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There is an ongoing search for a physical or operational definition for quantum mechanics. Several
informational principles have been proposed which are satisfied by a theory less restrictive than quantum
mechanics. Here, we introduce the principle of “many-box locality,” which is a refined version of the previously
proposed “macroscopic locality.” These principles are based on coarse graining the statistics of several copies of
a given box. The set of behaviors satisfying many-box locality for N boxes is denoted LMB

N . We study these sets
in the bipartite scenario with two binary measurements, in relation with the sets Q and Q1+AB of quantum and
“almost quantum” correlations, respectively. We find that the LMB

N sets are, in general, not convex. For unbiased
marginals, by working in the Fourier space we can prove analytically that LMB

N � Q for any finite N , while
LMB

∞ = Q. Then, with suitably developed numerical tools, we find an example of a point that belongs to LMB
16

but not to Q1+AB . Among the problems that remain open is whether Q ⊂ LMB
∞ .
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I. INTRODUCTION

The definition of quantum physics is most frequently re-
duced to a description of its mathematical formalism: Physical
systems are described by vector spaces, and their properties by
subspaces. The desire for a more physical, or operational, or
even philosophical foundation for this definition is an ongoing
task. Two programs have reported significant advances in the
last decade.

The first program is a revival of the attempts left pending in
the approach called “quantum logic” Quantum physics is put in
the context of generalized probabilistic theories, then singled
out through a small set of axioms. Breakthrough was achieved
by realizing that one needs an axiom about composite systems,
i.e., one that captures some aspects of entanglement. This
program has achieved the goal of reconstructing the Hilbert
space structure (see [1] for a review).

Another program has been inspired by the work on Bell
nonlocality. There, the basic mathematical object comprises
the correlations among the outcomes of measurements on
separated systems. One could try and find a physical principle
that would allow exactly the set of correlations predicted
by quantum theory. The pioneering attempt in this direction
was that of Popescu and Rohrlich [2], who asked whether
no-signaling could be such a principle and found it defines
a much larger set of correlations. This no-signaling set
became then the arena, in which the quantum set had to be
recovered by further constraints. The main principles proposed
to date, inspired either by information theory or by physics,
are nontrivial communication complexity [3], no advantage
for nonlocal computation [4], information causality (IC) [5],
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macroscopic locality (ML) [6], and local orthogonality [7].
Each defines a set of correlations which touches the quantum
set in a nontrivial way. For most of them, we do not have
a compact characterization but (pending a general proof for
IC) we know that they are larger than a set that is strictly
larger than the quantum set [8]. In other words, the principle
defining quantum physics in this program is still being
sought [9,10].

In this paper we explore the principle of many-box locality
(MBL) that is a refinement of ML. ML is probably the most
physical of the principles listed above. The starting point is
the fact that we do not see violation of Bell inequalities in
the macroscopic world. The formalization considers that one
cannot observe the outcome of individual sources of correla-
tions (boxes), but only the coarse graining of the outcomes
of N of them [see Fig. 1(b)]. Then, a second coarse graining
is considered: The outcomes of N boxes are known with a
precision

√
N . Under these coarse-graining assumptions, one

can characterize exactly the set of correlations identified by
ML in the limit N → ∞: It coincides with the first step of the
Navascués-Pironio-Acín hierarchy of semidefinite relaxations
[11]. A similar work by Rohrlich [12] shows that in the
infinite N limit, some nonlocal boxes can even be activated
to signal if weak measurements are possible for these boxes.
By forbidding this possibility of activation of signaling, the
Tsirelson’s bound is recovered.

The second coarse graining is certainly very reasonable in
practice, but one may question whether it fits in a fundamental
principle: We may never be able to distinguish 1023 from
1023 + 1, but nature may not be defined by our limitations.
MBL is defined by keeping the first coarse graining of ML,
but not the second one. Besides, we shall discuss the set of
achievable correlations also for finite N , whereas ML was
directly phrased for the infinite limit.
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FIG. 1. Comparison between the usual Bell scenario and the
many-box scenario. (a) The usual Bell scenario. We called this
a “box.” (b) The many-box scenario. An “N -box” is formed by
combining N boxes together in a particular way: All individual boxes
are identical and independent, the same setting is provided to each
box, and the outcome of each box is cumulated to produce the outcome
of the many box; i.e., A = ∑

i ai , B = ∑
i bi .

II. PRELIMINARY NOTIONS

In this section, we first introduce the Bell scenario. Then
three sets of correlations of interest will be introduced: the
no-signaling set NS , the quantum set Q, the local set L, as
well as Bell inequalities. For simplicity, we introduce these
notions in bipartite scenarios, but these can be generalized to
any general Bell scenarios including multipartite ones.

