit similar kinds of fluctuations at

different temporal resolutions.
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Figure 1.1. Schematic representation of self-similar structure (left) and self-similar dynamics
(right). Source: Lancet. 1996 May 11;347(9011):1312-4.

Fractals scaling and related correlation properties of an on object (or of a physiologic
time series) can be quantified by computing a so-called fractal dimension. A fractal dimension
IS a Scaling rule comparing how a pattern’s detail changes with the scale at which it is
considered. In other words, it measures the degree of complexity by evaluating how fast the
number of pieces of an object (or the number of data points of a time series) increases or

decreases as the scale becomes larger or smaller (Figure 1.2).
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Figure 1.2. Traditional notions of geometry for defining scaling and dimension. The scaling
rule or fractal dimension D is defined by the relationship N « €®, where the N stands for
number of pieces, and € for the scale used to get the new pieces. For instance, when scaling a
filled square by 1/2, there will always be 4 new pieces, each 1/4 the area of the original, and D
would be equal to 2 (e.g., 4=(1/2)®).

Source: https://en.wikipedia.org/wiki/Fractal_dimension

The fractal dimension does not have to be an integer (Figure 1.3).

Figure 1.3. The first four iterations of the Koch snowflake, which has an approximate fractal

dimension of 1.2619. Source: https://en.wikipedia.org/wiki/Fractal dimension
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In the context of biological signals, fractal analysis had to take into account the
nonstationarity of signals. Thus, a specific fractal analysis methods has been introduced, the
detrended fluctuation analysis (DFA) (Peng, Havlin et al. 1995). This method measures the
presence or absence of fractal correlation properties in signals (namely the “memory effect”).
The fractal long-range correlations are characterized by a scaling exponent o. A fractal-like
signal results in o=1 (i.e., information-rich signal). White Gaussian noise (totally random

signal) results in a value of 0.5.

1.2.3. Entropy measures

Entropy measures are measures of order/disorder. They have been used to assess the
regularity/irregularity or randomness of fluctuations (Voss, Schulz et al. 2009). A typical
measure of entropy is the sample entropy (SampEn). It quantifies the conditional probability
that two sequences of consecutive data points that are similar to each other will remain similar
when one consecutive point is included. A limitation of such measures is that order/disorder is
not systematically associated with complexity. Indeed, an increase in the entropy (disorder) of
a system is not necessarily always associated with an increase in its complexity (e.g., white
noise). To help distinguish uncorrelated random signals from more complex (information-
rich) signals, the multiscale entropy (MSE) algorithm was developed (Costa, Goldberger et al.
2005). This approach is founded on the observation that complex signals encode information
over multiple time scales, whereas uncorrelated random signals or very periodic signals do
not.

1.2.4. Phase space methods

Some physical or physiological systems may require several independent magnitudes in
order to fully describe the state of the system. These magnitudes constitute the dimensions of
a space, called the phase space. Therefore, in the phase space, all possible states of a system
are represented, with each possible state of the system corresponding to one unique point in
the phase space. Generally, it is not possible to measure all magnitudes that define a system,
and commonly, in many scientific studies, only one magnitude/signal is measured. However,
Takens’ theorem shows that if a proper phase space embedding (i.e., time delay (or time lag)
embedding into phase space) is performed, into a space of sufficiently high dimension, the
system’s dynamics can be reconstructed from a single signal (Takens 1981) (Figure 1.4). An

example of the time delay embedding procedure is provided in Appendix 2.
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Figure 1.4. Examination of phase space embedding (A) time series formed by x coordinate,
(B) 2- and 3-dimensional phase space representation. The structure or geometry of the set of
system states becomes visible after embedding it into a space of proper dimension.

Source: http://www.scholarpedia.org/article/Attractor_reconstruction

1.2.4.1. Largest Lyapunov exponent

Detection of chaotic behaviour (i.e., deterministic chaos) in a time series can be done by
measuring the largest Lyapunov exponent in an appropriate phase space embedding
(Rosenstein, Collins et al. 1993). Deterministic chaotic systems display dynamics that appear
to be random in the complete absence of randomness. They have a very sensitive dependence
on initial conditions, and may be very simple, yet, in the long term, they produce completely
unpredictable and rapidly divergent behaviour. Such fluctuations cannot be adequately
measured with statistics based simply on mean and variance. Indeed, it is possible for two
processes with very different dynamics, for example deterministic chaos and randomness, to
have outputs with nearly identical means and variances (Figures 1.5 and 1.6) (Boeing 2016).
The the largest Lyapunov exponent quantifies the exponential divergence of initially close

state-space trajectories and estimates the amount of chaos in a system. The extent to which
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chaos relates to physiological or pathological dynamics is a subject of active investigation and
some controversy (Goldberger, Amaral et al. 2000).
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Figure 1.5. Plot of two time series, one chaotic (blue), and one random (red).
Source: Systems 2016, 4, 37; 10.3390/systems4040037
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Figure 1.6. Phase space representation of the time series in Figure 3. (A) is a 2-dimensional
phase space, (B) is a 3-dimensional phase space.
Source: Systems 2016, 4, 37; 10.3390/systems4040037

1.2.4.2. Poincaré plot
A specific application of the phase space representation is the Poincaré plot. Poincaré plot
is widely used in the analysis of cardiac interbeat interval (RR) dynamics, where each RR
interval is plotted against the next RR interval (Figure 1.7) (i.e., 2-dimensional phase-space

representation of RR intervals). The shape of the plot provides information on the behaviour
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of the system (Woo, Stevenson et al. 1992). The quantitative analysis of the shape can be
done by calculating the standard deviations SD; (dispersion of points perpendicular to the axis
of line-of-identity) and SD, (dispersion of points along to the axis of line-of-identity).
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Figure 1.7. Poincaré plot of RR intervals

Source: https://www.physionet.org/events/hrv-2006/yang.pdf

1.3. Comparing the complexity between physiological systems signals

Another approach to investigate the dynamics complexity of a given physiological system
is to assess the similarity between signals of different individuals. If diseases are marked by a
loss of complexity in the dynamics of physiological functions, the stage or the clinical
severity of a given disease might be related to the degree of loss of complexity in the
dynamics of the involved physiological functions. Thus, it can be relevant to identify groups

of patients with a similar (loss of) complexity, namely, a similar fluctuation behavior.

1.3.1. Time series clustering
The clustering analysis is an approach which allows for the identification of structure in
an unlabeled data set by objectively organizing data into homogeneous groups where the
within-group-object similarity and the between-group-object dissimilarity are maximized
(Warren-Liao 2005). Time series clustering analysis allows for the consideration of dynamic
behavior of the object while generating the groups.
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1.3.2. Quantification of similarity between time series

Quantification of similarity between time series can be done by measuring the distance
between them (Moeckel and Murray 1997). However, measuring distance between time series
generated by dynamical systems requires specific metrics. For instance, a chaotic system
exhibits sensitive dependence on initial conditions, so that two time series, x and y, generated
by the same system, but with slightly different initial conditions, will soon diverge from one
another, producing a large value of distance between x and y. Therefore, using here a
traditional measure of distance, such as the Euclidean distance, would be too strict. Thus, for
chaotic dynamical systems, the distance should rather be related to the attractor (small
distance if similar attractor). An attractor is a set of numerical values toward which a system
tends to evolve, for a wide variety of starting conditions of the dynamical system. Similarly,
for stochastic processes (i.e., situations containing a random element, hence unpredictable and
without a stable pattern or order; all natural events are stochastic phenomenon), distance
should be related to the probability distributions (small distance if nearby distributions).

Among the different approaches developed to measure the distance for dynamical
systems, the transportation distance is particularly interesting in the context of biological
signals, since it is less sensitive to outliers, perturbations and discretization errors (Moeckel
and Murray 1997). The transportation distance corresponds to the minimal transportation cost
to move points from an initial distribution to match a final distribution. In the present work,
we used a transportation distance called Earth mover’s distance (or Kantorovich—-Rubinstein
distance) (Muskulus and Verduyn-Lunel 2011) to measure the distance between pairs of
probability distribution of daily lung function measurements recorded over a predetermined

window of observation (Chapter 3).

1.3.3. Grouping of individuals into clusters

There are five major categories of clustering methods (Han and Kamber 2001):
partitioning methods, hierarchical methods, density-based methods, grid-based methods, and
model-based methods. In the present work, we used an agglomerative hierarchical clustering
method that groups data objects into a tree of clusters (Warren-Liao 2005) (Chapter 3). This
method uses the Ward’s minimum variance algorithm which starts by placing each subject in
its own cluster, then merges the two clusters with the minimum distance (i.e., smallest
increase in the value of the sum-of-squares variance), and repeats the merging process until all

the subjects are merged to form one cluster.
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1.3.4. Describing the clusters
The clustering approach generates several clusters and their pair-wise comparisons are
affected by the multiple testing issue. Post-hoc tests for pair-wise multiple comparisons can
be performed using the Tukey’s test or the Nemenyi test for continuous variables, as
appropriate. For categorical variables, we recommend a resampling method to address the
multiple testing issue, setting the family-wise error rate at the 5% level, instead of the
commonly used Bonferroni correction, which is known to be very conservative. A more

detailed description of this resampling method is provided in Chapter 3.

1.4. Combining the analysis of the dynamics of physiological system signals with

classical epidemiological approaches

The fluctuation behavior of physiological system signals is influenced by several main
components: the intrinsic physiological dynamics (e.g., circadian rhythm), aging, underlying
health condition (e.g., obesity, diseases), lifestyle (e.g., physical activity), and environmental
factors. To disentangle effects of these components, and thus to be able to investigate the
effect of a specific factor (e.g., disease process, environmental exposure), the analysis of
fluctuation behavior of physiological system signals should be combined with classical
epidemiological approaches in order to account for these multitude of influences. In this
thesis, we exemplify this combination of both approaches in three studies, by using the
fluctuation behavior of heart and respiratory system signals as a quantitative tool for studying
long-term environmental exposures and chronic diseases, using data from large

epidemiological and clinical studies.

1.4.1. Effect of long-term environmental exposures on heart rate variability and heart
rate dynamics
Is it possible to fully recover after long-term smoking cessation?

To the best of our knowledge, the effect of long-term smoking cessation has only been
investigated in terms of risk of coronary heart disease, and it is not clear when or even
whether the risk of coronary heart disease reverts to that of lifelong non-smokers. We
investigated, in an aging general population, whether long-term smoking cessation results in
normalization of the parameters describing the heart rate variability (HRV) to the level of
lifelong non-smokers, and whether this normalization is associated with the amount

previously smoked (Chapter 1). The parameters used to describe the HRV were standard
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measures of HRV (i.e., time- and frequency-domain measures of HRV), as well as parameters
calculated with methods from nonlinear dynamics. While standard measures of HRV have
traditionally been used, the increasing evidence that the regulation of the cardiovascular
system involves nonlinear control mechanisms has encouraged the quantitative assessment of
HRV using methods from nonlinear dynamics. These methods have shown new insights into
HRV changes under various physiological and pathological conditions, providing additional

prognostic information and complementing traditional time- and frequency-domain analyses.

Are there any adverse effects of long-term exposure to traffic-related PMy,?

To the best of our knowledge, effects of long-term particulate matter (PM) exposure has
essentially been investigated in terms of risk of coronary heart disease, and there is limited or
weak available epidemiological evidence that HRV is altered by low-level, but long-term,
exposure (years). Furthermore, previous studies have provided evidences that population,
such as the elderly, patients with preexisting cardiovascular disease, diabetes, obese subjects,
ever smokers, females, or people with reduced antioxidative defenses might be particularly
susceptible to the adverse effects of air pollution. The American Heart Association recently
stated that studies on the long-term effects of air pollution on HRV and cardiovascular health
are a major unresolved issue. We investigated the influence of low-level, but long-term (10
years), exposure to traffic-related particulate matter (TPMy) on the regulation of the
autonomic cardiovascular system and heart rate dynamics in an aging general population, as
well as the a priori selected effect modifiers sex, smoking status, obesity, and gene variation
in selected glutathione S-transferases (GSTs) (Chapter 2). In the same way as for the
investigation of smoking exposure, we used standard measures of HRV, as well as parameters

calculated with methods from nonlinear dynamics.

1.4.2. Investigation of lung function fluctuation behavior in chronic obstructive
airway diseases for disease phenotyping purposes
Phenotyping appears especially relevant in severe asthma, COPD and the transition forms
between these entities, in which the heterogeneity of response to drug therapy and the
unpredictable nature of exacerbations are a major clinical challenge. For clinicians,
identification of phenotypes related to specific treatable traits is of primary concern. However,
to date, clustering approaches to asthma phenotyping have not enabled the identification of

strong relationship between specific pathological features and particular clinical patterns or
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treatment responses. The clustering approaches were mainly based on cross-sectional
information related to demographic, clinical, and biological characteristics, and did not
considered the fluctuation behavior of the lung function. Airway function dynamics are at the
intersection between pathophysiological mechanisms and the expression of particular clinical
patterns or treatment responses. Consequently, investigation of lung function fluctuation
might give new insight into the relationship between specific pathological features and
clinically meaningful outcomes. As part of the present work, we conducted a lung function
fluctuation based clustering (FBC) analysis in a mixed group of 134 adults with mild-to-
moderate asthma, severe asthma, or COPD, with a unique one-year collection of twice-daily
lung function data, from the longitudinal European BIOAIR (Longitudinal Assessment of
Clinical Course and BlOmarkers in Severe Chronic AIRway Disease) study (Chapter 3). We
investigated whether the subgrouping of patients with chronic obstructive airway diseases,
including mild-to-moderate asthma, severe asthma, and COPD, according to their pattern of
lung function fluctuation, allows for the identification of phenotypes with specific treatable
traits.

Pre-requisite for analyzing time series of lung function measurements

A common issue in a cohort study, and in a telemonitoring setting, is the handling of
incomplete data sets. Within the BIOAIR study, especially, patients were asked to perform
daily lung function measurements over one-year-period. Consequently, a pre-requisite of our
work was the examination of missing data; whether data were missing at random, or related to
a specific clinical state (e.g., exacerbation, hospitalization), and whether data imputation was
necessary. The approach we used is described in Appendix 1.
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2. Objectives

The overall objective of this PhD thesis was to quantify the complexity of the dynamics
of heart and respiratory system signals, in order to investigate how this complexity changes
with long-term environmental exposures and chronic diseases, using data from large
epidemiological and clinical studies, in order to control for most potential confounders of the
fluctuation behavior of systems signals (e.g., demographic, environmental, clinical, lifestyle
factors).

We specifically aimed at:

1. Assessing the long-term influence of smoking cessation on the regulation of the
autonomic cardiovascular system and on the heart rate dynamics in an aging general
population, using data from the SAPALDIA cohort study:

a. Whether long-term smoking cessation results in normalization of heart rate
dynamics (as compared to lifelong non-smokers)
b. Whether this normalization and the waiting time for it to set in are associated

with the amount previously smoked

2. Evaluating the influence of low-level, but long-term (10 years), exposure to traffic-
related particulate matter (TPMjo) on the regulation of the autonomic cardiovascular
system and heart rate dynamics (HRD) in an aging general population, using data from
the SAPALDIA cohort study:

a. How is the overall TPM;;—HRV/HRD relationship in the entire study
population?

b. How that relationship is modified by both the underlying cardiovascular
condition and the related drug treatments in subjects with cardiovascular
morbidity?

c. Is there a modification of effect by sex, smoking status, obesity, and gene

variation in selected GSTs?

3. Assessing whether the subgrouping of patients with chronic obstructive airway
diseases, including mild-to-moderate asthma, severe asthma, and COPD, according to
their pattern of lung function fluctuation, allows for the identification of phenotypes

with specific treatable traits, using data from the BIOAIR study:
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How the fluctuation behavior of airway function dynamics varies between
patients with mild-to-moderate asthma, severe asthma, and COPD

. Whether clusters based on lung function fluctuation are related to specific
pathophysiological features

. Whether clusters based on lung function fluctuation are related to particular

clinical patterns or treatment responses
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3.1. Abstract

Aim: To evaluate the long-term influence of smoking cessation on the regulation of the
autonomic cardiovascular system in an aging general population, using the subpopulation of
lifelong non-smokers as control group.

Methods: We analyzed 1481 participants aged > 50 years from the SAPALDIA cohort. In
each participant, heart rate variability and heart rate dynamics were characterized by means of
various quantitative analyses of the inter-beat interval time series generated from 24-hour
electrocardiogram recordings. Each parameter obtained was then used as the outcome variable
in multivariable linear regression models in order to evaluate the association with smoking
status and time elapsed since smoking cessation. The models were adjusted for known
confounding factors and stratified by the time elapsed since smoking cessation.

Results: Our findings indicate that smoking triggers adverse changes in the regulation of the
cardiovascular system, even at low levels of exposure since current light smokers exhibited
significant changes as compared to lifelong non-smokers. Moreover, there was evidence for a
dose-response effect. Indeed, the changes observed in current heavy smokers were more
marked as compared to current light smokers. Furthermore, full recovery was achieved in
former smokers (i.e., normalization to the level of lifelong non-smokers). However, while
light smokers fully recovered within the 15 first years of cessation, heavy former smokers
might need up to 15-25 years to fully recover.

Conclusion: This study supports the substantial benefits of smoking cessation, but also warns

of important long-term alterations caused by heavy smoking.

Keywords: heart rate variability; nonlinear dynamics; smoking cessation; recovery of

function
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3.2. Introduction

The risk of coronary heart disease in current smokers is increased by a factor of 2.5 to 4
compared to lifelong non-smokers (Shaper, Pocock et al. 1985, Wannamethee, Shaper et al.
1995, Health 2004, Teo, Ounpuu et al. 2006, Shields and Wilkins 2013). Smoking cessation
decreases cardiovascular morbidity and mortality and improves quality of life (Doll and Peto
1976, Novello 1990, Ockene, Kuller et al. 1990, Lightwood and Glantz 1997, Health 2004,
Teo, Ounpuu et al. 2006). However, the magnitude of the risk reduction and the length of
cessation required remain poorly understood. While the risk seems to decrease immediately
after smoking cessation (Novello 1990, Ockene, Kuller et al. 1990, Dobson, Alexander et al.
1991, Tverdal, Thelle et al. 1993, Negri, La Vecchia et al. 1994, Wannamethee, Shaper et al.
1995, Doll, Peto et al. 2004, Teo, Ounpuu et al. 2006, Honjo, Iso et al. 2010, Mannan,
Stevenson et al. 2010, Shields, Garner et al. 2013, Shields and Wilkins 2013), it is not clear
when or even whether the risk reverts to that of lifelong non-smokers. While some studies
have shown that the risk of coronary heart disease reverts to that of lifelong non-smokers
within 3-5 years (Novello 1990, Dobson, Alexander et al. 1991, Tverdal, Thelle et al. 1993,
Mannan, Stevenson et al. 2010) or within 10-20 years (Honjo, Iso et al. 2010, Shields and
Wilkins 2013), other studies have identified a remaining risk in former smokers after 10 or
even 20 years of continuous smoking cessation (Negri, La Vecchia et al. 1994, Wannamethee,
Shaper et al. 1995, Teo, Ounpuu et al. 2006). A remaining risk was exclusively identified in
former heavy, but not in former light smokers. These findings led us to the hypothesis that
repeated exposure to tobacco smoke over years could trigger an irreversible change in the
regulation of the autonomic cardiovascular system.

Heart rate variability (HRV) is a useful non-invasive measure to assess the autonomic
regulation of cardiac rhythm (1996). Lower HRV is associated with higher cardiovascular
morbidity and mortality and has proved itself as an important prognostic tool for several
cardiovascular conditions (Kleiger, Miller et al. 1987, Bigger, Fleiss et al. 1992, 1996, Tsuji,
Larson et al. 1996). HRV has been found to increase immediately after smoking cessation
(Yotsukura, Koide et al. 1998, Minami, Ishimitsu et al. 1999, Munjal, Koval et al. 2009, Harte
and Meston 2013), to reach a peak after 2 to 7 days, and to gradually decline thereafter (Harte
and Meston, 2014; Lewis et al., 2010; Minami et al., 1999; Yotsukura et al., 1998). The
increase in HRV persisted 1 month after smoking cessation (Stein, Rottman et al. 1996,
Yotsukura, Koide et al. 1998, Harte and Meston 2013). However, the long term evolution of

HRYV after smoking cessation has, to our best knowledge, only been investigated by Gac et al.
39



Chapter 1: Long-term smoking cessation, heart rate variability and heart rate dynamics

(Gac and Sobieszczanska 2014). Based on a cross-sectional study including 145 hypertensive
subjects the authors reported that former smokers with cessation periods of over five years
had increased HRV compared to those who actively smoked cigarettes, but decreased HRV
compared to those who had never smoked. Therefore, a more thorough investigation in a
larger sample from the general population, and for a longer period of time, is in order.

While HRV has traditionally been measured using time- and frequency-domain measures,
there is increasing evidence that the regulation of the cardiovascular system involves
nonlinear control mechanisms (1996, Rajendra Acharya, Paul Joseph et al. 2006). Thus, a
quantitative assessment of the inter-beat interval time series generated from 24-hour
electrocardiogram recordings, using nonlinear time series analysis techniques, appears
promising (Goldberger and West 1987, Meyer and Stiedl 2003, Rajendra Acharya, Paul
Joseph et al. 2006, Vandeput, Verheyden et al. 2012), and may help to unveil subtle, but
important changes in the heart rate dynamics (Goldberger and West 1987, Pincus 1991,
Pikkujamsa, Makikallio et al. 2001). Only one pilot study has so far examined the influence of
smoking cessation over a 30-day period on heart rate dynamics using multifractal analysis
(Lewis, Balaji et al. 2010). Multifractality of cardiac time-series was found to be similar for
smokers and non-smokers, and seemed unchanged by smoking abstinence or nicotine
replacement therapy.

The objective of the present study was to evaluate the long-term influence of smoking
cessation on the regulation of the autonomic cardiovascular system in an aging general
population, using the subpopulation of lifelong non-smokers as control group. We
investigated whether smoking cessation resulted in long-term normalization of the parameters
describing the HRV and heart rate dynamics to the level of lifelong non-smokers, and whether

this normalization was associated with the amount previously smoked.

3.3. Methods
3.3.1. Ethics statement
The study was approved by the central Ethics Committee of the Swiss Academy of
Medical Sciences and the Cantonal Ethics Committees for each of the study areas. Each
subject was informed in detail about the health examinations and signed an informed consent

before any of the health examinations was conducted.
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3.3.2. Study population

This study is part of the SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and
Heart Disease in Adults) study which was designed to assess the health effects from long-term
exposure to air pollutants in the Swiss adult population. The study design has been described
in detail elsewhere (Martin, Ackermann-Liebrich et al. 1997, Ackermann-Liebrich, Kuna-
Dibbert et al. 2005). In brief, the SAPALDIA cohort (n=9651) was enrolled in 1991, and
consisted of a random sample of the Swiss population aged 18 to 60 years, recruited from the
local registries of inhabitants in eight areas featuring distinct geographical and environmental
conditions.

In 2002, the follow-up study included 8047 (83.4%) participants. A random sample of
1846 out of 4417 participants aged > 50 years underwent a 24-hour electrocardiogram (ECG)
Holter recording to assess HRV, as previously described in detail (Felber Dietrich, Schindler
et al. 2006). Exclusion criteria were general or spinal anaesthesia within 8 days before the
ECG recording (n=5), a myocardial infarction within 3 months prior to the examination (n=2),
taking digitalis (n=6), and an artificial internal pacemaker (n=0). Participants with recordings
showing atrial fibrillation (n=12), ECG duration lower than 18 hours (n=73), or of insufficient
quality (n=6), non-valid data on HRV (n=96) were also excluded (Felber Dietrich, Schindler
et al. 2006). Participants who smoked pipe, cigars and/or cigarillos, but not cigarettes were
excluded as well (n=38). Participants who smoked pipe, cigars and/or cigarillos in addition to
cigarettes were not excluded. Finally, 127 subjects were excluded due to missing data on

smoking status. Thus, the current study includes 1481 subjects.

3.3.3. Data collection
Data were collected using an electronic Case Report Form (eCRF) developed specifically
for the SAPALDIA study. Information about the questionnaires and the measurements can be

found in the Online Supplement.

3.3.4. Computational methods
Time series analysis parameters of heart rate variability were calculated for each
individual time series of inter-beat intervals (RR series) generated from the 24-hour ECG
recordings.
Traditional time and frequency domain measures were calculated in agreement with the

standards of measurement proposed by the Task Force of the European Society of Cardiology
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and the North American Society of Pacing and Electrophysiology (1996). The time domain
measure used was the standard deviation of normal interbeat intervals (SDNN). For the
frequency domain measures, Fast Fourier Transform procedures were used to derive the
spectral distribution, which resulted in the calculation of total power, low frequency (LF)
power (0.04-0.15 Hz), high frequency (HF) power (0.15-0.40 Hz), and the ratio between LF
and HF (LF/HF). Moreover, we utilized the Power Spectral Density and its integral over
different frequency intervals (PSD1 0 6).

The nonlinear time series analysis methods utilized to quantify and characterize the heart
rate dynamics can be classified into three categories (Voss, Schulz et al. 2009): (1) Fractal
measures, which assess heartbeat fluctuations over multiple time scales; (2) Entropy
measures, which assess the regularity/irregularity or randomness of heartbeat fluctuations;
and (3) Phase space methods, which assess long-term predictability of the heartbeat as well
as the overall dynamic properties of the heartbeat. For the first category, we utilized
Detrended Fluctuation Analysis (a). For the second category, the methods of choice were the
Sample Entropy (SampEn), and the Multiscale Entropy. For the third category, we used the
Largest Lyapunov Exponent, the Correlation Dimension (CD), and two standard deviation
parameters derived from Poincaré Plots (SD; and SD,). More details about the choice,
implementation, and properties of the aforementioned time series analysis methods can be

found in the Online Supplement.

3.3.5. Definition of smoking status
To assess the joint impact of the amount smoked and the current smoking status, the
participants were classified as lifelong non-smokers (total lifetime amount smoked <0.1 pack-
years), former light smokers, current light smokers, former heavy smokers, and current heavy
smokers. Smokers were defined as heavy smokers if they had smoked >20 pack-years. The
smoked pack-years were calculated by multiplying the number of years smoked by the
average number of packs smoked per day.

3.3.6. Statistical analysis
Results are expressed as numbers and percentages for categorical variables and as a mean
(+ standard deviation) or median [25"quartile;75™quartile] for continuous variables,
according to their distribution. Differences in distributions according to the smoking status

were assessed using Chi2 tests for categorical variables, and using one-way ANOVA (if
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normal distribution) or Kruskal-Wallis test (if non-normal distribution) for continuous
variables.

Each parameter describing the HRV, or heart rate dynamics, was used as the outcome
variable in multivariable linear regression models in order to evaluate the association with
smoking status. The models were stratified by the time elapsed since cessation (0 years in
current smokers, within 0 and 15 years, within 15 and 25 years, and > 25 years in formers
smokers). These time intervals were defined according to the literature, but also to ensure a
balanced sample size of the resulting strata. Initial inspection of the outcome variable showed
a skewed distribution of the residuals for the traditional time and frequency domain measures
and for some of the other time series analysis parameters. These variables were therefore log-
transformed. Results of these analyses are therefore presented as geometric means and percent
changes in geometric means. All the models were adjusted for known confounding factors
(Felber Dietrich, Schindler et al. 2006, Adam, Felber Dietrich et al. 2012). These factors
were: sex (male as reference), age (for an increase of 1 year), alcohol consumption (<1
glass/day as reference, > 1 glass/day), weekly physical activity — to the point of getting out of
breath or sweating — (never as reference, between 0.5h and 2h, > 2h/week), daily exposure to
environmental tobacco smoke (for an increase of 1 hour/day), diabetes (no as reference, yes),
body mass index (BMI, for an increase of 1 kg/m?), BMI? average annual NO2 (for an
increase of 1 pg/m®), number of cardiovascular medications (0 as reference, 1, > 2). This last
variable was computed using the information on the cardiovascular medication intake (beta-
blockers, angiotensin-converting-enzyme (ACE) inhibitors, angiotensin Il receptor
antagonists, calcium channel blockers, diuretics, antiarrhythmic drugs class | + Il
sympathomimetics). The number of cardiovascular medications allowed us to summarize the
information about cardiovascular medication in one variable and to gradually represent the
severity of the cardiovascular disease.

The linear interaction between the total lifetime amount smoked (pack-years) and time
elapsed since cessation (years) was assessed for each outcome. All the models were adjusted
for the same confounders mentioned above.

Finally, we performed sensitivity analyses. First, the random effect of the study areas was
included using multivariable linear mixed models. Second, for each of the parameters
describing the HRV or heart rate dynamics, we excluded participants with a value lower than
the 1" percentile or higher than the 99™ percentile of the distribution of the parameter. Then,

we excluded the participants taking at least one cardiovascular medication or with missing
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information on the number of cardiovascular medications. Finally, since a strong interaction
between air pollution and ACE inhibitors has been reported in the SAPALDIA cohort (Adam,
Felber Dietrich et al. 2012), we looked for interaction between smoking status and ACE
inhibitors.

All tests were two-sided with a significance level of 0.05. Statistical analysis was
performed using R, Version 2.10 (2008). We used the packages Lattice (Sarkar 2008),
gmodels, gplots, ggplot2 (Wickham 2009), prettyR, VIF, nime (Pinheiro, Bates et al. 2014),
Im4.

3.4. Results
3.4.1. Characteristics of the study population
The study sample consisted of 1481 subjects. The mean age of the subjects was 60.416.2
years. Anthropometric parameters, characteristics related to lifestyle, smoking habits, and
cardiovascular health are summarized in Table 3.1. There were 699 (47.2%) lifelong non-
smokers, 307 (20.7%) former light smokers, 57 (3.8%) current light smokers, 207 (14.0%)

former heavy smokers and 211 (14.2%) current heavy smokers.
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Table 3.1. Characteristics of the study population according to the smoking status

Lifelong non-

Former light

Current light

Former heavy

Current heavy

Characteristic smokers smokers smokers smokers smokers \F/)z;uue '(%Ill 481) II\DAa:'i:\mg
(n=699) (n=307) (n=57) (n=207) (n=211)
Sex, Men 236 (33.8) 139 (45.3) 15 (26.3) 162 (78.3) 126 (59.7) <0.001 678(45.8) -
Age, years 61.1+6.4 59.6+6.1 58.1+5.4 61.2+6.0 59.2+5.9 <0.001 60.4+6.2 -
Lifestyle factors
Alcohol, > 1 glass/day 173 (24.8) 86 (28.1) 19 (33.3) 98 (47.3) 95 (45.0) <0.001 471318 1
Physical activity 0.01 13
None 336 (48.3) 139 (45.4) 28 (49.1) 95 (46.8) 127 (61.7) 725 (49.4)
[0.5-2h[/week 212 (30.5) 84 (27.5) 15 (26.3) 60 (29.6) 41 (19.9) 412 (28.0)
> 2h/week 148 (21.3) 83 (27.1) 14 (24.6) 48 (23.6) 38 (18.4) 331 (22.5)
ETS exposure <0.001 1
None 597 (85.5) 252 (82.1) 39 (68.4) 164 (79.2) 117 (55.5) 1169 (79.0)
< 3h/day 73 (10.5) 33 (10.7) 14 (24.6) 24 (11.6) 54 (25.6) 198 (13.4)
> 3h/day 28 (4.0) 22 (7.2) 4 (7.0) 19 (9.2) 40 (19.0) 113 (7.6)
Smoked packyears 0.0 5.3 8.7 38.9 40.6 <0.001* 21.8 -
[0.0;0.0] [1.5;12.0] [3.3;14.7] [25.4;54.0] [31.1;56.9] [7.0;40.7]
Smoking duration, years 0.0 10.0 36.1 28.0 40.1 <0.001* 27.0 7
[0.0;0.0] [5.0;17.0] [30.5;40.7] [21.0;34.0] [36.4;43.5] [13.0;38.0]
Age at smoking initiation, - 19.0 20.0 18.0 18.0 <0.001* 19.0 -
years [18.0;21.0] [18.0;25.0] [16.0;20.0] [16.0;20.0] [17.0;20.0]
Age at smoking cessation, - 30.0 - 46.0 - <0.001° 37.0 7
years [25.0;37.8] [40.0;53.0] [29.0;47.0]
Time after smoking <0.001° 7
cessation
0 year 699 (100) 0 (0.0) 57 (100) 0 (0.0) 211 (100) 967 (65.3)
]0-15[ years 0 (0.0 36 (11.9) 0 (0.0 112 (54.6) 0 (0.0 148 (10.0)
[15-25][ years 0 (0.0 80 (26.5) 0 (0.0 62 (30.2) 0 (0.0 142 (9.6)
> 25 years 0 (0.0) 186 (61.6) 0 (0.0) 31 (15.1) 0 (0.0) 217 (14.7)
Cardiovascular health
and diabetes
BMI, kg/m? 26.4+4.5 26.3+4.3 26.4+4.4 28.6+4.2 26.2+3.9 <0.001 26.7+4.4 2
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Table 3.1. Characteristics of the study population according to the smoking status (continued)

Lifelongnon-  Former light Current light  Former heavy Current heavy

Characteristic smokers smokers smokers smokers smokers \F/:tlue All (n=1481) I'\D/I;;mg
(n=699) (n=307) (n=57) (n=207) (n=211)

Hypertension 325 (46.5) 132 (43.0) 21 (36.8) 122 (58.9) 91 (43.1) 0.002 691 (46.7) -

Number of 0.007 33

cardiovascular

medications

0 487 (71.4) 224 (74.7) 41 (73.2) 126 (62.4) 162 (77.9) 1040 (71.8)

1 145 (21.3) 58 (19.3) 10 (17.9) 48 (23.8) 38 (18.3) 299 (20.6)

2-3-4 50 (7.3) 18 (6.0) 5(8.9) 28 (13.9) 8 (3.8) 109 (7.5)
Diabetes 30 (4.3) 9(2.9) 2 (3.5) 13 (6.3) 7(3.3) 044 61(4.1) -
Heart rate
variability
SDNN 137.8 136.5 131.1 124.6 122.8 <0.001 1336 -

[117.5;161.9]  [114.3;163.4] [112.4;148.3]  [108.1;153.2] [103.1;144.1] [112.5;157.4]
Total power 4077 4370 3708 4043 3415 <0.001 4006 -
[2826;6128] [2805;6802] [2249;5244] [2714;5766] [2043;4717] [2693;5927]
HF 275.4 283.2 236.7 248.6 232.0 0.06 269.4 -
[155.4;461.2]  [158.2;494.1] [141.5;348.7]  [140.8;467.0] [137.1;415.9] [148.9:459.7]
LF 984.8 1071.0 801.7 980.5 858.7 <0.001 697.0 -
[606.8;1576.0] [635.5;1734.0] [530.2;1432.0] [599.3;1742.0] [491.0;1176.0] [594.0;1578.0]
Ratio HF/LF 3.6 3.8 3.7 3.9 3.4 0.38 3.6 -
[2.4;5.2] [2.5;5.4] [2.5;5.3] [2.4;5.5] [2.3;5.0] [2.4;5.3]

ETS, Environmental Tobacco Smoke; BMI, body mass index
Values shown are mean + standard deviation, median [25"quartile; 75™quartile] and numbers (percentages)
Differences in distributions according to the smoking status were assessed using Chi2 tests for categorical variables, and using one-way ANOVA (if
normal distribution) or Kruskal-Wallis test (if non-normal distribution) for continuous variables
2tested in ever smoker, ° tested in former smoker
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Lifestyle factors

All lifestyle factors differed significantly depending on the smoking status of the
subjects. The current heavy smokers were the least physically active and the most exposed to
environmental tobacco smoke. Both current and former heavy smokers consumed more
alcohol than other groups. Former light smokers did not significantly differ from lifelong non-
smokers with regard to alcohol consumption, physical activity, and environmental tobacco
exposure (p=0.26, p=0.12 and p=0.10 respectively). Heavy smokers started smoking earlier
than the light smokers (18 [16;20] years vs. 19 [18;21] years, p<0.001). Former heavy
smokers ceased smoking later than the former light smokers (46.0 [40.0;53.0] years vs. 30.0
[25.0;37.8] years, p<0.001).

