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Abstract

Cost partitioning is a general and principled approach for
constructing additive admissible heuristics for state-space
search. Cost partitioning approaches for optimal classical
planning include optimal cost partitioning, uniform cost par-
titioning, zero-one cost partitioning, saturated cost partition-
ing, post-hoc optimization and the canonical heuristic for pat-
tern databases. We compare these algorithms theoretically,
showing that saturated cost partitioning dominates greedy
zero-one cost partitioning. As a side effect of our analysis,
we obtain a new cost partitioning algorithm dominating uni-
form cost partitioning. We also evaluate these algorithms ex-
perimentally on pattern databases, Cartesian abstractions and
landmark heuristics, showing that saturated cost partitioning
is usually the method of choice on the IPC benchmark suite.

Introduction

Optimal planning as heuristic search requires a heuristic
function that is admissible, i.e., never overestimates the cost
of the cheapest plan from any state. A simple approach
that allows to use multiple admissible heuristics is to use
the highest estimate in each state. Cost partitioning (Katz
and Domshlak 2008; Yang et al. 2008) is an alternative that
actually combines information from individual estimates in-
stead of just selecting the most accurate one. It distributes
operator costs among the heuristics, allowing to add up the
heuristic estimates admissibly.

Before the emergence of cost partitioning methods, addi-
tive admissible heuristics such as disjoint pattern databases
exploited the natural independence between multiple heuris-
tics that arises when no operator contributes to the esti-
mate of more than one heuristic (Korf and Felner 2002;
Felner, Korf, and Hanan 2004; Edelkamp 2006). The further
development of this idea led to the canonical heuristic for
pattern databases (Haslum et al. 2007), which computes all
maximal subsets of pairwise independent abstractions and
then uses the maximum of all sums over independent ab-
stractions as the heuristic value. In a formal sense, this is the
most accurate heuristic that can be derived from a given set
of heuristics if the only available information apart from the
heuristic values is which pairs of heuristics are independent.
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Zero-one cost partitioning was introduced as a general-
ization of such independence-based additive heuristics. This
approach, first formally described by Haslum, Bonet, and
Geffner (2005), artificially enforces independence between
heuristics by treating operators as free of cost if they have
already been “used up” by another heuristic.

The development of cost partitioning as a general con-
cept is due to Katz and Domshlak (2008), who also intro-
duced uniform cost partitioning as a practical cost partition-
ing method: instead of assigning the whole cost of an opera-
tor to a single heuristic, the cost is equally distributed among
all heuristics for which the operator is relevant.

A more recent addition to the set of cost partitioning al-
gorithms is saturated cost partitioning (Seipp and Helmert
2014). To compute it, the heuristics are arranged in an or-
dered sequence and in turn offered the (initially full) cost
of each operator. Each heuristic “consumes” as much or as
little of the operator cost as is needed to preserve all heuris-
tic estimates, and the remaining costs are then offered to the
following heuristics in the sequence until all heuristics have
been served in this way.

All these approaches are theoretically dominated by
optimal cost partitioning, which has been shown to be
computable in polynomial time for abstraction (Katz and
Domshlak 2008; 2010) and landmark (Karpas and Domsh-
lak 2009) heuristics and has recently been extended to per-
mit negative costs (Pommerening et al. 2015).

However, these promising theoretical results do (so far)
not translate well into practice: Pommerening, Röger, and
Helmert (2013) show that even for comparatively small pat-
tern database heuristics, optimal cost partitioning tends to
be prohibitively expensive, as it requires to solve linear pro-
grams with “up to millions of variables and billions of con-
straints for realistic problem sizes”. Their post-hoc opti-
mization heuristic is an approximation to optimal cost parti-
tioning based on a linear program where a single weight is
computed for each heuristic, which dramatically reduces the
solution space, making the approach much cheaper but less
accurate than optimal cost partitioning.

As this short literature overview shows, cost partitioning
is an active (and, due to the high quality of cost-partitioned
heuristics demonstrated in many experiments, important) re-
search area within planning as heuristic search. However,
apart from a few isolated results, no thorough theoretical or
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experimental analysis of cost partitioning approaches exists.
This paper provides such an analysis. Theoretically, we

prove a number of dominance and non-dominance results,
including the previously unreported fact that saturated cost
partitioning dominates greedy zero-one cost partitioning. It
turns out that the key idea that distinguishes these two cost
partitioning approaches can also be applied to uniform cost
partitioning, leading to a new opportunistic version of uni-
form cost partitioning that dominates the original.

Experimentally, we report results for pattern databases
that are derived systematically (Pommerening, Röger, and
Helmert 2013) and by hill climbing (Haslum et al. 2007),
for Cartesian abstractions (Seipp and Helmert 2013), and
for landmark heuristics (Karpas and Domshlak 2009), show-
ing that earlier evidence for the strength of saturated cost
partitioning for Cartesian abstractions (Seipp, Keller, and
Helmert 2017) generalizes to all considered kinds of heuris-
tics.

Background

Cost partitioning is a method that can be applied to derive
admissible heuristics for state-space search problems in gen-
eral, and hence our problem formalization is not specific to
classical planning. A state space is a directed, labeled graph
T = 〈S,L, c, T, sI, S�〉, where S is a finite set of states; L
is a finite set of labels; c : L �→ R is a (possibly negative)
cost function; T is a set of labeled and weighted transitions

s
l,c(l)−−−→ s′ for s, s′ ∈ S and l ∈ L; sI ∈ S is the initial state;

and S� ⊆ S is the set of goal states. A state space is regular
if c(l) ≥ 0 for all labels l. We mainly consider regular state
spaces, but permit negative costs within cost partitionings.

