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Abstract—Reproducibility of the execution of scientific appli-
cations on parallel and distributed systems is a growing inter-
est, underlying the trustworthiness of the experiments and the
conclusions derived from experiments. Dynamic loop scheduling
(DLS) techniques are an effective approach towards performance
improvement of scientific applications via load balancing. These
techniques address algorithmic and systemic sources of load
imbalance by dynamically assigning tasks to processing elements.
The DLS techniques have demonstrated their effectiveness when
applied in real applications. Complementing native experiments,
simulation is a powerful tool for studying the behavior of
parallel and distributed applications. This work is a comprehen-
sive reproducibility study of experiments using DLS techniques
published in earlier literature to verify their implementations
into SimGrid-MSG [1]. The reproducibility study is carried
out by comparing the performance of the SimGrid-MSG-based
experiments with those reported in [2]. In earlier work [3] it
was shown that a very detailed degree of information regarding
the experiments to be reproduced is essential for successful
reproducibilty. This work concentrates on the reproducibility of
experiments with variable application behaviour and high degree
of parallelism. It is shown that reproducing measurements of
applications with high variance is challenging, albeit feasible
and useful. The success of the present reproducibility study
denotes the fact that the implementation of the DLS techniques
in SimGrid-MSG is verified for the considered applications and
systems. Thus, it enables well-founded future research using the
DLS techniques in simulation.
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Scheduling; Dynamic Loop Scheduling; Scientific Applications;
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I. INTRODUCTION

Contributions presented in scientific publications are often
based on and/or supported by experiments. In particular, in
parallel and distributed computing, the theoretical analysis
of algorithms and applications is often complemented by
experimental analyses due to the hardware and software
complexities, which are challenging to model. Reproducing
experiments of such analyses increases the trustworthiness of
the reported results, and therefore, of the derived conclusions.

The increase in the numerical complexity of simulation

models in conjunction with the rapid increase in computing
resources leads, among others, to the need of efficient methods
for assigning the work load to processing elements (PE) to
achieve a load balanced execution. A PE can be a functional
block of a processor (e.g. FPU), a core, a CPU, a workstation,
or another type of a processing component. Throughout
the present work, a processing element refers to a single
compute core. Load imbalance between PEs occurs due to
application, algorithmic, and/or systemic variability. Dynamic
load balancing can be used to achieve a load balanced execution
of applications with unpredictably changing of workload, when
PEs differ in performance, or when perturbations in the system
or in the network occur. Dynamic loop scheduling (DLS)
techniques address algorithmic and systemic sources of load
imbalance by dynamically assigning tasks to PEs. Over the
years, different loop scheduling techniques have been developed.
It has been proven that these techniques are highly successful in
balancing applications’ workload. The use of DLS techniques
is not restricted to parallel loops as they can be applied on
any collection of independent parallel tasks. Throughout the
present work, a task refers to a loop iteration, both terms being
used interchangeably.

The DLS techniques have exhaustively been analyzed
and applied in real scientific applications on real machines.
Examples include Monte Carlo simulations, radar signal
processing, N-body simulations, computational fluid dynamics
on unstructured grids, or wave packet simulations ([4], [5], [6],
[7], [8]). The DLS techniques have shown very good results in
reducing the load imbalance caused by algorithmic and systemic
variances arising over the course of the application execution.
Extending upon real experiments, simulations provide the
capabilities to demonstrate the strengths of the DLS techniques
for any probability distribution of the task execution times
and availability of PEs. In earlier work, the scalability [9],
robustness [10], and resilience [11] of the DLS techniques
were investigated for various such distributions using the MSG
interface of the SimGrid [1] simulation framework (denoted
SimGrid-MSG).
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TABLE I: Notation

Notation Definition
n number of tasks
p number of PEs
m ratio of number of tasks to number of PEs
D probability distribution of task execution times
h scheduling overhead
µ mean of the task execution times
σ variance of the task execution times
r number of runs
µr mean of the results of r runs
σr standard deviation of the results of r runs

The present work is an extension of earlier recent work [3]
and concentrates on increasing the trustworthiness of the veri-
fication via reproducibility of the implementations of the DLS
techniques in SimGrid-MSG. The performance reproducibility
study is carried out by comparing the SimGrid-MSG-based
scheduling experiments with those reported in [2]. Once the
SimGrid-MSG implementation is verified, the impact of the
overhead of DLS techniques on the performance of scientific
applications in heterogeneous computing systems can be
assessed.

