
Optimal Solutions to Large Logistics Planning Domain Problems

Gerald Paul
Boston University

Boston, Massachusetts, USA
gerryp@bu.edu

Gabriele Röger, Thomas Keller, Malte Helmert
University of Basel
Basel, Switzerland

{gabriele.roeger,tho.keller,malte.helmert}@unibas.ch

Abstract

We propose techniques for efficiently determining optimal
solutions to large logistics planning domain problems. We
map a problem instance to a directed graph and show that
no more than one vehicle per weakly connected component
of the graph is needed for an optimal solution. We propose
techniques for efficiently finding the vehicles which must be
employed for an optimal solution. Also we develop a strong
admissible heuristic based on the analysis of a directed graph,
the cycles of which represent situations in the problem state in
which a vehicle must visit a location more than once. To the
best of our knowledge, ours is the first method that determines
optimal solutions for large logistics instances (including the
largest instances in the IPC 1998 and IPC 2000 problem sets).

Introduction

The LOGISTICS domain (McDermott 2000) is a classical
planning domain where packages must be delivered inside
and between cities, using trucks and airplanes. It has been
used in the International Planning Competition 1998 and
2000 (McDermott 2000; Bacchus 2001). While plans for
LOGISTICS tasks can be found in polynomial time, it is NP-
complete to decide whether there is a plan within a given
cost-bound (Helmert 2003). Therefore, it is not possible to
generate optimal plans in polynomial time unless P = NP.
LOGISTICS also does not admit a polynomial-time approx-
imation scheme unless P = NP (Helmert, Mattmüller, and
Röger 2006; Helmert 2008), but there is a polynomial 4/3-
approximation algorithm (Helmert, Mattmüller, and Röger
2006; Helmert 2008). In this work, we solve large LOGIS-
TICS problem instances optimally.

The core of our approach uses A∗ search with an admissi-
ble heuristic. However, the presence of many trucks and air-
planes increases the difficulty of the problem significantly.
To address this issue, we describe a process of multi-vehicle
simplification; using a mapping of the problem to a directed
graph, we show that no more than one airplane (truck) per
weakly connected component of the graph is necessary for
an optimal solution and we describe a method to determine
the necessary vehicles. We also apply some domain-specific
search space pruning techniques. For the heuristic, we ex-
tend the idea of a recently proposed heuristic for FreeCell

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solitaire games (Paul and Helmert 2016) to handle the ad-
ditional complications inherent in logistics problems. The
FreeCell heuristic is based on breaking cycles in a state-
specific graph. Our generalization is based on the new in-
sight that actually this graph encodes orderings between dis-
junctive action landmarks and we hope that in the future we
can further generalize this idea into a domain-independent
heuristic. We conclude the paper with an experimental eval-
uation.

LOGISTICS Tasks

A LOGISTICS task consists of locations situated in cities
within which trucks can transport packages initially assigned
to these locations. One or more trucks are assigned to each
city and one location in each city is designated as an airport.
One or more airplanes can travel between airports trans-
porting packages between the cities, loading and unloading
packages at airports. The goal is to move packages from
their initial locations to designated goal locations.

Definition 1 (LOGISTICS Task). A LOGISTICS task is given
as a tuple 〈L,C, P, T,A, city, airport, origin, dest〉, where

• L is a finite set of locations,
• C is a finite set of cities,
• P is a finite set of packages,
• T is a finite set of trucks,
• A is a finite set of airplanes,
• city : L → C assigns each location a city,
• airport : C → L assigns each city an airport location in

this city, i. e. city(airport(c)) = c for all c ∈ C,
• origin : P ∪ T ∪ A → L specifies the origin location of

each package, truck and airplane, where the origin of an
airplane is always an airport location, and

• dest : P → L defines a destination for each package.

A vehicle is a truck or an airplane. A state s of a LOGIS-
TICS task maps each vehicle v to a location s(v) and each
package p to a location, truck or airplane s(p). The initial
state is given by origin. There are four types of operators:

• Vehicles v can load packages p at the same location:
load(v, p, l) is applicable in state s if s(v) = s(p) = l
and leads to state s′ that only differs from s in s′(p) = v.

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

73

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/154351499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Vehicles v can unload loaded packages p: unload(v, p, l)
is applicable in state s if s(p) = v and s(v) = l, and leads
to state s′ that only differs from s in s′(p) = l.

• Trucks t can drive to locations l in the same city:1
drive(t, l) is applicable in state s if city(s(t)) = city(l)
and leads to state s′ that only differs from s in s′(t) = l.

• Airplanes a can fly to all airport locations l: fly(a, l) is
applicable in state s if l = airport(c) for some city c. The
resulting state s′ only differs from s in s′(a) = l.

A plan is a sequence of operators that are successively
applicable to the initial state and lead to a state sG with
sG(p) = dest(p) for all packages p ∈ P . The cost of a plan
is the length of the operator sequence. A plan is optimal if it
has minimum cost among all plans.

We call packages that have the origin and the destination
in the same city intracity packages and all other packages
intercity packages. If a package p is in a vehicle at location
l or it is directly at l, we refer to l as the position poss(p)
of p in state s; formally, poss(p) = s(p) if s(p) ∈ L and
poss(p) = s(s(p)) if s(p) ∈ T ∪ A. We use the term region
to denote all locations of a city (a truck region) or all airports
(a plane region).