The goal distance h∗(s) ∈ R∪{−∞,∞} of a state s ∈ S
is the cost of a cheapest path from s to a goal state in S�. It
is ∞ if no such path exists and −∞ if paths of arbitrarily
low negative cost exist, which cannot happen if T is regular.

For cost partitioning, it is important that heuristic esti-
mates can be computed for varying cost functions, so we for-
mally define a heuristic as a function from cost functions and
states to cost estimates and write hc′(s) ∈ R ∪ {−∞,∞}
for the heuristic estimate of state s under cost function c′.
A heuristic h is cost-monotonic if hc(s) ≥ hc′(s) for all
states s whenever c ≥ c′ (i.e., making transitions more ex-
pensive cannot reduce heuristic estimates). A heuristic h is
admissible if hc′(s) ≤ h∗

c′(s) for all cost functions c′ and
states s, where h∗

c′ is the goal distance in the transition sys-
tem T = 〈S,L, c′, T, sI, S�〉.

Label l affects heuristic h if heuristic estimates of h may
depend on c(l), i.e., there exist states s and non-negative
cost functions c and c′ which differ only on l with hc(s) �=
hc′(s). We define A(h) = {l ∈ L | l affects h}. Heuristics
h and h′ with A(h) ∩ A(h′) = ∅ are called independent.

Some cost partitioning algorithms require the informa-
tion how much of the cost of a label actually contributes
to the heuristic estimates of h. This is described by the
saturated cost function for heuristic h and cost c, written
saturate(h, c), which is the minimal cost function c′ ≤ c

with hc′(s) = hc(s) for all states s (Seipp and Helmert

2014). A unique minimum does not exist for all classes of
heuristics; a sufficient condition is that h is an abstraction
heuristic and hc(s) is finite for all states. (The latter restric-
tion is not limiting, as infinities can be handled separately.)

Cost Partitioning

For challenging state-space search problems, using a sin-
gle admissible heuristic is often not very informative. It
can therefore be beneficial to generate multiple admissible
heuristics that focus on different aspects of the problem (e.g.,
Holte et al. 2006). Cost partitioning is a general way to make
the sum of such heuristics admissible (Katz and Domshlak
2008). Following a recent generalization by Pommerening
et al. (2015), we consider state spaces with non-negative
costs, but allow negative costs for the component heuristics.
Definition 1. Cost partitioning.
Let H = 〈h1, . . . , hn〉 be a tuple of admissible heuristics
for a regular state space T = 〈S,L, c, T, sI, S�〉. A cost
partitioning over H is a tuple C = 〈c1, . . . , cn〉 of (general)
cost functions whose sum is bounded by c:

∑n
i=1 ci(l) ≤

c(l) for all l ∈ L. The cost-partitioned heuristic hC is defined
as hC(s) :=

∑n
i=1 h

ci
i (s).

Cost-partitioned heuristics are always admissible. Intu-
itively, since each heuristic yields an admissible estimate for
the search problem under consideration of the original cost
function, their sum remains admissible due to the way C dis-
tributes the individual costs among the components.

Optimal Cost Partitioning

An optimal cost partitioning for a given state is a cost parti-
tioning C∗ where hC∗

(s) is maximal among all possible cost
partitionings.
Definition 2. Optimal cost partitioning.
Given a regular state space T with states S and a tuple of
admissible heuristics H, a cost partitioning C∗ is an optimal
cost partitioning for state s ∈ S if hC∗

(s) ≥ hC(s) for all
cost partitionings C. We write hOCP for the heuristic that
is cost-partitioned with an optimal cost partitioning in each
state.

Katz and Domshlak (2008; 2010) showed that optimal
cost partitionings can be found in polynomial time by lin-
ear programming for a wide range of abstraction heuristics,
a result that has strongly influenced the further develop-
ment of the theory and practice of cost-partitioned heuris-
tics. Computing optimal cost partitionings for some or
even all states encountered during search has been shown
to be a practically viable approach for landmark heuris-
tics and certain classes of implicit abstraction heuristics
(Karpas and Domshlak 2009; Katz and Domshlak 2010;
Karpas, Katz, and Markovitch 2011).

However, computing optimal cost partitionings can al-
ready be prohibitively expensive for abstractions of mod-
est size: Pommerening, Röger, and Helmert (2013), for
example, performed experiments with systematic pattern
databases of up to size 2, showing that for 249 tasks in their
benchmark set, computing an optimal cost partitioning for
a single state is infeasible even with a 24-hour time limit
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and 2 GiB memory limit. This includes 206 cases where
the LP computation runs out of memory and 43 timeouts af-
ter 24 hours. Similarly, Seipp, Keller, and Helmert (2017)
noted that there are 211 tasks which could be optimally
solved when using their best suboptimal cost partitioning al-
gorithm, while computing an optimal cost partitioning for
only a single state takes longer than 30 minutes.

In the following, we discuss several alternatives to opti-
mal cost partitioning that aim to balance the trade-off be-
tween computational effort and accuracy of the resulting
cost-partitioned heuristic.

