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Collective measurements on large quantum systems together with a majority voting strategy can lead to a
violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this
violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function
of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial
Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the
source noise, we then present an experiment where the critical pair number is used to quantify the quality of a
high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements
operating on clusters of more than 40 photon pairs.
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I. INTRODUCTION

The ability of detecting single quanta, already developed
for some decades, is a crucial feature of experimental quantum
technologies, and the whole thinking in quantum information
science usually relies on it [1]. This notwithstanding, recent
studies have considered situations in which single-quanta
control and detection are not available. For instance, in many-
body systems measurements are performed collectively—
the same measurement is applied to all particles and the
outcome produced is extensive in the system size—so single
quanta identification is lost. It is also common in such
systems to have access to only few-body correlators, in
which case single-quanta resolution is also lost [3]. An-
other example where single-quanta detection is not available
is when quantum light is detected by biological systems
[4–7].

Prompted by interest in these systems, it is relevant to
study what happens to the violation of Bell’s inequalities.
Several restrictions have been highlighted in the limit of
large numbers of particles. For instance, Bell inequalities
cannot be violated if only few-body collective observables
are measured [8], unless one adds assumptions [9,10]. In a
many-pair scenario, high-order collective measurements are
also unable to lead to a Bell violation as soon as some realistic
coarse-graining is present [11]. At the same time, it is also
known that the ability to address single quanta is not necessary
for violating a Bell inequality where n particles are subjected
to collective measurement processed through majority vot-
ing [12]. In this case, however, the observed violation is
known to decrease quickly as a function of the number of
particles.

In this paper, we show that substantial violation can be
obtained in the presence of collective measurements for an
arbitrary number of particles by using a parity binning strategy.
We discuss the resistance to noise of this Bell violation as
a function of the cluster size n, the number of pairs of
particles collectively measured, and compare it with the one
obtained in the previous approach. In each case we find that
the maximal cluster size nc for which a Bell violation can

be obtained is sensitive to experimental imperfections and
proves to be a good figure of merit to certify the quality of a
high-visibility source [13–15]. From this insight, we perform a
proof-of-principle experiment using a very high-quality source
of photon pairs and demonstrate nonlocal correlations with
collective measurements operating on clusters of up to 41
photon pairs.

II. THEORY

A. The many-pair scenario

Consider a source that produces n independent pairs
of correlated particles—in particular, particles belonging to
different pairs are a priori distinguishable [12]. One particle
of each pair is sent to party Alice and the other to party Bob.
Each party submits all its n particles to the same single-particle
measurement, labeled x for Alice and y for Bob. Alice’s
(Bob’s) particle from the ith pair returns the outcomes ai

xy

(bi
xy).
We focus on the case where each party performs one of two

measurements (x,y ∈ {1,2}) and the single-particle outcome is
binary (a,b ∈ {0,1}). The correlations observed in this scenario
are nonlocal if and only if they violate a Bell inequality for
two inputs and 2n outputs per party. For a given correlation,
locality can be checked by a linear program, but the hope
of completely solving the local polytope for large n is slim,
since the full list of inequalities is already unknown for n = 2
[16,17]. The number of liftings (that is, loosely speaking,
the number of different versions) of the Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality alone is exponential
in 2n.

We consider a family of measurements indexed by a single
angle β as follows:

A1 = σz, A2 = cos(2β)σz + sin(2β)σx,

B1 = cos β σz + sin β σx, B2 = cos β σz − sin β σx. (1)

When applied to the Werner state

ρ = V |ψ−〉〈ψ−| + (1 − V )I/4, (2)
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FIG. 1. Many-pair experiment scheme: n independent pairs are
shared by two parties in each round. Alice (Bob) applies measurement
x (y) to all of her (his) particles. When the label of each particle is
ignored, the outcome of each party can be described by variables axy

and bxy admitting n + 1 possible values.

where |ψ−〉 = 1√
2
(|01〉 − |10〉) is the maximally entangled

state of two qubits, the statistics of a single pair are described
by the correlators

E11 = E12 = E21 = V cos β, E22 = V cos(3β), (3)

where Exy = Prob(axy = bxy) − Prob(axy �= bxy), and uni-
formly random marginals.

