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Attraction Effect in Risky Choice 
Can Be Explained by Subjective 
Distance Between Choice 
Alternatives
Peter N. C. Mohr1,2,3, Hauke R. Heekeren  3,4 & Jörg Rieskamp5

Individuals make decisions under risk throughout daily life. Standard models of economic decision 
making typically assume that people evaluate choice options independently. There is, however, 
substantial evidence showing that this independence assumption is frequently violated in decision 
making without risk. The present study extends these findings to the domain of decision making 
under risk. To explain the independence violations, we adapted a sequential sampling model, namely 
Multialternative Decision Field Theory (MDFT), to decision making under risk and showed how this 
model can account for the observed preference shifts. MDFT not only better predicts choices compared 
with the standard Expected Utility Theory, but it also explains individual differences in the size of the 
observed context effect. Evidence in favor of the chosen option, as predicted by MDFT, was positively 
correlated with brain activity in the medial orbitofrontal cortex (mOFC) and negatively correlated with 
brain activity in the anterior insula (aINS). From a neuroscience perspective, the results of the present 
study show that specific brain regions, such as the mOFC and aINS, not only code the value or risk 
of a single choice option but also code the evidence in favor of the best option compared with other 
available choice options.

The assumption that decision makers evaluate choice options independently of each other is a cornerstone of 
standard economic choice theories. Standard theories postulate that the subjective value (or the expected utility) 
of an option does not change when another option is added to the choice set. Imagine a choice between two 
investments for retirement savings, an investment that offers a high return but also has a relatively high risk of 
low performance and another investment that offers a low return but is almost riskless. If you evaluate each of the 
two investments independently of each other, the addition of a third investment (e.g., medium return and risk) 
should not influence your relative preference between the original two investments. There is, however, a substan-
tial amount of evidence showing that this independence assumption is frequently violated1. The choice set, i.e., the 
context in which an option is presented, can influence the evaluation of the option. Such context effects include 
the attraction effect (AE), the compromise effect (CE), and the similarity effect (SE). All three effects occur when 
a specific third option is added to a choice set, with a dominated option in case of the AE, an intermediate option 
in case of the CE, and a similar option for the SE. All three effects lead to a change of the relative preference 
for two choice options resulting from the addition of a third option. Previous studies examining context effects 
primarily focused on multi-attribute decision making without risk, such as consumer behavior. Only very few 
studies have so far investigated context effects in decision making under risk. These studies provide evidence that 
the AE can also occur for risky decisions for decisions alternatives with both discrete2–4 and continuous5 outcome 
distributions2, 3.

The change of relative preferences represents a violation of essential choice principles, i.e., the independence 
from irrelevant alternatives and the regularity principle, principles on which standard economic choice theories 
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were built. Consequently, standard economic theories, such as the Logit or Probit model6, cannot explain con-
text effects. The results of previous studies have led to the development of new choice theories explaining some 
of the violations7. However, new models that can, in principle, simultaneously explain all three context effects 
have also been developed, including Multialternative Decision Field Theory8 (MDFT), the Leaky, Competing 
Accumulator Model9 (LCA), the Associative Accumulation Model (AAM), and the Multi-Attribute Linear 
Ballistic Accumulator Model10. Notably, all four models belong to the class of sequential sampling models, which 
assume that a preference state develops over time by accumulating evidence for the different choice options11. 
All models further assume that the relationship of the choice options to each other within the multi-attribute 
space affects the subjective value of the options and is essential for explaining the context effects. MDFT, for 
instance, computes the psychological distance between options measured in two dimensions, the indifference 
and the dominance dimension. The indifference dimension defines a dimension within the multi-attribute space 
along which all options are equally attractive to the decision maker. The dominance dimension, in contrast, 
defines a dimension along which options dominate other options and therefore have a strict preference order-
ing. The overall distance is determined by an additive combination of the two distances where the importance 
weight given to each dimension strongly influences the effect on how options influence each other. The process 
in MDFT resulting in the AE is based on distance-based inhibition. The closer two options are with respect to 
each other in the space of relevant dimensions, the more these options are assumed to inhibit each other. If one 
of the two options dominates the other option, then the inhibition process results in a boost for the dominating 
option, thereby inverting the inhibition. This boost increases with decreasing distance. While distance-based 
inhibition is crucial in MDFT to account for the AE, the other three models mentioned above propose different 
processes. Whereas according to LCA, loss aversion in the value function leads to the AE, within the framework 
of the AAM a saliency-driven increase in the weight of the target’s strongest attribute is responsible for the AE. 
Finally, in MLBA alternatives that are more difficult to discriminate receive more attention, thereby increasing 
the choice probability of a dominant choice option in case of the AE. While all four models have been specified 
for multi-attribute decision making, it remains unclear how they should be applied to potential context effects in 
the domain of decision making under risk.

