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The nitrogen-vacancy (NV) center in diamond has an optically addressable, highly coherent spin.
However, a NV center even in high-quality single-crystalline material is a very poor source of single
photons: Extraction out of the high-index diamond is inefficient, the emission of coherent photons
represents just a few percent of the total emission, and the decay time is large. In principle, all three
problems can be addressed with a resonant microcavity. In practice, it has proved difficult to implement this
concept: Photonic engineering hinges on nanofabrication, yet it is notoriously difficult to process diamond
without degrading the NV centers. Here, we present a microcavity scheme that uses minimally processed
diamond, thereby preserving the high quality of the starting material and a tunable microcavity platform.
We demonstrate a clear change in the lifetime for multiple individual NV centers on tuning both the cavity
frequency and antinode position, a Purcell effect. The overall Purcell factor FP ¼ 2.0 translates to a Purcell
factor for the zero phonon line (ZPL) of FZPL

P ∼ 30 and an increase in the ZPL emission probability from
about 3% to 46%. By making a step change in the NV’s optical properties in a deterministic way, these
results pave the way for much enhanced spin-photon and spin-spin entanglement rates.
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The nitrogen-vacancy (NV) center in diamond con-
stitutes a workhorse in quantum technology on account
of its optically addressable, coherent electron spin [1].
The NV stands out for its long spin coherence times [2],
robust single-photon emission [3] and the possibility of
mapping its spin state to nearby nuclear spins [4].
Advances in spin-photon entanglement [5] and two-
photon quantum interference protocols [6,7] pave the
way for the implementation of quantum teleportation [8]
and long-distance spin-spin entanglement [9]. However,
the success rate of these protocols and the scaling up to
extended networks are both limited by the very small
generation rate of indistinguishable photons from indi-
vidual NV centers [10].
There are at least four factors that limit the generation

rate of indistinguishable photons. First, the lifetime of
NV centers is relatively long, about 12 ns. Second, only a
small fraction, about 3%–4%, of the NVemission goes into
the zero phonon line (ZPL) [11,12]. Only ZPL emission
is useful for photon-based entanglement-swapping

protocols as the phonon involved in non-ZPL emission
dephases very rapidly. Third, the photon extraction
efficiency out of the diamond is hindered by the large
refractive index of diamond itself. Finally, there are
random spectral fluctuations in the exact frequency of
the NV emission caused by charge noise in the diamond
host [6].
Coupling the NV center to a high-quality-factor, low-

mode-volume optical microcavity offers a potential remedy
to the first three factors, thereby dramatically improving the
rate of coherent photon generation. These improvements
depend on the weak-coupling regime of cavity quantum
electrodynamics in which the emitter couples irreversibly to
a single microcavity mode. The microcavity increases the
total emission rate, the Purcell effect, and on resonance
with the ZPL, the fraction of emission into the ZPL is
likewise increased. The same coupling also enhances the
ZPL extraction efficiency: Photons leaking out of the cavity
are channeled into a single propagating mode. A notable
feature is that, as compared to the strong-coupling regime
of cavity quantum electrodynamics, modest cavity perfor-
mance is all that is required [13,14]. Implementing these
concepts for emitters in diamond has proved difficult so far.
Nevertheless, coupling of NVs to photonic crystal cavities
has been shown to convey significant improvements on
account of the particularly small mode volume V [15–19].
However, fabricating such structures exhibiting high quality
factors (Q-factors) in diamond is challenging: Diamond is a
very hard and chemically inert material. Furthermore,
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achieving a spatial and spectral resonance with a single
emitter is difficult, such that device yield is poor. Also,
efficient outcoupling is hard to engineer. In addition, the
invasive processing causes a worsening of the spectral
fluctuations, particularly for NV centers, the fourth problem
mentioned above.
In comparison, a miniaturized Fabry-Pérot microcavity

has the advantage of in situ spatial and spectral tuning, along
with high Q-factors and good mode matching to a propa-
gating Gaussian beam, at the expense of an increased mode
volume [20–22]. The feasibility of this approach has been
demonstrated by enhancing the emission rate of emitters
in nanocrystals [23–26]. However, as in photonic crystal
cavities,NVs in nanocrystals typically suffer fromsignificant
line broadening owing to their close proximity to fluctuating
charges at the surface. These spectral fluctuations are so
severe that schemes involving photon-based entanglement
swapping have only been successfully implemented using
high-purity single-crystalline diamond material [27,28].
Here, we present deterministic enhancement of the ZPL