The current work presents an analysis and a discussion
of the performance results obtained via reproducibility of
scheduling experiments using DLS techniques published in
earlier literature. A short introduction into the DLS techniques
and their implementation and incorporation into the SimGrid
simulation framework and its MSG interface are presented
in Section II. In Section III, an overview of the experiments
reported in [2] and the experiments selected for reproducibility
in this work are given. The reproducibility results are presented,
analyzed, and discussed in Section IV. A description of the
reproducibility of this work is outlined in Section V, while
conclusions and future directions are given in Section VI.

II. SIMULATION OF DYNAMIC LOOP SCHEDULING USING
SIMGRID-MSG

A dominant performance degradation factor in scientific
applications is load imbalance. Load imbalance can be induced
by different factors. The application itself can have a variable
behaviour resulting in imbalance in terms of execution time
between the PEs. The underlying numerical model can have
variable computational load in different areas of the compu-
tational domain, e.g the computational load at the boundaries
of the domain can be much higher or much lower than
the computational load inside the domain. In addition, load
imbalance can occur due to systemic variability caused, for
instance, by heterogeneous PEs, or by contention on shared
resources.

A powerful tool for achieving a load balanced execution of
scientific applications is DLS in which chunks of tasks are
dynamically assigned to the available PEs. The two extremes
of allocating n tasks to p PEs are static chunking (STAT)
and self scheduling (SS). While with STAT the number of
tasks is evenly distributed to the PEs, by assigning n

p tasks to
each PE before the computation starts, with SS each of the
n tasks is assigned to an available PE. The limitation of the

TABLE II: Abbreviations of DLS techniques, reference to
publication which first introduced the DLS technique and
whether it is adaptive at execution time

Notation Definition and Reference Adaptive
FSC Fixed size chunking [13]
GSS Guided self scheduling [14]
TSS Trapezoid self scheduling [15]
FAC Factoring [4]

FAC2 Factoring with decreasing factor 2 [4]
TAP Taper strategy [16]

BOLD Bold strategy [2]
WF Weighted factoring [5]

AWF Adaptive weighted factoring [17] X
AWF-B/C Variants of adaptive weighted factoring [18] X

AF Adaptive factoring [19] X

one is the strength of the other and vice versa. On one hand,
STAT has minimum scheduling overhead due to performing
only one scheduling operation per PE. However, this DLS
technique is not able to compensate for the variability in the
task execution times, thus, resulting in high load imbalance.
On the other hand, SS has very high scheduling overhead
due to the n scheduling operations accommodated by a good
load balancing. The compromise between these two is to
dynamically assign chunks of tasks to available PEs using
DLS techniques. Over the years, different DLS techniques were
developed with the goal to achieve load balanced execution
with low scheduling overhead. A comprehensive review of
the DLS techniques may be found in [12]. In Table II, an
overview of the techniques, their corresponding references and
a statement regarding the adaptivity at execution time of each
technique are given. Although, not every of the DLS techniques
listed in Table II is adaptive at execution time, all listed DLS
techniques are dynamic, due to the dynamic assignment of
chunks of tasks to the available PEs.

In earlier work, the scalability [9], robustness [10], and
resilience [11] of DLS techniques applied in scientific appli-
cations were investigated using the SimGrid-MSG simulation
framework [1]. To support the conclusions derived from DLS
experiments that use SimGrid-MSG, this work is an extension
of earlier work [3] and concentrates on the verification via
reproducibility. A successful performance reproducibility of
experiments supports the conclusions derived from this experi-
ments. Furthermore, the increase in the number of successfully
reproduced experiments highlights the trustworthiness of the
verification.

The work in [3] constitutes first performance reproducibility
study of experiments using DLS techniques published in earlier
literature through their implementation into SimGrid-MSG, for
the purpose of verifying their performance results. It was shown
that the information needed for performance reproducibility
of experiments published in earlier literature is, in certain
circumstances, insufficient. Nevertheless, the information given
in [2] regarding the application, the system (in this case a
simulated system) and the execution are very detailed. The
performance reproducibility of a set of experiments from [2]
(experiment parameters given in Table Va) was successful for
the eight DLS techniques considered: STAT, SS, GSS, TSS,
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FAC, FAC2, and BOLD. This work is an extension of the earlier
work by increasing the trustworthiness of the results presented
in [3] via performance reproducibility of additional experiments
from [2] using the simulation framework SimGrid-MSG.