In the following we will focus on MDFT as a prominent representative of the sequential sampling models 
described. MDFT is an extension of decision field theory (DFT) that was explicitly developed to account for risky 
choices12. MDFT (i.e. “multi-alternative DFT”) is a generalization of DFT that can also be applied to choices 
between more than two alternatives. Furthermore, it includes mechanisms that allow MDFT to predict context 
effects. Thus, DFT cannot be applied to the three alternative choice tasks we study and we need to rely on MDFT. 
However, to allow MDFT to predict context effects for decision between risky alternatives, we represent proba-
bilities and outcomes as two attributes (with logarithmized values). This procedure has already been successfully 
proposed by Wedell4. Taking the logarithm of both probability and outcome translates the two into additive 
attributes on which MDFT relies. However, this procedure nevertheless guarantees that the expected value model 
represents a special case of MDFT.

Only two studies so far have investigated the neural underpinnings of a context effect13, 14. The authors identi-
fied the AE in choices between flats and gambles. On the neural level, the authors of these studies observed higher 
brain activity in the dorsolateral prefrontal cortex (DLPFC), the anterior insula (aINS), and the dorsomedial 
prefrontal cortex (DMPFC) when a third asymmetrically dominated decoy was present, whereas brain activity 
in the amygdala and the ventromedial prefrontal cortex (VMPFC) was reduced in this situation. Both studies, 
however, did not provide a quantitative model to explain the effects and did not account for possible confounds 
of the number of presented alternatives (2 vs. 3 alternatives). Only recently have researchers started to explicitly 
model the data of context effects using quantitative models, such as MDFT15.

In the present study, we go beyond these past approaches by (a) providing further evidence that decisions 
under risk can be influenced by context effects, such as the AE, (b) examining whether these effects can be 
described by evidence accumulation models like MDFT, and (c) determining how the neurobiological underpin-
nings of the AE are related to the decision process assumed by MDFT.

MDFT assumes that similar choice options compete with each other and have a negative effect on each other. 
However, in the case of an unattractive dominated option with a negative overall evaluation, the competition 
leads to a positive “boosting” effect for the dominant option, as illustrated with the AE. How similar a domi-
nated option is perceived according to MDFT depends on how much weight is given to the distances along the 
indifference compared with the dominance dimension. When giving little weight to the dominance dimension, 
the dominated option will be perceived as very similar to the dominant option, producing a large AE. Here, we 
specifically test how the overweighting parameter that determines the size of the AE is associated with changes in 
brain activity. In our study, we use fMRI to explicitly investigate how individual differences in the overweighting 
parameter are related to individual differences in decision-related brain activity.

In our experiment, the participants (n = 18) made repeated choices between two or three monetary gambles 
during fMRI (see Fig. 1). The choice situations differed in three within-subject conditions: (I) choices between 
two options defined as the target and competitor option (basic condition), (II) choices between the target, the 
competitor, and a third option defined as the decoy, which was dominated only by the target but not by the com-
petitor (decoy condition), and (III) choices between the target, the competitor, and a third dominated option 
symmetrically dominated by both the target and the competitor (filler condition). Importantly, according to a 
study-based preference task conducted prior to the main study, participants had to provide information con-
cerning their indifference between different gambles, which provided us with information so that the target and 
competitor gambles were selected to make the participants indifferent between them (see the Methods section 
for details). Our analysis of the behavioral and neuroscientific data follows three steps. First, the different models 
are estimated on the basis of the choice data and rigorously compared by their goodness-of-fit (taking model 
complexity into account using the Akaike information criterion, AIC). Second, we test the ability of the winning 
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model to account for the qualitative findings, that is the specific context effects we observed. Finally, we test 
whether the winning model can also be related to brain activity.