Cardiovascular health, obesity, and diabetes

The prevalence of diabetes did not significantly differ depending on smoking status
(p=0.44), unlike the other factors related to cardiovascular health. Former heavy smokers
exhibited a higher BMI, higher prevalence of hypertension, and were undergoing
cardiovascular treatment more frequently. The other groups did not differ regarding these
factors (p=0.92, p=0.41, p=0.47 respectively for BMI, hypertension and number of

cardiovascular medication).

3.4.2. Exploration of the association between current smoking and heart rate
dynamics
Using standard parameters of HRV
Table 3.2 shows the associations between the smoking status and the time- and
frequency-domain measures of HRV in multivariable analysis, stratified by the time elapsed
since cessation. Irrespective of smoking intensity, current smokers showed a significantly
decreased HRV for SDNN, total power and LF. The HF and ratio LF/HF was significantly
decreased only in the current heavy smokers. Moreover, there is evidence for a dose-response
effect, given that SDNN, TP and LF were more markedly decreased in current heavy smokers

as compared to current light smokers.
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Table 3.2. Association between smoking status and time-domain and frequency-domain measures of HRV in multivariable analysis, stratified by
time elapsed since cessation (n=1420 due to missing data on co-variables)

SDNN Total power HF LF Ratio LF/HF
%GM, g5,Cl p-value %GM, ¢5,Cl p-value %GM, ¢5,Cl p-value %GM, g5,Cl p-value %GM, ¢50,Cl p-value

Time after cessation: 0 year

Smoking status (ref.=Lifelong non-smoker) <0.001 <0.001 0.04 <0.001 0.005
. -7.3% -21.7% -19.2% -20.1% -1.1%
Current light smoker [-13.6:-0.6] 0.03 [-33.5:-7.9] 0.003 [-35.6:1.5] 0.07 [-33.1:-4.6] 0.01 [-15.0:15.1] 0.88
-11.7% -27.1% -12.9% -25.3% -14.2%
Current heavy smoker [-15.4:-7.9] <0.001 [-34.0:-19.5] <0.001 [-24.2:-0.01] 0.05 [-32.9:-16.7] <0.001 [-21.8:-5.9] 0.001
Time after cessation: ]0-15[ years
Smoking status (ref.=Lifelong non-smoker) 0.009 0.06 0.99 0.11 0.04
. -2.2% -11.2% 1.2% -19.0% -20.0%
Former light smoker [102:64] *%0 (27383 %% (235339 0% [assor; 0% [ss0-307 002
-8.0% -13.0% 0.8% -6.7% -7.4%
Former heavy smoker [129:29] %9 23510 99 passo07) %% faso7s %% isour 0%
Time after cessation: [15-25[ years
Smoking status (ref.=Lifelong non-smoker) 0.43 0.19 0.25 0.17 0.93
. 2.6% 10.4% 15.8% 14.6% -1.0%
Former light smoker [-3.2:8.7] 0.39 [-3.8:26.7] 0.16 [-4.4:40.4] 0.13 [-1.5:33.4] 0.08 [-13.1:12.7] 0.87
-3.1% -8.2% -6.5% -4.0% 2.6%
Former heavy smoker 0539 2% o1s0 %0 [oss1741 %% 19s1a9) 0% 1201077 074
Time after cessation: > 25 years
moking status (ref.=Lifelong non-smoker . . : : .
Smoki (ref.=Lifel ker) 0.16 0.53 0.64 0.90 0.42
. -4.0% -5.3% -5.5% -1.8% 4.0%
Former light smoker (79011 %% paa144 %2 p7sey O parzesy 0™ [s1139) 040
0.07% -4.3% 5.2% -4.3% -9.0%
Former heavy smoker [89:100] %% 2321021 %70 224424 O 247218 %% 259118 O

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, number of
cardiovascular medication, average annual NO,

SDNN, standard deviation of all NN intervals; HF, power in the high frequency range; LF, power in the low frequency range

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (g54,Cl)

Participants were classified as never smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy smokers if
the total lifetime amount smoked was > 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the average
number of packs smoked per day
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Using non-standard parameters

Table 3.3 shows the associations between smoking status and the non-standard
parameters in multivariable analysis, stratified by the time elapsed since cessation. The first
category includes the parameters PSDs, exponent o short-term time scale (agz), Multiscale
entropy low and Largest Lyapunov Exponent, which reflected significant changes in current
heavy smokers. Compared to lifelong non-smokers, PSDs was significantly increased in the
current heavy smokers (0.2+0.08, p=0.02) and a short-term time scale, Multiscale entropy low
and Lyapunov Largest Exponent were significantly decreased (-0.1+0.03, p<0.001, -
0.02+0.003, p<0.001 and -0.04+0.006, p<0.001 respectively). The second category includes
the parameters SD; and SD, derived from the Poincaré Plot, which were significantly
decreased both in light and heavy current smokers compared to lifelong non-smokers.

The parameters a long-term time scale (a4), PSD2, Multiscale entropy high and SampEn;
did not detect changes in the regulation of the cardiovascular system as a response to current
tobacco smoke exposure (Online Supplement).

3.4.3. Exploration of the association between long-term smoking cessation and heart
rate dynamics
Using standard parameters of HRV

SDNN, total power and LF showed a full recovery (i.e., normalization to the level of the
lifelong non-smokers) in former light smokers within the first 15 years of cessation (Table
3.2).

While HF, LF and the ratio LH/HF also showed a full recovery in former heavy smokers
within the first 15 years of cessation, SDNN and total power remained significantly
decreased, and the normalization to the level of lifelong non-smokers appeared in the group of
subjects who had ceased smoking 15-25 years prior. Finally, we found a significant
interaction between the total lifetime amount smoked (pack-years) and the time elapsed since
cessation (years) for SDNN, total power, and LF (Online Supplement) which provides
evidence that the former smokers recovered differently according to the number of packyears

they had smoked, as suggested by the later results.
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Table 3.3. Association between smoking status and non-standard parameters in multivariable analysis, stratified by time elapsed since cessation (n=1420
due to missing data on co-variables)

Category 1 Category 2
PSD; o short-term time Multiscale entropy low Largest Lyapunov Poincaré SD, Poincaré SD,
scale exponent
- i - p- - ’ - ’ 0 p- coefficientx  p-
coefficienttse p-value coefficienttse value coefficienttse p-value  coefficienttse  p-value YOGM, g504Cl value  se value
Time after cessation: 0 year
Intercept -3.310.8 3.0£0.3 0.1+0.03 0.4+0.07 258.9+42.7
gn’?(?k';'r';g status (ref.=Lifelong non- 0.03 <0.001 <0.001 <0.001 0.004 <0.001
Current light smoker -0.110.1 0.37 -0.03+0.05 0.48 -0.0004+£0.005  0.93 0.01+0.01 0.33 -14.8% [-23.8;-4.8]  0.005 -13.746.7 0.04
Current heavy smoker 0.2+0.08 0.02 -0.1+0.03 <0.001 -0.02+0.003 <0.001  -0.04+0.006 <0.001 -7.1% [-13.3;-0.6] 0.03 -23.244.1 <0.001
Time after cessation: ]0;15[ years
Intercept -3.840.8 3.04£0.3 0.1+0.03 0.5+0.07 281.6+43.9
fr;“(fk'grr;g status (ref.=Lifelong non- 0.19 0.14 0.03 0.06 0.87 0.008
Former light smoker -0.08+0.2 0.63 -0.07+0.06 0.26 -0.01+0.006 0.06 -0.02+0.01 0.17 -0.06% [-13.0;14.8]  0.99 -3.548.3 0.67
Former heavy smoker 0.2+0.1 0.09 -0.06+0.04 0.09 -0.009+0.004 0.04 -0.02+0.008 0.05 -2.3% [-10.6;6.8] 0.60 -16.645.3 0.002
Time after cessation: [15;25[ years
Intercept -4.8+0.8 2.8+0.3 0.1+0.03 0.4+0.07 287.5+44.1
fnr?g’k‘;'r';g status (ref.=Lifelong non- 0.20 0.64 0.76 0.07 0.35 0.25
Former light smoker -0.04+0.1 0.70 -0.03+0.04 0.48 -0.003+0.005 0.57 0.001+0.009 0.91 7.2% [-2.7;18.1] 0.16 6.2+5.8 0.29
Former heavy smoker 0.2+0.1 0.09 0.03+0.05 0.58 -0.003+0.005 0.62 -0.02+0.01 0.02 -0.4% [-11.2;11.7] 0.94 -8.0+6.8 0.24
Time after cessation: > 25 years
Intercept -3.3+0.8 3.0£0.3 0.1+0.03 0.4+0.07 280.4+42.7
frr:gkfsg status (ref.=Lifelong non- 0.92 0.90 0.90 0.22 0.63 0.23
Former light smoker -0.0005+£0.07  0.99 0.01+0.03 0.70 -0.0001+0.003  0.96 -0.00840.006  0.21 -3.2% [-9.5;3.5] 0.34 -7.044.1 0.09
Former heavy smoker -0.07+0.2 0.68 0.02+0.06 0.79 -0.003+0.007 0.65 -0.02+0.01 0.19 0.1% [-13.9;16.5] 0.99 0.4+9.3 0.97

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, number of
cardiovascular medication, average annual NO2

PSD, Power Spectral Density

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (950,Cl) or coefficient £ standard error (se)

Participants were classified as never smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy smokers if the
total lifetime amount smoked was > 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the average number of
packs smoked per day
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Using non-standard parameters

In former light smokers, according to Poincaré parameters SD; an SD,, a full recovery
appeared within the first 15 years of smoking cessation.

All parameters showed a full recovery in former heavy smokers as well. However, while
this recovery appeared within the first 15 years of cessation for the PSDs, a short-term time
scale and Poincaré SD,, it appeared later for the Multiscale entropy low, the Largest
Lyapunov Exponent and the Poincaré SD,. Indeed, the normalization to the level of lifelong
non-smokers appeared in the group of subjects who had ceased smoking 15-25 years prior for
Multiscale entropy low and Poincaré SD,, and after 25 years of cessation for the Largest
Lyapunov Exponent.

Finally, as well as with the standard parameters of HRV, we found a significant positive
interaction between the total lifetime amount smoked (pack-years) and the time elapsed since
cessation (years) for o short-term time scale, Multiscale entropy low, and Poincaré SD,
(Online Supplement).

3.4.4. Sensitivity analyses

Exclusion of participants taking at least one cardiovascular medication or with missing
information on the number of cardiovascular medications showed that LF normalized to the
level of lifelong non-smokers between 15 to 25 years of smoking cessation in former heavy
smokers (5.5% [-15.4%;31.6%], p=0.63). The other parameters showed similar results when
compared to the analysis of the whole cohort (Online Supplement).

Exclusion of the outliers for each outcome variable showed (i) that former heavy smokers
needed up to 15 to 25 years to fully recover, when the HRV was assessed by the ratio LF/HF,
and (ii) that the Largest Lyapunov Exponent normalized to the level of lifelong non-smokers
between 15 and 25 years of cessation in former heavy smokers (-0.004+0.009, p=0.07). Thus,
the remaining decrease in former heavy smokers after 15-25 years of cessation in the analysis
of the whole cohort might be due to outliers (Online Supplement).

After exclusion of both outliers and participants taking at least one cardiovascular
medication, or with missing information on the number of cardiovascular medications, our
results suggested a full normalization of the Largest Lyapunov Exponent within the first 15
years of smoking cessation (-0.01+0.009, p=0.17). There were no changes in the association

between the standard parameters of HRV and smoking status (Online Supplement).
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3.5. Discussion
3.5.1. Main results

This study evaluates the long-term influence of smoking cessation on heart rate dynamics
using standard parameters, Power Spectral Density parameters, and nonlinear time series
analysis parameters. Our findings provide evidence supporting the following conclusions:

1. Smoking triggers adverse changes in the regulation of the cardiovascular system, even

at low levels of exposure. Indeed, the SDNN, total power, LF, and Poincaré SD; and
SD, parameters were decreased in light and heavy current smokers compared to
lifelong non-smokers. Moreover, there is evidence for a dose-response effect.

2. After cessation, light smokers fully recover within the first 15 years of cessation.
Indeed, both standard and non-standard parameters normalized to the levels
characteristic of lifelong non-smokers.

3. After cessation, heavy smokers may fully recover as well. However, according to
SDNN, total power, Multiscale entropy low and Poincaré SD, the normalization might
need up to 15 to 25 years.

Our findings suggested a full normalization of the Lyapunov Largest Exponent only after 25
years of cessation in former heavy smokers. This supports the hypothesis that nonlinear time
series analysis techniques may be able to unveil subtle, but important changes in the
regulation of the cardiovascular system more difficult to detect by traditional analysis
methods. However, our sensitivity analysis suggested that this remaining significant change
between 15 and 25 years of smoking cessation might be due to outliers in the data.

We also noticed that the specific settings used for the calculation of the nonlinear time
series analysis parameters, e.g., the embedding dimension (Online Supplement), play a role
as to whether certain effects are detected or not. This suggests that tobacco smoke exposure
may trigger very specific alterations which might be better described using non-standard
parameters calculated using certain settings. This property of the non-standard parameters
makes them potentially suitable tools for exploring the mechanisms underlying the
modifications in the regulation of the cardiovascular system triggered by tobacco smoke
exposure.

Finally, we found a significant interaction between the total lifetime amount smoked and
the time elapsed since cessation for standard and non-standard parameters. The fact that this
interaction is positive means that the slope of the regression line relating HRV to cessation

time is steeper in heavier than in lighter smokers. This suggests that the speed of recovery is
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faster in former heavy smokers. Nevertheless, it takes longer for them to fully recover because

they start out from a lower initial value.

3.5.2. Strength and weaknesses of the study (internal validity)

To the authors’ knowledge, this is the first study examining the influence of long-term
smoking cessation on parameters describing the HRV and heart rate dynamics. Additional
strengths of the present study included a) the population-based design, involving a random
sample of the Swiss population; b) the large number of participants; b) the detailed
information available on participants, allowing for control of most potential confounders; c)
the two assessment points, allowing a better understanding of the smoking history of the
participants; d) the calculation, using long-duration ECG recordings, of a variety of HRV
parameters, both in the time and frequency domain, and nonlinear time series analysis
parameters as well; e) the control group of lifelong non-smokers, allowing to assess whether
there was a full recovery in former smokers.

This study faced some limitations. First, smoking status was assessed using self-reported
data rather than by means of measurements of biomarkers. However, CO measures were used
to validate smoking status, which has been shown, in combination with self-reporting, to
discriminate well between smokers and non-smokers (Stevens and Munoz 2004, Felber
Dietrich, Schwartz et al. 2007), and to be highly concordant with biomarker measurements
(Patrick, Cheadle et al. 1994). A second limitation was the absence of information on the use
of nicotine substitution therapy after smoking cessation. Previous studies have shown that
abstinence from smoking in combination with the use of nicotine transdermal patches results
in increased HRV, which further increases after the cessation of substitution therapy (Stein,
Rottman et al. 1996, Harte and Meston 2013). Therefore, nicotine substitutes might prevent
former smokers from recovering as quickly as they normally would without the use of
substitutes. As a consequence, we cannot rule out that some of the effect attributed to time
since quitting may be confounded by an effect of using nicotine replacement and we might
have underestimated the improvement in former smokers. Furthermore, no information about
the type of cigarettes smoked was available within this cohort. Nevertheless, the subjects in
this study did not use electronic cigarettes since they were introduced into the market in 2004.
Finally, given the small number of participants who had only quit for a short time, we were

not able to assess the short-term influence of smoking cessation.
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3.5.3. Strengths and weaknesses of the study compared to other studies (external
validity)

Our findings are in the line with the well-established view that smokers, compared to
non-smokers, exhibit dysfunctional cardiac autonomic function, as evidenced by lower HRV
indices, even at low levels of exposure (Raupach, Schafer et al. 2006, Dinas, Koutedakis et al.
2013, Harte and Meston 2013).

Moreover, using parameters describing HRV, or heart rate dynamics, we have given
evidence that long-term smoking cessation allows for a full recovery within 15 years for
former light smokers, and up to 15-25 years for former heavy smokers. We have only found
one study assessing the long-term influence of smoking cessation on HRV (Gac and
Sobieszczanska 2014). Using time-domain measures of HRV, measured in 145 patients with
hypertension, Gac et al. have found a decreased HRV in current smokers and a partial
recovery in former smokers. In former smokers, the mean number of cigarettes/24h smoked in
the past was 16.2+6.5 and the mean time after cessation was 10.8+3.6 years. Therefore, heavy
smokers who lacked sufficient time post cessation to fully recover may account for the
remaining decrease in HRV. Furthermore, the long-term effect of smoking cessation has been
extensively studied with respect to the risk of cardiovascular morbidity and mortality (Doll
and Peto 1976, Novello 1990, Ockene, Kuller et al. 1990, Lightwood and Glantz 1997, Teo,
Ounpuu et al. 2006). To the extent that we may translate the increase in HRV to a decrease in
the risk of coronary heart disease, our findings are consistent with this large body of literature,
which has demonstrated the substantial benefits of quitting cigarette use for the cardiovascular
system, irrespective of the amount smoked (Novello 1990, Ockene, Kuller et al. 1990,
Dobson, Alexander et al. 1991, Tverdal, Thelle et al. 1993, Negri, La Vecchia et al. 1994,
Wannamethee, Shaper et al. 1995, Doll, Peto et al. 2004, Health 2004, Teo, Ounpuu et al.
2006, Honjo, Iso et al. 2010, Mannan, Stevenson et al. 2010, Shields, Garner et al. 2013,
Shields and Wilkins 2013). Our findings are, in particular, highly consistent with the studies
that stratified the analyses by light and heavy former smokers, since they have shown that (a)
the risk in former light smokers was similar within 3 years after quitting to those who had
never smoked (Rosenberg, Palmer et al. 1990, Negri, La Vecchia et al. 1994, Wannamethee,
Shaper et al. 1995, Teo, Ounpuu et al. 2006); (b) there was a remaining risk in former heavy
smokers after 10 years of smoking cessation (Rosenberg, Palmer et al. 1990, Negri, La
Vecchia et al. 1994, Wannamethee, Shaper et al. 1995). Only Teo et al. has identified a still
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increased risk of acute myocardial infarction in former heavy smokers after 20 years of

smoking cessation (Teo, Ounpuu et al. 2006).

3.5.4. Relevance of the study results and implications for policymakers

First, this study provides evidence that smoking triggers adverse changes in the
regulation of the cardiovascular system, even at low levels of exposure. This constitutes a
strong argument for health policy makers advocating for more intensive prevention
campaigns aimed at discouraging smoking.

Secondly, we show that long-term smoking cessation leads to a normalization of heart
rate dynamics, therefore reducing the risk of developing cardiovascular disease later in life.
This underpins the value of public healthcare programs supporting the benefits of smoking
cessation.

However, while light smokers fully recovered within the 15 first years of cessation,
heavy former smokers might need up to 15-25 years to fully recover. Thus, former heavy
smokers remain exposed longer after cessation to a higher risk of cardiovascular morbidity
and cardiovascular-related morbidity. In analogy to the recommendations of the American
Cancer Society (2014) related to lung cancer screening, our data suggest that future studies
need to demonstrate whether close monitoring of cardiovascular disease in heavy smokers,

current and/or former, should be recommended as well.

3.6. Conclusion

In conclusion, findings of the present study indicate that smoking triggers changes in the
cardiac autonomic function even at low levels of exposure. Moreover, there is evidence for a
dose-response effect. Furthermore, our findings indicate that long-term smoking cessation
allows for a full recovery within 15 years in former light smokers, and possibly within 15-25
years in former heavy smokers. Therefore, our study supports the substantial benefits of

smoking cessation, but also warns of important alterations caused by heavy smoking.
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3.8. Online Supplement
Methods

Data collection
SAPALDIA questionnaire

In 1991, participants were first interviewed by a trained fieldworker using a standardised

questionnaire. The questionnaire was developed along with the questionnaire of the European
Community Respiratory Health Survey (Burney, Luczynska et al. 1994). The different
sections of the questionnaire related to history of respiratory symptoms, allergic diseases,
living and working environment, exposure to animals, smoking and general health. Additional
questions concerning smoking habits and environmental tobacco smoke exposure were
adopted from the MONICA questionnaires (Martin, Ackermann-Liebrich et al. 1997). In
SAPALDIA 2, the follow-up study, the questionnaire was extended with additional questions
about chronic diseases, including heart disease, physical activity (derived from the ECRHS I
and the Questionnaire of the Swiss Health Survey), and present and past medication use was
recorded in detail (Ackermann-Liebrich, Kuna-Dibbert et al. 2005).

Measurements

Details about environmental measurements (e.g., NO;, PMjy) and biological
measurements (e.g., blood pressure, weight, height) are reported elsewhere(Martin,
Ackermann-Liebrich et al. 1997, Ackermann-Liebrich, Kuna-Dibbert et al. 2005). Recording
of 24 hours ECG have been previously described (Felber Dietrich, Schindler et al. 2006).
Interbeat interval time series were obtained from the raw ECG Holter recordings via QRS-
complex recognition using the software Impresario, Version 3 (Del Mar Reynolds Medical,
Inc. Irvine, CA, USA).

Potentially abnormal or ectopic beats, when recognized by the software, were marked as
putative artifacts but not removed from the resulting time series. Our algorithms used for the
calculation of time series analysis parameters as well as of measures of HRV (see
Computational Methods below) make use of these marks in order to avoid the incorporation

of possibly faulty values into the computations.

Computational methods
Traditional time and frequency domain measures were calculated in agreement with the

standards of measurement proposed by the Task Force of the European Society of Cardiology
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and the North American Society of Pacing and Electrophysiology (1996). The time domain
measure used was the standard deviation of normal interbeat intervals (SDNN). For the
frequency domain measures, Fast Fourier Transform procedures were used to derive the
spectral distribution, which resulted in the calculation of total power, low frequency (LF)
power (0.04-0.15 Hz), high frequency (HF) power (0.15-0.40 Hz), and the ratio between LF
and HF (LF/HF).

The following time series analysis parameters were calculated using our own
implementations in R (occasionally accessing C libraries to reduce run time) of well-known
algorithms. Many of the implementations are based on the TISEAN package (Hegger, Kantz
et al. 1999):

The Largest Lyapunov exponent A was calculated using an embedding dimension of two, and
a time lag or delay time of one sample, considering at least 2000 reference points, and
adjusting the neighbourhood size ¢ to obtain at least 10 neighbours per reference point, such
that no neighbour was a direct chronological successor of the given reference point (i.e., the
Theiler window was set to 2). The length of the embedding space trajectories compared for
the estimation of A was of 20. The algorithm used is described in (Hegger, Kantz et al. 1999,
Kantz and schreiber 2004).

The correlation dimension was calculated using an embedding dimension of two, and a time
lag or delay time of one sample. The Theiler window was set to 2. The algorithm used is
described in (Hegger, Kantz et al. 1999, Kantz and schreiber 2004).

The scaling exponent o obtained via detrended fluctuation analysis (DFA) was calculated
using a geometric window increase with exponent equal to 2 and no overlap of windows. Four
different time scales were considered: 3-7 samples (1), 7-13 samples (o), 4-16 samples (o3),
and 16-64 samples (a4). The method of DFA is described in (Kantz and schreiber 2004) and
the citations therein. The data were detrended by means of a moving average method
(Alvarez-Ramirez 2005).

The sample entropy was calculated on the original time series of interbeat intervals as well as
on coarse-grained time series constructed on the basis of collapsing the original values within
a window of the size of the scale of interest to one value, namely the average of the
measurements over the length of the window. The scales considered (sizes of windows) were
1-20. The parameters SampEn; to SampEnyo correspond to the scales 1-10. In all cases, the

sample entropy was calculated using a comparison length of m=2 points, and a tolerance of
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r=0.2 *sdnn, where sdnn stands for the standard deviation of all normal interbeat intervals,
according to the algorithm described in (Richman and Moorman 2000) and in the citations
therein. The multiscale entropy was calculated according to (Costa, Goldberger et al. 2002)
over all scales considered, that is 1-20. Local slopes of the plot of the sample entropy as a
function of scale yielded the parameters MultiEnLow (slope within the scales 1-5), and
MultiEnHigh (slope within the scales 6-20).

A power-law relationship between the power spectral density (PSD) of the interbeat interval
time series and frequency was determined by estimating the slope  of the linear best-fit of
the PSD as a function of the frequency on a double logarithmic scale. Several parameters
were obtained, depending on the range of frequencies used. The power spectral density (PSD)
was estimated according to the method described in (Cusenza 2010). Regressing the power
spectral for frequencies in the range 0.01 > freq > 0.0001 yielded the parameter PSD;.
Analogously, PSD, corresponds to 0.04 > freq > 0.02, PSD3 to 0.45 > freq > 0.0001, PSD, to
0.5 > freq > 0.1, PSDs to 0.5 > freq > 0.2, and PSDg to 0.5 > freq > 0.3, respectively.

Statistical analysis
Hierarchical clustering analysis

To focus our attention on time series analysis parameters that provide orthogonal
information about the participant’s heart rate dynamics, we performed a clustering analysis.
To this end, for a given time series analysis parameter, we grouped all the values obtained
within the cohort to a row in a matrix. Then, we conducted hierarchical clustering on the rows
of the matrix and identified clusters of time series analysis parameters that, in the context of
the cohort analysed, seem to encode similar properties. A heat map representation of this
procedure is depicted in Figure E3.1. With the exception of the standard measures of HRV
which were all kept, we selected out of each of the identified clusters one parameter per
computational method as a representative.
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61



Chapter 1: Long-term smoking cessation, heart rate variability and heart rate dynamics

Results
Hierarchical cluster analysis of the parameters of HRV and heart rate dynamics

By means of hierarchical clustering we identified four main clusters in the heart dynamics
components (Figure E3.1). The first cluster included the exponent ay4, the Multiscale entropy
high, and PSDs «, 6. In order to keep only one representative parameter per computational
method in each cluster, we excluded PSDs3 46 for the following analyses. The second cluster
included PSD; and PSD,, the ratio LF/HF, a3 3, the Largest Lyapunov Exponent and the
Multiscale entropy low. We excluded PSD;, o, and a3 The third cluster included the Poincaré
parameters SD; and SD,, CD, and all the traditional parameters of HRV with the exception of
the ratio LF/HF. Both Poincaré parameters SD; and SD, were kept for the following analyses
since they are usually described together in the literature. The CD was excluded because of its
specific distribution. Finally, the fourth cluster included all the parameters related to the

sample entropy. Only one of them, the SampEn;, was retained for the following analyses.

Exploration of the association between current smoking and the heart rate dynamics

Using non-standard time series analysis parameters

The parameters exponent a long-term time scale (04), PSD,, multiscale entropy high and
SampEn; did not detect any changes in the regulation of the cardiovascular system as a
response to current tobacco smoke exposure (Table E3.1). Therefore, their association with

the long-term smoking cessation was not assessed.

Exploration of the association between long-term smoking cessation and heart rate dynamics
A significant positive interaction between the total lifetime amount smoked (pack-years)
and time elapsed since cessation (years) was found for SDNN, total power, LF, o short-term

time scale, and multiscale entropy low, and Poincaré SD, (Table E3.2).
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Table E3.1. Association between smoking status and non-standard parameters of HRV in current smokers (n=1420)

a long-term time scale PSD, Multiscale entropy high SampEn1l

coefficienttse p-value coefficienttse p-value coefficienttse p-value %GM, g50,Cl p-value
Intercept 1.6+0.2 -2.1+0.4 -0.01+0.005
Smoking status (ref.=Lifelong non-smokers) 0.72 0.74 0.77 0.25
Current light smoker 0.004+0.03 0.88 -0.002+0.07  0.98 0.0002+0.0007 0.80 -4.6% [-14.1;6.1] 0.39
Current heavy smoker 0.01+0.02 0.42 0.03+0.04 0.44 0.0003+£0.0004 0.48 4.3% [-2.2;11.2] 0.20

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, number of
cardiovascular medication, average annual NO;

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (g50,CI) or coefficient + standard error (se)

Participants were classified as lifelong non-smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy
smokers if the total lifetime amount smoked was > 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the

average number of packs smoked per day
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Table E3.2. Tests of linear interactions between total lifetime amount smoked (pack-years) and time elapsed since cessation (years) (n=1420)

Outcome Intercept Pack-years Time elapsed since cessation Interaction
coefficienttse coefficienttse or %GM, p-value coefficienttse or %GM,  p- coefficienttse or %GM, p-

95%C| 95%C| value 95%C| value

SDNN -0.2% <0.001 0.007% 0.91 0.009% 0.01
[-0.3;-0.2] [-0.1;0.1] [0.002;0.02]

Total power -0.5% <0.001 0.1% 0.27 0.02% 0.01
[-0.7;-0.3] [-0.1;0.4] [0.005;0.04]

HF -0.2% 0.18 0.09% 0.63 0.01% 0.32
[-0.4;0.07] [-0.3;0.4] [-0.01;0.03]

LF -0.5% <0.001 0.2% 0.11 0.02% 0.01
[-0.7;-0.3] [-0.05;0.5] [0.005;0.04]

Ratio LF/HF -0.3% <0.001 0.1% 0.25 0.01% 0.16
[-0.5;-0.2] [-0.1;0.4] [-0.004;0.03]

PSDs -3.5+0.7 0.006+0.001 <0.001 -0.001+0.002 0.52 -0.0001+0.0001 0.20

a short-term time scale  2.9+0.3 -0.003+0.0005 <0.001 0.0009+0.0007 0.21 0.0001+0.00005 0.02

Multiscale entropy low 0.1+0.03 -0.0004+0.00005 <0.001 0.00007+0.002 0.37 0.00001+0.000005 0.02

Lyapunov Largest 0.4+0.06 -0.0007+0.0001 <0.001 -0.00004+0.0002 0.79 0.00001+0.00001 0.22

Exponent

Poincaré SD; -0.06% 0.32 0.04% 0.63 0.006% 0.31
[-0.2;0.06] [-0.1;0.2] [-0.005;0.02]

Poincaré SD, 269.8+35.8 -0.43+0.07 <0.001 0.02+0.1 0.81 0.01+0.007 0.04

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, number of cardiovascular

medication, average annual NO,

SDNN, standard deviation of all NN intervals; HF, power in the high frequency range; LF, power in the low frequency range; PSD, Power Spectral Density

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (950,Cl) or coefficient + standard error (se)
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Sensitivity analysis
Random effect of the study areas
Inclusion of a random effect for study area did not change the associations between heart

rate dynamics and smoking status (data not shown).

