
Examining the Reproducibility of Using Dynamic Loop Scheduling
Techniques in Scientific Applications

Franziska Hoffeins
Technische Universität Dresden

Center for Information Services and
High Performance Computing

01062 Dresden, Germany
Email: franziska.hoffeins@tu-dresden.de

Florina M. Ciorba
University of Basel

Department of Mathematics and
Computer Science

4051 Basel, Switzerland
Email: florina.ciorba@unibas.ch

Ioana Banicescu
Mississippi State University

Department of Computer Science and
Engineering

Mississippi State, MS 39762, USA
Email: ioana@cse.msstate.edu

Abstract—Reproducibility of the execution of scientific ap-
plications on parallel and distributed systems is a growing
concern, underlying the trustworthiness of the experiments
and the conclusions derived from experiments. Dynamic loop
scheduling (DLS) techniques are an effective approach towards
performance improvement of scientific applications via load
balancing. These techniques address algorithmic and systemic
sources of load imbalance by dynamically assigning tasks to
processing elements. The DLS techniques have demonstrated
their effectiveness when applied in real applications. Comple-
menting native experiments, simulation is a powerful tool for
studying the behavior of parallel and distributed applications.
In earlier work, the scalability [1], robustness [2], and re-
silience [3] of the DLS techniques were investigated using the
MSG interface of the SimGrid simulation framework [4]. The
present work complements the earlier work and concentrates
on the verification via reproducibility of the implementation of
the DLS techniques in SimGrid-MSG. This work describes
the challenges of verifying the performance of using DLS
techniques in earlier implementations of scientific applications.
The verification is performed via reproducibility of simulations
based on SimGrid-MSG. To simulate experiments selected
from earlier literature, the reproducibility process begins by
extracting the information needed from the earlier literature
and converting it into the input required by SimGrid-MSG.
The reproducibility study is carried out by comparing the
performance of SimGrid-MSG-based experiments with those
reported in two selected publications in which the DLS tech-
niques were originally proposed. While the reproducibility
was not successful for experiments from one of the selected
publications, it was successful for experiments from the other.
This successful reproducibility implies the verification of the
DLS implementation in SimGrid-MSG for the considered
applications and systems, and thus, it allows well-founded
future research on the DLS techniques.

Keywords-Verification via Reproducibility; Simulation;
Scheduling; Dynamic Loop Scheduling; Scientific Applications;
SimGrid-MSG

I. INTRODUCTION

Scientific applications are often large in time and/or space,
computationally intensive, data parallel, and irregular. A
dominant performance degradation factor is load imbalance.
Load imbalance occurs due to application, algorithmic,

and/or systemic variability. Dynamic load balancing can
be used to achieve load balanced execution of applications
with unpredictable changing of workload, when processing
elements (PEs) differ in performance, or when perturbations
in the system or in the network occur.

Contributions presented in scientific publications are often
based on and/or supported by experiments. Especially in
parallel and distributed computing, the theoretical analysis
of algorithms and applications is often complemented by
experimental analyses due to the hardware and software
complexity, which is challenging to model. Reproducibility
of experiments increases the trustworthiness of the reported
results, and therefore, of the derived conclusions.

Scientific applications often consist of iterative computa-
tions in the form of computationally intensive loops, which
may require a large amount of time steps or comprise a large
amount of data points of the computational domain. These
loops are a rich source of parallelism. The loop iterations
represent the underlying numerical model and can be also
considered as independent or dependent tasks.

The research area of dynamic loop scheduling (DLS)
addresses algorithmic and systemic sources of load im-
balance by dynamically assigning tasks to PEs. Over the
years, different loop scheduling techniques were developed,
and it has been proved that these techniques are highly
successful in balancing applications’ workload. The use of
DLS techniques is not restricted to loops and they can be
applied on any collection of independent tasks. Throughout
the present work, a task refers to a loop iteration and both
terms are used interchangeably.

DLS techniques have been exhaustively analyzed and
applied in real scientific applications on real machines, for
instance, in Monte Carlo simulations, radar signal process-
ing, N-body simulations, computational fluid dynamics on
unstructured grids, or in wave packet simulations ([5]-[9]).
They have shown very good results in reducing the load
imbalance caused by algorithmic and systemic variances
arising over the course of the execution. Extending upon
real experiments, simulations provide the capabilities to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/154351617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

demonstrate the strengths of the DLS techniques for any
probability distributions of the task execution times and
availability of PEs. In earlier work, the scalability [1],
robustness [2], and resilience [3] of the DLS techniques were
investigated for various such distributions using the MSG
interface of the SimGrid [4] simulation framework (denoted
SimGrid-MSG).

The present work complements the previous
work ([1]-[3]) and concentrates on the verification
via reproducibility of the implementation of the DLS
techniques in SimGrid-MSG. To the best of our knowledge,
there is no work published where the implementation
in SimGrid-MSG of the non-adaptive DLS techniques
described in Section III is verified. Reproducibility is a
form of verification. Successful reproducibility is essential
for the trustworthiness of large scale scientific applications
using DLS techniques. The performance reproducibility
study is carried out by comparing the SimGrid-MSG-based
scheduling experiments with those reported in earlier
literature. Once the SimGrid-MSG implementation is
verified, the impact of the overhead of DLS techniques on
the performance of scientific applications in heterogeneous
computing systems can be assessed.

The current work presents an analysis and discussion
of the performance results obtained via reproducibility of
scheduling experiments using DLS techniques published in
earlier literature. A short introduction of the DLS techniques,
their implementation and incorporation into the simulation
framework SimGrid and its interface MSG are presented
in Section II. In Section III, information is given about
the process of verification via reproducibility of scheduling
experiments. The reproducibility results are presented and
analyzed in Section IV. A description of the reproducibility
of this work is outlined in Section V, while conclusions and
future directions are given in Section VI.