Post-hoc Optimization

Like optimal cost partitioning, post-hoc optimization (Pom-
merening, Röger, and Helmert 2013) is a cost partitioning
method based on linear programming. Each component
heuristic is assigned a single real-valued weight in the range
[0, 1], and the overall heuristic value is the weighted sum of
component heuristics. For each label, there is a constraint
that ensures that the total weight of all heuristics affected by
the label sum up to at most 1. This corresponds to a cost par-
titioning where operators that do not affect a given heuristic
are assigned a cost of 0, and operators affecting a heuristic
which receives the weight wi are assigned the fraction wi of
their full cost.
Definition 3. Post-hoc Optimization.
Let H = 〈h1, . . . , hn〉 be a tuple of admissible heuris-
tics for regular state space T with cost function c, and let
〈w1, . . . , wn〉 be a solution to the linear program that maxi-
mizes

∑n
i=1(wi · hi(s)) subject to∑

i∈{1,...,n}:l∈A(hi)

wi ≤ 1 for all l ∈ L

wi ≥ 0.

Then, the post-hoc optimization cost partitioning is the tuple
C = 〈w1 · c1, . . . , wn · cn〉, where ci(l) = c(l) if l ∈ A(hi)
and ci(l) = 0 otherwise. We write hPHO for the heuristic
that is cost-partitioned with the post-hoc optimization cost
partitioning.

Post-hoc optimization always generates a non-negative
cost partitioning, i.e., one where all component costs are
non-negative. Following the results of Pommerening et
al. (2015) on general cost partitioning, one might wonder if
hPHO could be strengthened by dropping the non-negativity
constraint wi ≥ 0. However, this does not work as expected,
as

∑n
i=1(wi · hi(s)) is no longer an admissible estimate

without this constraint. The reason for this is that negative
weighting changes which paths are optimal in a state space.

Zero-One Cost Partitioning

While post-hoc optimization considers a much simpler lin-
ear program than optimal cost partitioning, it still requires
an optimization to be performed in every state. This is not
the case in a zero-one cost partitioning (Haslum, Bonet, and
Geffner 2005; Edelkamp 2006), which is precomputed and
applied to all states. In a zero-one cost partitioning, the
whole cost of each label is assigned to (at most) a single
component.

Definition 4. Zero-one cost partitioning.
Given a regular state space T and a tuple of admissible
heuristics H = 〈h1, . . . , hn〉, a tuple C = 〈c1, . . . , cn〉
is a zero-one cost partitioning if for each l ∈ L we have
ci(l) = c(l) for at most one ci ∈ C and cj(l) = 0 for all
other cj ∈ C.

For a state space with l labels and n admissible heuristics,
Definition 4 allows for (n+1)l different zero-one cost parti-
tionings. The question is therefore how to obtain an informa-
tive zero-one cost partitioning. The only method considered
in the literature is a greedy algorithm that iterates over the
heuristics in a specified order and assigns the cost of each
label to the first heuristic that is affected by this label. Due
to this greedy assignment, the algorithm is susceptible to the
order in which the heuristics are considered.
Definition 5. Greedy zero-one cost partitioning.
Given a regular state space T and a set of admissible heuris-
tics H = {h1, . . . , hn} for T , the set of orders of H, denoted
by Ω(H), consists of all permutations of H, i.e., all tuples of
heuristics obtained by ordering H in any way.

For a given order ω = 〈h1, . . . , hn〉 ∈ Ω(H), the greedy
zero-one cost partitioning is the tuple C = 〈c1, . . . , cn〉,
where

ci(l) =

{
c(l) if l ∈ A(hi) and l /∈

⋃i−1
j=1 A(hj)

0 otherwise

for all l ∈ L. We write hGZOCP
ω for the heuristic that is cost-

partitioned by greedy zero-one cost partitioning for order ω.
Each greedy zero-one cost partitioning is a zero-one cost

partitioning as the cost of each label is assigned to at most
one heuristic (the first one in the order affected by the label).

Saturated Cost Partitioning

Greedy zero-one cost partitioning always assigns the full
cost of a label l to the first heuristic h affected by l, even
if h can only benefit from a small fraction of the cost. To
avoid “wasting” costs, Seipp and Helmert (2014) proposed
saturated cost partitioning. This algorithm also distributes
costs greedily by considering the component heuristics in se-
quence, but unlike greedy zero-one cost partitioning it only
assigns as much cost to each heuristic as that heuristic can
usefully exploit. The remaining costs are therefore saved
for subsequent heuristics. The generalization to possibly
negative component costs considered here has first been de-
scribed in the context of state-dependent cost partitioning
(Keller et al. 2016).
Definition 6. Saturated cost partitioning.
Let T be a regular state space and H be a set of admissible
heuristics. Given an order ω = 〈h1, . . . , hn〉 ∈ Ω(H), the
saturated cost partitioning C = 〈c1, . . . , cn〉 and the remain-
ing cost functions 〈c̄0, . . . , c̄n〉 are defined by

c̄0 = c

ci = saturate(hi, c̄i−1)

c̄i = c̄i−1 − ci

We write hSCP
ω for the heuristic that is cost-partitioned by

saturated cost partitioning for order ω.
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Whether and how the saturated cost function required for
saturated cost partitioning can be computed efficiently de-
pends on the type of heuristic. If h is an abstraction heuris-
tic, the saturated cost of operator o is the maximum over
h(s) − h(s′) for all abstract state transitions s → s′ in-
duced by o. For explicit-state abstraction heuristics based on
pattern databases or Cartesian abstraction (Ball, Podelski,
and Rajamani 2001; Seipp and Helmert 2013), this can be
computed at negligible overhead during the construction of
the heuristic. The same is true for merge-and-shrink heuris-
tics not using label reduction (Sievers, Wehrle, and Helmert
2014). For merge-and-shrink heuristics using label reduc-
tion, computing the saturated cost function is more expen-
sive, but still polynomial.