Exclusion of outliers

For each of the standard and non-standard parameters, we excluded participants with a
value lower than the 1™ percentile or higher than the 99™ percentile of the distribution of the
parameter. Compared to the main analysis of the standard parameters, this analysis showed an
additional significant decrease of the ratio LF/HF in former heavy smokers within the first 15
years of smoking cessation (-13.5% [-22.9%;-3.0%], p=0.01). The ratio LF/HF normalized to
the level of lifelong non-smokers within 15-25 years of smoking cessation (-1.6% [-
14.5%;13.3%], p=0.83). In regard with the non-standard parameters, a remarkable result was
the normalization of the Largest Lyapunov Exponent in the former heavy smokers after 15-25
years of smoking cessation (-0.004+0.009, p=0.07).

Exclusion of the participants taking at least one cardiovascular medication or with missing
information on the number of cardiovascular medications

Additional analysis of heart rate dynamics excluding the participants taking at least one
cardiovascular medication or with missing information on the number of cardiovascular
medications was performed. Regarding the standard parameters, we obtained the same results
as in the main analysis, with the additional significant decrease of LF in former heavy
smokers within the first 15 years of smoking cessation (-16.8% [-29.1%;-2.5%], p=0.02). The
LF normalized to the level of lifelong non-smokers within 15-25 years of smoking cessation
(5.5% [-15.4%;31.6%], p=0.63) (Table E3.3).

There were no noteworthy changes in the association between non-standard parameters
and smoking status (data not shown).

Exclusion of both outliers and participants taking at least one cardiovascular medication or
with missing information on the number of cardiovascular medications

Finally, after exclusion of both outliers and participants taking at least one cardiovascular
medication, the Largest Lyapunov Exponent exhibited a full recovery within the first 15 years

of smoking cessation (Table E3.4).
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There were no noteworthy changes in the association between the standard parameters of
HRV and smoking status (data not shown).

Interaction between smoking status and ACE inhibitors

Interaction between smoking status and ACE inhibitors was not significant for any
outcome (data not shown).
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Table E3.3. Association between smoking status and time-domain and frequency-domain measures of HRV in multivariable analysis, after
exclusion of the participants taking at least one cardiovascular medication or with missing information on the number of cardiovascular
medications, stratified by time elapsed since cessation (n=1020)

SDNN Total power HF LF Ratio LF/HF
%GM, g50,Cl p-Value %GM, g50,Cl p'Value %GM, g50,ClI p'Value %GM, g50,ClI p'Value %GM, g50,ClI p'Value

Time after cessation: 0 year

Smoking status (ref.=Lifelong non-smoker) <0.001 <0.001 0.03 <0.001 0.04
. -12.5% -27.5% -20.0% -25.0% -6.3%
Current light smoker [-19.2:-5.2] 0.001 [-39.4:-13.2] <0.001 [-37.9:3.0] 0.08 [-38.3:-9.0] 0.004 [-20.5:10.5] 0.44
-13.8% -29.1% -15.7% -25.5% -11.7%
Current heavy smoker [17.8:9.6] 0001 raga.010 001 o768 90 337163 0% [00-25 OO
Time after cessation: ]0-15[ years
Smoking status (ref.=Lifelong non-smoker) <0.001 0.002 0.43 0.05 0.09
. -1.5% -6.2% 9.0% -11.8% -19.0%
Former light smoker (10282 0 (2441647 %% [107479) 9% [m02115 %% 34105 00
-12.5% -23.2% -11.0% -16.8% -6.6%
Former heavy smoker [-17.9:-6.8] <0.001 [-33.7:-11.0] <0.001 [-27.7:9.6] 0.27 [-29.1;-2.5] 0.02 [-18.8:7.5] 0.34
Time after cessation: [15-25[ years
Smoking status (ref.=Lifelong non-smoker) 0.79 0.72 0.46 0.50 0.74
. -0.9% 4.5% 10.4% 9.5% -0.8%
Former light smoker (7258 %8 102216 %% 106364 %® 71201 %% 1371400 0%
-2.8% 6.3% 13.5% 5.5% -7.0%
Former heavy smoker [11.061] 2% 133303 %% [aasso7; %% pisase) 0% oo 04
Time after cessation: > 25 years
Smoking status (ref.=Lifelong non-smoker) 0.15 0.43 0.91 0.45 0.27
. -4.4% -6.2% -2.8% -3.5% -0.7%
Former light smoker 87:02] %9 15743 %% 32 % r1a0s4 %% 101077 0%
1.3% -7.8% 3.2% -15.2% -17.8%
Former heavy smoker [95134] %% [oss104) %% 21483 9% 30124 0P [mssa7 O

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, average annual NO,

SDNN, standard deviation of all NN intervals; HF, power in the high frequency range; LF, power in the low frequency range

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (gs,Cl)

Participants were classified as lifelong non-smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy smokers if the total
lifetime amount smoked was > 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the average number of packs smoked
per day
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Table E3.4. Association between smoking status and non-standard parameters in multivariable analysis, after exclusion of the outliers and participants taking at least
one cardiovascular medication or with missing information on the number of cardiovascular medications, stratified by time elapsed since cessation (n=1000)

Category 1 Category 2
PSD; o short-term time Multiscale entropy low Largest Lyapunov Poincaré SD, Poincaré SD,
scale exponent
- i - p- - ’ - ’ 0 p- coefficientx  p-
coefficienttse p-value coefficienttse value coefficienttse p-value  coefficienttse  p-value YoGM, g55,Cl value  se value
Time after cessation: 0 year
Intercept -2.310.8 3.310.3 0.2+0.03 0.4+0.07 200.4+44.5
g;“(?k'fe'r';g status (ref.=Lifelong non- 0.02 0.06 <0.001 <0.001 0.005 <0.001
Current light smoker -0.03+0.1 0.82 -0.06+0.04 0.14 -0.004+0.005 0.40 -0.004+0.01 0.75 -12.9% [-22.3;-2.3]  0.02 -19.8+7.3 0.007
Current heavy smoker 0.2+0.08 0.006 -0.05+0.03 0.05 -0.01+0.003 <0.001  -0.03+0.007 <0.001 -8.4% [-14.4;-1.9] 0.01 -21.9+4.4 <0.001
Time after cessation: ]0;15[ years
Intercept -2.5+0.9 3.210.3 0.1+0.03 0.4+0.07 242.1+46.7
f%“(fk'fe'sg status (ref.=Lifelong non- 0.16 0.30 0.04 0.34 0.54 <0.001
Former light smoker -0.004+0.2 0.98 -0.02+0.05 0.70 -0.009+0.006 0.12 -0.008+0.01 0.53 5.4% [-8.2;21.1] 0.45 0.2+8.8 0.98
Former heavy smoker 0.2+0.1 0.06 -0.06+0.04 0.13 -0.009+0.004 0.03 -0.01+0.009 0.17 -3.5% [-12.3;6.2] 0.46 -23.846.1 <0.001
Time after cessation: [15;25[ years
Intercept -3.440.8 3.240.3 0.1+0.03 0.4+0.07 237.6+46.6
fnr?g’k‘;'r';g status (ref.=Lifelong non- 0.66 0.92 0.17 0.57 0.29 0.63
Former light smoker 0.06+0.1 0.60 0.005+0.04 0.89 0.0005+0.004 0.91 -0.005+0.009 0.61 5.8% [-4.2;16.8] 0.27 3.746.3 0.55
Former heavy smoker 0.1+0.2 0.44 -0.02+0.05 0.71 -0.01+0.006 0.06 -0.01+0.01 0.35 8.1% [-5.4;23.4] 0.25 -5.9+8.3 0.48
Time after cessation: > 25 years
Intercept -2.840.8 3.4+0.3 0.1+0.03 0.4+0.07 226.8+45.0
frr:é’ki'rr)‘g status (ref.=Lifelong non- 0.76 0.47 0.70 0.40 0.67 0.44
Former light smoker -0.007+0.08 0.93 0.01+0.03 0.68 0.0009+0.003 0.77 -0.0094£0.007  0.20 -2.6% [-9.1;4.4] 0.46 -5.1+4.5 0.25
Former heavy smoker 0.1+0.2 0.47 0.08+0.07 0.23 -0.005+0.007 0.45 -0.008+0.02 0.61 3.7% [-12.3;22.5] 0.68 4.5+10.9 0.68

All the models are adjusted for gender, age, ETS exposure, alcohol consumption, physical activity, diabetes, BMI, BMI squared, average annual NO,

PSD, Power Spectral Density

Values shown are as percent changes in geometric means (GM) and 95% confidence interval (g50,Cl) or coefficient + standard error (se)
Participants were classified as lifelong non-smokers if the total lifetime amount smoked was <0.1 pack-years. Smokers were defined as heavy smokers if the total
lifetime amount smoked was > 20 pack-years. Pack-years were calculated by multiplying the number of years smoked by the average number of packs smoked per

day
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Chapter 2: Long-term exposure to TPMyy, heart rate variability and heart rate dynamics

4.1. Abstract

Aim: To evaluate the influence of low-level, but long-term exposure (10 years), to traffic-
related particulate matter (TPMjo) on the regulation of the autonomic cardiovascular system
and heart rate dynamics in an aging general population, as well as the a priori selected effect
modifiers sex, smoking status, obesity, and gene variation in selected glutathione S-
transferases (GSTSs).

Methods: We analyzed data from 1593 participants aged > 50 years from the SAPALDIA
cohort study. For each participant, heart rate variability and heart rate dynamics were
characterized by means of various quantitative analyses of the inter-beat interval time series
generated from 24-hour electrocardiogram recordings. Each parameter obtained was then used
as the outcome variable in multivariable mixed linear regression models in order to evaluate
the association with long-term exposure to traffic-related PMy,. The models were adjusted for
known confounding factors. Interaction between long-term exposure to traffic-related PMy,
and the a priori selected effect modifiers were tested.

Results: We did not observe an overall association between long-term exposure to TPMj, and
heart rate variability/heart rate dynamics in the entire study population. However, significant
changes in the heart rate dynamics were found in subjects without cardiovascular morbidity
and significant changes both in the heart rate dynamics and in heart rate variability were
found in non-obese subjects without cardiovascular morbidity. Furthermore, subjects with
homozygous GSTM1 gene deletion appeared to be more susceptible to the effects of TPMy,.
Conclusion: This study provides evidences that long-term exposure to TPMjo triggers
adverse changes in the regulation of the cardiovascular system. These adverse effects were
more visible in the healthy subjects, in whom the overall relationship between TPMj, and
heart rate variability/heart rate dynamics was not modified by an underlying health condition

and the eventual countering effects of related drug treatments.

Keywords: heart rate variability; nonlinear dynamics; air pollution; particulate matter;

vehicle emissions
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4.2. Introduction

Short- and long-term exposure to particulate matter (PM) air pollution has been
associated with increased cardiovascular morbidity and mortality, with greater risks in
susceptible populations, such as the elderly, individuals with diabetes, patients with
preexisting coronary heart disease, chronic lung disease, or heart failure, and individuals with
low education or socioeconomic status (Pope, Burnett et al. 2004, Brook, Rajagopalan et al.
2010, Pieters, Plusquin et al. 2012). Current or previous smokers, obesity and sex could also
be susceptibility factors (Brook, Rajagopalan et al. 2010).

Possible mechanisms for these associations include effects on the autonomic nervous
system. Heart rate variability (HRV) is a useful non-invasive measure to assess the autonomic
regulation of cardiac rhythm (1996). Lower HRYV is associated with higher cardiovascular
morbidity and mortality, and has proved itself as an important prognostic tool for several
cardiovascular conditions (Kleiger, Miller et al. 1987, Bigger, Fleiss et al. 1992, 1996, Tsuji,
Larson et al. 1996). There is strong overall epidemiological evidence that short-term PM
exposure (days) is associated with reductions in most indices of HRV, and the association
might be more pronounced among the elderly, patients with preexisting cardiovascular
disease or diabetes, or people with reduced antioxidative defenses (Park, O'Neill et al. 2005,
Brook, Rajagopalan et al. 2010, Pieters, Plusquin et al. 2012, Mordukhovich, Coull et al.
2015). In particular, recent observations have shown a strong effect modification of the HRV-
PM relationship, as well as of the HRV-second-hand smoke and HRV-BMI relationships, by
genes that modulate endogenous oxidative stress, such as glutathione S-transferase (GST)
(Schwartz, Park et al. 2005, Park, O'Neill et al. 2006, Baccarelli, Cassano et al. 2008, Probst-
Hensch, Imboden et al. 2008, Adam, Imboden et al. 2017), suggesting that air pollutants
might impact in part through inflammatory and oxidative stress pathways.

Although long-term PM exposure is known to have a stronger effect on cardiovascular
morbidity and mortality than acute exposure, there is limited or weak available
epidemiological evidence that HRV is altered by low-level, but long-term exposure (years)
(Brook, Rajagopalan et al. 2010). Indeed, studies on the chronic impact of PM air pollution on
HRV are scarce (Adam, Felber Dietrich et al. 2012, Adam, Imboden et al. 2014,
Mordukhovich, Coull et al. 2015) and the American Heart Association recently stated that
studies on the long-term effects of air pollution on HRV and cardiovascular health are a major

unresolved issue.
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Finally, there is increasing evidence that the regulation of the cardiovascular system
involves nonlinear control mechanisms (1996, Rajendra Acharya, Paul Joseph et al. 2006)
which can best be characterized using nonlinear time series analysis techniques (Goldberger
and West 1987, Pincus 1991, Pikkujamsa, Makikallio et al. 2001, Meyer and Stiedl 2003,
Rajendra Acharya, Paul Joseph et al. 2006, Vandeput, Verheyden et al. 2012). The recent
implementation of such methods to evaluate the influence of current smoking and smoking
cessation on heart rate dynamics, in the large epidemiological dataset of SAPALDIA, which
allowed for the control of the most potential confounders, enabled us to unveil long-term
alterations in former heavy smokers who might need up to 15-25 years to fully recover.
(Meier-Girard et al. 2016).

By applying the same kind of approach, the present study aimed first at evaluating the
influence of low-level, but long-term (10 years), exposure to traffic-related particulate matter
(TPMyo) on the regulation of the autonomic cardiovascular system and heart rate dynamics in
an aging general population. Second, we specifically focused our investigation on the sub-
populations with or without cardiovascular morbidity (i.e., cardiovascular disease and/or
hypertension). Finally, we investigated the a priori selected effect modifiers - sex, smoking
status, obesity, and gene variation in selected glutathione S-transferases (GSTSs) - in the entire

population, as well as in the sub-populations with or without cardiovascular morbidity.

4.3. Methods
4.3.1. Ethics statement
The study was approved by the Central Ethics Committee of the Swiss Academy of
Medical Sciences and the Cantonal Ethics Committees for each of the study areas. Each
subject was informed in detail about the health examinations and signed and written informed

consent before any of the health examinations were conducted.

4.3.2. Study population
This study is part of the SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and
Heart Disease in Adults) study which was designed to assess the health effects of long-term
exposure to air pollutants in the Swiss adult population. The study design has been described
in detail elsewhere (Ackermann-Liebrich et al., 2005; Martin et al., 1997). In brief, the
SAPALDIA cohort (n=9651) was enrolled in 1991, and consisted of a random sample of the
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Swiss population aged 18 to 60 years, recruited from the local registries of inhabitants in eight
areas featuring distinct geographical and environmental conditions.

In 2002, the follow-up study included 8047 (83.4%) participants. A random sample of
1846 out of 4417 participants, aged > 50 years underwent a 24-hour electrocardiogram (ECG)
Holter recording to assess HRV, as previously described in detail (Felber Dietrich et al.,
2006). Exclusion criteria were general or spinal anaesthesia within 8 days before the ECG
recording (n=5), a myocardial infarction within 3 months prior to the examination (n=2),
taking digitalis (n=6), and an artificial internal pacemaker (n=0). Participants with recordings
showing atrial fibrillation (n=12), ECG duration lower than 18 hours (n=73), or of insufficient
quality (n=6), non-valid data on HRV (n=96) were also excluded (Felber Dietrich et al.,
2006). This current analysis is restricted to 1593 participants with valid data on HRV,

cardiovascular risk factors, and TPMyo exposure.

4.3.3. Questionnaires and measurements
Information about questionnaires and biological measurements (i.e., body mass index,
blood pressure, heart rate, uric acid, high-sensitivity C-reactive protein) has been reported
elsewhere (Martin, Ackermann-Liebrich et al. 1997, Ackermann-Liebrich, Kuna-Dibbert et al.
2005, Felber Dietrich, Schindler et al. 2006).

HRV measurements and measures of heart rate dynamics

Time series analysis parameters of heart rate variability were calculated for each
individual time series of inter-beat intervals (RR series) generated from the 24-hour ECG
recordings.

The traditional time domain measure used was the standard deviation of normal interbeat
intervals (SDNN) (1996). Additionally, a power-law relationship between the power spectral
density (PSD) of the interbeat interval time series and frequency was determined by
estimating the slope B of the linear best-fit of the PSD as a function of the frequency on a
double logarithmic scale. In our previous study, related to heart rate dynamics and smoking
exposure, we found a positive association between slope 3 and smoking exposure (Girard,
Delgado-Eckert et al. 2015).

We used nonlinear time series analysis methods to quantify and characterize the heart rate

dynamics. The following heart rate dynamics (HRD) parameters were calculated:
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e Exponent a: we used detrended fractal analysis (DFA) to measure the presence or
absence of fractal correlation properties in signals (namely the “memory effect”). This
method has been validated for interbeat intervals time series (Peng, Havlin et al.
1995). The fractal long-range correlations are characterized by a scaling exponent a. A
fractal-like signal results in o=1. White Gaussian noise (totally random signal) results
in a value of 0.5. In healthy young subjects, it is closer to 1, and this value falls within
different ranges for various types of cardiac abnormalities. In our previous study,
related to heart rate dynamics and smoking exposure, we found an inverse association
between a and smoking exposure (Girard, Delgado-Eckert et al. 2015).

e Largest Lyapunov exponent: detection of chaos in a time series can be done by
measuring the largest Lyapunov exponent in the appropriate phase space embedding
(Rosenstein, Collins et al. 1993). It quantifies the exponential divergence of initially
close state-space trajectories and estimates the amount of chaos in a system. The
extent to which chaos relates to physiological or pathological dynamics is a subject of
active investigation and some controversy (Goldberger, Amaral et al. 2000). In our
previous study, related to heart rate dynamics and smoking exposure, we found an
inverse association between the largest Lyapunov exponent and smoking exposure
(Girard, Delgado-Eckert et al. 2015).

More details about the choice, implementation, and properties of the aforementioned time

series analysis methods are described in the Online Supplement.

Air pollutant exposure estimation

TPMyg estimates were obtained over ten years (1990-2000) using a dispersion modeling
approach (Liu, Curjuric et al. 2007). In accordance with previous investigations of traffic-
related PMyo as part of the SAPALDIA cohort study (Adam, Felber Dietrich et al. 2012,
Adam, Imboden et al. 2014), mean of the 10 indicators was used to obtain the average
concentration of TPMyg over 10 years.

Genotyping

The genotyping has been described in detail elsewhere (Probst-Hensch, Imboden et al.
2008). In brief, all subjects were genotyped for GSTM1 (UniGene ID Hs.301961; UniGene
2008a) and GSTT1 (UniGene Hs.268573; UniGene 2008b) gene deletions.
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4.3.4. Statistical analysis
All tests were two-sided with a significance level of 0.05. Statistical analysis was
performed using R, Version 3.3.3 (2008).

Descriptive analysis
Results are expressed as numbers and percentages for categorical variables and as a mean
+ standard deviation or median [25"quartile; 75™quartile] for continuous variables, according

to their distribution.

Multivariable analysis

Each parameter describing the HRV, or heart rate dynamics, was used as the outcome
variable in multivariable linear regression models in order to evaluate the association with
long-term exposure to TPMy (for an increase of 10 pg/m® of TPMyy). Initial inspection of the
outcome variable showed a skewed distribution of the residuals for the traditional time and
frequency domain measures and for some of the other time series analysis parameters. These
variables were therefore log-transformed. Results of these analyses are therefore presented as
geometric means and percent changes in geometric means. All the models were adjusted for
known confounding factors (Felber Dietrich, Schindler et al. 2006, Adam, Felber Dietrich et
al. 2012, Adam, Imboden et al. 2014). These factors were: sex (male as reference), age (for an
increase of 1 year), age?, body mass index (BMI, for an increase of 1 kg/m?), BMI?, alcohol
consumption (<1 glass/day as reference, > 1 glass/day), weekly physical activity — to the point
of getting out of breath or sweating — (never as reference, between 0.5h and 2h, > 2h/week),
daily exposure to environmental tobacco smoke (for an increase of 1 hour/day), diabetes (no
as reference, yes), smoking group (lifelong non-smoker as reference, former light smoker,
former heavy smoker, current light smoker, current heavy smoker), uric acid concentration
(umol/l), high-sensitivity C-reactive protein (mg/l), street and railway noise exposure (mean
dB(A) per night), seasonal effects (sine and cosine functions of the day of examination with a
period of 1 year), education level (high as reference, middle, low), employment category
(employed as reference, unemployed, house person, pensioner), occupational exposure (no as
reference, yes if current exposure to dust, gas/smoke/aerosols/fumes/vapors at the working
place), cardiovascular morbidity (no as reference, yes). Cardiovascular morbidity was defined
as “no” if there was no evidence for cardiovascular disease or hypertension (i.e., the subject

had no physician diagnosed heart disease, no major cardiovascular medication intake, and no
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hypertension). Major cardiovascular medication consisted of beta-blockers, angiotensin-
converting-enzyme (ACE) inhibitors, angiotensin Il receptor antagonists, calcium channel
blockers, diuretic medications, antiarrhythmic drugs class | + IlI, sympathomimetic
medications. Absence of hypertension was defined as absence of a physician diagnosis of

hypertension, blood pressure in the hypertensive range, and antihypertensive medication.

Investigation of susceptible groups

Modifying effect of cardiovascular morbidity, sex, as well as of inflammation and
oxidative stress related parameters such as smoking status (defined as ever smoker or lifelong
non-smoker), obesity (defined as BMI > 30 kg/m?), and known polymorphisms in the
GSTM1, GSTT1, and GSTP1 genes previously found to modify the smoking-HRV
association in the SAPALDIA cohort study (Probst-Hensch, Imboden et al. 2008) were

assessed for each outcome.

Sensitive analysis

Given previous evidence of higher air pollution susceptibility for patients with diabetes,
participants with an according physician diagnosis of diabetes were excluded in a sensitivity
analysis.

According to previous work on the SAPALDIA cohort, which provided evidence that
participants under ACE inhibitor therapy represented a specific subgroup susceptible to the
adverse effects of TPMy, on the traditional parameters of HRV (Adam, Felber Dietrich et al.
2012), a sensitive analysis was conducted to assess the TPM1,-HRV/HRD relationship by
excluding patients under ACE inhibitors therapy from the entire study population.

Investigation of the PM1o-HRV/HRD relationship
In addition, we investigated the PM;o-HRV/HRD relationship. Methods and results are
provided in the Online Supplement.

4.4. Results
4.4.1. Study population
The study population consisted of 1593 subjects. The mean age of the subjects was
60.5+6.2 years. Demographic characteristics, lifestyle factors, cardiovascular health and

diabetes, long-term exposure to air pollution, and GST genotypes are summarized in Table
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4.1. A more detailed description has been reported elsewhere (Adam, Felber Dietrich et al.
2012, Girard, Delgado-Eckert et al. 2015).

Table 4.1. Characteristics of the study population and subpopulations investigated

Characteristic Entirestudy =MD Subpopulation MD
population without
(n=1593) cardiovascular
morbidity (n=510)
Demographic characteristics
Age, years 60.5£6.2 - 59.6+£6.01 -
Sex, Men 773 (48.5) - 200 (39.2) -
BMI, kg/m? 26.7+4.34 3  25.1#3.78 -
Education - -
low 144 (9.0) 48 (9.4)
middle 1048 (65.8) 325 (63.7)
high 401 (25.2) 137 (26.9)
Employment 10 6
employed 862 (54.5) 291 (57.7)
house person 352 (22.2) 121 (24)
unemployed 81 (5.1) 21 (4.2)
pensioner 288 (18.2) 71 (14.1)
Lifestyle factors
Smoking status 60 12
lifelong non-smoker 692 (45.1) 230 (46.2)
current light smoker 65 (4.2) 28 (5.6)
current heavy smoker 222 (14.5) 71 (14.3)
former light smoker 314 (20.5) 112 (22.5)
former heavy smoker 240 (15.7) 57 (11.4)
Time elapsed since cessation, years 7 3
<15 154 (28.2) 46 (27.7)
15-25 150 (27.4) 44 (26.5)
>25 243 (44.4) 76 (45.8)
Daily ETS exposure, hours 2 2
none 1253 (78.8) 407 (80.1)
<3 216 (13.6) 63 (12.4)
>3 122 (7.7) 38 (7.5)
Alcohol, > 1 glass/day 731 (45.9) 2 211 (41.5) 2
Weekly physical activity 14 5
none 666 (42.2) 203 (40.2)
30min-1h 516 (32.7) 183 (36.2)
2h or more 397 (25.1) 119 (23.6)
Noise exposure, dB(A) 56.6+7.31 7 57+7.11 3
Cardiovascular health and diabetes
Diabetes 80 (5.0) - 9(1.8) -
Heart disease diagnosed by a doctor 126 (7.9) - 0 (0) -
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Table 4.1. Characteristics of the study population and subpopulations investigated

(continued)

Characteristic Entire study MD Subpopulation MD

population without

(n=1593) cardiovascular

morbidity (n=510)

Hypertension 861 (54.0) - 0 (0) -
Major cardiovascular medication (>1) 403 (31.7) 321 0(0) -
ACE inhibitor therapy 102 (8.0) 321 0(0) -
Uric acid, pmol/I 326+85.93 56 300+77.01 15
hs-CRP, mg/I 1.2 [0.6;2.6] 56 1[0.5;2] 15
Heart rate (bpm) 74.249.1 1 74.6£7.85 1
SDNN (msec) 136.5+35.22 - 140.5+34.49 -
Air pollutants exposure
Occupational exposure 400 (25.2) 3 131 (25.8) 2
PMyo, pg/m® 20.9[17.8;25.1] 9  20.2[17.1;24.7] 5
Traffic-related PMyo, pg /m® 1.9 [1.2;3.1] 9  15[1.1;2.9] 5
GST genotypes
GSTML deletion 781 (52.3) 100 240 (50.3) 33
GSTT1 deletion 261 (17.5) 100 79 (16.6) 33
GSTM1T1 deletion 145 (9.7) 100 41 (8.6) 33

ACE inhibitor, angiotensin-converting-enzyme inhibitor; BMI, body mass index; ETS,
Environmental Tobacco Smoke; hs-CRP, high-sensitivity C-reactive protein; GST,
glutathione S-transferase; MD, missing data; PM, particulate matter; SDNN, standard
deviation of all NN intervals

Values shown are mean + standard deviation, median [25"quartile; 75"quartile] and numbers

(percentages)

4.4.2. Relationship between long-term exposure to TPMjy, and heart rate
variability/heart rate dynamics

There was no significant association between long-term exposure to TPMj, and
HRV/HRD parameters (Table 4.2), as well as when stratifying by sex, smoking status,
obesity, and GST genotypes (Online Supplement).

However, stratification by cardiovascular morbidity revealed significant associations
between TPMjy, and the HRD parameters slope p (0.8+0.3, p=0.01, interaction
TPMyg*cardiovascular morbidity: p=0.04) and largest Lyapunov exponent (-0.06+0.03,
p=0.03, interaction TPMjp*cardiovascular morbidity: p=0.08) in subjects without
cardiovascular morbidity (Table 4.3, Figure 4.1).
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Table 4.2. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PMjo in linear mixed effects
regression models (random intercepts for study area)

Entire study population (n=1237%)
intercept %GM, 95%ClI

or coefficient+SE P Value
SDNN -6.5 [-17.2;5.7] 0.27
a -3.5[-12.0;5.3] 0.42
Slope B -4.0£2.8 -0.03+0.2 0.89
Largest Lyapunov exponent 0.2+0.2 -0.01+0.02 0.63

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure,
diabetes, and cardiovascular morbidity

SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)
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Table 4.3. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PMjo in linear mixed effects

regression models (random intercepts for study area) stratified by cardiovascular morbidity

Cardiovascular morbidity (n=775%) No cardiovascular morbidity (n=462*) Interaction®
intercept %GM, 95%CI val intercept  %GM, 95%ClI val p-value
or coefficient+SE  P~VaUe or coefficientsSE ~ P~VaUe
SDNN -2.2[-16.2;12.7] 0.76 -14.3 [-29.0;6.3] 0.15 0.36
a -0.3[-11.8;12.7] 0.96 -8.8 [-20.1;2.0] 0.11 0.24
Slope B -3.4+£3.7 -0.3£0.3 0.36 -3.8t4.4 0.8+0.3 0.01 0.04
Largest Lyapunov exponent 0.3+0.3  0.02+0.02 0.47 0.4+0.4  -0.06+0.03 0.03 0.08

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, and
diabetes

SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM;p and cardiovascular morbidity
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4.4.3. Investigation of the subgroup without cardiovascular morbidity

TPMy effects became particularly visible in non-obese subjects both in the HRV
parameter (SDNN: -20.0% [-33.7%;0.2%], p=0.05, interaction TPMjp*obesity: p=0.01) and in
the HRD parameters (a: -10.8% [-21.7%;0.06%], p=0.05; slope B: 0.8+£0.3, p=0.02; largest
Lyapunov exponent: -0.08+0.03, p=0.01) (Table 4.4, Figure 4.1). This finding suggests that
TPMjg effects might be more visible in subjects without any comorbidity (“healthy subjects™).

There was no effect modification by sex (Online Supplement Table E4.1) and no clear
effect modification by smoking status (Online Supplement Table E4.2).

We found strong significant associations between TPM;jo and HRV/HRD parameters
(SDNN: -25.6% [-42.9%;-2.5%], p =0.03; slope B: 1.2+0.4, p<0.001) in subjects with
homozygous GSTM1 gene deletion (Table 4.5, Figure 4.1). These findings are consistent
with the hypothesis that air pollutants might impact in part through oxidative stress pathways.
Conversely, the HRD parameter a was significantly decreased (-16.0% [-26.6%;-3.9%],
p=0.01) in subjects without GSTM1 deficiency. That might be explained by the fact that those
subjects are likely to be more healthy (not likely to have systemic inflammation and oxidative
stress) and thus, similarly to our findings in non-obese subjects, TPM;, effects might be
visible in such subjects as well.

