
Author Manuscript
The final publication is available at IEEE Xplore via https://doi.org/10.1109/BigData.2017.8257952
c© 2017 IEEE

QuAD: A Quorum Protocol for
Adaptive Data Management in the Cloud

Ilir Fetai
Technology Management

Swiss Federal Railways (SBB)
ilir.fetai@sbb.ch

Alexander Stiemer
Databases and Information Systems

University of Basel, Switzerland
alexander.stiemer@unibas.ch

Heiko Schuldt
Databases and Information Systems

University of Basel, Switzerland
heiko.schuldt@unibas.ch

Abstract—More and more companies move their data to the
Cloud which is able to cope with the high scalability and
availability demands due to its pay-as-you-go cost model. For
this, databases in the Cloud are distributed and replicated across
different data centers. According to the CAP theorem, distributed
data management is governed by a trade-off between consistency
and availability. In addition, the stronger the provided consis-
tency level, the higher is the generated coordination overhead
and thus the impact on system performance. Nevertheless, many
OLTP applications demand strong consistency and use ROWA(A)
for replica synchronization. ROWA(A) protocols eagerly update
all (or all available) replicas and thus generate a high overhead
for update transactions. In contrast, quorum-based protocols
consider only a subset of sites for eager commit. This reduces
the overhead for update transactions at the cost of reads, as the
latter also need to access several sites. Existing quorum-based
protocols do not consider the load of sites when determining
the quorums; hence, they are not able to adapt at run-time
to load changes. In this paper, we present QuAD, an adaptive
quorum-based replication protocol that constructs quorums by
dynamically selecting the optimal quorum configuration w.r.t.
load and network latency. Our evaluation of QuAD based
on Amazon EC2 shows that it considerably outperforms both
static quorum protocols and dynamic protocols that neglect site
properties in the quorum construction process.

Index Terms—distributed data management; replication.

I. INTRODUCTION

Typical OLTP applications need highly scalable and avail-
able database management systems (DBMS) in order to satisfy
business requirements1. Due to availability and scalability
demands, databases are usually distributed and replicated
across different data centers [1]. However, distributed database
systems (DDBS) face a trade-off between Availability, Consis-
tency and tolerance to network Partitions. According to the
CAP theorem [2], [3], DDBS can jointly provide only two
of these three properties. Tolerance to network partitions in a
distributed system cannot be sacrificed as it would require an
absolutely reliable network. Thus, DDBSs can either guarantee
availability by sacrificing consistency or vice versa.

Relational DBMSs (RDBMS) are widely used since they
provide ACID guarantees, even though there are applications
for which they do not scale [4]. In contrast to RDBMS, NoSQL
datastores are built with scalability and high availability in

1https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-
them-1-in-sales/

mind. At the same time, the relaxed consistency guarantees
provided by these systems is perceived as a burden by ap-
plication developers [5] and force them to consider corner
cases and to handle these in the application code. This shifts
these problems from the database to the application level. Al-
though recent NoSQL datastores provide tunable consistency
on per request level, the correct consistency configuration is
yet another dimension that needs to be considered during
the application design, leading to an ever increasing design
complexity. Strong consistency reliefs applications from the
burden of handling corner cases. However, it generates higher
overhead compared to weaker consistency levels, such as
eventual consistency [4]. The deployment of applications that
need to replicate data, possibly in different data centers, has
made this trade-off even more tangible [6].

Different replication protocols have been developed with
the goal of reducing the overhead for strong consistency
(e.g., 1SR). Read-one-write-all (ROWA) or read-one-write-all-
available (ROWAA) eagerly commit all replica sites, whereas
quorum protocols only commit a subset of sites, which makes
them more suitable for update-heavy transaction mixes. Cur-
rent quorum protocols neglect the properties of sites (e.g., load
or network distance) for quorum construction, which is crucial
if data is replicated across different data centers.

The elasticity of Cloud services allows for their dynamic
tailoring to the application demands by provisioning and de-
provisioning these services based on, for instance, application
load and failures. Hence, application developers require rela-
tional DBMSs that provide full ACID support, but yet are able
to meet the performance requirements of their applications.
Moreover, they require DBMSs to fully exploit the advantages
of the Cloud, be able to consider the properties of the infras-
tructure hosting the applications, and to dynamically adapt if
these properties change.

In this paper we present QuAD, an adaptive quorum pro-
tocol for providing 1SR data consistency on top of a fully
replicated database system. QuAD considers infrastructure
properties for determining the quorums, and is able to dy-
namically react to changes in the system, such as increased
load at sites, new sites joining the system, or site failures,
and consequently adapts its quorums to address these changes.
The contribution of this paper is threefold: First, we provide
a model for quorum construction that jointly considers the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/154351054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

load and network latency between sites. Second, we show
how QuAD is able to dynamically adapt to workload changes
and failures by reorganizing the quorums. Third, we show the
performance gain of QuAD by comparing it to other quorum-
based protocols that i.) neglect site properties, ii.) consider
only a subset of properties, and that iii.) are non-adaptive.

This paper is organized as follows: In Section II, we
introduce the QuAD system model. Section III discusses the
QuAD protocol and Section IV its implementation. Section V
provides a thorough evaluation of QuAD on AWS. Section VI
discusses related work and Section VII concludes.

II. SYSTEM AND TRANSACTION MODEL

We consider flat transactions that run on top of a DDBS
consisting of a set S of sites. We distinguish between logical
objects LO and physical copies (PC) denoting copies of the
LOs hosted at the sites. pci,j is a physical copy of logical
object oi located at site sj . We distinguish between read and
write operations: OP = {r, w}. An action ac is an operation
that acts on a specific lo ∈ LO, i.e., ac ∈ OP ×LO. Let A be
the set of all actions. Then, a transaction t is a tuple with t =
(At, <t) and At = {ac1, ac2, · · · , ack} ∪ term with aci ∈ A
where term is either a commit or an abort that succeeds all
other actions, and <t ⊆ (At × At) denotes the precedence
relation defined on At, i.e., aci <t term ∀ aci ∈ At.