emission rate from single NV centers with narrow ZPL line
widths (about 1 GHz) by resonant coupling to a high-Q
microcavity mode. We demonstrate an increase of the
probability of ZPL emission to about 46%. Two principles
have guided our work. First, at this stage of diamond-based
quantum technology, in situ tuning of both microcavity
frequency and antinode position is extremely valuable. We
have therefore opted for a miniaturized Fabry-Pérot micro-
cavity [Fig. 1(a)]. Second, we use ultrapure diamond
material with minimal processing in order to ensure good
NV optical properties. Specifically, thin diamond mem-
branes are created out of high-purity, single-crystalline
chemical vapor deposition (CVD) diamond. As starting
material, we employ commercially available CVD diamond
[Element 6, (100)-orientation] and introduce NV centers
at a target depth of 68 nm by nitrogen implantation (14N,
55 keV, 2 × 109 ions=cm2, straggle 16 nm). Using multi-
step high-temperature annealing, NV centers with close-to-
lifetime-limited emission line widths can be created [29].
Here, photoluminescence excitation (PLE) scans of NVs
in the starting material yield long-term ZPL line widths of
≲100 MHz at 4 K [Fig. 1(b)]. Membranes of thickness
td ≲ 1 μm (with typical lateral dimensions 20 × 20 μm2)
and surface roughness of ≲0.3 nm are fabricated from this
starting material by plasma etching and microstructuring
[30–32]. Using a micromanipulator, we break out mem-
branes [Fig. 1(c)] and transfer them to a planar mirror to
which they adhere by van der Waals forces [32] [Fig. 1(d)].
Individual NV centers in the membranes have PLE line
widths of about 1 GHz [Fig. 1(b)], higher than the line
widths in the starting material but still much lower than
typical line widths in diamond nanocrystals. Notably,
these line widths are smaller than the ground-state spin-
triplet splitting of 2.87 GHz, an essential feature for
quantum information applications [17]. We note that in our

PLE pulse sequence, we apply a green repump pulse
for every step of the resonant laser. This randomizes
the charge environment for every pixel in the line scan.
Thus, we capture all spectral shifts arising from the charge
fluctuations. We anticipate that a significant reduction can
be achieved by applying resonant repump techniques [33]
and by electronic feedback stabilization via Stark effect
tuning [34].
The miniaturized Fabry-Pérot cavity consists of a plane

bottom mirror and a concave top mirror with radius of
curvature R ¼ 16 μm [Fig. 1(a)]. The curved top mirror is
fabricated by creating a concave depression in a silica
substrate with laser ablation followed by mirror coating
[20,21,35]. Both bottom and top mirrors are distributed
Bragg reflectors (DBRs) with reflectivity >99.99%. The
bare cavity has a finesse ofF ≳ 10 000. Themicrocavity can
be tuned in situ with a set of three-axis nanopositioners
[Fig. 1(a)]. Additionally, the entire microcavity can be
moved in situ with respect to a fixed objective lens,
which allows for optimizing mode matching between the
external excitation or detection mode and the microcavity
mode [20–22]. The compact cavity design facilitates low-
temperature experiments in a liquid-helium bath cryostat.

Diamond

FIG. 1. (a) Schematic of the tunable microcavity containing a
thin diamond membrane. Both the antinode location and reso-
nance frequency of the microcavity mode can be tuned in situ.
(b) PLE scans of near-surface (68 nm) NV centers in unprocessed
diamond (blue symbols; the lower panel: resonant laser power
3 nW and scan speed 340 MHz=s) and in microstructured
(td ≤ 1 μm) diamond (red symbols; the central panel: resonant
laser power 10 nWand scan speed 7.8 GHz=s), yielding averaged
zero-phonon line widths of about 100 MHz and 1 GHz, respec-
tively (upper panel). (c) Detaching a 20 × 20 μm2 membrane
using a micromanipulator. (d) Images (recorded with a wave-
length outside the DBR stop band) of the diamond microcavity
demonstrating the in situ control of the lateral position. The
arrows indicate the position of the concave top mirror.
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Figure 2(a) shows photoluminescence (PL) from the
diamond membrane microcavity while tuning the width
of the air gap L. The spectra are recorded for the lowest
attainable fundamental microcavity mode that comes into
resonance with the different ZPL transitions. Notably here,
the two orthogonal cavity polarizations are degenerate,
which allows for full control over the light polarization. The
mirrors are almost in physical contact such that L is
dominated by the depth of the curved top mirror (about
1 μm). Spectra were recorded on tuning the microcavity by
changing the membrane–top mirror separation, and hence
L. Weak PL is observed at all L and arises from broadband
emission from the diamond membrane. It allows the L
dependence of the microcavity mode to be characterized
[Fig. 2(a)].
In addition to the weak broadband emission displayed in