Delivery Graphs

If a package is not at its destination location, it must be trans-
ported there somehow. As trucks can only move inside cities
and airplanes only between airports, a package whose cur-
rent position is not in the same city as its destination must
be transported from the airport of the current city to the air-
port of the destination city. Moreover, if the current posi-
tion and/or the destination location is not the airport, it must
be transported to/from the airport. Based on such insights,
we can identify pairs of cities or locations between which a
package must be transported in every plan by the same type
of vehicle (trucks or airplanes). We represent this kind of
information in so-called delivery graphs.

Definition 2 (Airplane Delivery Graph). For state s of
logistics task 〈L,C, P, T,A, city, airport, origin, dest〉, the
airplane delivery graph is the directed graph DA

s =
(C,E), where E = {(c, c′) | there is a p ∈ P s.t. c =
city(poss(p)) �= city(dest(p)) = c′}.

Definition 3 (Truck Delivery Graph). For state s of logistics
task 〈L,C, P, T,A, city, airport, origin, dest〉 and city c ∈
C, the truck delivery graph for c is the directed graph Dc

s =
(V,E), where

• V = {l ∈ L | city(l) = c} are the locations in city c, and
• E contains the following edges for each package p with

poss(p) �= dest(p):
– If city(poss(p)) = city(dest(p)) = c then there is an

edge poss(p) → dest(p).
– If city(poss(p)) = c, city(dest(p)) �= c and poss(p) �=

airport(c) there is an edge poss(p) → airport(c).

1In contrast to a typical PDDL representation, we do not make
the departure location in movement actions explicit because we are
not restricted by the limitations of the STRIPS formalism.

– If city(poss(p)) �= c, city(dest(p)) = c and dest(p) �=
airport(c) there is an edge airport(c) → dest(p).

Multi-vehicle Simplification

Our objective in this section is to prove the following theo-
rem, which will help us optimally solve LOGISTICS tasks by
reducing the number of possibilities we need to consider.

Theorem 1. Every solvable LOGISTICS task has an optimal
solution which only uses a single vehicle for each weakly
connected component of each delivery graph for the initial
state.

For simplicity and brevity, we focus on the case where all
delivery graphs are (essentially) weakly connected:

Theorem 2. Consider a solvable LOGISTICS task where
each delivery graph has exactly one non-trivial weakly con-
nected component, i.e., one weakly connected component
plus zero or more isolated locations.2 Then there is an opti-
mal plan using one truck from each city and one airplane.

Once we have proved Theorem 2, it is not difficult to show
Theorem 1 by observing that whenever there are multiple
weakly connected components in a delivery graph, an op-
timal solution can be obtained by considering the subtasks
for each component independently and combining their so-
lutions. Hence, we focus on Theorem 2 from now on.

Theorem 2 does not immediately tell us which truck from
each city and which airplane should be considered. However,
just knowing that only one vehicle is needed in each delivery
graph already significantly reduces the space of states that
needs to be explored. To apply the theorem when search-
ing for optimal solutions of LOGISTICS tasks, we exhaus-
tively explore all possible choices of vehicles for each deliv-
ery graph, compute an optimal solution for the given set of
choices, and then select the overall best one.

To limit the search space further, we impose additional
restrictions on the vehicles we consider for a given deliv-
ery graph D. (It is easy to show that these restrictions pre-
serve optimality.) We call a vehicle in D useful if its initial
location has an outgoing edge in D, indicating that the first
action that this vehicle performs in a plan might be a load ac-
tion. If there are useful vehicles in D, then we only consider
the useful vehicles. If there is a useful vehicle whose initial
location has no ingoing edge in D we can remove all other
vehicles from consideration. If no vehicle in D is useful, we
can pick an arbitrary vehicle for D, as no matter which ve-
hicle we choose, its first action must be a movement, giving
no vehicle a benefit over another. Finally, if multiple vehi-
cles in D have the same initial location, we only consider
one of them, which suffices for symmetry reasons.

In the rest of this section, we describe a proof of Theo-
rem 2. Due to space limitations, we only provide a sketch of
the full argument. The full proof is available as a technical
report (Paul et al. 2017).

2Isolated locations are ones where no package must be un-
loaded or loaded. They may serve as starting locations of vehicles,
but are otherwise of no use.

74

No Unnecessary Load/Unload Actions

It is easy to see that in an optimal plan, a package is never
transported by a truck within a city other than its city of ori-
gin or its destination city, that intracity packages are never
transported by airplanes, and that intercity packages never
re-enter their city of origin after they have first reached its
airport or leave their destination city after they have first
reached its airport. We now show that we can also assume
that no reloading of packages between vehicles happen in
any single “stage” of transportation (for example, transport-
ing a package within its city of origin).

Lemma 1. If the task is solvable, then there is an optimal
plan that does not reload packages from truck to truck or
airplane to airplane.

Proof. We show the lemma for trucks; the same argu-
ment works for airplanes. Let π be a plan with a (usually
non-contiguous) subsequence load(t, p, l), unload(t, p, l′),
load(t′, p, l′), where t, t′ are trucks, p is a package, l, l′
are locations in the same city, and no load/unload ac-
tions for p happen in between these three actions. We
modify π by removing the first pair of load/unload ac-
tions and replacing the action load(t′, p, l′) by the “macro”
drive(t′, l), load(t′, p, l), drive(t′, l′). This removes two ac-
tions and adds two actions, so does not increase the plan
cost. Repeat such replacements until no further replace-
ments can be made. At this point, every package is only
loaded/unloaded by a truck (at most) once per city.

Together with the preceding comments, the lemma im-
plies that we can restrict attention to plans where each pack-
age is loaded/unloaded the minimal required number of
times. A plan can never be improved by adding load/unload
actions to reduce the number of movement actions.