Transaction execution in a DDBS is characterized by the
following two challenges: i.) the read and write activities of
transactions on logical objects need to be mapped to physical
copies. This task is commonly referred to as replica control
and implemented by a replica protocol (RP). ii.) the concurrent
access of transactions to physical copies has to be coordinated.
This task is commonly referred to as concurrency control and
implemented by a concurrency control protocol (CCP).

A RP can be classified according to where transactions are
executed and when the results of updates are propagated to
other replica sites in the system [7]. The ‘where’ defines which
site is allowed to execute a transaction. The ‘when’ defines
the point in time at which updates are propagated to other
replica sites. RPs can be either eager or lazy. Eager RPs update
all replica sites in the scope of the running transaction. Lazy
RPs postpone the update propagation to other replica sites to
dedicated refresh transactions.

A. Quorum Protocols

In quorum-based RPs, only a subset of replica sites is
updated eagerly. This is in sharp contrast to ROWA and
ROWAA, where either all replicas (ROWA) or all available
replicas (ROWAA) have to be eagerly updated. However, the
subsets in quorum protocols must be chosen in such a way that
any two writes or a write and read on the same data object
overlap. This is known as the intersection property and is
crucial for guaranteeing 1SR consistency [8]. Committing only
a subset of sites reduces the overhead for updates, but at an
increased cost for reads, as they —in contrast to ROWA(A)—
must also access a subset of sites. Quorum-based replication

s1 s3

s2 s4 s5 Core
sites

Slave
sites

Quorum
of s1

Read-
quorum

of s2

Quorum
of s3

Write-quorum of s2

Fig. 1: Quorum construction in QuAD

protocols differ in the size of read and write quorums, and
thus in their overhead for read-only and update transactions.

Majority Quorum (MQ) is a simple quorum-based RP, in
which each site has a non-negative number of votes. The
quorums are then chosen in such a way that they exceed half
of total votes [9], [10]. Hence, the write quorum can only be
reached by a majority of sites, whereas a read quorum needs
half of the sites if number of sites is even, or a majority of sites
if it is odd, given that all sites have equal votes greater than
zero (e.g., one). Other protocols, like tree-based [11] or grid-
based [12] protocols, organize the sites in a logical structure
which is exploited to determine the quorums.

B. Transaction Lifecycle

The lifecycle of transactions in quorum-based replication
protocols is as follows. In the first step, transactions acquire
(shared or exclusive) locks for all objects accessed, depending
on the action to be executed. Read-only transactions access
the read quorum by reading the values of the objects at every
site that is part of the quorum, and construct the final result by
taking those values that have the highest commit timestamp.
Update transactions must first update the local versions at
the executing site by accessing the read quorum, produce the
results, and then propagate them eagerly to the sites of the
write quorum. The quorum size and the properties of the sites
in these quorums are the major factors for the overall trans-
action overhead. Existing quorum protocols generate quorums
of different sizes, and (in contrast to QuAD) usually neglect
the site properties, or consider them without the ability to
adapt the quorums if these properties change. Both aspects
are however crucial in highly volatile workloads and multi-
data center deployments.

III. QUAD PROTOCOL

The goal of QuAD is to build quorums that avoid ‘weak’
replica sites from the read and commit paths of transactions,
where weak can have different meanings, such as slow and
distant, but also expensive. QuAD considers the load of
the sites and their distance, i.e., the round-trip time (RTT),
when determining the quorums. Additionally, QuAD seeks a
possibly balanced assignment of sites to quorums, since if sites
are frequently included in the quorums, they may become a
bottleneck [13].

QuAD assumes that any site may receive transactions for
execution. This corresponds to usual approaches in which
transactions are submitted to the closest data center (w.r.t.
network latency/distance) and distributed by a load balancer.
QuAD aims to reduce read and commit overhead by avoiding
slow and distant sites from being accessed in the read and write
quorums, which has a considerable impact on the performance.

A. Quorum Construction

Quorum construction in QuAD is motivated by the κ-centers
problem [14]: given a set of n cities, the goal is to build
κ warehouses so that the maximum distance of a city to
a warehouse is minimized. Similarly, QuAD chooses the κ
strongest sites to become core sites (CS ∈ 2S), and the rest
forms the set of slave sites (SL ⊆ S). The strength of a site
is determined by its score.

In QuAD, each core site creates quorums that consist of
core sites only, and each slave site constructs its quorums by
including the majority of core sites. We denote the quorums
of a core site as core quorum, and that of a slave site as slave
quorum. A core read quorum (CQr) consists of the majority
of core sites, and a core write quorum (CQw) of all core sites,
in order to provide a high degree of availability. Slave quorums
always consist of the majority of core sites and both the read
and write quorums are the same (SQr = SQw). According
to the transaction lifecycle (see Section II-B), an update
transaction in QuAD submitted to a core site eagerly updates
all core sites, and an update transaction submitted to a slave
eagerly commits only the majority of core sites. Read-only
transactions access the majority of core sites independently
of the site they were submitted to. Note that we have a bi-
directional communication between core sites, while it is only
unidirectional between slave and core sites, i.e., a slave site
accesses a core site, but never vice versa. This corresponds
to the intuition of avoiding weak sites from the commit and
read paths (Figure 1). The roles of the sites are not static and
may change if site site properties (e.g., load) change. This
may necessitate an adaption of quorums as old cores may be
demoted to slaves, and slaves be promoted to core sites.