A. Bell scenario and behaviors

Consider two parties Alice and Bob at distinct locations.
Each has a measurement device, which shall be treated as a
black box with the input x ∈ X = {1,2, . . . ,MA} and y ∈ Y =
{1,2, . . . ,MB} and the output a ∈ A = {1,2, . . . ,mA} and b ∈
B = {1,2, . . . ,mB}, for Alice and Bob, respectively. We refer
to this as the (MA,MB,mA,mB) Bell scenario.

In each run of the experiment, each party chooses a
input at random and obtains an outcome. After repeating the
experiment sufficiently many times, one can reconstruct the

family of MA × MB probability distributions,

PX ,Y = {P (a,b|x,y),a ∈ A,b ∈ B}x∈X ,y∈Y ,

with P (a,b|x,y) � 0 for all a,b,x,y and
∑

a,b P (a,b|x,y) = 1
for all x,y. It has become customary to refer to the PX ,Y as to a
behavior. For the purpose of this paper, we need to define three
sets of behaviors: no-signaling (NS), quantum (Q), and local
(L). They are strictly included into one another according to
L � Q � NS. In this paper, we will be focusing on (2,2,d,d)
scenarios, though the notions in this section apply to any Bell
scenarios.

B. The no-signaling set

A behavior P is said to be no-signaling (NS) if it satisfies∑
b∈B

P (a,b|x,y) ≡ P (a|x,y) = P (a|x),

(1)∑
a∈A

P (a,b|x,y) ≡ P (b|x,y) = P (b|y),

for all x,y. The set of no-signaling behaviors NS is defined
by a finite number of linear constraints, namely the positivity
constraints 0 � P (a,b|x,y) � 1, the normalization constraints∑

a,b P (a,b|x,y) = 1, and the no-signaling constraints (1).
Because of this, it has a compact characterization: It is a
polytope, i.e., a convex set with finitely many extremal points.

Let us represent no-signaling behaviors in the (2,2,d,d)
Bell scenario in the Collins-Gisin form [13],

PX ,Y :=

⎛⎜⎝ 1 P (b|y = 0) P (b|y = 1)

P (a|x = 0) P (a,b|0,0) P (a,b|0,1)

P (a|x = 1) P (a,b|1,0) P (a,b|1,1)

⎞⎟⎠,

where a,b ∈ {0,1, . . . ,d − 2}. Notice that a (2,2,d,d) no-
signaling behavior is fully specified by 4d(d − 1) numbers,
whereas a generic behavior in the same scenario would require
4(d2 − 1) numbers.

C. The quantum set

For a given bipartite Bell scenario, the quantum set Q of
behaviors is the set of all the PX ,Y that can be obtained with
quantum theory. That is, PX ,Y ∈ Q if there exist a quantum
state |ψ〉 and two sets of measurement operators {Ea|x

A ,a ∈
A,x ∈ X } and {Eb|y

B ,b ∈ B,y ∈ Y}, such that [Ea|x
A ,E

b|y
B ] = 0,∑

a E
a|x
A = I,

∑
b E

b|y
B = I, and

P (a,b|x,y) = 〈ψ |Ea|x
A E

b|y
B |ψ〉 (2)

for all a,b,x,y. Notice that, since no restriction is made on the
dimension of the Hilbert space, the state can be taken to be
pure and the measurement operators projective.

The quantum set is convex but not a polytope. So far, no
compact characterization of the quantum set is known. In this
paper, we shall use the hierarchy of semidefinite programs
proposed by Navascués-Pironio-Acín (NPA) [11] as an outer
approximation of Q. Each level j of the hierarchy defines a set
of behaviors larger than the quantum set, such thatQj+1 ⊆ Qj ;
the hierarchy converges to the quantum set, i.e., Qj→∞ = Q.
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D. The local set

A local deterministic behavior is one in which the outputs
a and b are determined by the inputs x and y, respectively:

PLD(a,b|x,y) = δa=fi (x)δb=fj (y). (3)

There are m
MA

A m
MB

B local deterministic behaviors. As an
example that will be used later, in the (2,2,2,2) scenario, the
behavior corresponding to deterministically outputting a = 1
and b = 1 for both inputs is represented by

PLD1 =

⎛⎜⎝1 0 0

0 0 0

0 0 0

⎞⎟⎠. (4)

A behavior P is said to be local if and only if it can
be described as a convex combination of local deterministic
behaviors,

P =
∑

i

ciPLDi
, (5)

where ci � 0,
∑

i ci = 1. Thus, the local set L is also a
polytope, with the local deterministic behaviors as extremal
points.

