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1 

Summary 
 
Every multicellular organism on this planet is associated with a diverse community of 

microorganisms referred to as its microbiota. In recent years, myriads of effects resulting 

from this interaction have been revealed. The series of experiments condensed in this thesis 

aimed at investigating this relationship in more detail in planktonic crustaceans from the 

genus Daphnia and in particular the water flea Daphnia magna. The findings from these 

experiments provide important basic knowledge essential for future host-microbiota related 

research in this system. 

Part one of the thesis comprises all experiments conducted by myself. In the first 

chapter I reciprocally transplanted the microbiota between the two species Daphnia magna 

and Daphnia pulex to examine the degree of specificity in these associations and determine 

the effects on host fitness as a consequence thereof. We found that being associated with a 

foreign microbial community did not negatively affect maturity, fecundity and size in both 

Daphnia species, letting us speculate that the two partners did not adapt to each other. This 

hypothesis was further supported by the insights gained when investigating the transmission 

of the whole microbial community, which was the purpose of the second chapter. 

Compositional comparisons between maternal and offspring microbiota revealed a stable 

fraction of microbes that gets transmitted, neither influenced by the origin nor the diversity of 

the microbial community.  

The third chapter of the thesis aimed at assessing the stability of the Daphnia-

microbiota association and to what degree established microbial communities were still 

modifiable. We paired and raised juveniles from three different locations (Belgium, Germany 

and Switzerland) in a full factorial design and compared their microbiota. We found that the 

microbiota is easily modifiable and that microbial communities greatly influence each other’s 

composition. In addition, the results allowed the conclusion that the microbiota is not 

genetically controlled. We further investigated this in the fourth chapter dedicated to evaluate 

if the homozygosity level of the host influences microbial diversity by comparing the 

microbiota of selfed and outcrossed animals. From the results we conclude that the host 

genotype has little influence on the diversity of the microbiota. 

Taken together, these results suggest that although microbial communities play a 

crucial role in Daphnia, the two partners did not adapt to one another leading us to propose a 

scenario of how transmission in the Daphnia-microbiota association might take place. 
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Part two of the thesis encompasses work resulting from collaborations. In chapter five, 

Alexandra Mushegian tested the role of bacteria for animal functioning, showing a positive 

effect on embryonic development under warm temperature conditions. 

The goal of the last chapter, conducted by Karen Sullam, was to investigate the effect of 

temperature, host clone, and their interaction on host-associated microbiota. The experiment 

showed that the interaction of the factors affected microbial community structure while their 

diversity was more affected by host clonal background. 
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Introduction 
 
Starting the moment it is born, every eukaryote inevitably comes into contact with myriads of 

microorganisms, culminating in the formation of life-long mutualistic associations with a 

diverse community of microbial symbionts termed its microbiota. In recent years, these 

microbes have been shown to benefit the host in an incredible variety of ways. They help 

breaking down food components (Mackie, 2002; Poulsen et al., 2014), synthesize vitamins 

(LeBlanc et al., 2013; Snyder & Rio, 2015) and metabolize therapeutics into active compounds 

(Claus et al., 2011; Nicholson, Holmes, & Wilson, 2005). They provide colonization resistance 

to pathogens (Koch & Schmid-Hempel, 2011; Lawley & Walker, 2013), promote development 

(Bates et al., 2006) and train the immune system (Hill & Artis, 2010; Renz, Brandtzaeg, & 

Hornef, 2012). They even manipulate a host’s behavior (Bravo et al., 2011; Neufeld, Kang, 

Bienenstock, & Foster, 2011), mood (Zheng et al., 2016) as well as food and mate choices 

(Leitão-Goncalves et al., 2017; Sharon et al., 2010). But the effects are not unidirectional and 

there are also host factors which in turn affect the microbial community. While some of these 

are unchangeable properties of the host such as age (Odamaki et al., 2016; Saraswati & 

Sitaraman, 2015), gender (Haro et al., 2016; Org et al., 2016), genotype (Benson et al., 2010; 

Estellé et al., 2014) and mode of birth (Dominguez-Bello et al., 2010; Rutayisire et al., 2016), 

others like diet (Martínez et al., 2013; Wu et al., 2011), medication (Becattini, Taur, & Pamer, 

2016; Francino, 2016) and travel activities (David et al., 2014) can be deliberately influenced 

by the host. The long term persistence, evolution and consequences of these host-microbiota 

associations depend on two crucial aspects: (I) specificity of the host-microbiota interaction 

and (II) mechanisms by which microbes get acquired, maintained and transmitted. 

Specificity can be categorized as either obligate or facultative. In the latter both 

partners are able to live on their own without negative effects. This is the case in several aphid 

species harboring symbionts not crucial for their survival despite affecting them positively, 

which are still able to return to their free-living form (Moya, Peretó, Gil, & Latorre, 2008; 

Oliver, Russell, Moran, & Hunter, 2003). In the former case at least one of the two or both 

would face negative fitness consequences. The most intensively studied case where both 

partners are not anymore able to survive on their own is the symbiosis of aphids and their 

endosymbiotic Gammaproteobacterium Buchnera aphidicola, living within specialized host 

cells (bacteriocytes) providing the host with essential nutrients lacking in the phloem diet 

(Baumann, 2005; Engel & Moran, 2013). The Hawaiian bobtail squid Euprymna scolopes and 

its bacterial symbiont Vibrio fischeri represent a classic example for a unidirectional 
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dependency. While the regulation of the circadian rhythm of the squid is highly dependent on 

the presence of V. fischeri, the bacterium can also be found free-living (Heath-Heckman et al., 

2013; Ruby & Lee, 1998). Although some of these partnerships exist since millions of years 

(Douglas, 1998; Kwong et al., 2017; Munson et al., 1991), they need to be reestablished each 

generation anew. Thus, in the course of their long evolutionary history, elaborate mechanisms 

evolved to ensure acquisition of the desired microbes and transmission to the next generation. 

There are two main transmission modes termed horizontal and vertical by which 

symbionts are transmitted, irrespective of whether they are beneficial or harmful. Vertical 

refers to the transmission of microbes from parents to their offspring, from one generation to 

the next. The afore-mentioned symbiont Buchnera aphidicola and the intracellular bacterial 

parasite Wolbachia (Taylor, Bandi, Hoerauf, & Lazdins, 2000; Werren, Windsor, & Guo, 

1995) are prominent examples of this type. Vertical transmission often leads to obligate 

associations due to coevolution of host and symbiont (Moran, 2006) which can go thus far, 

that the symbiont begins to resemble an organelle (Dyall, Brown, & Johnson, 2004; Russell, 

Bouvaine, Newell, & Douglasa, 2013). Horizontal transmission, on the other hand, is 

characterized by the transmission between individuals not related in direct line either via host 

to host contact, a vector or uptake from the environment. The previously mentioned 

bioluminescent Vibrio fischeri as well as the influenza virus (Cowling et al., 2013; Killingley & 

Nguyen-Van-Tam, 2013) are well-known representatives using this route. But there are cases 

like the human immunodeficiency virus (HIV) that use both routes (Sirengo et al., 2014). This 

mode is termed mixed mode and probably the most common mode of transmission (Ebert, 

2013). 

In terms of acquisition, the same distinctions as described above for transmission 

apply. However, horizontal acquisition requires elaborate recognition mechanisms in one or 

both partners to ensure the selection of specific microbes from the environment for 

colonization (Bright & Bulgheresi, 2010). For instance, species-specific antimicrobial peptides 

have been shown to be responsible for the different microbial communities in four species of 

the cnidarian Hydra (Franzenburg et al., 2013). While vertical acquisition generally leads to 

microbial communities with rather reduced complexities, horizontal acquisition, in contrast, 

establishes taxonomically diverse communities. Once established, a stable state is maintained 

through cross-talk and cross-regulation between host and microbiota. In mice, symbiont-

specific factors of Bacteroides fragilis were found to control the stability and specificity of the 

gut microbiota (Lee et al., 2013). Nevertheless, our understanding of the factors influencing 



 7 

the establishment and maintenance of symbioses in non-model organisms is rather limited 

and rudimentary. 

The ubiquity and stunning diversity of the effects required us to revise some of the 

basic assumptions about how living systems function through the lens of the mutualistic 

associations between microbes and multicellular organisms. With the constant development 

of new imaging technologies and the advances in molecular methods our knowledge continues 

to expand, altering our understanding of host-microbiota associations even more. 

 

The study system 

Daphnia are Cladocerans that that inhabit a variety of standing water bodies such as rock 

pools, ponds and lakes worldwide, often being the dominant member of the zooplankton 

community (Cottenie, Nuytten, Michels, & De Meester, 2001; Steiner, 2004). As a result of 

this, it has become one of the oldest model organisms in biological research with a well-

studied natural history and ecology (Ebert, 2011; Lampert, 2011). 

Daphnia reproduce by cyclic parthenogenesis, meaning that during the growth season 

they produce asexual offspring, switching to sexual reproduction when environmental 

conditions deteriorate (Ebert, 2005). The asexually produced eggs are deposited in the 

mother’s brood chamber, an open system with water circulation located under the carapace, 

where they complete their development before being released. With the production of their 

first clutch of eggs after going through 4-6 juvenile instars the cycle starts over again. The 

outcomes of sexual reproduction are long-lasting diapausing embryos enclosed in chitinous 

shells composed of often melanized parts from the mother’s carapace called ephippia, which 

can withstand harsh conditions. They are able to remain dormant for many years in the 

sediment before the embryos resume development as soon as the environmental conditions 

become favorable. Daphnia from this reservoir are the main contributors starting new 

populations at the beginning of the season (Hairston, 1996). 

All these features make Daphnia an ideal study system for diverse questions. Besides 

experimental data based on life history traits such as growth, reproduction and survival that 

are straightforward to obtain, genotype effects can be relatively easy assessed too. Their mode 

of reproduction allows to maintain clonal lineages and to test multiple replicates of a 

genotype. Further, the ability of ephippia to be stored for long periods of time and embryos to 

survive harsh treatments (Sison-Mangus, Mushegian, & Ebert, 2014) are additional useful 

experimental features. 
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This work focused mainly on the species Daphnia magna although in some parts work 

with the species Daphnia pulex, Daphnia longispina and Scapholeberis rammneri was 

included. While the latter belonged to the genus Scapholeberis Schoedler 1858 and the other 

three species to the genus Daphnia Müller 1785, all belonged to the family Daphniidae Straus 

1820. 

 

Aim of this thesis 

Daphnia-microbe related research has a long history, mainly focusing on the aspects of 

microbes as food (Brendelberger, 1991; Degans, Zollner, Van der Gucht, De Meester, & 

Jurgens, 2002; Gophen & Geller, 1984; Langenheder & Jürgens, 2001; Martin-Creuzburg, 

Beck, & Freese, 2011; Modenutti, C., Balseiro, & Reissig, 2003; Pace & Cole, 1994) or as 

causative agents of diseases (Ebert et al., 2016; Ebert, Rainey, Embley, & Scholz, 1996; Green, 

1974; Vizoso & Ebert, 2004). For this reason, the ecologically important beneficial 

interactions between Daphnia and microbes remained unexplored. 

In recent years, sequencing projects showed that different Daphnia species, although 

their ecological niches often strongly overlap, harbor distinct but similar microbial 

communities with relative low complexities that are different from the surrounding water and 

sediment (Eckert & Pernthaler, 2014; Freese & Schink, 2011; Qi, Nong, Preston, Ben-Ami, & 

Ebert, 2009). Further, these associations have been found to be stable for a prolonged period 

of time, as clonal lineages of Daphnia magna still harbor different microbial communities 

even after years of being kept under standard laboratory conditions (Pichon et al., 

unpublished). Experimental manipulation of the microbial community showed that the 

microbiota is crucial for Daphnia survival and development (Callens et al., 2016; Gorokhova 

et al., 2015; Mushegian et al., 2016; Sison-Mangus et al., 2014), emphasizing the complex 

interplay between Daphnia and microbiota affecting important aspects of an organisms life. 

The first goal of this work was to investigate possible fitness consequences in two 

Daphnia species (Daphnia magna and Daphnia pulex) that might arise from being 

habituated to the coexistence with a specific community of microbes (chapter 1). The second 

objective was to determine how these microbial communities get transmitted to the next 

generation and if there are microbiota-specific transmission differences (chapter 2). 

Following up on this, we evaluated how already established microbial communities affect each 

other’s composition when coming into close contact (chapter 3). In the last part of this work 

the aim was to get an idea of the influence the genotype of Daphnia magna exerts on the 
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diversity of its acquired microbiota by linking their homozygosity level to differences in 

microbial diversity (chapter 4). Taken together, we tried to move away from describing the 

composition of the microbial communities and move towards unraveling the principles 

regarding their establishment, stability and dynamics. 
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Abstract 
 
Microbial communities form associations with their hosts that influence, among other things, 

the nutritional status and well-being of these hosts. As host-microbial relationships are 

generally considered to be specific, hosts may be expected to display poor health (dysbiosis) 

when they harbor microbiota transplanted from other host species. To experimentally test 

whether the origin of microbiota affects host fitness. We measured life history fitness traits 

(age at maturity, fecundity and body size) of two naturally co-occurring Cladocera species, 

Daphnia magna and D. pulex, in treatments with their native microbiota and with microbiota 

from three other, closely related Cladocera species. We found strong main effects in the 

microbiota from different host species, as well as host species by microbiota interactions. 

However, contrary to our hypothesis, we did not find adverse fitness effects for hosts with 

non-native microbiota. We conclude that zooplankton species from the same habitat benefit 

equally, on average, from the microbes they harbor, irrespective of their origin, and that, 

although specific interactions exist between hosts and their microbial consortia, they do not 

support the idea of coevolved mutualistic relationships. 

 

 

Introduction 
 
Throughout its lifetime, every organism inevitably comes into contact with diverse 

microorganisms. These interactions can range from parasitism, on one end of the spectrum, 

to mutualism, on the other end; however, it is often impossible to categorize these 

relationships clearly, as these categories can be fluid and depend on various factors. The 

importance of beneficial microbe-host associations (Moran, 2006) has been shown in many 

animal systems, and these associations can influence diverse aspects of an organism’s life, 

such as nutrient uptake (Hehemann et al., 2010), protection against pathogens (Koch & 

Schmid-Hempel, 2011b; Silva et al., 2004) and mate choice (Sharon et al., 2010). Establishing 

and maintaining beneficial interactions between a host and its associated microbiota requires 

a certain level of specificity between the involved partners. While some associations are 

facultative, where both host and microbe could live on their own, others are obligate, where at 

least one of the two needs the other to survive. For example, the association between the 

Gammaproteobacterium Buchnera aphidicola and almost every aphid species is obligatory for 

both partners (Douglas, 1998; Munson et al., 1991). However, several aphid species harbor 
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additional symbionts that, although beneficial, are not essential for their survival (Moya et al., 

2008; Oliver et al., 2003). This example elucidates the complex and diverse nature of 

interactions between hosts and their associated microbes. 

For eukaryotes, it seems logical that the absences of bacteria would lead to negative 

fitness consequences (Brummel et al., 2004; Chung et al., 2012; Houthoofd et al., 2002), and 

that normal fitness could be restored by reestablishing the microbiota, if it is added early 

enough (Lenaerts et al., 2008; Rawls et al., 2004). Reciprocal transplant experiments have 

shown that even microbiota from another organism can be sufficient for such rescue efforts, 

though they do not restore health to the same degree as the native microbiota (Rawls et al., 

2006; Salem et al., 2013). The reduced effectiveness of foreign microbiota has suggested that 

beneficial effects depend to some degree on the specificity of the host-microbiota interaction. 

Specificity can be defined in a statistical sense as significant host-type times symbiont-

type interaction. Thus, the expression of host traits depends not only on the potential main 

effects of the host and the symbiont, but also on the particular combination of the two. 

Specificity does not assume a particular form of interaction, but is indicated by the non-

additivity of the host and symbiont effects. However, certain hypotheses posit explicit forms 

of specificity. For example, local adaptation testing requires that natural (coevolved) 

combinations have average trait expressions different from those of newly created 

combinations (Kawecki & Ebert, 2004).  