So far, no assumption has been made, but now we assume
that each party is not able to observe the entire string of
outcomes, but only their sum:

axy =
n∑

i=1

ai
xy, bxy =

n∑
i=1

bi
xy, (4)

with axy,bxy ∈ {0,1, . . . ,n}. In other words, in a Stern-Gerlach
picture, each party can count how many particles take each
port, but is unable to sort out which of their particles was
correlated with which of the other party’s (see Fig. 1).

To simplify the test for the Bell violation, we introduce
a processing of the data so that axy → a′

xy and bxy → b′
xy ,

with a′
xy,b

′
xy ∈ {+1,−1}, bringing us back to a two-input and

two-output scenario, in which the only relevant Bell inequality
is the CHSH inequality

Sn = E
(n)
11 + E

(n)
12 + E

(n)
21 − E

(n)
22 � 2, (5)

where E(n)
xy = Prob(a′

xy = b′
xy) − Prob(a′

xy �= b′
xy). If the cor-

relations of the primed variables violate the CHSH inequality,
certainly those of the original unprimed variables violated
some Bell inequality (surely the corresponding lifting of the
CHSH inequality [18]). Of course, information has been lost
in the binning, so the converse is not true.

Specifically, we consider two such local binnings, majority
vote and parity. For each of them, we compute the amount
of violation achievable as a function of V and n. We then
estimate a lower bound on the Werner state visibility, or the
critical visibility Vc, as a function of the number of pairs n at
which a violation is observed. Conversely, for a system with
known V we define nc as the largest n for which it is still
possible to observe a violation for each of the binning models.

B. Majority vote

The first binning, majority vote, is obtained by comparing
the observed output to a fixed threshold t = n/2. If the
outcome is larger than t , we produce +1, otherwise we

FIG. 2. Critical visibility Vc for majority vote and parity binning
as a function of nc. Points are obtained numerically; the continuous
lines are the fitting functions described in Eqs. (7) and (13).

produce −1, i.e.,

a′
xy = sgn(axy − t). (6)

Previous numerical studies suggest that the violation (with
optimized measurement setting) of the CHSH inequality after
such binning decreases roughly as ∼1/

√
n. For every odd

value of n � 65 we numerically derive the value of βmax
n

that provides the larger value of S and use it to compute
the minimal visibility for which inequality (5) is violated.
Within the considered range, these numerical results are well
approximated by the following expression (see Fig. 2):

V maj
c (n) 
 1 − 0.5807

n
+ 0.3479

n2
− 0.060 02

n3
. (7)

For instance, a violation with n = 21 pairs of Werner states
requires a visibility of V � 97.31% [19]; a visibility of V �
99.08% still achieves a violation until n = 63 pairs.

C. Parity binning

Let us now consider the parity binning:

a′
xy = (−1)axy (8)

and similarly for Bob. Recalling Eq. (4), the bipartite correlator
E(n)

xy = 〈a′
xyb

′
xy〉 is

E(n)
xy = 〈

(−1)
∑

i ai
xy (−1)

∑
i bi

xy

〉
=

〈∏
i

(−1)a
i
xy+bi

xy

〉
= (Exy)n. (9)

In the absence of noise, i.e., V = 1,

Sn = 3 cosn β − cosn(3β). (10)

Remarkably, in this case, the CHSH violation does not tend
to 2 for arbitrarily large n. From the expression of Sn we
derive an asymptotic violation of S∞ > 2. Choosing β = β0√

n
,

we find Sn
n→∞−−−→ 3e−β2

0 /2 − e−9β2
0 /2, whose maximum is S∞ =

8×3−9/8 
 2.32 obtained for β0 = √
ln 3/2 
 0.524.
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The situation changes when we extend Eq. (10) to consider
the case of V < 1:

Sn(V ) = V nSn(V = 1). (11)

It is evident how the asymptotic violation disappears with the
least amount of white noise, V nSn(V = 1)

n→∞−−−→ 0 for any
V < 1. Nevertheless, for every n there exists a critical visibility
Vc(n), such that violation will be observed if V > Vc(n). The
condition Sn 
 8×3−9/8V n 
 8×3−9/8[1 − n(1 − V )] = 2
gives

V parity
c (n) 
 1 − 1 − 39/8/4

n

 1 − 0.14

n
. (12)

This expression, as opposed to Eq. (7), is not a numerical guess,
but an analytic approximation in the high-visibility regime.

Equation (12) is only optimal in the limit of large n. For a
finite n, a numerical computation over the angle βmax

n can be
used to find the optimal critical visibility as a function of the
size of the cluster n. For n � 65 the numerical results are well
approximated by the following expression:

V par
c (n) 
 1 − 0.1584

n
+ 0.039 87

n2
− 0.1743

n3
. (13)

A violation with n = 4 pairs requires a visibility higher than
V � 96%; a visibility of V � 99% produces a violation with
at most n = 15 pairs.

In Fig. 2 we compare Vc as a function of nc for the majority
vote and parity binnings. From the comparison, we notice that
for any fixed n the majority binning tolerates smaller values of
V insofar as the possibility of violation is concerned. However,
the amount of violation is different for the two cases: in the case
of majority voting, the violation quickly decreases with the
number of pairs as ∼1/

√
n, whereas it only decreases linearly

∼S0 − Cn in the parity case, with C ∝ (1 − V ) approaching
0 when V approaches 1. Therefore, for V high enough, parity
exhibits higher violations for the same values of n. This
behavior starts at V � 99.4% (see Fig. 7 for the amount of
Bell violation with parity binning).

III. EXPERIMENT

A. Experimental setup

In our experiment (see Fig. 3), the output of a grating-
stabilized laser diode (LD, central wavelength 405 nm) passes
through a single mode optical fiber (SMF) for spatial mode
filtering, and is focused to a beam waist of 80 μm into a
2-mm-thick BBO crystal cut for type-II phase matching. There
photon pairs are generated via spontaneous parametric down-
conversion (SPDC) in a noncollinear configuration, with a
half-wave plate (λ/2) and a pair of compensation crystals (CC)
to take care of the temporal and transversal walk-off [19].
Two spatial modes (A, B) of down-converted light, defined
by the SMFs for 810 nm, are matched to the pump mode to
optimize the collection [20]. In type-II SPDC, each down-
converted pair consists of an ordinary and an extraordinarily
polarized photon, corresponding to horizontal (H ) and vertical
(V ) polarization in our setup. Polarization controllers (PC)
minimize the polarization transformation caused by the SMFs
to the collected modes.

FIG. 3. Schematic of the experimental setup. Polarization corre-
lations of entangled-photon pairs are measured by the polarization
analyzers MA and MB , each consisting of a half-wave plate (λ/2)
followed by a polarization beam splitter (PBS). All photons are
detected by avalanche photodetectors DH and DV and registered in a
coincidence unit (CU).

One of the CC is tilted to adjust the phase between
the two decay possibilities, obtaining an output state
very close to the singlet polarization Bell state |ψ〉 =
1/

√
2(|H 〉A|V 〉B − |V 〉A|H 〉B).

In the polarization analyzers (inset of Fig. 3), photons from
SPDC are projected onto the linear polarizations necessary
for the Bell tests by λ/2 plates, set to half of the analyzing
angles θA(B), and polarization beam splitters with extinction
ratios of 1/2000 and 1/200 for transmitted and reflected
arms. Photons are detected by avalanche photodiodes (APD),
and corresponding detection events from the same pair are
identified by a coincidence unit if they arrive within ≈ ± 3 ns
of each other.

