
Abstraction Heuristics, Cost Partitioning and Network Flows

Florian Pommerening, Malte Helmert
University of Basel,
Basel, Switzerland

{florian.pommerening, malte.helmert}@unibas.ch

Blai Bonet
Universidad Simón Bolívar,

Caracas, Venezuela
bonet@ldc.usb.ve

Abstract

Cost partitioning is a well-known technique to make admis-
sible heuristics for classical planning additive. The optimal
cost partitioning of explicit-state abstraction heuristics can be
computed in polynomial time with a linear program, but the
size of the model is often prohibitive. We study this model
from a dual perspective and develop several simplification
rules to reduce its size. We use these rules to answer open
questions about extensions of the state equation heuristic and
their relation to cost partitioning.

Introduction

Abstraction is one of the most common techniques to come
up with admissible heuristics for classical planning. Of-
ten, several smaller abstractions of a task are used instead
a large one. Even if all abstraction heuristics are admissi-
ble, their sum might not be, so combining heuristic values
in an admissible way is an important problem. Maximiza-
tion is always admissible, but usually a better combination
can be found by cost partitioning (Katz and Domshlak 2007;
Yang et al. 2008; Katz and Domshlak 2010), where operator
costs are distributed among the abstractions to make the sum
of heuristic values admissible.

Katz and Domshlak (2010) show how to compute the op-
timal cost partitioning for a set of explicit-state abstractions
in polynomial time as the objective value of a linear pro-
gram. However, this technique is often not used in practice,
as the LP model can get prohibitively large. Pommerening
et al. (2015) recently showed that there is a dual view on
cost partitioning as operator counting heuristics. For exam-
ple, the state equation heuristic (van den Briel et al. 2007;
Bonet 2013) can be described in this framework, and has a
close relationship to cost partitioning over projections to in-
dividual variables (atomic projections). In contrast to the
direct implementation of cost partitioning over these ab-
stractions, the model of the state equation heuristic is small
enough that it can be solved efficiently in practice, making
it a state-of-the-art heuristic.

We investigate cost partitioning over abstractions from
the dual perspective as synchronized network flows. Tak-
ing lessons from the state equation heuristic, we derive gen-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

eral rules that can be used to simplify the LP models in-
volved. Applied to atomic projections, our rules end up with
the constraints for the state equation heuristic, explaining its
good performance compared to an equivalent heuristic im-
plemented as cost partitioning over abstractions. The rules
therefore provide a way to apply the lessons learned from
the state equation heuristic to the cost partitioning of gen-
eral abstractions.

Bonet and van den Briel (2014) extend the state equation
heuristic with (partial) variable merges and mutexes. So far,
the relationship of these extensions to cost-partitioned ab-
stractions was unclear and the definition of partial merges
was restricted to the binary case. Pommerening et al. (2015)
conjectured a relation to cost partitioning over constrained
projections. The constraints for the state equation heuristic
turn out to be weaker. We show that the model for these ex-
tensions can be strengthened without increasing its size to
bridge this gap. The connection to general abstractions also
gives a clear definition of merges beyond the binary case.

Our rules might increase the heuristic quality of the state
equation heuristic and its extensions, and more importantly,
they help us to better understand the heuristics involved.

Background

We consider SAS+ planning tasks Π = 〈V,O, sI, s�, cost〉
in transition normal form (TNF) (Bäckström and Nebel
1995; Pommerening and Helmert 2015) with variables V ,
operators O, initial state sI, and goal state s�. We refer to
the literature (e.g., Pommerening and Helmert 2015) for de-
tails on the semantics of planning tasks and their plans, and
only emphasize that in TNF there is a unique goal state, and
an operator mentions the same variables in its precondition
pre(o) and its effect eff (o). Considering only TNF tasks
does not limit generality as every SAS+ task can be trans-
formed into TNF in linear time with small overhead. (Ex-
tending our results to unlimited SAS+ is possible but would
severely reduce the readability of the results for little or no
practical benefit, as conversion to TNF is an established im-
plementation technique for the planning approaches consid-
ered in this paper.)

A TNF task Π induces a labeled, weighted transition sys-
tem TSΠ = 〈S, T , sI, SG〉, with states S, transitions T ,
initial state sI, and goal states SG = {s�}. A transition

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

228

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/154351486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


s
o−→ s′ ∈ T is labeled with o and weighted with cost(o).