Specificity in host-microbiota interactions can be investigated through reciprocal 

transplant experiments in which each host type is tested in combination with each microbiota 

type (Macke et al., 2017). Multiple studies have shown that resident microbiota support host 

nutrition (Chaston et al., 2016; Dobson et al., 2015; Hacquard et al., 2015; Huang et al., 2015) 

and, thus, directly affect host well-being. It is often assumed that these host-microbiota 

combinations have coevolved (Bäckhed et al., 2005; Frese et al., 2013; McFall-Ngai et al., 

2012; Moeller et al., 2016), suggesting that a mismatch between microbiota composition and 

host species would reduce host fitness, a state known as dysbiosis (Martins dos Santos et al., 

2010; Nicholson et al., 2012). We tested this hypothesis by conducting reciprocal microbiota 

transplant experiments with two Daphnia host species that co-occur in nature, replacing the 

host’s native microbiota with microbiota from a different host to see if fitness was reduced.  

The freshwater crustacean Daphnia is a promising model for microbiota research, 

given the large amounts of data available (Ebert, 2005, 2011; Stollewerk, 2010). With their 

strongly overlapping niches, the different species harbor distinct but similar microbial 
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communities (Qi et al., 2009) with relatively low complexity (Freese & Schink, 2011). Despite 

being crucial for host survival, the microbiota is not transmitted transovarially 

(Peerakietkhajorn et al., 2015; Sison-Mangus, Mushegian, et al., 2014) and is reestablished 

after hatching from resting eggs from the environment (Mushegian et al., 2017). Moreover, 

microbiota of D. magna have been shown to affect ecologically important functions (Macke et 

al., 2017). In our experimental transplant experiment, we found strong evidence for specificity 

in Daphnia – microbiota interactions, but did not find evidence to support the hypothesis that 

hosts with native microbiota perform better than those with foreign microbiota. 

 

 

Material and Methods 
 
Organism and sampling site 

Four species of the filter-feeding Cladocera, all belonging to the family Daphniidae Straus 

1820, were collected from the Ägelsee near Frauenfeld, Switzerland (site code = CH-H; 

coordinates = N 47.557769° E 8.862783°), a permanent pond that is covered with ice in 

winter. The species were Scapholeberis rammneri, Daphnia magna, D. pulex, and D. 

longispina. Field collected animals from each species were placed individually in jars filled 

with artificial Daphnia-medium (ADaM) (Klüttgen et al., 1994) to establish clonal isofemale 

lines. In addition, samples of surface sediment containing ephippia, chitinous shells that 

enclose the sexually produced resting eggs, were collected and stored in cold (4°C), dark 

conditions until further use. 

Unless stated otherwise, all Daphnia cultures were kept under standard laboratory 

conditions for several generations before the experiment: 400-mL jars, ADaM, fed every other 

day with 50 Mio cells of the green alga Scendesmus sp., 16L:8D light:dark cycle and 20°C. 

 

Experimental set up 

Ephippia from D. magna and D. pulex, which are easily distinguishable and abundant, were 

collected from the pond sediment sample. Each egg is a unique sexually produced offspring. 

The resting eggs were separated from their protective shell, placed in falcon tubes filled with 

ADaM and kept in the fridge at 4°C overnight. Before assigning them to the different 

treatments, we surface-sterilized the eggs by removing excess ADaM, adding 2 ml of a 5% 

sodium hypochlorite solution (bleach), inverting the tube gently for 5 min, and then washing 

them three times with autoclaved ADaM. The sterile eggs were transferred in sets of three to 
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2-mL Eppendorf tubes containing 850 μL autoclaved ADaM and 150 μL of a microbiota 

inoculum. The microbiota inocula were obtained by homogenizing adult hosts, which involved 

filtering the suspension through a 7 μm mesh and diluting it with sterile ADaM to roughly the 

same final optical density (OD600 = 0.07 ± 0.01). Three independent clonal lineages of each 

of the four microbiota source species were selected (=origin), resulting in 12 unique 

microbiota inocula. Eggs of both host species (D. magna and D. pulex) were also treated in 

addition to the 12 microbiota inoculates. For each host-inocula combination, fifteen replicate 

tubes were prepared. Two types of controls were produced: Germ-free controls in which 

animals were bleach treated as before, but without adding microbiota, and natural microbiota 

controls, which were handled in the same way as treatment eggs, but received neither the 

bleach treatment nor the microbiota solution. Control animals contracted their native 

microbiota from the egg surface and the water. For each combination, additional replicates 

were prepared and frozen in TE buffer for later PCR screening to check for successful 

treatment application. 

To induce hatching, all tubes with resting eggs were placed horizontally under a 

constant light source at 21°C. Hatchlings were left in the tubes for 24h before being 

transferred to 100-mL DURAN laboratory glass bottles containing autoclaved ADaM and 

axenic algae and sealed with membrane screw caps (SCHOTT AG, Mainz, Germany). Only one 

hatchling from each hatching tube was transferred to avoid pseudoreplication. In this way, 10 

independent replicates per host – inocula combination (12 inocula x 2 host species x 10 

replicates =240) and per control group (2 host species x 2 control types x 10 replicates = 40) 

were produced. The animals were fed every other day with axenic algae ad libitum and 

checked daily for eggs in their brood pouch, i.e. onset of reproduction (=maturity). When 

offspring were present, the adult animals were transferred to new bottles containing 

autoclaved ADaM and axenic algae, and the offspring were counted. Fecundity was monitored 

until day 21. At this time, body size was measured, and the animals were frozen individually in 

Eppendorf tubes containing 200 μl TE buffer. All procedures requiring sterile conditions were 

done in a laminar flow cabinet. 

 

PCR screening of animals 

To evaluate the successful removal and transfer of bacteria, PCR screening of a subset of three 

Daphnia per treatment was conducted. DNA was extracted using a slightly modified protocol 

from Edwards et al. 1991: TE buffer was removed from the frozen animals, and 200 μL 
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extraction buffer (200 mM Tris-HCl pH 7.5, 250 mM NaCl, 25 mM EDTA pH 8.0, 0.5% SDS) 

was added. This mixture was homogenized with a pestle and centrifuged at 14’000 rpm for 5 

min at 4 °C. We then transferred 150 μL of the supernatant to a new Eppendorf tube, added 

150 μL of cold isopropanol (100 %), briefly vortexed it, and left at room temperature for 2 min 

before putting it at -20 °C for 15 min. Following centrifugation at 14’000 rpm for 5 min at 

room temperature, the supernatant was discarded, and the pellet was washed with 500 μL 

cold ethanol (70 %), vacuum dried and resuspended in 50 μL ddH2O. Samples were stored at -

20°C until further use. The bacterial 16s rDNA was amplified using the universal bacterial 

primer pair fD1 (AGAGTTTGATCCTGGCTCAG) and rP2 (ACGGCTACCTTGTTACGACTT). 

PCR conditions were as follows: 95°C for 5 min, 10 cycles of touch-down PCR of 94°C for 30 s, 

55-45°C for 30 s, 72°C for 1 min, followed by 30 cycles of 94°C for 30 s, 45°C for 30 s, 72°C for 

1 min and final extension at 72°C for 7 min. The DNA extracted from an untreated adult 

Daphnia and nuclease-free water served as positive and negative controls, respectively. To 

verify that DNA extraction was successful, samples were additionally screened with the primer 

pair mdh-F (TGCCTCGAAAAGAGGGTATG) and mdh-R (ATTGGCAGGATTACCCACAA) 

targeting the malate dehydrogenase (MDH) encoding region of Daphnia. 

 

Axenic algae 

Bacteria-free Scenedesmus sp. cultures were obtained using a procedure similar to the one 

described by Sison-Mangus et al. (2014). In short, algae cultures were treated with 1 mg ml-1 

ampicillin, 50 μg ml-1 kanamycin and 50 μg ml-1 tetracycline simultaneously for three culture 

passages. We then conducted axenicity screening by PCR and phase contrast microscopy. 

DNA extraction, PCR conditions and bacterial primers were conducted as described above. 

The DNA extracted from an untreated algae culture and nuclease-free water were used as 

positive and negative controls, respectively. The success of DNA extraction was verified by 

screening the samples with the primer pair ITS3 (GCATCGATGAAGAACGCAGC) and ITS4 

(TCCTCCGCTTATTGATATGC), amplifying parts of the 5.8S rDNA encoding region and the 

internal transcribed spacer 2 of the algae. 

 

Statistical analysis 

Analyses were conducted separately for the controls and the reciprocal transplantation parts 

of the experiment using the statistics software JMP 11.0 (Cary, NC, USA). Life history data 

(age at maturity, fecundity and body size) were analyzed by fitting the following model: trait = 
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host + origin + inoculum (origin) + host x origin + host x inoculum (origin), followed by 

Dunnett’s comparison tests where appropriate. Mortality was analyzed using Cox 

proportional-hazards regression, with the above-mentioned variables included in the model. 

Differences were considered significant when P ≤ 0.05. 

 

 

Results 
 
PCR screening 

Successful DNA extraction was verified for Daphnia and algae using the Daphnia and algae 

specific primers, respectively. No bacteria were detected in either the negative control 

treatment or in the axenic algae. Bacteria were, however, confirmed in the untreated controls 

and in the inoculated treatments. 

 

Life history traits 

Hatching rates of the resting eggs across the different treatments varied between 50-100%, 

which is within the normal range observed in other experiments (Allen, 2010; Haghparast et 

al., 2012; Vandekerkhove et al., 2004). In accordance with Sison-Mangus et al. (2014), germ-

free Daphnia magna showed much higher mortality than individuals with natural microbiota. 

This finding also extended to D. pulex (Cox proportional-hazards regression, germ-free vs. 

natural microbiota: Χ2 = 49.04, p<0.0001; host species: Χ2 = 2.12, p=0.15; host x germ-

free/natural: Χ2 = 0.77, p = 0.38). In the reciprocal microbiota transplant treatment, 

individual mortality differed significantly among host species, with D. pulex having a higher 

mortality rate than D. magna (21.6 vs. 4.1 %; Cox proportional-hazards regression, host 

species: Χ2 = 19.75, p<0.0001). Other factors did not affect mortality, and no harmful effects 

of the transplant treatments were detected (origin: Χ2 < 0.0001, p = 1.0; inoculum (origin): Χ2 

= 9.5, p = 0.3; host x origin: Χ2 <0.0001, p = 1.0; host x inoculum (origin): Χ2  = 9.91, p = 

0.27). 

In both the transplant treatments and the controls, D. magna matured (i.e. produced 

first eggs) earlier than D. pulex (6.6 vs. 7.4 days) (Table 1A, Figures 1A and 2A). Time to 

maturity differed significantly among the microbiota origins as well as among the inocula 

within an origin, irrespective of the host species, suggesting that both the microbiota from the 

different source species as well as the inocula within different host individuals from the same 

source host species vary in their effects. Moreover, the two species responded differently to 
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the three inoclula within an origin (Figure 2A), resulting in a significant host by inoculum 

interaction (Table 1A). 

Host fecundity differed significantly between the two control treatments, with germ-

free animals from both host species producing many fewer offspring (Table 1B, Figure 2B). 

However, this difference is confounded by the fact that all germ-free animals died during the 

course of the experience, while the animals from the natural microbiota control treatment did 

not. In the microbiota transplant treatments, host fecundity differed significantly among the 

microbiota origins (Table 1B). Furthermore, the two host species interacted differently with 

the microbiota origin and the three inocula within an origin (Figure 1B, Figure 2B). 

As expected, D. magna individuals in all treatments were substantially larger than D. 

pulex individuals (3.4 vs. 2.6 mm) (Table 1C, Figure 1C, Figure 2C). Otherwise, microbiota 

influenced body size differently depending on its origin, and the two host species responded 

differently to the inocula (Figure 2C). Body size of the germ-free animals could not be 

measured at day 21, as no germ-free animals survived that long. 

 

 

Discussion 
 
This reciprocal transplant experiment investigated the effect of native and foreign microbiota 

on fitness in two sympatric species of the freshwater Crustacean Daphnia. Although 

transplanting the microbiota from one individual to another is a standard procedure in 

microbiota research and has been done in diverse organisms (Ellekilde et al., 2014; Hosokawa 

et al., 2016; Ridaura et al., 2013; Thaiss et al., 2014), only few studies have transplanted 

microbiota reciprocally and monitored host fitness (Koch & Schmid-Hempel, 2012; Lau & 

Lennon, 2012; Salem et al., 2013; Sison-Mangus, Jiang, et al., 2014). Our study demonstrates 

that interspecies transfer of microbiota is possible in Daphnia, resulting in viable animals 

with normal phenotypes, and that the transfer of microbiota from related host species does 

influence host fitness, but is not generally harmful. While germ-free Daphnia suffer from 

substantial fitness loss, we found no adverse effects of foreign microbiota on host fitness, 

which counters our hypothesis that host species are associated with species-specific beneficial 

microbiota. These findings counter a study in two species from the insect family 

Pyrrhocoridae, where symbiont-deprived animals inoculated with their native microbiota had 

a significantly higher fitness than cross-inoculated animals (Salem et al., 2013). Our design, in 

which each host individual had a different genotype (hatchlings from sexually produced 
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resting eggs), did not allow us to test for a contribution of the host genotype, but instead 

emphasized the species level effect. The experiment uncovered host species specific 

microbiota interactions for all measured life-history traits (Table 1), indicating that host 

species contribute to the interaction and the outcome. These species-specific effects support 

findings from other organisms where host species specific microbiota associations have been 

described (Bolaños et al., 2016; Fraune & Zimmer, 2008; Koch & Schmid-Hempel, 2011a; 

Samad et al., 2017; Schultze & Kondorosi, 1998), with the bobtail squid - Vibrio fischeri 

system being the best studied example (Nyholm & McFall-Ngai, 2004; Visick & McFall-Ngai, 

2000). 

The apparent absence of significant benefits for Daphnia treated with native 

microbiota versus those treated with foreign microbiota, might stem from the Daphnia’s life 

cycle, which includes a resting phase during which bacteria are not vertically transmitted 

(Mushegian et al., 2017). Thus, the microbial community of Daphnia must be reestablished 

from the environment at the beginning of the growth season, which may involve a complex 

interplay between available microbes, the environment and host genetic effects. Together this 

creates a founder effect, producing a microbiota characteristic to the individual host. Some of 

these microbes may be selected by the host and perform specific functions, while others may 

be accidental opportunists that are able to colonize the host but have no specific function for 

it. Thus, a combination of deterministic and stochastic factors brings about the microbiota, 

producing a lasting community footprint. As Daphnia are able to reproduce asexually and 

care for their developing eggs in an open brood pouch, transmission of microbes from the 

mother to her offspring is possible, which maintains this footprint across asexual generations 

(unpublished results). When the Daphnia go into diapause, the individual clone-lineage 

effects disappear, while the species-specific effects are likely re-created every year after 

emergence from diapause. Similarly, although Daphnia brought into the laboratory maintain 

a characteristic microbiota, their microbial diversity decreases over time with captivity 

(Sullam et al., in prep.), as has also been observed in woodrats and Atlantic cod (Dhanasiri et 

al., 2011; Kohl et al., 2014) in captivity and in two species of the cnidarian Hydra, which 

maintain specific microbial communities under laboratory conditions for decades (Fraune & 

Bosch, 2007). 