Using the MSG interface of SimGrid, a master-worker
execution model is implemented as illustrated in Figure 1.
The master and workers are each mapped to an individual
PE. Before starting the simulation, information regarding
the application and the system needs to be provided. While
the application information is given in the SimGrid-MSG
deployment file or can be directly implemented in the user
code via functions provided by the SimGrid-MSG interface,
the system information is specified in the SimGrid-MSG
platform file. At the beginning of a simulation and every
time a worker finishes the execution of tasks, it sends work
request messages to the master. Depending on the chosen DLS
technique, when receiving a work request message, the master
computes the chunk size and sends this chunk of tasks to
the requesting worker. The worker simulates the execution of
the tasks, and upon finishing the execution, it sends again a
work request message. On completion of all tasks, the master
sends final messages to the worker, and the simulation ends.
SimGrid-MSG allows to send a specified amount of data with
each message transfer. However, in the current work, the
assumption is made that the application data is replicated
and no data transfer is necessary for executing the tasks.

Dynamic scheduling is associated with scheduling overhead.
The computation of the chunk size and the allocation of the
chunk of tasks to a PE requires a certain amount of time.
The authors of [2] assume a fixed delay for computing the
chunk size and allocating a chunk of tasks to a PE. They have
implemented their own simulator for performing experimental
analyses of the DLS techniques, consisting of a central monitor
and of p ≥ 2 initially idle PEs. The central monitor maintains
a set of unassigned tasks, initially containing n tasks. At the
beginning of the simulation and whenever a PE becomes idle, it
accesses the monitor. A chunk of previously unassigned tasks is

assigned to the PE, and the PE starts the execution of the tasks
in the chunk. The time needed for any PE to process a chunk
of tasks is h+ T1 + . . .+ Tk, where h > 0 is the scheduling
overhead and T1, . . . , Tk are independent non-negative random
variables with a common probability distribution D.

Transferring this information to SimGrid-MSG implies that
the master in SimGrid-MSG corresponds to the central monitor
of the simulator implemented in [2]. Modelling the fixed
scheduling overhead h assumed in [2] is challenging in
SimGrid-MSG. Sure, for every scheduling operation there is
communication over the network between the master and
the requesting worker. The worker sends a work request
message and the master replies with a chunk of tasks. This
communication needs a certain time, and cannot be fixed,
due to potential contention on the network and the potential
bottleneck at the master. Therefore, the network connection in
SimGrid-MSG is characterized by a very high bandwidth and
a very low latency to simulate that the message transfer needs
no time.

A visualization1 of a SimGrid-MSG simulation with n =
1024 tasks and p = 33 PEs (32 PEs mapped to worker
processes and 1 PE mapped to the master process) using the
DLS technique FSC is shown in Figure 2. The probability
distribution of the task execution times is exponential with
mean and standard deviation µ = σ = 1. The x-axis is the
amount of time in seconds needed for execution of the chunks
(marked with different colors) for every worker on the y-axis.
It is obvious that there is no time between the execution of
chunks for each worker due to the network settings described
above.

The authors of [2] were interested in the relative performance
of the different DLS techniques and not in the random
fluctuations in task execution times. Therefore, the wasted
time and not the finishing time was measured. During a run,
each of the p PEs is in one of three states. A PE is in computing
state during the execution of tasks. Between computing states,
a PE is in the coordination state, waiting for new tasks to
execute. Toward the end of the simulation, a PE may be in idle
state waiting for the last PE to finish its work. The wasted time
of a PE is defined as the sum of the coordination time and the
idle time. The wasted time was measured for a given number
of runs r of the same experiment with p PEs. Then, the mean
was computed by using the sum of the average wasted times of
the r runs divided by the number of runs. In the SimGrid-MSG
simulation, the wasted time of a PE is computed by subtracting
the time a PE is in computing state from the total simulation
time. This value represents the idle time (knowing that the
message transfer between the master and worker takes no time,
due to very high bandwidth and very low latency of the links
between the PEs). The average idle time is the ratio of the
summation of the idle times of all PEs to the number PEs. The
coordination time is the time needed for sending the chunks of
tasks to the PE. This is defined by the scheduling overhead h.