Partitioning to Subtasks

Next, we show that we can restrict attention to subtasks in-
volving only airplanes or only trucks of one city. Consider
an optimal plan π. Partition the plan into subsequences: one
subplan πc for each city c, containing all actions involving
trucks in this city, and one subplan πA for the airplanes, con-
taining all actions involving airplanes. To prove Theorem 2,
we must show that there is an optimal plan π where each
subplan πx (where x is a city or the set of airplanes A) only
uses one vehicle.

We prove this by a local replanning argument. Assume
we are given π such that some subplan πx uses multiple
vehicles. Then we modify only this subplan to form a new
subplan π′

x that uses only one vehicle. We construct π′
x in

such a way that it has the same cost as πx and is compati-
ble with the other subplans of π: the subplans of π, but re-
placing πx with π′

x, can be interleaved to form a new valid
global plan. Considering local subplans of this kind that
can be pieced together to form a global plan is the essen-
tial idea of factored planning (Amir and Engelhardt 2003;
Brafman and Domshlak 2006). Clearly, if we can show that
this local replanning operation is always possible, Theo-
rem 2 follows by a sequence of replanning steps, one for
each subplan πx using multiple vehicles.

A critical aspect in local replanning is understanding
which constraints are imposed on π′

x by the other subplans.
Firstly, π′

x must solve the local delivery task for the packages
and vehicles in its delivery graph: for example, if there ex-
ists an intercity package to be transported from city c to city
c′, then π′

A must transport it from airport(c) to airport(c′).
This aspect of local replanning can be viewed as a regular
LOGISTICS task, limited to the airports and airplanes (or al-
ternatively to the locations and trucks of one city).

Secondly, going beyond a regular LOGISTICS task, π′
x

must respect certain ordering constraints on the delivery of
packages imposed by the other subplans. For example, if the
subplan πc (for city c) loads an incoming intercity package p
from airport(c) before it unloads an outgoing intercity pack-
age p′ at airport(c), then π′

A must unload p at airport(c) be-
fore it loads p′ at airport(c). In such a situation, we say that
πc imposes the precedence constraint p ≺ p′ on π′

A.
A key observation is that all relevant interactions between

subplans can be captured by precedence constraints of the
form p ≺ p′, where p and p′ are packages such that πA must
unload p at the same location where it must load p′. Intu-
itively, as long as each subplan delivers all packages it owes
to the other subplans “in time”, i.e., before loading packages
that it receives from these subplans at a later stage in the
original global plan π, combining the subplans into a global
plan is guaranteed to succeed.

In summary, it remains to show that each local task can
be optimally solved by using a single vehicle, where a local
task is an airplane-only or truck-only LOGISTICS task with
added precedence constraints of the form p ≺ p′, expressing
that package p must be dropped at its goal location before
p′ may be picked up at its initial location. Moreover, for all
such precedence constraints, dest(p) = origin(p′) in the lo-
cal task. (Note that it does not matter whether the vehicles
in a local task are airplanes or trucks, so we do not need to
consider two different “kinds” of local tasks.)

Replanning Local Tasks to Use a Single Vehicle

Assume we are given a local task Πx, w.l.o.g. represented as
a LOGISTICS tasks where all locations are airports and all
vehicles are airplanes, along with a set of precedence con-
straints on package delivery. We are also given an optimal
plan πx for Πx. Our aim is to construct another optimal plan
π′
x for Πx that only uses one airplane.
We first consider the case where all airplanes are initially

located at isolated locations, i.e., locations that are not the
origin or destination of any package in Πx. We will consider
the general case afterwards. In the restricted case, π′

x can be
constructed from πx as follows:

1. Select an arbitrary airplane v to use in π′
x.

2. Let moves be the subsequence of movement actions in πx,
i.e., πx with load and unload actions removed.

3. Obtain a new sequence of movement actions moves′ from
moves by moving to exactly the same sequence of loca-
tions as in moves, but using airplane v for all movements.
In other words, v follows the movements of all airplanes
in πx, in the same order that the movements occur in πx.

75

4. Compute π′
x from moves′ by inserting load and unload

actions for all packages at the appropriate times. It is suf-
ficient to do this opportunistically, i.e., performing each
action that loads a package from its origin or unloads it
at its destination as soon as the action becomes applicable
(taking into account the precedence constraints).

It is obvious that π′
x only uses one airplane and has the

same cost as πx (both plans have the same number of move-
ment actions, and both have one load and unload action per
package). It is less obvious that step 4. in the algorithm is
always possible while satisfying all precedence constraints,
and we refer the reader to the previously mentioned techni-
cal report for a complete formal treatment.

We remark that the restriction to the case where the air-
planes begin at isolated locations is important for the con-
struction to work. Without it, v might not have the opportu-
nity to load packages in time (or at all) that are located at the
location of origin of some airplane used in πx.

We now consider the general case without this restriction.
Let Π̃x be a modified task obtained from Πx by changing the
initial location of each airplane to a new isolated location l̃.
Let V be the set of airplanes used in πx. Then Π̃x can be
solved by prefixing πx by |V | movements, flying each air-
plane in V from l̃ to its origin location in Πx. We denote this
plan for Π̃x by π̃x. Its cost is c∗ + |V |, where c∗ is the cost
of πx. Because Π̃x satisfies the conditions of the restricted
case (all airplanes originate at an isolated location), we can
convert π̃x to a plan π̃′

x of the same cost c∗ + |V | that only
uses one airplane. Moreover, it is easy to see that π̃′

x solves
not just the modified task Π̃x but also the original task Πx.