Results
Behavioral Data. Paired t-tests of choice frequencies showed that the target was chosen significantly more 
often when a decoy was present compared with the other two conditions when no decoy was present (t = 3.097; 
p = 0.006) or a third symmetrically dominated option (t = 3.850; p = 0.001) was added to the choice set (see 
Fig. 2A). There were, however, no significant differences between the amount of target choices in the basic and 
the filler condition (t = 1.206; p = 0.244). This behavior represents a violation of the independence of irrelevant 
alternatives and the regularity principle and shows the manifestation of the AE in decision making under risk. 
We further applied MDFT to model participants’ choices. To examine whether MDFT described the data well, 
we rigorously tested it against Expected Utility (EU) theory and against a baseline chance model. According to 
the EU theory, the participants chose the option with the largest expected utility. Here, we defined the utility of 
the monetary outcomes using a power utility function with one free parameter (i.e., u(x) = xα). The choice prob-
ability was specified using a softmax choice rule, including one sensitivity parameter. The baseline chance model 
assumed that all available choice options are chosen with equal probabilities. EU and MDFT must outperform the 
baseline model to represent plausible choice theories. The results showed that MDFT outperformed the other two 
models on an aggregated level (see Fig. 2B). On the individual level, MDFT outperformed the other two models 
for 16 out of 18 subjects according to the AIC16, which considers the complexity of the models. The EU theory 
performed best for two participants (see Figure S1 in the supplementary materials for details).

We also quantified the AE on an individual level by determining the difference in the choice frequency of the 
target option in the decoy condition compared with the average choice frequency of the target in the other two 
conditions, showing that the larger this difference, the larger the AE. To examine whether MDFT is able to predict 
the observed AE effect, we also computed the predicted AE effect by taking the difference between the average 
predicted choice probability of the target in the decoy condition compared with the average predicted choice 
probability of the target in the other two conditions. Figure 2C shows that the observed AE on an individual level 
was significantly correlated with the predicted AE by MDFT (r = 0.65; p = 0.004), with an average observed AE 
of 5.7% and a predicted effect of 3.8%. Thus, MDFT not only describes the choice data well but also accurately 
explains the AE on an individual level.

fMRI Data. As a first step in the fMRI analysis, we aimed at replicating the results of Hedgcock and Rao13, who 
observed higher brain activity in the DLPFC, aINS and DMPFC when an asymmetrically dominated decoy was 
present, whereas brain activity in the amygdala and the ventromedial prefrontal cortex (VMPFC) was reduced 
in this situation. We therefore contrasted constant brain activity during the decoy condition with constant 

Figure 1. Task. (A) Subjects performed a series of choices between two or three risky gain-versus-nothing 
gambles and had 7 s to make their choice. (B) Choices were separated in three with-subject conditions, (I) the 
Baseline Condition, (II) the Decoy Condition, and (III) the Filler Condition. In (I) the Baseline Condition 
subjects made choices between two all-or-nothing gambles, one with a high probability to win a small amount 
of money (Target) and one with a low probability to win a high amount of money (Competitor). In (II) the 
Decoy Condition one option was added to the choice set compared to the Baseline condition. This additional 
option (Decoy) was similar to the option with a high probability to win a small amount of money, but the 
probability was exactly 10 percentage points lower to win the same small amount of money. In the (III) Filler 
Condition also one option (Filler) was added to the choice sets of the Basic Condition. The option, however, 
offered the same small win that was offered in one option but only with the low probability of the other option.
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brain activity during the baseline condition. Most of the observed differences indeed replicated the findings of 
Hedgcock and Rao13 (see Figure S2 in the supplementary materials for details). This contrast is, however, con-
founded with the comparison of choosing between three options (decoy condition) and choosing between two 
options (basic condition). Therefore, the observed differences might not specifically reflect the AE but rather the 
amount of processed information. We therefore contrasted constant brain activity in the decoy condition with 
constant brain activity in the filler condition, thereby holding the number of available options constant. Here, we 
identified only a relatively small cluster in the aINS (see Fig. 3A) that only appears to be significant when applying 
a very liberal cluster threshold (cluster size > 50) and fails to be significant for more rigorous thresholds (e.g., 
cluster-p < 0.1).

To relate brain activity to the MDFT, we examined whether the predicted choice probability of MDFT is cor-
related with changes in brain activity during choice. In general, the larger the predicted choice probability for the 
chosen option of MDFT the larger the accumulated evidence should be. In contrast, smaller choice probabilities 
indicate less evidence in favor of the chosen option and greater choice uncertainty. Consistent with this interpre-
tation, we observed a positive correlation between the choice probability of the chosen option and brain activity 
in the medial orbitofrontal cortex (mOFC) and the posterior cingulate cortex (PCC) (see Fig. 3B). We further 
observed significant negative correlations between the choice probability and brain activity in the bilateral ante-
rior insula (aINS), dorsomedial prefrontal cortex (DMPFC), thalamus, dorsolateral prefrontal cortex (DLPFC), 
and parietal cortex (see Fig. 3B). These regions have been identified in a meta analysis to code for risk in decision 
making17. Thus, these regions might not only code for uncertainty with respect to a specific choice option but 