The local polytope shares some facets with NS, defined by
the positivity, normalization and no-signaling constraints. Its
proper facets are Bell inequalities C,

C · P ≡
∑

a,b,x,y

C(a,b,x,y)P (a,b|x,y) � V, (6)

where V is called the local value. In other words, a behavior is
local if and only if none of the Bell inequalities is violated. To
test whether a given point is local, it is not necessary to list all
the Bell inequalities explicitly for that scenario. Rather, one
can solve the linear program

maximize v,

subject to P(v) = vP + (1 − v)Pmix,

P(v) =
∑

i

tiPLDi
,

ti � 0,
∑

i

ti = 1, (7)

where Pmix(a,b|x,y) = 1/d2,∀ a,b,x,y, is the maximally
mixed distribution. We call the returned value vmax the local
parameter. The behavior P is local if vmax � 1, nonlocal if
vmax < 1. As a by-product of this optimization, a certificate is
provided in either case. If the test distribution is local, it will
return us a valid decomposition in terms of local deterministic
points. Otherwise, it will return a Bell inequality that is violated
by the test distribution as a consequence of Farkas’ lemma [14].

III. MANY-BOX LOCALITY: DEFINITION AND TOOLS

In this section, we first introduce the notion of many-box
coarse graining and MBL. Second, we introduce the tool of
Fourier transform that would be useful for this study.

A. Definition of many-box locality

Here, for simplicity, we will define many-box locality in the
(2,2,2,2) scenario, though it can be generalized to any Bell
scenario, including multipartite ones. Consider N identical
(2,2,2,2) boxes, each described by P(a,b|x,y). In any run,
all the boxes take the same inputs x and y, but each produces
independently the output ai,bi ∈ {0,1}, i = 1, . . . ,N . Besides,
we do not keep all the information on the output, but just the
locally coarse-grained variables A = ∑

i ai and B = ∑
i bi .

By construction, A ∈ {0,1, . . . ,N} and B ∈ {0,1, . . . ,N}. In
other words, the coarse-grained variables define a (2,2,N +
1,N + 1) scenario.

The behavior of these variables will be denoted by P∗N ,
called the N -box coarse graining of P . It is not difficult to
write the explicit form of P∗N given P (a,b|x,y),

P ∗N (A,B|x,y) =
N∑

k=0

(
N

A − k,B − k,k,N − A − B + k

)
×P (00|x,y)N−A−B+kP (01|x,y)B−k

×P (10|x,y)A−kP (11|x,y)k, (8)

where ( N

n1,n2,n3,n4
) = N!

n1!n2!n3!n4! . In particular, the marginals are
given by

P ∗N (A|x) =
(

N

A

)
P (a = 1|x)AP (a = 0|x)N−A,

P ∗N (B|y) =
(

N

B

)
P (b = 1|x)BP (b = 0|x)N−B.

We introduce the notion of MBL sets.
Definition 1. A behavior P is said to be N -box local

(P ∈ LMB
N ) if P∗N is local in the (2,2,N + 1,N + 1) scenario.

Notice that the sets LMB
N are defined in the original scenario

(2,2,2,2).
By construction, the coarse-graining procedure obeys the

composition rule

P∗(N1+N2) = P∗N1 ∗ P∗N2 . (9)

From it, one can straightforwardly prove the following
inclusion relations.

Proposition 1. If P ∈ ⋂
j LMB

Nj
, then P ∈ LMB

N(q), with
N (q) = ∑

j qjNj , for all q = (q1,q2, . . .), with qj ∈ N.
Indeed, local decompositions for both P∗N1 and P∗N2

directly define a local decomposition for P∗(N1+N2). As a
corollary, if a probability distribution is both 2-box and 3-box
local, then it is N -box local for any N � 2, since any N can
be decomposed as a sum of multiples of two and three.

Beyond this proposition, we have not been able to find
general properties for the LMB

N sets. Properties that might
have been conjectured, e.g., convexity or the inclusion LMB

N ⊆
LMB

N+1, do not hold, as forthcoming counterexamples will
demonstrate.

B. Fourier transform

The coarse-grained behaviors P∗N are obtained by convo-
lution of N copies of P . This observation suggests studying
the problem in its Fourier transformed version.

052108-3



ZHOU, CAI, BANCAL, GAO, AND SCARANI PHYSICAL REVIEW A 96, 052108 (2017)

First, we define the Fourier transform of a behavior:
Definition 2. The Fourier transform of order r , where r � d,

of a behavior P , denoted Fr [P], is defined as

Fr [P](k,l|x,y) = P̃r (k,l|x,y)

:=
r−1∑

a,b=0

e
2πi
r

(ak+bl)P (a,b|x,y),

for any x,y, where k,l ∈ {0,1, . . . ,r − 1}.
Similarly, we define the inverse Fourier transform of a Bell

expression C:
Definition 3. The inverse Fourier transform of order r ,

where r � d, of a Bell expression C, denoted F−1
r [C], is

defined as

F−1
r [C](k,l,x,y) = C̃r (k,l,x,y)

:= 1

r2

r−1∑
a,b=0

e− 2πi
r

(ak+bl)C(a,b,x,y),

for any x,y ∈ {0,1}, where k,l ∈ {0,1, . . . ,r − 1}.
Note that the Fourier transform is only well behaved when

r � d. So this is always assumed for the rest of the paper, and
the subscript r is dropped for simplicity.