1Vampir [20] is used for the visualization of a trace-file generated with the
otf2-trace-file-generator [21] from the SimGrid-MSG output



Fig. 2: Visualization of a SimGrid-MSG simulation using the DLS technique FSC with n = 1024 tasks scheduled by the master
to 32 worker processes, where BAxx.CHyy.TAzz denotes the batch number xx, chunk number yy, and zz is the number of
tasks in the chunk.

Thus, the average coordination time is the number of chunks
multiplied with h divided by the number of PEs. As the result,
the average wasted time of a run can be computed by adding
the average idle time and the average coordination time.

The value of interest in this work is the wasted time of a run
represented by a random quantity X . To obtain a sample of the
t values X1, . . . , Xt for X consider a number of t successive
runs with identical parameter settings. The mean µr can be
computed by µr = 1

t

∑t
i=1Xi and the standard deviation by

σr =

√√√√ 1

t− 1

t∑
i=1

(Xi − µr)2

(following the authors of [2] by dividing by t − 1 rather
than t in the definition of σr). The mean µr is the reported
experiment result in [2] and constitutes the reference value
for the reproducibility study. The standard deviation σr is not
reported in the earlier work. Nevertheless, it is part of this
work to explain experiment results presented in Section IV.

III. EXPERIMENTS IN ORIGINAL BOLD PUBLICATION

In the original BOLD publication [2] the analytical analysis
including the derivation of the introduced BOLD technique is
accompanied by experimental studies of the BOLD technique in

comparison to the DLS techniques STAT, SS, FSC, GSS, TSS,
FAC, and FAC2. The results of different sets of experiments are
reported in six tables. The parameter settings of this six sets of
experiments are represented in Tables Va-Vf. The performance
of the DLS techniques is analyzed for varying number of PEs p,
number of tasks n, probability distribution of the task execution
times D, scheduling overhead h, and number of runs r. For
Tables Vb and Vd, instead of the number tasks the ratio m
of tasks per PE is given. Therefore, the set with the number
tasks n is defined as follows:

{njk|njk = pj ·mk ∀j = 1, . . . , 5; k = 1, . . . , 4}.

For simulating different applications behaviour, the task
execution times were modelled with the aid of the standard Unix
random number generators erand48 and nrand48 in [2]. For the
probability distributions of the task execution times, the uniform
(flat), the exponential, and the two-point distributions were used.
The notations and definitions of the probability distributions
used in this work are given in Table III. The uniform distribution
is abbreviated U(a, b), it has constant probability on a given
interval [a, b]. The mean (or expected value) µ of an uniformly
distributed random variable X ∼ U(a, b) is given by µ = a+b

2 ,

the standard deviation is σ =
√

(b−a)2
12 . The exponential



TABLE III: Probability Distributions

Notation Definition
U(a, b) Uniform distribution over the interval [a, b]
Exp(λ) Exponential distribution with rate parameter λ
B(p) Two-point distribution with P (X = 1

p
) = p

and P (X = 0) = 1− p

TABLE IV: Probability distributions D for task execution times
with mean µ and standard deviation σ considered herein

Notation Definition µ σ

D1 U(1.0− 0.2
√
3, 1.0 + 0.2

√
3) 1.0 0.2

D2 U(1.0− 0.5
√
3, 1.0 + 0.5

√
3) 1.0 0.5

D3 Exp(1.0) 1.0 1.0

D4 B( 1
10

) 1.0 3.0

D5 B( 1
101

) 1.0 10.0

distribution is noted Exp(λ), the mean µ and the standard
deviation σ of an exponentially distributed random variable
X ∼ Exp(λ) is given by µ = σ = 1

λ . The two-point
distribution is noted B(p) where p is the success probability. A
two-point distributed random variable X on {0, 1p} (X ∼ B(p))
takes the value 1

p with success probability p, and the value 0
with failure probability 1 − p. The mean µ is given by
µ = (1 − p) · 0 + p · 1

p , and the standard deviation is

σ =
√
p(1− p) · ( 1p − 0)2. The probability distributions used

in this work are shown in Table IV, including the associated
parameters.