When stratifying by GSTT1 genotype, we observed significant associations in subjects
without GSTT1 deficiency (Online Supplement Table E4.3). However, coefficients in
subjects with homozygous GSTTL1 gene deletion were similar to that in subjects without
GSTT1 deficiency, and confidence intervals were very broad. The small sample size of the
subgroup of subjects with homozygous GSTM1 gene deletion (n=69) might have limited the
statistical power of our analyses. Consequently, there is no evidence of effect modification by
GSTT1 genotype.
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Table 4.4. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PMjo in linear mixed effects

regression models (random intercepts for study area) stratified by obesity

Entire study population Non-obese (n=974%*) Obese (n=263%*) Interaction®
intercept  %GM, 95%CI p-value intercept %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -6.7 [-18.2;8.5] 0.33 -6.5 [-27.5;20.7] 0.61 0.72
a -2.7 [-10.9;6.1] 0.53 -2.9 [-19.5;17.2] 0.76 0.88
Slope B -4.4+£35  -0.050.2 0.82 -12.4+7.2  0.310.4 0.54 0.34
Largest Lyapunov exponent -0.3+0.3  -0.005+0.02 0.98 1.0+0.7 -0.03+0.04 0.41 0.21
Subpopulation without Non-obese (n=415%) Obese (n=47%) Interaction®
cardiovascular morbidity intercept  %GM, 95%ClI p-value intercept %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -20.0[-33.7;,0.2] 0.05 27.4[-26.5;120.6] 0.38 0.01
a -10.8 [-21.7;0.06] 0.05 33.6 [-3.8;85.6] 0.08 0.13
Power spectral density -0.9+4.9  0.8+0.3 0.02 -21.9+26.3 1.8+1.2 0.14 0.56
Largest Lyapunov exponent -0.07£0.4  -0.08+0.03 0.01 2.8+2.1 0.05+0.1 0.60 0.11

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,

uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure,

diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)
SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPMyo and obesity
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Table 4.5. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PMjo in linear mixed effects

regression models (random intercepts for study area) stratified by GSTM1 genotype

Entire study population Deletion in GSTM1 (n=620%) No deletion in GSTM1 (n=572%) Interaction®
intercept  %GM, 95%CI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -10.4 [-24.0;5.6] 0.19 -3.0 [-16.2;12.3] 0.69 0.38
a 2.5[-9.0;16.2] 0.68 -8.1 [-18.6;2.2] 0.12 0.23
Slope B -5.0£¢4.0 0.2+0.3 0.48 0.6x4.1 -0.07£0.3 0.82 0.65
Largest Lyapunov exponent  0.2+0.4  -0.009+0.03 0.76 0.1+0.3  -0.01+0.02 0.66 0.79
Subpopulation without Deletion in GSTM1 (n=227%) No deletion in GSTM1 (n=217%) Interaction®
cardiovascular morbidity intercept  %GM, 95%CI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -25.6 [-42.9;-2.5] 0.03 -2.8 [-24.6;25.2] 0.82 0.11
a 2.4 [-10.3;16.9] 0.72 -16.0 [-26.6;-3.9] 0.01 0.21
Slope B 13158 1.2+04 <0.001 0.2+6.5 0.3+0.5 0.59 0.29
Largest Lyapunov exponent  1.2+0.6 -0.06+.04 0.16 -0.2+0.6  -0.08+0.04 0.08 0.57

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure,
diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM;o and GSTM1 genotype
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4.4.4. Sensitive analyses

As previously shown in the SAPALDIA cohort study, there was a strong decrease in
SDNN (-49.9% [-74.4%;-6.8%], p=0.03) in subjects under ACE inhibitor therapy (Online
Supplement Table E4.4). In contrast, we did not find any particular changes in the HRD
parameters. The relationship between long-term exposure to TPM;, and HRV/HRD
parameters was not modified by exclusion of patients under ACE inhibitor therapy from the
entire study population (data not shown).

Exclusion of subjects with diabetes made associations even stronger in non-obese
subjects for SDNN (-20.9 [-34.6;-1.5], p=0.04) and o (-11.3 [-22.3;-0.5], p=0.04) (Online
Supplement Table E4.5), as well as in subjects without GSTT1 deletion for a (-11.3 [-22.3;-
0.1], p=0.05) and slope B (0.8+0.4, p=0.05) (Online Supplement Table E4.6).

4.4.5. Relationship between long-term exposure to PMjp, and heart rate
variability/heart rate dynamics
Findings with PMy, were very similar to that found by investigating the relationship
between long-term exposure to TPMj, and HRV/HRD, though the effect size of PMy, was
smaller than that of TPM3, and resulted in the same conclusions (Online Supplement).

4.5. Discussion
4.5.1. Main findings

This study evaluates the influence of long-term exposure to TPMy, on HRV and heart
rate dynamics. While we did not find any overall association in the entire study population,
we observed strong significant associations of long-term exposure to TPMjo with the HRD
parameters slope B and largest Lyapunov exponent in subjects without cardiovascular
morbidity. These findings might be explained by the fact that the relative contribution of both
the underlying health condition and the countering effects of drug treatments on the TPMyo—
HRV/HRD relationship might render this relationship so variable that the overall TPMyo—
HRV/HRD relationship in such subjects might be null. In contrast, the TPM;,-HRV/HRD
relationship might become more visible in subjects without cardiovascular disease and related
drug treatments.

This hypothesis is supported by the fact that TPM;, effects became even more visible in
the subgroup of non-obese subjects without cardiovascular morbidity, as shown by both HRV

and HRD parameters. Again, in these subjects, the underlying health condition and the
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countering effects of drug treatments (e.g., statins) might have rendered the overall TPMyo—
HRV/HRD relationship null.

Additionally, our findings support the hypothesis that TPMj, might impact in part
through oxidative stress pathways. We found significant associations between TPM;, and
HRV/HRD parameters in subjects with homozygous GSTM1 gene deletion (as shown by
SDNN and slope B).

Finally, the fact that adverse effects of TPMj, were revealed in subjects without
cardiovascular morbidity only by HRD parameters supports the hypothesis that measuring
changes in complexity in heart rate dynamics in response to exposure to environmental
elements, might unveil subtle but important changes in the regulatory mechanisms of the

cardiovascular system not detectable by traditional analysis methods.

4.5.2. Strengths and weaknesses of the study (internal validity)

To the best of our knowledge, this is the first study examining the influence of low-level,
but long-term, particulate matter air pollution exposure on parameters describing the HRV
and heart rate dynamics (using nonlinear time series analysis methods). Additional strengths
of the present study included the population-based design, involving a random sample of the
Swiss population; the large number of participants; and the detailed information available on
participants, allowing for the control of most potential confounders.

A limitation of this study was the absence of a physiological interpretation of the
parameters calculated with methods from nonlinear dynamics. Physiological interpretation of
such metrics constitutes a major limitation for their use (1996, Goldberger, Amaral et al.
2000, Francesco, Maria Grazia et al. 2012, Manor and Lipsitz 2013). Though it is reasonable
to assume that these concepts from mathematics could help gain insight into mechanisms
underlying systems fluctuation behavior (e.g., modulations of heart period), efforts are needed
to improve our understanding of their physiological correlates. In the present study, this
uncertain knowledge limited the interpretation of associations between parameters, and their
translation into risk of cardiac events. Another limitation was the small sample size of some
subgroups, as well as the low prevalence of some genotypes, which limited statistical power

of the explanatory analyses.
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4.5.3. Strengths and weaknesses of the study compared to other studies (external
validity)

To the best of our knowledge, the association between long-term traffic-related
particulate matter exposure and HRV has only been examined in the SAPALDIA cohort study
(TPMy, levels averaged over a 10 year period) (Adam, Felber Dietrich et al. 2012, Adam,
Imboden et al. 2014), and by Mordukhovich et al., who evaluated sub-chronic (3-84 days) and
longer-term (1 year) PM, or black carbon (a marker of traffic pollution) exposure in relation
to HRV (Mordukhovich, Coull et al. 2015). These studies did not observe any consistent
overall association.

Interestingly, in the present study, by examining the TPM1,-HRV/HRD relationship in
the subgroup of subjects without cardiovascular morbidity (i.e., no hypertension or heart
disease), we observed significant changes in the heart rate dynamics, whereas we found no
significant association in the subgroup with cardiovascular morbidity. These findings
corroborate those from Barclay et al. who did not observe any hematological or
electrocardiogram response to ambient air pollution in patients with cardiac failure, thought to
be a susceptible group (Barclay, Miller et al. 2009), in contrast to their earlier findings in
healthy elderly people (Seaton, Soutar et al. 1999). They concluded that modern cardiac
therapy was likely to give a measure of protection against the adverse cardiac effects of
pollution.

Several studies have provided evidence that the relation between HRV and cardiovascular
drug therapies varies and depends on the type of therapy. Adam et al. observed that the
adjusted HRV of subjects treated with ACE inhibitors or beta blockers was generally
increased, while the HRV of subjects treated with angiotensin receptor blockers, calcium
channel blockers, or diuretics, was decreased when compared with the average HRV levels of
participants without any heart medication intake (Adam, Felber Dietrich et al. 2012).
Furthermore, they provided suggestive evidence that participants under ACE inhibitor
treatment may represent a specific subgroup susceptible to the adverse effects of TPMjo on
HRV. In some other studies, beta blockers (Gold, Litonjua et al. 2000, Park, O'Neill et al.
2005), calcium channel blockers (Park, O'Neill et al. 2005) and statins (Schwartz, Park et al.
2005) have been shown to attenuate the effects of air pollutants; while another study found no
evidence of effect modification by beta blockers (Schwartz, Litonjua et al. 2005). These
findings suggest that response to long-term TPMj, exposure might result from the relative

contribution of both the underlying cardiovascular condition and the countering effects of
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drug treatments, and might therefore explain the heterogeneous effects of short- and long-term
PM air pollution found in subjects with a cardiovascular morbidity (Holguin, Tellez-Rojo et
al. 2003, Chuang, Chan et al. 2005, Park, O'Neill et al. 2005, Schwartz, Litonjua et al. 2005,
Pieters, Plusquin et al. 2012, Buteau and Goldberg 2016).

The TPMy-HRV/HRD relationship became even more visible while we investigated
healthier subjects in the subgroup of subjects without cardiovascular morbidity (i.e., non-
obese subjects, and subjects without diabetes). These findings are consistent with those from
Yingying et al., who found greater reductions in HRV in relation to PM3o exposure in subjects
with low Framingham risk score (i.e., low global cardiac risks) (Feng, Huang et al. 2015).

Finally, we found strong and significant associations in subjects with homozygous
GSTM1 gene deletion, which is in the line with previous studies that provided evidences that
air pollutants might impact in part through oxidative stress pathways (Schwartz, Park et al.
2005, Probst-Hensch, Imboden et al. 2008, Pieters, Plusquin et al. 2012).

4.5.4. Relevance of the study results and implications for policymakers

First, this study provides evidence of the adverse effects of long-term exposure to TPMig
on HRV and heart rate dynamics in healthy subjects, believed to be less susceptible than
specific subpopulations with morbidities (e.g., the elderly, patients with preexisting
cardiovascular disease or diabetes, obese subjects) though. This constitutes a strong argument
for health policy makers advocating for more intensive prevention campaigns aimed at
reducing traffic-related pollution. However, further studies are needed to see whether these
alterations in HRV/HRD in healthy people lead to increased mortality and morbidity later in
life.

Second, this study provides evidence that the TPMo-HRV/HRD relationship in subjects
with cardiovascular morbidity might be modified by both the underlying cardiovascular
condition and the related treatments. Thus, some cardiac therapies, for a given underlying
cardiovascular condition, might be protective against the adverse cardiac effects of pollution,
whereas some other cardiac therapies/conditions might render subjects particularly susceptible
to those effects. Further studies investigating the TPMo-HRV/HRD relationship in subjects

with cardiovascular morbidity are necessary.
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4.6. Conclusion

In conclusion, findings from the present study indicate that long-term exposure to TPMy,
even at low level, triggers adverse changes in the regulation of the cardiovascular system and
in the heart rate dynamics. These adverse effects were more visible in healthy subjects, in
whom the overall TPMo-HRV/HRD relationship was not modified by an underlying health
condition and the eventual countering effects of related drug treatments. Therefore, our
findings constitute a strong argument for health policy makers advocating for more intensive
prevention campaigns aimed at reducing traffic-related pollution. Finally, we provide some
evidence that subjects with homozygous GSTM1 gene deletion might be more susceptible to
the effects of TPMo.
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4.8. Online Supplement
Methods
HRV measurements and measures of heart rate dynamics

The following time series analysis parameters were calculated using our own
implementations in R (occasionally accessing C libraries to reduce run time) of well-known
algorithms. Many of the implementations are based on the TISEAN package (Hegger, Kantz
et al. 1999):
A power-law relationship between the power spectral density (PSD) of the interbeat interval
time series and frequency was determined by estimating the slope  of the linear best-fit of
the PSD as a function of the frequency on a double logarithmic scale. Several parameters
were obtained, depending on the range of frequencies used. The power spectral density (PSD)
was estimated according to the method described in (Cusenza 2010). Regressing the power
spectral for frequencies in the range 0.01 > freq > 0.0001 yielded the parameter PSD;.
Analogously, PSD, corresponds to 0.04 > freq > 0.02, PSD3 to 0.45 > freq > 0.0001, PSD4 to
0.5 > freq > 0.1, PSDs to 0.5 > freq > 0.2, and PSDg to 0.5 > freq > 0.3, respectively.
According to our previous work on heart rate dynamics and smoking exposure, we considered
PSDs in the present study (Girard, Delgado-Eckert et al. 2015).
The Largest Lyapunov exponent A was calculated using an embedding dimension of two, and
a time lag or delay time of one sample, considering at least 2000 reference points, and
adjusting the neighbourhood size ¢ to obtain at least 10 neighbours per reference point, such
that no neighbour was a direct chronological successor of the given reference point (i.e., the
Theiler window was set to 2). The length of the embedding space trajectories compared for
the estimation of A was of 20. The algorithm used is described in (Hegger, Kantz et al. 1999,
Kantz and schreiber 2004).
The scaling exponent o obtained via detrended fluctuation analysis (DFA) was calculated
using a geometric window increase with exponent equal to 2 and no overlap of windows. Four
different time scales were considered: 3-7 samples (1), 7-13 samples (ay), 4-16 samples (as),
and 16-64 samples (o4). According to our previous work on heart rate dynamics and smoking
exposure, we considered oz in the present study (Girard, Delgado-Eckert et al. 2015). The
method of DFA is described in (Kantz and schreiber 2004) and the citations therein. The data
were detrended by means of a moving average method (Alvarez-Ramirez 2005).
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Results
Table E4.1. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PMsq in linear mixed effects

regression models (random intercepts for study area) stratified by sex

Entire study population Male (n=590%) Female (n=647%) Interaction®
intercept  %GM, 95%CI p-value intercept  %GM, 95%ClI p-value p-value
or coefficientxSE or coefficient=SE
SDNN -5.2 [-21.2;16.7] 0.58 -6.8 [-19.6;7.9] 0.34 0.59
a -2.4 [-11.8;8.0] 0.64 -6.1 [-17.0;4.7] 0.26 0.89
Slope f3 -1.0¢45 -0.1+0.3 0.68 -4.2¢35  0.07+0.3 0.79 0.54
Largest Lyapunov exponent 0.7+0.4 -0.01+0.02 0.56 -0.3+0.3  -0.02+0.02 0.53 0.50
Subpopulation without Male (n=180%) Female (n=282%) Interaction®
cardiovascular morbidity
intercept  %GM, 95%CI p-value intercept  %GM, 95%ClI p-value p-value
or coefficientxSE or coefficient=SE
SDNN -30.2 [-50.7;5.1] 0.08 -4.2[-23.1;19.5] 0.70 0.12
a -8.1[-21.9;8.3] 0.31 -6.4 [-16.7;5.2] 0.27 0.72
Slope f3 -4.0£7.5 0.1+0.6 0.84 -3.4+54  1.2+04 <0.001 0.28
Largest Lyapunov exponent 1.5+0.6 -0.09+0.05 0.06 -0.5+0.5 -0.07+0.04 0.06 0.28

All the models are adjusted for age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, uric acid,
high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, diabetes, and
cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)

SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM;, and sex
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Table E4.2. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PMsq in linear mixed effects

regression models (random intercepts for study area) stratified by smoking status

Entire study population Ever smoker (n=675%) Lifelong non-smoker (n=562%*) Interaction®
intercept %GM, 95%ClI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -5.8 [-18.8;9.4] 0.43 -6.9 [-22.6;10.8] 0.42 0.51
a -2.8 [-11.4;6.7] 0.55 -7.0 [-21.8;7.0] 0.33 0.96
Slope B -1.3+4.0 0.1+0.3 0.60 -6.9+3.8  -0.3+0.3 0.36 0.73
Largest Lyapunov exponent 0.3+0.3  -0.009+0.03 0.75 -0.04+0.3 0.0009+0.03 0.97 0.86
Subpopulation without Ever smoker (n=248%) Lifelong non-smoker (n=214%*) Interaction®
cardiovascular morbidity
intercept %GM, 95%ClI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -11.2 [-31.5;15.0] 0.37 -22.9[-40.3;-0.4] 0.05 0.51
o 1.2 [-11.2;15.3] 0.86 -155[-24.4;-1.1] 0.04 0.06
Slope B -3.916.6 1.0+0.5 0.03 -4.6£5.8 0.6£0.5 0.23 0.70
Largest Lyapunov exponent 0.9+0.6 -0.05%0.04 0.20 -0.08+0.5 -0.07+0.04 0.08 0.52

All the models are adjusted for gender, age, BMI, environmental tobacco smoke exposure, alcohol consumption, physical activity, uric acid, high-
sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, diabetes, and
cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)

SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM; and smoking status
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Table E4.3. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM;q in linear mixed effects

regression models (random intercepts for study area) stratified by GSTT1 genotype

Entire study population Deletion in GSTT1 (n=199%) No deletion in GSTT1 (n=993%*) Interaction®
intercept %GM, 95%ClI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -6.0 [-30.7;26.4]  0.68 -7.1[-19.0;6.8] 0.29 0.33
a 10.4 [-17.2;39.5] 0.46 -6.0 [-13.7;3.0] 0.17 0.02
Slope B -0.0316.6 -0.3x0.4 0.55 -4.5+£3.2  0.08+0.3 0.75 0.81
Largest Lyapunov exponent  0.5+0.7 0.08+0.05 0.15 0.2+0.3  -0.02+0.02 0.28 0.08
Subpopulation without Deletion in GSTT1 (n=69%) No deletion in GSTT1 (n=375%) Interaction®
cardiovascular morbidity intercept %GM, 95%ClI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -35.0 [-59.9;21.5] 0.18 -175[-33.3;4.2] 0.10 0.05
a -8.1[-23.6;44.7] 0.79 -11.0[-22.0;0.2] 0.05 0.06
Slope B -16.9+11.4 0.2+0.9 0.84 -3.245.0 0.7£0.4 0.06 0.59
Largest Lyapunov exponent -0.5£1.0 -0.06+0.09 0.50 0.2+0.4  -0.07+0.03 0.03 0.59

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure,
diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPMyo and GSTT1 genotype
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Sensitive analyses
Table E4.4. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PMsq in linear mixed effects

regression models (random intercepts for study area) stratified by ACE inhibitor intake in the entire study population

ACE inhibitor (n=90%) No ACE inhibitor (n=1038%) Interaction®
intercept  %GM, 95%ClI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -49.9[-74.4;-6.8] 0.03 -2.6 [-13.6;9.8] 0.66 0.16
a 3.9[-25.2;69.9] 0.82 -3.9[-12.4;4.7] 0.36 0.64
Slope B -5.,5£12.8 -0.1+0.8 0.89 -2.8£3.0 -0.001+0.2 0.99 0.68
Largest Lyapunov exponent  1.0+1.4  0.02+0.07 0.83 0.2+0.3  -0.02+0.02 0.33 0.80

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure,
diabetes, and cardiovascular morbidity

ACE inhibitor, angiotensin-converting-enzyme inhibitor; SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM;o and ACE inhibitor
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Table E4.5. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PMyg in linear mixed effects
regression models (random intercepts for study area) stratified by obesity in the subpopulation without cardiovascular morbidity and without

diabetes
Non-obese (n=408%*) Obese (n=46%) Interaction®
intercept %GM, 95%CI p-value intercept %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -20.9 [-34.6;-1.5] 0.04 27.4[-26.9;122.0] 0.39 0.01
a -11.3[-22.3;-0.5] 0.04 33.6 [-4.1;86.3] 0.09 0.09
Slope f3 -0.4£5.0 0.8+0.3 0.02 -21.9426.5 1.8+1.2 0.15 0.56
Largest Lyapunov exponent  -0.02+0.4  -0.08+0.03 0.01 2.8+2.2 0.05+0.1 0.61 0.11

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, and occupational exposure
SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM; and obesity
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Table E4.6. Association between HRV and heart rate dynamics parameters (outcome variable) and traffic-related PM;q in linear mixed effects
regression models (random intercepts for study area) stratified by GSTT1 genotype in the subpopulation without cardiovascular morbidity and

without diabetes

Deletion in GSTT1 (n=69%) No deletion in GSTT1 (n=367%*) Interaction®
intercept %GM, 95%CI p-value intercept  %GM, 95%CI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -35.0[-59.9;21.5] 0.18 -19.0[-34.8;2.2] 0.07 0.05
a -8.1[-23.6;44.71 0.79 -11.3[-22.3;-0.1] 0.05 0.05
Slope f3 -16.9+11.4 0.2+0.9 0.84 -2.8£5.1 0.8+0.4 0.05 0.64
Largest Lyapunov exponent  -0.5+1.0 -0.06+0.09 0.50 0.2+0.4  -0.08+0.03 0.03 0.59

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, and occupational exposure
GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPMyo and GSTT1 genotype
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Investigation of the PM;o-HRV/HRD relationship
Air pollutant exposure estimation
PMjo estimates were obtained over ten years (1990-2000) using a dispersion modeling approach (Liu, Curjuric et al. 2007). The same as for

investigations of traffic-related PM;o mean of the 10 indicators was used to obtain the average concentration of PMjo over 10 years.

Results
Table E4.7. Association between HRV and heart rate dynamics parameters (outcome variable) and PMyq in linear mixed effects regression models

(random intercepts for study area)

Entire study population (n=1237%*)
intercept %GM, 95%ClI p-value
or coefficient=SE

SDNN -1.1[-3.6;1.3] 0.35
a 0.7 [-3.4;1.1] 0.47
Power spectral density -4.242.8 -0.04+0.04 0.25

Largest Lyapunov exponent 0.2+0.2  -0.0008+0.004 0.84

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure,
diabetes, and cardiovascular morbidity

SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)
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Table E4.8. Association between HRV and heart rate dynamics parameters (outcome variable) and PMjg in linear mixed effects regression models

(random intercepts for study area) stratified by the presence of cardiovascular morbidity

Cardiovascular morbidity (n=775%) No cardiovascular morbidity (n=462%) Interaction®
intercept %GM, 95%ClI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN 0.4 [-2.8;3.2] 0.77 -2.6 [-6.0;1.0] 0.14 0.21
a 0.4 [-2.5;3.0] 0.79 -2.0 [-5.7;0.04] 0.06 0.11
Power spectral density -3.543.7 -0.1+0.005 0.02 -3.8t4.4 0.1+0.6 0.02 0.01
Largest Lyapunov exponent 0.3+0.3  0.006+0.004 0.19 0.4+0.4  -0.009+0.005 0.06 0.05

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, and
diabetes

SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM;p and cardiovascular morbidity
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Table E4.9. Association between HRV and heart rate dynamics parameters (outcome variable) and PMjg in linear mixed effects regression models

(random intercepts for study area) stratified by sex

Entire study population Male (n=590%) Female (n=647%) Interaction®
intercept %GM, 95%CI p-value intercept  %GM, 95%CI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -1.3[-5.3;2.7] 0.48 -1.3[-4.0;1.4] 0.33 0.75
a -0.6 [-2.4;1.3] 0.55 -0.6 [-3.9;1.6] 0.64 0.23
Power spectral density -1.2+45 -0.1+0.05 0.08 -4.1+£3.5 0.02+0.05 0.69 0.11
Largest Lyapunov exponent 0.7+0.4 -0.002+0.004 0.67 -0.3£0.3  -0.0009+0.005 0.84 0.38
Subpopulation without Male (n=180%) Female (n=282%) Interaction®
cardiovascular morbidity
intercept %GM, 95%CI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -6.2 [-11.3;0.3] 0.06 -1.5[-5.2;2.3] 0.44 0.15
a -1.8 [-4.9;0.8] 0.17 -1.5[-3.5;0.5] 0.14 0.66
Power spectral density -4.0£7.5 -0.01+0.09 0.88 -3.4+£5.4  0.2+0.07 <0.001 0.05
Largest Lyapunov exponent 15+0.6 -0.02+0.008 0.04 -0.4+0.5 -0.008+0.006 0.23 0.16

All the models are adjusted for age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity, uric acid,
high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, diabetes, and
cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)

SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPMy and sex
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Table E4.10. Association between HRV and heart rate dynamics parameters (outcome variable) and PMyg in linear mixed effects regression models

(random intercepts for study area) stratified by smoking status

¥

Entire study population Ever smoker (n=675%) Lifelong non-smoker (n=562%*) Interaction
intercept %GM, 95%ClI p-value intercept %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -1.0 [-3.6;1.8] 0.49 -0.9 [-4.9;2.4] 0.59 0.61
a -0.6 [-2.3;1.1] 0.48 -0.8 [-6.5;2.1] 0.64 0.57
Power spectral density -1.744.0 -0.04+0.05 0.38 -6.7£3.8  -0.04+0.06 0.42 0.65
Largest Lyapunov exponent 0.3+0.3  -0.004+0.006 0.48 - 0.005+0.005 0.33 0.32
0.03+£0.3
Subpopulation without Ever smoker (n=248%) Lifelong non-smoker (n=214%*) Interaction®
cardiovascular morbidity
intercept %GM, 95%ClI p-value intercept %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -1.7 [-6.0;2.8] 0.45 -4.8 [-8.9;-0.6] 0.03 0.35
a -1.0[-3.3;1.3] 0.37 -1.5[-3.8;0.8] 0.20 0.35
Power spectral density -4.746.7 0.1+0.08 0.13 -4.3+5.8 0.1+0.08 0.07 0.72
Largest Lyapunov exponent 0.9+0.6 -0.01+0.007 0.15 -0.1+0.5 -0.01+0.007 0.16 0.89

All the models are adjusted for gender, age, BMI, environmental tobacco smoke exposure, alcohol consumption, physical activity, uric acid, high-
sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure, diabetes, and
cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)

SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM; and smoking status
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Table E4.11. Association between HRV and heart rate dynamics parameters (outcome variable) and PMyg in linear mixed effects regression models

(random intercepts for study area) stratified by obesity

Entire study population Non-obese (n=974%*) Obese (n=263%*) Interaction®
intercept  %GM, 95%ClI p-value intercept %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -1.2[-3.9;1.7] 0.38 -2.1[-6.9;3.0] 0.41 0.75
a -0.8 [-3.0;1.0] 0.38 0.4 [-3.3;4.1] 0.85 0.88
Power spectral density -45+35  -0.05+0.04 0.25 -12.4+7.2  0.03+£0.09 0.70 0.20
Largest Lyapunov exponent -0.3+0.3  -0.0002+0.004 0.96 1.1+0.7 -0.001+0.008 0.87 0.48
Subpopulation without Non-obese (n=415%) Obese (nN=47%) Interaction®
cardiovascular morbidity intercept  %GM, 95%ClI p-value intercept %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -3.8 [-7.1;-0.04] 0.05 7.5[-2.7;18.7] 0.15 0.03
a -2.5[-6.2;-0.4] 0.02 51[-1.1;11.7] 0.10 0.05
Power spectral density -0.6+4.9  0.2+0.06 0.01 -25.0+28.2 0.1+0.2 0.54 0.35
Largest Lyapunov exponent -0.09+0.4 -0.01+0.005 0.01 3.8+2.2 0.03+0.02 0.15 0.03

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure,
diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)

SDNN, standard deviation of all NN intervals

Values shown are as percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM; and obesity

103



Chapter 2: Long-term exposure to TPMjg and heart rate dynamics

Table E4.12. Association between HRV and heart rate dynamics parameters (outcome variable) and PMjg in linear mixed effects regression models

(random intercepts for study area) stratified by GSTM1 genotype

Entire study population Deletion in GSTM; (n=620%) No deletion in GSTM; (n=572%) Interaction®
intercept %GM, 95%ClI p-value intercept  %GM, 95%CI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -0.9 [-4.1;2.2] 0.54 -1.4[-4.2;1.4] 0.32 0.91
a 0.01[-2.5;2.4] 0.99 -1.2 [-4.6;1.1] 0.31 0.77
Power spectral density -5.4+4.0 -0.03+0.06 0.60 0.6+4.1  -0.01+0.06 0.79 0.61
Largest Lyapunov exponent 0.2+0.3  -0.003%0.006 0.61 0.1+0.3  -0.0008+0.005 0.87 0.52
Subpopulation without Deletion in GSTM; (n=227%) No deletion in GSTM; (n=217%) Interaction®
cardiovascular morbidity intercept %GM, 95%ClI p-value intercept  %GM, 95%CI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -4.4[-8.9;0.7] 0.08 -2.3[-6.5;2.0] 0.29 0.29
a -1.1[-4.0;1.3] 0.36 -3.0 [-6.6;-0.5] 0.02 0.80
Power spectral density 1.2+5.8 0.2+0.08 0.03 0.4+6.4  0.1+0.08 0.14 0.79
Largest Lyapunov exponent 1.240.6  -0.009+0.007 0.22 -0.2+0.6  -0.01+0.007 0.08 0.98

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure,
diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPM;o and GSTM1
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Table E4.13. Association between HRV and heart rate dynamics parameters (outcome variable) and PMy, in linear mixed effects regression models

(random intercepts for study area) stratified by GSTT1 genotype

Entire study population Deletion in GSTT; (n=199%) No deletion in GSTT; (n=993%*) Interaction®
intercept %GM, 95%ClI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -3.2 [-8.8;2.7] 0.28 -0.8 [-3.6;2.0] 0.57 0.65
a 6.3 [1.4;10.6] 0.02 -1.5[-3.8;0.2] 0.08 <0.001
Power spectral density -0.07+6.6 0.01+0.09 0.87 -4.8+3.2  -0.04%0.04 0.38 0.63
Largest Lyapunov exponent -0.5+0.6 0.02+0.009 0.02 0.2+0.3  -0.003%0.004 0.34 0.01
Subpopulation without Deletion in GSTT; (n=69%) No deletion in GSTT; (n=375%) Interaction®
cardiovascular morbidity intercept %GM, 95%ClI p-value intercept  %GM, 95%ClI p-value p-value
or coefficient=SE or coefficient=SE
SDNN -6.8 [-16.6;3.0] 0.16 -2.9[-6.7;1.2] 0.15 0.53
a 3.7[-2.2,9.1] 0.19 -2.9 [-6.8;-0.8] 0.01 0.02
Power spectral density -14.5+10.6  0.4+0.2 0.01 -3.445.0 0.1+0.06 0.10 0.23
Largest Lyapunov exponent -0.3+0.9 -0.006+0.02 0.71 0.2+0.4  -0.01+0.006 0.06 0.52

All the models are adjusted for gender, age, BMI, smoking status, environmental tobacco smoke exposure, alcohol consumption, physical activity,
uric acid, high-sensitivity C-reactive protein, noise exposure, seasonal effect, education level, employment category, occupational exposure,
diabetes, and cardiovascular morbidity (except for the subpopulation without cardiovascular morbidity)

GST, glutathione S-transferase; SDNN, standard deviation of all NN intervals

Values shown are percent change in geometric mean (GM) and 95% confidence interval (95%CI) or coefficient + standard error (SE)

*Number of subjects included in the regression models (i.e., with no missing values on variables included in the regression models)

¥ Interaction between TPMyo and GSTT1
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Chapter 3: Phenotyping based on lung function fluctuation in asthma and COPD

5.1. Ata glance commentary

Scientific Knowledge on the Subject: Phenotyping appears especially relevant in severe
asthma, COPD and the transition forms between these entities, in which the heterogeneity of
response to drug therapy and the unpredictable nature of exacerbations are a major clinical
challenge. For clinicians, identification of phenotypes related to specific treatable traits is of
primary concern. Airway function dynamics are at the intersection between
pathophysiological mechanisms and the expression of particular clinical patterns or treatment
responses. Consequently, investigation of lung function fluctuation might give new insight
into the relationship between specific pathological features and clinically meaningful
outcomes.

What This Study Adds to the Field: The present study uses a novel clustering approach,
based on the fluctuations of a single lung function parameter, namely, the twice-daily FEV;
recorded over one year. We identify five phenotypes, of those three distinct phenotypes of
severe asthma, in which the progressive functional alteration of the lung corresponds to a
gradually increasing clinical severity and translates into specific risks of exacerbation and
treatment response features. Such phenotypes might help identify patients who may benefit
from different treatment strategies, further clinical investigations in a referral center, and/or

closer monitoring, for example in a telemonitoring setting.
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5.2. Abstract

Rationale: ldentification of phenotypes related to specific treatable traits is of primary
concern in asthma and COPD. Airway function dynamics are at the intersection between
pathophysiological mechanisms and the expression of particular clinical patterns or treatment
responses. Consequently, investigation of lung function fluctuation might give new insight
into the relationship between specific pathological features and clinically meaningful
outcomes.

Objective: To evaluate whether the subgrouping of patients with obstructive airway diseases,
including mild-to-moderate asthma, severe asthma, and COPD, according to their pattern of
lung function fluctuation, allows for the identification of phenotypes with specific treatable
traits.

Methods: We conducted a time series clustering analysis based on the fluctuation of twice-
daily FEV; measurements recorded over a one year period in a mixed group of 134 adults with
mild-to-moderate asthma, severe asthma, or COPD from the longitudinal Pan-European
BIOAIR study.

Measurements and Main Results: We identified a group of mild-to-moderate asthmatics
(M), three distinct groups of severe asthmatics (Si1, S, S3) and a group with COPD patients
(C). These 5 groups presented a gradually increasing clinical severity and functional alteration
of the lung (from M to C) and identified phenotypes of patients with high exacerbation risks
(S2, S3), of patients high likelihood to respond to steroids (S,, Ss), but also of patients with
severe functional alterations (C) disallowing a clinical response to steroids despite an
appropriate cellular anti-inflammatory response.