Site Score: The score of a site si is based on its load
load(si), and its distance rtt(si) to all other sites. Let CN be
the distance matrix with rtt(i, j) denoting the RTT between
si and sj and rtt(i, j) = rtt(j, i). The ith row of CN defines
the distance of si to all other sites in the system: rtt(si) =
[CN(i, 1), · · · , CN(i, |S|)]:

0 rtt(1, 2) rtt(1, |S|)

rtt(i, 1) 0 rtt(i, |S|)

rtt(|S|, 1) 0

(1)

The score of a site is defined as

score(si) = wrtt · rttsc(si) + wload · loadsc(si) (2)

with rttsc(si), loadsc(si) ∈ [0, 1] and

rttsc(si) = 1− ‖rtt(si)‖
max
∀sk∈S

(‖rtt(sk)‖)

loadsc(si) = 1− load(si)

max
∀sk∈S

(load(sk))

load(sk) =
nrTrx(sk)

maxTrx(sk)

(3)

Based on Eq. (2), the κ sites having the highest scores are
chosen as core sites. Initially, as no load data is available on
the sites, each one will get the same load score. This leads to
the RTT becoming the determining factor for the site scores.

The choice of the number of core sites has a considerable
impact on the overall performance of QuAD. It is also crucial
for the availability of QuAD, as the core sites are included in
quorums of both core sites and slave sites (see Figure 1). The
lower the number of core sites, the lower the availability of
QuAD, and the lower the commit and read overhead. However,
the load balancing capabilities also decrease with decreasing
number of core sites. With κ, it is possible to simulate the
behavior of different protocols like ROWAA. If, for example,
all sites are core sites (κ = S), then CQw will include
all available sites. Consequently, it would be safe from a
consistency point of view to access a single site in case of
read-only transactions. Such a behavior corresponds to ROWA.

As any site in the system may receive transactions, we need
to determine for each of them the read and write quorums.
Choosing all core sites as part of the write quorum consider-
ably impacts the fault tolerance of QuAD. Each slave site will
choose the majority of core sites as part of its quorums, and
the read and write quorums are equal. The main question is
how to determine the quorums of the slaves, i.e., the subset of
core sites that a slave site will be attached to, so that the cost
is minimized? There are two main issues here. i.) we need to
consider the cost of assigning a slave site to a subset of core
sites so that in overall we minimize the average cost. ii.) if
we include the same core site in too many quorums, that site
will become a bottleneck and degrade the overall performance.
This means that we need to update the costs each time we
assign a slave site as the cost of the core sites will increase
with every slave site assigned to them.

Cost Model: Determining the slave quorums corresponds
to the assignment problem [15], which is defined as follows:
Let WO denote the set of workers, and J the set of jobs. The
goal is now to assign the jobs to the workers so that the overall
cost is minimized: min

∑
j∈J cost(wo, j). The assignment

problem can be solved using the Hungarian algorithm, which
has a complexity of O(n3) with n = max(|WO| , |J |) [16].

For the quorum construction of slave sites, we need to
perform following steps: define i.) a cost model that considers
both the load and RTT between sites, and ii.) a one-to-many
mapping, i.e., a slave site is assigned to a subset (majority) of
core sites. This means that the cost model needs to consider
that. Let us assume a DDBS with five sites. Further, let s1,
s2 and s3 be the core sites, and s4 and s5 the slave sites.

In order to guarantee the intersection property, each slave site
must include in its quorum two core sites, i.e., a quorum of a
slave consists in this case of two core sites. In this scenario,
there are three possible core site combinations, and thus three
different assignments of slaves to quorums. s4 can be assigned
to {s4, 〈s1, s2〉}, {s4, 〈s1, s3〉} or {s4, 〈s2, s3〉}, and the same
applies to s5. To cope with the one-to-one mapping that is
assumed by the assignment algorithms, we need to combine
the cost of individual core sites to a single cost value. For
example, the cost of assigning a slave site to a quorum may
be calculated by considering the maximum cost of s1 and s2.

Let Q ⊆ CS, with |Q| = b |CS |
2 c + 1 denote a set of

core sites to which a slave site si needs to be assigned.
The costs of assigning si to individual core sites cs ∈ Q,
cost(si, cs1), · · · , cost(si, cs|Q|) are known and can be com-
bined to a single value using an aggregate function, such as
max. In what follows, we use cost(si, Q) to denote the cost of
constructing a quorum consisting of the slave site si and the
sites in Q. Let w1, w2, w3 ∈ R+ denote the weights, then the
cost cost(si, Q) for assigning si to Q is defined as follows:

cost(si, Q) = w1 · commCost(si, Q)

+w2 · loadCost(si, Q)

+w3 · balPen(si, Q)

(4)

loadCost(si, Q) = load(si) · max
∀csj∈Q

(load(csj))

load(s) =
load(s)

max
∀sk∈S

(load(sk))

(5)

commCost(si, Q) =

max
∀sj∈Q

rtt(si, sj)

max
∀sk,sm∈S∧k 6=m

rtt(sk, sm)
(6)

balPen(si, Q) = exp (#SL(Q) + 1− |SL|) (7)

For the assignment of slaves to quorums, we use max as
aggregation function as the slowest and most distant site is
the limiting factor w.r.t. performance. The balancing penalty
(balPen, Eq. (4) and (7)) is used to increase the cost of Q with
increasing number of slaves assigned to Q, and it fulfills the
purpose of a balanced assignment of the slaves to core sites,
as otherwise they may become a bottleneck [13]. #SL(Q)
in Eq. (7) defines the number of slave sites that have already
been assigned to Q. The balPen function will never become
zero, and will get the maximum value of one if all slave sites
are assigned to Q. Such a scenario would lead to Q becoming
a bottleneck and degrading the overall performance.