II. SIMULATION OF DYNAMIC LOOP SCHEDULING
USING SIMGRID-MSG

The increase in the numerical complexity of simulation
models in conjunction with the rapid increase of parallelism
in supercomputers1 lead to the need of efficient communi-
cation methods and adequate techniques for assigning the
workload to the PEs with regards to existing and future
architectures and their scalability. The unit of hardware
considered to be a PE depends on the context. A PE can be
a functional block of a processor (e.g. FPU), a core, a CPU,
a workstation, or another type of processing component.
Throughout the present work, a processing element refers
to a single computing core. One challenge in achieving
optimal performance of the application and the system is
mitigating the impact of performance degradation factors,
such as overhead caused by load imbalance. Over the years,

1http://www.top500.org

the DLS techniques have successfully been used to achieve
a load balanced execution of scientific applications.

There are two naive approaches of allocating n tasks to
p PEs. The very fine grained approach is self scheduling
(SS), where each of the n tasks is dynamically assigned
to an available PE. The coarse grained approach is static
chunking (STAT), where n

p chunks of tasks are assigned
to each PE before computation starts. The asset of the
one is the drawback of the other. In detail, STAT has
negligible scheduling overhead but high load imbalance,
while SS has very high overhead but good load balancing.
The compromise between these two is to dynamically assign
tasks in variable size chunks to available PEs. This is
accomplished via DLS techniques. The first DLS technique,
published in 1985, was fixed size chunking (FSC) [10]. It
was developed for load balanced execution of applications
with algorithmic variances by taking the variance of the task
execution times into account when computing the chunks
sizes of the tasks to be scheduled. Systemic variances are
taken into account by guided self scheduling (GSS) [11] and
trapezoid self scheduling (TSS) [12], which were originally
developed for addressing the problem of uneven PE starting
times. Factoring (FAC) [5] addresses both, the algorithmic
and systemic variances, by scheduling chunks in batches of
decreasing chunk sizes. The computation of the chunks sizes
considers the mean and the variance of the task execution
times. In the case in which the mean and the variance of the
task execution times are not known in advance, the authors
suggest to chose a decreasing factor for reducing the chunk
size of xi = 2 (FAC2), which works well in practice. The
taper (TAP) [13] and the bold (BOLD) [14] strategies are
further developments of FAC. For load balanced execution
on heterogeneous systems, weighted factoring (WF) [6] has
been developed. This DLS technique takes into account the
different speeds of the PEs. Adaptive weighted factoring
(AWF) [15] has originally been developed for time-stepping
applications. It is adaptive at execution time against algo-
rithmic and systemic variances by dynamically assigning
new weight values to PEs at execution time, by closely
following the rate of change in PE speed after each time-
step. More fine grained variations of AWF are AWF-B and
AWF-C [16], where the weights are adjusted after each batch
or chunk, respectively. A more complex and generalized
DLS technique is the adaptive factoring (AF) [17]. It is
adaptive at execution time against algorithmic variances as
well as to systemic variances, by dynamically estimating
for each PE, the new mean and the new variance of the
task execution times after the execution of each chunk. A
comprehensive review of the DLS techniques may be found
in [18].

The DLS techniques have demonstrated their effectiveness
when applied in real applications ([5]-[9], [13], [15]-[16]).
Complementing native experiments, simulation is a powerful
tool for studying the behavior of parallel and distributed ap-

Message Transfer

System InformationApplication Information

Master

Start
Simulation

…
Worker

Worker

End
Simulation

execute tasks/work done

work request

Figure 1: SimGrid-MSG architecture

plications. It allows controllable and repeatable experiments,
and the use of a wider range of application and system
parameters than measurements of real applications on real
machines can offer. Simulations provide the opportunity to
capture any probability distribution of the task execution
times and availabilities of PEs. For experimental studies, the
DLS techniques have been implemented in the MSG inter-
face of the simulation framework SimGrid version 3.13 [4].
SimGrid is a simulation framework “to study the behavior of
large-scale distributed systems (...). It can be used to evaluate
heuristics, prototype applications or even assess legacy MPI
applications.”2 In addition, it provides an adequate level of
abstraction and simulation scalability. SimGrid contains four
modules: SimDag, MetaSimGrid (MSG), GRAS, and SMPI.
The MSG module was developed for studying scheduling
algorithms and, therefore, perfectly satisfies the requirements
of the present reproducibility study.

In earlier work, the scalability [1], robustness [2], and
resilience [3] of the DLS techniques were investigated
using SimGrid-MSG. In the present work, the verification
of the SimGrid-MSG implementation via reproducibility of
scheduling experiments using DLS techniques published in
earlier literature is investigated. With this verification, well
founded research on the impact of the overhead of the
DLS techniques applied in a scientific application becomes
possible. The simulation framework SimGrid is used for
two purposes. The systems where the measurements were
published in earlier literature are often no longer available
and can not be reproduced by current systems. In addi-
tion, it is challenging to perform controlled and repeated
experiments of scheduling scientific applications on real
computer systems for a wide range of application and system
characteristics.

2http://simgrid.gforge.inria.fr

Application Information

Tasks Count

Scheduling
Technique

Task
Execution

Times

Mean of Task
Execution

Times

Variance of
Task Execution

Times

First and
Last Chunk

Size

Distribution

not required by all techniques

Simulation

System Information

Hosts

NetworkSpeed Number of
Cores

TopologyBandwidthLatency

Execution Information

Number of
Runs

Measured
Value(s)

Simulation Information

Simulation
Time …

Figure 2: Information required for performing a DLS simu-
lation with SimGrid-MSG

The MSG interface implements a master-worker execution
model, illustrated in Figure 1. Before the master and workers
are launched, descriptions of the application and the system
need to be provided. The application information is given
in the SimGrid-MSG deployment file or can be directly
implemented in the user code via provided functions of
the SimGrid-MSG interface. In the SimGrid-MSG platform
file, the system information is specified. When starting the
simulation, all workers are in idle state, and send work
request messages to the master. When the master receives
a work request message, it computes the chunk size for
the chosen DLS technique and sends the computed number
of tasks to the requesting worker. The worker simulates
executing the tasks, and when it finishes, it sends again
a work request message to the master. On completion of
all tasks, the master sends finalization messages to the
workers, and the simulation ends. SimGrid-MSG allows to
send a specified amount of data with each message transfer.
However, in the current work, the assumption is made that
the application data is replicated and no data transfer is
necessary.