Fig. 2(a), there are sharp features at specific L which we
assign to individual ZPL transitions. The PL from ZPL2 at
L ¼ 1.96 μm is shown for different air-gap detunings ΔL

in Fig. 2(b). We fit a Voigt profile to the resonance (the
Gaussian component accounts for the low-frequency acous-
tic noise). The full width at half maximum (FWHM) of the
Lorentzian contribution is ΓL ¼ 60.6 pm, yielding a finesse
of F ¼ 5260. We determine the Q-factor of the cavity
according to Q¼λ=Γλ¼λ=ðΓL ·dλ=dLÞ¼2F=ðdλ=dLÞ¼
58500, with dλ=dL ¼ 0.18. For fixed L, for instance at
ZPL2, the microcavity line width is Γf ¼ 8.0 GHz.
We confirm that the observed resonances are associated

with single quantum emitters by performing a photon
autocorrelation [gð2ÞðtÞ] measurement with a Hanbury
Brown-Twiss setup. The results on ZPL2 are shown in
Fig. 2(c). The strong suppression of the peak at zero delay
is a clear signature of single-photon emission. The data are
analyzed quantitatively by calculating the pulse area of
each peak and normalizing the data to the averaged peak
area at long delay times (500 μs). This gives gð2Þð0Þ ¼
0.24, comfortably less than 0.5. Away from t ¼ 0, gð2ÞðtÞ is
initially larger than one with gð2Þð103 nsÞ ¼ 3.93, which is
a bunching behavior. This bunching decays as t increases,
signifying telegraph noise between bright and dark states.
The dark states are the singlet shelving states and the
neutral charge state [3]. In the bright state, the important
quantity is g, the ratio of the probability of generating two
photons in the same pulse to the probability of generating
one photon in each of two successive pulses. We find here a
small value, g ¼ 0.06.
The spectral analysis shows that the microcavity acts as a

narrow spectral filter. It is crucial, however, to demonstrate
that the microcavity modifies the behavior of the emitter
itself. The key parameter in the weak-coupling regime is
the decay rate. We therefore turn to excited-state lifetime
measurements of individual NV centers and tune both the
resonance frequency (via an in situ change of L) and the
lateral position of the cavity antinode [via an in situ change
in ðx; yÞ]. Figure 3(a) shows decay curves for ZPL2 for
several different detunings ΔL. There is a clear change in
lifetime. To extract the lifetime quantitatively, we note that
for large detunings ΔL, the weak background emission
represents a significant part of the signal. However, the
background emission decays very rapidly: The slower
decay process arises from the decay of the NV center.
The data for delays larger than 3 ns are fitted to a single
exponential convoluted with the instrumental response
[36]. The lifetime decreases on detuning ΔL from
10.4 ns to 7.06 ns. This is clear evidence of a Purcell effect.
This assertion is backed up by recording the decay time

over a larger range of ΔL [Fig. 3(b)]. Five ZPLs come into
resonance with the microcavity at different values of ΔL,
and each shows a clear Purcell effect, an enhanced decay
rate γR when in spectral resonance with the microcavity.
Each resonance is well described with a Lorentzian
function of ΔL. Figure 3(c) shows the results of the
alternative experiment, detuning in lateral position Δx
while maintaining the spectral resonance (ΔL ¼ 0), on

ZPL1

ZPL2

ZPL5

ZPL3

ZPL4

ZPL2ZPL2

(a)

(c)(b)