Due do the linearity of Fourier transform, Bell violation is
preserved; that is,

F−1
r [C]·Fr [P] =

∑
k,l,x,y

C̃r (k,l,x,y)P̃r (k,l|x,y)

=
∑

a,b,x,y

C(a,b,x,y)P (a,b|x,y) = C·P. (10)

Another property of the Fourier transform follows from the
convolution theorem, applied repeatedly:

Fr [P∗N ] = (Fr [P])N. (11)

The N -box coarse graining manifests as raising to the N th
power the Fourier transformed probability.

We can now analyze many-box locality in the Fourier
transformed space. P∗N is local if and only if it satisfies
all the Bell inequalities in the (2,2,N + 1,N + 1) scenario,
Ci · P∗N � Vi . By linearity and the convolution theorem, for
the Fourier transformed probability, we have

C̃i · P̃∗N = C̃i · P̃N � Vi (12)

for all i. Note that each Bell inequality (Ci,Vi) defines an
N th-degree polynomial inequality for single-box behavior P .
Thus, on the boundary of LMB

N , one or more such polynomial
inequalities are saturated. We summarize this in the following.

Proposition 2. Let RN
i := {P | C̃i · P̃ N � Vi}. Then

LMB
N = ⋂

i∈I RN
i , where {(Ci,Vi)}i∈I is the set of all the Bell

inequalities of the (2,2,N + 1,N + 1) scenario. Behaviors
on the boundary of LMB

N must saturate one or several Bell
inequalities:

P ∈ bd
(
LMB

N

) ⇒ ∃i ∈ I, such that C̃i · P̃N = Vi.

This provides a systematic way to compute the boundary
of LMB

N . However, this is not tractable for large N due to the
(at least) exponentially increasing number of Bell inequalities
in the (2,2,N + 1,N + 1) scenario. The task is now to find

the relevant set of Bell inequalities that defines the border
of the LMB

N sets. As we will see in the following sections, in
some cases we could guess the relevant set of Bell inequalities,
hence characterizing the LMB

N set; otherwise, any particular set
of Bell inequalities will provide an upper bound to the LMB

N

set.

IV. RESULTS ON L M B
N IN THE (2,2,2,2) SCENARIO

Now we address explicitly the characterization of LMB
N in

the (2,2,2,2) Bell scenario. We start by plotting some of the
LMB

N in some slices, by solving the linear optimization (7).
These plots show that the shape of the sets and their inclusion
is not trivial. Then we present one case in which the tool of
Fourier transforms can be used to find the boundary of LMB

∞
in a special slice. Finally, we discuss the relation between
MBL and the sets Qn of the NPA hierarchy, including Q1 that
defines ML.

A. Numerical plots

To have a better understanding of these LMB
N sets, in this

section, we start with numerical plots of LMB
N sets. We first

show LMB
2 and LMB

3 in a three-dimensional slice of the
NS polytope. Then, we show LMB

N for N up to 10 in a
two-dimensional slice.

The local polytope in the (2,2,2,2) scenario is characterized
by its 16 extremal points, PLDi

,i = 1,2, · · · ,16. Its nontrivial
facets consists of eight Clauser-Horne-Shimony-Holt (CHSH)
[15] inequalities, for example,

C1 ≡ E00 + E01 + E10 − E11 � 2,
(13)

C2 ≡ −E00 + E01 + E10 + E11 � 2,

where

Exy = P (a = b|x,y) − P (a �= b|x,y).

No-signaling probability distribution that violates each CHSH
inequality to its algebraic maximum is known as a Popescu-
Rohrlich box (PR box). For the two CHSHs mentioned above,
we have the corresponding PR boxes,

PPR1 =

⎛⎜⎝ 1 1/2 1/2

1/2 1/2 1/2

1/2 1/2 0

⎞⎟⎠, (14)

and

PPR2 =

⎛⎜⎝ 1 1/2 1/2

1/2 0 1/2

1/2 1/2 1/2

⎞⎟⎠. (15)

We are going to parametrize the slice under consideration
with PPR1 , PPR2 , PLD1 , and Pmix:

P(α,β,γ )

= αPPR1 + βPPR2 + γPLD1 + (1 − α − β − γ )Pmix

=

⎛⎜⎝ 1 (1 − γ )/2 (1 − γ )/2

(1 − γ )/2 (1 + α − β − γ )/4 (1 + α + β − γ )/4

(1 − γ )/2 (1 + α + β − γ )/4 (1 − α + β − γ )/4

⎞⎟⎠.