B. Adaptive Quorums

QuAD is a dynamic protocol which continuously monitors
the status of sites and their properties. The following cases
may trigger a reconfiguration of quorums: i.) the load of sites
changes, which may invalidate the quorums. We assume that
the RTT between remains constant and therefore QuAD only
monitors the load of all sites. ii.) sites may fail, which may
lead to a reconfiguration in order to maintain the desired

availability. iii.) new sites may join. In case of adaption of
existing quorums, certain core sites may be demoted to slaves,
and certain slaves may be promoted to core sites. Clearly, in
order to guarantee strong consistency, a safe reconfiguration is
necessary (the online reconfiguration is detailed in Section IV).

Load Prediction and Monitoring: QuAD periodically
collects the load of all sites and configures the quorums based
on Eq. (2) and (4). In QuAD, time is divided in periods. At
the end of a period, the expected load for the next period is
predicted using the exponential moving average (EMA), which
proved to precisely predict certain workload types [17]. EMA
considers historical data and weights them based on recency:

EMA(loadp+1) =

α · loadp + (1− α) · EMA(loadp))
(8)

α denotes the smoothing factor with 0 < α < 1. The choice
of α is critical for the accurate prediction of the load. QuAD
applies Eq. (8) with α ∈ {0.1, 0.2, 0.3, · · · , 0.9}. The value
of α having the lowest overall mean absolute deviation is
used for the prediction of the load for the next period. Each
time a prediction is made, a new prediction interval is started
and the old one is closed. In Eq. (8), p denotes the recently
closed interval and p+ 1 the next interval for which the load
is predicted. In EMA, predictions are recursively based on the
past and require only the predicted load for the last period.
Once the expected load for the sites has been predicted, the
score of each site is determined in the next step based on
Eq. (2). In our current work, we assume that all sites have the
same capacity. It is, however, possible to use linear regression,
predict the expected latency given certain expected load, and
base the scoring of sites on the latency. This would account
for heterogeneous sites w.r.t. their capacity.

Control of Quorum Adaption: The change in the site
properties triggers a calculation of the quorums. QuAD in-
corporates a control mechanism to avoid frequent reconfigu-
rations that would not generate enough gain for the expected
workload. The decision on applying the new quorums is based
on whether their score is higher compared to that of the old
quorums by considering the reconfiguration cost. The score
of a quorum q is defined as score(q) =

∏
s∈q score(s). The

overall average score of quorums is then:

score(Q) =

Q∑
q
score(q)

|Q|
(9)

Each slave site to be promoted must update its objects by
contacting current core sites. Hence, this reconciliation gener-
ates costs that need to be considered when applying the new
quorums. QuAD trades the gain in the score for the cost of
reconfiguration when deciding to apply the new quorums:

score(Qnew)− score(Qold) >

PromoSL∏
s

reconCost(s) (10)

with reconCost(s) = #objectsToUpdate
|LO| .

Data
tier

... ...

DBS Site 1

Database

DBS Site 2 DBS Site 3

QuAD
TrxManager

Database Database

HTTP/SOAP
QuAD

TrxManager
QuAD

TrxManagerHTTP/SOAP

QuAD Manager

Fig. 2: QuAD Architecture

Sites Joining: If a new site joins, it becomes a slave and
is assigned to a quorum consisting of core sites according
to the cost matrix that was created during the last quorum
construction. The recalculation of quorums is postponed to the
next reconfiguration period, as then enough information will
be available for determining the score of the sites. However, if
the site joins immediately before the new period starts, then it
is still not possible to determine its score, so it remains a slave.
QuAD requires each site to run at least one period before it is
considered for the scoring, otherwise it is labeled as a slave.

Failure Handling: In case of slave site failure, QuAD
does not take any immediate action as the quorums are any-
ways adapted during the next reconfiguration period. From the
viewpoint of QuAD, a failed slave site simply implies reduced
processing capacity and has no further impact. However, core
site failures reduce the availability of the system. Currently,
QuAD tries to keep the number of core sites by promoting
slave sites to cores. If no sites are available for promotion,
then QuAD cannot provide the desired level of availability.
We assume a system model in which the creation or deletion
of sites is outside the QuAD control, and is steered by dynamic
and cost based replication protocols as the one defined in [18].

IV. IMPLEMENTATION OF QUAD

A QuAD site consists of a QuAD-TransactionMana-
ger, responsible for transaction execution, and a datastore
(see Figure 2). The QuAD-TransactionManager exe-
cutes transaction as described in Section II-B by consid-
ering the quorum configuration, which are determined and
distributed to the sites by the QuAD-Manager. The latter
is also responsible for collecting all necessary metadata from
the sites, to determine and adapt the quorums as described in
Section III at runtime by avoiding consistency violations.

Online Reconfiguration: Three types of events may trig-
ger a reconfiguration of quorums: i.) the change of the site
properties (e.g., their load), ii.) the deployment of new sites,
and iii.) site failures. The QuAD-Manager is responsible for
load prediction based on the collected metadata. In case of
new sites joining, they must register to the QuAD-Manager,
which has to notify all sites if a reconfiguration is applied.

𝑜1 1448534077
𝑜3 1448534026
𝑜9 1448534916

𝑜1 1448534067
𝑜2 1448534026
𝑜9 1448534926

𝑜1 1448534077 𝑠1
𝑜2 1448534026 𝑠2
𝑜3 1448534026 𝑠1
𝑜9 1448534916 𝑠2

DO of 𝑠1 DO of 𝑠2

Merged DO

Fig. 3: Merging of DOs

For the detection of core site failures, each core site of QuAD
needs to periodically notify the QuAD-Manager about its
state. Without notification, a site is dropped from the list of
available sites, and the quorums are invalidated immediately.

Once the quorums are determined and QuAD-Manager has
decided to apply them, it will initiate the reconfiguration pro-
cess, which has to be done in a consistent manner; otherwise,
the consistency of data may be violated. Two aspects need
to be treated with care: i) all sites must have a consistent
view on the quorums to avoid that the intersection property
is violated. ii) as described above, the role of the sites may
change. It must be ensured that promoted slave sites reconcile
in order to provide transactions access to consistent data.