IV. REPRODUCIBILITY RESULTS

This section presents the results of the reproducibility
efforts of measurements presented in the original BOLD
publication [2]. While in earlier work the reproducibility of
experiments reported in Table Va was analyzed, this work
is an extension of [3] and concentrates on the performance
reproducibility of additional measurements from [2]. In the
original BOLD publication [2], experiments using eight DLS
techniques were performed. The DLS techniques STAT and SS
were only measured in the experiments noted in Table Va.
Reproducing these experiments was subject of the earlier
work [3]. The percentage relative to the original value of the
discrepancy between the original value from the publication and
the SimGrid-MSG simulation ranged from −1.29% to 0.53%
for both techniques. This implies a successful reproducibility,
and therefore, a verification of the implementation of these
DLS techniques in SimGrid-MSG. Furthermore, STAT and SS
are basic DLS techniques and leave little room for errors in
their implementation. Therefore, the implementation of the
master-worker execution model in SimGrid-MSG leaves little
room for errors, as well.

For six of the eight DLS techniques, additional experiments
were reported in the original BOLD publication. In the
following subsections, the performance reproducibility results
of experiments using the techniques FSC (Section IV-A), GSS
(Section IV-B), TSS (Section IV-C), FAC (Section IV-D), FAC2
(Section IV-E), and BOLD (Section IV-F) are analyzed. Note

TABLE V: Parameters used in the experiments in original
BOLD publication [2]

(a) Experiments in Table I in [2]
(reproduced in [3])

Var. Value(s)

n {210, 213; 216, 219}
p {21, 23, 26, 28, 210}
D D3

h 0.5

r 1, 000

DLS {STAT, SS, FSC, GSS,
TSS, FAC, FAC2, BOLD}

(b) Experiments in Table II in [2]
(reproduced herein)

Var. Value(s)

m {22; 24; 26; 28}
p {21, 23, 26, 28, 210}
D D3

h 0.5

r 10, 000

DLS {FSC, GSS, TSS,
BOLD}

(c) Experiments in Table III in [2]
(left for further studies)

Var. Value(s)

n 27

p 23

D {D1, D2, D3, D4, D5}
h {0.1, 0.5, 2.0, 5.0, 10.0}
r 100, 000

DLS {FSC, GSS, TSS,
BOLD}

(d) Experiments in Table IV in [2]
(reproduced herein)

Var. Value(s)

m {22, 24, 26, 28}
p {21, 23, 26, 28, 210}
D D4

h 2.0

r 10, 000

DLS {FSC, GSS, TSS,
BOLD}

(e) Experiments in Table V in [2]
(reproduced herein)

Var. Value(s)

n {222, 225, 228, 231}
p {21, 23, 26, 28, 210}
D D3

h 0.5

r 1, 000

DLS {FAC, FAC2, BOLD}

(f) Experiments in Table VI in [2]
(left for further studies)

Var. Value(s)

n 219

p 26

D {D1, D2, D3, D4, D5}
h {0.1, 0.5, 2.0, 5.0, 10.0}
r 100, 000

DLS {FAC, FAC2, BOLD}

that the experiments with parameters reported in Tables Vc
and Vf are left for further studies, and that this work concen-
trates on the reproducibility of experiments with parameters
given in Tables Vb, Vd and Ve. This additional performance
reproducibility study increases the trustworthiness of the results
presented in [3], and lays the foundation for further studies of
the DLS techniques.

A. FSC

In the original BOLD publication [2], the DLS technique
FSC has been analyzed in four sets of experiments . The
parameters and the values of those experiments are reported
in Tables Va, Vb, Vc, and Vd. While the performance
reproducibility of the FSC experiments from Table Va was
analyzed in earlier work [3], this work concentrates on the
reproducibility of the experiments from Tables Vb and Vd.
The experiments in Table Vc are left for further studies.

The experiments from the original BOLD publication re-
ported in Tables Va and Vb are very similar. While in Table Va
the number of tasks is {210, 213, 216, 219} and the number of
runs is 1, 000, in Table Vb the number of runs is increased by
an order of magnitude to 10, 000 and the number of tasks is, in
general, decreased to {22, 24, 26, 28} per PE. The probability
distribution of the task execution times is Exp(1.0) with
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Fig. 3: Relative discrepancy percentage between the simulation
values and those from the original publication [2] for experi-
ments using FSC performed for parameters given in Tables Vb
and Vd

mean and standard deviation µ = σ = 1.0. The scheduling
overhead is h = 0.5. The experiments reported in Table Vd are
characterized by an increased scheduling overhead to h = 2.0
and a more variable application behaviour using the two-point
probability distribution B(10) to generate the task execution
times with a random number generator. This implies a standard
deviation of σ = 10. The number of tasks, PEs, and runs
is equal to the values in Table Vb. In general, it could be
assumed that the reproducibility results of Table Vb are closer
to the original values compared to the reproducibility results of
Table Vd. The higher standard deviation of the task execution
times leads to more fluctuations of the single runs.