Our experiment revealed specific interactions between hosts and the microbiota they 

come in contact with, suggesting that hosts would benefit by selecting the best composition of 

microbes; however, this does not seem to happen, at least not on the species level. While we 
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cannot fully exclude that it happens on the host genotype level, the finding that our un-

manipulated controls fared no better than the other Daphnia, makes this conclusion unlikely 

as well. Indeed, this host-centric view ignores the role of the microbes. A microbiota cannot be 

regarded as a fully functional and optimized community, but rather as an assemblage of 

diverse lineages with individual needs, some of which may be beneficial in a given context, 

others detrimental, all of them opportunistic. Furthermore, microbes interact not only with 

the host, but also with other microbes, creating a net outcome for the host that is difficult to 

predict. Finally, microbiota are also influenced by bacteriophages (Łusiak-Szelachowska et al., 

2017; Ventura et al., 2011) that may have cascading effects on the host. In this light, it would 

be surprising not to find specificity in host-microbiota interactions. A host-centric view of 

microbiota function, thus, captures too little of the picture. But why do some studies find 

beneficial effects of native vs. foreign microbiota? The answer may be related to the yearly 

cycles of diapause in Daphnia, that possibly purge the microbiota encountered in the previous 

season completely. The formation of specific and, on average, beneficial microbiota may 

require more stability than is inherent in the Daphnia system. Furthermore, since Daphnia 

inhabits short-lived standing freshwater habitats, there may not be enough long term stability 

for highly specific associations to evolve with horizontally acquired symbionts, just as in the 

marine highly specific bobtail squid – Vibrio system (McFall-Ngai, 2014). Thus, while highly 

dependent on microbiota for normal functioning, Daphnia may have evolved to cope with 

diverse microbiota that provide, on average, the functions needed. In addition, environmental 

factors within specific seasons may also select for hosts that carry the most beneficial 

microbiota. It has been shown, for example, that certain microbiota in the D. magna 

system,protect hosts from the harmful effects of cyanobacteria (Macke et al., 2017). Whether 

host genotypes select for these microbiota to gain a beneficial function, or whether 

associations are largely a chance result of the post-diapause lottery is not clear, but would be 

an important point to explore further. 

Because Cladocerans of the family Daphniidae are freshwater planktonic filter feeders, 

it is tempting to assume that every host is constantly exposed to all local microbes in the 

water. This assumption, however, is inconsistent with our observation that the inocula 

showed clear differences. Such differences in the light of constant homogenization seem as if 

they would be difficult to maintain, as they would require strong selection on the side of the 

host (McFall-Ngai et al., 2012; Nyholm & McFall-Ngai, 2004). An alternative possibility is 

that the differences are produced by founder events during hatching from diapause, which 
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helps to maintain this observed diversity. Such priority effects (advantage for the first 

colonizers) have been well observed in community ecology (Lockwood et al., 1997; Louette & 

De Meester, 2007; Weidlich et al., 2017) and may play a role in the Daphnia system as well.  

Microbes can manipulate the host through a variety of ways (Hooper et al., 2001; 

Larsson et al., 2012; O’Shea et al., 2012). The most prominent, and probably the best studied, 

way is host nutrition (Hacquard et al., 2015; Wong et al., 2014). Metabolites produced and 

released by the microbes can, among other things, provide energy that influences the host’s 

nutritional status (Tremaroli & Bäckhed, 2012). Thus, if the composition of the microbiota 

changes, the metabolic profile of the community and, subsequently, the quality and quantity 

of the provided nutrients may change too. In crustaceans, bacteria contribute to the 

breakdown and absorption of essential compounds (Bui & Lee, 2015), and these nutrients, in 

turn, affect host fitness (Martin-Creuzburg & Von Elert, 2004; Taipale et al., 2012). The 

functional significance of Daphnia life history traits are well documented as fitness indicators 

and are strongly affected by diet (Bradley et al., 1991; Cuhra et al., 2015; Ebert, 1994; Vanni & 

Lampert, 1992). Thus, we expected that mismatches between microbiota and hosts would 

impact these life history traits. However, our results showed the opposite: that host-

microbiota mismatches did not inevitably weaken life history traits; these traits are influenced 

to different degrees even by the microbiota within the native host-microbiota combinations of 

the same species. These results were unexpected, since we expected hosts with foreign 

microbiota to do poorly compared to native combinations and we expected those native 

combinations to be fairly stable. At the same time, the results indicate that microbial 

communities probably differ in their ability to effectively harvest and provide additional 

energy. 

 

 

Conclusion 
 
Although Daphnia benefit from functions provided by microbes, it does not seem to matter 

whether a native or a foreign microbial community provides these functions. This finding 

suggests the absence of long-term coevolved mutualism between Daphnia and their 

microbiota. Nevertheless, there are strong Daphnia - microbiota interactions, with some 

combinations providing more benefits than others. Whether this pattern is caused by 

stochastic effects (e.g. founder events after breaking diapause) or host genetic effects is not 

clear, but would be important to explore further. It also remains to be determined if the 
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apparent absence of host-specific beneficial microbiota is an adaptation to the instability of 

the Daphnia system, which is characterized by strong seasonal patterns, yearly diapause and 

short-lived freshwater habitats, or if the instability prevents the evolution of stable beneficial 

microbiota. 
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Table 1: Analysis of variance of A) maturity, B) fecundity and C) body size for the control and 

the reciprocal transplant treatments. The factors have the following categories: host (D. 

magna, D. pulex), condition (natural microbiota, germ-free), origin (D. magna, D. pulex, D. 

longispina, S. rammneri), inoculum (Magna [M1, M2, M3], Pulex [P1, P2, P3], Longispina 

[L1, L2, L3], Scapholeberis [S1, S2, S3]). Body size data for germ-free animals are missing, as 

all animals died before being measured. Significant p-values are shown in bold. 

 

A      

Maturity Source df MS F P 

Controls 

Host 1 11.23 4.33 0.045 

Condition 1 4.49 1.73 0.19 

Host x condition 1 0.02 0.01 0.93 

Error 34 2.59   

Reciprocal 
transplant 

Host 1 28.78 26.57 <.0001 

Origin 3 13.33 12.31 <.0001 

Inoculum (origin) 8 2.81 2.59 0.0106 

Host x origin 3 2.80 2.58 0.054 

Host x inoculum (origin) 8 3.45 3.19 0.021 

Error 180 1.08   
 

B      

Fecundity Source df MS F P 

Controls 

Host 1 11.58 0.14 0.72 

Condition 1 13684 159.72 <.0001 

Host x condition 1 798.95 9.33 0.0044 

Error 34 85.67   

Reciprocal 
transplant 

Host 1 846.74 2.58 0.11 

Origin 3 1500.03 4.57 0.0041 

Inoculum (origin) 8 606.41 1.85 0.071 

Host x origin 3 1239.97 3.78 0.0116 

Host x inoculum (origin) 8 683.58 2.08 0.0397 

Error 180 328.32   
 

C      

Body size Source df MS F P 

Controls 
Host 1 3.94 190.50 <.0001 

Error 17 0.02   

Reciprocal 
transplant 

Host 1 31.72 1258.87 <.0001 

Origin 3 0.09 3.57 0.0152 

Inoculum (origin) 8 0.02 0.94 0.48 

Host x origin 3 0.03 1.06 0.37 

Host x inoculum (origin) 8 0.05 2.04 0.0442 

Error 180 0.03   
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Figure 1: Interaction between host species and microbiota origin: Bar plot shows the mean 

(± SEM) per origin of the life history traits A) maturity, B) fecundity and C) body size. N 

indicates native host species-microbiota origin combinations. Microbiota origins: M: D. 

magna, P: D. pulex, L: D. longispina, S: Scapholeberis. Statistical comparisons were 

performed using analysis of variance, followed by Dunnett’s test. *** p<0.001, ** p<0.01, * 

p<0.05, + p<0.1. 
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Figure 2: Interaction between host species and inoculum: Bar plot shows the mean (± SEM) 

per inoculum of the life history traits A) maturity, B) fecundity and C) body size. N indicates 

native host species-microbiota origin combinations; - stands for germ-free animals; + stands 

for natural microbiota (untreated control). 
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Abstract 
 
Specific host-microbiota associations can be ancient, dating back millions of years. A key 

aspect for such associations is transmission to the next generation. With time the partners 

may coevolve, leading to mutualistic partnerships. To better understand transmission of 

microbiota, we study microbial communities of the freshwater Cladoceran Daphnia magna. 

Germ-free juveniles were exposed to microbiota coming from either conspecifics or three 

other species belonging to other members of the family of Daphniidae. Their microbial 

composition and that of their offspring was analyzed using 16S rRNA amplicon sequencing. 

Compositional microbiota comparisons between mothers and offspring revealed that the 

fractions of shared and unique operational taxonomic units (OTUs) were quite uniform across 

the different treatments and not affected by microbial diversity. If the partners coevolved and 

adapted to each other one would expect to find a larger fraction of shared OTUs in native 

host-microbiota combinations as compared to associations with a foreign microbiota. Since all 

here tested communities get equally well transmitted, there is no support for improved 

transmission due to coevolution of host and microbiota in this system. We propose an 

alternative scenario explaining transmission in the Daphnia-microbiota association. 

 

 

Introduction 
 
All eukaryotes form life-long mutualistic associations with diverse communities of microbial 

symbionts, resulting in diverse ecological functions (Engel et al., 2016; McFall-Ngai et al., 

2013; Moran, McCutcheon, & Nakabachi, 2008). Some of these relationships are facultative as 

in several aphid species that harbor symbionts not crucial for their survival despite affecting 

them positively (Moya, Peretó, Gil, & Latorre, 2008; Oliver, Russell, Moran, & Hunter, 2003). 

These microbes are still able to return to their free-living form. Others became obligate 

symbionts and have been shown to coexist with their host for millions of years: For example, 

the five core bacterial lineages of modern social bees were acquired around 80 million years 

ago by their last common ancestor, still forming a major part of their gut microbiota (Kwong 

et al., 2017). Also the dependency between the Gammaproteobacterium Buchnera aphidicola 

and almost every aphid species began about 200 million years ago and is obligatory for both 

partners in order to survive (Douglas, 1998; Gil, Sabater-Muñoz, Latorre, Silva, & Moya, 

2002; Munson et al., 1991). Although these partnerships are ancient, they need to be 
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reestablished each generation anew. In the course of their evolutionary history, elaborate 

mechanisms evolved to ensure a close association from generation to generation, with highly 

reliable transmission. 

There are two main transmission modes termed horizontal and vertical by which 

symbionts are transmitted, independent of whether they are beneficial or harmful. Vertical 

transmission is the transfer from parents to their offspring, from one generation to the next. 

The aphid symbiont Buchnera aphidicola and the intracellular bacterial parasite Wolbachia 

(Taylor, Bandi, Hoerauf, & Lazdins, 2000; Werren, Windsor, & Guo, 1995) are prominent 

examples for this. Horizontal transmission, on the other hand, is characterized by the 

transmission between individuals not related in direct line either via host to host contact, a 

vector or uptake from the environment. Well-known examples for this route of transmission 

are the human influenza virus (Cowling et al., 2013; Killingley & Nguyen-Van-Tam, 2013) and 

the bioluminescent Gammaproteobacterium Vibrio fischeri of the Hawaiian bobtail squid 

Euprymna scolopes (Heath-Heckman et al., 2013; Ruby & Lee, 1998). However, the human 

immunodeficiency virus (HIV) for instance does not simply fall in one of these two categories. 

Although mainly transmitted sexually, it also frequently passes to infants of infected mothers 

(Sirengo et al., 2014). HIV is only one of many examples belonging to the third and probably 

most common form of transmission, combining vertical and horizontal transmission, the 

mixed mode transmission (Ebert, 2013). 

Studies of microbiota suggest, that some microbes are transmitted strictly vertically 

(Cary & Giovannoni, 1993; Sacchi et al., 1988; Schmitt, Angermeier, Schiller, Lindquist, & 

Hentschel, 2008; Sharp, Eam, John Faulkner, & Haygood, 2007) and others horizontally (Di 

Meo et al., 2000; Kikuchi, Hosokawa, & Fukatsu, 2007). Nevertheless, considering the entire 

host associated microbial community, mixed mode transmission is likely the predominant 

mode of microbiota transmission. This is supported by the observation that the microbiota of 

mothers and offspring are similar, but not identical (Ley, Peterson, & Gordon, 2006). But 

what is the relative contribution of vertical and horizontal transmission to the composition of 

a newly establishing microbiota? What proportion of the maternal microbiota is transmitted 

to the offspring? Inoue & Ushide (2003) showed that the main component of the intestinal 

microbiota of rat pups were vertically transmitted bacteria, but that horizontal transmission 

influenced the diversity during growth. Regarding the proportion, Browne et al. (2016) report 

that in humans, bacterial genera capable of forming spores represented 30 % of the total 

intestinal microbiota, specialized for host-to-host transmission. 
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The limited knowledge of microbiota transmission prompted us to pursue this topic in 

more detail using the Cladoceran Daphnia magna. We inoculated animals with native and 

foreign microbial communities, respectively, monitoring their microbiota composition and 

that of their offspring using a sequencing-based approach. That way we were not only able to 

determine what proportion was incorporated initially and transmitted to the next generation 

subsequently, but also whether the proportion depended on the origin of the microbial 

community which would hint at a particular close interaction between the involved partners. 

We find that microbiota can be transmitted both vertically as well as horizontally, but that 

irrespective of the origin, the transmitted proportions of the microbiota were not influenced 

by past associations. 

 

 

Material and Methods 
 
Organism and Study Site 

Four species of small filter-feeding Cladocera, all belonging to the family Daphniidae Straus 

1820, were collected from the Ägelsee in Hohliberg, Switzerland. One species (Scapholeberis 

rammneri) belonged to the genus Scapholeberis Schoedler 1858, while the other three 

(Daphnia magna, D. pulex and D. longispina) belonged to the genus Daphnia Müller 1785. 

Clonal isofemale lines were established by placing collected adult females individually in jars 

filled with artificial Daphnia medium (ADaM) (Klüttgen, Dülmer, Engels, & Ratte, 1994). 

Besides, sediment samples containing resting eggs (ephippia) were collected and stored under 

cold (4 °C) and dark conditions until further use. 

Unless stated otherwise, all Daphnia cultures were kept under standard laboratory 

conditions for several generations before the experiment: 400-mL jars, ADaM, fed every other 

day with 50 Mio cells of the green alga Scendesmus sp., 16L:8D cycle and 20 °C. 

 

Experimental set up 

Ephippia from D. magna were collected from the sediment. The resting eggs were isolated 

from the protective shell, placed in falcon tubes filled with ADaM and kept in the fridge at 4 °C 

overnight. Before assigning them to different treatments (Table 1), the eggs were surface 

sterilized by removing excess ADaM and adding 2 ml of a 5% sodium hypochlorite solution, 

inverting the tube gently for 5 min, followed by washing three times with autoclaved ADaM. 

The sterile eggs were transferred in sets of three to 2-mL Eppendorf tubes containing 850 μL 
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autoclaved ADaM and 150 μL of a microbiota inoculum. For each inoculum, six replicates 

were set up. The inocula were prepared by homogenizing adult hosts in sterile ADaM and 

adjusting them to the same OD600 (0.7 ± 0.03). Three clonal lineages per host species were 

selected to serve as microbiota source. To induce hatching, the tubes were placed horizontally 

under a constant light source at 21 °C. Within 24 hours of hatching, hatchlings were 

transferred to 100-mL DURAN laboratory glass bottles sealed with membrane screw caps 

containing autoclaved ADaM and axenic algae. To avoid pseudoreplication only one hatchling 

from each tube was used. The animals were fed every other day with axenic algae ad libitum. 

Mothers were transferred to new bottles containing autoclaved ADaM and axenic algae when 

offspring was present. At the third clutch, the offspring was left in the jar together with the 

mother for 2 days before the mother was frozen individually in an Eppendorf tube and stored 

at -20 °C. The offspring were kept for additional 7 days and then also frozen individually and 

stored. These 9 days old Daphnia are just mature. All procedures requiring sterile conditions 

were done in a laminar flow hood.  

 

Axenic algae 

Bacteria-free Scenedesmus sp. cultures were obtained by following a similar procedure as 

described by Sison-Mangus et al. (2014). In short, algae cultures were treated with 1 mg ml-1 

ampicillin, 50 μg ml-1 kanamycin and 50 μg ml-1 tetracycline simultaneously for three culture 

passages, followed by axenicity screening by PCR and phase contrast microscopy. DNA 

extraction, PCR conditions and bacterial primers were as described above. The DNA extracted 

from an untreated algae culture and nuclease-free water served as positive and negative 

control, respectively. Success of DNA extraction was verified by screening the samples 

additionally with the primer pair ITS3 (GCATCGATGAAGAACGCAGC) and ITS4 

(TCCTCCGCTTATTGATATGC), amplifying parts of the 5.8S rDNA encoding region and the 

internal transcribed spacer 2 of the algae. 