III. SELECTION OF REPRODUCIBILITY CANDIDATES

To reproduce the scheduling experiments using DLS tech-
niques and SimGrid-MSG, a certain amount of information
is needed. An overview of this information is shown in
Figure 2.

The application description including the mapping of the
master process and the worker processes to hosts is specified
in a deployment file or directly in the user code. The number
of tasks to be scheduled and the task execution time for each
task needs to be maintained. The required parameters for
computing the chunk sizes with DLS techniques are listed
in Table II, while Table I contains the notation used.

Finally, for reproducing the measurements presented in
earlier publications, the information regarding which values

Table I: Notation

Notation Definition
p number of PEs
n number of tasks
r number of remaining tasks
h scheduling overhead
µ mean of the task execution times
σ variance of the task execution times
f first chunk size
l last chunk size
m number of remaining and under execution tasks

Table II: Required parameters for the DLS techniques

DLS p n r h µ σ f l m

STAT X X
SS

FSC X X X X
GSS X X
TSS X X X X
FAC X X X X

FAC2 X X
BOLD X X X X X X

are measured is needed, and, where appropriate, the number
of runs as well.

Throughout this and the following sections “XYZ publi-
cation” refers to the work which first introduced the DLS
technique XYZ, while it may also contain the description of
other DLS techniques used for a comparative performance
evaluation.

The information given in earlier publications differs in the
degree of detail. In the FSC publication [10] it is not defined
which values are measured, and there is no experiment
described with the analytically determined optimal chunk
size. In addition, the system where the measurements were
performed is not named or even described. In this case,
the reproducibility is very challenging, and the verification
via reproducibility of this DLS technique is not possible,
due to the missing experiment with the optimal chunk size.
However, in the FAC [5] and the following publications ([6],
[15], [16]) real applications are measured, and the systems
are named. For reproducibility, task execution times need
to be known. Therefore, a trace file or similar information
describing the behavior of the measured application needs
to be maintained. The AF publication [17] does not contain
measurements in support of the correctness of the analytical
evaluation. However, experiments underlying the effective-
ness of AF have been described in [8]. The information
regarding the measurements in the TSS publication [12] is
very detailed. The experiment description is explicit, and
the system is named, yet not fully described. This seems to
be a good candidate for reproducibility. Therefore, in Sec-
tion III-A the reproducibility efforts of [12] are presented,
and in Section IV-A the results are shown.

To verify the analytical results from the GSS [11] and the
BOLD [14] publications, the authors of both publications

implemented their own simulator. In both publications, the
experiments are described in fine-grained details. In [11],
GSS was measured against SS, while in [14] eight DLS
techniques were experimentally in simulations analyzed.
For verification of a larger number of DLS techniques via
reproducibility, the experiments in [14] are reproduced in
the present work. The reproducibility efforts are described
in Section III-B, while the results are presented in Sec-
tion IV-B.

A. Reproducibility of the TSS publication [12]

In this publication, task execution times and their distri-
butions (constant, random, decreasing, and increasing) are
given. The speedups of the DLS techniques SS, CSS (chunk
self scheduling, where the chunk size is chosen by the
programmer), GSS, and TSS are measured. In experiments 1
and 2 in [12], the speedup is measured for 100, 000 tasks
with constant workload of 110µs, and for 10, 000 tasks
with constant workload of 2ms, respectively. The system
where the measurements were taken is a 96-node BBN GP-
1000 with physically distributed memory. The network is
a multistage interconnection network (a slight variant of
the OMEGA network). It is not necessary to transform
the whole network to networks that can be represented
by the SimGrid-MSG platform file because communication
takes place only between the master and the workers for
work request messages, and messages containing the work,
or finalization messages. The results of the reproducibility
of these experiments are presented and analyzed in Sec-
tion IV-A.

B. Reproducibility of the BOLD publication [14]

In the BOLD publication [14], all non-adaptive DLS
techniques, except TAP, are measured. Exact values are
given and the experiment description is very detailed. Task
execution times are generated with the aid of the random
number generators erand48 and nrand48 with given dis-
tribution and parameters. The authors measure the average
wasted time for a given number of runs. The wasted time
of a single worker in one run is the sum of the idle time
and of the scheduling overhead of this worker. The average
wasted time of a single run is the sum of the wasted times
of all workers divided by the number of workers. The
information given regarding the application and execution is
very detailed. However, the system description is not given.
The authors implemented their own simulator for measuring
the DLS techniques.

The missing system description in [14] leads to the use
of typical parameters of systems of the late 90s in the
SimGrid-MSG platform definition. The reproducibility of
the measurements failed by using this fictitious system
description. Therefore, the implemented simulator of the
authors of [14] was replicated. Their simulator did not
measure the network traffic needed for every scheduling

94 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, JANUARY 1993

, :* 8 0 - I " ' I ' I -

7o +. . ss ,.e,' ,*-
60 U. . GSS(1) @.". . . * " .

50 0.. TSS
40 - j j : . .o..a.. . .
30 - , ! ! ! ! I

. . . x. . css . .
. ' .*' . . . *. . GSS(80) . .