FIG. 2. (a) PL spectra around the ZPL transition for different
air-gap detunings ΔL about L ¼ 1.96 μm. Each resonance
corresponds to the ZPL emission of a single NV center, as
labeled. The PL is excited using a pulsed supercontinuum laser
source (P ∼ 10 mW, λ ¼ 560� 20 nm) and detected by a
grating spectrometer. (b) Integrated PL versus L for ZPL2 along
with a Voigt fit (FWHM Lorentzian contribution ΓL ¼ 60.6 pm).
Together with the cavity dispersion in (a), ΓL determines the
cavity Q-factor, Q ¼ λ=Γλ ¼ λ=ðΓL · dλ=dLÞ ¼ 58 500. (c) Pho-
ton autocorrelation [gð2ÞðtÞ] measurement on ZPL2 exhibiting a
clear single-photon emission gð2Þð0Þ ¼ 0.27. The ZPL emission
is filtered (637� 7 nm) and analyzed via a Hanbury Brown-
Twiss setup (integration time: 45 000 s).
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ZPL6, a NV located at a different location in the diamond
membrane. These results also show a Purcell effect, a
resonance in γR as a function of Δx. The γR versus Δx data
are well fitted by a Gaussian function with FWHM
Γx ¼ 0.80 μm, which represents the lateral extent of the
mode in the microcavity. ZPL6 exhibits the largest decay
rate on resonance, γonR ¼ 158 × 106 s−1: This suggests that
this NV is positioned close to the optimal depth in the
diamond membrane.
We interpret the results in terms of a Purcell enhancement

factor FP. Without the top mirror, the decay time is
consistently τ0R ¼ 12.6 ns for all NVs corresponding to a
decay rate γ0R ¼ 79.4 × 106 s−1. In terms of the total decay
rates, FP ¼ γonR =γ0R ¼ 2.0. We note that, in the microcavity,
the decay rate in the limit of large ΔL detunings is slightly
larger than the bulk decay rate [Fig. 3(b)].We attribute this to
non-ZPL emission, which is Purcell enhanced not just at the
fundamental microcavity mode but also at higher modes.

This modest Purcell enhancement of the total decay rate,
FP ¼ 2.0, masks the large changes to the ZPL emission rate.
Without the microcavity, radiative decay occurs predomi-
nantly into laterally propagating modes, modes defined by
the membrane itself. With the microcavity, these lateral
modes still exist of course, and the decay rate into the lateral
modes is unchanged. Instead, the microcavity boosts the
radiative decay rate into a single, vertically propagating
mode. Even a small Purcell factor implies that the decay rate
into the single microcavity mode dominates over the decay
rate into all the lateral modes. With the microcavity tuned to
the ZPL, this implies a large change to the ZPL fraction.
We analyze the data to determine the ZPL Purcell factor

and the ZPL fraction when the microcavity is tuned into
resonance with the ZPL. When the microcavity is tuned into
resonance with the ZPL line, the “on” state, the total decay
rate is γonR ¼ γon0 þ γon1 , where γon0 is the ZPL emission rate
and γon1 the non-ZPL decay rate. When the microcavity is
tuned far out of resonance with the ZPL line, the “off” state,
the decay rate is γoffR ¼ γoff0 þ γoff1 . The experiment deter-
mines γonR and, by fitting γR as a function of either ΔL or Δx
(Fig. 3), γoffR ¼ 88.2 × 106 s−1. To proceed, we note, first,
that the non-ZPL emission is so broadband that the small
frequency shift of the microcavity mode between the “on”
and “off” states makes no change to the non-ZPL decay rate,
i.e., γon1 ¼ γoff1 . Second, in the “off” state, ZPL emission
takes place predominantly into laterally propagating modes.
This is also the case in a bare membrane such that γoff0 ≈ γ0,
where γ0 is the ZPL emission rate in the bare membrane.
This allows us to determine the Purcell factor for the ZPL
alone: FZPL

P ¼ γon0 =γ0 ¼ ðγonR − γoffR Þ=γ0 þ 1. Taking γ0 as
2.4% (5%) of γ0R, the range of reported NV Debye-Waller
factors [36] leads to γ0 ¼ 1.91 × 106 s−1 (3.97 × 106 s−1)
and hence FZPL

P ¼ 37.7 (18.6) (using the experimentally
determined values for ZPL6: γoffR ¼ 88.2 × 106 s−1,
γonR ¼ 158 × 106 s−1). The fraction of photons emitted into
the ZPL in the “on” state is ηZPL ¼ FZPL