Uniform Cost Partitioning

Katz and Domshlak (2008) proposed uniform cost partition-
ing, where the cost of each label is distributed uniformly
among all heuristics affected by this label.
Definition 7. Uniform cost partitioning.
Given a regular state space T and a tuple of admissible
heuristics H = 〈h1, . . . , hn〉, the uniform cost partitioning
is the tuple C = 〈c1, . . . , cn〉, where for all l ∈ L

ci(l) =

{
c(l)

|{h∈H|l∈A(h)}| if l ∈ A(hi)

0 otherwise.

We write hUCP for the heuristic that is cost-partitioned by
uniform cost partitioning.

Unlike (greedy) zero-one and saturated cost partitioning,
uniform cost partitioning is not affected by the order in
which the heuristics are considered.

Opportunistic Uniform Cost Partitioning

Uniform cost partitioning suffers from the same problem
as greedy zero-one cost partitioning: even if costs are not
fully consumed by a heuristic, they are not offered to other
heuristics where the increased cost function might lead to
increased (yet still admissible) estimates.

We propose a variant that remedies this shortcoming. Like
uniform cost partitioning, we propose to split the label costs
evenly among the heuristics affected by a label, but like satu-
rated cost partitioning, heuristics are considered in sequence
and any unneeded costs are saved and redistributed to the
heuristics encountered later in the sequence.
Definition 8. Opportunistic uniform cost partitioning.
Let T be a state-space and H be a set of admissible heuris-
tics. Given an order ω = 〈h1, . . . , hn〉 ∈ Ω(H), the op-
portunistic uniform cost partitioning C = 〈c1, . . . , cn〉, the
remaining cost functions 〈c0, . . . , cn〉 and the offered cost
functions 〈c̃1, . . . , c̃n〉 are defined by

c0 = c

c̃i(l) =

{
c̄(l)i−1

|{h∈{hi,...,hn}|l∈A(h)}| if l ∈ A(hi)

0 otherwise

ci = saturate(hi, c̃i)

c̄i = c̄i−1 − ci

s1,s2 s3 s4,s5

o1 o3

o2 o4

s1 s2,s3,s4 s5

o1 o3

o2 o4

Figure 1: Abstractions used in the proofs of Theorems 1, 2
and 3. Operators o1 and o3 cost 4, whereas o2 and o4 cost 1.

x = 0 x = 1

o1, o2

o3 o3

y = 0 y = 1

o1, o3

o2 o2

z = 0 z = 1

o2, o3

o1 o1

Figure 2: (Figure 1 in Seipp, Keller, and Helmert 2017) Ab-
stractions used in the proof of Theorem 3. The initial state
sI is {x �→ 0, y �→ 0, z �→ 0}. All operators cost 1.

We write hOUCP
ω for the heuristic that is cost-partitioned by

opportunistic uniform cost partitioning for order ω.

As with saturated cost partitioning, the component costs
for opportunistic uniform cost partitioning may be negative,
which can lead to higher remaining costs and hence poten-
tially higher overall heuristic estimates.

Canonical Heuristic

Haslum et al. (2007) introduced the canonical heuristic as
a heuristic that allows the combination of information from
multiple pattern database heuristics. We give a definition for
general admissible heuristics.

Definition 9. Canonical Heuristic.
Let H be a tuple of admissible heuristics for regular state
space T , and let MIS be the set of all maximal (w.r.t. set
inclusion) subsets of H such that all heuristics in each subset
are independent. The canonical heuristic in state s ∈ S is

hCAN(s) = max
σ∈MIS

∑
h∈σ

h(s).

Theoretical Evaluation

We now study the relationships between the introduced cost
partitioning algorithms. Apart from a result by Pommeren-
ing, Röger, and Helmert (2013), who show that post-hoc
optimization dominates the canonical heuristic, we are not
aware of formal comparisons of these algorithms in the lit-
erature. We begin with two theorems that show that saving
unused costs is beneficial with cost-monotonic heuristics.

Theorem 1. hSCP dominates hGZOCP

Let T be a regular state space and H be a set of cost-
monotonic admissible heuristics for T . Then hSCP

ω (s) ≥
hGZOCP
ω (s) for all orders ω ∈ Ω(H) and all s ∈ S. More-

over, there are cases where the inequality is strict for some
s ∈ S and all orders ω ∈ Ω(H).
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s1,s2,s3 s4 s5

o1

o3 o2

s1 s2,s4 s3 s5

o3

o1

o2

Figure 3: Abstractions used in the proofs of Theorems 3
and 4. Operator o1 costs 4, and o2 and o3 cost 1.

Proof. For the second part, Figure 1 is an example with
hSCP
ω (s1) = 8 and hGZOCP

ω (s1) = 5 for all ω ∈ Ω(H).
For the first part, we show the stronger result hSCP

ω′,c′(s) ≥
hGZOCP
ω′,c′′ (s) for all orders of admissible cost-monotonic

heuristics ω′ and non-negative cost functions c′ ≥ c′′, where
the subscripts c′ and c′′ indicate that the heuristics are eval-
uated in a modified state space with the given cost function.
The theorem follows from the case ω = ω′ and c = c′ = c′′.