. : ,$:: " '

'GI

, I @ '

,e,* 20 -
. *, .. ,+. .. ,+,++.+.+. .. . +
,: it+.;. . I I , , I I ,

r
Speedup

70

60

50
40

30
20
l o -

0

0
Overhead

8 0 - " " ' ' I ' -
.+ -

- .+' -
-
-
-

.+'

, .+ 0

.o' - . .+'
. .n. ' '

-

. . . . n,."' ,*.* +....+
, . . , . . :.::;,.... ..* , , +"' , _ ' '

No. of Processors : P

A 5

"0 10 20 30 40 50 60 70 EO
No. of Processors : P

Fig. 7. Experiment 1: I = 100 000, L(i)= l lO p s .

in Fig. 3 will be experimented. The program executes the
parallel loop and keeps tracing where the resource is spent.
As mentioned, there are three possibilities: 1) computing, 2)
scheduling, and 3) waiting for synchronization. Therefore,
besides the traditional speedup r measurement, two other in-
teresting performance metrics, degree of scheduling overhead
0 and degree of load imbalancing A, are defined below.

L * P
x + o + w Speedup: r =

(11)
O * P

X + O + W
Degree of Scheduling Overhead: 0 =

(12)
W * P

X S O S W ' Degree of Load Imbalancing: A =

Note that 0 and A represent the average number of proces-
sors wasted in the scheduling and waiting state, respectively.
In the ideal case, X = L and 0 = W = 0, the speedup r is
same as the number of processors P. In practice, L 5 X . Thus,

+ 0 + A is always less than or equal to P. The difference
between P and r + 0 + A is due to network and memory
contention in the computing state which is mostly dependent
on the remote memory reference ratio in the computing of

80 I I I I I I I I

t!$,e. ! ! . 7o . , . +. . ss
. , . x . . css

0
Overhead

10 ,#.'
o . . w I I I I I I I I

0 10 20 30 40 50 60 70 EO
No. of Processors : P

No. of Processors : P

A 5 4-----7
Imbalancing

Load 3 1

No. of Processors : P

Fig. 8. Experiment 2: I = 10 000, L (i) = 2 ms.

a chore. To avoid too much influence from it, the remote
reference ratio is set to 5% so that the sum of r, 0, and
A can be very close to P in our experiments. To measure the
effect of remote memory accesses to scheduling schemes, one
experiment based on different remote reference ratios from
0% to 50% is made as well.

For the CSS(k) scheme, the optimal choice of the chunk
size k is machine and application dependent. When the input
parameters (P, I , L (i)) is (72, 100 000, 110 ps) (a uniformly
distributed loop), our experiment shows that when k = I / P =
1389, we can achieve a speedup of 69.2 which is very close
to the ideal speedup, 72. Therefore, our following experiments
will be taking k = I / P for the CSS(k) scheme, which can
produce minimal scheduling overhead and keep a balanced
workload under uniformly distributed loops. However, it is
believed that there must be a better k value for the CSS(IC)
scheme when the workload is not uniformly distributed or
processors start executing at different times. For the GSS(lc)
scheme, again the best choice of IC value is mostly determined
by the workload distribution and the number of processors. It is
very difficult to predict the best value of I C . In our experiments,
we will be testing different IC values from 1, 2, 5, 10, 20 to
LI/P]. Then, the best results of GSS(k) and GSS(1) will be
plotted and discussed.

Authorized licensed use limited to: Mississippi State University. Downloaded on May 18,2010 at 14:47:15 UTC from IEEE Xplore. Restrictions apply.

(a) Values from original publication [12]

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80

Speedup

number PEs

SS
CSS
GSS(1)
GSS(80)
TSS

(b) Values from SimGrid-MSG simulation

Figure 3: Results of reproducibility of experiment 1
from [12] (100, 000 tasks, constant workload of 110µs)

operation. It was assumed that every scheduling operation
takes a fixed amount of time (parameter h). This scheduling
overhead for each scheduling operation was added directly to
the simulation times. However, the SimGrid-MSG interface
considers the network traffic due to the communication
between the master and the workers. Therefore, the amount
of time for message exchange needs to be excluded. This
is reproduced by setting the network parameters bandwidth
to a very high value and the latency to a very low value.
This simulates no costs for communication. Like the authors
of [14] the scheduling overhead h is added for each schedul-
ing operation directly. The results of the reproducibility of
experiment 1 from [14] are shown in Section IV-B.

IV. REPRODUCIBILITY RESULTS

A. Results of reproducing selected scheduling experiments
from the TSS publication [12]

This section presents the results of the reproducibility
efforts of measurements presented in the original TSS pub-
lication [12]. In this original publication, the measurements
were obtained on a real parallel computing system. In
Section IV-A, the SimGrid-MSG experiments are described
and the reproducibility results are analyzed. In Section IV-B
the results of the reproducibility of measurements in the

94 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, JANUARY 1993

, :* 8 0 - I " ' I ' I -

7o +. . ss ,.e,' ,*-
60 U. . GSS(1) @.". . . * " .

50 0.. TSS
40 - j j : . .o..a.. . .
30 - , ! ! ! ! I

. . . x. . css . .
. ' .*' . . . *. . GSS(80) . .

. : ,$:: " '

'GI

, I @ '

,e,* 20 -
. *, .. ,+. .. ,+,++.+.+. .. . +
,: it+.;. . I I , , I I ,

r
Speedup

70

60

50
40

30
20
l o -

0

0
Overhead

8 0 - " " ' ' I ' -
.+ -

- .+' -
-
-
-

.+'

, .+ 0

.o' - . .+'
. .n. ' '

-

. . . . n,."' ,*.* +....+
, . . , . . :.::;,.... ..* , , +"' , _ ' '

No. of Processors : P

A 5

"0 10 20 30 40 50 60 70 EO
No. of Processors : P

Fig. 7. Experiment 1: I = 100 000, L(i)= l lO p s .

in Fig. 3 will be experimented. The program executes the
parallel loop and keeps tracing where the resource is spent.
As mentioned, there are three possibilities: 1) computing, 2)
scheduling, and 3) waiting for synchronization. Therefore,
besides the traditional speedup r measurement, two other in-
teresting performance metrics, degree of scheduling overhead
0 and degree of load imbalancing A, are defined below.