P × γ0=γonR . For
ZPL6, ηZPL ¼ 45.4% (46.7%). We note that ηZPL, a more
important parameter for quantum photonics than FZPL

P ,
depends very weakly on γ0, which is not known precisely.
We attempt to account quantitatively for the experimental

value ofFZPL
P . The key parameter is the vacuum electric field

in the microcavity at the location of the NV center. The
vacuum field is a sensitive function of the microcavity
geometry, which in turn determines the mode structure. In
particular, the separation of the fundamental microcavity
modes depends on thewidth of the air gap, and the frequency
separation between the fundamental modes and the higher-
order modes depends on the radius of curvature of the top
mirror. In addition, the mode structure on making large
changes to L (which can be described as an anticrossing
between air-confined and diamond-confined modes [37])
depends sensitively on the diamond membrane thickness.
To measure the mode structure, we excite the diamond

microcavity with a high power of green (560 nm) light and

(a)

R = 7.06 ns

(c)(b)

R = 10.4 ns

ZPL2

ZPL1

ZPL3

ZPL4 / 5

ZPL2

R

ZPL6

FIG. 3. (a) PL decay curves of ZPL2 following pulsed
excitation as a function of cavity-length detuning ΔL for an
acquisition time of 1000 s. The data for delays larger than 3 ns are
fitted to a single-exponential convoluted with the instrumental
response. The inset shows the normalized decay curves high-
lighting the clear change of the decay rate on changing ΔL.
(b) Recombination rate γR versus ΔL for a fixed lateral position.
For each ZPL resonance, γR exhibits a Purcell effect. The
experimental data are fitted to Lorentzian curves with FWHM
ΓL ¼ ð0.32� 0.05Þ nm. The color of the symbols matches the
decay curves in panel (a). (c) Recombination rate versus lateral
position detuning Δx on ZPL6 for zero spectral detuning. The
experimental data are fitted to a Gaussian with FWHM 0.80 μm.
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use the weak broadband emission from the diamond as an
internal light source. Figure 4(a) shows the microcavity
resonances as a function of wavelength and cavity length
spanning several free spectral ranges. The fundamental
microcavity modes along with the associated higher-order
modes are clearly observed [Fig. 4(a)]. We calculate the
mode structure by describing the longitudinal standing
waves with a transfer-matrix calculation and the longi-
tudinal confinement with Gaussian optics. We achieve
excellent agreement with the experiment with R ¼
16 μm (matching the physical curvature of the mirror),
air-gap thickness L ¼ 1.96 μm and td ¼ 0.77 μm (corre-
sponding closely to the physical thickness determined with
a scanning confocal microscope), and a FWHM beam waist
of 0.83 μm (corresponding to the value determined in situ
on ZPL6) [Fig. 4(b)]. This leads to a maximum vacuum
field in the diamond of Evac ¼ 36.2 kV=m.
The measurement of γ0R enables the optical dipole

moment of the NV center to be determined,
dNV=e ¼ 0.108 nm. The optical dipoles of the NV centers
are randomly oriented in a plane orthogonal to the NVaxis

[32]. ForNVcenters that are coupledmaximally to the cavity
mode, the optical dipole of the ZPL is parallel to the diamond
surface. We determine a coupling rate of the ZPL to the
vacuum field of g ¼ dNVEvac ¼ 5.97 × 109 s−1. The vac-
uum field corresponds to an effective mode volume of
ℏω=ð2ϵ0n2E2

vacÞ ¼ 125ðλ=nÞ3 [14].Here,we assume a unity
internal quantum efficiency of the NV in accordance with a
recent extrapolation of measured quantum efficiencies for
shallow NVs into the bulk [38]. The measured Q-factor
determines the photon decay rate out of the microcavity,
κ ¼ 2πΓf ¼ 5.06 × 1010 s−1. In the case that emission into
“leaky” lateral modes is unchanged by the microcavity, the
Purcell factor [39] isFZPL

P ¼ 4g2=ðκγ0RÞ þ 1 ¼ 36.5, close to
the value determined in the experiment. We note, however,
that FZPL