(16)
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FIG. 2. The LMB
1 , LMB

2 , and LMB
3 in the no-signaling set. The

region inside the dashed brown lines is the set LMB
1 , which is the

local set. Here, the thick black, the blue with star markers, and the
red lines are the boundary of Q, LMB

2 , and LMB
3 , respectively.

Thanks to the symmetry of PR boxes, we only need to
discuss the case where α,β � 0. We first consider the region
γ � 0. The positivity constraint is given by α + β + γ � 1.
The local polytope is constrained by two CHSH inequalities,
2α + γ � 1 and 2β + γ � 1. The quantum set is well charac-
terized for the planes α = 0, β = 0, and γ = 0 by

√
2β + γ =

1,
√

2α + γ = 1, and α2 + β2 = 1/2, respectively (the first
two by [16], and the last is the well-known Tsirelson-Landau-
Masanes arcsine inequality [17–19]). We conjecture that in the
region α,β,γ > 0, the quantum set is given by

α2 + β2 � (1 − γ )2/2. (17)

In Fig. 2, LMB
1 , LMB

2 , and LMB
3 are plotted for the region

α,β,γ � 0, as well as N , Q, and L. By definition, LMB
1 is

simply the local set L. LMB
2 and LMB

3 are obtained by solving
the optimization (7). We would like to highlight two qualitative
features about these MBL sets. First, LMB

N sets are not convex
as we can see from the figure. Mathematically, it says that
to show μP1 + (1 − μ)P2 ∈ LMB

N , knowing P1 ∈ LMB
N and

P2 ∈ LMB
N is not sufficient. Second, in general, LMB

N is not
contained in LMB

N+1, as we can see in the figure, LMB
2 is not

contained in LMB
3 . For example, P(α) = P(α,0,0) is in LMB

2

but not LMB
3 for

√
7 − 2 < α � (1 + √

2)1/3 − (1 + √
2)−1/3.

In Figs. 3 and 4, the LMB
N sets are plotted in two 2D

slices corresponding to γ = 0 and β = 0. Note that for γ < 0,
the positivity constraint becomes α + β − 3γ � 1 and the
quantum boundary is well approximated by the second level
of the NPA hierarchy, Q2. From the figures, we can see that for
up to N = 10, the LMB

N are contained in the quantum set Q.
The general trend of the sets are increasing with N . Though
the inclusion relation LMB

N ⊆ LMB
N+1 is not true, LMB

N ⊆ LMB
N+2

is conjectured to hold for both even and odd N .
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FIG. 3. The boundary of the LMB
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6 , LMB
4 , LMB

2 , respectively, and dashed lines from top to
bottom are LMB

9 , LMB
7 , LMB

5 , LMB
3 , LMB

1 , respectively. Note that the
shaded is the set MBL1, i.e., the local set. In particular, we magnify
the region inside the green rectangle box to show more details.

In the next section, we present some analytic results,
especially for the case for N → ∞.

B. L M B
∞ = Q for unbiased marginals

In Fig. 3 in the previous section, the numerical plots for the
boundary of the LMB

N sets for N odd are reasonably smooth. A
closer inspection at the dual of the linear program (7) reveals
that the relevant inequality has a special form. For odd N

where the number of outcome d = N + 1 is even, the relevant
inequality that defines the boundary of LMB

N is the so-called
half-half lifting [20] of CHSH. It is equivalent to first coarse
graining the d outcomes in to a binary outcome, such that
Alice (Bob) assigns + if A � d

2 (B � d
2 ), − otherwise, then

-1/3 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 NS
Q
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FIG. 4. The boundary of the LMB
N sets in the plane β = 0 for N

from 2 to 10. Here, solid lines, from top to bottom, are NS, Q, LMB
10 ,

LMB
8 , LMB

6 , LMB
4 , LMB

2 , respectively, and dashed lines from top to
bottom are LMB

9 , LMB
7 , LMB

5 , LMB
3 , LMB

1 , respectively. Note that the
shaded area is the set LMB

1 , i.e., the local set.
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applying the CHSH inequality. Using the array notation for
inequalities, expressed in terms of full probabilities, we can
also write

Chalf =
(−J J

J J

)
, J =

(
J −J

−J J

)
,

and J is a matrix of ones of size d/2 × d/2.