One-Copy View on Quorums: If the reconfiguration is
done in an unsafe manner, certain sites may observe intermedi-
ate configurations which may violate the intersection property
and thus the 1SR guarantees. The QuAD reconfiguration
protocol provides sites with a consistent view on the quorums,
by using 2PC with the QuAD-Manager acting as coordinator.
The new quorums are propagated to all sites during the
prepare phase, which at the same time initiates the interruption
phase the at the sites. During the interruption phase, incoming
transactions are added to a wait queue, and their execution is
resumed only after the commit.

Site Reconciliation: We distinguish between site reconcil-
iation during promotion/demotion without failures in reaction
to changes of the site properties, and during the promotion
of one or more slave sites to core sites in reaction to core
site failures. The reconciliation is executed as part of the
reconfiguration workflow before sending the prepare-ack
message to the QuAD-Manager.

Each site in QuAD manages a difference object (DO) that
contains the latest timestamp for each object that has been
modified since the last quorum reconfiguration. The DO of
a site sj is a set of tuples: DO(sj) = {〈koa , τ(koa)〉 , · · · ,
〈koz , τ(koz)〉}, with koa denoting the id of the object oa,
and τ(koa) its latest timestamp. Consider the promotion of
slaves to cores after load changes. The demoted core sites
multicast their difference object to all slave sites that are to
be promoted. Each promoted slave merges the DOs received

by taking the largest timestamp and entering the site id for
each object, and drops out all objects for which the local
timestamp is equal to or greater than the timestamp in the
merged DO, as these objects are already up-to-date (Figure 3).
QuAD supports the stop-and-copy approach in which the
promoted slave sends a batch request to the demoted core
site for pulling all objects in the merged DO that have the
id of that demoted core site. The reconfiguration is finished
only when all slave sites to be promoted have updated their
data. Once the reconfiguration has finished, the system is ready
to serve transactions based on the new quorums. We plan to
implement an on-the-fly approach that will only pull those
objects accessed by transactions on demand [19], [20].

In case of core site failures, the corresponding number of
slave sites will be promoted to cores sites which then need to
synchronize with all slave sites. This ensures that a site to be
promoted contains the data of all slaves. However, we need to
ensure that it also contains the core site data. It is sufficient
that they synchronize with a single core site, as the core writes
behave according to the write-all approach.

QuAD tolerates up to n−1 simultaneous core sites failures,
with n denoting the number of core sites, under the assumption
that no slave site fails at the same time. It remains available if
the majority of cores is available independently on the number
of failed slave sites.

V. EVALUATION

The goals of the evaluation of QuAD are as follows: i.)
we show the importance of considering site properties when
constructing the quorums by a series of tests using the MQ
protocol that neglects site properties for quorum construction.
ii.) we compare the performance of QuAD to that of MQ
using round-robin and random quorum construction strategies
in a single-data center and a multi-data center setting. iii.) we
compare the different construction strategies of QuAD and
show their impact on the overall performance. iv.) we analyze
the necessity of adapting the quorums if site properties change
at runtime and show that QuAD is able to adapt its quorums.

A. Evaluation Setup

All evaluation runs use the TPC-C benchmark. The set
of transaction mixes r/w with r and w defining the per-
centage of read-only and update transactions, are as follows:
r, w ∈ {0, 0.2, 0.5, 0.8, 1.0}, r +w = 1.0. The TPC-C data is
generated with 10 districts, 3,000 customers, and 10,000 stock
entries. Each object has the same probability of being accessed
(no hot-spots). Thus, the conflict rate between transactions is
mainly influenced by the r/w ratio of the transaction mix.

The QuAD system consists of a #sites deployed on AWS
EC22. A test client, which runs separately from the system
under test generates the desired workload consisting of the
specified r/w transaction mix. The client starts a number of
WorkerThreads submitting transactions sequentially (i.e., they
wait for the response before they continue) to a specific site
for execution.

2c1.medium machine types (http://aws.amazon.com/de/ec2/instance-types/)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

rw
10

rw
9010

rw
8020

rw
7030

rw
6040

rw
5050

rw
4060

rw
3070

rw
2080

rw
1090

rw
01

O
v
e
rh

e
a
d

 p
e
r

tr
a
n
sa

ct
io

n
 [

s]

Average overhead per transaction

Resp. time
2PC
2PL

Processing

Fig. 4: MQ: Transaction overhead, varying r/w ratio

We run two different types of tests: a sizeup and a speedup
test as described in [21]. In the sizeup test, an initial number
of 10 WorkerThreads is started which submit transactions for
30 seconds, and after that collect the statistics and increase the
number of WorkerThreads by 10, until the maximum of 150
workers is reached. The entire sizeup test runs for 450 seconds
and is repeated 10 times. The goal of sizeup is to analyze the
response time of transactions when the load increases. The
goal of the speedup is to analyze the performance improve-
ment of QuAD compared to other approaches. The speedup
is calculated as follows: speedup = resptime(approach)

resptime(QuAD) , and
there is an improvement if speedup > 1. During the speedup
test, the load remains constant, i.e., the number of Worker-
Threads does not change.

B. Performance Impact of Site Properties

The goal of the quorum protocols is to reduce the overhead
for update transactions as only a subset of sites is eagerly
committed. However, in order to guarantee strong consistency,
reads must also access a subset of sites which, in contrast
to ROWA(A), increases the overhead for reads. To show the
necessity of considering site properties such as their RTT and
load when constructing the quorums, we have conducted a
first series of experiments using the MQ protocol with four
sites. A test client with a single WorkerThread generates
transactions for 450 seconds with a specific transaction mix.
These transactions are submitted for execution to a dedicated
site, which randomly constructs an initial majority quorum.