L * P
x + o + w Speedup: r =

(11)
O * P

X + O + W
Degree of Scheduling Overhead: 0 =

(12)
W * P

X S O S W ' Degree of Load Imbalancing: A =

Note that 0 and A represent the average number of proces-
sors wasted in the scheduling and waiting state, respectively.
In the ideal case, X = L and 0 = W = 0, the speedup r is
same as the number of processors P. In practice, L 5 X . Thus,

+ 0 + A is always less than or equal to P. The difference
between P and r + 0 + A is due to network and memory
contention in the computing state which is mostly dependent
on the remote memory reference ratio in the computing of

80 I I I I I I I I

t!$,e. ! ! . 7o . , . +. . ss
. , . x . . css

0
Overhead

10 ,#.'
o . . w I I I I I I I I

0 10 20 30 40 50 60 70 EO
No. of Processors : P

No. of Processors : P

A 5 4-----7
Imbalancing

Load 3 1

No. of Processors : P

Fig. 8. Experiment 2: I = 10 000, L (i) = 2 ms.

a chore. To avoid too much influence from it, the remote
reference ratio is set to 5% so that the sum of r, 0, and
A can be very close to P in our experiments. To measure the
effect of remote memory accesses to scheduling schemes, one
experiment based on different remote reference ratios from
0% to 50% is made as well.

For the CSS(k) scheme, the optimal choice of the chunk
size k is machine and application dependent. When the input
parameters (P, I , L (i)) is (72, 100 000, 110 ps) (a uniformly
distributed loop), our experiment shows that when k = I / P =
1389, we can achieve a speedup of 69.2 which is very close
to the ideal speedup, 72. Therefore, our following experiments
will be taking k = I / P for the CSS(k) scheme, which can
produce minimal scheduling overhead and keep a balanced
workload under uniformly distributed loops. However, it is
believed that there must be a better k value for the CSS(IC)
scheme when the workload is not uniformly distributed or
processors start executing at different times. For the GSS(lc)
scheme, again the best choice of IC value is mostly determined
by the workload distribution and the number of processors. It is
very difficult to predict the best value of I C . In our experiments,
we will be testing different IC values from 1, 2, 5, 10, 20 to
LI/P]. Then, the best results of GSS(k) and GSS(1) will be
plotted and discussed.

Authorized licensed use limited to: Mississippi State University. Downloaded on May 18,2010 at 14:47:15 UTC from IEEE Xplore. Restrictions apply.

(a) Values from original publication [12]

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50 60 70 80

Speedup

number PEs

SS
CSS
GSS(1)
GSS(5)
TSS

(b) Values from SimGrid-MSG simulation

Figure 4: Results of reproducibility of experiment 2
from [12] (10, 000 tasks, constant workload of 2ms)

original BOLD publication [14] are described and analyzed.
The behaviour of the DLS techniques was measured by a
simulator.

In experiment 1 from [12], the speedup for a variable
number of PEs is reported. The measured DLS techniques
are SS, CSS, GSS(1), GSS(80), and TSS, where for GSS,
the values in the parentheses represent the smallest to be
scheduled chunk size. The chosen chunk size for CSS is the
number of tasks divided by the number of PEs. The work-
load is constant at 110µs for each of the 100, 000 tasks. Fig-
ure 3a shows the results presented in the original publication,
while in Figure 3b the values of the present SimGrid-MSG
experiments are depicted. A comparison of the values in the
publication to the values of the SimGrid-MSG simulations
indicates a very similar performance of CSS and TSS. The
SS and GSS plots have almost the same tendency, yet
the values differ strongly. In experiment 2 from [12], the
number of tasks is decreased by an order of magnitude and
the workload is increased to 2ms for each of the 10, 000
tasks. Figure 4 shows that CSS, GSS(5), and TSS perform
similarly, while the performance of SS and GSS(1) does not
reproduce the one in the original publication [12].

In general, the constant workload is the simplest form of
the distribution of the task execution times. Nevertheless, the

reproducibility was unsuccessful. In [12] implicit parallelism
is used. The parallelization of loops is done by primitives in
shared memory systems; this is accompanied by contention
on the shared loop index. Furthermore, the used system
has physically distributed memory. This is associated with
higher latencies when accessing other CPU’s memory during
the execution of tasks. In addition, the chunk calculation
seems to have a strong influence for GSS. For SS, CSS, and
TSS atomic instructions are used, while GSS is implemented
using lock mechanisms. In SimGrid-MSG these aspects do
not arise, due to the explicit parallelism of the master-worker
execution model.

B. Results of reproducing a selected scheduling experiment
from the BOLD publication [14]

The reproducibility of the first experiment presented
in [14] (results are shown in Table I) is examined in
this subsection. In this experiment, eight DLS techniques
(STAT, SS, FSC, GSS, TSS, FAC, FAC2, and BOLD)
are employed for scheduling a variable number of tasks
(n = {1, 024; 8, 192; 65, 536; 524, 288}) onto a variable
number of PEs (p = {2; 8; 64; 256; 1, 024}). Exact values
are given for the sample means of the average wasted time
over 1, 000 runs with scheduling overhead h = 0.5s, and
an exponential distribution of the task execution times with
mean µ = 1s.

The SimGrid-MSG simulation in the present work uses
the same parameters as the authors in [14]. It is not expected
to arrive at exact the same results, given that the task exe-
cution times are generated with a random number generator
(with a non-reported seed). However, the simulation results
obtained in the present work are expected to be close to the
original values.

For each run of the SimGrid-MSG simulation, the sim-
ulation time is measured, and for each worker, the time it
spends in computation (executing the tasks) is retained. The
wasted time (described earlier in Section III-B) of a single
worker in one run is computed by subtracting the time it
spends in computation from the overall simulation time. The
average wasted time for a single run is the sum of the wasted
time of all workers, divided by the number of workers. The
sample mean of the average wasted time of 1, 000 runs is
then computed by summation of the average wasted times
of the runs, divided by the number of runs. The wasted
time in the simulation is the average of the idle times of the
workers. The scheduling overhead time h is multiplied with
the number of chunks (this is also the number of scheduling
operations), and this value is added to the average wasted
time of all runs.