The results of the performance reproducibility of all those
40 experiments (Tables Vb and Vd) are very promising. In
Figure 3, the percentage discrepancy relative to the value
in the original publication between the values from the
original publication and those obtained from the SimGrid-MSG
simulation are shown. A negative discrepancy indicates that
the average wasted time obtained by the SimGrid-MSG
simulation is higher. The discrepancy is bounded by −4.2%
and 7.9% which is an acceptable result for reproducibility. As
expected, the discrepancy percentage differs with the probability
distribution of the task execution times. While the discrepancy
of the original value and the SimGrid-MSG value is in the
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Fig. 4: Relative discrepancy percentage between the simulation
values and those from the original publication [2] for experi-
ments using GSS performed for parameters given in Tables Vb
and Vd

interval [−0.04%, 2.8%] for the experiments from Table Vb
(exponential distribution with standard deviation σ = 1.0),
this interval increases more than fourfold to [−4.8%, 7.9%]
for experiments from Table Vd (two-point distribution with
standard deviation σ = 10). However, the results imply the
successful performance reproducibility of the FSC experiments.

B. GSS

In the original BOLD publication [2], the experiments using
GSS equal the FSC experiments (Tables Va, Vb, Vc, and Vd).
The relative discrepancy percentage between the original values
and the SimGrid-MSG results of experiments from Tables Vb
and Vd are plotted in Figure 4.

The discrepancy percentage is negative for all 40 experiments
due to the higher SimGrid-MSG value of the average wasted
time. Considering the GSS experiments with parameters
reported in Table Vb, only for the experiment with n = 27 and
p = 21 the relative discrepancy percentage between the original
value and the SimGrid-MSG value is higher than ±15% (see
Table VIa). The fluctuation of the average wasted times of
the different runs of this experiments is very high, the values
range from 2.00 to 20.61, the standard deviation is σr = 3.1,
which corresponds to 70% of the mean of all runs. The reason



TABLE VI: Mean, minimum, maximum, and standard deviation
σr of average wasted time of SimGrid-MSG simulations of
experiments with parameters given in Tables Vb and Vd using
GSS with a relative percentage discrepancy between the original
and simulation value higher than 15% (corresponding results
are included in Figure 4)

(a) Results of experiments with parameters from Table Vb (1/20
experiments)

average wasted time (SimGrid-MSG) [s]
% discr [p, n] µr minimum maximum σr

−17.15% [21, 27] 4.58 2.00 20.61 3.10

(b) Results of experiments with parameters from Table Vd (8/20
experiments)

average wasted time (SimGrid-MSG) [s]
% discr [p, n] µr minimum maximum σr

−20.24% [21, 25] 10.73 6.00 36.00 4.65

−20.84% [21, 27] 16.33 8.00 73.00 8.84

−18.22% [21, 29] 25.57 10.00 120.00 18.22

−15.15% [23, 27] 18.46 6.50 60.25 7.19

−19.80% [23, 29] 27.52 9.00 130.25 12.93

−15.92% [23, 211] 39.27 11.50 171.5 24.50

−15.63% [26, 210] 30.99 11.88 69.84 7.73

−16.72% [26, 212] 49.36 17.25 125.69 13.82

my be found in the low number of tasks scheduled to a low
number of PEs. Outliers of the task execution times cannot
be balanced by the other task execution times. This results in
fluctuations of the runs, and both extremes can occur, either
load balanced execution or high load imbalance. However, by
excluding the outlier of −17.15% discrepancy between the
original and the simulation value for the experiments from
Table Vb, the discrepancy percentage becomes below 15%
which is an adequate result for reproducibility.

For the experiments from Table Vd, the relative discrepancy
percentage between the original and SimGrid-MSG results
is bounded by −20.8% and −5.2%. The outliers of the
experiments where the discrepancy percentage is higher than
15% are listed in Table VIb. Especially for low numbers
of PEs in combination with high numbers of tasks, the
discrepancy percentage between the original and simulation
results is increasing. The reason may be found in the probability
distribution of the task execution times which has a standard
deviation σ = 10. The low number of PEs can not compensate
the variability in the task execution times. This results in
uneven outcome of the different runs of the experiments, which
decreases the confidence in the computed mean of the runs,
and explains the discrepancy of the mean value to the one
from the original publication.