Conclusions: Lung function fluctuation based clustering identifies phenotypes of severe
asthmatics in which the functional alteration of the lung translates into specific risks of

exacerbation and treatment response features.
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5.3. Introduction

Asthma and COPD are increasingly recognized as entities in a continuum of
heterogeneous obstructive airway disease (Zeki, Schivo et al. 2011, Carolan and Sutherland
2013, 2015) with distinct phenotypes (Siroux and Garcia-Aymerich 2011, Wenzel 2012). For
clinicians, there is a great need to identify phenotypes with direct relevance to choice of
treatment and risk of worsening. Especially in severe asthma (Heaney and Robinson 2005,
Wenzel 2012), COPD, and the transition forms between these entities (Chung 2013), in which
the unpredictable nature of exacerbations and the heterogeneity of response to drug therapy
are a major clinical challenge (Moore and Peters 2006, Donaldson, Seemungal et al. 2012,
Kupczyk, Haque et al. 2013, Phipatanakul, Mauger et al. 2016). Clinical treatment success is
determined both by anti-inflammatory and lung functional response to bronchodilators. It is
still poorly understood why some patients benefit more from step-up treatment with long-
acting bronchodilators than from anti-inflammatory treatment; and why certain patients have a
poor overall response.

The information content in airway function dynamics is high and largely underestimated.
It is recognized that airway function dynamics are influenced by airway inflammation, but
also independently by mechanical factors in the lung and airways (Tschumperlin and Drazen
2006). For instance, rapid bronchial obstruction, due to exaggerated bronchial responsiveness,
contributes to a specific dynamic behavior, and such patients might be clinically characterized
by a high exacerbation risk. On the other hand, irreversible obstruction, due to mechanical
impairments, contributes to another specific dynamic behavior, and such patients might be
clinically characterized by a poor response to bronchodilator due to the mechanical
impairment (Stern, de Jongste et al. 2011, Thamrin, Frey et al. 2016). That suggests that
functional alterations are reflected in lung function fluctuation and might translate into
particular clinical patterns or treatment responses. Indeed, lung function fluctuation has been
found to be associated with disease progression and control (Frey and Suki 2008, Thamrin,
Nydegger et al. 2011), risk of exacerbations (Frey, Brodbeck et al. 2005, Thamrin, Zindel et
al. 2011, Donaldson, Seemungal et al. 2012), and treatment response (Kaminsky, Wang et al.
2016). Therefore, its characterization might give new insights into the relationship between
specific pathological features and clinically meaningful outcomes.

Consequently, we hypothesized that a lung function fluctuation based clustering (FBC)
approach (Delgado, Kumar et al. 2015) might help identify subgroups of patients with distinct

lung functional abnormalities, which may be related to specific treatable traits (i.e., specific
110



Chapter 3: Phenotyping based on lung function fluctuation in asthma and COPD

treatable mechanisms related to specific symptom features). The FBC method identifies
clusters of patients with similar patterns of lung function fluctuation over a predetermined
window of observation. We conducted the FBC analysis in a mixed group of 134 adults with
mild-to-moderate asthma, severe asthma, or COPD, with a unique one-year collection of
twice-daily lung function data, from the longitudinal European BIOAIR (Longitudinal
Assessment of Clinical Course and BlOmarkers in Severe Chronic AlRway Disease)
multicenter study.

The aim of this study was to assess whether the subgrouping of patients with obstructive
airway diseases, including mild-to-moderate asthma, severe asthma, and COPD, according to
their pattern of lung function fluctuation, allows for the identification of phenotypes with

specific treatable traits.

5.4. Methods
5.4.1. Study design

This is a post-hoc analysis of the Pan-European BIOAIR study which was designed to
characterize the course of severe chronic airway diseases over time. The design has been
described in detail elsewhere (Kupczyk, Haque et al. 2013). Briefly, 169 adults with asthma,
and 64 with COPD were included. Patients with asthma were screened at visit 1 (Figure 5.1)
and allocated to mild-to-moderate asthma (n=76) and severe asthma (n=93) groups according
to established criteria aligned with current guidelines (Kupczyk, Haque et al. 2013, Chung,
Wenzel et al. 2014). Patients underwent a treatment optimization period of 4 weeks (from
visit 1 to visit 2), which was followed by a 2-week double blind placebo-controlled oral
prednisone intervention (0.5 mg/kg body weight, from visit 2 to visit 3) permitting assessment
of lung function and biomarker responses to oral corticosteroid (OCS) intervention. Finally,

patients were followed up for 12 months (from visit 3 to visit 6).
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Figure 5.1. Design of the BIOAIR study
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5.4.2. Data collection and measurements
Lung function measurements, including FEV; and PEF, clinical symptoms and
medication use were recorded daily throughout the entire study using an electronic diary
(Vitalograph Electronic PEF/FEV1 Diary, XM version, Vitalograph Ltd, Buckingham, UK)
(Kupczyk, Haque et al. 2013). Detailed information about lung function measurements
performed during visits and questionnaires completed by patients can be found in the Online

Supplement.

5.4.3. Lung function fluctuation based clustering of patients

Patients with a similar fluctuation behavior in the twice-daily measurements of FEV;
from the one-year follow-up (visit 3 to visit 6) were grouped into clusters, using the FBC
approach (Delgado-Eckert, Fuchs et al. 2017) (Online Supplement). The measurements
performed during the interventional phases of the study (i.e., treatment optimization and oral
steroid intervention) where not included in the clustering analysis. FEV; was expressed as the
age, sex, height and ethnicity adjusted z-score (denoted zFEV;) (Quanjer, Stanojevic et al.
2012).

5.4.4. Statistical analysis
Results are expressed as numbers and percentages for categorical variables, and as mean
(+ standard deviation) or median [25" percentile; 75" percentile] for continuous variables,

according to their distribution.
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In each of the clusters identified, an enrichment analysis was performed using the
hypergeometric test (Agresti 1992) in order to assess whether there was a significant
enrichment (i.e., over-representation) of mild-to-moderate asthmatics, severe asthmatics, or
patients with COPD.

Comparisons between defined groups were provided using the one-way ANOVA or the
Kruskal-Wallis test, as appropriate, for continuous variables, and the Chi® or the Fisher’s
exact test, as appropriate, for categorical variables. Post-hoc tests for pair-wise multiple
comparisons were performed using the Tukey’s test or the Nemenyi test for continuous
variables, as appropriate. For categorical variables, the multiple testing issue was addressed
using an enrichment analysis (hypergeometric test) combined to a resampling method, setting
the family-wise error rate at the 5% level (Online Supplement). We were then able to assess
whether there was a significant over-representation of a given parameter in a given group as
compared to the entire analysis population.

Response to OCS intervention (visit 2 to visit 3) was defined as > 10 percent
improvement of predicted FEV; (Phipatanakul, Mauger et al. 2016).

All tests were two-sided with a significance level of 0.05. Statistical analysis was
performed using R, Version 3.2.1 (2008).

5.5. Results
5.5.1. Description of the analysis population

Among the 233 patients included in the BIOAIR study, 6 were excluded at screening, 12
were lost to follow-up before beginning the 1-year follow-up, and 29 did not perform any
self-measurements of FEV;. Furthermore, 52 patients were excluded from the analysis
population because they did not have the minimum number of FEV; measurements required
for the cluster analysis (Online Supplement). Patients excluded (n=99) did not significantly
differ from the 134 patients analyzed (Online Supplement).

Among the 134 patients analyzed, there were 53 (39.6%) mild-to-moderate asthmatics,
54 (40.3%) severe asthmatics, and 27 (20.1%) patients with COPD. The mean age of the
subjects was 51.7£13.6 years. Characteristics at study inclusion, according to the airway
disease (i.e., mild-to-moderate asthma, severe asthma, COPD), are summarized in Table 5.1.

The mean number of FEV; measurements per patient during follow-up was 428+170.
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Table 5.1. Characteristics of patients at inclusion according to the airway disease (n=134)

Mild-to-moderate asthma MD Severe asthma MD COPD MD p-value*
(N=53) (N=54) (N=27)
Clinical characteristics
Age, years 42.6+12.6 - 50.6+10.5 - 64.8+7.9 - <0.001
Gender, male 20 (37.7%) - 21 (38.9%) - 19 (70.4%) - 0.01
BMI, kg/m? 25.1+4.0 - 28.5+5.1 - 27.0+4.7 - <0.001
Age of disease onset, years 18.0 [5.5;33.0] 2 33.0[20.3;43.3] 4 60.0 [51.0;66.0] 2 <0.001
ACQ, Juniper 0.9[0.4;1.3] 2 2.0[1.2;2.7] 4 NA NA <0.001
QoL, SGRQ 15.4 [10.5;29.6] 11  41.6[31.9,571] 5  39.6[32.5;50.6] 4  <0.001
Atopy 24 (47.1%) 2 20 (40.0%) 4 0 (0%)7 1 0.47%

Lung function

Reversibility, percentage change 10.5+6.0 1 8.5+6.0 1 3.0+3.8 - <0.001
FeNO, ppb 32.9[20.6;51.5] 23 33.9[13.5;71.0] 28  10.8[8.05;13.3] 16  0.004
FEV1, z-score -1.4+1.3 2 -2.0£1.3 1 -3.3+0.7 1 <0.001
FEV1, % predicted 82.2+16.9 2 71.5+£19.5 1 45.9+10.8 1 <0.001
FVC, z-score -0.2+£0.9 2 -1.1+1.2 1 -1.4+0.8 1 <0.001
FVC, % predicted 97.0+12.4 2 85.2+16.6 1 78.2+11.8 1 <0.001
FEV./FVC -1.7+1.2 2 -1.7£1.5 1 -3.5+1.1 1 <0.001
DLCO, %predicted corrected 94.5+£14.5 5 86.0+£16.6 8 59.4+20.0 1 <0.001
FRC, %predicted corrected 96.1 [82.4;119.7] 6 92.6[82.2;113.5] 9 126.2 [104.0;147.1] 3 <0.001
IVC, %predicted corrected 102.3+14.1 6 96.8£19.1 1 89.4+11.2 3 0.007
TLC, %predicted corrected 104.3+12.5 2 103.1+15.4 1 109.2+18.0 - 0.22
RV, %predicted corrected 104.6 [92.5;126.1] 3 118.0[97.8;139.4] 1 150.7 [111.6;174.1] - 0.001
RV/TLC 1.0[0.9;1.2] 3 1.2[1.0;1.4] 1 14[1.2;1.6] - <0.001
Inflammatory response

hs-CRP, mg/I 2.0[1.0;3.6] 5 3.4[1.6;9.2] 6 6.0 [2.5;8.2] - 0.03
Sputum cells, x10° 0.6 [0.2;2.0] 14 0.7[0.4;2.9] 14 1.1[0.7;2.4] 12 0.14
Sputum eosinophils, % 1.2[0.1;7.2] 17  4.8[0.7;26.6] 16 0.6 [0.03;1.6] 13 0.002
Sputum neutrophils, % 40.1 [15.3;58.6] 17  26.1[15.3;48.1] 16  54.9[34.8;73.1] 13 0.10
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Table 5.1. Characteristics of patients at inclusion according to the airway disease (n=134) (continued)

Mild-to-moderate asthma MD Severe asthma MD COPD MD p-value*
(N=53) (N=54) (N=27)
White blood cells, x107/I 6.5+1.6 2 8.2+2.5 1 8.1+2.0 - <0.001
Blood eosinophils, x107%I 0.3[0.2;0.4] 2 0.3[0.1;0.5] 2 0.2[0.1;0.3] - 0.21
Blood neutrophils, x10%/1 3.5[2.6;4.4] 5 4.8 [3.6;6.7] 3 4.9 [3.8;6.4] 1 <0.001

Values shown are mean + standard deviation, median [25" percentile; 75" percentile], and numbers (percentages)

ACQ, Asthma Control Questionnaire; BMI, body mass index; hs-CRP, high-sensitivity C-reactive protein; D\ co, diffusing capacity of the lung for
carbon monoxide; FeNO, fraction of exhaled nitric oxide; FEV;, forced expiratory volume in one second; FRC, forced residual volume; FVC,
forced vital capacity; IVC, inspiratory vital capacity; MD, missing data; NA, not applicable; QoL, quality of life; RV, residual volume; SGRQ, St
George’s Respiratory Questionnaire; TLC, total lung capacity

*Comparison between groups using the one-way ANOVA or the Kruskal-Wallis test, as appropriate, for continuous variables, and using the Chi? or
the Fisher’s exact test, as appropriate, for categorical variables; TInclusion criteria; Comparison between mild-to-moderate asthmatics and severe

asthmatics
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5.5.2. The fluctuation based clustering analysis identifies four clusters

The FBC analysis identified four clusters, which consisted of 12 (9.0%), 49 (36.7%), 31
(23.1%), and 42 (31.3%) subjects.

Cluster 1 consisted of 10 (83.3%) mild-to-moderate asthmatics and 2 (16.7%) severe
asthmatics. There was a significant over-representation (i.e., significant enrichment) of mild-
to-moderate asthmatics (p<0.001); the cluster was therefore labeled “mild-type lung function
fluctuation” (Table 5.2).

Cluster 2 consisted of 29 (59.2%) mild-to-moderate asthmatics, 18 (36.7%) severe
asthmatics, and 2 (4.1%) patients with COPD. There was a significant over-representation of
mild-to-moderate asthmatics (p<0.001), but given the mixture with severe asthmatics and
patients with COPD, the cluster was labeled “moderate-type lung function fluctuation”.

Cluster 3 consisted of 10 (32.3%) mild-to-moderate asthmatics, 16 (51.6%) severe
asthmatics, and 5 (16.1%) patients with COPD. There was a significant over-representation of
severe asthmatics (p=0.048); the cluster was therefore labeled “severe-type lung function
fluctuation”.

Cluster 4 consisted of 4 (9.5%) mild-to-moderate asthmatics, 18 (42.9%) severe
asthmatics, and 20 (47.6%) patients with COPD. There was a significant over-representation
of patients with COPD (p<0.001); the cluster was therefore labeled “COPD-type lung

function fluctuation”.
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Table 5.2. Over-representation of airway diseases in each of the clusters identified (n=134)

Cluster1  p-value Cluster2  p-value Cluster3  p-value Cluster4  p-value
(N=12) (N=49) (N=31) (N=42)

Airway disease

Mild-to-moderate asthma 10 (83.3%) <0.001 29 (59.2%) <0.001 10(32.3%) 0.77 4 (9.5%) 0.99
Severe asthma 2 (16.7%) 0.93 18 (36.7%) 0.67 16 (51.6%) 0.048 18 (42.9%) 0.27
COPD 0 (0.0%) 0.94 2 (4.1%) 0.99 5(16.1%) 0.64 20 (47.6%) <0.001

p-value from the hypergeometric test
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5.5.3. Phenotyping based on the combination of clinical classification (i.e., mild-to-
moderate asthma, severe asthma, and COPD) and lung function fluctuation based
clusters unveils three subgroups of severe asthmatics
Most of the mild-to-moderate asthmatics (n=39/53, 73.6%) were assigned to the clusters
“mild-type lung function fluctuation” and “moderate-type lung function fluctuation”; they
were defined as group M (Table 5.3, Figure 5.2). Mild-to-moderate asthmatics who were
assigned to the clusters “severe-type lung function fluctuation” (n=10, labelled group MS) and
“COPD-type lung function fluctuation” (n=4) were not further investigated, due to the small
sample size of these groups. Description of group MS is provided in the Online Supplement.
Most patients with COPD (n=20/27, 74.0%) were assigned to the cluster “COPD-type
lung function fluctuation”; they were defined as group C. COPD patients who were assigned
to the clusters “moderate-type lung function fluctuation” (n=2) and “severe-type lung function
fluctuation” (n=5) were not further investigated, due to the small sample size of these groups.
Severe asthmatics were spread across the clusters “moderate-type lung function
fluctuation” (n=18/54, 33.3%), “severe-type lung function fluctuation” (n=16/54, 29.6%), and
“COPD-type lung function fluctuation” (n=18/54, 33.3%). These 3 groups were labeled Sy,
Sy, and Ss, respectively. Severe asthmatics who were assigned to the cluster “mild-type lung
function fluctuation” (n=2) were not further investigated, due to the small sample size of this
group.
Description of groups M, Si, S, Ss, and C is provided in Table 5.4 and Figures 5.3-5.5.
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Table 5.3. Distribution of mild-to-moderate asthmatics, severe asthmatics, and patients with COPD according to clusters (n=134)

Cluster 1 (N=12) Cluster 2 (N=49) Cluster 3 (N=31) Cluster 4 (N=42)
called «mild-type lung called «<moderate-type lung called «severe-type lung called «COPD-type lung
function fluctuation» function fluctuation» function fluctuation» function fluctuation»
Mild-to-moderate 10 (18.9%) 29 (54.7%) 10 (18.9%) 4 (7.5%)
asthmatics (N=53) Group M Group M
Severe asthmatics 2 (3.7%) 18 (33.3%) 16 (29.6%) 18 (33.3%)
(N=54) Group S; Group S; Group S;3
Patients with COPD 0 2 (7.4%) 5 (18.5%) 20 (74.1%)
(N=27) Group C

Values shown are and numbers (percentages)
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Figure 5.2. Subgrouping of mild-to-moderate asthmatics, severe asthmatics and patients with
COPD (i.e., clinical classification) according to their pattern of lung function fluctuation (i.e.,
data-driven classification)
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Table 5.4. Characteristics of patients according to subgroups M, S;, S,, S, and C (n=111)

Group M MD Group S; MD Group S; MD  Group S3 MD GroupC MD p-value

(N=39) (N=18) (N=16) (N=18) (N=20) *
Airway disease Mild-to-moderate Severe asthma Severe asthma Severe asthma COPD

asthma
Clinical characteristics
Age, years 43.2+13.7 | - 51.2+115 - 53.6+10.3 + | - 47.8+9.3 | - 65.1£7.5 - <0.001
Gender, male 14 (35.9%) - 8 (44.4%) - 6 (37.5%) - 7 (38.9%) - 13 (65.0%) - 0.28
BMI, kg/m? 24.9+3.3 - 27.3+4.5 - 28.5+4.9 - 29.946.0 - 26.9+5.3 - 0.003
Age of disease onset, years 18.5[5.3;32.5] & 34.0[24.3;43.8] - 245[13.3;375] 2 35.0[19.0;45.0] 2 60.5[52.5;65.5] 2 <0.001

T ¥ ¥
+ + +

Atopy 18 (47.4%) 1 5 (33.3%) 3 8 (50.0%) - 7 (38.9%) - 0 (0%) § - 0.7311
QoL, SGRQ 11.416.8;20.7] 1 8 39.3[26.0;42.6] 3 43.7[37.7;48.8] 4 51.1[33.1;59.9] 1 40.3[34.2,56.2] 7 <0.001
ACQ, Juniper 0.3[0.1;0.6] - 1.4 [0.9;2.0] - 2.0[1.3;2.6] 1 2.4[2.0;3.0] 2 NA - <0.001
Number of exacerbation during 0[0;1] - 1[0;2] - 1[1;2] - 2[1;2] - 0[0;1] - <0.001
follow-up
At least one exacerbation during 13 (33.3%) - 10 (55.6%) - 13 (81.2%) - 13 (72.2%) - 8 (40.0%) - 0.005
follow-up
Lung function
Reversibility, percentage change 10.2[7.7;14.1] © 1 9.1[5.6;12911 - 5.510.9;9.3] 1 76[4.6;149]1 1 - 3.1[0.8;4.4] - <0.001
FeNO, ppb 21.3[14.3;32.2] 12 21.4[145;423] 10 40.5[23.7;53.8] 7 29.710.1;59.9] 8 11.2[7.0;13.8] 11  0.001
FEV1, z-score -0.7£1.1 ¢ - -1.4+0.9 1 - -2.1+1.0 7% - -2.6£1.2 11 - -3.5+0.6 - <0.001
FEV1, % predicted 96.5+15.8 | - 83.4+13.6 +§ - 73.7£16.9 +1 - 66.7£19.8 1 - 44.6+10.4 - <0.001
FVC, z-score 0.04+0.9 § - -1.0+1.3 +§ - -1.3+1.1 - -1.3+1.0 - -2.0+0.7 - <0.001
FVC, % predicted 100.5+11.6 § - 86.6+16.2 + 1 - 82.2+14.4 +1 - 82.3+13.8 11 - 70.1+11.1 - <0.001
FEV,/FVC -1.0+1.2 - -0.7+1.4 - -15+1.4 - -24+1.4 % - -3.5+0.9 - <0.001
DLCO, %predicted corrected 94.8+13.2 2 86.5+10.8 i 6 91.8+17.7 - 80.4+18.3 7 1 56.3x21.3 + & - <0.001
FRC, %predicted corrected 101.3+22.3 2 91.9+24.8 6 98.2+24.8 - 99.9+26.5 2 128.3+30.0 2 <0.001
IVVC, %predicted corrected 107.2+10.2 § 4 98.0+13.4 - 95.5+16.8 1 92.3+22.5 - 89.8+11.4 2 <0.001
TLC, %predicted corrected 105.5+10.9 1 97.5+14.4 | 1 105.8+£12.5 - 103.3£16.7 - 111.3+17.9 - 0.07
RV, %predicted corrected 104.5+29.2 2 105.0£34.8 | 1 130.6+£29.3 - 129.5+44.2 - 158.8+46.3 - <0.001
RVITLC 0.98+0.2 § 2 1.1+£0.2 | 1 1.2+0.2 - 1.2+0.3 - 1.4+0.2 2 <0.001
Inflammatory biomarkers
Sputum cells, x10° 0.6 [0.2;1.3] 8 2.2[0.6;4.0] 6 1.0 [0.4;2.0] 5 1.1[0.6;3.8] 4 1.1 [0.4;1.5] 7 0.14
Sputum eosinophils, % 1.3[0.1;4.7] 9 1.5[0.7;17.8] 6 4.9[1.2;18.1] 6 4.5[1.0;10.4] 8 2.1]0.2;5.8] 9 0.26
Sputum eosinophilia > 2% 12 (40.0%) 9 5 (41.7%) 6 6 (60.0%) 6 6 (60.0%) 8 6 (54.5%) 9 0.68
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Table 5.4. Characteristics of patients according to subgroups M, S;, S,, Ss, and C (n=111) (continued)

Group M MD Group S1 MD Group S2 MD Group S3 MD GroupC MD p-value

(N=39) (N=18) (N=16) (N=18) (N=20) *
Airway disease Mild-to-moderate Severe asthma Severe asthma Severe asthma COPD

asthma
Sputum neutrophils, % 46.0 [17.6;67.0] 9 51.3[26.7;69.4] 6 25.1[23.4;58.6] 6 56.5 [45.0;63.6] 8 68.3 [54.2;74.2] 9 0.14
Sputum neutrophilia > 40% 17 (56.7%) 9 7 (58.3%) 6 3 (30.0%) 6 8 (80.0%) 8 10 (90.9%) 9 0.04
Mixed granulocytic 6 (20.0%) 9 3 (25.0%) 6 2 (20.0%) 6 5 (50.0%) 8 5 (45.5%) 9 0.27
inflammation, %
hs-CRP, mg/I 0.8[0.4;2.2] & 7 2.6 [1.6;2.9] 3 2.2[0.8;5.1] 1 4.2 [2.3;5.6] 1 4.0[2.4;5.9] 3 <0.001
White blood cells, x10%/1 6.3+1.5 1 7.0+1.9 - 8.1+2.4 - 8.8+2.6 - 7.7+2.3 - <0.001
Blood eosinophils, x107/1 0.3[0.2;0.3] 1 0.3[0.1;0.4] - 0.4 [0.1;0.5] 1 0.2 0.1;0.3] - 0.2 [0.2;0.3] - 0.82
Blood neutrophils, x10%I 3.4[3.0;4.2] 1 3.7[2.9;5.3] - 5.9 [3.5;6.3] - 5.4 [4.3;6.9] - 4.4 [3.7;5.5] - <0.001
Response to treatment
Response to oral 3(7.7%) - 3 (16.7%) - 4 (25.0%) - 8 (44.4%) - 3 (15.0%) - 0.02
corticosteroids
Biomarkers
SRAGE, pg/ml 1602 [1197;1897] 7 1694 [1310;2209] 3 1287 [952.6;2054] 1 1319 [1114;1508] 1 1145 [854;1386] 4 0.03
MMP-3 pg/mL 11910 [8062;16200] 7 15840 [5561;22400] 3 19960 1 23170 1 18680 4 0.04

[13410;25500] [9236;66400] [14710;26380]

DPPIV pg/mL 113200£35220 7 108500+£37970 3 87530+34646 1 95320452699 1 82250+31184 4 0.05
YKL-40 (or Chitinase 3- 15470 [12080;18410] 7 15120 [13100;33000] 3 27720 1 15400 1 37380 4 <0.001
Like 1), pg/ml [19500;41550] [10710;25020] i [21420;54580]

Values shown are mean £ standard deviation, median [25™ percentile; 75" percentile], and numbers (percentages)

ACQ, Asthma Control Questionnaire; BMI, body mass index; CD40 L, CD 40 ligand; hs-CRP, high-sensitivity C-reactive protein; D, co, diffusing capacity of

the lung for carbon monoxide; FeNO, fraction of exhaled nitric oxide; FEV, forced expiratory volume in one second; FRC, forced residual volume; FVC,

forced vital capacity; IVC, inspiratory vital capacity; MD, missing data; NA, not applicable; OCS, oral corticosteroid; QoL, quality of life; RV, residual

volume; SGRQ, St George’s Respiratory Questionnaire; SRAGE, soluble receptor for advanced glycation end products; TLC, total lung capacity

“Comparison between groups using the one-way ANOVA or the Kruskal-Wallis test, as appropriate, for continuous variables, and using the Chi? or the Fisher’s

exact test, as appropriate, for categorical variables; *As compared to group M; £As compared to group C; 8Inclusion criteria; Il Comparaison between groups

M, Sy, S,, and 83
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Group M

Group M (n=39) was characterized by a significant over-representation of patients with
early-onset disease (i.e., <18 years old) (19 (50.0%) in M as compared to 30 (28.8%) in the
entire analysis population, adjusted p-value<0.001) and by a significant over-representation of
patients with atopy (i.e., skin prick tests >9mm?) (18 (47.4%) in M as compared to 38 (43.4%)
in the entire analysis population, adjusted p-value=0.02). Independent of group, we found that
atopic condition was associated with an early-onset disease in patients with asthma (median
age of onset was 16.0 [5.0;32.0] years in subjects with atopy vs. 33.0 [20.5;46.5] years in
subject without atopy, adjusted p-value<0.001). Score of Asthma Control Questionnaire
(ACQ) (0.3 [0.1;0.6]) was significantly lower as compared to S; (1.4 [0.9;2.0], adjusted p-
value=0.006), S, (2.0 [1.3;2.6], adjusted p-value<0.001), and S; (2.4 [2.0;3.0], adjusted p-
value<0.001). Quality of life, i.e., score of St George’s Respiratory Questionnaire, (11.4
[6.8;20.7]) was significantly better compared to S; (39.3 [26.0;42.6], adjusted p-value=0.049),
S, (43.7 [37.7;48.8], adjusted p-value=0.001), Sz (51.1 [33.1;59.9], adjusted p-value<0.001),
and C (40.3 [34.2;56.2], adjusted p-value<0.001). Response to OCS was poor with a
significant over-representation of non-responders (36 (92.3%) in M compared to 90 (81.0%)
in the entire analysis population, adjusted p-value=0.004). This is probably due to the fact that
the optimal lung function was gained already with the use of inhaled corticosteroids during
the treatment optimization period.

Group S;

Group S; (n=18) was characterized by a significant over-representation of patients with
late-onset disease (16 (88.9%) in S; compared to 74 (71.1%) in the entire analysis population,
adjusted p-value<0.001). With regard to demographic characteristics (i.e., age, gender, and
BMI) and inflammatory biomarkers, patients were similar to those in group M. However, they
exhibited increased airway obstruction with zFEV; (-2.1#1.0) and zFVC (-1.3£1.1)
significantly lower compared to M (-0.7+1.1, adjusted p-value<0.001, and 0.04+0.9, adjusted
p-value<0.001, respectively). Three patients (16.7%) responded to OCS.

Group S
Patients in group S, (n=16) were significantly older than in M (53.6+10.3 years vs.
43.2+13.7 years, adjusted p-value=0.02). There was a significant over-representation of

patients who had at least one exacerbation during follow-up (13 (81.2%) in S, compared to 57
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(51.4%) in the entire analysis population, adjusted p-value=0.002). Patients exhibited a
decreased pulmonary function with zFEV; (-2.1+1.0) and zFVC (-1.3£1.1) significantly lower
compared to group M (-0.7+1.1, adjusted p-value<0.001, and 0.04%0.9, adjusted p-
value<0.001, respectively), and a hyperinflation characterized by a ratio RV/TLC
significantly higher compared to group M (1.2+0.2 vs. 0.98+0.2, adjusted p-value=0.009).
There were signs of airway inflammation with higher levels of sputum eosinophils (4.9
[1.2;18.1] %) compared to M (1.3 [0.1;4.7] %), though not significant (adjusted p-
value=0.39). Fraction of exhaled nitric oxide (FeNO) (29.7 [10.1;59.9] ppb) was significantly
higher compared to group C (11.2 [7.0;13.8] ppb, adjusted p-value=0.002). In response to
OCS, these parameters decreased to the levels of that in M (Online Supplement). Four
(25.0%) patients responded to OCS.

Group Sz

Group S; (n=18) was characterized by a significantly higher BMI compared to M
(29.946.0 kg/m? vs. 24.9+3.3 kg/m? adjusted p-value=0.002), with a significant over-
representation of obese subjects (i.e., BMI > 30 kg/m?) (9 (50.0%) in Ss compared to 28
(25.0%) in the entire analysis population, adjusted p-value=0.003). There was a significant
over-representation of patients who had a least one exacerbation during follow-up (13
(72.2%) in S; compared to 57 (51.4%) in the entire analysis population, adjusted p-
value=0.01), as well as a significantly higher number of exacerbations compared to M (2 [1;2]
vs. 0 [0;1], adjusted p-value=0.046). Patients exhibited decreased pulmonary function with
ZFEV; (-2.6£1.2), zFVC (-1.3£1.0), and IVVC (92.3%=+22.5%) significantly lower compared to
M (-0.7+1.1, adjusted p-value<0.001, 0.04+0.9, adjusted p-value<0.001, and 107.2%=10.2%,
adjusted p-value=0.006, respectively), a hyperinflation characterized by a ratio RV/TLC
(1.2+0.3) significantly higher compared to M (0.98+0.2, adjusted p-value=0.003), as well as a
loss of diffusion capacity, which was significantly lower compared to M (D.co:
80.4%+18.3% vs. 94.8%+13.2%, adjusted p-value=0.02). There were signs of airway
inflammation with significantly higher levels of blood neutrophils (5.4 [4.3;6.9] 10%1) and
CRP (4.2 [2.3;5.6] mg/l) compared to M (3.4 [3.0;4.2], adjusted p-value=0.003, and 0.8
[0.4;2.2] mg/l, adjusted p-value=0.03, respectively), higher levels of sputum eosinophils (4.5
[1.0;10.4] %) compared to M (1.3 [0.1;4.7] %), though not significant, a significant over-
representation of patients with sputum neutrophils > 40% (8 (80.0%) in S; compared to 45

(61.6%) in the entire analysis population, adjusted p-value=0.045), and a mixed granulocytic
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inflammation (i.e., combined increase in sputum eosinophils > 2% and sputum neutrophils >
40% (Moore, Meyers et al. 2010)) (5 (50.0%) in Sz compared to 21 (28.8%) in the entire
analysis population, adjusted p-value=0.03). In response to OCS, these parameters decreased
to the levels of that in M (Online Supplement). There was significant over-representation of
OCS responders (8 (44.4%) in Sz compared to 21 (18.9%) in the entire analysis population,
adjusted p-value<0.001).