A shortest path in TSΠ according to the transition weights
corresponds to an optimal plan for Π. The cost of an opti-
mal plan is h∗. An admissible heuristic estimate is a value
h ≤ h∗. We consider two types of admissible heuristic esti-
mates: abstractions and the state equation heuristic.

Abstraction Heuristics

An abstraction of a planning task Π (e.g., Edelkamp 2001;
Haslum, Bonet, and Geffner 2005; Helmert et al. 2014)
maps the transition system of a planning task to an abstract
transition system TSα = 〈Sα, T α, sαI , S

α
G〉. The abstraction

function α maps states in S to abstract states in Sα such that
every path in the original transition system ofΠ corresponds
to a path in TSα with the same weights. The cost hα of a
shortest path in TSα is a lower bound for the optimal plan
cost of Π. (If there is no path from sαI to sα� in TSα, hα is
defined to be ∞.) An important special case of abstractions
are projections to a subset of variables P ⊆ V where α(s) is
the restriction of s to the variables in P .

State Equation Heuristic

The state equation heuristic hSEQ can be defined over flows
in domain transition graphs (DTGs) (van den Briel et al.
2007; Bonet and van den Briel 2014). A DTG for a variable
V in a TNF task is a directed graph with one node for every
value of V and an edge v

o−→ v′ for every operator o with
pre(o)[V ] = v and eff (o)[V ] = v′. The SEQ constraint for
variable-value pair 〈V, v〉, with V ∈ V and v ∈ dom(V ), is

∑

v′ o−→v∈inDTG(v)

Counto −
∑

v
o−→v′∈outDTG(v)

Counto = Δ(V, v)

where Δ(V, v) = [s�[V ] = v] − [sI[V ] = v]. The orig-
inal definition of the SEQ constraint uses inequalities, but
with safety-based improvement all of them turn into equal-
ities in TNF tasks. The model of the state equation heuris-
tic is defined as minimizing

∑
o∈O cost(o)Counto subject to

Counto ≥ 0 for all o ∈ O and the SEQ constraints for all
variable-value pairs. Extensions to hSEQ consider additional
constraints, which we will describe as they become relevant.

Cost Partitioning

Multiple heuristics can be combined with cost partitioning
by distributing the cost of each operator among the heuris-
tics. For a collectionH of functions mapping costs to admis-
sible heuristic estimates, the sum

∑
h∈H h(costh) is admis-

sible if
∑

h∈H costh(o) ≤ cost(o) for each operator o. An
optimal cost partitioning for collection H is a partitioning
that maximizes the sum. Allowing negative operator costs in
the partitioning can be beneficial (Pommerening et al. 2015).
We denote the value of

∑
h∈H h(costh) for an optimal cost

partitioning by hOCP
H . Observe that any cost partitioning of

abstraction heuristics is∞ if there is some abstraction α for
which there is no path from sαI to sα� in TSα.

Network Flows
Consider a transition system TS = 〈S, T , sI, {s�}〉 with a
single goal state and transition labels O. For a state s ∈ S

we write inTS(s) and outTS(s) for the set of transitions that
end and start in s, and write transTS(o) to denote the set of
transitions labeled with o. A flow in TS maps each transi-
tion t to a non-negative real number called the flow along t,
such that the total flow along incoming transitions matches
the total flow along outgoing transitions in each node, ex-
cept at the initial and goal nodes. The cost of a flow is the
summed cost of each transition multiplied by its flow. As we
want to use the cost of a flow in the context of general cost
partitioning, we allow the cost function to take real values.
The following LP is the standard formulation of a

minimum-cost flow problem that “moves” one unit of flow
from the source node sI to the sink node s� in TS:

Minimize
∑

o∈O
∑

t∈transTS(o) cost(o)Countt subject to
∑

t∈inTS(s)

Countt −
∑

t∈outTS(s)

Countt = Δ(s) ∀s ∈ S (1)

Countt ≥ 0 ∀t ∈ T (2)

where Δ(s) = [s = s�] − [s = sI] denotes the amount of
flow “consumed” at state s; i.e., one unit produced at sI, one
unit consumed at s�, and zero units at other states. In this
LP, the flow along a transition t is denoted by Countt.