The following subsections describe the results of the
reproducibility experiments, while an overview of the exper-
iments is given in Table III. In every experiment, the eight
DLS techniques STAT, SS, FSC, GSS, TSS, FAC, FAC2,
and BOLD are measured over 1, 000 runs, the distribution

Table III: Overview of reproducibility experiments

Number of PEs=
Number of tasks {2; 8; 64; 256; 1, 024}

1, 024 Sec. IV-B1; Figure 5
8, 192 Sec. IV-B2; Figure 6
65, 536 Sec. IV-B3; Figure 7
524, 288 Sec. IV-B4; Figure 8

of the task execution times is exponential with µ = 1s, the
standard deviation is σ = 1s, and the scheduling overhead
is h = 0.5s.

1) 1, 024 tasks: Figure 5a shows a graphical illustration of
the values published in [14] for 1, 000 runs with exponential
distribution of the task execution times with µ = 1s for
1, 024 tasks. The number of PEs is plotted on the x-axis and
the average wasted time over 1, 000 runs on the logarithmic
y-axis. In Figure 5b the simulation results are shown for the
same experiments with the same number of runs obtained
for the present work with SimGrid-MSG.

The graphs look very similarly, which is supported by
Figures 5c and 5d. They show the discrepancy between the
values from the original publication and the SimGrid-MSG
simulation values, and the relative discrepancy to the value
in the original publication, respectively. A positive difference
indicates that the present simulation runs slower. The abso-
lute discrepancy is less than 1.1s for all techniques, which
translates into an absolute relative discrepancy not higher
than than 15% for all techniques. This is an acceptable
reproducibility result, given the available information.

2) 8, 192 tasks: Increasing the number of tasks to 8, 192
delivers the results depicted in Figure 6. For these experi-
ments, the plots of the values from the original publication
and the SimGrid-MSG simulation values, Figures 6a and 6b,
respectively, show again a very similar behavior of the DLS
techniques, underlined by Figures 6c and 6d, where the
discrepancy and the relative discrepancy are depicted. The
absolute difference between the values in the publication and
the simulation results increases to a maximum value of 1.6s.
Nevertheless, the maximum absolute relative discrepancy
decreases to 11.4%.

3) 65, 536 tasks: In Figure 7 the reproducibility results of
experiments with 65, 536 tasks are plotted. The results show
the same tendency as in the experiments with 1, 024 and
8, 192 tasks, respectively. The absolute discrepancy increases
to a value of 2.2s, while the relative discrepancy decreases
to a value below 10%.

4) 524, 288 tasks: In these experiments the number of
tasks increases to 524, 288. The results are shown in Fig-
ure 8. A comparison of the plot of the values in the
original publication and the plot of the simulation values
(Figures 8a and 8b) leads to the assumption that the DLS
behavior in both cases is the same. This is supported by
Figures 8c and 8d, where the discrepancy and the relative
discrepancy is shown, excluding the outlier FAC with 2 PEs.

1

10

100

1,000

2 8 64 256 1,024Av
er
ag
e
of
 th
e
Av
er
ag
e
W
as
te
d

Ti
m
e
ov
er
 1
K
ru
ns
 [s
]

Number of PEs

STAT SS FSC GSS TSS FAC FAC2 BOLD

(a) 1,024 tasks - Values from original publication [14]

1

10

100

1,000

2 8 64 256 1,024Av
er
ag
e
of
 th
e
Av
er
ag
e
W
as
te
d

Ti
m
e
ov
er
 1
K
ru
ns
 [s
]

Number of PEs

STAT SS FSC GSS TSS FAC FAC2 BOLD

(b) 1,024 tasks - Values from SimGrid-MSG simulation

-­1.5

-­1

-­0.5

0

0.5

1

1.5

STAT SS FSC GSS TSS FAC FAC2 BOLD

D
is
cr
ep
an
cy
 [s
]

DLS Technique

2 PEs 8 PEs 64 PEs 256 PEs 1,024 PEs

(c) 1,024 tasks - Discrepancy between the simulation values and
those from the original publication [14]

-­15

-­10

-­5

0

5

10

15

20

STAT SS FSC GSS TSS FAC FAC2 BOLD

R
el
at
iv
e
D
is
cr
ep
an
cy
 [%
]

DLS Technique

2 PEs 8 PEs 64 PEs 256 PEs 1,024 PEs

(d) 1,024 tasks - Relative discrepancy percentage between the
simulation values and those from the original publication [14]

Figure 5: Results 1,024 tasks

1

10

100

1,000

10,000

2 8 64 256 1,024Av
er
ag
e
of
 th
e
Av
er
ga
e
W
as
te
d

Ti
m
e
ov
er
 1
K
ru
ns
 [s
]

Number of PEs

STAT SS FSC GSS TSS FAC FAC2 BOLD

(a) 8,192 tasks - Values from original publication [14]

1

10

100

1,000

10,000

2 8 64 256 1,024Av
er
ag
e
of
 th
e
Av
er
ag
e
W
as
te
d

Ti
m
e
ov
er
 1
K
ru
ns
 [s
]

Number of PEs

STAT SS FSC GSS TSS FAC FAC2 BOLD

(b) 8,192 tasks - Values from SimGrid-MSG simulation

-­2

-­1.5

-­1

-­0.5

0

0.5

1

1.5

STAT SS FSC GSS TSS FAC FAC2 BOLD

D
is
cr
ep
an
cy
 [s
]

DLS Technique

2 PEs 8 PEs 64 PEs 256 PEs 1,024 PEs

(c) 8,192 tasks - Discrepancy between simulation values and those
from original publication [14]

-­15

-­10

-­5

0

5

10

15

STAT SS FSC GSS TSS FAC FAC2 BOLD

R
el
at
iv
e
D
is
cr
ep
an
cy
 [%
]