One problem remains: we need a single-airplane plan of
cost c∗, but the cost of π̃′

x is c∗+|V |. To remedy this, we per-
mute the plan π̃x before converting it to single-airplane form
in such a way that it contains |V |−1 occurrences where two
subsequent movement actions (of different airplanes) move
to the same location, i.e., fly(v′, l) and fly(v′′, l) occur next
to each other in the plan. Intuitively, this is possible because
with a weakly connected delivery graph, the path traced by
each used airplane v′ must eventually intersect with the path
of another airplane. Until this point, the actions of v′ can be
commuted freely with the actions of the other airplanes, and
this allows us to interleave the subplans for the different air-
planes in such a way that v′ reaches the location l where it
joins the path of another airplane at the same time as another
airplane v′′ does. (Again, the full formal treatment is slightly
more complex, and we refer to the technical report.)

With |V | airplanes, there must be |V |−1 “join points” un-
til the travel paths of all airplanes are connected. At each join
point, the permuted plan π̃x contains consecutive actions
of the form fly(v′, l), fly(v′′, l). In the single-airplane plan
π̃′
x, these become consecutive movements fly(v, l), fly(v, l),

where the second movement is clearly redundant and can be
omitted. Altogether, this argument permits us to save |V |−1
of the |V | extraneous actions.

To save the remaining action, we observe that by con-
struction, the first action in π̃′

x flies (from the artificially in-
troduced isolated location l̃) to the origin location in Πx of

some airplane v ∈ V . By choosing this airplane as the single
airplane we use in the plan π̃′

x, we can save this action and
reduce the cost of π̃′

x to c∗, concluding the proof.

Search Space Pruning

To reduce the size of the search space, we apply two pruning
techniques: operator elimination removes a large number of
operators from consideration that are never part of an opti-
mal plan. Instant operator application can be seen as a form
of partial-order reduction or meta actions.

From Lemma 1, we know that it is never necessary to
reload packages between vehicles of the same type. The fol-
lowing operators can hence be ignored:

• For intracity packages p

– all operators load(v, p, l) where v is an airplane or l �=
origin(p), and

– all operators unload(v, p, l) where v is an airplane or
l �= dest(p).

• For intercity packages p with city(origin(p)) = c and
city(dest(p)) = d

– all operators load(v, p, l) where v is an airplane and
l �= airport(c),

– all operators unload(v, p, l) where v is an airplane and
l �= airport(d),

– all operators load(v, p, l) where v is a truck except
those where l = airport(d) �= dest(p) or l = origin(p),

– all operators unload(v, p, l) where v is a truck ex-
cept those where l = airport(c) �= origin(p) or l =
dest(p) �= airport(d).

After the elimination of unnecessary operators, packages
can always be unloaded immediately, if such an operator be-
comes applicable. Moreover, if there is only one truck in
a city or there is only one airplane then packages can be
loaded whenever such an operator becomes applicable. This
optimization does not threaten the optimality guarantee of
A∗ because whenever a state has been reached by a prefix of
an optimal plan, then it is possible to extend this prefix to an
optimal plan, continuing with these operators.

Heuristics

The key to efficient A∗ search is a strong admissible heuris-
tic that, from any state in the search, accurately estimates the
cost of reaching a goal state.

Counting Heuristic

The simplest heuristic we consider is the single visit and
load/unload counting heuristic, h0. It includes estimates for
the number of vehicle movements and estimates for the num-
ber of applications of load and unload operators.

It is easy to see that if the position of a package is in the
same city as its destination location a package must be

• unloaded from a plane iff it is in a plane,

• loaded into a truck iff its position is not the destination
location and it is not in a truck, and

76

• unloaded from a truck iff its position is not the destination
location or it is in a truck.

Similarly, if the position of a package is not in the same
city as its destination a package must be

• loaded into a truck at its current position iff its position is
not an airport and it is not in a truck,

• unloaded from a truck at the airport of the current city iff
its position is not an airport or it is in a truck,

• loaded into a plane iff it is not in a plane,

• unloaded from a plane,

• loaded into a truck at the airport of the destination city iff
its destination location is not an airport, and

• unloaded from a truck in the destination city iff the desti-
nation location is not an airport.

The load/unload contributions to the heuristic estimate
are exact; in an optimal solution, packages should not be
reloaded between planes or between trucks in the same city.

Each location that a truck must visit to load or unload a
package contributes a value of one to the counting heuristic.
This is the case when a package must be brought to this loca-
tion or when it must be collected from the location but there
is currently no vehicle there. These locations can easily be
determined from the truck delivery graphs:

Definition 4 (Truck Landmark). For LOGISTICS task
〈L,C, P, T,A, city, airport, origin, dest〉, state s and city
c ∈ C, the set Ltruck

c of truck landmarks consists of the loca-
tions l that have an ingoing edge in the truck delivery graph
Dc

s or that have an outgoing edge and there is no t ∈ T with
s(t) = l.

Analogously, we can define a set of airplane landmarks
for the cities that must be visited by an airplane:

Definition 5 (Airplane Landmark). For LOGISTICS task
〈L,C, P, T,A, city, airport, origin, dest〉 and state s the set
Lairplane of airplane landmarks consists of the cities c that
have an ingoing edge in the airplane delivery graph Da

s
or that have an outgoing edge and there is no a ∈ A with
s(a) = airport(c).