 

DNA extraction for sequencing analysis 

One sample per inoculum (N=12) and randomly chosen subsets of four samples out of the six 

replicates per inoculum (N=96) were used for DNA extraction and subsequent microbial 

community analysis by sequencing. Total genomic DNA was extracted using a 

cetyltrimethylammonium bromide (CTAB) protocol. A PVP K90 (20 %) and CTAB 2x (150 

mM Tris-HCl pH 8, 4 % CTAB, 2.8 M NaCl) solution were placed in a water bath at 65 °C. 
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Excess ADaM was removed from the frozen animals, 310 μL Lysis Buffer (50 mM Tris-HCl pH 

8.3, 40 mM EDTA pH 8.0, 0.75 M Saccharose) was added, the animals were homogenized 

with a sterile pestle and 20 μL Lysozyme solution (10 mg/mL) was added. After 45 minutes of 

incubation at 37 °C at 850 rpm, 5 μL Proteinase K (20 mg/mL) was added and again 

incubated for 1 hour at 55 °C at 850 rpm. Following the treatment with 15 μL RNase A (20 

mg/mL) for 10 minutes at room temperature, 300 μL CTAB 2x, 12 μL β-mercaptoethanol (0.2 

%) and 60 μL PVP K90 (20 %) were added, gently mixed and incubated at 65 °C at 300 rpm 

for 1 hour. An equal volume of Chloroform:Isoamyl alcohol (24:1) was added and mixed with 

care by inversion. After centrifugation at 12’000 rpm for 8 minutes at 15 °C, the upper phase 

was transferred to a new Eppendorf tube and all steps starting with adding 

Chloroform:Isoamyl Alcohol were repeated once. 50 μL Sodium acetate (3 M, pH 5.2) and 

900 μL cold Isopropanol were added to the separated upper phase and stored over night at -

20 °C. Following centrifugation at 14’000 rpm for 30 min at 4 °C, the supernatant was 

discarded, the pellet washed with 1 mL cold ethanol (70%) and centrifuged again (14’000 rpm, 

5 min, 4 °C). After discarding the supernatant, the pellet was washed once again with 500 μL, 

centrifuged, vacuum dried and resuspended in 30 μL TE buffer (10 mM Tris-HCl pH 8, 1 mM 

EDTA pH 8). Samples were kept one night at 4 °C and then stored at -20 °C until further use. 

All samples were processed over the course of 8 days and the different treatments were 

randomly distributed between the days to avoid processing batch effects. Furthermore, a 

negative control using Nuclease-Free Water (Ambion) instead of animal tissue was included 

every day. 

 

Library preparation 

DNA samples were processed for sequencing on an Illumina MiSeq platform following the 

adapted protocol of Lundberg et al. (2013) provided by the Genomic Diversity Centre at the 

ETH Zürich where the sequencing was carried out. Two PCR reactions were performed on the 

template DNA. First, the V3-V4 variable region of the bacterial 16S rRNA gene was amplified 

using the primer pair 341F and 785R with Illumina adapter sequences and 0-3 bp random 

frameshifts (Table 2). Each PCR reaction contained 12.5 µl 2x KAPA HiFi HotStart ReadyMix 

(Kapa Biosystems), 0.5 µl of each primer (10 µM/µl), 1.25 µl DMSO (Sigma-Aldrich), 7.25 µl 

ddH2O and 3 µl extracted DNA adding up to a final volume of 25 µl. PCR conditions consisted 

of initial denaturation at 95 °C for 5 min, followed by 29 cycles of 98 °C for 20 s, 57 °C for 15 s, 

72 °C for 15 s and final extension at 72 °C for 5 min. All samples were set up in triplicates to 
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increase the yield and reduce the risk of failed amplification. The PCR products of the 

triplicates were pooled and purified using the magnetic beads Agencourt AMPure XP system 

(Beckman Coulter) at 1:1 a beads/PCR product volume ratio. The second PCR to index each 

sample was performed in 50 µl reaction volume containing 25 µl 2x KAPA HiFi HotStart 

ReadyMix (Kapa Biosystems), 5 µl of each primer from the Nextera XT Index Kit v2 

(Illumina), 2.5 µl DMSO (New England Biolabs), 7.5 µl ddH2O and 5 µl purified PCR product. 

PCR amplification was carried out as follows: initial denaturation at 95 °C for 3 min, followed 

by 10 cycles of 98 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s and final extension at 72 °C for 5 

min. After additional purification as described above, the concentration of the libraries was 

quantified with the Spark 10M Multimode Microplate Reader (Tecan) and qPCR. Samples 

were normalized and pooled in an equimolar fashion. To remove residual impurities, the 

library pool was bead purified once again and diluted to a concentration of 2 nM. Afterwards 

the pool was denatured (NaOH 0.2N), diluted to 10 pM and 15 % (v/v) PhiX was added. 

Finally, the mixture was loaded onto the Illumina MiSeq according to the manufacturer’s 

instructions using the MiSeq Reagent Kit v3 (2x300 bp Paired-End Reads). 

Negative controls from the DNA extraction step as well as negative controls using 

Nuclease-Free Water (Ambion) in place of the extracted DNA were included throughout the 

whole process of library preparation. 

 

Quality assessment and quality control of the sequencing data 

The raw MiSeq sequencing data were processed in a series of control steps. First, the reads 

were quality controlled with FastQC (Babraham Institute, UK). Then the paired reads were 

merged (FLASH v1.2.9), primer sequences got trimmed (Cutadapt v1.9.1) and they got size 

selected and quality filtered (PRINSEQ-lite v0.20.4). The clustering into Operational 

Taxonomc Units (OUT), including abundance sorting and chimera removal, was conducted at 

97% sequence similarity using USEARCH v9.0.2132 implemented in the UPARSE pipeline 

(Edgar, 2013). Only OTUs passing the selection criterion of being represented by 5 or more 

reads were considered for further analysis. The taxonomical annotation of the OTUs was 

performed by UTAX using the GreenGenes v13/5 database. 
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Statistical data analysis 

The software package R 3.3.1 (R Core Team) and the Bioconductor library phyloseq 

(McMurdie & Holmes, 2013) were used to perform data filtering, statistical analyses and 

prepare figures.  

As a first step, the samples were decontaminated by excluding OTUs present in the 

negative controls if they represented more than 5 % of the corresponding OTUs total reads. 

Subsequently singletons and OTUs appearing in only one sample were removed and the data 

were rarefied to an even sampling depth of 10’313 reads per sample. Alpha diversity was 

calculated using the three indices Shannon, inverse Simpson and observed species richness. 

To determine statistical dissimilarities in the 16S profiles between animals of different 

treatments analysis of variance (ANOVA) were run. The relationship between the microbial 

diversity in the different samples was visualized using non-metric multidimensional scaling 

(NMDS). 

The ten most abundant OTUs were examined in more detail, focusing on their 

transmission from mother to offspring and their relative abundance. 

 

 

Results 
 
A total of 6.5 million reads were obtained and after quality control we were left with 4.1 

million reads for analysis of which 3.7 million remained after decontamination and filtration. 

Using the 97 % similarity cutoff, the reads were assigned to 363 OTUs. 

We evaluated whether diversity differed among groups (Figure 1), focusing on three 

alpha diversity measures. In most indices, stage, origin and inoculum nested within origin had 

marginal to significant effects on microbial diversity whereas all but one of their interactions 

were not significant (Table 3). We concentrated on the Shannon index for further analyses as 

it accounts for both, species richness and evenness. Closer examination of mother, offspring 

and inocula stages separately showed that the origin had no effect on the microbial diversity 

of the inocula, but did so in both, mothers and offspring. The individual inocula nested within 

an origin only affected diversity significantly in the offspring (Table 4). 

A non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis 

dissimilarities was performed to visualize the differences in the diversity of microbial 

community composition across treatments and stages (Figure 2). ADONIS analysis using 

Bray-Curtis distances showed that there were significant differences in microbiota 
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composition between the inocula and the hosts (R2=0.1; p=0.001) as well as between the 

treatments (R2=0.17; p=0.001), with Scapholeberis samples being clearly distinct. 

Classification into shared and unique OTUs among samples and treatments revealed 

that the number of shared OTUs between any two or all three samples within a treatment, 

respectively, was uniform between treatments (Figure 3A). This pattern was not influenced by 

the total number of OTUs of a sample. The identical analysis carried out for the different 

inocula revealed that the majority of the OTUs belonged to the two categories not shared 

between inocula and shared among all inocula (Figure 3B). 

Focusing on the ten most abundant OTUs (Table 5), comprising 66 % of the reads, 

revealed differences in their abundances in the inocula, mothers and offspring (Figure 4) 

illustrating the previous findings from the NMDS analysis. The abundance patterns of the 

inocula, representing the starting situation, varied between as well as within most origins. 

These differences between origins were carried over to the mothers. However, the microbial 

abundance patterns of mothers exposed to the same inocula were not identical. A similar 

pattern was seen when comparing mothers with their corresponding offspring. Though they 

resembled each other, marked dissimilarities between mothers and offspring could be 

observed in some places. 

Transmission of these ten OTUs between mothers and offspring was investigated by 

individually looking at their presence-absence patterns (Figure 5). While some microbes 

always got transmitted from mothers to offspring irrespective of the origin (e.g. OUT 2), 

others seemed to only transmit well in certain origins (e.g. OUT 11, 12, 23) or not at all (e.g. 

OUT 15). Overall, OTUs originating from Scapholeberis were not as reliably transmitted as 

those from the three Daphnia origins. 

 

 

Discussion 
 
The aim of this study was to obtain a better understanding of the microbiota transmission 

dynamics of individual microbes and whole microbial communities. Using microbiota derived 

from different sources (sympatric hosts of the family Daphniidae) allowed us to address the 

question whether the microbial consortium and the host evolved more efficient vertical 

transmission. 

Our results showed that only a fraction of the community derived from homogenized 

tissue of different hosts (inocula) was incorporated into the microbiota of the mothers of 
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which in turn also only a portion was shared between mothers and their offspring (Figure 3). 

While the shared OTUs got transmitted vertically, the remaining microbes were likely 

acquired horizontally from the environment, as for instance from the water or the food. 

Previous experiments showed that both, sexually and asexually produced eggs do not contain 

transovarially transmitted bacteria (Sison-Mangus, Mushegian, & Ebert, 2014). However, as a 

result of the close proximity of the developing offspring to their mothers in the open brood 

pouch, it is reasonable to assume that vertical transmission occurs, for example through feces 

and body surface contact. This form of vertical transmission is similar to what has been 

reported in many other systems (Bakula, 1969; Crowell-Davis & Caudle, 1989; Kovács et al., 

2006; Osawa, Blanshard, & Ocallaghan, 1993). For example, Termites transmit their 

microbiota to newly hatched juveniles by feeding them feces (Brune, 2011; Brune & Dietrich, 

2015) or female brown-winged green stinkbugs (Plautia stali) cover the egg surface with 

excretions containing their specific bacterial symbiont (Hosokawa et al., 2016). However, the 

process of transmission in Daphnia, in contrast to the mentioned examples where the 

mothers actively ensure that the symbionts are transmitted, seems of a passive nature and no 

active control by the mother is apparent. If passive vertical transmission is reliable, specific 

mechanisms may never evolve. 

The number of shared OTUs in the inocula, mothers and offspring were similar among 

the native and foreign microbiota treatments (Figure 3A). Nevertheless, clear abundance 

differences within their microbial communities were found when looking at the ten most 

abundant OTUs at the family level (Figure 4) which were still detectable in the microbiota of 

the offspring, showing that these differences are transmittable (Figure 5) and potentially long 

lasting. While the latter result was expected since we knew that Daphnia clones kept in the lab 

for years under identical conditions still harbored different microbial consortia (Samuel 

Pichon, unpublished), the finding that native and foreign microbiota have similar ratios of 

shared OTUs was rather surprising. A prediction of the phylosymbiosis hypothesis is that the 

relatedness of host-associated microbial communities parallels the phylogeny of related host 

species (Brooks, Kohl, Brucker, van Opstal, & Bordenstein, 2016). This was found in many 

other systems such as ants (Sanders et al., 2014), apes (Ochman et al., 2010), bats (Phillips et 

al., 2012), sponges (Easson & Thacker, 2014) and wasps (Brucker & Bordenstein, 2011, 2012). 

We hypothesized that the number of shared OTUs should be higher in native combinations 

than in foreign ones. While some evidences for microbial community differences based on 

phylogeny were found in Daphnia (Figure 2), no differences in transmissibility for the 
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different origins were found (Figure 3A). Thus, inferring from these results, we conclude that 

Daphnia and their microbial communities did not coevolve and in addition to it, as each 

mother represented a different genotype, we speculate that host genetic background did no 

influence transmission. 

Taken together, we showed that mothers transferred a certain proportion of their 

microbiota vertically to their offspring while the remaining microbes were likely of 

environmental origin, fitting the mixed mode transmission expectation when looking at the 

microbiota as an entity. Since transmission efficiency (= number of shared OTUs) was quite 

uniform, irrespective of the origin or composition of the microbial community, we suggest 

that these stable proportions resulted from the interplay of an undirected transmission 

process and the anatomical features of Daphnia.  

Our results suggest a scenario of how transmission might take place in Daphnia 

magna: At the beginning of the growth season, the entire microbiota of hatchlings from 

resting eggs consists of horizontally acquired environmental microbes. From that point on, a 

rather stable proportion of the microbial community is vertically transmitted to the next 

generation through mother-offspring contact via feces and body surface and further microbes 

may be acquired from the environment. The microbes that are vertically transmitted may 

fulfill a certain function and by this contribute to the host’s well-being. Different microbes 

may be able to fulfill the same function. Thus, microbial communities within a habitat may 

reflect more the needs for certain functions and be less specific to the hosts. As a consequence, 

hosts with similar needs will have similar microbiota if they live sympatric. The hosts used 

here are all freshwater planktonic Cladocera, collected in the same pond. Therefore, our 

model would not predict much differences among the species. However, it remains unclear if 

the vertically transmitted microbes are somehow determined by the mother or if it is 

according to the random principle. 
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Table 1: List of microbiota inocula used in the experiment. Each inocula was transferred to 

six replicates. 

 

Microbiota origin Inoculum Clone 

D. magna 

M1 CH-H-4 

M2 CH-H-149 

M3 CH-H-434 

D. pulex 

P1 CH-H-DP-1 

P2 CH-H-DP-2 

P3 CH-H-DP-3 

D. longispina 

L1 CH-H-DL-1 

L2 CH-H-DL-3 

L3 CH-H-DL-5 

S. rammneri 

S1 CH-H-S-1 

S2 CH-H-S-2 

S3 CH-H-S-3 

 

 

 

 

 

 

 

 

 

 

Table 2: Primer pairs (5’-3’) used to target the variable region V3-V4 of the 16S rRNA for 

sequencing 

Primer pairs Tail Linker Primer sequence 

351F_GA_fs0 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GA CCTACGGGNGGCWGCAG 
785R_CA_fs0 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG CA GACTACHVGGGTATCTAATCC 

351F_GA_fs1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NGA CCTACGGGNGGCWGCAG 
785R_CA_fs1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG NCA GACTACHVGGGTATCTAATCC 

351F_GA_fs2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NNGA CCTACGGGNGGCWGCAG 
785R_CA_fs2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG NNCA GACTACHVGGGTATCTAATCC 

351F_GA_fs3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NNNGA CCTACGGGNGGCWGCAG 
785R_CA_fs3 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG NNNCA GACTACHVGGGTATCTAATCC 
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Table 3: Summary of analysis of variance of the effect of stage, origin and inoculum nested 

within origin on the three diversity indices Shannon, Inverse Simpson and Richness. The 

factors have the following levels: stage (mothers, offspring), origin (D. magna, D. pulex, D. 

longispina, Scapholeberis), inoculum (M1, M2, M3, P1, P2, P3, L1, L2, L3, S1, S2, S3). 

Significant p-values are shown in bold. 