In Figure 4, we have depicted the overhead per transaction
with all sites having the same properties (i.e., the load of the
sites and the RTT between sites is the same) by varying the
r/w ratio. As it can be seen, with an increase of the update
ratio, the 2PC costs increase. The 2PL overhead remains
constant as there are no concurrent transactions. The goal was
to depict only the processing and 2PC cost. In summary, in
case of all sites having the same properties, the transaction mix
determines the overhead of the different transaction phases.

In a next experiment, we have varied the RTT (by using the
netem3 tool) and the load of a certain site. We ensured that
the modified site is included in the read and write quorums. In
Figure 5 we have depicted the results for the write-only mix.

3http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 10 20 30 40 50

O
v
e
rh

e
a
d

 [
s]

Increased RTT [ms]

Average response time with varying rtt

Resp. time
2PC
2PL

Processing

(a) Varying RTT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 40 80 12
0

16
0

20
0

O
v
e
rh

e
a
d

 [
s]

Increased latency [ms]

Avarage overhead with varying latency

Resp. time
2PC
2PL

Processing

(b) Varying load

Fig. 5: MQ: Transaction overhead for write-only mix

Both the increase of the RTT and the load leads to a higher
overhead for 2PC which requires some rounds of network
messages that also need to be processed at the receiving sites
(in Figure 5b, latency corresponds to the additional latency
relative to the latency of a site without any load). It should
be mentioned that an increase of the overhead in one of the
transaction phases has a cascading effect on 2PL and then on
the total overhead [22]. Thus, it is crucial to construct the
quorums in such a way so that the overhead for 2PC and
processing is reduced as this would lead to a decrease in 2PL
cost, which is the limiting factor to 1SR performance.

C. QuAD vs. MQ

Next, we compare the performance of QuAD to that of the
MQ that uses round-robin (MQ-RR) and random (MQ-RA) for
quorum construction, using a sizeup test in a single-data center
and a multi-data center setting. The WorkerThreads submit
transactions to sites according to the desired r/w ratio. The
distribution of workers (transactions) to sites is based on the
load to be generated at the sites. Note that we also report the
result for the QuAD-inversed, in which the weaker the site the
higher its score, simply for reasons of comparison.

In the single-data center setup, the load is the determining
factor for the performance, as the network distance (latency)
between the sites is negligible. We have run the evaluations
using 4, 8, and 16 sites, with a subset of sites being core sites.
The distribution of WorkerThreads to sites determines the load
generated at the sites. For the evaluation with four sites, one
gets 40% of the overall load, the second one 30%, the third
one 20%, and the last one 10%. In the evaluation with eight
sites, the distribution is: 30%, 15%, 15%, 10%, 10% and the
remaining 20% are evenly distributed to the rest of the sites.
The load distribution in the case with 16 sites is accordingly.

Figure 6 depicts the overall averaged response time of
transactions in the sizeup test showing that QuAD considerably
outperforms both MQ-RR and MQ-RA, which neglect site
properties when constructing the quorums. For update-heavy
workloads, QuAD leads to a decrease of response time by
more than 50%. The main reason is that quorums are con-
structed in such a way so that weak sites are possibly avoided.

However, QuAD has a higher overhead for reads compared
to ROWAA. In a simple speedup test comparing the perfor-
mance of QuAD and ROWAA for read-only workloads with
all sites having the same properties, the average response of
ROWAA is 0.08 seconds, and that of QuAD 0.2 seconds (i.e.,
ROWAA leads to a speedup of 2.5 for read-only workloads).

One of the crucial aspects in QuAD is the choice of κ
which impacts both performance and availability. We have run
the same sizeup test with varying κ with 8 sites to show the
trade-off between availability, which increases with increasing
number of κ sites, and the optimization capabilities, which
may rapidly decrease if the properties of the sites are similar.
If a subset of sites is significantly better than the rest, there is
even be an advantage in increasing the number of core sites,
as the more core sites available, the more choices there are
for assigning the weak sites. This, in turn, may be beneficial
from a load balancing point of view. However, if there are
many weak sites, the more cores exist, the more weak sites
are to be included. The results are depicted in Figure 7 (two
strong sites, the rest was weak) which shows that the increase
in the number of core sites leads to a decrease of performance.

The goal of the multi-data center deployment is to evaluate
the impact of the RTT on the overall performance. Therefore,
we have increased the RTT between three sites (with ratio of
4:2:1). We evaluated QuAD using the sizeup metric with 4
sites (κ = 2), 8 sites (κ = 4), and 16 sites (κ = 8). Based on
the scoring model defined in Section III-A, QuAD determines
the core sites by considering both the load and RTT distance,
and assigns the slave sites to quorums consisting of core sites
based on the cost model defined in Eq. (4). However, since the
load of all sites is the same , the RTT will be the determining
factor for quorum construction. As depicted in Figure 8, QuAD
significantly outperforms other approaches for update-heavy
workloads by decreasing the average response time nearly by
a factor of 3. The consideration of the RTT is more significant,
especially for update-heavy workloads, as they are mainly
network bound due to the 2PC communication. Note that as
we use SOAP/HTTP for the communication between the sites,
the RTT is a crucial factor for the overall performance.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Readonly RW8020 RW5050 Writeonly

R
e
sp

o
n
se

 t
im

e
 [

s]
Overall response time - 4 sites

QuAD
QuAD-inversed

MQ-RA
MQ-RR

(a) 4 sites; κ = 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Readonly RW8020 RW5050 Writeonly

R
e
sp

o
n
se

 t
im

e
 [

s]

Overall response time - 8 sites and 4k

QuAD
QuAD-Inversed

MQ-RA
MQ-RR

(b) 8 sites; κ = 4

 0

 20

 40

 60

 80

 100

 120

 140

RW8020 RW5050 Writeonly

R
e
sp

o
n
se

 t
im

e
 [

s]

Overall response time - 16 sites and 8k

QuAD
QuAD-Inversed

MQ-RA
MQ-RR

Readonly

(c) 16 sites; κ = 8

Fig. 6: Overall response time of transactions with varying site
load (single-data center setting)