Now let us consider the class of behaviors with fully random
marginals, that is, P (a|x) = P (b|y) = 1

2 for all a,b,x,y. Such
a behavior can be parametrized by four parameters,

Phalf =
(

P (μ1) P (μ2)

P (μ3) P (μ4)

)
,

where

P (μ) = 1

4

(
1 + μ 1 − μ

1 − μ 1 + μ

)
.

In the following, we aim to show that, in this slice of
fully random marginals, the boundary defined by the half-half
lifting, in the limit where N tends to infinity, coincides with
that of Q1. The Fourier transform introduced in Sec. III B will
be used in the proofs below.

We start by computing the inner product of J and P (μ),

g(μ) = J · P (μ)∗N,

which in the Fourier-transformed space, following Eq. (12),
becomes

g(μ) = F−1[J ] · {F[P (μ)]}N. (18)

Let us first work out the inverse Fourier transform of the
Bell coefficient. Define the d th root of unity as ω = e

2πi
d , R+ =

{0,1, . . . d
2 − 1}, and R− = { d

2 , d
2 + 1, . . . ,d − 1}, we have

F−1
d [J ](k,l)

= 1

d2

⎛⎜⎜⎜⎜⎝
∑

(a,b)∈R+ × R+
R− × R−

ω−(ak+bl) −
∑

(a,b)∈R+ × R−
R− × R+

ω−(ak+bl)

⎞⎟⎟⎟⎟⎠
= (1 − ω− dk

2 )2(1 − ω− dl
2 )2

d2(1 − ω−k)(1 − ω−l)
. (19)

Then, we focus on theFN
d [P (μ)] term. Since P (a,b|x,y) =

0 for a,b > 1, only four terms survive:

Fd [P (μ)](k,l)

= 1
4 [(1 + ωk)(1 + ωl) + (1 − ωk)(1 − ωl)μ]. (20)

Now we are ready to expand Eq. (18) as a polynomial in μ.
After some calculations, we have

g(μ) =
N∑

m=odd

C(d,m)μm,

where we write C(d,m) in terms of 	 functions:

C(d,m) := 16	(d)

4d	(m + 1)	(d − m)

×
[

	(d − m)	(m)

	
(

d
2

)
	

(
d−m+1

2

)
	

(
m+1

2

)]2

.

Only coefficient for odd m survives, C(d,m) = 0 for even
m because that the denominator diverges to infinity, see the
Appendix for more detail.

Furthermore, evaluating the limit when N → ∞, one
obtains

C(∞,m) = 2

π

1

m

(m − 2)!!

(m − 1)!!
, (21)

where (·)!! is the double factorial (see the Appendix). Note
that this resembles the Taylor expansion of arcsin(μ), which
reads

arcsin(μ) =
∞∑

m=odd

1

m

(m − 2)!!

(m − 1)!!
μm. (22)

In conclusion, in the limit of N going to infinity, testing
the Bell inequality Chalf · P∗N � 2 reduces to testing the Bell
inequality

2

π
[− arcsin(E00) + arcsin(E01)

+ arcsin(E10) + arcsin(E11)] � 2 (23)

on the single-box behavior. Incidentally, Eq. (23) also charac-
terizes the Q1 set of behaviors.

As a by-product, one can derive the analytic solution of the
boundary of LMB

N , for odd N , in the plane γ = 0. For example,
the boundaries of LMB

N , N = 1,3,5 are shown in the following
table.

N Expression

1 4β = 2
3 β(3 + 3α2 + β2) = 2
5 β[45 + 45α4 + 10β2 + 9β4 + 30α2(1 + 3β2)]/16 = 2

Note that the boundary in the case of N = 1 is simply the
CHSH-Bell inequality.

C. A sequence of quantum behaviors outside LM B
N

In this section, we present an analytic sequence of quantum
behaviors that is N -nonlocal for each N . This family makes
use of a different binning of the N + 1 outcomes than the
half-half binning in the previous section: Instead, we consider
that each party outputs the parity of its outcome, e.g., (−1)A

for Alice. We note that this binning requires a full resolution of
the outcomes A and B; hence, it is not possible in the context
of ML, where the resolution is limited [6].
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Consider the probability distribution obtained from mea-
suring the singlet state

|ψ〉 = 1√
2

(|01〉 − |10〉)

in the following basis:

A0 : σZ, A1 : cos(2θ )σZ + sin(2θ )σX,

B0 : cos(θ )σZ + sin(θ )σX, B1 : cos(θ )σZ − sin(θ )σX.

With these measurements, we can compute the four correlators
for a single box:

E00 = E01 = E10 = cos(θ ), E11 = cos(3θ ).

Incidentally, this behavior always sits on the boundary of Q,
since it satisfies the conditions in Ref. [19].