 
Shannon     

Source df MS F P 

Stage 1 0.716 3.256 0.075 

Origin 3 2.012 9.150 3.31e-05 

Inoculum (Origin) 3 0.611 2.781 0.0097 

Stage x Origin 8 0.471 2.146 0.102 

Stage x Inoculum (Origin) 8 0.265 1.208 0.307 

Error 72 0.220   

 

Inv. Simpson     

Source df MS F P 

Stage 1 15.140 3.592 0.062 

Origin 3 25.951 6.157 0.0009 

Inoculum (Origin) 3 8.122 1.927 0.069 

Stage x Origin 8 15.052 3.571 0.018 

Stage x Inoculum (Origin) 8 5.690 1.350 0.233 

Error 72 4.215   

 
Richness     

Source df MS F P 

Stage 1 3.01 0.03 0.86 

Origin 3 247.71 2.43 0.07 

Inoculum (Origin) 3 79.88 0.78 0.62 

Stage x Origin 8 53.01 0.52 0.67 

Stage x Inoculum (Origin) 8 52.48 0.51 0.84 

Error 72 102.04   
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Table 4: Summary of analysis of variance of the effect of origin and inoculum nested within 

origin on the Shannon diversity index of mothers, offspring and inocula. The factors have the 

following levels: origin (D. magna, D. pulex, D. longispina, Scapholeberis), inoculum (M1, 

M2, M3, P1, P2, P3, L1, L2, L3, S1, S2, S3). Significant p-values are shown in bold. 

 

 

Mother stage     

Source df MS F P 

Origin 3 1.296 5.266 0.004 

Inoculum (Origin) 8 0.171 0.695 0.694 

Error 36 0.246   

 
Offspring stage     

Source df MS F P 

Origin 3 1.188 6.133 0.002 

Inoculum (Origin) 8 0.706 3.645 0.003 

Error 36 0.194   

 
Inocula stage     

Source df MS F P 

Origin 3 0.48 1.59 0.27 

Error 8 0.30   

 
 

 

 

Table 5: Detailed information about the classification of the ten most abundant OTUs. 

 

 Class Order Family Genus 

OTU_2 Alphaproteobacteria Rhizobiales Rhizobiaceae Shinella 

OTU_28 Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bradyrhizobium 

OTU_18 Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bosea 

OTU_12 Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingobium 

OTU_13 Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 

OTU_11 Betaproteobacteria Burkholderiales Comamonadaceae Rubrivivax 

OTU_23 Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 

OTU_5 Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

OTU_15 Gammaproteobacteria Alteromonadales Chromatiaceae Rheinheimera 

OTU_7 Actinobacteria Actinomycetales Microbacteriaceae Yonghaparkia 
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Figure 1: α Diversity quantified by Shannon index of the different stages (color coded) and 

inocula (symbols) across the four treatments (origin of microbiota). Error bars represent 

standard error of the mean.  
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Figure 2: Non-metric multidimensional scaling (NMDS) plot based on Bray-Curtis 

dissimilarity between samples. The goodness of fit (or stress) associated with this ordination 

is 0.17. Each data point represents the microbial profile of one sample. The different stages 

are represented by different symbols color coded by treatment. 
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Figure 3: Venn diagrams showing the number of shared and unique OTUs between A) 

inocula, mothers and offspring for all treatments and B) the different inocula. Within a 

treatment, samples belonging to the same stage were combined: inocula (N=3), mothers 

(N=12), offspring (N=12). 
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Figure 4: Stacked bar graph showing the relative abundance of the 10 most abundant OTUs 

at the family level, accounting for 66 % of all reads. Each bar represents one sample, starting 

with the inoculum (I) followed by four pairs of mother (M) and their corresponding offspring 

(O). Row wise the plots belong to the same origin (Magna = M, Pulex = P, Longispina = L, 

Scapholeberis = S) while column wise they are arranged by replicates within the treatment 

(Inoculum 1, Inoculum 2, Inoculum 3). 
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Figure 5: Presence (green) and absence (grey) of the ten most abundant OTUs in mothers 

(M) and their offspring (O) across the different microbiota origins (Magna, Pulex, Longispina, 

Scapholeberis). Within a treatment, samples belonging to the same stage were combined: 

mothers (N=12), offspring (N=12). For detailed information of the OTUs see Table 5. 

 

 

  



 58 

  



 59 

Chapter 3 
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Abstract 
 
All eukaryotes are colonized by a diverse community of microorganisms leading to the 

formation of long-lasting associations that are often essential for the well-being of the host. 

However, microbial communities associated with hosts are open systems with the possibility 

that new microbes arrive and others being lost. Thus, their stability might be constantly 

challenged by microbes from the environment. The present study aims at evaluating how 

microbial communities established in young animals react to the arrival of other communities 

in the environment. For this purpose, Daphnia magna from three different locations 

(Belgium, Germany and Switzerland) were raised with their native microbiota for a few days. 

Then pairs of animals from the same or different location were housed together for three 

weeks. Subsequently, their microbiota were analyzed and compared using 16S rRNA amplicon 

sequencing. The microbial diversity and richness in animals from the mixed pairs was higher 

than in those from same host clone pairs, indicating that microbial communities intermixed 

rapidly. These findings were not influenced by the host genotype. We conclude that the 

microbiota of Daphnia magna is easily modifiable by the environment and not tightly 

controlled by host genetics. These findings challenge the assumption that microbiota are 

tightly coevolved with their host. 

 

 

Introduction 
 
From the moment an animal is born, it is in constant contact with environmental microbes 

and experiences rapid colonization, forming essential mutualistic associations. The 

establishment of the initial microbiota is a crucial step during development influencing the 

short and long term health status of the host by affecting traits like gut maturation (Bates et 

al., 2006; Smith et al., 2007) and immune system education (Lathrop et al., 2011; Weng & 

Walker, 2013). To ensure successful colonization with specific microorganisms specific 

mechanisms evolved, often involving complex and well-regulated molecular signaling (M. J. 

McFall-Ngai et al., 2005; Rader & Guillemin, 2013). For example, Franzenburg et al. (2013) 

showed that specific antimicrobial peptides of several closely related species of the Cnidarian 

Hydra accounted for different bacterial communities. Following the acquisition of the right 

microbes from the environment, the next challenge is to ensure the temporal stability of this 
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association, which might be achieved by cross-talk and cross-regulation between the microbes 

and the host (DeGruttola et al., 2016). 

Host associated microbiota are open systems, constantly exposed to and challenged by 

external microorganisms potentially invading the microbiome. Invaders may originate from 

other hosts or may be free living in the environment. While some invaders may be transient, 

others may be compatible with the host and compete with the resident microbiota for access 

to the host habitat to establish new associations (Bäumler & Sperandio, 2016). This offers the 

host the potential to modify the composition of its microbiota if environmental conditions 

require it, as in the case of corals that respond to higher temperatures by hosting specifically 

adapted symbiotic algae (Rowan, 2004). At the same time, members of the host’s microbiota 

spread to the environment and to other hosts. As a result, the altered composition of the 

microbial communities in the host’s proximate environment may serve as a microbial source 

for other hosts (Castro-Sanguino & Sánchez, 2012; Sweet, 2014). In habitats populated by the 

Hawaiian Bobtail Squid, for instance, the concentration of its symbiont Vibrio fischeri was up 

to 30 times that of similar habitats without squids and decreased with increasing distance 

from inhabited sites (Lee & Ruby, 1994). In summary, hosts and environment reciprocally 

affect each other’s microbial composition (Chandler et al., 2011; Mistry et al., 2017), making it 

harder for the host to maintain a temporally stable microbial community, but at the same time 

allowing a host to adapt its microbiota to foster its needs (Macke et al., 2017). Longitudinal 

studies of microbiota in individual hosts showed that the microbial composition slowly 

changes as the host gets older (Arboleya et al., 2016; O’Toole & Jeffery, 2015; Odamaki et al., 

2016; Ottman et al., 2012), but little is known about the factors affecting this change and 

consequently the stability of the microbial community. 

For a better understanding of microbiota stability, we used Daphnia magna and its 

associated microbes as a model. The aim of this study was to determine if two hosts with 

different microbiota alter the composition of their respective communities in response to the 

presence of other hosts in their vicinity. We hypothesized that the microbiota of individuals is 

rather stable and only minor shifts, if any, would occur upon challenge with new microbes in 

the environment. However, our results do not support this hypothesis but revealed that the 

microbial communities of the hosts changed quickly. 
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Material & Methods 
 
Study Organism 

Clonal lineages of Daphnia magna (Crustacea: Cladocera) originating from populations in 

Switzerland (CH-H-434), Belgium (BE-OM2) and Germany (DE-K3-11-34) served as source 

for the animals used in this study. They were started 2-5 years earlier by placing females 

individually in jars and ever since then kept the clonal populations under standard laboratory 

conditions in 400-mL jars filled with artificial Daphnia medium (ADaM) (Klüttgen et al., 

1994), fed every other day with 50 Mio cells of the green alga Scendesmus sp., 16:8 light:dark 

cycle and 20 °C. 

 

Mitochondrial marker analysis 

DNA was extracted using the “DNeasy Blood & Tissue Kit” (Qiagen) following a slightly 

modified version of the instructions for “Purification of Total DNA from Animal Tissues 

(Spin-Column Protocol)”. In short, adult Daphnia were individually placed in Eppendorf 

tubes and excess ADaM was removed. 200 μL buffer ATL was added, homogenized with a 

pestle, followed by the addition of 20 μL Proteinase K (20 mg/mL) and incubation at 750 rpm 

for 2 hours at 56 °C. After adding 200 μL Buffer AL and 200 μL ethanol (100 %) the sample 

was vortexed and transferred to a DNeasy Mini spin column placed in a 2 mL collection tube. 

Following centrifugation at 8’000 rpm for 1 min, the supernatant was discarded, the column 

placed in a new collection tube and 500 μL Buffer AW1 was added. After repeated 

centrifugation at 8’000 rpm for 1 min the column was placed again in a new collection tube, 

500 μL Buffer AW2 was added and centrifuged at 14’000 rpm for 3 min. Afterwards the 

column was placed in an Eppendorf tube, 100 μL ddH2O was added and incubated for 1 min 

before centrifuged at 8’000 rpm for 1 min. Samples were stored at -20 °C until further use. 

In order to be able to assign animals to the different lineages the products of 4 

mitochondrial markers (Table 1) were tested. One marker was universal for invertebrates 

(Folmer et al., 1994) whereas the remaining three were newly designed for Daphnia magna 

(Table s1). PCR reactions were performed in 50 µl reaction volume containing 1 µl of each 

forward and reverse primer (10 µM/µl), 1 µl dNTPs (10nM), 5 µl 10x PCR Buffer, 0.3 µl Taq (5 

units/µl), 40.7 µl ddH2O and 1 µl extracted DNA. PCR conditions were as follows: initial 

denaturation at 95 °C for 5 min, followed by 40 cycles of 95 °C for 30 s, 48 °C for 50 s, 72 °C 

for 60 s, followed by final extension at 72 °C for 5 min. Subsequently PCR products were 

analyzed by Sanger sequencing to type clone specific SNPs. It turned out that marker ND5_2, 
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amplifying parts of the ND5 subunit of the NADH dehydrogenase, was sufficient to reliably 

distinguish the three host clones used here. 

 

Experimental setup 

Juveniles from mass cultures of each of the three clonal lineages were transferred individually 

to 80-mL jars filled with ADaM. Unless stated otherwise, all Daphnia cultures were kept 

under standard laboratory conditions. The jars were checked daily and in case offspring were 

present the mother was transferred to a new jar. The free swimming offspring of the third 

clutch was left in the jar together with the mother for 2 days to ensure transmission of 

maternal microbes. The mother was then frozen individually in an Eppendorf tube and stored 

at -20 °C. The offspring on the other hand were transferred to new jars assigned to 

monoclonal or mixed clone pair treatments in a full factorial design (Figure 1) and each 

combination was 10 times replicated. An additional jar was produced with one offspring of 

each location (triplets). Within a replicate, all individuals belonging to the same population 

originated from a single mother. The jars were randomly arranged in trays and monitored 

daily for the presence of hatchlings. If offspring were present they were removed and the 

adults were left in the jar. After 21 days all animals were frozen individually in Eppendorf 

tubes at -20 °C until further use. Only replicates where all animals survived until the end of 

the experiment were included in sequencing analysis, leaving us with four replicates (N = 72). 

 

DNA extraction and library preparation for amplicon sequencing  

Total genomic DNA was extracted using a cetyltrimethylammonium bromide (CTAB) 

protocol. A PVP K90 (20 %) and CTAB 2x (150 mM Tris-HCl pH 8, 4 % CTAB, 2.8 M NaCl) 

solution were placed in a water bath at 65 °C. Excess ADaM was removed from the frozen 

animals, 310 μL Lysis Buffer (50 mM Tris-HCl pH 8.3, 40 mM EDTA pH 8.0, 0.75 M 

Saccharose) was added, the animals were homogenized with a sterile pestle and 20 μL 

Lysozyme solution (10 mg/mL) was added. After 45 minutes of incubation at 37 °C at 850 

rpm, 5 μL Proteinase K (20 mg/mL) was added and again incubated for 1 hour at 55 °C at 850 

rpm. Following the treatment with 15 μL RNase A (20 mg/mL) for 10 minutes at room 

temperature, 300 μL CTAB 2x, 12 μL β-mercaptoethanol (0.2 %) and 60 μL PVP K90 (20 %) 

were added, gently mixed and incubated at 65 °C at 300 rpm for 1 hour. An equal volume of 

Chloroform:Isoamyl alcohol (24:1) was added and mixed with care by inversion. After 

centrifugation at 12’000 rpm for 8 minutes at 15 °C, the upper phase was transferred to a new 
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Eppendorf tube and all steps starting with adding Chloroform:Isoamyl Alcohol were repeated 

once. 50 μL Sodium acetate (3 M, pH 5.2) and 900 μL cold Isopropanol were added to the 

separated upper phase and stored over night at -20 °C. Following centrifugation at 14’000 

rpm for 30 min at 4 °C, the supernatant was discarded, the pellet washed with 1 mL cold 

ethanol (70%) and centrifuged again (14’000 rpm, 5 min, 4 °C). After discarding the 

supernatant, the pellet was washed once again with 500 μL, centrifuged, vacuum dried and 

resuspended in 30 μL TE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA pH 8). Samples were 

kept one night at 4 °C and then stored at -20 °C until further use. 

All samples were processed over the course of 4 days and the different treatments 

were randomly distributed between the days to avoid processing batch effects. Furthermore, a 

negative control using Nuclease-Free Water (Ambion) instead of animal tissue was included 

every day. 

DNA samples were processed for sequencing on an Illumina MiSeq platform following 

the adapted protocol of Lundberg et al. (2013) provided by the Genomic Diversity Centre at 

the ETH Zürich where the sequencing was carried out. Two PCR reactions were performed on 

the template DNA. First, the V3-V4 variable region of the bacterial 16S rRNA gene was 

amplified using the primer pair 341F and 785R with Illumina adapter sequences and 0-3 bp 

random frameshifts (Table 2). Each PCR reaction contained 12.5 µl 2x KAPA HiFi HotStart 

ReadyMix (Kapa Biosystems), 0.5 µl of each primer (10 µM/µl), 1.25 µl DMSO (Sigma-

Aldrich), 7.25 µl ddH2O and 3 µl extracted DNA adding up to a final volume of 25 µl. PCR 

conditions consisted of initial denaturation at 95 °C for 5 min, followed by 29 cycles of 98 °C 

for 20 s, 57 °C for 15 s, 72 °C for 15 s and final extension at 72 °C for 5 min. All samples were 

set up in triplicates to increase the yield and reduce the risk of failed amplification. The PCR 

products of the triplicates were pooled and purified using the magnetic beads Agencourt 

AMPure XP system (Beckman Coulter) at 1:1 a beads/PCR product volume ratio. The second 

PCR to index each sample was performed in 50 µl reaction volume containing 25 µl 2x KAPA 

HiFi HotStart ReadyMix (Kapa Biosystems), 5 µl of each primer from the Nextera XT Index 

Kit v2 (Illumina), 2.5 µl DMSO (New England Biolabs), 7.5 µl ddH2O and 5 µl purified PCR 

product. PCR amplification was carried out as follows: initial denaturation at 95 °C for 3 min, 

followed by 10 cycles of 98 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s and final extension at 72 

°C for 5 min. After additional purification as described above, the concentration of the 

libraries was quantified with the Spark 10M Multimode Microplate Reader (Tecan) and qPCR. 