DLS Technique

2 PEs 8 PEs 64 PEs 256 PEs 1,024 PEs

(d) 8,192 tasks - Relative discrepancy percentage between the
simulation values and those from the original publication [14]

Figure 6: Results 8,192 tasks

1

10

100

1,000

10,000

100,000

2 8 64 256 1,024Av
er
ag
e
of
 th
e
Av
er
ag
e
W
as
te
d

Ti
m
e
ov
er
 1
K
ru
ns
 [s
]

Number of PEs

STAT SS FSC GSS TSS FAC FAC2 BOLD

(a) 65,536 tasks - Values from original publication [14]

1

10

100

1,000

10,000

100,000

2.00 8.00 64.00 256.00 1,024.00Av
er
ag
e
of
 th
e
Av
er
ga
e
W
as
te
d

Ti
m
e
ov
er
 1
K
ru
ns
 [s
]

Number of PEs

STAT SS FSC GSS TSS FAC FAC2 BOLD

(b) 65,536 tasks - Values from SimGrid-MSG simulation

-­2
-­1.5
-­1

-­0.5
0

0.5
1

1.5
2

2.5

STAT SS FSC GSS TSS FAC FAC2 BOLD

D
is
cr
ep
an
cy
 [s
]

DLS Technique

2 PEs 8 PEs 64 PEs 256 PEs 1,024 PEs

(c) 65,536 tasks - Discrepancy between simulation values and those
from original publication [14]

-­15

-­10

-­5

0

5

10

STAT SS FSC GSS TSS FAC FAC2 BOLD

R
el
at
iv
e
D
is
cr
ep
an
cy
 [%
]

DLS Technique

2 PEs 8 PEs 64 PEs 256 PEs 1,024 PEs

(d) 65,536 tasks - Relative discrepancy percentage between the
simulation values and those from the original publication [14]

Figure 7: Results 65,536 tasks

1

10

100

1,000

10,000

100,000

1,000,000

2 8 64 256 1,024Av
er
ag
e
of
 th
e
Av
er
ag
e
W
as
te
d

Ti
m
e
ov
er
 1
K
ru
ns
 [s
]

Number of PEs

STAT SS FSC GSS TSS FAC FAC2 BOLD

(a) 524,288 tasks - Values from original publication [14]

1

10

100

1,000

10,000

100,000

1,000,000

2 8 64 256 1,024Av
er
ag
e
of
 th
e
Av
er
ag
e
W
as
te
d

Ti
m
e
ov
er
 1
K
ru
ns
 [s
]

Number of PEs

STAT SS FSC GSS TSS FAC FAC2 BOLD

(b) 524,288 tasks - Values from SimGrid-MSG simulation

-­4

-­2

0

2

4

6

8

10

STAT SS FSC GSS TSS FAC FAC2 BOLD

D
is
cr
ep
an
cy
 [s
]

DLS Technique

2 PEs 8 PEs 64 PEs 256 PEs 1,024 PEs

1,072.49

(c) 524,288 tasks - Discrepancy between simulation values and
those from original publication [14]

-­10
-­5
0
5
10
15
20
25
30

STAT SS FSC GSS TSS FAC FAC2 BOLD

R
el
at
iv
e
D
is
cr
ep
an
cy
 [%
]

DLS Technique

2 PEs 8 PEs 64 PEs 256 PEs 1,024 PEs

(d) 524,288 tasks - Relative discrepancy percentage between the
simulation values and those from the original publication [14]

Figure 8: Results 524,288 tasks

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000

Av
er
ga
e
W
as
te
d
Ti
m
e
[s
]

Number Run

Figure 9: Average wasted time for each of the 1, 000 runs
of FAC using SimGrid-MSG with 2 workers and 524, 288
tasks

The maximum absolute discrepancy for this experiments
is 1, 072.5s (Figure 8c). This high value is caused by the
very high, and therefore, not exactly given, average wasted
time (described in Section III-B) of the experiment itself of
1.3 · 105s. The relative discrepancy for these experiments is
lower than 0.9%.

Taken as whole, the relative discrepancy is lower than
10%, excluding the outlier FAC in the experiments with
2 PEs. The average wasted time for each run for the outlier
FAC with 2 PEs is shown in Figure 9. Only 15 values
are higher than 400s, which corresponds to 1.5% of all
values. The exclusion of these values from the computation
of the average wasted over all runs leads to a value of
25.82s. With this value, the relative discrepancy is lower
than 1%. As the task execution times are generated with a
random number generator using the exponential distribution,
the authors of [14] obtained a lower amount of such high
values of the average wasted time for each run, and therefore,
a better result for the average wasted time for all runs.

V. REPRODUCIBILITY OF THIS WORK

Any interested reader should be able to reproduce this
work. The individual measurements were performed in par-
allel on the HPC cluster taurus at the Centre for Information
Services and High Performance Computing (ZIH) at Tech-
nische Universität Dresden, using SimGrid-MSG version
3.13, compiled with GCC version 5.3, with no additional
flags. The library implementing the DLS techniques in
SimGrid-MSG is under development and can be made
available upon request. The raw data of the experiments is
freely available online3.

VI. CONCLUSION AND FUTURE WORK

This work presents reproducibility efforts of experiments
using DLS techniques given in earlier publications, through

3https://cloudstore.zih.tu-dresden.de/index.php/s/UiLqNpohuS4OQUF

their implementation in SimGrid-MSG, for the purpose
to verify their performance results. The reproducibility of
the results from [12] was unsuccessful. Potential reasons
could be a strong influence of the chunk calculation in
GSS during execution, inaccurate network parameters in the
SimGrid-MSG simulation, and the different parallelization
strategies (implicit vs. explicit). The measurements in the
publication are obtained on a shared memory system using
implicit parallelism. The SimGrid-MSG interface imple-
ments a master-worker execution model, which requires
explicit management of parallelism.