 0

 20

 40

 60

 80

 100

 120

RW8020 RW5050 Writeonly

R
e
sp

o
n
se

 t
im

e
 [

s]

Response time of transactions in QuAD with increasing number of core sites

2k
4k
8k

Fig. 7: Varying κ (8 sites)

D. QuAD Quorum Construction Strategies

In this series, we compare QuAD to strategies that either
only consider the load or the RTT. We use 4 sites with κ = 3.
In this evaluation, the number of workers remains constant
(speedup test). All transactions are submitted to the slave site.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Readonly RW8020 RW5050 Writeonly

R
e
sp

o
n
se

 t
im

e
 [

s]

Overall response time - 4 sites

QuAD
QuAD-inversed

MQ-RA
MQ-RR

(a) 4 sites; κ = 2

 0

 50

 100

 150

 200

 250

Readonly RW8020 RW5050 Writeonly

R
e
sp

o
n
se

 t
im

e
 [

s]

Overall response time - 8 sites

QuAD
QuAD-inversed

MQ-RA
MQ-RR

(b) 8 sites; κ = 4

 0

 50

 100

 150

 200

 250

 300

 350

Readonly RW8020 RW5050 Writeonly

R
e
sp

o
n
se

 t
im

e
 [

s]
Overall response time - 16 sites

QuAD
QuAD-inversed

MQ-RA
MQ-RR

(c) 16 sites; κ = 8

Fig. 8: Varying RTT (multi-data center setting)

First, we compare QuAD to an assignment which considers
only latency (QuAD-LA). The core site with the smallest load
has the greater distance to the slave, and as the load of the
cores increases, the distance decreases by the same factor.
QuAD-LA chooses the core quorum with the lowest maximum
load and assigns the slave to that quorum, whereas QuAD
chooses the quorum with the lowest cost by jointly considering
load and RTT. As depicted in Figure 9a, QuAD outperforms
QuAD-LA for all r/w ratios. The performance gain of QuAD
is considerable for network-bound update-heavy workloads.

In the second step, we compare QuAD to an assignment
which only considers RTT (QuAD-RTT). The core site with
the smallest RTT has the highest load, and as the RTT of the
cores to the slave increases, their load decreases. We conduct
three different evaluations which differ in the load generated
at the weakest core site from the load point of view. The
first evaluation generates a load that corresponds to an average
latency of 2,500 ms, the second to 500 ms and the third one

 0

 1

 2

 3

 4

 5

 6

 7

Readonly RW8020 RW5050

R
e
sp

o
n
se

 t
im

e
 [

s]

Overall response time

QuAD
QuAD-LA

(a) QuAD vs. Latency only

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Readonly RW8020 RW5050

R
e
sp

o
n
se

 t
im

e
 [

s]

Overall response time

QuAD
QuAD-RTT

(b) QuAD vs. RTT only (Large load at a core site)

 0

 1

 2

 3

 4

 5

 6

Readonly RW8020 RW5050

R
e
sp

o
n
se

 t
im

e
 [

s]

Overall response time

QuAD
QuAD-RTT

(c) QuAD vs. RTT only (Middle load at a core site)

 0

 1

 2

 3

 4

 5

 6

Readonly RW8020 RW5050
R

e
sp

o
n
se

 t
im

e
 [

s]

Overall response time

QuAD
QuAD-RTT

(d) QuAD vs. RTT only (Small load at a core site)

Fig. 9: Comparison of assignment types

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

R
e
sp

o
n
se

 T
im

e
 [

se
c]

Number of Workers

Response time of transactions with increasing workload - RW80/20

QuAD balanced
QuAD not balanced

(a) r/w = 80/20 (80% reads – 20% writes)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160

R
e
sp

o
n
se

 T
im

e
 [

se
c]

Number of Workers

Response time of transactions with increasing workload - RW50/50

QuAD balanced
QuAD not balanced

(b) r/w = 50/50 (50% reads – 50% writes)

Fig. 10: Balanced vs. non-balanced QuAD

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600

R
e
sp

o
n
se

 t
im

e
 [

s]

Number of executed transactions

QuAD adaptive behavior

change of site properties

Non-Adaptive
Adaptive

(a) Swapping load of a core and a slave site

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600

R
e
sp

o
n
se

 t
im

e
 [

s]

Number of executed transactions

QuAD adaptive behavior

change of site properties

Non-Adaptive
Adaptive

(b) Increasing load at one core site

Fig. 11: QuAD adaptive behavior

to 100 ms. For the high load evaluation, QuAD outperforms
QuAD-RTT (Figure 9b). However, as the load of the weakest
core site becomes smaller, the performance of QuAD-RTT
gets better and it outperforms QuAD (Figures 9c and 9d). The
reason is that in our SOAP/HTTP-based implementation, the
network should have a higher weight compared to the load.

E. Balanced vs. Non-Balanced QuAD
When assigning the slaves to core quorums, QuAD tries

to balance the assignment in order to avoid that certain core
quorums become a bottleneck if too many slaves are assigned
to them. In order to analyze this, we conduct a sizeup test
comparing QuAD to a version that does not balance, i.e., that
has a weight of zero for the balancing penalty in Eq. (4). As
the load increases, the non-balanced version not only become
bottlenecks w.r.t. the slave sites, but also transactions executed
by them are impacted by the high load from the slaves, and
the entire performance degrades (see Figure 10).

F. Adaptive Quorum Reconfiguration
Finally, we evaluate the ability of QuAD to adapt quorums

w.r.t. to changes of site properties. Firstly, the load of a core
and a slave site are swapped. QuAD reacts to the load swap
and adapts the quorums (see Figure 11a). Compared to the
non-adaptive quorum, this leads to a stabilization of the latency
to the level before the changes in the load. Secondly, we
increase the load at one of the core sites to a level that is
between the load of two slave sites. As a consequence, QuAD
demotes the core site to a slave, and the slave site having the
lowest load is promoted to a core. However, as the load of the
slave site is not decreased, the latency will remain at a higher
level after the adaption of the quorums (Figure 11b).