The counting heuristic accounts
∑

c∈C |Ltruck
c |+ |Lairplane|

for the movements of vehicles.
Despite its simplicity, the quality of the counting heuris-

tic compares favorably with heuristics typically used for
domain-independent planning. In particular, it is not difficult
to see that for LOGISTICS tasks with one vehicle per weakly
connected component of each region, such as the tasks gen-
erated by the multi-vehicle simplification, it is equal to the
h+ heuristic, which is known to be very accurate for LOGIS-
TICS tasks compared to other domain-independent planning
heuristics (Helmert and Mattmüller 2008). For LOGISTICS
tasks with multiple vehicles per weakly connected compo-
nent, the counting heuristic may slightly underestimate h+;
however, h+ is known to be NP-hard to compute for arbi-
trary LOGISTICS states (Betz and Helmert 2009).

tp1 p2

p3

(a) One cycle

tp1 p2

p3

p4

(b) Two cycles

Figure 1: Example tasks: in both tasks it is necessary and
sufficient to visit one of the locations twice.

Cycle Heuristic

The estimate of the single visit and load/unload counting
heuristic is extremely optimistic. It does not account for the
fact that some locations must be visited more than once. We
illustrate this in Fig. 1a that shows a single city with four lo-
cations. There are three packages, where the edges indicate
the origin and the destination location. The truck is located
at an additional location. The edges in this graph form a cy-
cle and for all packages in this cycle to be delivered to their
goal locations, the truck in the city must visit one of the lo-
cations twice.

To derive a lower bound on the number of such locations
that must be visited more than once, we analyze dependen-
cies between the landmarks. For this purpose, we associate
each truck landmark l with the operators set {drive(t, l) |
t ∈ T} and each airplane landmark c with the operator set
{fly(a, l) | a ∈ A, airport(c) = l}. These are disjunctive ac-
tion landmarks that encode that at some point in each plan an
operator from this set must be applied. We take in addition
orderings between these action landmarks into account:
Definition 6 (Landmark Ordering). For two disjunctive ac-
tion landmarks L and L′, there is an ordering L → L′ if in
each plan the first application of an operator from L must
happen before the last application of an operator from L′.

This is a new notion of landmark orderings which is
different from earlier such notions such as necessary or
natural orderings (Hoffmann, Porteous, and Sebastia 2004;
Richter and Westphal 2010). It is easy to see that orderings
between two truck landmarks or two airplane landmarks can
be derived from the transportation graphs: there is an order-
ing if there is a package that must be moved between the
locations and there is no suitable vehicle at the package po-
sition. The following definition of landmark graphs captures
this information for individual cities and the air space:
Definition 7 (Landmark Graph of City and Air Space). For
state s of task 〈L,C, P, T,A, city, airport, origin, dest〉 and
city c ∈ C, the landmark graph for c is the directed graph
GLM

c,s = (Ltruck
c , E), where E contains an edge l → l′ if the

delivery graph Dc
s contains such an edge and there is no

t ∈ T with s(t) = l.
The landmark graph GLM

air,s for the air space is the directed
graph (Lairplane, E), where E contains an edge c → c′ if the
airplane delivery graph DA

s contains such an edge and there
is no a ∈ A with city(s(a)) = c.

It would not be admissible to just count the number of
cycles in the landmark graphs: consider the example in Fig.

77

1b which shows a variation of the earlier example with one
additional package. In this example, the landmark graph for
the city corresponds to the non-trivial connected component
in the given graph, which contains two cycles. Still, it is suf-
ficient to only visit the origin location of package p4 twice.

However, we can derive an admissible estimate from the
size, MFVS, of a minimum feedback vertex set, which is a
set of vertices of minimum size whose removal renders the
graph acyclic. It is NP-hard to determine MFVS for a graph
(Karp 1972), but we will show in the experiments that the
resulting heuristic still is practically feasible.
Theorem 3. Let π be a plan for state s and let G = (V,E)
be a landmark graph encoding orderings between land-
marks. Then there are at least MFVS(G) different landmarks
in V for which π contains at least two applications of oper-
ators from the associated disjunctive action landmark.

Proof. Let V ′ ⊆ V be the landmarks for which π con-
tains more than one operator application and assume |V ′| <
MFVS(G). Then the subgraph of G induced by V \ V ′ con-
tains a simple cycle Y = (L0, L1, . . . , Ln) with n > 1 and
L0 = Ln. For i ∈ {0, . . . , n − 1}, each plan must apply
an operator from the set associated with Li+1 after it has
already applied an operator from the operator set for Li.
Therefore there are at least n + 1 operator applications for
these n sets and π contains two operator applications for one
of the sets. As none of the Li can be in V ′ this is a contra-
diction to the definition of V ′.

Note that the disjunctive action landmarks for two truck or
airplane landmarks are disjoint. This allows us to admissibly
improve the estimate of the baseline heuristic h0.
Definition 8. For a task with set of cities C, the cycle heuris-
tic hcycle for state s is defined as

hcycle(s) = h0(s) + MFVS(GLM
air,s) +

∑

c∈C

MFVS(GLM
c,s).

Theorem 4. The cycle heuristic is admissible.

Proof. Heuristic h0 only accounts for load and unload op-
erations and at most one drive and one fly operation to
each location. From Theorem 3 and the fact that the action
landmarks associated with the truck or airplane landmarks
are disjoint, we know that every plan must contain at least
MFVS(GLM

air,s) additional fly and
∑

c∈C MFVS(GLM
c,s) addi-

tional drive operators.

Integrated Cycle Heuristic

Up to this point, we have considered the regions separately.
However, this way we miss some orderings that can only
be derived when considering the transportation of a package
with vehicles of different types.