Strengthening the claim allows proving the result by in-
duction over the length of ω′. For the empty sequence ω′,
both heuristics are 0, so the inequality holds trivially.

Otherwise decompose ω′ into the first component h1 and
remaining sequence ω′′. The value contributed by h1 to
hSCP
ω′,c′(s) is hc′

1 (s) by definition of saturated cost. The value
contributed by h1 to hGZOCP

ω′,c′′ (s) is hc′′
1 (s) because h1 re-

ceives the full operator costs from c′′ for all labels affecting
h1. We get hc′

1 (s) ≥ hc′′
1 (s) because h1 is cost-monotonic.

For labels that do not affect h1, SCP and GZOCP assign
cost 0 to h1, and hence the remaining costs for ω′′ are at least
as large under SCP as under GZOCP. For labels that affect
h1, GZOCP uses up the whole cost for h1, so the remaining
costs for ω′′ are again at least as large under SCP as under
GZOCP because the latter are 0. By the induction hypoth-
esis, the heuristic value contributed by ω′ is then at least as
large for SCP as for GZOCP, concluding the proof.

Theorem 2. hOUCP dominates hUCP

Let T be a regular state space and H be a set of cost-
monotonic admissible heuristics for T . Then hOUCP

ω (s) ≥
hUCP(s) for all orders ω ∈ Ω(H) and all s ∈ S. Moreover,
there are cases where the inequality is strict for some s ∈ S
and all orders ω ∈ Ω(H).

Proof. For the second part, Figure 1 is an example with
hOUCP
ω (s1) = 7 for all ω ∈ Ω(H) and hUCP(s1) = 6.
The proof of the first part is analogous to the proof of

Theorem 1. The only difference is that only a fraction of the
label cost of a label l affecting h1 may be used for h1, but
because this fraction is the same for OUCP and UCP (1/k,
where k is the number of heuristics in ω′ affected by l), this
does not make a difference to the proof argument.

We now know that there are three cost partitioning algo-
rithms – saturated cost partitioning, opportunistic uniform
cost partitioning and post-hoc optimization – that dominate
one of the other three discussed algorithms. Next, we show
that none of these three algorithms dominates any of the
other two.

Theorem 3. Comparison of hSCP, hOUCP, and hPHO

For each of the following cost partitioning algorithms, there
exists a regular state space T and a set of cost-monotonic
admissible heuristics H such that

hOUCP
ω (s) > hSCP

ω (s) (1)

hSCP
ω (s) > hOUCP

ω (s) (2)

hPHO(s) > hSCP
ω (s) (3)

hSCP
ω (s) > hPHO(s) (4)

hPHO(s) > hOUCP
ω (s) (5)

hOUCP
ω (s) > hPHO(s) (6)

for a state s ∈ S and all orders ω ∈ Ω(H).

Proof. Consider the two abstractions in Figure 1. For all
orders ω ∈ Ω(H), we have hSCP

ω (s1) = 8, hOUCP
ω (s1) = 7

and hPHO(s1) = 5, showing (2), (4) and (6).
Consider the three abstractions in Figure 2. For all orders

ω ∈ Ω(H), we have hOUCP
ω (sI) = hPHO(sI) = 0.5 + 0.5 +

0.5 = 1.5 and hSCP
ω (sI) = 1, showing (1) and (3).

Consider the two abstractions in Figure 3. We have
hPHO(s1) = 4 and for all orders ω ∈ Ω(H), hOUCP

ω (s1) =
3.5, showing (5).

Our last dominance result compares the canonical heuris-
tic to greedy zero-one cost partitioning. While no dom-
inance result exists between hCAN and a single heuristic
hGZOCP
ω , we can maximize over multiple zero-one cost-

partitioned heuristics with different orders in the same way
that hCAN maximizes over multiple independent sets of
heuristics, and for such a maximum heuristic, a dominance
result can be established.

Formally, if Ω is a set of orders for heuristics H, we
define hGZOCP

Ω (s) := maxω∈Ω hGZOCP
ω (s) and hSCP

Ω :=
maxω∈Ω hSCP

ω (s). We show that both of these heuristics
dominate the canonical heuristic if the orders Ω are suitably
chosen.

Theorem 4. hGZOCP
Ω dominates hCAN

Let T be a regular state space and H be a set of admissible
heuristics for T . Then there is a set of orders Ω ⊆ Ω(H)
with hGZOCP

Ω (s) ≥ hCAN(s) for all s ∈ S. Moreover, there
are cases where the inequality is strict for some s ∈ S.

Proof. Given a σ = {h1, . . . , hn} ∈ MIS, we construct an
order ω by appending all h ∈ H \ σ in arbitrary order to
the tuple 〈h1, . . . , hn〉. Due to the pairwise independence of
all heuristics in σ, all l ∈ L affect at most one heuristic in σ
and hence hGZOCP

ω assigns their full cost to any hi ∈ σ which
they affect. Therefore, we get hGZOCP

ω (s) ≥
∑

h∈σ h(s) for
all s ∈ S. The dominance claim follows by setting Ω to the
set of all orders that can be constructed in this way from any
σ ∈ MIS.