We call this LP the flow model for TS and the con-
straint (1) the flow constraint for s. It is very similar to
the model of hSEQ, but there are two important differences:
firstly, flow constraints consider abstract states and transi-
tions, whereas SEQ constraints consider variable-value pairs
and DTG transitions. Secondly, and more fundamentally,
the flow model has one LP variable for each abstract tran-
sition, while SEQ constraints only use one LP variable for
each operator. We will analyze the differences between the
two models in more detail later on.
It can be shown that the flowmodel is feasible iff there is a

path from sI to s� in TS (Korte and Vygen 2001). If costs are
non-negative, feasible solutions always have bounded cost,
but if the LP is feasible and there is a cycle of transitions
in TS with negative total cost (not necessarily connected to
initial or goal state), the LP is unbounded and its value is
−∞ because an unbounded amount of flow may circulate
through the negative cost cycle.
The min-flow abstraction heuristic for a task Π and ab-

straction α is the objective value of the flow model for the
transition system TSα of α, or ∞ if it is infeasible. We de-
note the value of the min-flow abstraction heuristic for α by
fα. Our first result explains the relationship of fα to the ab-
straction heuristic hα, which we will later use to relate hSEQ

to certain abstraction heuristics. To state this result, we de-
fine an abstract state s ∈ Sα as alive in TSα if there is a path
from sαI to s and from s to a state in SαG. Otherwise, we call
the state dead.
Proposition 1. Let α be an abstraction of a planning task Π
and let costα : O → R be a cost function. Then, fα ≤ hα

with equality if there are no dead states in TSα.

Proof: As mentioned above, hα = ∞ iff there is no path in
TSα from sαI to sα� iff fα = ∞.
Assume now that hα < ∞. For a path in TSα from sαI to

sα� with cost c, there is a flow function with the same cost.

229



Therefore, fα ≤ hα (this includes the case where a negative
cost cycle occurs on an alive state and hα = fα = −∞).

If hα is finite and there are no dead states in TSα, no neg-
ative cost cycles exist in TSα and thus fα is also finite. The
flow along all transitions may be assumed to be integral (Ko-
rte and Vygen 2001). This flow moves one unit from sαI to
sα� along a single minimum cost path. Therefore, hα = fα.
�

Operator-Counting Constraints

Pommerening et al. (2014) define the operator-counting
framework for obtaining admissible heuristic estimates.
Heuristics are defined as the objective value of minimizing∑

o∈O cost(o)Counto subject to Counto ≥ 0 for operators
o and a collection of constraints C. Each constraint in C
must encode a necessary property of plans and each two con-
straints may only share operator-counting variables Counto.
The operator-counting heuristic for C is denoted by hLP

C .
The min-flow abstraction heuristic can be seen as an

operator-counting heuristic. Indeed, it is enough to mod-
ify the flow model by adding the operator-counting vari-
ables Counto for each operator o, replacing the objective
function by

∑
o∈O cost(o)Counto, and adding constraints∑

t∈transTS(o) Countt = Counto for each operator o. We call
each such constraint the strong linking constraint for o and
the modified LP the OC model.
Proposition 2. The OC model and the flow model are equiv-
alent: both have the same objective value and their solutions
are in 1:1 correspondence.
Pommerening et al. (2014) show that hLP

C is equal to the
optimal cost partitioning of the collection {hLP

{C} : C ∈ C}
of LP heuristics, one heuristic for each individual set C of
constraints in C. Proposition 1 can then be straightforwardly
used to show the following proposition.
Proposition 3. Let A be a set of abstractions of a planning
task and let Cα be the constraints in the OC model for TSα

and α ∈ A. Then, hLP
{Cα:α∈A} = hOCP

{fα:α∈A} ≤ hOCP
{hα:α∈A}

with equality if, for all α ∈ A, TSα contains no dead state.
Together, Propositions 2 and 3 show how several min-

flow abstraction heuristics can be combined in an LP that
computes their optimal cost partitioning and that this can be
weaker than the optimal cost partitioning of the abstraction
heuristics for the same abstractions. In the following sec-
tion, we will show how this gap can be closed.
To see that hOCP