Samples were normalized and pooled in an equimolar fashion. To remove residual impurities, 
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the library pool was bead purified once again and diluted to a concentration of 2 nM. 

Afterwards the pool was denatured (NaOH 0.2N), diluted to 10 pM and 15 % (v/v) PhiX was 

added. Finally, the mixture was loaded onto the Illumina MiSeq according to the 

manufacturer’s instructions using the MiSeq Reagent Kit v3 (2x300 bp Paired-End Reads). 

Negative controls from the DNA extraction step as well as negative controls using 

Nuclease-Free Water (Ambion) in place of the extracted DNA were included throughout the 

whole process of library preparation. 

 

Quality assessment of sequencing data and statistical analysis 

The raw MiSeq sequencing data were processed in a series of control steps. First, the reads 

were quality controlled with FastQC (Babraham Institute, UK). Then the paired reads were 

merged (FLASH v1.2.9), primer sequences were trimmed (Cutadapt v1.9.1), size selected and 

quality filtered (PRINSEQ-lite v0.20.4). The clustering into Operational Taxonomc Units 

(OUT), including abundance sorting and chimera removal, was conducted using USEARCH 

v9.0.2132 implemented in the UPARSE pipeline (Edgar, 2013). Only OTUs passing the 

selection criterion of being represented by 5 or more reads were considered for further 

analysis. As a last point, taxonomy was assigned using UTAX against the GreenGenes v13/5 

database. 

The software package R 3.3.1 (R Core Team) and the Bioconductor library phyloseq 

(McMurdie & Holmes, 2013) were used to perform data filtering, statistical analyses and to 

prepare figures. As a first step, the samples were decontaminated by excluding OTUs present 

in the negative controls if they represented more than 5 % of the corresponding OTUs total 

reads. Subsequently singletons and OTUs appearing in only one sample were removed and the 

data were rarefied to an even sampling depth of 17’370 reads per sample. Alpha diversity was 

calculated using the three indices Shannon, inverse Simpson and observed species richness. 

Samples from the triplet treatment were excluded for these analyses. 

To test for the effect of microbiota mixing, we simulated datasets for the mixed pair 

treatments by combining the real data from their respective monoclonal treatments. This 

approach simulates a mixed community where members of both communities were pooled 

without bias in relative abundance. To determine statistical dissimilarities in the 16S profiles 

between animals of different clones and treatments analyses of variance (ANOVAs), Principal 

Coordinates Analysis (PCoA) and Welch Two Sample t-test were used. 
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Results 
 
Microbial diversity of the mothers differed significantly between the three clonal lines from 

Belgium, Switzerland and Germany (F=16.09, P=0.0011), showing that the animals harbored 

distinct microbiota at the beginning of the experiment. In the offspring generation, we found 

that regardless of the alpha diversity index used, microbial diversity differed significantly 

between the monoclonal and the mixed pairings. The microbiota communities of host 

individuals exposed to microbiota of different hosts (mixed pairs) were consistently more 

diverse and species rich (Table 3, Figures 2, 3). 

An unweighted UniFrac distance based Principal Coordinates Analysis (PCoA) was 

used to cluster the microbial community diversities by pairing (Figure 4). While the samples 

from the monoclonal pairs tended to be more at the periphery, the mixed clone pairs tended 

to be between their respective monoclonal origins with the triplets being in the center. 

The microbial diversities of the simulated mixed pairs were found to be less diverse 

than the real data (Figure 5), suggesting that the process of microbiota mixing in our 

experiment was more complex than expected from an additive model. 

 

 

Discussion 
 
We investigated the stability of host-associated microbial communities, by exposing hosts to 

conspecifics with the same or a different microbiota. Contrary to our hypothesis, our 

experiment revealed that the microbiota of Daphnia magna was susceptible to invasion by 

microbes from conspecific hosts, demonstrating low stability. Furthermore, the newly formed 

communities were not simply a mix of the communities of the two hosts being kept together 

as they were more species-rich (OTU-rich) and diverse than a simulated dataset where we 

pooled in-silico the microbiota of hosts not exposed to other microbiota. 

 

Low stability 

We hypothesized that the microbiota of Daphnia magna is rather resistant to the invasion of 

foreign microbiota, but were unable to support this assumption. Host-associated microbial 

communities are generally considered to be rather stable (Reveillaud et al., 2014; Sommer et 

al., 2017). This assumption is based on diverse lines of circumstantial evidence. For example, 

longitudinal studies of microbiota across individual hosts reveal small changes over time 
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(Rajilić-Stojanović et al., 2013; Voreades et al., 2014). Microbiota communities show patterns 

of clade specificity, i.e. related host species have similar microbiomes (Ley et al., 2008; 

Ochman et al., 2010). And finally, if microbiota coevolve with their hosts, as is often assumed 

(M. McFall-Ngai et al., 2012, 2013; Shapira, 2016), the association with the host must be 

stable across many generations. Circumstantial evidence was also used to suggest that our 

here used model organism, Daphnia, has a stable bacterial community (Freese & Schink, 

2011; Qi et al., 2009). 

On the other hand, there is also evidence for low stability of the microbiota 

composition. Cohabiting humans, particularly couples, shared more of their microbiota than 

individuals from different households (Song et al., 2013). This finding mirrors our finding. A 

low stability of the microbial community is expected in applied aspects of host-microbiota 

interactions. For instance, microbiota transplants are becoming increasingly important in the 

medical field of microbiota-mediated health (Greenhalgh et al., 2016; Scott et al., 2015). If 

resident microbes would prevent invaders to settle, the transplantation of microbes would not 

be successful. Likewise, probiotics, the enrichment of food with beneficial microbes, would be 

pointless if resident microbes would prevent the uptake of bacteria from the food. 

Our experiment revealed that the microbiota of a host cohabiting with a host carrying a 

different microbiota becomes more species-rich and more diverse. This effect is symmetric in 

the sense that both hosts involved give and receive microbiota, excluding the interpretation 

that one of the two hosts has a healthy and the other a sub-optimal microbiota. We cannot 

rule out that all our Daphnia lines had sub-optimal microbiota, and used the chance to 

improve it, by picking up microbes from the environment. However, transplantation 

experiments showed that microbiota are easily transferable among clones and Daphnia 

species without any recognizable effect for the health of the host (Schär & Ebert, submitted). 

Our experimental design also allowed us to exclude that the uptake of microbiota was 

necessary because the environment changed (Sullam, Pichon, Schaer, & Ebert, in press). All 

clonal lines had been kept for years under standard laboratory maintenance culture 

conditions, and the experiment was carried out under the same conditions, i.e. the same food, 

medium, temperature, day-night cycle, handling regimes and more. 

In our experiment we allowed the transfer of microbes among clonal lines of the same 

host species. The three host lineages had a native microbiota that was suitable for their 

genotype, and presumably for the species. Thus, the ease with which microbes among lines 

were mixed, may be taken as evidence for a species-specific, rather than host-line specific 
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microbiota. Same-species hosts are known to have more similar microbiomes to one another 

than to hosts of different species (Ley et al., 2008). However, a comparison of the microbial 

diversities of the mothers, representing the initial state of the microbiota in our experiment, 

revealed strong differences. These mothers came from three different populations in Belgium, 

Switzerland and Germany, and apparently maintained unique microbiota despite being kept 

for years in the same culture room under the same maintenance conditions. Apparently, this 

difference among the microbiota of these clonal lines cannot be taken as evidence that an 

intimate tight association exists (Mushegian & Ebert, 2016), possibly reflecting simply a 

historical effect. The lines kept what they had when they were first cultivated, and were kept 

under conditions that prevent the exchange of microbes among culture vials (Sullam et al., in 

press). 

Our experiment tested the hypothesis that the microbiome of a host is resistant to the 

invasion by microbes from conspecific hosts. This was clearly not the case. However, this does 

not rule out that the microbiome includes a stable core that is protected against invaders and 

that only a part of the microbiome is unstable. We cannot rule this out with our data. 

Nevertheless, our data suggest that a substantial part of the microbiota is unstable, as 

otherwise the mixed microbiota would not fall in between the controls in the UniFrac 

Principal Coordinates Analysis plot (Fig. 4).  

 

Non-random uptake of microbiota 

Our experiment included the assessment of the microbial communities in monoclonal pairs. 

This allowed us to simulate in-silico an expected microbial composition resulting from a 

simple one to one pooling of the communities of two hosts. To our surprise, the species-

richness and diversity of the real data were significantly higher than those of these simulated 

data. Simulating data with unequal contributions would make this effect even stronger. Thus, 

the process of microbiota intermixing was not simply of additive nature. Invading microbes 

did not generally replace resident microbes, but were in many cases incorporated into the 

existing community, resulting in more even species distributions than expected by chance.  

More complex ecological communities have been shown to be more stable and show 

high resilience after disturbance (Folke et al., 2004; Peterson et al., 1998). High microbiota 

diversity and species-richness have also been suggested to be signs of a healthy microbiome 

(Le Chatelier et al., 2013; Pflughoeft & Versalovic, 2012; The Human Microbiome Project 

Consortium, 2012). If so, one might speculate that it is in the interest of the host to add 
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further species to its microbiome. But this is a double edge sword, as it also opens up the door 

for harmful microbes to invade. On the other hand, microbes are selected to spread and to 

grow opportunistically. Thus, an increase in diversity and species-richness may be a side effect 

of general microbe strategy, rather than a benefit for the host. Experiments are needed which 

track not only the movements of microbes, but also the resulting fitness effects for the host. 

Our here presented experiment sheds light on the understudied interplay between 

microbiota with regard to their stability and composition, which in turn is of particular 

importance for research in the field of microbiota-mediated health (Carding et al., 2015; de 

Vos & de Vos, 2012; DeGruttola et al., 2016; Greenhalgh et al., 2016; Scott et al., 2015). 

Experimental studies, more than circumstantial evidence, can help us to establish cause effect 

relationships and to obtain a basic understanding of the mechanisms and factors influencing 

microbiota stability. This will be vital to be able to treat diseases by manipulating the 

microbiota to the hosts benefit and maintaining it in a healthy state. 
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Table 1: Mitochondrial primers (5’-3’) used for the identification of host genotypes. 

 

Gene Primer pairs Primer sequence 

mtCOI LCOI490 GGTCAACAAATCATAAAGATATTGG 

 HCO2198 TAAACTTCAGGGTGACCAAAAAATCA 

mtCOI COI_DM_FL CGAGCTGAGTTAGGGCAATC 

 COI_DM_RL CCGCAGGATCAAAGAATGAA 

ND5 ND5_1_F TTAGCGTCGGGGGTTACTGT 

 ND5_1_R CATTTTGATTGGAAGTCAAG 

ND5 ND5_2_F TTTCTATCTACTGATGGGGT 

 ND5_2_R AATGTAACCTTTACTTCAGA 

 
 
 
 
 
 
 
 
 

Table 2: Primer pairs (5’-3’) used to target the variable region V3-V4 of the 16S rRNA for 

sequencing. 

 
Primer pairs Tail Linker Primer sequence 

351F_GA_fs0 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GA CCTACGGGNGGCWGCAG 

785R_CA_fs0 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG CA GACTACHVGGGTATCTAATCC 

351F_GA_fs1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NGA CCTACGGGNGGCWGCAG 

785R_CA_fs1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG NCA GACTACHVGGGTATCTAATCC 

351F_GA_fs2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NNGA CCTACGGGNGGCWGCAG 

785R_CA_fs2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG NNCA GACTACHVGGGTATCTAATCC 

351F_GA_fs3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NNNGA CCTACGGGNGGCWGCAG 

785R_CA_fs3 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG NNNCA GACTACHVGGGTATCTAATCC 
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Table 3: Summary of analysis of variance of the effect of population and pairing on the three 

diversity indices Shannon, Inverse Simpson and Richness. The factors have the following 

levels: population (Belgium, Switzerland, Germany), pairing (monoclonal, mixed). Samples 

from the triplet treatment were excluded. Significant p-values are shown in bold. 

 
Shannon     

Source df MS F P 

Population 2 0.19 0.77 0.4691 

Pairing 1 3.17 12.92 0.0008 

Population x Pairing 2 0.18 0.73 0.4870 

Error 42 0.25   

 
Inv. Simpson     

Source df MS F P 

Population 2 2.52 0.59 0.5568 

Pairing 1 49.84 11.75 0.0014 

Population x Pairing 2 6.02 1.42 0.2536 

Error 42 4.24   

 
Richness     

Source df MS F P 

Population 2 154.19 2.02 0.145 

Pairing 1 456.33 5.98 0.019 

Population x Pairing 2 44.77 0.59 0.560 

Error 42 76.26   
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Figure 1: Detailed setup of the experiment. Each combination was 10x replicated. Within a 

replicate, all five individuals belonging to the same population originated from a single 

mother. The colored boxes represent the clones of the three different origins, the small circles 

are the offspring, the ovals are the monoclonal (periphery) and mixed (center) pairs. The very 

center shows the triplet treatment. 
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Figure 2: Boxplots illustrating α diversity measures (quantified by Shannon index) of all individuals belonging to the different 

origins split up by their treatment. Bold horizontal lines indicate medians while box limits show first and third quartiles. 

Whiskers extend to the most extreme values within 1.5x the inter-quartile range and dots show outlying data points. 
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Figure 3: Boxplots showing the alpha diversity indices over all populations for the two 

treatments using the three diversity indices Shannon, Inverse Simpson and Richness. Bold 

horizontal lines indicate medians while box limits show first and third quartiles. Whiskers 

extend to the most extreme values within 1.5x the inter-quartile range and dots show outlying 

data points. 
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Figure 4: Unweighted UniFrac Principal Coordinates Analysis (PCoA) plot showing 

microbial community diversity of monoclonal and mixed paires. Each data point represents 

the microbiota profile of an individual. Samples belonging to the same pairing are color-coded 

and connected by lines. Labels indicate the different pairings between the used clones from 

Belgium (B), Switzerland (C) and Germany (D). The variance explained by the PCs is 

indicated in parentheses on the axes.  
 

 

 

 

 

Figure 5: Boxplots showing the Shannon index comparisons between real and simulated 

number of observed OTUs for all mixed treatment combinations. A Welch two-sample t test 

was used to determine significance between the groups within a treatment. Holm correction 

was applied to p values account for multiple testing. Bold horizontal lines indicate medians 

while box limits show first and third quartiles. Whiskers extend to the most extreme values 

within 1.5x the inter-quartile range and dots show outlying data points. 
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Abstract 
 
Inbreeding, the mating between related individuals, and the resulting negative fitness 

consequences termed inbreeding depression, have been studied in great detail for diverse 

traits. Although microbiota are known to contribute significantly to host fitness, up to now 

they have not been investigated in the context of inbreeding. The freshwater Cladoceran 

Daphnia magna offers the ideal system to investigate this connection since it can be selfed 

easily and its microbiota is essential for its well-being. Assuming negative consequences from 

inbreeding depression and knowing that the microbiota can be affected by host genotype, we 

hypothesized that microbial diversity would decrease in inbred hosts. This was experimentally 

tested by comparing the microbiota of selfed and outcrossed individuals reared in the same 

environment. The results showed that differences in the inbreeding status of the hosts did not 

affect their microbial consortia. We conclude that host homozygosity and microbial diversity 

are not correlated in Daphnia magna and - more generally – suggest that the host’s genotype 

has little influence on the microbiota. 

 

 

Introduction 
 
Inbreeding, the mating between relatives, results in an increase of homozygous genotypes in 

the offspring. As a consequence thereof, recessive deleterious alleles may become unmasked 

leading to a decrease in fitness such as lowering fertility, survival and growth, causing 

developmental defects and genetic diseases (Jiménez, Hughes, Alaks, Grahamt, & Lacyt, 1994; 

Mccune et al., 2002; Radha Rama Devi, Appaji Rao, & Bittles, 1987). For example, Sletvold et 

al. (2013) report that a chlorophyll deficient mutant phenotype in Arabidopsis lyrata is 

responsible for 81 % of seedling mortality in inbred offspring which is absent in outcrossed 

ones. This phenomenon called inbreeding depression has been documented in many plant 

and animal species and regularly occurs in natural populations (Crnokrak & Roff, 1999; Keller 

& Waller, 2002). The genetic basis of this interdependency and the consequent fitness 

implications have been extensively studied for a wide range of traits (Charlesworth & Willis, 

2009; Haag, Hottinger, Riek, & Ebert, 2002). 