For a case where the inequality is strict, consider the
example from Figure 3. The two heuristics are not inde-
pendent, and therefore the set of all maximal independent
subsets of H contains each heuristic individually, yielding
hCAN(s1) = 4. However, hGZOCP

ω (s1) = 5 for the order ω
which considers the left abstraction first.
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hUCP – 2 1 16 1 6 1 1 7 33 788.0 –
hOUCP

one 11 – 2 20 2 8 2 5 13 34 798.1 2.77
hOUCP

div 11 11 – 19 2 12 1 5 14 34 807.9 0.32
hGZOCP

one 1 1 1 – 1 1 1 2 5 33 771.7 4.37
hGZOCP

div 14 15 6 19 – 12 1 4 15 35 816.7 0.48
hSCP

one 13 12 4 19 4 – 1 8 17 34 799.2 3.33
hSCP

div 18 18 9 22 7 17 – 10 19 35 830.6 0.52
hCAN 13 13 5 19 2 11 0 – 12 35 813.0 –
hPHO 6 6 4 16 1 7 0 0 – 35 795.0 –
hOCP 3 2 2 3 1 2 1 1 1 – 469.0 –

Table 1: Left: Pairwise comparison of cost partitioning algo-
rithms using PDBs generated by hill climbing. The entry in
row x and column y holds the number of domains in which
algorithm x solved more tasks than algorithm y. Right: To-
tal number of solved tasks by each algorithm. Results for
randomized algorithms are averaged over 10 runs.

Corollary 1. hSCP
Ω dominates hCAN

Let T be a regular state space and H be a set of cost-
monotonic heuristics for T . Then there is a set of orders
Ω ⊆ Ω(H) where hSCP

Ω (s) ≥ hCAN(s) for all s ∈ S. More-
over, there are cases where the inequality is strict for some
s ∈ S.

Proof. Follows directly from Theorem 1 and 4.

As a final comment, we remark that the canonical heuris-
tic still has an important advantage over the proposed
hGZOCP
Ω and hSCP

Ω , namely that it suffices to compute the com-
ponent heuristics w.r.t. a single cost function. This is dif-
ferent for cost partitioning algorithms that maximize over a
(possibly large) number of orders, with each order requir-
ing a different cost function. This can be a concern es-
pecially for memory-based heuristics like PDB heuristics,
where each cost function requires a separate PDB.

This concludes our theoretical investigation of the differ-
ent cost partitioning algorithms, and we now turn to the ex-
perimental analysis.

Experimental Evaluation

We implemented all cost partitioning algorithms in the Fast
Downward planning system (Helmert 2006). For all con-
ducted experiments, we limit time and memory to 30 min-
utes and 2 GiB. We use the 1667 benchmark tasks from 40
different domains from all optimization tracks of the 1998–
2014 International Planning Competitions (IPC).

The accuracy of cost-partitioned heuristics generated by
saturated cost partitioning greatly depends on the order
in which the component heuristics are considered (Seipp,
Keller, and Helmert 2017). By using multiple orders and
maximizing over the produced cost partitionings, it is possi-
ble to obtain heuristics that are significantly more accurate
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Figure 4: Number of expanded states before the last f layer
for the canonical heuristic hCAN and saturated cost partition-
ing hSCP

div using PDBs found by hill climbing.

than heuristics for a single order. In light of this result, we
also consider versions of hOUCP, hGZOCP and hSCP that max-
imize over multiple cost partitionings. We use the diversi-
fication procedure by Seipp, Keller, and Helmert (2017) to
obtain a diverse set of cost-partitioned heuristics, denoted by
hOUCP

div , hGZOCP
div and hSCP

div below.
We start our experimental analysis by computing cost par-

titionings for two kinds of pattern database (PDB) heuristics:
PDBs found by hill climbing (Haslum et al. 2007) and PDBs
for systematically generated patterns (Pommerening, Röger,
and Helmert 2013).

Hill Climbing PDBs

The algorithm by Haslum et al. (2007) uses hill climbing
in the space of pattern collections and evaluates candidate
patterns with the canonical heuristic.

Table 1 shows a domain-wise comparison of the different
cost partitioning algorithms. We can see that reusing costs
is beneficial when using a single order: hOUCP

one has an edge
over hUCP in 11 domains, while the opposite is true in only
2 domains and hSCP

one outperforms hGZOCP
one 19 to 1. Uniformly

distributing costs beats greedy cost assignment when we ig-
nore unused costs: hUCP beats hGZOCP 16 to 1. The picture
is less clear when we reuse costs: hOUCP

one solves more tasks
than hSCP

one in 8 domains, while the opposite is true in 12 do-
mains. Contrasting the theoretical dominance, hCAN solves
more tasks than hPHO in 12 domains, while the opposite case
never happens. hOCP is outperformed by all other cost parti-
tioning algorithms in almost all domains.

All order-dependent cost partitioning algorithms greatly
benefit from using more than one order. When using mul-
tiple orders, uniformly distributing costs hurts performance
in almost all domains: hGZOCP

div beats hUCP 14 to 1 and hSCP
div

beats hOUCP
div 9 to 1. As for single orders, reusing costs boosts

performance: hOUCP
div scores 11 to 1 against hUCP and hSCP

div
wins against hGZOCP

div by 7 to 1.
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hUCP – 0 3 15 3 4 0 11 10 30 709.0 –
hOUCP

one 14 – 9 22 8 6 0 14 13 31 744.9 3.07
hOUCP

div 13 8 – 22 7 6 0 14 14 31 734.6 2.01
hGZOCP

one 3 1 4 – 3 0 0 9 11 29 694.0 2.58
hGZOCP

div 15 12 14 20 – 9 0 13 13 30 749.9 1.66
hSCP

one 20 19 17 23 16 – 0 18 21 32 775.7 4.47
hSCP

div 27 26 24 28 22 22 – 23 26 33 854.9 2.33
hCAN 8 7 7 17 5 8 2 – 13 28 656.0 –
hPHO 9 7 7 15 7 6 3 10 – 31 737.0 –
hOCP 4 4 4 4 4 4 3 5 3 – 471.0 –

Table 2: Results for systematic PDBs. For an explanation of
the data, see the caption of Table 1.