Each package induces up to six disjunctive action land-
marks (truck movement to package position and start city
airport, plane movement to start and destination city air-
port, truck movement to destination city airport and package
destination). From the 30 possible pairs of these landmarks
only nine can define valid orderings. Three of them are al-
ready covered by the landmark graphs of the cities and the

airspace. We introduce the remaining six as part of the fol-
lowing definition:
Definition 9 (Integrated Landmark Graph). For state s of
task 〈L,C, P, T,A, city, airport, origin, dest〉, the integrated
landmark graph GLM

s = (V,E) is the directed graph, where

• V = Lairplane ∪ ⋃
c∈C Ltruck

c consists of all truck and air-
plane landmarks, and

• E contains all edges from the landmark graphs for all
cities and the air space plus the following edges for each
package p with city(poss(p)) = c and city(dest(p)) =
d �= c:
– if there is no t ∈ T with s(t) = poss(p) and nei-

ther poss(p) nor dest(p) is an airport, there is an edge
poss(p) → dest(p);

– if there is no t ∈ T with s(t) = poss(p) and poss(p) is
not an airport, there is an edge poss(p) → d;

– if neither poss(p) nor dest(p) is an airport, there is an
edge airport(c) → dest(p);

– if poss(p) is not an airport, there is an edge
airport(c) → d;

– if there is no a ∈ A with s(a) = airport(c) and dest(p)
is not an airport, there is an edge c → dest(p);

– if dest(p) is not an airport, there is an edge d →
dest(p).

It is easy to verify that the edges correspond to landmark
orderings, keeping in mind that the city nodes are associated
with fly operators and the locations with drive operators.

Therefore, we can again exploit Theorem 3 to admissibly
improve the estimate of the cycle heuristic hcycle.
Definition 10. The integrated cycle heuristic hic for state s
is defined as

hic(s) = h0(s) + MFVS(GLM
s).

Theorem 5. hic dominates hcycle, i. e., hic ≥ hcycle.

Proof. As the size of an MFVS of a graph is equal to the sum
of the sizes of the MFVSs of its connected components, the
only difference between hic and hcycle are the additional arcs.
Since additional arcs can only cause additional cycles (and
not remove any), the minimum feedback vertex set can only
be larger, and hence hic(s) ≥ hcycle(s) for all states s.

Theorem 6. The integrated cycle heuristic is admissible.

Proof. As before, heuristic h0 only accounts for load and
unload operations and at most one drive and one fly oper-
ation to each location. The integrated cycle heuristic adds
the minimal number of move operations that are required to
satisfy cyclic ordering constraints of the disjunctive action
landmarks, which is an admissible estimate.

Experimental Evaluation

We have performed an evaluation of our algorithm on an
Intel core i3 4160 processor running at 3.60 GHz with a limit
of one million evaluated states.

Table 1 shows the results for the 35 LOGISTICS instances
of the International Planning Competition (IPC) 1998 and

78

all vehicles single vehicle
h0 hic h0 hic

inst. h∗ Δ states Δ states Δ states Δ states
01 26 1 131 0 48 1 16 0 16
02 32 0 177 0 177 0 33 0 33
03 54 0 354 0 354 0 43 0 43
04 58 0 532 0 532 0 57 0 57
05 22 0 0 45 0 18 0 18
06 69 0 288 0 472 1 1145 0 94
07 33 0 267 0 288 0 30 0 30
08 40 0 267 0 267 0 36 0 36
09 80 1 0 1 967 0 69
10 101 1 1 1 141 0 141
11 29 1 1196 1 1196 0 15 0 17
12 41 0 440 0 440 0 45 0 45
13 67 0 1192 0 1192 0 72 0 72
14 86 1 0 0 160 0 160
15 87 2 1 2 821 0 46
16 53 1 70393 1 70393 0 26 0 26
17 42 3 129289 3 129289 0 17 0 17
18 161 3 2 1 235085 0 271
19 135 3 2 3 3196 0 109
20 135 3 2 3 47579 0 124
21 99 2 1 1 6902 0 98
22 264 6 4 5 0 499
23 106 0 0 0 1276 0 138
24 40 1 194208 1 194208 0 25 0 25
25 180 1 1 0 245 0 245
26 183 0 0 0 558 0 558
27 136 1 1 0 113 0 113
28 251 2 0 2 0 304
29 295 9 4 6 0 632
30 128 1 1 0 157 0 157
31 13 0 17 0 17 0 9 0 9
32 20 0 35 0 35 0 11 0 11
33 27 1 353 0 66 1 29 0 16
34 45 1 1673 0 433 1 102 0 31
35 30 0 85 0 85 0 26 0 26

all vehicles single vehicles
h0 hic h0 hic

inst. h∗ Δ states Δ states Δ states Δ states
20-0 107 1 0 729 1 293 0 62
25-0 143 1 0 486182 1 153 0 83
30-0 175 3 1 3 1012 0 107
35-0 177 2 0 214062 2 5058 0 144
36-0 192 3 1 3 15719 0 171
37-0 223 5 2 4 28561 0 171
38-0 209 2 1 2 2195 0 150
39-0 224 4 2 4 139347 0 177
40-0 228 3 0 3 170652 0 208
50-0 286 3 2 3 191249 0 266
60-0 369 6 3 6 0 379
70-0 405 4 0 4 0 969
80-0 476 6 2 6 0 1262
90-0 513 5 3 5 0 679
90-1 529 6 1 1 0 712
91-0 534 6 4 6 0 1487
91-1 555 11 3 7 0 745
92-0 539 8 3 8 0 751
92-1 532 7 4 7 0 770
93-0 556 7 4 8 0 822
93-1 532 5 2 5 0 1420
94-0 550 6 2 6 0 787
94-1 554 7 2 7 0 757
95-0 579 7 1 7 0 827
95-1 564 9 3 8 0 785
96-0 577 7 3 7 0 1646
96-1 568 6 2 6 0 1594
97-0 563 8 4 7 0 819
97-1 556 8 4 8 0 853
98-0 581 7 3 7 0 830
98-1 539 7 3 7 0 824
99-0 588 8 3 8 0 1806
99-1 581 8 3 8 0 878