One can test the nonlocality of its N -box coarse graining
by the so-called parity binning [21] of the CHSH inequality,
denoted as C ′, where

C ′ =
(
J ′ J ′
J ′ −J ′

)
, J ′

i,j = (−1)i+j .

Following parity binning, and because the N box are
identical and independent, we can see that the correlation〈

E(N)
x,y

〉 = 〈(−1)Ax+By 〉 = 〈(−1)
∑

i ax,i+byi 〉
= 〈(−1)ax,i+by,i 〉N = EN

x,y ; (24)

that is the correlation for the N -box coarse-graining is simply
the N th power of that of a single box. Hence,

SN = C ′P∗N = EN
00 + EN

01 + EN
10 − EN

11

= 3 cosN (θN ) − cosN (3θN ). (25)

Let θN = θ0√
N

; this quantity can be larger than 2 for any N

with suitable choice of θ0. Moreover, in the limit of N going
to infinity,

SN = 3e−θ2
0 /2 − e−(3θ0)2/2,

whose maximum Smax
N = 37/8 − 3−9/8 ≈ 2.3245 is achieved

with θ0 =
√

ln 3
2 .

It is worth emphasizing that the quantum behavior con-
sidered here is different for each value of N (i.e., the angle
θN depends on N ). In particular, setting N = ∞ produces a
local box which belongs to LMB

N ∀ N . Therefore, this family of
behaviors does not constitute an example of quantum behavior
that is outside LMB

∞ .

D. A nonquantum L M B
16 behavior

In this section, we present a behavior that is not quantum but
nevertheless belongs to the LMB

16 set: P�∈ /∈ Q and P�∈ ∈ LMB
16 .

This point lies in the slice where β = 0, and is defined by

α = 0.287 569 286 421 973,

γ = 0.505 748 781 260 095.

First be reminded that the boundary of the quantum set is
known analytically on this slice for α,γ � 0. It is given by
the straight line γ = 1√

2
(1 − α). One can thus easily check

that P�∈ is not in the quantum set. A direct computation also

demonstrates that this point does not belong to the set of almost
quantum correlations: P�∈ /∈ Q1+AB .

In order to test whether this point belongs to the LMB
16 set, we

solved the linear program (7) with P∗16
�∈ . This linear program

involves 83521 extremal points in an 1088-dimensional space
and is tractable with standard solvers. However, the local
parameter v turns out to be 1 up to machine precision. We
thus developed a high-precision linear programming solver to
determine whether v is smaller or larger than 1. This solver is
available online in the latest version of YALMIP [22,23]. Using
this tool, we solve the linear program (7) with 50 digits of
precision and find that the local parameter is

v = 1 + 7.4 × 10−19,

with ti � 0 (strictly),
∑

ti = 1 + 9.8 × 10−55, and
| ∑i tiPLDi

− (vP∗16
�∈ + (1 − v)Pmix)|1 � 8.8 × 10−36. We

consider this a convincing numerical proof of a valid
decomposition, since v is significantly larger than 1 compared
to the precision with which the constraints are satisfied. The
full high-precision primal solution to this linear program is
provided in the Supplemental Material [24].

In conclusion, we have shown an explicit example of
a distribution that lies in LMB

16 but outside Q and Q1+AB .
Since LMB

16 ⊆ LMB
∞ , this also shows that Q �= LMB

∞ and
Q1+AB �= LMB

∞ .

V. DISCUSSION AND OUTLOOK

In this paper we introduced the set of many-box local
behaviors LMB

N . Since the MBL principle is less coarse grained
than ML, this set is a priori stricter than the set of ML,
LMB

∞ ⊆ Q1. We have shown in Sec. IV B that LMB
∞ = Q in one

slice in which Q1 = Q also holds. Also, we found that LMB
16

contains behaviors which belong neither to Q, nor to the larger
set Q1+AB . This shows that LMB

∞ � Q1+AB . In particular, the
principle of many-box locality does not identify the quantum
set, either for finite or for infinite N .

There are two main open questions. On the one hand, we do
not know if MBL is satisfied by all quantum behaviors, i.e., if
Q � LMB

∞ . The opposite would mean that there exist quantum
boxes that remain nonlocal even in the limit of infinitely many
copies, in a way that is washed out by the second coarse grain-
ing of ML. On the other hand, we do not know whether in some
slices LMB

∞ comes closer to the quantum set than Q1 or than
Q1+AB . If LMB

∞ were equal to Q1, the second coarse graining
of ML does not play any role. If LMB

∞ � Q1+AB , many-box
locality is a strictly weaker principle than “almost-quantum.”