An understudied factor in the context of fitness and inbreeding is its effect on 

microbiota, the prokaryotic community living in close physical association with multicellular 

eukaryotes (Lederberg & McCray, 2001). Numerous studies elucidated the importance of 
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host-associated microbial communities for diverse aspects of an organism’s life in various 

animal and plant systems (Hehemann et al., 2010; Koch & Schmid-Hempel, 2011; Moran, 

2006; Müller, Vogel, Bai, & Vorholt, 2016; Sharon et al., 2010; Silva et al., 2004). Host 

genotype, among others, was found to be an influential factor for the host-microbiota 

interplay (Alexander et al., 2006; Olivares, Moisés Laparra, & Sanz, 2013; Spor, Koren, & Ley, 

2011). In the simplest scenario, different host alleles would lead to differences in the 

microbiota. Indeed, as shown by Benson et al. (2010) in mice, variation at a specific locus 

affects the diversity and population structure of the gut microbiota by influencing the 

abundance of specific microbial taxa. While some studies are in agreement with these findings 

(Goodrich et al., 2014; Mcknite et al., 2012), others found no effect of host genetic background 

on the microbial profiles (Carmody et al., 2015; Friswell et al., 2010). Therefore, it is not yet 

clear to what degree host genotypes influence the microbiota. But if host genotypes influence 

the microbial community, the host’s degree of homozygosity can be expected to do so as well. 

Here we tested this hypothesis. 

In order to understand how host genotype and microbiota are interconnected, 

manipulation of the level of inbreeding can be a powerful tool. The aim of this study was to 

assess the link between host genetic factor and microbial diversity by comparing the 

microbiota of selfed and outcrossed Daphnia magna in a semi-natural environment. Ensuing 

from a positive correlation between genetic and microbial diversity, we expected selfed 

animals to harbor less diverse microbial communities compared to outcrossed animals as a 

consequence of their reduced genetic variation. Surprisingly, our results showed that the level 

of homozygosity has no systematic effect on microbial diversity. 

 

 

Material and Methods 
 
Outline of the experiment 

We kept pairs of different Daphnia magna genotypes in mesocosms and collected the sexually 

produced resting eggs (ephippia) resulting from selfing and outbreeding. After hatching under 

natural conditions, the animals were kept to maturity and then genotyped by using 

microsatellite information to determine the homozygosity level and subsequently used for 

microbiota analysis by 16S rRNA sequencing. 
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Study Organism 

Daphnia magna individuals were sampled from the Ägelsee in Hohliberg, Switzerland 

between 2010 and 2014 in regular intervals during the reproductive season from March to 

October. Clonal isofemale lines were started by placing females individually in jars filled with 

artificial Daphnia medium (ADaM) (Klüttgen, Dülmer, Engels, & Ratte, 1994) and keeping 

them under standard laboratory conditions: 400-mL jars, ADaM, fed every other day with 50 

Mio cells of the green algae Scendesmus sp., 16L:8D light:dark cycle and 20 °C. In this way, as 

part of an ongoing study, 938 clonal lineages were established. 

 

DNA extraction for initial microsatellite analysis 

A subset of 72 clones from the 938 clonal lineages was randomly chosen for analysis with 18 

microsatellite markers to find clones with unique genotypes. DNA was extracted following a 

slightly modified protocol from Edwards et al. (1991). In short, animals were individually 

placed in Eppendorf tubes and excess ADaM was removed, 200 μL extraction buffer (200 mM 

Tris-HCl pH 7.5, 250 mM NaCl, 25 mM EDTA pH 8.0, 0.5 % SDS) was added, homogenized 

with a pestle and centrifuged at 14’000 rpm for 5 min at 4 °C. 150 μL of the supernatant was 

transferred to a new Eppendorf tube, 150 μL of cold isopropanol (100 %) was added, briefly 

vortexed and left at room temperature for 2 min before being put at -20 °C for 15 min. 

Following centrifugation at 14000 rpm for 5 min at room temperature, the supernatant was 

discarded, the pellet washed with 500 μL cold ethanol (70 %), vacuum dried and resuspended 

in 50 μL ddH2O. Samples were stored at -20 °C until further use. 

 

Microsatellite analysis 

On the basis of product size, 18 microsatellite primers (Andras & Ebert, 2013; Colson, Du 

Pasquier, & Ebert, 2009) were assigned to four multiplex PCR reactions (Table 1). 

Additionally, the forward primers within a multiplex were uniquely labelled with fluorescent 

dyes. The varying concentrations of the primer pairs (Table 1) resulted from optimization 

processes to obtain approximately equal product ratios. PCR reactions were performed on a 

PTC-200 Peltier Thermal Cycler (MJ Research) in 5 µl reaction volume composed of 2.5 µl 

Multiplex PCR Master Mix (Qiagen), 1 µl extracted DNA and variable volumes of Q-Solution 

(Qiagen), H2O and primers (see Table 1). PCR conditions were as follows: initial denaturation 

at 95 °C for 15 min, followed by 30 cycles of 94 °C for 30 s, 60 °C for 90 s, 72 °C for 90 s, 

followed by 8 cycles of 94 °C for 30 s, 52 °C for 90 s, 72 °C for 90 s and final extension at 72 °C 
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for 10 min. PCR products were analyzed using an ABI 3130 Automated Capillary DNA 

Sequencer in combination with GeneScanTM 500 LIZTM dye Size Standard (Applied 

Biosystems). Allele sizes were determined by eye using GENEMAPPER version 4.0 (Applied 

Biosystems). After this analysis 46 clones with a unique genotype remained. 

 

Preparation of microbe-enriched culture medium 

To be able to determine the influence of the homozygosity level on microbiota diversity, it was 

preferable to provide hatching Daphnia an environment with a diverse microbiota. We 

produced microbe-enriched ADaM by filling three new 100-L tanks (Semadeni AG, 

Ostermundigen, Switzerland), thoroughly rinsed to remove putative chemical residues from 

the production process, with 80 L ADaM, placing them side by side on the roof of the building 

and leaving them open for three weeks. 

Before usage, equal amounts of water from all three tanks were mixed to even out 

differences in the microbial composition between the tanks. Furthermore, the water was 

filtered through a 250 µm nylon mesh to get rid of larger particles. To later analyze its 

microbial composition, 1 L microbe-enriched ADaM was sequentially filtered through a 3 μm 

Cellulose Nitrate Filter (Sartorius Stedim Biotech), a 1 μm Polycarbonate Membrane (Poretics 

Corporation) and a 0.2 μm Polycarbonate Track Etch Membrane (Sartorius Stedim Biotech) 

and the membranes were individually stored at -20 °C in 2-mL Eppendorf tubes containing 

400 μL TE-Buffer. 

 

Experimental setup 

The 46 clones were paired based on their microsatellite profile in such a way that up to 4 

homozygous markers differed among them, which was enough to distinguish selfed from 

outcrossed offspring (Figure 1). Three 400-mL jars filled with ADaM were set up for every 

pair, each containing an equal number of individuals from both Daphnia clones. To increase 

ephippia production they were kept under shorter day length and lower temperature: fed 

every other day with 50 Mio cells of the green alga Scendesmus sp., 8L:16D light:dark cycle 

and 18 °C. Over the course of 9 months ephippia were collected at regular intervals, placed in 

2-mL Eppendorf tubes and stored in the dark at 4 °C in the fridge for at least 3 months. 

All resting eggs from a pair were collected by separating them from the protective shell 

and placed in a 2-mL Eppendorf tube filled with ADaM. Ten 80-mL jars filled with microbe-

enriched ADaM were set up for every pair, each supplemented with 12 randomly picked eggs. 
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The jars were then randomly arranged in trays, placed outside in natural conditions in early 

August and checked every other day for the presence of hatchlings. As soon as the hatchlings 

had their first clutch, the animals were frozen individually in Eppendorf tubes at -20 °C until 

further use. 

 

DNA extraction for sequencing analysis 

Total genomic DNA was extracted using the CTAB method. A PVP K90 (20 %) and CTAB 2x 

(150 mM Tris-HCl pH 8, 4 % CTAB, 2.8 M NaCl) solution were placed in a water bath at 65 

°C. Excess ADaM was removed from the frozen animals, 310 μL Lysis Buffer (50 mM Tris-HCl 

pH 8.3, 40 mM EDTA pH 8.0, 0.75 M Saccharose) was added, homogenized with a pestle and 

20 μL Lysozyme solution (10 mg/mL) was added. After 45 minutes of incubation at 37 °C at 

850 rpm, 5 μL Proteinase K (20 mg/mL) was added and again incubated for 1 hour at 55 °C at 

850 rpm. Following the treatment with 15 μL RNase A (20 mg/mL) for 10 minutes at room 

temperature, 300 μL CTAB 2x, 12 μL β-mercaptoethanol (0.2 %) and 60 μL PVP K90 (20 %) 

were added, gently mixed and incubated at 65 °C at 300 rpm for 1 hour. An equal volume of 

Chloroform:Isoamyl Alcohol (24:1) was added and mixed with care by inversion. After 

centrifugation at 12’000 rpm for 8 minutes at 15 °C, the upper phase was transferred to a new 

Eppendorf tube and all steps starting with adding Chloroform:Isoamyl alcohol were repeated 

once. 50 μL Sodium acetate (3 M, pH 5.2) and 900 μL cold Isopropanol were added to the 

separated upper phase and stored over night at -20 °C. Following centrifugation at 14’000 

rpm for 30 min at 4 °C, the supernatant was discarded, the pellet washed with 1 mL cold 

ethanol (70%) and centrifuged again (14’000 rpm, 5 min, 4 °C). After discarding the 

supernatant, the pellet was washed once again with 500 μL, centrifuged, vacuum dried and 

resuspended in 30 μL TE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA pH 8). Samples were 

kept one night at 4 °C and then stored at -20 °C until further use. 

DNA extraction took place over the course of 7 days. Samples from all the different 

pairings were haphazardly distributed across the extraction days to avoid batch effects. 

Additionally, every day an extraction negative control using Nuclease-Free Water (Ambion) 

instead of animal tissue was included. 

 

Library preparation 

DNA samples were processed for sequencing on an Illumina MiSeq platform following the 

adapted protocol of Lundberg et al. (2013) provided by the Genomic Diversity Centre at the 
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ETH Zürich where the sequencing was carried out. Two PCR reactions were performed on the 

template DNA. First, the V3-V4 variable region of the bacterial 16S rRNA gene was amplified 

using the primer pair 341F and 785R with Illumina adapter sequences and 0-3 bp random 

frameshifts (Table Y). Each PCR reaction contained 12.5 µl 2x KAPA HiFi HotStart ReadyMix 

(Kapa Biosystems), 0.5 µl of each primer (10 µM/µl), 1.25 µl DMSO (Sigma-Aldrich), 7.25 µl 

ddH2O and 3 µl extracted DNA adding up to a final volume of 25 µl. PCR conditions consisted 

of initial denaturation at 95 °C for 5 min, followed by 29 cycles of 98 °C for 20 s, 57 °C for 15 s, 

72 °C for 15 s and final extension at 72 °C for 5 min. All samples were set up in triplicates to 

increase the yield and reduce the risk of failed amplification. The PCR products of the 

triplicates were pooled and purified using the magnetic beads Agencourt AMPure XP system 

(Beckman Coulter) at 1:1 a beads/PCR product volume ratio. A second PCR to index each 

sample was performed in 50 µl reaction volume containing 25 µl 2x KAPA HiFi HotStart 

ReadyMix (Kapa Biosystems), 5 µl of each primer from the Nextera XT Index Kit v2 

(Illumina), 2.5 µl DMSO (New England Biolabs), 7.5 µl ddH2O and 5 µl purified PCR product. 

PCR amplification was carried out as follows: initial denaturation at 95 °C for 3 min, followed 

by 10 cycles of 98 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s and final extension at 72 °C for 5 

min. After additional purification as described above, the concentration of the libraries was 

quantified with the Spark 10M Multimode Microplate Reader (Tecan) and qPCR. Samples 

were normalized and pooled in an equimolar fashion. To remove residual impurities, the 

library pool was bead purified once again and diluted to a concentration of 2 nM. Afterwards 

the pool was denatured (NaOH 0.2N), diluted to 10 pM and 15 % (v/v) PhiX was added. 

Finally, the mixture was loaded onto the Illumina MiSeq according to the manufacturer’s 

instructions using the MiSeq Reagent Kit v3 (2x300 bp Paired-End Reads). 

Negative controls from the DNA extraction step as well as negative controls using 

Nuclease-Free Water (Ambion) in place of the extracted DNA were included throughout the 

whole process of library preparation. 

 

Quality assessment and quality control of the sequencing data 

The raw MiSeq sequencing data were processed in a series of control steps. First, the reads 

were quality controlled with FastQC (Babraham Institute, UK). Then the paired reads were 

merged (FLASH v1.2.9), primer sequences got trimmed (Cutadapt v1.9.1) and they got size 

selected and quality filtered (PRINSEQ-lite v0.20.4). The clustering into Operational 

Taxonomc Units (OUT), including abundance sorting and chimera removal, was conducted 
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using USEARCH v9.0.2132 implemented in the UPARSE pipeline (Edgar, 2013). Only OTUs 

passing the selection criterion of being represented by 5 or more reads were considered for 

further analysis. As a last point, taxonomy was assigned using UTAX against the GreenGenes 

v13/5 database. 

 

Statistical data analysis 

The software package R 3.3.1 (R Core Team) and the Bioconductor library phyloseq 

(McMurdie & Holmes, 2013) were used to perform data filtering, statistical analyses and to 

prepare figures.  

As a first step, samples with less than 5’000 reads were excluded. The remaining 

samples were decontaminated by excluding OTUs present in the negative controls if they 

represented more than 5 % of the corresponding OTUs total reads. Subsequently singletons 

and OTUs appearing in only one sample were removed and the data were rarefied to an even 

sampling depth of 5’029 reads per sample. Alpha diversity was calculated using three indices: 

Shannon, inverse Simpson and observed species richness. To determine statistical 

dissimilarities in the 16S profiles of the animals, analysis of variance (ANOVA) and non-

metric multidimensional scaling (NMDS) were run. 

 

 

Results 
 
From the 23 host clone pairs 22 produced enough ephippia to be used in the experiment. For 

11 out of these 22 pairs all three types (two selfed, one outcrossed) could be recovered within a 

replicate. These 11 families were then sequenced. After sequencing, one pair was excluded due 

to low number of reads. In the pairs not fulfilling the requirements only one selfed type was 

present in three cases, the outcrossed type was missing in four cases and one of the selfed 

types was absent in four pairs. These differences were most likely the result of one clone out-

competing the other, biased hatching success (inbreeding depression) or a combination of 

both. 

First, a nonmetric multidimensional scaling (NMDS) ordination based on Bray-Curtis 

dissimilarities allowed us to visualize the differences in the diversity of community 

composition across families (Figure 2). ADONIS analysis using Bray-Curtis distances showed 

that there were significant difference in community composition between families (R2=0.69; 

p=0.001). 
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Second, using the three different measures of alpha diversity, we looked at how 

bacterial diversity differed between selfed and outcrossed offspring (Figure 3). Microbial 

diversity differed marginally to significantly between the families, but cross and its interaction 

with the families had no effect on diversity in all measured indices (Table 2). Thus, microbiota 

of selfed offspring did not systematically differ from those of outcrossed offspring. 

 

 

Discussion 
 
Inbreeding is well known for its negative effects on various traits in many species, including 

Daphnia (De Meester, 1993; Deng, 1997; Haag et al., 2002; Innes, 1989; Swillen, 

Vanoverbeke, & De Meester, 2015). However, our study found no influence on microbiota 

composition. Microbial diversity did not differ between selfed and outcrossed individuals. 