In [14], the information given regarding the application,
the system (in this case a simulator) and the execution are
very detailed. The reproducibility was successful for all 20
experiments for each of the eight DLS techniques, STAT, SS,
FSC, GSS, TSS, FAC, FAC2, and BOLD. With increasing
number of tasks, the relative difference between the values
given in the publication and the SimGrid-MSG values is
decreasing.

This successful reproducibility implies the verification of
the DLS implementation in SimGrid-MSG for the consid-
ered applications and systems. Future work remains for
verifying the TAP and the adaptive techniques (AF, AWF,
and AWF-B/C). This verified implementation allows well-
founded research concerning the various properties of the
DLS techniques. The scalability, flexibility, and resilience
of the DLS techniques were investigated to a certain extent
in earlier work. The present work lays the foundation for
modeling the overhead of the DLS techniques, with the goal
to identify the technique with lowest overhead and overall
best performance for a given application and system, prior
to execution.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grant number NSF IIP-1034897.

REFERENCES

[1] M. Balasubramaniam, N. Sukhija, F. M. Ciorba, I. Ban-
icescu, and S. Srivastava, “Towards the scalability of dynamic
loop scheduling techniques via discrete event simulation,”
in Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS 2012) - Parallel and
Distributed Scientific and Engineering Computing Workshop.
IEEE Computer Society Press, May 2012, pp. 1343–1351.

[2] N. Sukhija, I. Banicescu, S. Srivastava, and F. M. Ciorba,
“Evaluating the flexibility of dynamic loop scheduling on het-
erogeneous systems in the presence of fluctuating load using
SimGrid,” in Proceedings of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2013) - Par-
allel and Distributed Scientific and Engineering Computing
Workshop. IEEE Computer Society Press, May 2013, pp.
1429–1438.

[3] N. Sukhija, I. Banicescu, and F. M. Ciorba, “Investigating
the resilience of dynamic loop scheduling in heterogeneous
computing systems,” in Proceedings of the 14th International
Symposium on Parallel and Distributed Computing (ISPDC
2015). IEEE Computer Society Press, June 2015, pp. 194–
203.

[4] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and
F. Suter, “Versatile, scalable, and accurate simulation of
distributed applications and platforms,” Journal of Parallel
and Distributed Computing, vol. 74, no. 10, pp. 2899 – 2917,
2014.

[5] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring:
A method for scheduling parallel loops,” Communications of
the ACM, vol. 35, no. 8, pp. 90–101, August 1992.

[6] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein, “Load-
sharing in heterogeneous systems via weighted factoring,” in
Proceedings of the 8th annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA 1996). ACM, June
1996, pp. 318–328.

[7] I. Banicescu and S. F. Hummel, “Balancing processor loads
and exploiting data locality in N-body simulations,” in Pro-
ceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC
1995). ACM, December 1995, pp. 43–58.

[8] I. Banicescu and V. Velusamy, “Load balancing highly irregu-
lar computations with the Adaptive Factoring,” in Proceedings
of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2002) - Heterogeneous Computing Work-
shop. IEEE Computer Society Press, April 2002, 12 pp. (on
CDROM).

[9] R. L. Cariño, I. Banicescu, R. K. Vadapalli, C. A. Weather-
ford, and J. Zhu, “Parallel adaptive quantum trajectory method
for wavepacket simulations,” in Proceedings of the IEEE
International Parallel and Distributed Processing Sympo-
sium (IPDPS 2003) - Parallel and Distributed Scientific and
Engineering Computing with Applications Workshop. IEEE
Computer Society Press, April 2003, 7 pp. (on CDROM).

[10] C. P. Kruskal and A. Weiss, “Allocating independent subtasks
on parallel processors,” IEEE Transactions on Software En-
gineering, vol. 11, no. 10, pp. 1001–1016, October 1985.

[11] C. D. Polychronopoulos and D. J. Kuck, “Guided self-
scheduling: A practical scheduling scheme for parallel super-
computers,” IEEE Transactions on Computers, vol. 36, no. 12,
pp. 1425–1439, December 1987.

[12] T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: A
practical scheduling scheme for parallel compilers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 4,
no. 1, pp. 87–98, January 1993.

[13] S. Lucco, “A dynamic scheduling method for irregular par-
allel programs,” in Proceedings of the ACM SIGPLAN 1992
Conference on Programming Language Design and Imple-
mentation (PLDI 1992). ACM, June 1992, pp. 200–211.

[14] T. Hagerup, “Allocating independent tasks to parallel proces-
sors: An experimental study,” Journal of Parallel and Dis-
tributed Computing, vol. 47, no. 2, pp. 185–197, December
1997.

[15] I. Banicescu, V. Velusamy, and J. Devaprasad, “On the
scalability of dynamic scheduling scientific applications with
adaptive weighted factoring,” Cluster Computing, vol. 6,
no. 3, pp. 215–226, July 2003.

[16] R. L. Cariño and I. Banicescu, “Dynamic load balancing
with adaptive factoring methods in scientific applications,”
Supercomputing, vol. 44, no. 1, pp. 41–63, April 2008.

[17] I. Banicescu and Z. Liu, “Adaptive Factoring: A dynamic
scheduling method tuned to the rate of weight changes,” in
Proceedings of the High Performance Computing Symposium,
April 2000, pp. 122–129.

[18] I. Banicescu and R. L. Cariño, “Addressing the stochastic na-
ture of scientific computations via dynamic loop scheduling.”
Electronic Transactions on Numerical Analysis, vol. 21, pp.
66–80, 2005.

	Introduction
	Simulation of Dynamic Loop Scheduling Using SimGrid-MSG
	Selection of Reproducibility Candidates
	Reproducibility of the TSS publication TN93
	Reproducibility of the BOLD publication Hag97

	Reproducibility Results
	Results of reproducing selected scheduling experiments from the TSS publication TN93
	Results of reproducing a selected scheduling experiment from the BOLD publication Hag97

	Reproducibility of this Work
	Conclusion and Future Work
	References