VI. RELATED WORK

In the last decade, the development of protocols that guar-
antee strong consistency in the presence of replication and that
also incur low costs has attracted quite some attention.

Skute [18] is a dynamic replication mechanism based on
an economic model and aims at minimizing the replication
cost. In contrast to Skute, QuAD reduces the overhead for
guaranteeing 1SR consistency of transactions on top of a fully
replicated DBS. However, QuAD can very well be combined
with Skute. The latter can create/destroy replica sites based on
the cost model, and QuAD can further optimize the transaction
overhead by dynamically adapting the quorums.

Schism [23] is a graph-based approach, able to partition the
data by considering the transaction workload with the goal
of reducing or completely avoiding distributed transactions.
However, as soon as partitions need to be replicated, the choice
of the replication protocol becomes crucial to the performance.
QuAD can complement Schism by constructing quorums of
the replicated partitions based on the site properties.

Spanner [24] is Google’s highly scalable DDBS that pro-
vides strong 1SR guarantees. It is based on S2PL and Paxos
for synchronous replication and uses True Time that assigns
a commit timestamp to transactions in a scalable way. Based
on the timestamps it is possible to globally order transactions.

VII. CONCLUSION AND OUTLOOK

In this work we have introduced QuAD, an adaptive and
workload-driven quorum protocol for replicated databases
tailored to applications that demand strong consistency. QuAD
considers the load of sites and their network proximity for
determining the optimal quorum configuration. The evaluation
results show that QuAD outperforms static quorum protocols
that do not consider site properties and that are thus not able
to dynamically adapt to changes. In our future work, we plan
to assess the adaptation overhead of QuAD and to compare it
with further replication protocols. Moreover, we plan to extend
QuAD by allowing it to learn the optimal configuration from
application requirements (SLAs) and the actual workload.

REFERENCES

[1] D. J. Abadi, “Data Management in the Cloud: Limitations and Oppor-
tunities,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 3–12, 2009.

[2] E. Brewer, “Towards Robust Distributed Systems,” in PODC, 2000.
[3] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-tolerant Web Services,” SIGACT News,
vol. 33, no. 2, pp. 51–59, 2002.

[4] D. J. Abadi, “Consistency Tradeoffs in Modern Distributed Database
System Design: CAP is Only Part of the Story,” IEEE Computer, vol. 45,
no. 2, pp. 37–42, 2012.

[5] J. C. Corbett et al., “Spanner: Google’s Globally-distributed Database,”
in Proc. OSDI, 2012, pp. 251–264.

[6] P. Bailis et al., “Highly available Transactions: Virtues and Limitations,”
in Proc. VLDB, vol. 7, no. 3, 2013, pp. 181–192.

[7] B. Kemme, R. Jiménez-Peris, and M. Patiño-Martı́nez, “Database Repli-
cation,” Synthesis Lectures on Data Management, 2010.

[8] R. Jiménez-Peris et al., “Are Quorums an Alternative for Data Replica-
tion?” ACM Trans. Database Syst., vol. 28, no. 3, pp. 257–294, 2003.

[9] R. H. Thomas, “A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases,” TODS, vol. 4, no. 2, 1979.

[10] D. K. Gifford, “Weighted Voting for Replicated Data,” in Proc. SOSP,
1979, pp. 150–162.

[11] D. Agrawal and A. El Abbadi, “The Tree Quorum Protocol: An Efficient
Approach for Managing Replicated Data,” in VLDB, 1990, pp. 243–254.

[12] S. Y. Cheung, M. H. Ammar, and M. Ahamad, “The Grid Protocol: A
High Performance Scheme for Maintaining Replicated Data,” in Proc.
KDE, 1990, pp. 438–445.

[13] A. Stiemer, I. Fetai, and H. Schuldt, “Comparison of Eager and Quorum-
based Replication in a Cloud Environment,” in Proc. IEEE Big Data,
2015, pp. 1738–1748.

[14] J. Bar-Ilan, G. Kortsarz, and D. Peleg, “How to Allocate Network
Centers,” J. Algorithms, vol. 15, no. 3, pp. 385–415, 1993.

[15] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[16] J. Munkres, “Algorithms for the Assignment and Transportation Prob-
lems,” Journal of the Society for Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[17] M. Andreolini and S. Casolari, “Load Prediction Models in Web-based
Systems,” in Proc. Valuetools, 2006, p. 27.

[18] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A Self-organized, Fault-
tolerant and Scalable Replication Scheme for Cloud Storage,” in Proc.
SoCC, 2010, pp. 205–216.

[19] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi, “Zephyr: Live
Migration in Shared Nothing Databases for Elastic Cloud Platforms,” in
Proc. SIGMOD, 2011, pp. 301–312.

[20] A. J. Elmore et al., “Squall: Fine-Grained Live Reconfiguration for
Partitioned Main Memory Databases,” in SIGMOD, 2015, pp. 299–313.

[21] B. F. Cooper et al., “Benchmarking Cloud Serving Systems with YCSB,”
in Proc. SoCC, 2010, pp. 143–154.

[22] P. A. Bernstein and E. Newcomer, Principles of Transaction Processing.
San Francisco, CA, USA: Morgan Kaufmann Publishers, 2009.

[23] C. Curino et al., “Schism: a workload-driven approach to database
replication and partitioning,” PVLDB, vol. 3, no. 1, pp. 48–57, 2010.

[24] J. C. Corbett et al., “Spanner: Google’s globally distributed database,”
ACM Trans. Comput. Syst., vol. 31, no. 3, pp. 8:1–8:22, 2013.