100-0 590 7 2 7 0 1787
100-1 589 6 4 7 0 887

Table 1: Results for LOGISTICS problems of IPC 1998 (left) and a subset of the IPC 2000 instances (right). The first column
gives the problem number, followed by the optimal cost. The next four sections, consisting of two columns each, show the
results without and with multi-vehicle simplification for h0 and hic. Δ is the difference to h∗ and states is the number of
evaluated states. Blank entries represent instances that were not solved within the bound of 1 million evaluations.

a representative subset of the largest instances of the IPC
2000 Track 2 Additional benchmarks suite (which consists
of 170 instances). The IPC 1998 instances contain a wide
range of package quantities (4–57), number of cities (3–47),
sizes of cities (1–16), number of trucks (5–106) and num-
ber of planes (1–15). The IPC 2000 instances contain up
to 100 packages that are distributed among up to 34 cities
and can be transported by up to nine planes, but all have
in common that there are only one truck and two locations
(a non-airport and an airport location) per city. The table
shows results for h0 and hic, both with and without multi-
vehicle simplification. For each configuration, we report the
difference between the optimal plan length (h∗) and the ini-
tial heuristic estimate as Δ = h∗ − h(s0), where h is the
corresponding heuristic. We furthermore include the number

of evaluated states, which may be smaller than the optimal
plan length due to instant operator applications. With multi-
vehicle simplification, we use an exhaustive search over the
possible choices of vehicles, skipping a sub-search if the f -
values already prove that it will not improve the currently
best solution. The number of states reports the sum over all
these searches. It can clearly be seen that considering only a
single vehicle and using a more sophisticated heuristic sig-
nificantly improve the baseline configuration.

Although the table only shows as subset of the IPC 2000
instances, with our best configuration (hic with multi-vehicle
simplification) we are able to solve all LOGISTICS instances
of both IPCs optimally, and are, to the best of our knowl-
edge, the first to report plan lengths for all considered IPC
instances. As a point of comparison, we performed exper-

79

iments with the winner of the IPC 2014 sequential opti-
mization track, the symbolic search planner SymBA∗ (Tor-
ralba, Linares López, and Borrajo 2016) and Fast Downward
(Helmert 2006) equipped with three heuristics from the lit-
erature: LM-cut (Helmert and Domshlak 2009), the state-
equation heuristic (Bonet 2013), and merge-and-shrink us-
ing bisimulation and the DFP merge strategy (Helmert et al.
2014; Sievers, Wehrle, and Helmert 2014). Most of the con-
sidered instances (as well as several of the smaller IPC 2000
Standard instances) cannot be solved by any of these state-
of-the-art domain-independent planning systems.

Betz and Helmert (2009) evaluated the performance of the
h+ heuristic on LOGISTICS with a domain-specific heuris-
tic implementation. Betz (2009) reports 7 solved instances
for this approach on the IPC 1998 instances. A set of sub-
optimal domain-specific approaches was compared in the
hand-tailored track of IPC 2000, with TALPlanner (Doherty
and Kvarnström 2001) being the clear winner on the domain.
The system solved all of the IPC 2000 Track 2 additional in-
stances very fast, but none of the instances reported in Table
1 optimally (with plan lengths varying between 3.7% and
9.5% longer than the optimal solution).

Table 2 shows results for a set of 26 randomly generated
instances with 6–34 cities, each containing five non-airport
and one airport location. There is only one plane and each
city is assigned one truck. The larger city size allows for the
presence of more complex graph cycles, and the assignment
of trucks and planes removes the difficulty associated with
multiple trucks per city and multiple planes. As there is only
one vehicle per region, we can concentrate on the compari-
son of h0, hcycle and hic. Both cycle-based heuristics show a
clear advantage over the baseline heuristic. Comparing hcycle
and hic, the integration of the individual landmarks graphs
results in an impressive improvement of heuristic accuracy,
with a reduction of evaluated states of up to three orders of
magnitude and five additional solved instances.

Data on computation time is omitted in both tables for
space reasons, but can be summarized briefly: most in-
stances are solved in less than a second or not solved within
the state budget of one million evaluated states at all, with no
measurable difference between the different configurations.
The few exceptions correspond to those instances where the
number of evaluated states is significantly larger.

Discussion and Future Work
We have combined three techniques to efficiently solve large
LOGISTICS problems optimally: multi-vehicle simplifica-
tion, search space pruning and strong admissible heuristics.
These techniques can be applied independently, but their im-
pact is not independent because search space pruning and the
heuristics benefit from multi-vehicle simplification.