Figure 2. Behavioral Results. (A) Subjects chose the Target significantly more often in the Decoy Condition 
compared to the Baseline Condition or the Filler Condition. There was no significant difference in choice 
propensity between the Baseline and the Filler Condition. (B) In a model comparison, MDFT was better able 
to explain observed choices compared to EUT and a simple Chance Model, indicated by lower AIC scores. 
(C) Individual differences in the observed size of the AE were strongly correlated (r = 0.64) with individual 
differences in the size of the AE predicted by MDFT.
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also for decision uncertainty (see ref. 18, when accumulated evidence between options does not differ much. In 
general, the results indicate that the predictions of a sequential sampling model, such as MDFT, are to some extent 
consistent with the brain activity.

In a further step of the fMRI analysis, we specifically examined how the predicted AE of MDFT19 could be 
related to brain activity. As described above, the similarity between the options defined by the psychological 
distance between options is essential within MDFT for predicting the AE. According to MDFT, the subjective 
distance comprises the distance in the indifference dimension and the distance in the dominance dimension 
(see Fig. 3C). Importantly, the relative weighting of these distances influences how strongly the choice options 
inhibit or boost each other. The dominated option generally boosts the choice probability of the dominant option. 
The distance of the dominated option to the dominant option decreases with decreasing weight given to the 
dominance dimension, thus the underweighting of the dominance dimension should increase the AE. In a sim-
ulation we analyzed how underweighting of the dominance dimension relative to the indifference dimension 
increases the size of the AE. While maintaining all other estimated parameters constant on an individual basis, 
we parametrically varied the relative distance weighting parameter. We observed a positive correlation between 
underweighting of the dominance dimension and the AE size predicted by MDFT in all but 3 participants (mean 
r = 0.45, median r = 0.65). These results suggest that the weight given to the dominance dimension is indeed 
essential for MDFT to describe the AE. We therefore examined how the relative distance weighting parameter 
correlates with the brain activity.

We observed that the neural representation of evidence in the PCC is modulated by individual differences 
in the relative distance weighting parameter (see Fig. 3D). Crucially, subjects with lower overweighting of the 
distance in the dominance direction showed a decreased correlation between brain activity and predicted choice 
probability of the chosen option.

Figure 3. FMRI Results. (A) Brain activity in the aINS was significantly higher (z > 3.1, cluster size > 50, 
displayed in red) during decision making in the decoy condition compared to the filler condition. (B) Evidence 
in favor of the chosen option, operationalized as choice probability predicted by MDFT, showed a positive 
correlation (z > 3.1, cluster p < 0.05, displayed in red) with brain activity in mOFT/VMPFC and PCC and a 
negative correlation (z > 3.1, cluster p < 0.05, displayed in blue) with brain activity in bilateral aINS, bilateral 
DLPFC, and DMPFC. (C) In MDFT, the subjective distance between two alternatives is determined by the 
distance in the indifference direction and the distance in the dominance direction. Importantly, a specific 
parameter, namely the relative distance weighting parameter, allows for an overweighting of the distance in the 
dominance direction, leading to an increase in the subjective distance for dominated alternatives and a decrease 
in the AE. In the displayed example the subjective location of Option C would thus move to C’ or C” with an 
increasing relative distance weighting parameter. (D) Individual differences in the relative distance weighting 
parameter were related to neural representations of evidence in favor of the chosen option in PCC (z > 3.1, 
cluster p < 0.1, displayed in green). A decrease in the relative distance weighting led to decreased brain activity 
in the PCC.
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Discussion
In the present study, we investigated (a) whether an individual’s decisions between risky options are influenced 
by the composition of the choice set, (b) whether these influences can be described using a sequential sampling 
model, such as MDFT, and (c) how the neurobiological underpinning of the AE could be related to the specific 
mechanisms assumed by MDFT to explain the AE.

The present results show that AE can also be observed in decision making under risk2, 3. Although the AE has 
previously been demonstrated in the literature2, 20, 21, these studies have primarily focused on consumer choices. 
More importantly, the effects have often been illustrated using between-subjects designs, leaving open whether 
the effects can also occur for the same person when making repeated decisions. To answer this question, we have 
used a within-subject design (see also ref. 15).