Group C

Group C (n=20) was markedly different from the other groups and mainly consisted of
older patients (65.1£7.5 years), predominantly males (13 (65.0%) in C compared to 48
(43.2%) in the entire analysis population, adjusted p-value=0.008), with late-onset disease
(age of onset: 60.5 [52.5;65.5] years). Patients exhibited severe reductions in pulmonary
function. Lung function was markedly decreased with zFEV; (-3.5+0.6) and zFEV1/zFVC (-
3.5+0.9) which were significantly lower compared to each of the 4 groups of asthmatics, and
zZFVC (-2.0+0.7) significantly lower compared to M (0.04+0.9, adjusted p-value<0.001) and
S1 (-1.0+1.3, adjusted p-value<0.02). Patients presented with a fixed obstruction characterized
by reversibility (3.1% [0.8%;4.4%]) significantly lower compared to M (10.2%
[7.7%;14.1%)], adjusted p-value<0.001), S; (9.1% [5.6%;12.9%], adjusted p-value=0.005) and
Ss3 (7.6% [4.6%;14.9%], adjusted p-value=0.04). Lung function mechanics revealed a
hyperinflation characterized by FRC (128.3%+30.0%) significantly higher compared to each
of the 4 groups of asthmatics, and RV/TLC (1.4+0.2) significantly higher compared to M
(0.98+0.2, adjusted p-value<0.001) and S; (1.1+0.2, adjusted p-value<0.001). Diffusion
capacity (D co: 56.3%+21.3%) was significantly lower compared to each of the 4 groups of
asthmatics. Similar to Sz, there were signs of airway inflammation with CRP levels being
significantly higher (4.0 [2.4;5.9] mg/l) compared to M (0.8 [0.4;2.2] mg/l, adjusted p-
value=0.008), a significant over-representation of patients with sputum neutrophils > 40% (10
(90.9%) in C compared to 45 (61.6%) in the entire analysis population, p=0.003), and a mixed
granulocytic inflammation (5 (45.5%) in C compared to 21 (28.8%) in the entire analysis
population, adjusted p-value=0.049). In response to OCS, these parameters decreased to the
levels of that in M (Online Supplement). Three (15.0%) patients responded to OCS. There
were also meaningful and distinct differences with respect to certain biomarkers between

groups Sz and C, as displayed in Table 4, and discussed in the Online Supplement.
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5.6. Discussion
5.6.1. Main results

Our approach to phenotyping based on lung function fluctuations allowed for the
identification of 5 groups (M, Si, Sz, Sz, and C) corresponding to relevant phenotypes with a
gradual severity regarding clinical, inflammatory, and pulmonary features, distinct
exacerbation rate, and traits suggesting specific treatment response features (Figure 5.6).

In particular, we found a gradually increasing clinical severity from M to C, characterized
by a gradual decrease in quality of life and asthma control, and a higher number of
exacerbations in S; and S.

Related to the increasing clinical severity from M to C, we found increasing changes in
lung function (i.e., increased airway obstruction, increased hyperinflation, and a loss of
diffusion capacity) which might be due to progressive structural changes. Airways gradually
reached a more rigid, narrow state, and became less reversible to B,-mimetics. Particularly, in
Ss, seriously impaired lung function combined with the severe clinical phenotype and signs of
inflammation might be related to obesity since this group mainly consisted of obese subjects.

Response to OCS differed according to groups and seemed to result from the relative
pathophysiological contributions of airway obstruction, inflammation, and irreversible
mechanical impairment. Response in M was weak, probably due to a ceiling effect. Indeed,
since this group of patients had minimal airway obstruction, they were probably controlled
with inhaled corticosteroids, reducing any benefit of adding OCS. From S; to Ss, where
degree of obstruction and signs of inflammation gradually increased, we found a gradually
increasing response to OCS with a particularly good response in Ss. In C, irreversible
mechanical impairment of the lung might have rendered patients clinically unresponsive to
OCS despite a satisfactory anti-inflammatory response. Thus, in these patients the mechanical

impairment dominated the clinical picture.
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Figure 5.6. Predominant (A) clinical, (B) pulmonary and (C) inflammatory features, and (D)

response to oral corticosteroid according to groups M, Sy, Sy, Sz, and C

CRP, high-sensitivity C-reactive protein; FeNO, fraction of exhaled nitric oxide; OCS, oral

corticosteroid

Group M includes mild-to-moderates asthmatics, groups Si, S;, and Sz include severe

asthmatics, group C includes COPD patients
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5.6.2. Strengths and weaknesses of the study (internal validity)

The BIOAIR cohort, due to its unique design, enabled, for the first time, comparison of
patients with mild-to-moderate asthma, severe asthma, and COPD in regards to their lung
function fluctuation over a one year period. Additional strengths of the study are a) the use of
a single variable to perform the clustering analysis, thereby circumventing the issue of
variable selection, which renders many clustering approaches subjective; b) the use of a time-
related variable to perform the clustering analysis, instead of parameters measured at a single
point in time; c) the detailed information available about the patients, allowing for an
extensive description of the groups identified; d) the 2-week double blind placebo-controlled
OCS intervention, allowing for the assessment of response to treatment. However, despite the
high number of patients included in the study, the power of the analysis might have been

limited sometime by the multiple testing correction.

5.6.3. Strengths and weaknesses of the study compared to other studies (external
validity)

Our results are in line with the view that pulmonary function is an important determinant
of disease severity in asthma and COPD (Sorkness, Bleecker et al. 2008, Moore, Meyers et al.
2010). Indeed, solely on the basis of lung function fluctuations, we have identified a range of
groups with gradual phenotype severity. Similarly, in the SARP study, lung function best
differentiated the mildest from the most severe groups (Moore, Meyers et al. 2010).

Furthermore, alterations in pulmonary function may reflect specific underlying
pathophysiological mechanisms. It has been shown that persistent airflow obstruction is
increasingly common as asthma severity increases (Pascual and Peters 2009, Konstantellou,
Papaioannou et al. 2015), and has been described as the manifestation of progressive
structural changes in the airway walls (Thamrin, Nydegger et al. 2011). Sorkness et al.
(Sorkness, Bleecker et al. 2008) found that severe asthmatics have a greater component of air
trapping, relative to the airflow limitation component, contributing to airway obstruction.
Therefore, the greater airway obstruction combined with the hyperinflation found in groups S,
and S; are in accordance with features of persistent airflow obstruction, air trapping, and
airway remodeling described in more severe asthma phenotypes. Interestingly, Choi et al.
identified four clusters very similar to M, S;, S;, and Sz using an imaging-based clustering
approach (Choi, Hoffman et al. 2017). In particular, our group S, was similar to their luminal

narrowing-dominant cluster, and Sz was similar to their wall thickening-dominant cluster.
131



Chapter 3: Phenotyping based on lung function fluctuation in asthma and COPD

Finally, we identified a group of severe asthmatics (S3) characterized by an over-
representation of obese subjects; meaning that obesity might be associated with a specific
pattern of lung function fluctuation. There is strong evidence that obesity increases the
prevalence and incidence of asthma, and reduces asthma control (Hakala, Stenius-Aarniala et
al. 2000, Stenius-Aarniala, Poussa et al. 2000, Saint-Pierre, Bourdin et al. 2006, Beuther and
Sutherland 2007, Mosen, Schatz et al. 2008). A more limited body of evidence suggests that
obesity may also increase the severity of asthma (Peters-Golden, Swern et al. 2006, Saint-
Pierre, Bourdin et al. 2006, Taylor, Mannino et al. 2008). Our findings are in accordance with
these observations, since S3 was characterized by a particularly low quality of life, poor
asthma control, exacerbations, and notably altered pulmonary function. Alteration of
pulmonary function included airway obstruction, hyperinflation, and low diffusion capacity,
which concord with reduced lung volumes and changes in airway resistance described in the
literature (Zerah, Harf et al. 1993, Collins, Hoberty et al. 1995). Moreover, we found signs of
inflammation which are consistent with the low-grade systemic inflammation described in
obese subjects (Shore 2008), as well as a mixed granulocytic inflammation which has been
previously described in very severe asthma (Moore, Meyers et al. 2010). These findings
support the hypothesis that obesity might be associated with a specific type of asthma, related
to specific alterations in lung function, and clinically presenting a greater and/or more
difficult to control disease state (Mosen, Schatz et al. 2008, Umetsu 2016), which may better
profit from a multidimensional treatment approach (Sodlerlund, Fischer et al. 2009, Frey,
Latzin et al. 2015).

5.6.4. Relevance of the study results for disease management and monitoring
strategies
Our findings might help identify patients who could benefit from different treatment
strategies, further clinical investigations in a referral center, and/or closer monitoring. In
particular, the lung function measurements might be implemented in a telemonitoring setting
for diagnostic purpose (e.g., graduation of asthma severity, or asthma-COPD-overlap-
syndrome), or for monitoring purpose (e.g., in patients with severe phenotypes, especially if
there is a high risk exacerbation, periods of closer monitoring could be recommended, for
instance after implementing a new treatment strategy). While conventional disease
phenotyping usually relies on many characterizing parameters, which tend to be expensive

and limited to in-hospital assessment (Delgado, Kumar et al. 2015), fluctuation in FEV; can
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be implemented in a simple and cost-effective way in a telemonitoring setting with an
appropriate adherence measure (Kupczyk, Haque et al. 2013).

Furthermore, asthma and COPD patients phenotyping based on airway dynamics might
have in the near future relevant research applications. First, the characterization of structural
alterations of the lung according to such phenotypes, using imaging techniques, might
improve the understanding of disease pathogenesis (Choi, Hoffman et al. 2017). Second,
evaluation of new treatment strategies according to such phenotypes in future controlled

treatment trials might be of great value.

5.7. Conclusion

The present study uses a novel clustering approach, solely based on the lung function
fluctuation recordings over one year. This approach identifies phenotypes, in which the
progressive functional alteration of the lung corresponds to a gradually increasing clinical

severity, and which may translates into specific treatable traits.
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5.9. Online Supplement
Methods
Data collection and measurements

Data were collected using an electronic Case Report Form (eCRF) developed specifically
for the BIOAIR study. A reversibility test, as well as skin prick tests to common
aeroallergens, were performed at the screening visit. At inclusion (visit 1), an extensive
spirometry (inspiratory vital capacity (IVC), total lung capacity (TLC), and residual volume
(RV)) was performed according to published guidelines (Quanjer, Tammeling et al. 1993), as
well as diffusion capacity measurements (forced residual volume (FRC), and diffusing
capacity of the lung for carbon monoxide (D.co)) according to the technique described by
Kerstjens et al. (Kerstjens, Brand et al. 1992). Induced sputum was obtained at inclusion and
at the end of the optimization period (visit 2) using inclusion and exclusion criteria according
to published recommendations (Paggiaro, Chanez et al. 2002). At each visit (from visit 1 to
visit 6) the fraction of exhaled nitric oxide (FeNO) using a NIOX analyser (Aerocrine AB,
Solna, Sweden) was measured according to guidelines (1999), as well as ordinary spirometry
indices (forced expiratory volume in one second (FEV,), forced vital capacity (FVC) and
FEV1/FVC) with calibrated spirometers using pneumotachometry according to standardised
guidelines (Quanjer, Tammeling et al. 1993). Serum CRP levels were measured using a
standardised high sensitivity assay with a clinical Cobas ¢502 (8000) instrument (Roche
Diagnostics). Multiplex assays for (Lumican, metalloproteinase-3 (MMP-3), Dipeptidyl
peptidase-4 (DPPIV), soluble receptor for advanced glycation end products (SRAGE), YKL-
40 (or Chitinase 3-Like 1) were performed using human Luminex® screening assay reagents
from R&D Systems (Bio-Techne, Abingdon, UK). Patients completed at each visit the St.
George’s respiratory questionnaire (SGRQ) (Jones, Quirk et al. 1992), and the Juniper’s
Asthma Control Questionnaire (ACQ) (Juniper, O'Byrne et al. 1999).

Lung function fluctuation based clustering of patients

The FBC method consists of identifying clusters of patients with similar patterns of lung
function fluctuation by comparing each patient’s empirical distribution of daily lung function
measurements recorded over a predetermined window of observation. The FBC method has
been described in detail elsewhere (Delgado-Eckert, Fuchs et al. 2017). In brief, the FBC
method consists of the following steps:

1. Quantification of similarity in lung function fluctuation between individuals
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2. Grouping of individuals into clusters such that similarity between members of the

same clusters is strong and between different clusters is weak.

Furthermore, the FBC method includes a data-driven process for determining the
tolerable amount of missing measurements. This data-driven process has been described in
detail elsewhere (Delgado-Eckert, Fuchs et al. 2017). In brief, a highly compliant subset of
patients (i.e., with a high number of FEV; measurements), the so-called “gold standard”, was
selected. Patients were defined as having a high number of FEV; measurements if their
individual set of FEV; measurements contained at least as many measurements as the 60™
percentile of the overall distribution of the number of FEV; measurements from the entire
analysis population. Then, within the gold standard, in order to quantify similarities in lung
function fluctuation between individuals, the distribution of z-score FEV; values of a given
patient was compared with the distributions of all other patients in the gold standard. This
pair-wise comparison was done using the Earth mover’s distance (EMD). A low value of
EMD indicates high similarity in lung function fluctuation between two individuals. Patients
were grouped into clusters such that the similarity between members of the same clusters was
strong, and between different clusters was weak using the Ward’s minimum-variance
hierarchical clustering method. Afterwards, a cluster stability analysis was performed in order
to assess whether further patients who had fewer measurements could be included in the
analysis without disturbing the clusters identified. The outcome of this stability analysis
enabled us to establish the minimum number of FEV; measurements required to ensure the
stability of the clusters. Finally, patients who performed the minimum number of FEV;
measurements required were added to the gold standard, and the cluster analysis was repeated
with this larger subset to obtain the final clusters.

Statistical analysis

For categorical variables, we chose a resampling method to address the multiple testing
issues instead of the commonly used Bonferroni correction, which is known to be very
conservative. The resampling method consisted in randomly selecting artificial groups from
the analysis population, with the same sample sizes as the groups M, S;, Sy, Sz, and C, in
which the tests were performed. We then applied the enrichment test to each of the 5 artificial
groups (i.e., groups M’, S;1’, S;’°, S3°, and C’). The resampling was done 10 000 times (i.e., 5
artificial groups 10 000 times randomly selected out of the analysis population), and the

enrichment test was performed in the 5 artificial groups in each iteration.
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We then adjusted the significance level of the individual tests such that no more than 5%
of the 10 000 tests conducted on artificial groups were significant. In other words, we set the
family-wise error rate at the 5% level. The adjusted significance levels of the individual tests
were then used when analyzing the actual groups M, Si, S, Ss, and C.

Phenotypes identified (based on patients’ lung function fluctuation over the one-year
follow-up period) were described at baseline (i.e., at the end of the treatment optimization
period (visit 2)), and at study end (visit 6) in order to explore the characteristics of the

phenotypes found as a function of time.

Results
Selection of the analysis population according to the determined tolerable amount of missing
measurements

Mean number of FEV; measurements in the 186 patients initially included in the
clustering analysis was 310+238. The 60" percentile of the distribution of number of FEV;
measurements was equal to 481 measurements. Thus, the highly compliant subset of patients
consisted of patients who performed at least 481 FEV; measurements during follow-up,
namely 59 patients. As a result of the cluster stability analysis, we were able to decrease this
threshold by 90%, namely 49 measurements were required, instead of 481 measurements.
Thus, after the cluster stability analysis, all those patients who performed at least 49
measurements during the follow-up could be considered. The analysis population consisted,

therefore, of 134 patients.

Characteristics of patients excluded from the analysis population (n=99)

Regarding patients with severe asthma, zFEV; and zFVC were significantly lower in
patients excluded than in patients from the analysis population (zFEV1: -2.7£1.3 vs. -2.0£1.3,
p=0.01; zFVC: -1.8+1.3 vs. -1.1£1.2, p=0.02) (Table E5.1). Regarding patients with COPD,
zZFVC, FRC and IVC were significantly lower in patients excluded than in patients from the
analysis population (zFVC: -2.3£1.2 vs. -1.4£0.8, p=0.003; FRC: 94.9% [80.3%;125.4%)] vs.
126.2% [104.0%;147.1%, p=0.01; IVC: 72.7% [64.0%;90.7%] vs. 90.2% [81.7%;96.7%],
p=0.008).
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Table E5.1. Characteristics of patients excluded from the analysis population (n=99)

Mild-to-moderate MD p-value*  Severe asthma MD p-valuef COPD MD p-valuei

asthma (N=39) (N=37)

(N=23)
Clinical characteristics
Age, years 44.0 [30.5;51.5] - 0.82 53.0 [35.5;64.0] - 0.98 67.0 [57.0;70.0] - 0.73
Gender, male 10 (43.5%) - 0.64 18 (46.2%) - 0.48 29 (78.4%) - 0.46
BMI, kg/m? 25.0 [23.0;27.5] - 0.59 27.0 [24.5;32.0] - 0.92 26.0 [23.0;31.0] - 0.76
Age of disease onset, years  26.2+19.3 11  0.53 28.3£18.1 9 0.56 54.1+10.9 9 0.16
ACQ, Juniper 1.3+£0.7 8 0.07 2.2+1.2 9 0.47 NA NA NA
QoL, SGRQ 22.1[16.7;31.6] 7 0.17 48.8 [32.5;62.8] 5 0.48 43.1[33.3;58.9] 8 0.45
Atopy 5 (21.7%) - 0.04 10 (25.6%) - 0.16 0 (0.0%) & - NA
Lung function
Reversibility, % of change 11.0+4.3 2 0.74 10.6%9.6 1 0.24 4.2+3.5 2 0.22
FeNO, ppb 44.0 [34.8;53.6] 17 0.32 33.8[23.2;41.5] 21 0.93 15.0[9.3;26.8] 24 0.25
FEV., z-score -1.4+41.3 7 0.80 -2.7£1.3 3 0.01 -3.5£1.0 3 0.37
FVC, z-score -0.5+1.2 7 0.40 -1.8+1.3 3 0.02 -2.3£1.2 3 0.003
FEV.1/FVC, z-score -1.7+£1.0 7 0.84 -2.0+1.4 3 0.48 -3.1+1.4 3 0.13
DLCO, %predicted corrected 90.3 [88.3;94.2] 16 0.80 83.1[71.3;99.3] 15 0.74 57.7 [43.0;67.6] 17 071
FRC, %predicted corrected ~ 87.7 [72.3;101.2] 15 0.24 92.4[78.2;108.1] 15  0.59 94.9 [80.3;125.4] 8 0.01
IVC, %predicted corrected 101.4[93.0;106.5] 13 0.46 87.2 [75.5;101.9] 11  0.10 72.7 [64.0;90.7] 11 0.008
TLC, %predicted corrected ~ 109.2 [103.8;115.4] 9 0.20 97.0 [90.4;109.2] 10 0.27 105.1[90.6;116.0] 8 0.32
RV, %predicted corrected 116.7 [108.9;140.4] 10 0.19 121.6 [95.6;143.3] 10 0.72 148.7 [116.0;171.0] 8 0.99
RVI/TLC 1.1[1.0;1.2] 10 0.24 1.3[1.0;1.4] 10 0.20 1.4[1.2;1.6] 8 0.24
Inflammatory response
hs-CRP, mg/litre 1.3[0.08;3.0] 15 0.28 2.8 [0.3;7.6] 16 0.19 5.0 [1.4;9.5] 18  0.90
Sputum cells, x10° 1.3[0.3;4.0] 7 0.36 0.9[0.4;2.2] 17 0.76 1.8 [0.3;4.2] 13 0.97
Sputum eosinophils, % 1.6 [0.3;8.1] 7 0.91 1.5[0.0,8.3] 16 0.14 0.2 [0.0;2.3] 13 0.68
Sputum neutrophils, % 30.8[17.8;51.0] 7 0.66 36.5[9.1;64.5] 16 0.50 63.6 [41.9;83.4] 13 0.52
White blood cells, x10%/1 7.3£1.5 5 0.07 8.4+3.2 4 0.80 7.8+1.6 8 0.86
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Table E5.1. Characteristics of patients excluded from the analysis population (n=99) (continued)

Mild-to-moderate MD p-value*  Severe asthma MD p-valuef COPD MD  p-valuei
asthma (N=39) (N=37)
(N=23)
Blood eosinophils, x107/1 0.3[0.2;0.3] 7 0.99 0.2 [0.1;0.6] 4 0.54 0.2 [0.1;0.3] 9 0.82
Blood neutrophils, x10%/1 4.0 [3.6;4.2] 7 0.26 4.5 [3.7;6.7] 4 0.99 4.9 [3.6;5.6] 10 0.37

Values shown are mean + standard deviation, median [25" percentile; 75" percentile] and numbers (percentages)

ACQ, Asthma Control Questionnaire; BMI, body mass index; hs-CRP, high-sensitivity C-reactive protein; D\ co, diffusing capacity of the lung for
carbon monoxide; FeNO, fraction of exhaled nitric oxide; FEV;, forced expiratory volume in one second; FRC, forced residual volume; FVC,
forced vital capacity; IVC, inspiratory vital capacity; MD, missing data; NA, not applicable; QoL, quality of life; RV, residual volume; SGRQ, St
George’s Respiratory Questionnaire; TLC, total lung capacity

*Compared with mild-to-moderate asthmatics from analysis population; +Compared with severe asthmatics from analysis population; $Compared

with COPD patients from analysis population; §Inclusion criteria
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Description of group MS (n=10)

Characteristics of patients according to groups M, MS, S;, and S, are provided in Table
E5.2. Group MS was similar to group M regarding age, BMI and number of exacerbations.
There was a gradual increase in the scores of QoL and ACQ (meaning a gradual decrease in
QoL and asthma control) from group M - MS - S1 - S2. Finally, group MS exhibited a poor

lung function, similar to that found in patients from group S,.
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Table E5.2. Characteristics of patients according to subgroups M, S3, S;, and C (n=111)

Group M MD  Group MS MD Group S; MD  Group S, MD  p-value

(N=39) (N=10) (N=18) (N=16)
Airway disease Mild-to-moderate Mild-to-moderate Severe asthma Severe asthma

asthma asthma
Clinical characteristics
Age, years 41.0 [32.0;52.5] - 42.0 [36.0;44.0] - 52.5[44.3;60.3] - 55.5[44.3;60.5] T - 0.01
Gender, male 14 (35.9%) - 4 (40.0%) - 8 (44.4%) - 6 (37.5%) - 0.93
BMI, kg/m? 24.0 [23.0;26.0] - 24.0[20.3;28.5] - 26.5[25.3;28.0] - 28.0[26.3;30.0] T - 0.01
Age of disease onset, years 18.5[5.3;32.5] 1 32.0[7.0;38.0] 1 34.0 [24.3;43.8] - 24.5[13.3;37.5] 2 0.10
Atopy 18 (47.4%) 1 3(33.3%) 1 5 (33.3%) 3 8 (50.0%) - 0.73
QoL, SGRQ 11.4 [6.8;20.7] 8 25.4 [16.4;35.7] 2 39.3[26.0;42.6] 3t 43.7[37.7;48.8] + 4 <0.001
ACQ, Juniper 0.3[0.1;0.6] - 1.0[0.9;1.3] 1 1 1.410.9;2.0] 1 - 2.0[1.3;2.6] T 1 <0.001
Number of exacerbation during follow- 0[0;1] - 0 [0;0] - 11]0;2] - 1[1;2] + - <0.001
up
At least one exacerbation during 13 (33.3%) - 1 (10.0%) - 10 (55.6%) - 13 (81.2%) - <0.001
follow-up
Lung function
Reversibility, percentage change 10.2 [7.7;14.1] 1 7.1[6.0;10.6] - 9.1[5.6;12.9] - 5.5[0.9;9.3] 1 0.06
FeNO, ppb 21.3[14.3;32.2] 12 28.4[14.4;41.2] 6 21.4[14.5:42.3] 10  40.5[23.7;53.8] 7 015
FEV,, z-score -0.8 [-1.3;-0.1] - -2.0[-2.8;-1.7] T 1 -1.4[-1.7;-0.9] - -2.4[-2.7;-1.8] 1 - <0.001
FEV,, % predicted 95.4 [89.5;104.2] - 73.5[67.2;79.6] - 83.9 [75.4;92.4] - 70.3[60.7;80.6] T - <0.001
FVC, z-score 0.1[-0.5;0.4] - -1.4[-1.5;-0.3] 1 -1.1[-1.5;-0.3] T - -1.4 [-2.0;-0.5] T - <0.001
FVC, % predicted 101.5[92.9;105.3] - 82.6 [80.6;96.6] 1 85.2[78.9;96.3] + - 81.4[72.9;92.34] 1 - <0.001
FEV./FVC -1.1[-1.9;-0.2] - -1.7 [-2.6;-1.3] 1 -0.8 [-1.7;0.03] - -1.8[-2.4;-1.2] - 0.08
DLCO, %predicted corrected 95.4 [86.4;103.9] 2 92.0 [82.2;107.0] 2 84.8 [83.1;92.8] 6 88.2 [81.9;98.8] - 0.22
FRC, %predicted corrected 96.1[82.7;115.4] 2 107.9 [83.4;147.9] 2 93.2 [48.0;110.9] 6 89.9 [81.7;112.0] - 0.61
IVC, %predicted corrected 108.9 [101.6;112.7] 4 90.6 [87.3;96.7] T - 98.0[92.2;100.7] - 93.7[85.3;107.0] + 1 <0.001
TLC, %predicted corrected 107.0 [95.5;112.3] 1 101.1[92.8;113.6] - 94.3[86.9;106.5] 1 106.1 [97.4;110.8] - 0.18
RV, %predicted corrected 103.8[92.1;124.7] 2 123.2 [94.0;166.3] - 95.1[86.9;121.7] 1 119.7 [112.3;150.2] - 0.07
RV/TLC 1.0[0.9;1.1] 2 1.2 [1.0;1.5] - 1.1[0.9;1.2] 1 1.2[1.1;1.4] + - 0.005
Inflammatory biomarkers
Sputum cells, x10° 0.6 [0.2;1.3] 8 0.6 [0.3;3.0] 3 2.2 [0.6;4.0] 6 1.0 [0.4;2.0] 5 0.19
Sputum eosinophils, % 1.3[0.1;4.7] 9 1.410.5;3.5] 3 1.510.7;17.8] 6 4.9[1.2;18.1] 6 0.21
Sputum eosinophilia > 2% 12 (40.0%) 9 3 (42.9%) 3 5 (41.7%) 6 6 (60.0%) 6 0.73
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Table E5.2. Characteristics of patients according to subgroups M, Si, S;, and C (n=111) (continued)

Group M MD  Group MS MD  Group S1 MD  Group S2 MD p-value

(N=39) (N=10) (N=18) (N=16)
Airway disease Mild-to-moderate Mild-to-moderate asthma Severe asthma Severe asthma

asthma
Sputum neutrophils, % 46.0 [17.6;67.0] 9 44.5 [35.5;73.9] 3 51.3[26.7;69.4] 6 25.1[23.4;58.6] 6 0.62
Sputum neutrophilia > 40% 17 (56.7%) 9 4 (57.1%) 3 7 (58.3%) 6 3 (30.0%) 6 0.49
Mixed granulocytic inflammation, % 6 (20.0%) 9 1 (14.3%) 3 3 (25.0%) 6 2 (20.0%) 6 0.76
hs-CRP, mg/I 0.8 [0.4;2.2] 7 1.8[1.4;,5.0] 1 2.6 [1.6;2.9] 3 2.2[0.8;5.1] 1 0.06
White blood cells, x10°%! 5.9 [5.4;6.8] 1 6.5 [6.1;8.0] - 6.6 [5.7;8.0] - 8.6 [6.0;9.8] - 0.05
Blood eosinophils, x107/1 0.3[0.2;0.3] 1 0.2 [0.1;0.5] - 0.3[0.1;0.4] - 0.4 [0.1;0.5] 1 0.74
Blood neutrophils, x10%1 3.4[3.0;4.2] 1 4.0 [3.3;4.7] - 3.7[2.9;5.3] - 5.9 [3.5;6.3] - 0.09
Response to treatment
Response to oral corticosteroids 3 (7.7%) - 2 (22.2%) - 3 (16.7%) - 4 (25.0%) - 0.26

Values shown are mean + standard deviation, median [25™ percentile; 75" percentile] and numbers (percentages)

ACQ, Asthma Control Questionnaire; BMI, body mass index; hs-CRP, high-sensitivity C-reactive protein; D co, diffusing capacity of the lung for
carbon monoxide; FeNO, fraction of exhaled nitric oxide; FEV;, forced expiratory volume in one second; FRC, forced residual volume; FVC,
forced vital capacity; IVC, inspiratory vital capacity; MD, missing data; QoL, quality of life; RV, residual volume; SGRQ, St George’s Respiratory
Questionnaire; TLC, total lung capacity

significant difference as compared to S,;  significant difference as compared to M
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Inflammatory response to oral corticosteroids

After the OCS intervention, FeENO decreased (from 40.5 [23.7;53.8] ppb to 27.5
[29.3;44.6] ppb) in group S, so that there was no significant difference between groups
anymore (p=0.40) (Figure E5.1). CRP levels decreased in groups Ss (from 4.2 [2.3;5.6] mg/I
to 1.1 [0.6;5.0] mg/l) and C (from 4.0 [2.4;5.9] to 1.2 [0.5;4.1] mg/l) so that there was no
significant difference between groups anymore (p=0.12). Finally, blood neutrophils levels
increased in all groups so that there was no significant difference between groups anymore
(p=0.29).
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Figure E5.1. Distribution of (A) blood eosinophils, (B) blood neutrophils, (C) FeNO, and (D)
CRP, before and after a 2-week double blind placebo-controlled oral prednisone intervention,
according to groups M, S1, S,, Sz, and C

hs-CRP, high-sensitivity C-reactive protein; FeNO, fraction of exhaled nitric oxide; OCS, oral
corticosteroid

Group M includes mild-to-moderates asthmatics, groups Si, S;, and Sz include severe

asthmatics, group C includes COPD patients
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Stability of characteristics of phenotypes (comparison of characteristics at baseline and study
end)

Characteristics of phenotypes were stable from baseline to study end according to clinical
characteristics (i.e., quality of life and asthma control) and lung function (i.e., FEVy,
hyperinflation, loss of diffusion capacity) (Table E5.3, Figures E5.2-E5.4). However, the
patients showed more intragroup variability in their inflammatory biomarker characteristics.
Consequently, phenotypes obtained using the FBC method seem to be predominantly
determined by lung mechanics, namely, lung mechanics are the phenotype determining

characteristic.