{fα:α∈A} may indeed lead to a lower value in
the presence of dead states, consider a task with a single op-
erator o and two binary variables V1, V2. Operator o changes
V1 from 0 to 1 and requires V2 to be 1 without changing it.
Both variables are initially 0 and the goal is to set V1 to 1
and V2 to 0. Let α1 and α2 be the projections to V1 and V2.
The task is unsolvable but the abstract goal is reachable in
both projections. In TSα1 , o induces a transition from the
initial state to the goal; in TSα2 , the initial and goal state
are the same and o induces a self-loop on an unreachable
state. For an arbitrarily largeM , let costα1(o) = M +1 and
costα2(o) = −M . The shortest paths under these cost func-
tions have cost M + 1 and 0. Because there is a sequence

of cost partitionings with arbitarily large heuristic values,
hOCP
{hα:α∈A} = ∞. The minimal flows have cost M + 1 and

−∞, which is not optimal. The best cost partitioning for the
flows uses costs of 1 in α1 and 0 in α2 for a total value of
hOCP
{fα:α∈A} = 1.

Simplifying the OC Model

We now show how the OC model can be simplified and
strengthened by introducing a set of transformation rules.
Using them, we show how the state equation heuristic relates
to an optimal cost partitioning over certain abstractions.

Dead States

Dead states cannot be part of a shortest path in any abstrac-
tion. Removing such states is an obvious step.

Rule 1. Remove the flow constraints for all dead states and
all transition-counting variables for transitions adjacent to
a dead state. This may strengthen the OC model.

In the context of operator-counting, OC models strength-
ened in this way behave like shortest path models. To show
this, we have to consider them under general cost functions.

Proposition 4. Let α be an abstraction of a planning task
Π and let C be the constraints of the OC model for TSα

strengthened with Rule 1. Then hLP
C (cost) = hα(cost) for

any cost function cost : O → R.

Proof: Let TS′ be the transition system TSα without dead
states and their adjacent transitions. Let f ′ and h′ be the cost
of a minimal flow and a shortest path in TS′ under cost func-
tion cost. Proposition 2 shows hLP

C (cost) = f ′. Because TSα

and TS′ have the same goal paths, h′ = hα(cost). Proposi-
tion 1 establishes the missing link f ′ = h′. �

Operators Inducing a Single Transition

A common situation when considering small projections is
that an operator only induces a single transition. In this case
the linking constraint

∑
t∈transTS(o) Countt = Counto trivi-

alizes to Countto = Counto for some transition to. We can
reduce the size of the model by using Counto directly:

Rule 2. If an operator o only induces a single transition
to in an abstraction, replace Countto with Counto in all
constraints. Then remove the linking constraint for o and
the variable Countto . This does not affect the solutions of
operator-counting variables in the OC model.

Self-Loops

Self-looping transitions cancel out in flow constraints be-
cause they are incoming and outgoing transitions of the same
state. Thus, they only occur in linking constraints. We can
use different simplifications depending on how many self-
loops and state-changing transitions an operator o induces.

If o induces no state-changing transitions, its transition-
counting variables only occur in the linking constraint. But
for every value of Counto the constraint can always be sat-
isfied by setting Countt to Counto for some transition t of o
and to 0 for all others.

230



Rule 3. If an operator o induces at least one self-loop and
no state-changing transition, remove the linking constraint
for o and all transition-counting variables for transitions la-
beled with o. This does not affect the solutions of operator-
counting variables in the OC model.

SEQ constraints for a variable V are based on the DTG of
V without operators that do not affect V . Except for these
self-loops its transition system matches that of a projection
on V , so the following proposition is easy to verify.
Proposition 5. The model of the state equation heuristic has
the same constraints as the union of OC models for each
atomic projection simplified using Rules 2 and 3.