Several theoretical models have been proposed to account for the observed AE effects. One study showed that 
both the AE and the compromise effect increase when individuals have to subsequently justify their choices22. The 
authors argued that dominance or compromised relationships are used as tie-breaking reasons after a trade-off of 
the options’ attributes fails to lead to a clear preference. Another study compared three different classes of models 
that might account for the observed preference reversals in the AE4. In one class of models, the decoy is assumed 
to affect the weights assigned to different dimensions, whereas a second class of models proposes that the decoy 
produces range-frequency effects on dimensional values of alternatives. Finally, a third class of models, best able 
to explain the observed data, is, consistent with the ideas of Simonson22, based on the assumption that the percep-
tion of dominance directly increases the attractiveness of the dominating alternative. Another theoretical account 
focused on the weights individuals assign to the different attributes or dimensions23. The theory of dynamic 
choice reconstruction is based on the idea that the more similar two options are, the easier it is to recognize dif-
ferences among their dimensions. This, in turn, would increase the relative weight of the dimension that differs 
changing also the preference relationship between two alternatives that are not similar.

Although the above described models account for the AE, few models to date can simultaneously explain all 
three context effects, namely the AE, the similarity effect, and the compromise effect9, 10. Here, we focused on 
MDFT8, which is based on the assumption that evidence is accumulated over time to form a preference state. 
By defining the logarithms of probability and outcome magnitude as inputs of MDFT, we established a model 
that includes expected value maximization as a special case. Similarly, EU theory also includes expected value 
maximization as a special case and thereby connects to MDFT. In a rigorous model comparison, we showed that 
MDFT explains observed choices better than EU theory and a baseline chance model. Additionally, we observed 
that the size of the AE is reflected in MDFT predictions. MDFT thus not only provides a theoretical account that 
explains the AE in general but also explains individual differences.

Only one study thus far investigated the neural underpinnings of the AE13. By comparing choices between 
two alternatives with choices between three alternatives (including a decoy) the authors showed that VMPFC 
and amygdala were less active when a decoy was present, whereas DLPFC, DMPFC, and aINS were more active. 
These authors attributed this finding to a general trade-off aversion causing the AE. Notably, however, the contrast 
between two alternatives with choices between three alternatives (including a decoy) is confounded with the mere 
amount of processed information. A comparison of all three conditions in the present study revealed that indeed 
most of the results of Hedgcock and Rao13 could be explained by comparing a choice between three options with a 
choice between two options, independent of the presence of a decoy and the AE. Importantly, in our experiment, 
only a small activation in the aINS remained when comparing the decoy condition with the filler condition and 
while holding the number of available options constant. As inferring cognitive processes from brain activity is in 
general problematic24, brain activity in the aINS is not selective, and the observed activation is only significant 
for very liberal cluster thresholds, we can only speculate on the functional role of the insula-activation for the 
occurrence of the AE. Changes in brain activity in the aINS have previously been attributed to saliency (ref. 25 
for review), which was proposed to be an important driver of the AE in the AAM, a computational model similar 
to MDFT. Following the AAM, the AE is a result out of a saliency-driven overweighting of the target’s strongest 
attribute26. Future studies should address this potential interpretation of the insula-finding more explicitly.

As we were interested in how the neurobiological underpinnings of the AE could be related to the decision 
processes assumed by MDFT, we correlated choice probabilities predicted by MDFT with changes in brain 
activity during the decision. The predicted choice probability of the chosen option can be seen as a measure 
of accumulated evidence. A higher choice probability of the chosen option implies greater evidence in favor of 
the chosen option compared with the other options. We observed that evidence in favor of the chosen option is 
positively correlated with brain activity in mOFC/VMPFC and PCC and negatively correlated with brain activity 
in bilateral aINS, DLPFC, DMPFC, thalamus, and parietal cortex. Both the mOFC/VMPFC and the PCC have 
frequently been observed in the context of value processing27, 28. Other studies have associated the aINS, DLPFC, 
DMPFC, thalamus, and parietal cortex with the processing of risk17, 29, 30. The studies investigating value or risk 
processing, however, have focused either on the evaluation of a single object or on a choice between a varying 
alternative and a constant choice option. Thus, the question remains as to how the brain would code value and 
risk of multiple varying alternatives. The findings of the present study support the view that both networks might 
not only code for value and risk of single choice options but also for evidence in favor of the chosen option (e.g., 
in choices between two or more alternatives). Importantly, this interpretation is also consistent with the observa-
tions of previous studies investigating the value and/or risk of single choice options, as value and risk were fully 
confounded with evidence in favor of the chosen option in most tasks.