Saturated cost partitioning emerges as the winner of this
comparison. No other cost partitioning has an edge over
hSCP

div in more than two domains and hCAN and hPHO never
dominate hSCP

div . hSCP
div solves the highest total number of tasks

on average (830.6). To understand why hSCP
div has an edge

over its competitors in so many domains we compare it to
hCAN, which solves 813 tasks. Figure 4 shows the number of
expansions made by the two heuristics. As we can see, hCAN

needs fewer expansions than hSCP
div for only 3 tasks. For the

majority of tasks, hSCP
div is more accurate, often reducing the

number of expanded states by several orders of magnitude.

Systematic PDBs

Our second analysis uses a procedure that generates all in-
teresting patterns up to a given size (Pommerening, Röger,
and Helmert 2013). Since generating the PDBs for all pat-
terns of size 3 takes too long for many tasks, we generate all
patterns of sizes 1 and 2. We compare the different cost par-
titioning algorithms for systematic PDBs in Table 2. Again,
hOCP usually has the lowest coverage scores in all domains,
though the numbers look a little bit better than for hill climb-
ing PDBs. This is probably due to the systematic PDBs be-
ing smaller than the hill climbing PDBs.

The results for non-optimal cost partitioning algorithms
show similar trends as in the setting evaluating hill climb-
ing PDBs. Reusing costs boosts performance regardless of
whether we assign costs uniformly or greedily and whether
we use a single or multiple orders. Uniform cost partitioning
is only preferable to greedily assigning costs if we use a sin-
gle order and do not reuse costs. hCAN and hPHO outperform
each other on 13 and 10 domains, respectively.

Going from one to multiple orders only has a small effect
for hOUCP (9 vs. 8), but hGZOCP and hSCP greatly benefit from
this change (20 vs. 3 and 22 vs. 0).
hSCP

div is again the method of choice for almost all domains.
It is only bested by hCAN, hPHO and hOCP, and never in more
than 3 domains. hSCP

div also has the highest overall coverage.
Figure 5 compares the number of states expanded by hSCP

div
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Figure 5: Number of expanded states before the last f layer
for post-hoc optimization hPHO and saturated cost partition-
ing hSCP

div using systematic PDBs.
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coverage std. dev.

hUCP – 0 4 9 1 2 1 31 662.0 –
hOUCP

one 14 – 7 18 2 5 1 33 695.6 2.30
hOUCP

div 16 12 – 19 5 7 1 32 713.1 1.20
hGZOCP

one 3 0 4 – 0 0 0 31 648.2 3.49
hGZOCP

div 19 16 12 22 – 10 0 33 734.0 0.67
hSCP

one 22 18 18 25 13 – 0 34 763.2 9.60
hSCP

div 25 25 24 28 23 26 – 36 967.4 0.70
hOCP 4 3 3 4 3 3 1 – 393.0 –

Table 3: Results for Cartesian abstractions. For an explana-
tion of the data, see the caption of Table 1.

and hPHO and reveals that hSCP
div has a similar, if not slightly

higher, advantage as in the corresponding experiment with
hill climbing PDBs.

Cartesian Abstractions

Next, we consider Cartesian abstractions (Seipp and
Helmert 2013) of the landmark and goal task decomposi-
tions (Seipp and Helmert 2014). Table 3 holds the domain-
wise and total coverage numbers for hUCP, hOUCP, hGZOCP,
hSCP and hOCP on Cartesian abstractions. We can see
that reusing costs significantly improves heuristic estimates:
hOUCP

one solves more tasks than hUCP in 14 domains, while
the opposite is never the case. Similarly, hSCP

one has a higher
coverage than hGZOCP

one in 25 domains and again the opposite
never occurs.

Again, the results show that assigning costs uniformly
is only beneficial when using a single order and when not
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hUCP – 1 7 4 26 877.0 –
hOUCP

one 1 – 7 3 27 876.2 0.63
hGZOCP

one 0 0 – 0 24 857.0 0.00
hSCP

one 7 8 11 – 29 888.1 0.32
hOCP 1 1 3 1 – 816.0 –

Table 4: Results for landmark heuristics. For an explanation
of the data, see the caption of Table 1.

reusing unused costs. As above, hOCP is almost always out-
performed by all other cost partitioning algorithms and hSCP

div
almost always has the highest coverage in each domain.
hSCP

div also solves significantly more tasks in total than all
other compared cost partitioning algorithms (967.4 tasks).

Landmark Heuristics

Our last comparison of cost partitioning algorithms consid-
ers landmark heuristics. To the best of our knowledge only
two ways of combining landmark heuristics admissibly have
been previously evaluated: optimal and uniform cost parti-
tioning (Karpas and Domshlak 2009). We compare these
two algorithms to opportunistic uniform cost partitioning,
greedy zero-one cost partitioning and saturated cost parti-
tioning. In contrast to the experiments above, we have to
compute a cost partitioning for landmark heuristics in ev-
ery evaluated state, instead of only once before the search
starts. We therefore restrict our analysis to single order cost
partitionings.