P is associated with a systematic error due to the
uncertainty of the Debye-Waller factor, the fraction of
photons emitted into the ZPL. In fact, the argument can
be turned around. The properties of the microcavity are so
well understood [Figs. 4(a) and 4(b)] that a measurement of
FZPL
P constitutes a measurement of γ0=γ0R, the Debye-Waller

factor. We find γ0=γ0R ¼ 2.55%, which lies within the range
of previous estimates [36].
The ultimate goal is to increase ηZPL towards 100% and to

collect asmany of the ZPLphotons as possible. In the present
experiment, ηZPL is increased to about 46%. The photon flux
is limited by losses (by absorption or scattering) in the
dielectric mirror. This loss can be eliminated with better
mirrors: 10 ppm loss dielectric mirrors are available. The
present design [Fig. 4(b)] results in a node in the vacuum
electric field at the diamond-vacuum interface in order to
minimize the scattering losses. The calculations predict that
by decreasing the diamond membrane thickness td and
employing state-of-the-art laser ablation techniques for
fabricating shallow depressions with a smaller radius of
curvature (depth of about 400 nm, R ∼ 5.5 μm [40]), the
maximum vacuum field Evac in the diamond is significantly
boost. For instance, decreasing td from 0.77 μm to
3λZPL=4 ¼ 198 nm in combination with the aforementioned
improved microcavity design, allowing for L ¼ 3λZPL=4 ¼
478 nm, increases the maximum vacuum field from Evac ¼
36.2 kV=m to Evac ¼ 85.7 kV=m. We estimate that photon
collection is maximized for κ ¼ 2g, which requires a
Q-factor of only 128 000; the resulting Purcell factor and
ZPL emission probability areFZPL

P ¼356 and ηZPL ¼ 87.9%,
respectively. If the diamond surface can be made sufficiently
smooth, then it becomes possible to change the design such
that there is an antinode at the diamond-vacuum interface.
This boosts the vacuum electric field at the antinode in the
diamond membrane: The global maximum of the vacuum
field is now located in the diamond rather than in the air gap
[20]. For instance, for td ¼ λZPL=2 ¼ 132 nm, L ¼ λZPL ¼
637 nm, Evac ¼ 127 kV=m and, again choosing κ ¼ 2g
(requiring Q ¼ 86500), FZPL

P ¼ 527, and ηZPL ¼ 91.5%.
In addition to providing amassive boost to theZPL fraction, a
further advantage of a large Purcell enhancement is that the

(a)

(b)

NV location

DBR DBR

trans

Air

Diamond

FIG. 4. (a) Left panel: Measured PL spectra on tuning the
microcavity length L over a wide range. The inset highlights
the higher-order lateral modes. Right panel: Calculated mode
dispersion. (b) The layer structure of the microcavity along with
the refractive index dependence on z. The vacuum electric field
Evac is plotted against z for ðx; yÞ ¼ ð0; 0Þ for the lowest
attainable fundamental microcavity mode. Parameters: Diamond
thickness td ¼ 0.77 μm, air-gap thickness L ¼ 1.96 μm, dia-
mond refractive index nd ¼ 2.41, refractive indices of Bragg
mirror ðnH; nLÞ ¼ ð2.06; 1.46Þ, and radius of curvature of top
mirror R ¼ 16 μm.
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NV transform limit increases, for FZPL
P ¼ 527ð356Þ to

Γf ¼ 182 MHz (127 MHz). Implementing these improve-
mentswould thereforemitigate the constraints on the spectral
stability of theNVZPL transition.Only a slight improvement
on the linewidths reported here is required in order to create a
high fraction of indistinguishable photons. In this case, the
demonstrated increase in the ZPL fraction by a factor of 15 in
combination with an estimated threefold enhancement in the
collection efficiencywould boost the spin-spin entanglement
rate by a factor of approximately 2000 compared to previous
experiments [41].
Based on the work presented here, we propose that a

miniaturized Fabry-Pérot microcavity using a thin diamond
membrane constitutes a key building block for quantum
technology applications. It has been proposed recently that
the creation of the first metropolitan-scale quantum internet
consisting of several nodes based on NV centers is within
reach [42]. In the longer term, a quantum internet built
using this approach depends on entanglement distillation
[43], high-efficiency photon frequency conversion to the
infrared [44], and coupling NV centers to a photonic cavity.
The last point is demonstrated here. Cavity coupling
confers general benefits to solid-state emitters. We point
out that the miniaturized Fabry-Pérot microcavity has a
rather generic design such that cavity enhancement is also
an immediate possibility with other color centers in, for
instance, diamond [45–47] and SiC [48–50].
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