To investigate a possible connection between the choice process assumed by MDFT and brain activity dur-
ing choices, we tested whether the relative distance weighting parameter of MDFT that is essential to predict 
the AE is associated with the neural processing of evidence. The process in MDFT resulting in the AE is based 
on distance-based inhibition. The closer two alternatives are with respect to each other in the space of relevant 
dimensions (in our case magnitude and probability of possible outcomes) the more these alternatives are assumed 
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to inhibit each other. If one of the two options dominates the other option, then the inhibition process results in a 
boost for the dominating option, thereby inverting the inhibition. This boost is much stronger when the distance 
is smaller. An increase of the relative distance weighting parameter thus leads to a reduction of the boost and 
a decrease in the size of the AE. For high parameter values, the AE completely disappears, and the choices are 
similar to choices in choice sets without a decoy (e.g., in the basic condition of our experiment). We observed that 
individual differences in neural representations of evidence in the PCC are related to individual differences in the 
relative distance weighting parameter. Interestingly, the lower the relative distance weighting parameter (i.e., the 
higher the AE) the lower the relation between evidence and brain activity in the PCC became. The link between 
evidence (e.g., predicted by MDFT) and brain activity in the PCC is thus greatest when there is no AE present. 
Recent work by Grueschow and colleagues31 found that PCC reflects the subjective value of a choice alternative, 
even if the subjective value is irrelevant for choices (e.g., in perceptual decisions). As we interpret this activation 
in the context of multi-alternative choices as related to evidence, one potential interpretation of this finding would 
be that the PCC, in contrast to the mOFC/VMPFC, reflects unbiased evidence in favor of one option. This inter-
pretation is in line with the findings by Grueschow and colleagues31. If the presence of a dominated option biases 
evidence in favor of one option, then this change results in a lower relation between brain activity in the PCC 
and evidence. The mOFC/VMPFC, in contrast, seems to be sensitive to the biasing effects of dominated options.

In summary, the present results show that in decision making under risk, the set of choice options influ-
ences the evaluation of single options, illustrated by the AE. MDFT provides a theoretical account that not only 
explains the AE in general but also explains individual differences in its size and brain activity related to the AE. 
From a neuroscience perspective, these results show that specific brain regions, such as mOFC/VMPFC, PCC or 
aINS, not only code value or risk of a single choice option but also provide evidence in favor of the best option 
when individuals must choose between several different options. The PCC thereby seems to code evidence in an 
unbiased way, not reflecting changes in evidence caused by the presence of a decoy option, whereas the mOFC/
VMPFC fully reflect these changes.

Moreover, these results illustrate that the basic assumption of the independent evaluation of choice options 
embedded in standard economic choice theories can be substantially violated by human decision making. The 
results show that the value of choice options is affected by the context in which these options are presented, thus 
apparently, people do not simply reveal their preferences when making choices; on the contrary, they construct 
their preferences when making decisions in a specific situation. This idea suggests that, contrary to economic 
theory, the market price of an investment product might not only reveal the isolated preferences of the investors 
but also the impact of the context in which the investment product is presented.

Methods
Participants. Eighteen young volunteers (age 19–34 years, 7 females) participated in this study. All partic-
ipants were native German speakers, right-handed, had no history of neurological or psychiatric diseases. All 
participants were paid for their participation and gave written informed consent. The study was approved by the 
local ethics committee of the Charité University Medicine, Berlin. All methods were performed in accordance 
with the relevant guidelines and regulations.

Task. Participants performed a series of choices between gambles in three different conditions, (I) the Basic 
Condition, (II) the Decoy Condition, and (III) the Filler Condition. In (I) the Basic Condition participants made 
choices between two gambles, one with a high probability to win a small amount of money (e.g., 80%, 20$), and 
one with a low probability to win a high amount of money (e.g., 20%, 80$). Based on a pre-study preference task, 
these gambles were individually tailored in a way that the participants should be almost indifferent between 
the two options, ensuring that their choice behavior does not differ substantially from a 50%/50%-distribution. 
Specifically, we estimated two indifferences points that served as basis for stimulus generation. Participants ini-
tially made repeated choices between a choice option with 20% chance to win 80$ and an option with x% chance 
to win 20€. The x was varied parametrically in an increasing order. The x at which participants switched from 
choosing the first option to choosing the second option determines the indifference point. This procedure was 
repeated for choices between an option offering a chance of 25% to win 64$ and an option with a varying chance 
of y% to win 25€. The two indifference points were used to generate choice options for the main experiment. Here, 
we parametrically varied probability and magnitude in steps of 1%/1€ around the indifferences points.