Other technical features of the LMB
N sets, suggested by

numerical studies, remain conjectural. First, all the relevant
inequality that detects the nonlocality of N -box distributions
seems to be liftings of the CHSH inequality; we have not
found an example where no liftings of CHSH is violated while
a genuine d-outcome Bell inequality is. Second, the inclusion
LMB

N ⊆ LMB
N+2 seems to hold for N both even and odd in all

slices that we studied.
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APPENDIX: EVALUATION OF g(μ)

In this section, we provide a detailed description of the
evaluation of g(μ).

First, from Eq. (19), it is easy to conclude that
F−1

d [J ](k,l) = 0 for k or l even, and

F−1
d [J ](k,l) = 16ωk+l

d2(1 − ωk)(1 − ωl)
(A1)

for k,l odd.
Recall the definition of g(μ) from Eqn. (18), we have

g(μ) = 16

d24d−1

∑
k,l=odd

(
(1 + ωk)(1 + ωl)

+ (1 − ωk)(1 − ωl)μ
)d−1 ωk+l

(1 − ωk)(1 − ωl)

= 16

d24d−1

∑
k,l=odd

d−1∑
m=0

(
d − 1

m

)
μm(1 − ωk)m−1

× (1 − ωl)m−1(1 + ωk)d−m−1(1 + ωl)d−m−1ωk+l .

Here, we exchange the order of sums, and k,l are symmetric,
then we have

g(μ) = 16

d24d−1

d−1∑
m=0

(
d − 1

m

)
μmS2(d,m), (A2)

where

S(d,m) =
d−1∑

k=odd

(1 − ωk)m−1(1 + ωk)d−m−1ωk. (A3)

In the following, we aim to simplify S(d,m). First we focus
on the case of m = 0 and expand (1 + ωk)d−1 in the binomial
form. Then, we have

S(d,0) =
d−1∑

k=odd

d−1∑
t=0

(
d − 1

t

)
ωk(t+1)

1 − ωk

=
d−1∑
t=0

(
d − 1

t

) d−1∑
k=odd

ωk(t+1)

1 − ωk
.

We apply (d − 1
t ) = (

d − 1
d − t − 1), and obtain that

S(d,0) =
d/2−1∑
t=0

(
d − 1

t

)(
d−1∑

k=odd

ωk(t+1) + ωk(d−t)

1 − ωk

)

=
d/2−1∑
t=0

(
d − 1

t

)
· 0 = 0. (A4)

The above equation holds since on the one hand the sum
of (ωk(t+1) + ωk(d−t))/(1 − ωk) and its conjugate is 0, which
implies that its real part is 0; on the other hand, its imaginary
part is 0 because S(d,0) must be a real number.

Then for m � 1, we rewrite (1 − ωk)m−1 and (1 −
ωk)d−1−m in the binomial form, then exchange the order of
sum. Afterwards, we know that

S(d,m) =
m−1∑
s=0

m−1∑
t=0

(−1)s
(

m − 1

s

)(
d − m − 1

t

)

×
( d−1∑

k=odd

ωk(s+t+1)

)

=
m−1∑
s=0

m−1∑
t=0

(−1)s
(

m − 1

t

)(
d − m − 1

s

)

×
(

d

2
(δs+t+1=0 − δt=d/2−s−1)

)

= d

2

m−1∑
s=0

(−1)s+1

(
m − 1

s

)(
d − m − 1

d/2 − s − 1

)
, (A5)

Here, Eq. (A5) holds since

d−1∑
k=odd

ωkt = d

2
(δt=0 − δt=d/2), 1 � t � d.

Now the summation over s can be evaluated in Mathemat-
ica:

S(d,m) = −d

2

2d−2	
(

d−m
2

)
	

(
d
2

)
	

(
1 − m

2

) . (A6)

Finally, we obtain that

g(μ) =
N∑

m=odd

C(d,m)μm. (A7)

Third, we introduce two properties of Gamma function to
calculate C(∞,m). One is called as the duplication formula:

	(η)	
(
η + 1

2

) = 21−2η
√

π	(2η). (A8)

Another one is a equivalent condition:

lim
n→∞

	(n + η)

	(n)nη
= 1. (A9)

Subsequently, we conclude Eq. (21) by applying the
duplication formula and the equivalent condition. That is,

C(∞,m) = lim
d→∞

C(d,m)

= 16	2(m)

	(m + 1)	2
(

m+1
2

) lim
d→∞

	(d)	(d − m)

4d	2
(

d
2

)
	2

(
d−m+1

2

)
= 16	

(
m
2

)
m

√
π21−m	

(
m+1

2

) lim
d→∞

	
(

d+1
2

)
	

(
d−m

2

)
22+mπ	

(
d
2

)
	

(
d−m+1

2

)
= 2	

(
m
2

)
mπ3/2	

(
m+1

2

) . (A10)

Note that only odd m needs to be considered. In this way,
Eq. (21) is obtained by the definition of the Gamma function.
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