Table 4 compares the different cost partitioning algo-
rithms for the BJOLP landmark heuristic (Domshlak et al.
2011). In difference to the results above, hOCP comes closer
to the other cost partitioning algorithms. This is the case
since the linear programs that have to be solved for opti-
mal landmark cost partitioning are much smaller than the
ones for general abstractions. Comparing the suboptimal
cost partitioning algorithms, we see that reusing costs has no
significant effect for uniform cost partitioning: hOUCP

one and
hUCP outperform each other on one domain, respectively.
For greedy cost assignments, reusing costs is very impor-
tant: hSCP

one beats hGZOCP
one 11 to 0. Uniform cost partitioning

again has an edge over greedy cost assignment if costs are
not reused: hUCP beats hGZOCP

one 7 to 0. However, the picture
is inverted when reusing costs: hSCP

one beats hOUCP
one 8 to 3.

Comparison of Different Heuristics

In the experiments above, we compared different cost par-
titioning algorithms operating on the same set of heuris-
tics. In all settings hSCP

div (respectively hSCP
one for landmark

heuristics) had an edge over its competition. Comparing
the four hSCP-based planners allows us to shed some light
on the relative accuracy of the underlying heuristics. Also,
we are interested in how well these cost-partitioned heuris-
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HC+hSCP
div – 7 13 21 17 23 24 830.6

Sys2+hSCP
div 11 – 14 19 18 23 24 854.9

Cart.+hSCP
div 17 13 – 22 20 25 27 967.4

LM+hSCP
one 7 9 7 – 8 18 21 888.1

hLM-cut 14 12 10 14 – 23 24 882.0
hM&S 7 7 6 14 9 – 19 743.0
hSEQ 7 7 7 8 6 13 – 734.0

Table 5: Results for different heuristics. For an explanation
of the data, see the caption of Table 1.
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HC+hSCP
div – 7 9 19 15 21 25 17 845.0

Sys2+hSCP
div 10 – 11 18 18 23 24 16 878.5

Cart.+hSCP
div 19 14 – 24 19 24 28 17 1017.9

LM+hSCP
one 8 9 4 – 9 13 23 9 934.0

hLM-cut 15 11 8 14 – 20 23 10 927.0
hM&S 8 7 5 14 10 – 20 6 797.0
hSEQ 5 5 6 6 8 12 – 7 779.0
SymBA∗

2 20 18 16 23 20 23 27 – 1008.0

Table 6: Results for different heuristics using h2 mutexes to
prune irrelevant operators. For an explanation of the data,
see the caption of Table 1.

tics fare against other planners. Table 5 compares the
hSCP-based planners to three heuristics from the literature:
hLM-cut (Helmert and Domshlak 2009), merge-and-shrink
using bisimulation and the DFP merge strategy (hM&S)
(Helmert et al. 2014; Sievers, Wehrle, and Helmert 2014),
and the state-equation heuristic (hSEQ) (Bonet 2013).

Inspecting the results for the four hSCP-based planners,
we see that LM+hSCP

one usually solves fewer tasks per domain
than the other three planners, even though it has the sec-
ond highest total coverage. The ranking between HC+hSCP

div ,
Sys2+hSCP

div and Cart.+hSCP
div is less clear, as each planner out-

performs the others on roughly the same number of domains.
hM&S and hSEQ are outperformed by the competition.

Only hLM-cut is able to beat one of the planners using satu-
rated cost partitioning, beating LM+hSCP

one 14 to 8. However,
hLM-cut comes up short in the comparisons to HC+hSCP

div (17
to 14), Sys2+hSCP

div (18 to 12) and Cart.+hSCP
div (20 to 10).

To evaluate how close our cost partitioning algorithms are
to the state of the art, we compare the heuristics from the
last experiment to the winner of the IPC 2014 sequential op-
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timization track, the symbolic search planner SymBA∗
2 (Tor-

ralba, Linares López, and Borrajo 2016). SymBA∗
2 prepro-

cesses planning tasks by using h2 mutexes to prune irrele-
vant operators (Alcázar and Torralba 2015). To allow for an
unbiased comparison, we evaluate all algorithms from the
previous experiment with this preprocessing step. We com-
pare them to a version of SymBA∗

2 that is identical to the
IPC version apart from some bug-fixes. Table 6 shows that
the only algorithm on par with SymBA∗

2 is Cart.+hSCP
div , scor-

ing 17 to 16 against SymBA∗
2. In terms of total coverage,

Cart.+hSCP
div has a very slight edge over SymBA∗

2 (1017.9 vs.
1008 tasks).

Conclusion

We presented the first systematic theoretical and experimen-
tal comparison of cost partitioning algorithms for optimal
classical planning. Our theoretical analysis shows that satu-
rated cost partitioning dominates zero-one cost partitioning
and suggested a new cost partitioning algorithm called op-
portunistic uniform cost partitioning, which dominates uni-
form cost partitioning.

Our experimental evaluation revealed that uniform cost
partitioning is only preferable to assigning costs greedily if
a single order is used and costs are not reused. In all other
cases it is beneficial to reuse unused costs, to assign them
greedily and to use multiple orders. We also showed that sat-
urated cost partitioning is the method of choice in all tested
settings, outperforming the previous best cost partitioning
methods for all tested heuristics. Except for hill climbing
PDBs, saturated cost partitioning even has the highest to-
tal coverage when using only a single order. The result-
ing heuristics are competitive with and often outperform the
state of the art in optimal classical planning.

In future work, we would like to use saturated cost parti-
tioning to combine non-abstraction-based heuristics.
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