In the Decoy Condition (II) one option was added to the choice set compared to the Basic Condition. This 
additional option, the decoy, was similar to the alternative with a high probability to win a small amount of 
money, but the probability was exactly 10 percentage points lower to win the same small amount of money (e.g., 
70%, 20$). In the Filler Condition (III) also one option was added to the choice sets of the Basic Condition. 
The option offered the same small win that was offered in one option but only with the low probability of the 
other option (e.g., 20%, 20$). Participants made 72 choices in each condition. Additionally, we added 36 choices 
between a sure amount and a risky lottery to prevent participants from recognizing the aim of the experiment.

Participants received a flat payment of 10 Euro for their participation in the experiment. After the experi-
ment, one of the 252 choices was randomly chosen to determine decision dependent payments. The option that 
was actually chosen on the randomly selected trial was played out, so that participants either won an additional 
amount of money in addition to their initial payment or just received no additional amount to their initial pay-
ment. The task was thus fully incentive compatible.

Behavioral Modeling. We modeled behavioral data with three different models, namely a Baseline Chance 
Model, EU theory, and MDFT, and compared them in a rigorous model comparison. For the Model Comparison 
we used the AIC16 which penalizes additional parameters but is less conservative compared to the Bayesian 
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Information Criterion (BIC). The Chance Model assumes equal choice probabilities for all available alternatives, 
that is ½ for two and 1/3 for three alternatives. For EU theory we assumed a simple power utility function of the 
form u(x) = xq, where u defines the utility of outcome x and q the exponent is a free parameter that represents 
the risk attitude of the decision maker, with q = 1 representing risk neutrality, q < 1 risk aversion, and q > 1 risk 
seeking attitudes. Expected Utility (EU) was defined as the sum of the utilities of the outcome x multiplied with 
the probabilities p that the different outcomes i of an option occurred.

∑= ⋅
=

EU m p u x( ) ( )
(1)i

I

i i
1

To translate expected utilities into choice probabilities, we used a simple softmax choice rule:

=
∑

ϑ⋅

=
ϑ⋅

Pr m e
e

( )
(2)

EU m

j
N EU j

( )

1
( )

where ϑ is a free sensitivity parameter and N denotes the number of available options of the choice set.
In MDFT, the evidence for each option at any point in time is captured by a preference vector P. P integrates 

all previous preference states P and the current evaluation V of the options according to the following updating 
process. The updating of P over time is assumed to continue until a specific threshold is reached, the decision time 
is over, or the preference states have stabilized. Here, we focused on the latter possibility. The preference state P 
is defined as:

= +−P SP V , (3)t t t1

where S describes a feedback matrix reflecting how strongly previous preference states are memorized (diagonal 
elements) and how the options influence each other, depending on their relative distance (D) in the attribute 
space and V representing the valence of the different options. The feedback matrix S is given by

δ ϕ ϕ= − ⋅ − ⋅S Dexp( ), (4)2 1
2

where, δ is an identity matrix, ϕ2 a decay parameter that determines the diagonal elements of S, and ϕ1 a sensitiv-
ity parameter that determines the similarity as a function of the distance D between the options in the attribute 
space. The distance function D describes the subjective distance between two options in the attribute space. It is 
based on a decomposition of distance in the indifference direction and in the dominance direction. Importantly, 
a parameter wd allows for an overweighting of distance in the dominance direction and therefore an increase in 
subjective distance, if options are dominated.

MDFT assumes that options are evaluated relative to each other. This leads to dependencies in the evaluations 
of choice options that are reflected in the valence vector Vt, which can be decomposed into three matrices and an 
error component (ε):

ε= +V CMW , (5)t t

where, C denotes a contrast matrix to compute the relative advantage (disadvantage) of each option to the other 
options. M is a value matrix that contains the attribute values of each option and Wt, represents a attention weight 
vector describing the relative importance of each attribute over time.