The instant application of load operators requires that
there is only one vehicle in the relevant region, which is al-
most always the case with multi-vehicle simplification. A
possible additional optimization would eliminate all oper-
ators where a vehicle operates on a connected component
of the delivery graph for which it is not “responsible”. We
excluded this pruning from consideration because it is only
applicable with multi-vehicle simplification.

h0 hcycle hic
inst. h∗ Δ states Δ states Δ states
16-6 107 4 3453 0 89 0 89
20-7 127 6 1 4275 0 130
25-9 173 3 2400 0 258 0 258

30-10 204 5 122678 0 177 0 177
31-10 212 7 0 11953 0 249
32-10 215 5 224758 0 381 0 194
33-11 226 9 0 134024 0 300
34-12 232 9 0 14383 0 323
35-12 237 8 0 3939 0 296
36-12 249 10 1 357764 0 322
37-13 239 7 0 1865 0 239
38-13 250 8 0 489 0 272
39-13 255 9 0 591 0 591
40-14 278 10 1 1 23776
45-15
50-17 369 12 0 0 566
55-17 392 14 0 0 699
60-20 417 11 0 0 649
65-22 454 12 0 61282 0 1112
70-24
75-25
80-27
85-29 598 19 0 1422 0 1422
90-30 641 22 1 0 1541
95-32

100-34

Table 2: Results for randomly generated problems. Instance
x-y contains x packages and y cities. The second column
gives the optimal cost. There are three sections for h0, hcycle,
and hic, analogously to Table 1.

A large number of vehicles also has a negative impact
on the presented heuristics because vehicles can reduce the
number of landmarks: an outgoing edge in the delivery
graph only justifies a landmark if there is no vehicle at this
location. For the cycle-based heuristics, this also means that
the minimum feedback vertex set is potentially smaller.

Efficiently solving LOGISTICS tasks optimally is already
a contribution in itself, and we compute for the first time op-
timal plans for all LOGISTICS tasks used in the International
Planning Competitions. However, a core question for future
work will be what aspects of the paper can be generalized
beyond LOGISTICS. In our opinion, the cycle heuristic is the
contribution that looks most promising for such a general-
ization. Similar ideas have been presented for Blocksworld
(Slaney 2014), using hitting sets, and solitaire games (Paul
and Helmert 2016). Indeed the heuristic by Paul and Helmert
can be seen as a special case of the cycle heuristic but it
has not been formulated in terms of disjunctive action land-
marks and landmark orderings. This new perspective makes
the underlying idea much more accessible and it is now
much clearer how it could be applied to domain-independent
heuristic search.

Acknowledgments

This work was supported by the Swiss National Sci-
ence Foundation (SNSF) as part of the project “Reasoning

80

about Plans and Heuristics for Planning and Combinatorial
Search” (RAPAHPACS).

References

Amir, E., and Engelhardt, B. 2003. Factored planning. In
Gottlob, G., and Walsh, T., eds., Proceedings of the 18th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI 2003), 929–935. Morgan Kaufmann.
Bacchus, F. 2001. The AIPS’00 planning competition. AI
Magazine 22(3):47–56.
Betz, C., and Helmert, M. 2009. Planning with h+ in theory
and practice. In Mertsching, B.; Hund, M.; and Aziz, Z.,
eds., Proceedings of the 32nd Annual German Conference
on Artificial Intelligence (KI 2009), volume 5803 of Lecture
Notes in Artificial Intelligence, 9–16. Springer-Verlag.
Betz, C. 2009. Komplexität und Berechnung der
h+-Heuristik. Diplomarbeit, Albert-Ludwigs-Universität
Freiburg.
Bonet, B. 2013. An admissible heuristic for SAS+ planning
obtained from the state equation. In Rossi, F., ed., Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2268–2274. AAAI Press.
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when and when not. In Proceedings of the Twenty-
First National Conference on Artificial Intelligence (AAAI
2006), 809–814. AAAI Press.
Doherty, P., and Kvarnström, J. 2001. TALplanner: A tem-
poral logic based planner. AI Magazine 22(3):95–102.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M., and Mattmüller, R. 2008. Accuracy of admis-
sible heuristic functions in selected planning domains. In
Proceedings of the Twenty-Third AAAI Conference on Arti-
ficial Intelligence (AAAI 2008), 938–943. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–63.
Helmert, M.; Mattmüller, R.; and Röger, G. 2006. Approx-
imation properties of planning benchmarks. In Proceedings
of the 17th European Conference on Artificial Intelligence
(ECAI 2006), 585–589.
Helmert, M. 2003. Complexity results for standard
benchmark domains in planning. Artificial Intelligence
143(2):219–262.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2008. Understanding Planning Tasks – Domain
Complexity and Heuristic Decomposition, volume 4929 of
Lecture Notes in Artificial Intelligence. Springer-Verlag.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Miller, R. E., and Thatcher, J. W., eds., Complexity
of Computer Computations. Plenum Press. 85–103.
McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.
Paul, G., and Helmert, M. 2016. Optimal solitaire game
solutions using A∗ search and deadlock analysis. In Baier,
J. A., and Botea, A., eds., Proceedings of the Ninth Annual
Symposium on Combinatorial Search (SoCS 2016), 135–
136. AAAI Press.
Paul, G.; Röger, G.; Keller, T.; and Helmert, M. 2017. Opti-
mal solutions to large logistics planning domain problems –
detailed proofs. Technical Report CS-2017-001, University
of Basel, Department of Mathematics and Computer Sci-
ence.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence (AAAI 2014), 2358–2366. AAAI Press.
Slaney, J. 2014. Set-theoretic duality: A fundamental feature
of combinatorial optimisation. In Schaub, T.; Friedrich, G.;
and O’Sullivan, B., eds., Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI 2014), 843–848.
IOS Press.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2016. Ab-
straction heuristics for symbolic bidirectional search. In
Kambhampati, S., ed., Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016),
3272–3278. AAAI Press.

81