This is an alternative proof to show that the state equation
heuristic computes an optimal cost partitioning over atomic
projections (Pommerening et al. 2014), but this only holds
when the atomic projections contain no dead states.
If o induces both self-loops and state-changing transi-

tions, then the linking constraint can be simplified. We
can think of the linking constraint as two inequalities∑

t∈transTS(o) Countt ≤ Counto and
∑

t∈transTS(o) Countt ≥
Counto, where only one of them can be unsatisfied at the
same time. The latter can always be satisfied if a transi-
tion to only occurs in the linking constraint (i.e., if to is a
self-loop) by setting Countto high enough. In the other in-
equality, there is no need to mention the counting variables
for self-loops. Any solution that assigns a positive flow to
them still is a solution if their flow is reduced to 0.
Rule 4. If an operator o induces at least one self-loop and at
least one state-changing transition, replace the strong link-
ing constraint for o with the weak linking constraint for o:

∑

t∈transTS(o)
t is no self-loop

Countt ≤ Counto

and remove all transition-counting variables for self-loops
labeled with o.

Bonet and van den Briel (2014) consider merging two
variables X and Y into a new variable Z and introducing
flow constraints for values of Z. The DTG of Z is defined as
the parallel composition (Dräger, Finkbeiner, and Podelski
2006) of the DTGs of X and Y where states violating mu-
texes are removed. We want to consider mutexes separately,
so for now we assume that such states are not removed, i.e.,
the nodes in the DTG of Z are dom(X) × dom(Y ). Since
both X and Y have a goal value and are safe, Z also has
a goal value and is safe, so the constraints have the same
bounds as in the single-variable case. The only difference is
that an operator can induce more than one transition in the
DTG of Z. To accurately represent this in the constraints,
Bonet and van den Briel introduce an action copy for each
transition in the DTG and add a constraint to link them to
the operator counts. We write the LP variable that counts
occurrences of the action copy for transition t as the transi-
tion count variable Countt. The constraint that links them
to the operator-counting variables then is the weak linking
constraint and the constraints introduced for the values of Z
are the flow constraints for the projection on {X,Y }.

We can see from Rules 3 and 4 that self-loops can be ig-
nored or used to weaken the linking constraint in some cases,
but the constraints of the state equation heuristic still differ
from the OC model using these two rules. Operators induc-
ing only state-changing transitions use a strong linking con-
straint in the flow model and a weak linking constraint in the
model of the state equation heuristic. Obviously, a strong
linking constraint implies the weak linking constraint. We
have equivalence if we minimize

∑
o∈O cost(o)Counto, all

costs are non-negative, and we consider a single abstraction.
However, in the context of general cost partitioning, using
the strong linking constraint can make a difference for oper-
ators that cannot induce self-loops. The constraints for the
merge of X and Y in hSEQ can be strengthened by using
strong linking constraints for such operators. (Whether an
operator only induces state-changing transitions in a projec-
tion can be checked syntactically: an operator o should use
a strong linking constraint iff there is an affected variable V
in the projection with pre(o)[V ] �= eff (o)[V ].)

Proposition 6. Let CX,Y be the constraints generated by
hSEQ when merging variables X and Y , where weak link-
ing constraints are replaced by strong linking constraints for
operators that only induce state-changing transitions in the
projection to {X,Y }. Then CX,Y is the OC model for the
projection to {X,Y } simplified with Rules 3 and 4.

Mutex Information

Removing nodes that violate mutexes from abstractions
is a well-known technique called constrained abstraction
(Haslum, Bonet, and Geffner 2005). States violating a mu-
tex condition are similar to unreachable states, While they
can lie on a path in the abstraction, no concrete plan visits
a state that is abstracted to them. Removing them and their
adjacent transitions cannot decrease the heuristic value. The
example after Proposition 3 can be adapted to show that re-
moving such states can strengthen the OC model.

Rule 5. Remove the flow constraints for all states that vio-
late mutex conditions and all transition-counting variables
for adjacent transitions. This may strengthen the OC model.

The result from Proposition 6 can be extended to using
mutex information. After merging variables X and Y into
Z, the DTG of Z with mutexes removed is equal to the con-
strained projection to {X,Y } except for self-loops of oper-
ators that do not mention X and Y .

Proposition 7. Let CX,Y
mutex be defined like CX,Y in Propo-

sition 6 but with the state equation heuristic’s extension to
mutexes. Then CX,Y

mutex is the OC model for the constrained
projection to {X,Y } simplified with Rules 3, 4, and 5.