C. TSS

The parameters of the experiments in the original BOLD
publication [2] using the DLS technique TSS are equal to
the parameters of the experiments using GSS and FSC (Ta-
bles Va, Vb, Vc, and Vd). The relative discrepancy percentage
between the original values and the SimGrid-MSG results of
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Fig. 5: Relative discrepancy percentage between the simulation
values and those from the original publication [2] for experi-
ments using TSS performed for parameters given in Tables Vb
and Vd

the experiments from Tables Vb and Vd are plotted in Figure 5.

The discrepancy percentage for both sets of experiments
is bounded by 15% excluding the outlier for the experiment
from Table Vd with n = 23 and p = 21. Using TSS for
scheduling a low number of tasks to a low number of PEs
where the single task execution times have a high variability
leads to variability of the different runs. In addition, for the
experiment from Table Vd with n = 23 and p = 21 the
number of scheduling operations is five. This implies an
average scheduling overhead per PE of 5s (h = 2.0s). This
high scheduling overhead compared to the overall original
value of the average wasted time of 5.99s in conjunction with
the variability of the runs due to the standard deviation of
σ = 10 of the task execution time distribution leads to this
outlier. Excluding the outlier of −21.14% discrepancy between
the original and the simulation value for the experiments
from Tables Vb and Vd, the discrepancy percentage ranges
from −8.32% to 11.53% which is an acceptable result for
reproducibility.

D. FAC

The DLS technique FAC was used in the original BOLD
publication in the experiments with reported parameters in
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Fig. 6: Relative discrepancy percentage between the simula-
tion values and those from the original publication [2] for
experiments using FAC performed for parameters given in
Table Ve

Tables Va, Ve, and Vf. While the reproducibility study of
experiments in Table Va was subject in earlier work [3],
this work extends the earlier work by concentrating on the
performance reproducibility of experiments from Table Ve.
The experiments reported in Table Vf are characterized by
using different probability distributions for generating the task
execution times. Reproducing these experiments is left for
future work.

The parameters of the experiments reported in Table Ve
are very close to the parameters of the experiments given in
Table Va. The single difference is the increased number of
tasks to {222, 225, 228, 231} of the experiments in Table Ve.
The number of PEs is {21, 23, 26, 28, 210}, the probability
distribution of the task execution times is Exp(1.0) with mean
and standard deviation µ = σ = 1.0, the scheduling overhead is
h = 0.5, and the number of runs is 1, 000 for both experiments.
The relative discrepancy percentage between the original values
and the SimGrid-MSG results is shown in Fig. 6.

The discrepancy between the values from the original
publication and the SimGrid-MSG values ranges from −43.3s
to 48.5s. This results in a discrepancy percentage between
−3.2% and 7.1% for the FAC experiments from Table Ve,
which is an adequate result for performance reproducibility. In
earlier work, an outlier for FAC was detected for the experiment
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Fig. 7: Relative discrepancy percentage between the simula-
tion values and those from the original publication [2] for
experiments using FAC2 performed for parameters given in
Table Ve

with 219 tasks and 21 PEs with a relative discrepancy percentage
between the original value and the SimGrid-MSG result of
about 26% [3]. The tendency that the discrepancy percentage
of experiments with a high number of tasks scheduled to a low
number of PEs is higher compared to experiments with a higher
number of PEs still holds. Though, the discrepancy percentage
for the experiments with 21 and 28 PEs from Table Ve is
bounded by −3.2% and 7.1%. However, the fact that the
discrepancy percentage is in the interval [−3.2%, 7.1%] implies
a successful reproducibility.

E. FAC2

In the original BOLD publication [2], the experiments using
FAC2 equal the FAC experiments (Tables Va, Ve, and Vf). The
relative discrepancy percentage between the original values
and the SimGrid-MSG results of experiments from Table Ve
is shown in Fig. 7.