The quality of polarization entanglement is assessed in the
traditional way via the polarization correlations in a basis
complementary to the intrinsic H/V basis of the crystal. With
interference filters (IF) of 5-nm bandwidth (FWHM) centered
at 810 nm, we observe a visibility of V45 = 98.68 ± 0.20%
in the 45◦ linear polarization basis. In the natural H/V basis
of the type-II down-conversion process, the visibility reaches
VHV = 99.67 ± 0.12%.

Nonperfect symmetry of the collection modes can lead to
“colored” noise, i.e., photon pairs that show anticorrelation
only in a specific measurement basis [21], reducing the quality
of the state. In a previous experiment [13], we have already
estimated the very high quality of the state generated by
this source. The nonideal visibility is due to the nonperfect
neutralization of the polarization rotation caused by the SM
fibers. This affects the outcome of the violation observed, as
we discuss more in detail later.

B. Measurement and postprocessing

In this proof of principle experiment, we did not aim for
a loophole-free demonstration. Due to the limited efficiency
of the APD detectors (efficiency, ≈50%; dark count rates,
≈100 s−1) and the source geometry, we assume that the
detected photons are a fair sample of the entire ensemble.
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FIG. 4. Majority processing for different n applied to the data.
The error bars are obtained from the bootstrapping procedure
indicated in the text. The continuous lines are obtained numerically
following Sec. II B, with V = 0.9892.

Similarly, even though Alice and Bob are not spacelike
separated, we assume that no communication happens between
measurements on both sides. Moreover, the basis choice is not
random, as necessary for a Bell test. Instead, we set the basis
and record the number of events in a fixed time. Based on our
experience with the setup, we assume that the state generated
by the source and all the other parameters of the experiment
do not change significantly between experimental runs.

A single measurement run lasts 60 s, during which we
record an average of 16×103 coincidences between detectors
at Alice and Bob. A detection event at the transmitted output
of each PBS is associated with 0 and at the reflected one
is associated with 1. We discard any twofold coincidences
between detectors belonging to the same party, corresponding
to multiple pairs of photos generated within the coincidence
time window. From the detected single rates, we calculate an
expected rate for these events of ≈8.9×10−6 1/s.

To avoid a bias due to the asymmetries in detector efficien-
cies, we record coincidences not only in a basis (Aj,Bk) but
also in three equivalent bases: (Aj + 45◦,Bk), (Aj,Bk + 45◦),
and (Aj + 45◦,Bk + 45◦). A rotation by 45◦ effectively swaps
the roles of the transmitted and reflected detectors. Each
party, when using such a rotated basis, needs to invert the
measurement outcome. We repeat these measurement sets for a
range of β and the corresponding four bases defined by Eq. (1).

To replicate the many-box scenario, we organize the
sequence of results into clusters of size n for every set
of measurement angles. For each cluster we calculate the
majority (parity) binning using Eq. (6) [Eq. (9)]. Following
the procedure in Eq. (5), we obtain a value of Sn for every n

of interest. To evaluate the error associated with every Sn, the
same procedure is repeated 1000 times, shuffling the order of
the results every time before the clustering.

C. Discussion

The results of the measurement are reported in Fig. 4
for the majority vote and Fig. 5 for the parity binning. We
estimate nc in both cases by identifying the largest n that still
shows a violation of inequality (5). For the case of majority

FIG. 5. Parity processing for different n applied to the data. The
error bars are obtained from the bootstrapping procedure indicated
in the text. The continuous lines are calculated using Eq. (11) with
V = 0.9871.