Ignoring a Single Abstract State

In the OC model of any transition system TS, the constraint
for a single state can be removed without affecting the set
of solutions. In contrast to previous sections, where states
are removed from the transition system including all of their
adjacent transitions, here we only consider removing one of
the flow constraints. This is a minor modification of the LP,

231



and the simplification is not likely to result in a performance
boost in practice. However, on the theoretical side it allows
to ignore certain parts of an abstraction, which is useful for
the analysis of the final extension of hSEQ, partial merges.

We show that the flow constraint for a state d is redundant
in the presence of flow constraints for all other states. Since
every transition has to start and end in some state we have⋃

s∈S inTS(s) =
⋃

s∈S outTS(s). Thus, the sum over the
left-hand side of all flow constraints except the one for d is:

∑

s∈S\{d}

∑

t∈inTS(s)

Countt −
∑

s∈S\{d}

∑

t∈outTS(s)

Countt

=−
∑

t∈inTS(d)

Countt +
∑

t∈outTS(d)

Countt

Since all constraints are equations, the result has to be the
sum over the right-hand sides of these constraints:
∑

s∈S\{d}
[s = s�]−

∑

s∈S\{d}
[s = sI] = −[d = s�] + [d = sI]

Multiplying both sides by −1 results in the flow constraint
for d.

Rule 6. Removing the constraint for a single state from an
OC model does not influence the set of solutions.

We can use this rule to analyze partial merges in hSEQ. In a
partial merge of variablesX and Y , only the flow constraints
for a subset of values M ⊆ dom(X) × dom(Y ) are part of
the model.

Proposition 8. Let αX,Y
M be the abstraction with abstract

states M ∪ {d} that maps every state s to z = 〈s[X], s[Y ]〉
if z ∈ M and to d otherwise. Let CX,Y

M be defined like CX,Y

in Proposition 6 but only considering merged values in M .
Then CX,Y

M is the OC model for αX,Y
M simplified with Rules

3 and 4, then using Rule 6 to remove the constraint for d.

The proposition suggests a clean way for generalizing par-
tial merges beyond two variables: project the task to all in-
volved variables, then abstract the projection further by map-
ping all unrepresented abstract states to a new state d. The
partial merge then is the OC model for the resulting abstrac-
tion simplified with Rules 3 and 4, then using Rule 6 to re-
move the constraint for d. Using Rules 1, 2, and 5 as well
can strengthen the model and reduce its size.

Conclusion

We have shown how optimal cost partitioning over min-flow
abstraction heuristics can be modeled and how this model
can be simplified and strengthened. Removing dead states
turns this into a way to compute optimal cost partitionings
for abstraction heuristics. This leads to a better understand-
ing of such cost partitionings in general and the state equa-
tion heuristic in particular.
It turns out that hSEQ is not a cost partitioning over ab-

straction heuristics but one over min-flow abstraction heuris-
tics. This is weaker in general, but the gap can be closed
without increasing the model size by removing isolated
states and using stronger linking constraints.

In general the simplification rules produce a more com-
pact model for computing the cost partitioning of any set of
abstraction heuristics. This means that ideas that make hSEQ

efficient in practice can be used for other abstractions and
hopefully lead to new efficient and high-quality heuristics.

Acknowledgments

This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications”.

References

Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Proc.
ICAPS 2014, 47–55.
Bonet, B. 2013. An admissible heuristic for SAS+ plan-
ning obtained from the state equation. In Proc. IJCAI 2013,
2268–2274.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Proc. SPIN 2006, 19–34.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84–90.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Proc.
AAAI 2005, 1163–1168.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for generat-
ing lower bounds in factored state spaces. JACM 61(3):16:1–
63.
Katz, M., and Domshlak, C. 2007. Structural patterns
heuristics: Basic idea and concrete instance. In ICAPS 2007
Workshop on Heuristics for Domain-Independent Planning.
Katz, M., and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. AIJ 174(12–13):767–798.
Korte, B., and Vygen, J. 2001. Combinatorial Optimization:
Theory and Algorithms. Springer, 2nd edition.
Pommerening, F., and Helmert, M. 2015. A normal form
for classical planning tasks. In Proc. ICAPS 2015, 188–192.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In
Proc. ICAPS 2014, 226–234.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proc. AAAI 2015, 3335–3341.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Proc. CP 2007, 651–665.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
JAIR 32:631–662.

232