The percentage discrepancy between the original value and
the value obtained by SimGrid-MSG simulation is decreasing
for the experiments with parameters given in Table Ve with the
increasing number of PEs. This DLS technique produces results
contrary to the FAC results. Although, the techniques are very
similar, the FAC takes the mean µ and the standard deviation
σ of the task execution times into account when computing the
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Fig. 8: Relative discrepancy percentage between the simula-
tion values and those from the original publication [2] for
experiments using BOLD performed for parameters given in
Tables Vb and Vd

number of tasks for a chunk to be scheduled. And this may be
the reason. For a lower number of PEs, FAC may not be able
to implement its strengths of balancing the load of the PEs by
taking the variability of the task execution times into account.
While FAC2 works not so effective for a higher number of
PEs due to the unconsidered mean and standard deviation of
the task execution times. Nevertheless, the small interval of
the relative discrepancy percentage between the original values
and the SimGrid-MSG results of [−4.29%, 0.33%] implies a
successful reproducibility.

F. BOLD

Since the original BOLD publication [2] should show the
strengths of the BOLD technique, this technique is used in all
reported experiments (Tables Va-Vf). The experiments with
given parameters in Tables Vc and Vf are left for further studies.

For the experiments with parameters in Table Vb the
discrepancy between the values from the original publication
and the values obtained by SimGrid-MSG simulations is
in the interval [−0.47,−0.03], which implies a discrepancy
percentage relative to the original value between −6.16% and
−1.57% shown in Figure 8. Also in Figure 8, the discrepancy
percentage for the experiments with parameters reported in
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Fig. 9: Relative discrepancy percentage between the simula-
tion values and those from the original publication [2] for
experiments using BOLD performed for parameters given in
Table Ve

Table Vd is plotted. An identical behaviour to the same
experiments using FSC, GSS, and TSS is noticeable. The
discrepancy percentage of this experiments with a two-point
distribution with a standard deviation of σ = 10 is much
higher than the discrepancy percentage of the experiments with
exponential distribution with σ = 1 of the task execution times.
The discrepancy percentage of experiments from Table Vd is
bounded by −19.08% and −1.06%, which is a fourfold growth
compared to the discrepancy percentage of the experiments
from Vb. However, the results are acceptable taking into
account the erratic behaviour of the individual runs of the
experiments.

The experiment setup reported in Table Ve is similar to the
one reported in Table Vb. The only difference is the number
of tasks which is increased for experiments from Table Ve to
{222, 225, 228, 231}. The results of the SimGrid-MSG simula-
tions are very promising. The discrepancy between the original
values and the values obtained by simulation ranges from
−0.451 to 0.006. This is equivalent to a discrepancy percentage
between −5.1% and 0.13%. Such a low discrepancy percentage
implies a successful reproducibility.



V. REPRODUCIBILITY OF THIS WORK

This work concentrates on performance reproducibility of
experiments using DLS techniques reported in earlier literature.
It is natural to provide the information needed for reproducing
this work. The individual measurements were performed in
parallel on the HPC cluster taurus at the Centre for Infor-
mation Services and High Performance Computing (ZIH) at
Technische Universität Dresden, using SimGrid-MSG version
3.13, compiled with GCC version 5.3, with no additional flags.
The library implementing the DLS techniques in SimGrid-MSG
is under development and can be made available upon request.
The raw data of the experiments can be made available upon
request, as well.

VI. CONCLUSION AND FUTURE WORK

This work presents reproducibility efforts with experiments
using DLS techniques given in [2]. With the successful perfor-
mance reproducibility obtained from this work in conjunction
with the reproducibility results presented in earlier work [3], the
trustworthiness in the correct SimGrid-MSG implementation
of the DLS techniques STAT, SS, GSS, TSS, FAC, FAC2,
and BOLD is increased. However, it was shown that the
reproducibility is challenging if the fluctuations in the task
executions times is very high. Note that the performance
reproducibility of experiments using FSC, GSS, and TSS with
high variance of the task execution times is, in general, made
easier by the higher number of tasks and PEs. However, this
observation is not valid for the BOLD technique. Nevertheless,
the successful reproducibility implies the verification of the
DLS implementation in SimGrid-MSG for the considered
applications and systems. Future work remains for verifying the
TAP and the adaptive techniques (AWF, AWF-B/C, and AF).
Their verified implementations facilitate initially new, well-
founded research concerning various properties of the DLS
techniques. The scalability, flexibility, and resilience of the
DLS techniques were investigated to a certain extent in earlier
work. The present work lays the foundation for modeling the
overhead of the DLS techniques, with the goal to identify the
technique with lowest overhead and overall best performance
for a given application and system, prior to execution.
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