To estimate choice probabilities predicted by MDFT we assumed that individuals make choices after the pref-
erence states have stabilized and therefore set t to a very high level (t = 100015). In the current form MDFT thus 
contains five free parameters, the weighting parameter w, the relative distance weighting parameter wd, the sensi-
tivity parameter ϕ1, the decay parameter ϕ2, and a variance parameter v of the normally distributed error term ε. 
The probability and outcomes of a gamble are usually connected in a multiplicative way to determine, for instance, 
the expected value or the expected utility of an option. We therefore logarithmized the probabilities and outcomes 
in MDFT, so that it became sensible to use them as additive attributes and thereby expected value maximization 
becomes a special case of MDFT. We further follow the approach of Berkowitsch et al.15 to normalize attributes. 
Parameter estimation was performed in MATLAB R2015a (Mathworks), using the function fminsearch. We used 
the quantiles Q0.25, Q0.5, and Q0.75 of the estimated parameter distribution of Berkowitsch et al.15 as starting values 
within our optimization procedure. The combination of estimated parameter values resulting in the lowest AIC 
was used to determine the choice probabilities for every trial of the experiment to inform the fMRI analysis.

MRI Data Acquisition. Whole-brain fMRI data were collected on a 3 T Siemens Magnetom Trio scanner 
using a 12-channel phased-array head coil. Echoplanar images (EPI) were acquired from 36 axial slices of 68 × 68 
voxels with 3-mm in-plane resolution, 3.45-mm slice thickness, field of view (FOV) of 204 mm, 80° flip angle, 
28-ms echo time (TE), and 2-s repetition time (TR). For each participant two runs of 670 volumes each were 
acquired. Initial scout scans were performed to localize slice planes parallel to the anterior commissure – poste-
rior commissure line. In addition, high-resolution T1-weighted structural scans were collected for each partici-
pant for registration purposes using an MPRAGE sequence (192 sagittal slices; matrix size: 256 × 256; voxel size: 
1 × 1 × 1 mm; FOV: 256 mm; flip angle: 9°; TE: 2.52 ms; TR: 1.9 s).

MRI Data Analysis. MRI data were analyzed using a mixed effects approach within the framework of the 
general linear model as implemented in the FMRI Expert Analysis Tool (FEAT32, part of FSL 4.0 (FMRIB’s 
Software Library, http://fmrib.ox.ac.uk/fsl). Pre-processing included slice-timing correction, motion correction, 

http://fmrib.ox.ac.uk/fsl
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and spatial smoothing using an 8 mm Gaussian kernel. Additionally, pre-whitening was used and high-pass tem-
poral filtering (90 s) was applied to the data. A double-gamma function was used to model the hemodynamic 
response.

Event-related fMRI data were analyzed using General Linear Models (GLM) with task-related regressors. 
Images of individual level regression parameters (contrast images) were normalized into a standard stereotaxic 
space (Montreal Neurological Institute (MNI), Montreal, Quebec, Canada) and included a random-effects group 
analysis. Here we used the Bayesian modeling approach33 implemented in FSL’s FLAME (FMRIB’s local analysis 
of mixed effects) procedure to test whether regression parameters were significantly different zero, or significantly 
different from each other. For the a priori regions of interest we report those activations as significant that exceed 
an uncorrected threshold of z-score > 3.1 and a cluster size > 50. A priori regions of interest were regions that have 
been shown to be implicated in preferential decision making34–36. These regions include the prefrontal cortex, the 
cingulate cortex, the striatum, the aINS, the amygdala, the hippocampus, and the parietal cortex.

We analyzed two different models. The purpose of GLM1 was to replicate the findings of Hedgcock and 
Rao13. We therefore defined three regressors of interest and one regressor of no interest. The regressors of interest 
modeled constant brain activity during the decision phase (7 s) of the three conditions of our experiment (Basic 
Condition, Decoy Condition, and Filler Condition). Additionally, we included one regressor of no interest that 
modeled the decision phase (7 s) of missed trials as well as choices between a sure amount and a risky option 
that were included to prevent subjects from recognizing the aim of the experiment (see above). Each of the three 
regressors of interest was contrasted against the other two.

The purpose of GLM2 was to examine the relationship between evidence in favor of the chosen option and 
brain activity. Here, we included two regressors of interest and one regressor of no interest. One regressor of 
interest (R1) modeled brain activity during the decision phase (7 s) independent of the condition. The second 
regressor of interest (R2) modeled a parametric modulation of the decision phase (7 s) with the choice probability 
of chosen option that was predicted by MDFT. The regressor of no interest modeled the decision phase (7 s) of 
missed choices (if there were any). Importantly, R2 was orthogonalized with respect to R1. Here, we tested in 
which brain regions regression parameters of R2 are significantly different from zero (positive or negative). We 
further analyzed in which brain regions individual differences in the relative distance weighting parameter of 
MDFT are related to individual differences in regression parameters obtained from R2.

Data Availability. The datasets generated and analyzed during the current study are available from the cor-
responding author on reasonable request.
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