144



Chapter 3: Phenotyping based on lung function fluctuation clusters in asthma and COPD

A B
[ [ ]
a0 - -
- 4_
-*
60 —
o Visit 3 o Visit
L ]
o E baseline g $ baseline
(540 - = .
o E study end 2+ : $ study end
20 = 1-
0= - 0=
T T T T | | T | 1 T
%] =1 52 53 C 1] =1 52 53 C
Group Group

Figure E5.2. Distribution of clinical characteristics at baseline and at study end, according to groups M, Sy, S, Sz, and C
(A) Score of St George’s Respiratory Questionnaire, (B) Score of Asthma control Questionnaire
Group M includes mild-to-moderates asthmatics, groups S;, Sy, and Sz include severe asthmatics, group C includes COPD patients
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Figure E5.3. Distribution of lung function features at baseline and at study end, according to groups M, Si, S, S, and C
(A) FEVy, (B) RVITLC, (C) Dico
Group M includes mild-to-moderates asthmatics, groups Si, Sz, and S include severe asthmatics, group C includes COPD patients
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Figure E5.4. Distribution of inflammatory biomarkers at baseline and at study end, according

to groups M, Sy, Sy, S3,and C

(A) Blood eosinophils, (B) Blood neutrophils, (C) Sputum eosinophils, (D) Sputum

neutrophils

Group M includes mild-to-moderates asthmatics, groups Si;, Sy, and Sz include severe

asthmatics, group C includes COPD patients
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Table E5.3. Characteristics of patients at the end of follow-up (visit 6) according to subgroups M, S;, S, Ss, and C (n=111)

Group M MD Group S; MD Group S, MD Group S;3 MD Group C MD  p-value

(N=39) (N=18) (N=16) (N=18) (N=20) *
Airway disease Mild-to-moderate Severe asthma Severe asthma Severe asthma COPD

asthma
Clinical characteristics
QoL, SGRQ 7.101.8;16.7] & 8 27.0[17.6;39.8] 2 53.1[33.2;55.3] 4 50.6 [34.7;59.1] 1 41.8[34.5;55.3] 7 <0.001
ACQ, Juniper 0.8 10.3;0.9] 1 1.6 [0.7;2.5] 1 2.4[1.4;2.7] 1 2.6[1.8;3.2] 2 NA <0.001
Lung function
FEV,, z-score -0.8+1.1 % 1 -0.4+0.8 1 -2.4+08 7 1 1 -24+13 % 1 1 -3.6+0.6 2 <0.001
FVC, z-score -0.01£0.8 1 -0.9+0.8 1 -1.0+0.6 1 -1.2+1.2 1 -1.6+0.6 2 <0.001
FEV,/FVC -1.3+1.2 % 1 -0.9+1.2 § 1 -2.3+1.0 % 1 1 -2.2+14 + ¢ 1 -3.9+0.7 § 2 <0.001
DLCO, %predicted corrected 95.4[86.8;109.5] 6 88.1[79.4;96.5] 6 82.0[75.8;102.4] 2 88.1[71.8;90.6] 2 52.2 [33.6;78.9] 4 <0.001
FRC, %predicted corrected 101.6+19.9 6 107.9+30.3 7 95.5+22.0 | 3 92.7420.9 | 3 128.4+30.6 6 0.001
IVVC, %predicted corrected 107.9+13.2 § 4 96.7+12.5 3 95.3+10.6 6 97.5+18.5 3 90.2+10.6 4 <0.001
TLC, %predicted corrected 107.6+12.6 3 101.8+14.5 2 1015.0+11.9 3 101.8415.1 2 114.1+17.1 3 0.07
RV, %predicted corrected 111.2429.7 § 3 114.7439.1 | 2 132.5+30.3 3 118.9+30.5 | 2 163.0+45.6 3 <0.001
RV/TLC 1.0£0.2 { 3 1.1+0.2 | 2 1.3+0.2 3 1.2+0.2 § 2 1.4+0.2 3 <0.001
Inflammatory response
Sputum cells, x10° 0.7 [0.3;1.8] 19 1.2[0.5;5.3] 8 0.8[0.5;2.3] 7 1.310.4;2.1] 9 3.3[1.0;6.3] 14 0.50
Sputum eosinophils, % 0.8[0.3;4.0] 20 3.9[0.6;12.7] 8 7.3[0.1;16.3] 7 8.8 [0.8;20.4] 9 0.0[0.0;2.5] 15  0.17
Sputum eosinophilia > 2% 6 (31.6%) 20  5(50.0%) 8 6 (66.7%) 7 6 (66.7%) 9 2 (40.0%) 15 033
Sputum neutrophils, % 42.2[10.7;64.9] 20 47.3[29.5;65.5] 8 16.8 [13.7;67.2] 7 56.2 [32.6;72.0] 9 48.0 [35.4;81.4] 15 0.35
Sputum neutrophilia > 40% 10 (52.6%) 20 5 (50.0%) 8 3 (33.3%) 7 6 (66.7%) 9 3 (60.0%) 15 071
Mixed granulocytic 3 (15.8%) 20 2 (20.0%) 8 2 (22.2%) 7 3 (33.3%) 9 1 (20.0%) 15 0.89
inflammation, %
hs-CRP, mg/I 2.41.0;5.4] 4 3.6 [3.1;4.6] 6 3.1[0.8;6.7] 1 4.7 [2.4;5.7] 2 3.1[1.1;6.5] 2 0.50
White blood cells, x10%1 6.3+1.3 | 2 6.91+2.1 1 8.0£2.5 1 9.0+2.8 2 7.811.8 2 <0.001
Blood eosinophils, x10%I 0.2 [0.2;0.3] 3 0.4 [0.2;0.5] 1 0.5[0.2;0.7] 1 0.2 0.2;0.4] 2 0.2 0.1;0.3] 2 0.21
Blood neutrophils, x107! 3.5[3.0;4.2] & 3 3.8[2.7;4.5] 2 4.7 [2.9;5.7] 1 5.4 [4.2;6.6] 2 4.5[3.9;5.8] 2 <0.001

Values shown are mean + standard deviation, median [25" percentile; 75" percentile], and numbers (percentages)
ACQ, Asthma Control Questionnaire; hs-CRP, high-sensitivity C-reactive protein; D, co, diffusing capacity of the lung for carbon monoxide; FEV4,
forced expiratory volume in one second; FRC, forced residual volume; FVC, forced vital capacity; IVC, inspiratory vital capacity; MD, missing

data; NA, not applicable; QoL, quality of life; RV, residual volume; SGRQ, St George’s Respiratory Questionnaire; TLC, total lung capacity

“Comparison between groups using the one-way ANOVA or the Kruskal-Wallis test, as appropriate, for continuous variables, and using the Chi? or

the Fisher’s exact test, as appropriate, for categorical variables; * As compared to group M; 1As compared to group C

148



Chapter 3: Phenotyping based on lung function fluctuation clusters in asthma and COPD

Differences between groups regarding specific biomarkers

Groups M, S, S, S3, and C significantly differed regarding DPPIV, MMP-3, sSRAGE,
Chitinase 3-Like 1. Pair-wise multiple comparisons showed significantly higher chitinase
levels in group C (37380 [21420;54580]) compared to group M (15470 [12080;18410], p-
value=0.006) and to group Sz (15400 [10710;25020], p-value=0.049). All the other pair-wise

multiple comparisons were not significant.

Discussion
Representativeness of the analysis population as compared to the entire population

Excluded severe asthmatics had significantly lower levels of zZFEV; and zFVVC compared
to severe asthmatics from the analysis population (-2.7+1.3 vs. -2.0+1.3, p=0.01 and -1.8+1.3
vs. -1.1+1.2, p=0.02, respectively). That might have balanced out the differences in lung
function with the mild-to-moderate asthmatics. However, we still found significantly lower
levels of zFEV; and zFVC in groups S, and S; compared to group M.

Similarly, excluded COPD patients had significantly lower levels of zFVC, FRC, and
IVC compared to COPD patients from the analysis population (-2.3+1.2 vs. -1.4%0.8,
p=0.003; 94.9% [80.3%;125.4%)] vs. 126.2 [104.0%;147.1%], p=0.01, and 72.7%
[64.0%;90.7%] vs. 90.2% [81.7%;96.7%] , p=0.008, respectively). That might have balanced
out the differences in lung function with the mild-to-moderate asthmatics. However, we still

found significantly lower levels of zFVC, FRC, and IVC in group C compared to group M.

Inflammatory response to OCS

Before OCS intervention, groups significantly differed according to blood neutrophils,
sputum neutrophils, FeNO, and CRP. Groups S,, S, and C globally exhibited a higher degree
of inflammation compared to groups M and S;. In response to OCS, all groups exhibited a
satisfactory anti-inflammatory response. The decrease in the inflammatory biomarkers levels
was even higher while the degree of inflammation before OCS intervention was high.
Consequently, there was a normalization of the inflammatory biomarkers levels in each group

to that of the group M after the OCS intervention.

Stability of characteristics of phenotypes
It is interesting to note, that the lung mechanical characteristics of phenotypes M, Si, S,

Ss, and C are stable over time, whereas their inflammatory characteristics are more variable,
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which is in accordance with previous findings documented in BIOAIR (Kupczyk, Dahlen et
al. 2014). It was not the purpose of this study to investigate whether FBC performed at
baseline would reveal similar clusters when performed at study exit. Nevertheless, our data
support the hypothesis that the FBC clusters are characterized by similar lung mechanical
properties at the start and end of the observation period. Furthermore, dissociations between
airway dynamics and airway inflammation has been seen also in other studies, highlighting
that structure and function of airways relates to more than inflammatory cell profiles
(Grainge, Lau et al. 2011).

Differences between groups regarding specific biomarkers

As described, four of the serum biomarkers measures showed significantly different levels
among groups M, Si, Sy, S3 and C. The expression of Dipeptidyl peptidase-4 (DPPIV, or
CD26) is increased following IL-13 stimulation in bronchial epithelial cells and its levels in
the circulation have therefore been proposed to be a biomarker of type-2 driven inflammation
and response to anti-IL-13 therapy (Lancet Respir Med. 2015;3:692). In the current
investigation its levels are highest in group M and lowest in group C, yet do not follow the
same pattern as other proposed markers of type-2 inflammation such as blood or sputum
eosinophils, or exhaled NO. However, although not extensively investigated, previous
investigations of DPP4 as a circulating biomarker do suggest that generally, its levels are
lower in more severe, steroid dependent asthma compared to milder disease (Ranade et al.
ATS poster 2016, James et al. ERS poster 2016) which may be in line with the current
observations.

Matrix metalloproteinase-3 is one member of a family of extracellular matrix degrading
enzymes which are believed to play a role in airway disease due to effects on tissue
remodeling and repair and their ability to regulate the kinetics and function of inflammatory
cells. Although circulating MMP-3 has not been thoroughly investigated as a biomarker of
airway disease, one characteristic of possible relevance to the current findings is the fact that
serum MMP-3 levels are strongly increased by corticosteroid use (Hathout et al. Sci Rep.
2016; 6: 31727). Serum MMP-3 levels were greatest in groups S,, S; and C, which were those
taking the highest doses of corticosteroids.

In human and animal studies of airway disease, RAGE and its ligands are often increased,
whereas soluble RAGE is decreased. Inverse associations between circulating concentrations

of total soluble RAGE, and surrogate markers of disease risk or burden observations in other
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chronic inflammatory conditions have led to the view that soluble RAGE is somehow a
protective factor (Sukkar, Ullah et al. 2012). It has been shown that a deficiency in SRAGE is
specifically associated with neutrophilic airway inflammation in asthma and COPD (SukkKar,
Wood et al. 2012), which is in accordance with the neutrophilic-dominant inflammation
observed in groups Sz and C. While it is not known whether deficiency in SRAGE occurs as a
consequence of neutrophilic inflammation, or whether it is a causative factor that underlies
neutrophilic inflammation, these findings highlight the possibility that SRAGE might be a
useful biomarker, and a possible future therapeutic target in severe, neutrophilic asthma.

The chitinase-like protein YKL-40 is known to be increased in both severe asthma and
COPD, where it has been associated with neutrophilic inflammation, but also markers of
airway remodeling such as bronchial wall thickness (Chupp, Lee et al. 2007, Konradsen,
James et al. 2013, Hinks, Brown et al. 2016, James, Reinius et al. 2016). Accordingly, YKL-
40 has also been shown to increase the proliferation of cultured human airway smooth muscle
cells in vitro (Bara, Ozier et al. 2012). Although not statistically significant, it is of interest
that the pattern of serum YKL-40 appears to be different among Si, S; and Sz, whereby levels
are highest in S,. Although this is not the group with the highest sputum neutrophils or lowest
diffusion capacity, one may speculate that this could be related to the fact that these subjects
are older, have high blood neutrophils, have had their respiratory disease for longer, or are the
least reversible, possibly suggesting a more fixed airway obstruction, although the underlying

reasons require further validation.
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6. General discussion

This PhD thesis investigates the fluctuation behavior of heart and respiratory system
signals, and how it changes with long-term environmental exposures and chronic diseases.
The investigations of the fluctuation behavior of physiological systems using mathematical
tools have already provided significant new insights into disease pathogenesis. Until recently,
however, such mathematical tools have not been implemented in large epidemiological or
clinical datasets, allowing for the control of the most potential confounders. This translation
of involved mathematical techniques into the clinical and epidemiological fields underscores
the uniqueness of this work. It results from stimulating teamwork, in a group with mixed
expertise in computational, clinical physiology, and epidemiology. This valuable exchange
enabled us to develop original approaches to unravel the important effects of environmental
factors on the cardiovascular system, as well as to unveil relevant phenotypes of patients with
severe asthma. With the emergence of new fields of research, such as systems biology and
systems medicine, such interdisciplinarity is becoming essential.

6.1. Main findings

This PhD thesis demonstrates original applications in the assessment of dynamics of
cardiovascular and respiratory systems in health and disease, and provides relevant new
findings.

The first application evaluates the long-term influence of smoking cessation on heart rate
variability and heart rate dynamics, in an aging general population, using the subpopulation of
lifelong non-smokers as control group. This application is an illustration of how complexity in
biological signals can be measured, with the constitution of a “toolkit” of parameters to probe
different aspects of the signals dynamics; here the cardiac interbeat interval dynamics. We
investigated whether we could objectify perturbations in heart rate dynamics of current
smokers as compared to lifelong non-smokers, and whether there was a normalization of the
dynamics after smoking cessation. We were able to provide evidence that:

(1) Smoking triggers adverse changes in the regulation of the cardiovascular system, even
at low levels of exposure, with a dose-response effect. The effect of current smoking was
suggested with standard measures of HRV, and strengthened by measures derived from
nonlinear theories. Moreover, we observed that power spectral density, Osport-term time scales
multiscale entropy, and largest Lyapunov exponent were significantly modified in current

heavy smokers, as compared to lifelong non-smokers, but not in current light smokers. This
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finding suggested that more properties of the dynamics got altered when the smoking
exposure increased. Namely, heavy exposure might trigger specific alterations in the
dynamics of the cardiovascular system, in addition to those triggered at lower levels of
exposure.

(2) Light smokers fully recover within the first 15 years of cessation.

(3) Heavy smokers also fully recover, but might need up to 15 to 25 years. Our findings
suggested a full normalization of the Lyapunov Largest Exponent after only 25 years of
cessation in former heavy smokers. This supports the hypothesis that nonlinear time series
analysis techniques may be able to unveil subtle, but important, changes in the regulation of
the cardiovascular system; more difficult to detect by traditional analysis methods. To the
extent that we may translate perturbations in the heart rate dynamics to an increase in the risk
of coronary heart disease, this finding is consistent with Teo et al.’s findings, which identified
a still increased risk of acute myocardial infarction in former heavy smokers after 20 years of
smoking cessation (Teo, Ounpuu et al. 2006).

The second application evaluates the influence of long-term exposure to TPMo on HRV
and heart rate dynamics. While we did not find any overall association in the entire study
population, we observed strong significant associations of long-term exposure to TPMj, with
the HRD parameters in subjects without cardiovascular morbidity, and even stronger
associations, with both HRV and HRD parameters, in non-obese subjects without
cardiovascular morbidity. These findings suggest that the relative contribution of both the
underlying health condition and the countering effects of drug treatments on the TPMyo—
HRV/HRD relationship might render this relationship so variable that the overall TPMjo—
HRV/HRD relationship in such subjects might be null. Therefore, adverse effects of TPMyy,
even if they are present in subjects with comorbidity, might be more visible in healthy
subjects. Additionally, our findings are in the line with previous studies that have provided
evidences that TPM;o might impact in part through oxidative stress pathways. Finally, the fact
that adverse effects of TPMy, were revealed in subjects without cardiovascular morbidity,
only by HRD parameters, supports the hypothesis that, measuring changes in complexity in
heart rate dynamics during exposure to environmental elements, might unveil subtle but
important changes in the regulatory mechanisms of the cardiovascular system not detectable
by traditional analysis methods.

The third application evaluates whether the subgrouping of patients with chronic obstructive

airway diseases, including mild-to-moderate asthma, severe asthma, and COPD, according to
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their profile of airway dynamics, allows for the identification of phenotypes with specific
treatable traits. This application is an illustration of how complexity in biological signals can
be compared, and used for disease phenotyping. We investigated how an unlabeled data set
with patients with mild-to-moderate asthma, severe asthma, and COPD, organizes into
groups, on the basis of patients’ lung function fluctuation. Combination of the resulting lung
function fluctuation based clusters with the initial clinical classification (i.e., mild-to-
moderate asthma, severe asthma, and COPD) allowed for the identification of 5 groups (M,
S1, Sy, S3, and C) corresponding to relevant phenotypes. Phenotypes were characterized by a
gradually increasing clinical severity and functional alteration of the lung from M to C, with a
high exacerbation risk in S; and S;. Response to OCS differed according to groups and
seemed to result from the relative pathophysiological contributions of airway obstruction,
inflammation, and irreversible mechanical impairment. Response in M was weak, probably
due to a ceiling effect. Indeed, since this group of patients had minimal airway obstruction,
they were probably controlled with inhaled corticosteroids, reducing any benefit of adding
OCS. From S; to S3, where degree of obstruction and signs of inflammation gradually
increased, we found a gradually increasing response to OCS, with a particularly good response
in Sz. In C, irreversible mechanical impairment of the lung might have rendered patients
clinically unresponsive to OCS despite a satisfactory anti-inflammatory response. Thus, in
these patients the mechanical impairment dominated the clinical picture. Our approach
provided evidence that airway dynamics contain substantial information, which enables the
identification of phenotypes, in which the functional alteration of the lung translates into
specific pathological features and clinically meaningful outcomes.

6.2. Strengths and limitations
Particular strengths of our applications were the original approaches used to answer

original research questions, with data from two large and unique datasets.

6.2.1. Effects of long-term environmental exposures on heart rate variability and
heart rate dynamics
A unique dataset
The SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and Heart Disease in
Adults) study was designed to assess the health effects of long-term exposure to air pollutants

in the Swiss adult population. Main strengths of this study include the population-based
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design, the large number of participants who underwent a 24-hour electrocardiogram Holter
recording to assess HRV, the 10-year follow-up period and detailed information available on

participants, allowing for the control of most potential confounders.

Original research questions
The unique design of the SAPALDIA study enabled us to examine, for the first time, the
influence of long-term smoking cessation, as well as the influence of long-term exposure to

TPMyo on the regulation of the cardiovascular system and heart rate dynamics.

An original approach

To answer these research questions, we calculated traditional measures of HRV, and, in
addition, we generated a toolkit of parameters derived from nonlinear dynamics methods in
order to probe different dynamics properties of heart rate variability. This approach allowed
us to strengthen findings from the traditional measures of HRV, to unveil long-term
alterations caused by heavy smoking exposure, as well as alterations caused by long-term

exposure to TPMy, in the subjects without cardiovascular morbidity.

Limitations

A limitation of this work is the absence of a physiological interpretation of the parameters
calculated with methods from nonlinear dynamics. Physiological interpretation of such
metrics constitutes a major limitation for their use (1996, Goldberger, Amaral et al. 2000,
Francesco, Maria Grazia et al. 2012, Manor and Lipsitz 2013). Though it is reasonable to
assume that these concepts from mathematics could help gain insight into the regulatory
mechanisms of physiological systems, efforts are needed to improve our understanding of
their physiological correlates. In the case of the present work, this uncertain knowledge

limited the interpretation of associations between parameters and risk of cardiac events.

6.2.2. Lung function fluctuation based phenotypes in asthma and COPD
A unique design
The Pan-European BIOAIR (Longitudinal Assessment of Clinical Course and
BlOmarkers in Severe Chronic AIRway Disease) study was designed to characterize the
course of severe chronic airway diseases over time. The unique aspect of this study was the

twice-daily collection of lung function measurements over a one-year period. Additional
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strengths of this study include the mixed population of adults with mild-to-moderate asthma,
severe asthma, and COPD; a 2-week double blind placebo-controlled oral corticosteroid
intervention, allowing for the assessment of response to treatment; and the detailed

information available about the patients.

A currently unmet need

For clinicians, the identification of asthma and COPD phenotypes related to specific
treatable traits is of primary concern. Especially in severe asthma (Heaney and Robinson
2005, Wenzel 2012), COPD, and the transition forms between these entities (Chung 2013), in
which the unpredictable nature of exacerbations and the heterogeneity of response to drug
therapy present a major clinical challenge (Moore and Peters 2006, Donaldson, Seemungal et
al. 2012, Kupczyk, Haque et al. 2013, Phipatanakul, Mauger et al. 2016).

An original approach

The BIOAIR study, due to its unique design, enabled, for the first time, a comparison of
patients with mild-to-moderate asthma, severe asthma, and COPD, on the basis of their
airway dynamics over a one-year period. This was achieved using a novel clustering
approach, developed by our group (Delgado-Eckert, Fuchs et al. 2017), called fluctuation-
based clustering (FBC). Classical clustering approaches usually rely on a cross-sectional
bunch of clinical and biological variables (Haldar, Pavord et al. 2008, Smith, Drake et al.
2008, Weatherall, Travers et al. 2009, Moore, Meyers et al. 2010, Fitzpatrick, Teague et al.
2011, Siroux, Basagana et al. 2011, Just, Gouvis-Echraghi et al. 2012, Boudier, Curjuric et al.
2013, Moore 2013, Prosperi, Sahiner et al. 2013, Schatz, Hsu et al. 2013, Wu, Bleecker et al.
2014). However, characterizing patients with dynamical diseases, such as asthma and COPD,
at a single point in time, is prone to misclassification. Instead, serial measurements of a single
biomarker, as used in the FBC approach, may enable a more accurate classification of
patients, and could better account for the temporal stability of a given phenotype.
Furthermore, since fluctuation in FEV; describes the patient’s response to day-to-day real life
stimuli, the FBC approach may account for the interaction with the given environment over
the observation time period. This is particularly important for asthma phenotyping, since both
intrinsic features of the disease and environmental stimuli might determine disease

phenotypes.
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Limitations

This work faced some limitations. First, the FBC approach is not based on correlation
properties of the lung function measurements, but on their distribution (Delgado-Eckert,
Fuchs et al. 2017). Consequently, it neglects the time dimension, but it gains robustness with
respect to missing data. Indeed, calculating correlation from data with missing data points
would be prone to error, and thus, would not be appropriate in clinical context, where missing
data are a frequent issue. Second, we were not able to assess the stability of the phenotypes
identified. Namely, to assess whether a similar FBC analysis performed at another time point
would generate similar phenotypes and how allocation to clusters would change. Given that
the FBC analysis was performed on the entire follow-up period, we were not able to repeat

the analysis at another time point.

6.3. Clinical and public health relevance and recommendations

The investigation of the change in complexity dynamics of physiological signals has
many possible applications that are of clinical and public health relevance, in a wide range of
domains, such as aging, disease, and environment. As part of the present work, our
investigation of the effect of environmental exposures on HRV and heart rate dynamics, as
well as the investigation of lung function fluctuation behaviour for asthma and COPD

phenotyping, provided findings of relevance for public health and clinical research.

6.3.1. Effects of long-term environmental exposures on heart rate variability and

heart rate dynamics: applications of relevance for public health
Findings from our study related to smoking cessation and HRV/HRD support the
substantial benefits of smoking cessation, but also warn of important alterations caused by
heavy smoking. It constitutes a strong argument for health policy makers advocating for more
intensive prevention campaigns aimed at discouraging smoking, and underpins the value of
public healthcare programs supporting the benefits of smoking cessation. Furthermore, we
could show that heavy former smokers might need up to 15-25 years to fully recover after
smoking cessation. Thus, former heavy smokers remain exposed longer after cessation to a
higher risk of cardiovascular morbidity and cardiovascular-related morbidity. Analogous to
the recommendations of the American Cancer Society (2014) related to lung cancer screening,

our data suggest that close monitoring of cardiovascular disease in current and former heavy
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smokers might be warranted. In such patients, characterization of HRV and heart rate
dynamics might be relevant for cardiac events risk stratification after smoking cessation.
Findings from our study related to long-term exposure to TPMj,and HRV/HRD provides
evidence of adverse effects of air pollution in healthy subjects, believed to be less susceptible
than specific subpopulations with comorbidities (e.g., the elderly, patients with preexisting
cardiovascular disease or diabetes, obese subjects) though. This constitutes a strong argument
for health policy makers advocating for more intensive prevention campaigns aimed at
reducing traffic-related pollution. Additionally, our findings suggest that the TPMyo-
HRV/HRD relationship in subjects with cardiovascular morbidity might be modified by both
the underlying cardiovascular condition and the related treatments. Thus, some cardiac
therapies, for a given underlying cardiovascular condition, might be protective against the
adverse cardiac effects of pollution, whereas some other cardiac therapies/conditions might

render subjects particularly susceptible to those effects.

6.3.2. Lung function fluctuation based phenotypes in asthma and COPD: an
application of clinical relevance
Research implications
Asthma and COPD patients’ phenotyping based on airway dynamics might, in the near
future, have relevant research applications. First, further investigations of such phenotypes,
and characterization of related endotypes, might help in our understanding of the underlying
mechanisms of disease pathogenesis, leading to more targeted therapies and personalized
approaches to asthma management.
Future study designs might include phenotypes-based interventions, such as:

e The characterization of structural alterations of the lung, using imaging techniques,
in patients with severe phenotypes. Structural alterations may reflect specific
underlying pathophysiological mechanisms and their investigation, specifically in
severe phenotypes, might improve our understanding of disease pathogenesis. Choi
et al. identified four clusters very similar to our phenotypes M, S, S, and S3, using
an imaging-based clustering approach (Choi, Hoffman et al. 2017). In particular, our
group S, was similar to their luminal narrowing-dominant cluster, and our group S3
was similar to their wall thickening-dominant cluster.

e The evaluation of new treatment strategies. The severe phenotypes S, and S;3

identified in the BIOAIR study were characterized by patients with high
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exacerbation risk and a good response to oral corticosteroids. These patients might
particularly benefit from a controller medication, especially from more targeted

immunosu ppressant treatments.

Clinical implications

In the longer-term, we also see promising clinical applications. In particular, the
implementation of lung function measurements in telemonitoring settings for:

e Diagnostic purposes - In a situation of unclear asthma history, unclear graduation of
asthma severity, or suspicion of asthma-COPD-overlap-syndrome (ACQOS), a twice-
daily lung function monitoring for a given period of observation might help
determine which diagnosis would support the observed lung function fluctuations.

e Monitoring purposes - In patients with severe phenotypes, especially if there is a
high risk exacerbation, periods of closer monitoring could be recommended, for
instance after implementing a new treatment strategy.

The implementation of the FBC approach in telemonitoring settings appears feasible.
While conventional disease phenotyping usually relies on many characterizing parameters,
which tend to be expensive and limited to in-hospital assessment, fluctuation of FEV; can be
implemented in a simple and cost-effective way in a telemonitoring setting with an
appropriate adherence measure (Kupczyk, Haque et al. 2013). Moreover, in order to increase
its feasibility and the clinical applicability, the FBC approach includes a data-driven
algorithm which determines the tolerable amount of missing measurements. Finally, our lung
function based clustering could be repeated in a large database, generated from existing
datasets of patients with chronic obstructive airway diseases. After validation of the
phenotypes identified, this database could be used as a reference database, to automatize data
analysis. Thus, a patient with a complete telemonitoring dataset could be instantaneously
attributed to a phenotype.

6.4. Outlook
6.4.1. Effects of long-term environmental exposures on heart rate variability and
heart rate dynamics
Regarding the investigation of the influence of smoking cessation on HRV/HRD, further

studies are needed:
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to improve our understanding of the physiological correlates of the modifications
of dynamics properties triggered by smoking exposure;

to investigate whether the late normalization in former heavy smokers, especially
in the Lyapunov Largest Exponent, suggested by our findings is observed in other
datasets, and whether a persistent decrease in Lyapunov Largest Exponent might
be associated with an increased risk of coronary heart disease;

to evaluate the benefits of close monitoring of cardiovascular disease in current
and former heavy smokers, and whether, in such patients, characterization of heart
rate dynamics might be relevant for cardiac events risk stratification after smoking

cessation.

Regarding the investigation of the influence of long-term exposure to TPMjy on
HRV/HRD, further studies are needed:

to see whether these alterations in HRV/HRD in healthy people lead to increased
mortality and morbidity later in life;

to investigate how the TPMjo-HRV/HRD relationship in subjects with
cardiovascular morbidity is modified depending on the underlying cardiovascular

condition and the related drug treatments.

6.4.2. Lung function fluctuation based phenotypes in asthma and COPD

Regarding the lung function fluctuation phenotyping in asthma and COPD, our group is

planning the following future investigations as part of the BIOAIR study:

The examination of the minimal window of observation needed to ensure the
correct phenotyping of patients in order to facilitate implementation into clinical
practice and telemonitoring settings;

The exploration of the long-term stability of the phenotypes. So far, long-term
stability of asthma phenotypes is poorly understood. The determination of the
minimal window of observation needed for the correct phenotyping of patients
would allow for the phenotyping of patients and the assessment of the temporal
evolution of the phenotypes, using a gliding window along the follow-up period.
The size of the gliding window will be determined by the size of the minimal

observation window needed to ensure the correct phenotyping of patients. The
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stability of the clusters will be assessed using Jaccard's similarity coefficient, which is
a measure of overlap between groups. Moreover, the cluster membership of
individual participants will be traced as a function of time.

e The identification of factors likely to influence phenotypting. Especially, the
observation period (e.g., influence of seasonality), the time and frequency of the

measurements (e.g., influence of the circadian rhythm).

6.5. Conclusion

This thesis attempts to demonstrate the importance of multidimensional approaches to
understand the complex functioning of our physiological system and of diseases process.
Characterization of the complexity in the fluctuation behavior of system signals holds
enormous promise for providing new understandings of the regulatory mechanisms of
physiological systems and how they change with diseases. However, it is important to
combine this kind of approach with classical epidemiological approaches in order to
disentangle the various contributions of the intrinsic physiological dynamics, aging, diseases
and comorbidities, lifestyle, and environment. In the SAPALDIA cohort study, we were able
to disentangle the influence of specific environmental exposures, such as particulate matter air
pollution and smoking exposure, on the HRV and heart rate dynamics, and thus to unveil
long-term alterations in former heavy smokers, as well as adverse effects of low level, but
long-term, exposure to TPMyg in healthy subjects and in subjects with homozygous GSTM1
gene deletion. In the BIOAIR study, we provide evidence that airway dynamics contain
substantial information, which enables the identification of clinically meaningful phenotypes,
in which the functional alteration of the lung translates into specific treatable traits.
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Appendix 2

8. Appendix
8.1. Appendix 1: Handling missing data

The FBC approach was conceived with the aim of a clinical application. Consequently,
special attention was given to the fact that this approach should be adapted for times series
containing missing values. This constraint motivated the use of the Earth mover’s distance to
quantify the similarity between individuals. Thus, comparison of the signals is not based on
correlation properties of signals, but on the probability distribution of the data points.
Consequently, it neglects the time dimension, but it is quite robust with respect to missing
data. Therefore, with the FBC approach, no extensive handling of missing data is required.

In the context of lung function measured twice-daily by subjects using a lung function
meter, time series are typically characterized by short continuous segments of missing values
(gaps < 3 data points), which correspond to patients intermittent/punctual omissions. In this
case, the local mean imputation allows for a substantial increase of the signal continuity, in a
simple manner, without distorting the distribution of the variable. Method for local mean

imputation is given in Table A8.1.

Table A8.1. Method for local mean imputation

Gap length Representation of the gap Steps for local mean imputation
1 missing value Xy, Xy, X3, My, X4, Xs, X M1 = mean(X3,X,)
2 missing values  Xj, Xo, X3, My, My, X4, X5, Xg

X, Koy Ks, M, Koy Ks, Xe = mean(X,Xs,X4,Xs)

X1, Xo, X3, My, WV, My, Xa, X5, Xe My = mean(Xs, )

M, = mean(X4,\1)

3 missing values X, X5, X3, M1, My, M3, X4, X5, Xg My = mean(X,,X5,X4,X5)
M; = mean(X3,M>)
M3 = mean(X,,M,)

M, Missing value; X, measurement
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In order to examine the missing values contained in the time series of z-score FEV; used
for the FBC analysis, and to evaluate whether we should perform the local mean imputation,

we defined three fragmentation indexes.

Index 1: Distribution of length of uninterrupted segments of missing values
Median segments length was 1 [min: 1, 25"quartile: 1, 75™quartile: 2, maximum: 73]
(Figure A8.1). Therefore, the uninterrupted segments of missing values were mostly smaller

than 3 missing values.

Frequency
300 400 500
| | |

200
|

100
|

o i
[ 1 |
0 20 40 60

Median
_________ Quartile

Figure A8.1. Distribution of length of uninterrupted segments of missing values

Index 2: Distribution of relative length of uninterrupted segments of missing values

gap length
total number of data points in the time series
(measurements + missing values)

Relative gap lenght =

A gap corresponds to an uninterrupted segment of missing values.

Median segments relative length was 2% [min: 0.4%, 25"quartile: 1%, 75™quartile: 4%,
maximum: 100%] (Figure A8.2). Therefore, the uninterrupted segments of missing values

were mostly very short.
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Frequency

[ —— : : - ‘ ‘ Median
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Figure A8.2. Distribution of relative length of uninterrupted segments with missing values

Index 3: Index of fragmentation (for X <3)

number of gaps whose length < 3

Index of fragmentation = . : .
total number of gaps in the time series

A gap corresponds to an uninterrupted segment with missing values.

For X< 3, median index of fragmentation was 100% [min: 0%, 25thquartile: 77%, 75thquartile:

100%, maximum: 100%] (Figure A8.3). Therefore, most of the uninterrupted segments of

missing values counted < 3 missing values.

Median

_________ Quartile
o :
= :
o | .
> © :
3 :
2 :
§ 9 - :
=4 :
2 :
o | :
S :
S | I ‘

I T L ' '

0 20 40 60 80 100
>

Local mean imputation
worthwhile

Figure A8.3. Distribution of index of fragmentation, for X <3
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According to the three indexes, the local mean imputation should substantially improve

the continuity of the time series.

Finally, in order to evaluate how the continuity of the time series improved using the

local mean imputation, we calculated the three fragmentation indexes for the uninterrupted

segments of measurement in the time series before and after imputation.