vote, n
maj
c = 41. The continuous lines in Fig. 4 are obtained

numerically, using as input a Werner state with V = V
maj
c =

0.9892 [cf. Eq. (7)]. Since the white noise of a Werner state
corresponds to a worst-case scenario (any source with colored
noise, with V being the minimal visibility over all choices
of bases, will perform at least as well as the corresponding
Werner state), the continuous lines are a lower bound on the
observed violation. In Fig. 5 we observe that this is true indeed
from small values of the angle β. Instead, for larger angles
the experimental violation is smaller than the predicted lower
bound. This is due to a rotation of the measurement basis due
to the imperfect neutralization of the SM fibers. Due to the
specific alignment procedure, this rotation affects the detected
visibility more for larger angles, as indicated by the relatively
low V45 = 98.68 ± 0.20% in the 45◦ linear polarization basis.
Reproducing the exact violation expected would require an
extensive characterization of the rotation induced by the fibers
that would not add to much to the present demonstration.

A similar procedure is applied to the parity binning. In this
case, we find n

parity
c = 12. The continuous lines of Fig. 5 were

obtained using Eq. (11) with V
parity
c = 0.9871 [cf. Eq. (13)].

Similar conclusions regarding the effect of the imperfect
neutralization of the SM fibers can be drawn.

IV. CONCLUSION

We considered a many-pair scenario, where n identical
entangled pairs are produced and measured collectively, and
showed experimentally that a Bell inequality can be violated
in this scenario. The maximal number of pairs for which a
violation can be observed quantifies the high quality of the
pair source. In our experiment we report a violation up to 41
pairs in the presence of majority voting and up to 12 pairs
in the presence of parity binning. We also prove analytically
that a violation can be observed in the presence of collective
measurement for any number of pairs n and that this violation
can remain significant for arbitrary n in the noiseless limit.
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FIG. 6. Amount of Bell violation remaining in the parity case
when considering n = nc/2 pairs.
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APPENDIX: AMOUNT OF BELL VIOLATION
WITH PARITY BINNING

In the main text we discuss the relation between the number
of pairs at which a Bell violation can still be observed, for
either majority of parity binning, and the quality of the source
in terms of visibility V . The amount of Bell violation that
is obtained in the many-pair scenario when using a majority
binning is described in Ref. [12]. Here we analyze how the
amount of Bell violation depends on the number of pairs in the

case of parity binning and compare it to the majority case. In
particular, we show that its decreases more and more slowly
as the visibility increases.

To see this, we consider the CHSH expression, Eq. (10),
together with the choice of setting

β = β0√
n
, β0 =

√
ln(3)

2
. (A1)

As discussed in the main text, these settings give rise to a
violation for a number of pairs smaller than

nc(V ) = 1 − 39/8/4

1 − V
. (A2)

We then estimate the sensitivity of the Bell violation to the
number of pairs by computing the amount of violation that
can still be observed when the number of pairs is half of the
maximum possible number, i.e., n = nc/2. For this, we define
the ratio

R = Sn[V,n = nc(V )/2] − 2

Sn(V,n = 1) − 2
. (A3)

This quantity is represented in Fig. 6. Interestingly, only
a fraction of the initial violation is lost independently
of the visibility. The decrease in violation is thus linear
in n.

Moreover, since the number of pairs considered here
increases with the visibility, the Bell violation with parity
binning becomes less and less sensitive to the number of
pairs as the visibility increases. This contrasts with the case of
majority voting, where the violation is upper-bounded by the
case V = 1, which decays as ∼1/

√
n.

Given this qualitative difference between the Bell violation
provided by the majority and parity binnings, one should
expect that the Bell violation provided by the parity binning
would outperform the one provided by the majority procedure
for a sufficiently large visibility. From Fig. 7, we see that this
crossover occurs around V = 0.994.

FIG. 7. CHSH violation achieved by the majority and parity binnings as a function of the source visibility V and number of pairs n. For
V � 0.994, the largest Bell violation is achieved by the majority strategy. For V � 0.994, the parity strategy provides a large violation for a
range of n.
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