Index 1: Distribution of length of uninterrupted segments of measurements

Table A8.2. Distribution of length of uninterrupted segments of measurements before and

after imputation

Minimum First quartile Median Third quartile Maximum

Before imputation 1 1 2 6 58
After imputation 1 1 8 27 91
Median
--------- Quartile
Before imputation After imputation
p ° .
e . T I x | R | o . .
0 10 20 30 40 50 60 V] 20 40 80 80 100

Figure A8.4. Distribution of length of uninterrupted segments of measurements before and

after local mean imputation
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Index 2: Distribution of relative length of uninterrupted segments of measurements
Table A8.3. Distribution of relative length of uninterrupted segments of measurements before

and after imputation

Minimum First quartile Median Third quartile Maximum

Before imputation 0.7% 3% 7% 20% 100%
After imputation 1% 4% 30% 100% 100%
Median
————————— Quartile
Before imputation After imputation

BO

a0

0.0 02 04 0.6 o8 1.0

Figure A8.5. Distribution of relative length of uninterrupted segments of measurements

before and after local mean imputation

Index 3: Index of fragmentation (X > 10)
Table A8.4. Distribution of index of fragmentation, for X > 10, before and after local mean

imputation

Minimum First quartile Median Third quartile Maximum
Before imputation 0% 15% 48% 100% 100%
After imputation 0% 50% 100%  100% 100%
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Before imputation

40

Frequency
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Figure A8.6. Distribution of index of fragmentation, for X > 10, before and after local mean

imputation

According to the three indexes, the local mean imputation substantially improved the

continuity of the time series.
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8.2. Appendix 2: Time delay embedding

Given a time delay t=2, and an embedding dimension d=3, the embedding procedure
consists in starting at the very first value X; of the time series and grouping three (d=3)
consecutive values that are separated by t into a vector (here, given that t=2 and d=3, that
would be the vector (X1,X3,Xs)), then moving to the next entry in the time series, that is X,
and repeating the grouping procedure resulting in the vector (X3,X4,Xg). The embedded time

series is the series of vectors (X1,X3,Xs), (X2,X4,Xg), etc.
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8.3. Appendix 3: Additional manuscript
Another stimulating aspect of my PhD work was using the knowledge gained as a part of my
studies to contribute to other studies from our interdisciplinary research group. The

manuscript of a successful project is provided in this appendix.
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Physiological phenotyping of pediatric chronic obstructive airway diseases
S. Nyilas, F. Singer, N. Kumar, S. Yammine, D. Meier-Girard, C. Koerner-Rettberg, C.
Casaulta, U. Frey, P. Latzin.
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doi: 101 132Gapplphysiol (0086.2016.—Inert tracer gas washout
(IGW) measurements detect increased ventilation inhomogeneity (V1)
in chronic lung discases. Their suitability for differcnt discases, such
as cystic fibrosis (CF) and pnmary ciliary dyskinesia (PCDY), has
already been shown., However, it is still unclear if physiclogical
phenotypes based on different IGW variables can be defined indepen-
dently of undedying discase. Faghty school-age children, 20 with CF,
20 with PCD, 20 former preterm children, and 20 healthy children,
performed mitrogen multiple-breath washout, double-tracer gas (DTG)
single-breath washout, and spirometry. Qur primary outcome was the
definition of physiological phenotypes based on IGW variables. We
applied principal component analysis, hierarchical Ward's clustering,
and enrichment analysis to compare clinical charactenistics between
the clusters. IGW vanables used for clustenng were lung clearance
index (LCI) and convection-dependent [conductive ventilation heter-
ogeneity index (Scond)] and diffusion-convection-dependent vari-
ables |acinar ventilation heterogeneity index (Sacin) and carbon
dioxide and DTG phase 111 slopes]. Three main phenotypes were
identified. Phenotype 1 (r = 38) showed normal values in all IGW
outcome  varables. Phenotype Il (n = 21} was characienzed by
pronounced global and convection-dependent V1 while diffusion-
dependent VI was normal. Phenotype 11 (n = 21) was charactenzed
by increased global and diffusion- and convection-dependent VI
Ennchment analysis revealed an ovemepresentation of healthy chil-
dren and former preterm children in phenotype | and of CF and PCD
in phenotypes 11 and 1. Patients in phenotype 1 showed the highest
proportion and frequency of exacerbations and hospitalization in the
year prior to the measurement. IGW techniques allow identification of
clinically meaningful, disease-independent physiclogical clusters.
Their predictive value of future discase outcomes remains to be
determined.

gas washout; spirometry; phenotypes; clustering: lung discase

NEW & NOTEWORTHY

Clustering signals from different single- and multiple-breath
gas washont tests in children with various lung diseases (eg..
cystic fibrosis and primary ciliary dyskinesial results in the
identification af three different phvsiological phenotypes. This
navel application of the hierarchical Ward's clustering method
allows the characterization of lung disease independent of the

Address for reprint requests and other correspondence: 5. Nyilas, Childrens
University Hospital Bern, Freiburgstrasse, 3010 Bern, Switzerland (e-mail:
sylvianyilas @okbb.ch).
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wnderlving disease entity and thus seems a promising tool for
personalized medicine.

THE FRACTAL ARCHITECTURE oF small airways enables homoge-
neous ventilation with gas transport into the pas-exchanging
acinar compartments by convection and diffusion (44, 45).
Depending on the generation and distribution of affected air-
ways, respective function is impaired to a varying degree and
often subclinical in many chronic lung diseases. Chronic lung
diseases such as cystic fibrosis (CF) and pnimary ciliary dys-
kinesia (PCD) significantly differ in etiology but may share
similar physiological characteristics. In both diseases. inhomo-
geneous patchy distribution of airway obstruction is associated
with inhomogeneous ventilation distribution (16, 25). During
early stages of lung diseases, small airways in particular are
most affected. This is best captured by inert gas washout
(IGW) tests while ventilation capacity measured by spirometry
is usually less affected (8, 17, 27). During the disease course,
allerations in airway structure occur and ultimately lead to a
changing picture of functional limitations. Despite possible
similarities between diseases and changes in physiological
properties over the disease course, treatment usually depends
on underlying disease entity.

Especially with regard to precision and individualized med-
icine a better characterization of the underlying physiology
seems worthwhile to establish; this would enable tailored
diagnosis and therapy. One possibility to do so would be to
cluster the compound information from different ocutcome
variables from various IGW tests. Statistical methods such
as hierarchical Ward's clustering can then be used to com-
bine different physiological varnables in an unsupervised
way (12, 35).

In our study we hypothesized that clustering may identify
physiological phenotypes that do not necessarily relate to
different disease etiologies but rather to common physiological
information and that resulting clusters show differences in
enrichment of other characteristics.

METHODS
Study Design

In this proof-of-principle study we used IGW data from 80 children
with different lung diseases. We first performed conventional (biased)
analyses comparing [GW outcome variables between discase groups.
Second, we perfformed principal component analysis (PCA) to deter-
mine whether or not all [IGW outcome variables are necessary for
clustering. In a third step, we performed Ward’s hierarchical cluster-
ing using the outcome variables from IGW. Primary cutcome was the
defimtion of physiological phenotypes based on IGW vanables cal-
culated by hicrarchical Ward's clustering. Secondary outcome was

httpedfwww japplorg
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differences between clusters assessed by enrichment analysis. For this
analysis we compared discase ctiology, demographics, IGW out-
comes, and discase course previous to the measurement between the
groups (7, 28).

Study population. We included 20 children from 3 disease groups
{CF, PCI), and former preterm children) as well as healthy children
with 20 children from each group. Children were 7-18 yr old and
consecutively recruited at the outpatiemt clinics st the University
Children’s Hospital Bem, Switzerland, and Children’s Hospital Bo-
chum, Germany, between January 2012 and May 2015 independent of
discase activity or medication. PCD patients were enrolled at Umiver-
zity Children's Hospital Bochum (r = 17) and Bern (7 = 3); all other
children were enrolled at the Umiversity Children’s Hospital Bern.
Exclusion critenia for all children were respiratory infection within the
last 3 wk, acute pulmonary exacerbation at the time of measure-
ments {marked increase in cough, fever, or malaise), or history of
lung discase in healthy children. All children underwent two
different established gas washout techmigues, single- and multiple-
breath washout tests (SEW or MBW). All except healthy children
underwent subsequent spirometry. Measurements were performed
on the same day.

Ethics Statement

The study was approved by the Ethics Commitice of the Canton of
Bern, Bemn, Switzerland, and Ethics Committee of the Ruhr Univer-
sity, Bochum, Germany. We obtained written informed consent from
parents and participants older than 16 yr.

Lung Funciion Measuremenis

Mulniple-breath washout. Tidal Nz-MBW tests were performed in
triplicate with a validated setup (Exhalyzer I, Eco Medics, Duernten,
Switzerland) (32) according to the guidelines (31). The main outcome
variable was the lung clearance index (LCI) calculated from the ratio
of cumulative expired volume divided by functional residual capacity
{(FRC). Resulting LCT units are lung tumovers. LCT reflects the lung
turnover measured at one-fortieth of initial starting Nz concentration
as recommended. Alveolar phase I slopes (Sm) from washout
breaths were automatically calculated between 65 and 953% of the
expired volume with manual adjustment as appropriate. Standard
corrections for tracer gas concentration and tidal volume were done
automatically. Conductive ventilation heterogeneity index (Scond)
was calculated from the evolution of Si between lung turmovers 1.5
and 6. The first washowt breath’s Sip was used to derive acinar
ventilation heterogeneity index (Sacin; 1B). Please see below for
detailed physiological explanations.

Single-breath washowr. The tidal SBW tests were perdformed in
triplicate using the same setup (Exhalyzer D). After established
relaxed tidal breathing, measurements took one tidal inspiration and
expiration from and back to FRC while the tracer gases were washed
in and out. The double-tracer gas (DTG mixture contained 26.3% He,
5% SF;. 21% oxygen (0;), and balanced N, (33). The total molar
mass of this gas muxture was oqual to air; therefore molar mass
changes during washout reflected ventilation distnbution of the tacer
gases. The S quantified from the molar mass expirogram (Sip-DTG)
was the primary outcome variable (34). Capnography was derived
from the DTG-5BW, with S quantified from the CO: expirogram
(Syr00;) as outcome vanable. We used LungSim 4.6.0 (NM Nu-
merical Modelling, Thalwil, Switzerland) for signal processing and
analyses as descnbed (1, 29, 33).

Spiromeiry. Spirometry was performed according to the guidelines
(24, 36) using the MasterScreen (Jaeger, Wirzburg, Germany). Out-
come was forced expiratory volume in | s (FEV;).

Plvsiclogical Meaning of Gas Washout Signals

Both MBW and SEW tests are established methods to quantify the
extent of impaired ventilation distribution efficiency and potential
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areas of the airway tree where ventilation inhomogeneity (V1) may
predominantly arise. LCT from No-MBW reflects global VI, which is
a mixture of V1 arising in central and peripheral airways as well as in
dead space (30). To characterize more specifically the location in the
arway tree al which V1 anses, additional ouwtcome vanables wens
assessed. One s the division of MBW into Scond and Sacin. Scond
represents W1 gencrated in convection-dependent preacinar airways.
Sacin estimaies inhomogencity generated in the region of the diffu-
sion- and convection-dependent front close o the entrance of acinar
airways. The third method used to more specifically chamctenize V1 is
by analyzing Sy that are simultaneously obtained from inert gases of
similar convection but different diffusion properties. For a heavy gas
such as SFy, the diffusion-convection front approximates to the mouth
of the acinus and stretches into the proximal portion of the acinus.
Concerning He, this front 15 more proximal. The DTG-SBW signal
reflects a composite signal of He, SFs, and N2 (38). Elevated 5in-DTG
seems to mainly reflect VI ansing due to structural changes between
the different diffusion-convection fronts of all three gases. Capnog-
raphy iz less specific and depends on perfusion, the blood air barrier,
and diffusion- and convection-dependent V1 as well as dead space.

Statistical Analvsis

The z-scores for washout outcomes were calculated from healthy
children. Upper limit of normal (ULN) and lower limit of normal
(LLN} were defined as means + 1.96 (S from healthy children. The
z-scores for FEV,, height, weight, and body mass index (BMI) were
derived from the current standard reference equations (10, 36). For
the following outcomes, higher absolute values and z-scores indicate
greater disease: LCI, Scond, Sacin, and SHI-CO,. Lower absolute
values and z-scores indicate worse disease for FEV, and Sm-DTG.

For classical biased analysis, comparnisons were done using Sto-
dent’s r-test, Wilcoxon rank sum tests, chi-square test, and one-way
ANOWA tesis, as appropnate. Post hoc tests for pairwise multiple
comparisons were performed using the ANOVA with Bonferroni
correction, as appropriate. All tests were two-sided with a sigmif-
icance level of 0.03 and performed using STATA R, Version 2,10
(Stata Statistical Software: Release 13, StataCorp, College Station,
TX) (27a).

Principal component analysis (PCA) was utilized as a dimension
reduction procedure to reduce the large number of vanables into
interpretable combination of the data. The resulting linear combina-
tion corresponds to a principal component (42). We applied PCA 1o
identify a combination of V1 cutcomes that would explain more than
B¢ of overall vanation in data. PCA performed on correlation matnx
of the five IGW owtcomes was used as a dimensionality reduction
techmigue to identify which combination of five IGW owtcomes might
be most relevant for disgnostic purposes. For each condition (healthy,
former preterm, CF, and PCLY), the obtained eigenvalues and principal
components (PCs) of the matrices were considered. The first PC
(PC,) accounts for the majority of the data variance; PC, and the
corresponding values from 1GW outcome vanables for all children
and each disease group separately were used to reflect the domi-
nant value. PCy and its corresponding loading coefficients were
evaluated to determine the dominant value in the lung function
measurement. The data for 1) all children and 2) each disease
group scparately were plotted into the first principal axis to obtain
the variance explained by PC; for all children and each discase
group separately (21, 42).

Ward's hicrarchical clustenng was performed to identify physio-
logical phenotypes based on the IGW outcome variables. We per-
formed the clustering until the next number of clusters resulted i less
than five patienis in one of the clusters (43). An ennchment analysis
was performed using the hypergeometric test (2) to assess overrepre-
sentation of clinical varables within any phenotype.
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RESULTS

Eighty children were enrolled (Table 1). We used 400 1GW
outcomes to define different clusters.

Classical {Biased) Analysis

We performed classical analysis of pulmonary function
outcome variables for the different disease groups on the group
level (details in Table 2) and on an individual level (Table 3).

Lung function in former preterm children was normal on the
group level apart from elevated Syp-COq. Sip-COz was 0.7 +
0.2 {mean = SD} and thus slightly increased compared with
healthy children (0.5 £ 0.2, P = 0.047). On an individual
level, prevalence of pathological values did not exceed 10% of
patients in any of the lung function indexes (Table 3).

CF showed significantly impaired IGW results compared
with healthy children on the group level. LCI was significantly
higher in CF than in healthy children (108 + 24 vs. 7.4 = 0.7,
P =20.001). Scond also differed significantly, with 0.07 + 0.03
compared with 0.01 = 0.02, P < 0.001. On an individual level,
pathological values were found in 16/20 patients (80%) for LCI
and Scond. Despite that, interindividual heterogeneity of VI
was high, with very different z-scores for the different 1GW
outcome variables as shown for two specific patients with CF
in Figs. 1-3.

In patients with PCD. in addition to convection-dependent
V1, also diffusion- and convection-dependent VI measured by
Sm-DTG was significantly elevated on the group level com-
pared with healthy children (—0.2 = 0.1 vs. — 0.1 = 0.09, P <
0.001). A comparable elevation was found for Sip-COz with
0.8 = 03 vs. 05 = 0.2, P = 0.004. On an individual level, up
to 30% of patients with PCD showed pathological values for
peripheral VI, compared with 85% of patients with patholog-
ical values for global VI (Table 3).

Unsupervised Analysis

Principal component analysis. We applied PCA o IGW
outcome variables expressed in z-scores from MBW and SBW.
The first three PCs explaining 87% of total variance were
selected. PCy reflected the comparison between Sm-DTG and
all other outcome variables. PCz had a higher Scond loading.
PCy reflected 5y;-DTG and Sacin vs. LCI, Scond, and Sy
COs. The presence of all five IGW ocutcomes in the first three

Table 1. Demographics of the healthy, former preterm, CF,
and PCD subjects

Healthy Former Preterm P

Charscleristic {n =0 {m = 200 (Fig=200 {g=20
Age, yr 135+121 9O+ 17 1l4+26 13 %27
Cender, male 91(45%) Ti35%) B (40%) B (40%)
Weight. kg 405 = 129 M4+ 40 6+ 116 482=134
Weight, z-score 0l =10 —04+ L0 05+ 14 0.1 = L
BMI, kg/m* 104 =30 158+ 14 17727 2W00=133
BMI, z-score —002 +09 —04+00 -0l =10 0213
Height, cm 1586 =126 1315200 1420160 1538 =162
Height, #-score 02+l —-02+08 0515 —008=09

Table 2. Lung function outcomes

Farmer Prelerm

Index. Healthy (n = 200 {n = N CFia =2 PCD (n = 20)

No-MBW

LTI, turnover T4+07 T5+06 10E+24 113229

LCL. z-score B2x0% 50x35 57=x41

Scond, %umover 001 =002 002002 007 +003 0.06 *0.02

Scond, z-score B5x12 42x23 33=x14

Sacin, % 09005 007Tx005 01xdl 00 =x0l

Sacin, z-score -03x10 0420 05zx121
DTG-SBW

Sip-DTG, g/mol -0l =008 -01 009 —02x00 —02=x01

Si-DTG, z-score poxlD -07Txl6e —-13x14

Sim-C02, % 05+02 07+x02 0903 O03x03

Sin-C0s, z-score D&EX0E 14x12 11=x14
Spirometry

FEV,, z-score -04*0% —-1x13 -09=xI15

Valoes are means = SI for absolute values and z-scores. lung cleamnce
index {LCI), outcome for global V1; Scond, oatcome for convection-dependent
VI, Bacin, outcome for the diffusion- and convection-dependent Y1, Spr-DTG
amd Sy-C0;, diffosion- and convection-dependent VI; forced expimtory vol-
ume in | s (FEV1), outcome for central aireay V1

principal components suggests the importance of all these
outcomes to explain the variability of the data and to differen-
tiate between diseases. Therefore we included all five IGW
outcomes in the cluster analysis (Tables 4 and 5 and Fig. 4, A
and B).

Hierarchical Ward's clustering. Unsupervised analysis was
feasible and identified three physiological phenotypes. The
number of phenotypes was determined by a satisfying sample
size in each phenotype as described above. The heat map
containing the dendrogram obtained using clustering of IGW
outcome variables s shown in Fig. 5. Enrichment analysis
revealed an overrepresentation of healthy children and former
preterm children in the first phenotype (P < 0.001) and of CF
(P = (0.03) and PCD (P = 0.008) in the second phenotype. The
third phenotype consisted only of patients with CF (P <2 0.001)
and PCD (P < 0.001). Age and other anthropometric variables
were not different between phenotypes. The following IGW
outcomes were different between the first and second phe-

Table 3. Prevaleace of abnormal lung funcrion

Farmer Preterm [
Index Healthy (m = 20 (a = 200 CFim =20 (n= 200
Global ventilation
inhomopeneity
LCI, turnover 1(5%) 2(10%:) 16 (BOGEY 14 (T0%)
Convection-dependent
wentilation
inhomogeneity
Scond, Fefturnover 1(5%) 1 (5% 16 (B0 17 (B5%)
Peripheral ventilation
inhomopeneity
Sacin, % 1(5%) 1 (5% 1(5%) 4(20%)
SO0, B 2 (109} 2 (10%:) 6 (306 4 (20%)
Snr-DTG, g/mol 1(5%) 0 (0% E R

Valoes are means * S0 or number (percentage). CF, cystic fibrosis; PCD,
primary ciliary dyskinesin. *Statistically significant differences (P << 0.05) in
the demographic (z-scores for weight, BMI, and height) compared with the
healthy group. Compari sens were done using Student’s r-test or Wilcoxon rank
sum tests, as appropriate. One-way ANOWYA showed no significance for group
comparison.

Data are presented as number (percentage). Upper limit of normality was
defined as mean + 1.96 (50 from the healthy children. CF, cystic fibrosis;
PCD, primary cilisry dyskinesia. lung clearance index (LCI), ootcome for
plobal VI; Scond, outcome for convection-dependent VI, Sacin, outcome for
diffusion- and convection-dependent ¥1; Sio-DTO and Syy-C0-, diffusion- and
convection-dependent V1.
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bt ket ¥ Fig. 1. LCI walees in the four different
eroups. CF, cystic fibrosis; PCD, primary
_ ciliary dyskinesia. a and # show two specific
o 124 patients with CF. LCI values are given as
—d . absolute mean valses. Dashed line denotes
" upper limit of normality, which was defined
" N as mean + 1.96 (D) from the healthy chil-
104 dren. Horizontal lines represent the median
. and interguartile mnge.
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notypes: LCL (P < 0.001), Scond (P < 0.001), Sy-DTG
(P = 0.016), and Sp-COz (P = 0.008). Sacin did not
significantly differ between the first two phenotypes. Inter-
estingly, FEV| was comparable between the first and second
phenotypes. All IGW outcome variables and also FEV, were
significantly different in the third phenotype compared with
the other two phenotypes (Table 6 and Fig. 5). Although
patients in the third phenotype showed a higher rate and
frequency of exacerbations and hospitalization, differences
between phenotypes did not reach statistical significance
(Table 6).

DISCUSSION

Using different IGW outcomes, we identified three main
phenotypes of peripheral airway disease in children with dif-

020 -
015 -

.

t
010 - ——

ferent lung diseases independent of the underlying disease
entity. While IGW outcomes were different between those
phenotypes. interestingly, spirometry did not differ between
the first two phenotypes. Hierarchical Ward’s clustering is
easily applicable to IGW outcomes and seems to be a suitable
method to better characterize physiological lung disease to a
large degree independent of the clinical diagnosis. Phenotype 1
showed normal VI, Phenotype 11 showed pronounced plobal
and convection-dependent V1 while diffusion-dependent V1
was normal. Phenotype Il was characterized by increased
global and diffusion- and convection-dependent V1. The phys-
iological clusters appear clinically meaningful. Comparing
clinical characteristics, we found an increase in occurrence and
frequency of exacerbations and hospitalization for intravenous
antibiotic treatment from phenotypes [ to 111 The clusters’

Fig. 2. Scond valees in the four different
eroups. CF, cystic fibrosis; PCDY, primary
ciliary dyskinesia. 4 and # show the same
two specific patients with CF as in Fg. 1.

§ —— Scond valees are given as absolute mean
- - L. values. Dashed line denotes upper limit of
. " —_— normality, which was defined as mean *
0.05 ~ . —_— —1 1.96 {SI)) from the healthy children. Hori-
ULN 1 - i zontal lines represent the median and inter-
H J H quartile range.
0.00 'E. ,. T T
Seond/Healthy Former preterms. CF PCD
00 -
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<06

-0.4+ ole
Fig. 3. 8m-DTG valoes in the four groups. . .
CF, cystic fibrosis; PCD, primary ciliary
dyskinesia 4 and # show the same two [T T— NS SE——
specific patients with CF as in Figs. | and 2. E —
Sip-DTG valoes are given as absolute mean E 024 . e "
values. Dashed line denotes upper limit of 2 e " .
normality, which was defined as mean = @9 —
1.9 (SD) from the healthy children. Hori- . . I e
zonial lines represent the median and inter- —_—uf 7 — M .
quartile range. L M

0.0 -' L] T T

o
0.2- Healthy Former preterms CF PCD

predictive value of future disease outcomes and stability over
time remain to be determined.

The first three PCs explained 87% of total variance on the
basis of all five IGW outcomes. This underlines the different
information obtained from all IGW outcomes. This may in part
confirm previous numenic lung model work (40, 41) suggesting
that indexes of global and specific V1 relate o the full range of
airway calibers across all generations. Classical descriptive
comparison between groups did not distinguish well between
individual differences in lung function parameters. This high
individual heterogeneity in IGW outcome variables requires a
different and independent approach to determine individual VI
We believe that unsupervised analysis uwsing hierarchical
Ward’s clustering represents such an approach, especially as it
is easily feasible and provides physiologically meaningful
phenotypes.

These phenotypes are not necessarly specific for disease
entities in children but reflect physiological relations. which
are similar in CF and PCD from a functional outcome perspec-
tive. As VI in chronic lung disease is complex and dynamic
over time and current methods do not provide, for example,
spatial resolution (4, 3), characterization into physiological
phenotypes may indeed help to personalize diagnostic proce-
dures and therapeutic approaches in the future. Notably, con-

Table 4. Principal component analysis

Lung Fanction Outcame PCy My [ L o Py PCs
Spr-DTG 0.292 Q21E 0902 0193 -0.128
ST —03513 —02I70 0065 0.Ell 0056
LC1 —0.559 0135 0065 —0.229 0759
Scond —0.409 0726 0048 —0059 0548
Sacin —0415 -0546 0419 —0.500 0323

The five extracted principal components (PCs) and their loading coefficients
for all children. S;-DTG and Sp-O04, diffusion- and convection-dependent
W¥I; lung clearance index (LCI), outcome for global WI: Scond, outcome for
convection-dependent VI; Sacin, outcome for diffusion- and convection-
dependent WI.

vection-dependent and diffusion- and convection-dependent
VI is rather independent from airway resistance formed by
larger airway spaces (22).

On the basis of hierarchical Ward's clustening we identified
three main phenotypes. While the majority of children in the
first phenotype were healthy children and former preterm
children, still a few patients with CF and PCD were included in
this phenotype. The second cluster is mainly represented by CF
and PCD patients, but also healthy children and former preterm
children were included. A clear delineation between healthy
children and patients with chronic lung disease depends on
disease severity and phenotype. In agreement with that, previ-
ous studies in adult patients with chronic obstructive pulmo-
nary disease (COPD) could also distinguish three phenotypes
by using the hierarchical Ward's clustering (12). They found
an overlap between healthy subjects and patients with mild
COPD.

FEV, did not differ between the first two clusters, which is
no surprise as FEV is rather insensitive for structural pathol-
ogy in small airways or central bronchiectasis detected in CT
scans (8). This may, however, prompt the question of whether
previously described associations between LCT and FEV, were
directly related or rather an epiphenomenon of advanced air-
way obstruction impairing both ventilatory capacity and effi-
ciency (8. 14, 15, 17. 23, 26). Patients in the third cluster with

Table 5. Percentage of total variance

Py PCx PG, PCy Py
All 54 19 18 T 3
Healthy 34 .. 20 10 7
Former preterm 50 26 17 4 3
CF 48 35 12 4 2
PCD 53 21 17 & 3

‘Walues are given in percent. The percentages of variance accounted by each
PC are derived for all subjects, healthy subjects. former preterm subjects,
patients with cystic fibrosis {CF), and patients with primary ciliary dyskinesia
(PCD.
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Fig. 4. Total and cumulative variance explained by principal components. A: percentage of total variance explained by each PC denived for the four differeat
groups: O, all children; v, only healthy children: squares with x. former preterm children; *, patients with CF: diamonds with cross. only patients with PCD. PC;
to PCs, the first to the fifth principal components. B: cumulative percentages of vanance accounted by the PCs for all children.

CF and PCD were mainly characterized by marked overall and
diffusion- and convection-dependent VI and a trend for a
higher rate and frequency of exacerbations and hospitalization.
This has also been reported in patients with severe CF lung
disease (3, 15, 17, 18).

Implications of the Study

This is the first study showing that different physiological
phenotypes for pediatric obstructive small airway diseases can

%

[wra

h

b
c

3

be derived by applying established clustering methods using
individual washout variables. The applied IGW seem useful for
routine application because of their ease and reliability of data
collection in both children and adults (20). Patients with
distinct VI phenotypes may benefit from, for example, VI
specific particle size of inhaled drugs to improve deposition.
This seems to be a further step toward personalized medicine.

Spirometry and disease entities did not add to these pheno-
types. Phenotyping the functional deficits may open up new

c

4

LC!
S1-DTG
Sh-co2

Fig. 5. Heat map representing hierarchical Ward's clustering. Scond, outcome for convection-dependent VI: Sacin, outcome for the diffusion- and
convection-dependent VI; lung clearance index (LCI), outcome for global VI; Si5-DTG and Sy,-CO;. diffusion- and convection-dependent V1. The left color bar
denotes individual subject grouping and their related cluster. Column on the left: red. healthy children: blue, former preterm children: preen, cystic fibrosis; black.
primary ciliary dyskinesia. Color gradients: brighter red tones indicate a higher z-score; darker red topes indicate a lower z-scofe.
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Table 6. Phenotype characteristics

Characteristic Phenctype [ {n = 38) Phenatype 11 {a = 21} Phenctype I {n = 21)
Group

Healthy 18 (7%} 2 (10 0(0%)

Former preterm 18 (47%) 2109y 000%)

CF 1 (3%) B (33%) 11 (52%:)

PCIx 1 (3%) D(42%) 10 (48%)
Age, yr nm=x3 1+3 133
Weight, kg w4 40 =13 H4x16
Height, cm 145 =17 145 £ 16 150 = 18
BMI, kg/m? IBx3 19+3 19£3
Gender, male 16 (42%:) D (43%) T (33%)
LCI =003 = 0.8 P 0001 22+ L3 P<0.001% 8228 P<0001%
Scond 02 = L1 P=0000* 24 £ L5 P=0.001% 49 16 P<00001F
Sacin -02=* 1.0 —05 =06, P < 0001% 14+24 P<0001f
Sm-DTG 005 += 08, P=<0016* —09+ 12 —1.1 = 1.8 P < 0.003%
Sm-C0: 0.0 = 08 P < 0008* 10+ 10, P =002 1LEx 14, P<0001F
FEV, -03x 1.0 —0.2 0.8, P < 0.001F —1.7x 13, P<0001%

Childrea with CF aad PCD that had an exacerbation in the year prior Io the measgrement
]

Exacerbation in CF and PCD 1

12

Children with CF and PCD that reguired hospitalization with artibioftic intravenois therapy i the year prier fo the measurement
0 &

Hospitalization in CF and PCD

1. P=007%

Values are means = 5D or number {percentage). The following are given in z-scores: lung clearance index (LCI), outcome for global VI; Scond, outcoms
for convection-dependent VI; Sacin, outcome for the diffusion- and convection-dependent V1; Syr-DTG and Sg-C05, diffusion- and convection-dependent VI;
forced expiratory volume in | 5 (FEV, ), cutcome for central airway V1. FEV, is not included in clester analysis. Groups are as follows: healthy children, former
preterm children, patients with cystic fibrosis (CF), and patients with primary ciliary dyskinesin (PCD). For the following outcomes, higher absolute values and
r-scores indicate greater disease: LCI, Scond. Sacin, and Sin-C0. Lower absolute values and z-scores indicate worse disease for FEV: and Soe-DTG. *Difference
between phenotypes 1 and 11 $Difference between phenotypes 11 and [ fDifferences between phenotypes | and I using the ANOYA with Bonferrond correction

of x* test, as appropriate.

treatment areas. Previous literature points out that the success
of personalized medicine depends on precise diagnostic tests to
determine patients who benefit most from the specific therapy
(19). We used gas wash lung function tests applicable in
clinical routine (3, 20, 33). CF and PCD patients within
phenotype 111 suffer from global and diffusion- and convec-
tion-dependent VI, which may hamper deposition and thus
efficacy of inhaled drugs. Compatible with this, patients in
phenotype 111 showed the highest occurrence and frequency of
exacerbations and hospitalization in the wyear prior to the
measurement. Taking into account that personalized medicine
extends beyond only targeting therapies for patients who are
already ill, aiming to identify individuals at elevated risk of
clinical exacerbation that could benefit most (9), our approach
seems very promising to be applied in the daily clinical routine
of personalized medicine. Future studies are needed to estab-
lish if these phenotypes may be used to select particle size of
inhaled drugs and predict response to treatment and later
outcomes (30).

Further, we show that using commonly classical (biased)
analysis does not enable one to distinguish between different
physiological clusters. This has also been shown in children
with severe asthma (11).

Unanswered Questions and Cutlook

We did not apply computed tomography (CT) scans and thus
association with structure cannot be derived from this study.
Whether or not adding data from CT scans will allow even
better charactenzation of the phenotypes is thus unknown.
Previous studies found associations between global VI and
acinary V1 and CT scores (13, 27). We acknowledge the
relatively small sample size of each disease group, which

constrained internal validation; thus further external validation
is warranted.

Longitudinal data are required to assess the stability of
identified clusters and their ability to differentiate specific
disease-independent phenotypes  from  disease-dependent
stages.

";s'u’e did not integrate analysis of fast and slowly ventilated
compartments in our study (18). Thus it 1s unclear whether
compartment analysis would have exhibited colinearity with
those VI indexes assessed in this study. Another drawback is
that the upper limit of normal for all cutcomes is based on a
sample of only 20 healthy subjects. This limits the precision
and general applicability of this uwpper limit. However, all
measurements were performed according to current guidelines
(6, 29) and use of the setup without further modification. The
technical error of the setup is as low as 5%. Thus our findings
can be easily reproduced. Notably, the upper limits of normal
are comparable with previous studies from different groups (8).

For our proof-of-principle study we only included few chil-
dren and well-defined airway diseases. However, this approach
is certainly applicable 1o other chronic lung diseases with even
greater heterogeneity and larger patient groups, such as asthma
or COPD, where classical diagnosis may overlap.

Conclusions

Taken together, we can easily and precisely phenotype
patients independently of underlying disease entities using
established clustering methods. In our proof-of-principle study.
unsupervised VI analysis identified three different physiologi-
cal phenotypes. Classical comparison of groups between CF
and PCD was informative in a different way but did not reveal
individual physiological differences independent of the disease
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eroup. Longitudinal larger studies may establish the clusters’
stability over time and potential predictive value for later
outcome.
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