More generally we infer that there is no correlation between genetic and microbial diversity in 

Daphnia and conclude that the diversity of microbiota of Daphnia magna is not or hardly 

influenced by the genotype of the host. 

Our result that the level of homozygosity has no effect on microbial diversity contrasts 

findings from Hufeldt et al. (2010), who showed that in mice individuals from an outbred 

colony had lower gut microbiota similarities (corresponding to a higher diversity) than those 

from an inbred colony. This discrepancy might result from differences in the experimental 

conditions. While they compared separately kept colonies, we compared selfed and outcrossed 

offspring cohoused under identical conditions. Thus, based on our experimental design, 

potential confounding factors were excluded and the only difference between the individuals 

within a family was their level of homozygosity. 

Inbreeding depression and competition between clones are known to be strong in D. 

magna and may have contributed to the circumstance that we were not able to recover the 

three types of offspring (two selfed, one outcrossed) from all our pairs. Differences in the 

inbreeding levels of the parental clones and clonal variation in the production of males and 

sexual eggs (Roulin et al., 2013; Yampolsky, 1991) might have contributed to this. Further, 

selection against unfit selfed offspring might have alleviated the observed effect of inbreeding 

and might explain why we do not see differences in the microbiota between selfed and 

outcrossed animals. Inbreeding has been found to affect development (Chai & Degenhardt, 

1962; Mccune et al., 2002; Michaud, Bultman, Stubbs, & Woychik, 1993; Réale & Roff, 2003). 

In the Hemiptera Delphacodes pellucida Fabricius, for example, Kisimoto & Watson (1965) 
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showed that in the first generation of inbreeding many eggs failed to hatch and embryos 

became abnormal at various stages of growth. 

Looking at the individuals within families provides further evidence supporting our 

findings. Although each family encompassed three genotypes, they harbored microbial 

communities with similar diversities, while the opposite was found between families, showing 

distinct differences in their microbial diversities. This is in contrast to results from Org et al. 

(2015) demonstrating that in a controlled environment the microbiota of mice is defined by 

their genetic background. But since our experiment was carried out under semi-natural 

conditions, the environment, a well-known factor affecting the microbiota (Claus, Guillou, & 

Ellero-Simatos, 2016; Yun et al., 2014), was not well controlled. This raises the question of 

whether this effect can be attributed to host genetics or if the environment could be the 

driving force. A plausible scenario is that even though the conditions at the beginning were 

identical for all families, they changed over the course of the experiment due to stochastic 

events. As a result, unique microcosms established within the jars. Picking up these 

environmental differences in the absence of genetic regulations the animals closely resembled 

their surroundings. Therefore, environmental heterogeneity needs to be taken into account 

when examining effects of inbreeding on Daphnia microbiota. 

Our general conclusion from the current study is that in Daphnia magna genetic and 

microbial diversity are not or hardly correlated. Our findings indicate that the genotype of the 

host has little to no influence on the composition of the microbiota. The environment may be 

the main source for microbial differences. The degree to which our finding is universally valid 

is not clear. Thus it is important to run experiments powerful enough to disentangle the 

effects of genetics from environmental influences. 
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Figure 1: Crossing scheme of two parental clones (P) and the resulting selfed and outcrossed 

offspring (F1) from sexual reproduction. All individuals of a certain generation were always 

kept together, thus experiencing the same environmental conditions. 
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Figure 2: Non-metric multidimensional scaling (NMDS) plot based on Bray-Curtis 

dissimilarity between samples. The goodness of fit (or stress) associated with this ordination 

is 0.26. Each data point represents the microbiota profile of an individual (circle=selfed; 

asterisk=outcrossed). Samples belonging to the same family are color-coded and connected by 

lines. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Boxplots showing the alpha diversity indices for the selfed individuals (N=20) and 

the outcrossed individuals (N=10) using the three diversity indices Shannon, Richness and 

Inverse Simpson. Bold horizontal lines indicate medians while box limits show first and third 

quartiles. Whiskers extend to the most extreme values within 1.5x the inter-quartile range and 

dots show outlying data points.  
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Table 1: Details of the used microsatellite primers (5’-3’). 

 

Multiplex Locus F-primer sequence R-primer sequence 
Conc. In 

PCR 
(µM) 

Size (bp) 

1 

214 GGCAACGATAGACCACGAAT GTCATCTACGAAGGCGAAGC 0.2 383/414 

33 TTATTGCATCGTCAGCATCG CGATTATGTTTTCATCACGATTG 0.2 170/176 

34 TTCCACTCAGGTCACGACAG CCAAAAGCGATACCTTCGTT 0.2 203/209 

9 AAATTTGCAGCCCATTTGTC ATTCAACGATCCGGACACTC 0.2 179/185 

93 GTGTGGATGCGTGAGTTTTG CGCGTGCACCAACAATAATA 0.2 120/124 

2 

13 AAAGGGTTCCGGTAACCAAG AAAGCAAACCCTTCCCTAGC 0.2 146/147 

173 CGTCGCTAGCAATCAAACTG CAGCCTCAGTATGCTCCACA 0.3 420/474 

193 ACCTACGAGGCTGACGAGAA CTCGGCATCGTGTTTGTATG 0.05 319 

216 GATAGCGGTGGCTTGAGTTT TTAGTCCGCTCCGGTCTATG 0.2 219 

24 ACAAGTCAATTCTGCCCACA CAAAAGCGAAAACGGAAGTC 0.2 140/148 

3 

12 TTCGGGAGTCATCCAAAAAG TGCAGCCAAAGAGTCAAAGA 0.2 246/252 

183 AATGGCACGGTAAAATACGC ACACCCGACTGACGATTTTC 0.2 192/198 

184 GTCATCGTCAATCGAGGCTA CGTTGTCCACCCAATTATCC 0.2 241/250 

208 GGCTGCCGAAAGTAATGAAA GCTCTGTAAACGGTCGCTGT 0.2 345/353 

4 

210 GACGTTCAGCCGTTAGTTCAG CTATGAGGCTCCTGGTCAGC 0.05 195/224 

32 GTGGATGGATCTCGGTGAAA TGTCTGCCATCTCCAGACAG 0.05 253/280 

75 CACGAGGTCCACCACAAAAT CCGGTTTAGGGCAAAGAATA 0.05 250 

85 TCGGCTGATTTGCATTTCGT AAACGATCTGCCCTGAATTG 0.2 368/374 
 
 

Table 2: Summary of analysis of variance of the effect of cross and family on the three 

diversity indices Shannon, Inverse Simpson and Richness. The factors have the following 

levels: cross (selfed, outcrossed), family (1-10). Significant p-values are shown in bold. 

 

Shannon     

Source df MS F P 

Cross 1 0.0002 0.0008 0.98 

Family 9 0.71 3.28 0.04 

Cross x Family 9 0.24 1.12 0.43 

Error 10 0.22   
 

Richness     

Source df MS F P 

Cross 1 0.60 0.004 0.95 

Family 9 490.60 2.99 0.051 

Cross x Family 9 254.97 1.55 0.25 

Error 10 164.00   
 

Inv. Simpson     

Source df MS F P 

Cross 1 0.05 0.01 0.91 

Family 9 7.19 1.84 0.18 

Cross x Family 9 3.91 1.00 0.49 

Error 10 3.91   
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Conclusion 
 
The series of experiments summarized in this thesis substantiate the role of Daphnia as a 

powerful model system by providing a basis to establish it as a model for experimental aquatic 

host-microbe research. Essential insights into fundamental mechanisms and processes 

between Daphnia and their associated microbial community were gained, contributing to the 

ever-growing knowledge necessary to eventually understand host-microbe interactions in 

their full complexity. 

We investigated how specific the association of Daphnia and their accompanying 

microbes is by reciprocally transplanting the microbiota between different host species and 

measuring different life history traits to quantify fitness consequences that might arise. We 

find that there are specific interactions between Daphnia and their microbial consortia, but 

not supporting the idea of coevolved mutualistic relationships. This is supported by the fact 

that being associated with a foreign microbial community does not negatively affect fitness in 

Daphnia magna and Daphnia pulex. This is in contrast to what Rawls et al. (2006) found, 

using zebrafish and mice. Although metabolic responses were stimulated in both hosts by the 

microbiota from either species, immune responses were induced only by their respective 

normal microbiota. Also Salem et al. (2013) demonstrated a high degree of host-symbiont 

specificity in two bug species from the Family Pyrrhocoridae where fitness of symbiont-

deprived bugs could only be completely restored by the original microbiota. This discrepancy 

could be attributable to ecological differences of the hots, as ecology has been shown to play 

an important role for microbiota composition (Ferrari, West, Via, Godfray, & Al, 2011; Hird, 

Sánchez, Carstens, & Brumfield, 2015). While the hosts used in these and other examples 

(Koch & Schmid-Hempel, 2012; Lau & Lennon, 2012; Sison-Mangus, Jiang, Tran, & Kudela, 

2014) differed in this regard to a greater or lesser extent, we worked with species co-occurring 

in the same habitat occupying overlapping niches. Further, we confirmed previous results that 

Daphnia magna suffers from negative fitness effects in the absence of microbes (Callens et 

al., 2016; Peerakietkhajorn, Kato, Kasalický, Matsuura, & Watanabe, 2016; Peerakietkhajorn, 

Tsukada, Kato, Matsuura, & Watanabe, 2015; Sison-Mangus, Mushegian, & Ebert, 2014), at 

the same time demonstrating the identical effect in Daphnia pulex. Thus, this is likely a 

general pattern found in Daphnia. From these results it becomes apparent that although there 

are specific interactions between Daphnia and their microbes that are essential for Daphnia 

in order to survive, the relationship does not support the idea of coevolved mutualism. Part of 

this is likely the result of the constant coexistence with and exposure to the omnipresent 
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microbes in the aqueous environment. At the same time, the cyclic parthenogenetic life cycle 

of Daphnia also plays an important part in contributing to this. Since no bacteria are 

transmitted vertically through ephippia (Mushegian, Walser, Sullam, & Ebert, 2017; Sison-

Mangus, Mushegian, et al., 2014) the microbial community needs to be reestablished at the 

beginning of every growth season anew from the environment. 

In another experiment we show that only a fraction of the microbiota gets transmitted 

from mothers to their offspring during asexual reproduction. This is in accordance with 

results from other studies showing that the microbiota of mothers and offspring are not totally 

identical (Inoue & Ushida, 2003; Ley, Hamady, & Lozupone, 2008). On top of this we find 

that the ratios of shared and unique microbes between mothers and offspring were uniform 

across native and foreign microbiota origins. We hypothesize that the consistent ratios are 

attributable to the interplay of an undirected transmission process and the anatomical 

features of Daphnia. Since the brood pouch, an open system with water circulation where the 

developing asexual eggs get deposited, is located in close proximity to the anal opening, it is 

very likely that the developing embryos get exposed to microbes transmitted through feces. 

The circumstance that the origins do not differ illustrates again that Daphnia are habituated 

to the coexistence with microbes per se but not with a certain community, confirming our 

previous notion regarding the specificity of the Daphnia-microbiota association. 

Once established, the constant exposure of these associations to various biotic and 

abiotic factors imposes the challenge of keeping them in a healthy, stable state (Faith et al., 

2013; Lozupone, Stombaugh, Gordon, Jansson, & Knight, 2012). We kept Daphnia magna 

individuals with different microbial communities in monoclonal and mixed pairs to examine 

microbiota stability, defined as resistance to colonization and replacement by new microbes, 

and to determine how two microbiota affect each other’s composition. While for instance 

Alpert et al. (2008) showed that between 77 to 88 % of the microbes in mice remained stable 

over a period of 12 months, we report that the microbial communities in Daphnia converged 

after 21 days by incorporating new microbes. A possible explanation for this finding is given 

by Tap et al. (2015) who observed that in humans higher microbiota richness was associated 

with higher microbiota stability. Based on this, knowing that microbial diversity of Daphnia 

from the field decreases upon entering the laboratory environment (Pichon, unpublished; 

Sullam et al., in prep.), one would expect the microbiota to become less stable. This seems to 

apply to our experiment at first appearance, but the microbes only intermixed and not 

replaced each other. Thus, instead of rating it as unstable, we suggest to classify the Daphnia-
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microbiota association as modifiable. In addition, as the individuals with different microbial 

communities originated from different populations which is equivalent to different genotypes, 

we were able to demonstrate that host genotype did not influence the process of microbiota 

intermixing. 

On the basis of this discovery, we attempted to investigate the influence host genotype 

exerts on the microbiota in more detail. For this purpose, the microbial communities of selfed 

and outcrossed animals were compared to link their homozygosity level to differences in their 

microbial diversity. Earlier studies on this topic in mice illustrated that no differences 

between inbred and outbred individuals with respect to their microbial diversities were 

detectable (Kreisinger, Cížková, Vohánka, & Piálek, 2014; Pang et al., 2012). Our results are in 

accordance with these findings, corroborating previous conclusions that in Daphnia magna 

the genotype does not affect the microbiota. 

This thesis represents a significant advancement in understanding basic mechanisms 

in the Daphnia-microbiota system and provides fundamental knowledge essential for future 

research to build upon. The main conclusions are that I) beneficial microbes are most likely 

common in the environment, as Daphnia do not form coevolved mutualistic relationships 

with a specific community; II) the association is modifiable but not influenced by the 

genotype of the host and III) mothers transfer a stable portion of their microbiota vertically to 

their offspring during asexual reproduction while the rest is likely of environmental origin. 

Taken together, these results demonstrate that the Daphnia-microbiota relationship 

represents a promising and powerful tool to address basic questions about the complex 

interplay between hosts and microbes and to investigate how they affect important aspects of 

each other’s life. 

 

Outlook: Further directions of research 

The experiments presented in this work represent investigations spanning a limited range of 

the whole spectrum of interdependencies between Daphnia and their associated microbes. 

Thus, it is certain that the true level of complexity of this relationship is underestimated and 

remains unexplored. In the following paragraphs we therefore discuss different aspects and 

limitations of our work and propose possible directions for future research. 

First, we were limited to ephippial eggs as sole source for axenic animals because at the 

time the experiments were conducted it was not possible to reliably get viable axenic animals 

from asexually produced eggs. While the feature that every ephippial egg represents a 
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different genotype allowed us to show that the host genotype does not influence the 

microbiota, it made it impossible for us to detect putative genotype specific effects. Since in 

the meantime there is a protocol published to reliably get sterile parthenogenetic eggs 

(Peerakietkhajorn et al., 2015) we suggest to conduct similar experiments as described in this 

thesis with asexual eggs to confirm the validity of our findings on an even narrower genetic 

scale. 

Second, the microbiota was always treated as an entity. However, the microbes might 

very well differ in their ways they interact with the host. The situation is similar to the 

previous one: looking at how the whole microbiota interacts with the host masked effects of 

individual microbes. Thus, we recommend focusing on individual members rather than the 

whole community. In combination with the possibility to now keep the genotype of the host 

constant by using parthenogenetic eggs, this has the potential to reveal unexpected and 

astonishing effects. 

Last but not least, we directed our attention primarily to how the host benefits from 

being associated with microbes. But to what degree do microbes benefit from that? As this 

cannot be assessed for the whole community, we advise to use Daphnia with mono-associated 

microbes to tackle this question. Subsequently, fitness comparisons between associated 

microbes and their free-living forms can be carried out.  

Despite all that, our work provides valuable insights into the basic mechanisms of 

beneficial associations between Daphnia and the microorganisms they coexist with. As we 

have just started to scratch the surface, this model system still holds many surprises waiting 

to be revealed. 
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Abstract 
 
The environments in which animals develop and evolve are profoundly shaped by bacteria, 

which affect animals both indirectly through their roles in biogeochemical processes and also 

through direct antagonistic or beneficial interactions. The outcomes of these activities can 

differ according to environmental context. In a series of laboratory experiments with 

diapausing eggs of the water flea Daphnia magna, we manipulated two environmental 

parameters, temperature and presence of bacteria, and examined their effect on development. 

At elevated temperatures (≥26 °C), resting eggs developing without live bacteria had reduced 

hatching success and correspondingly higher rates of severe morphological abnormalities 

compared to eggs with bacteria in their environment. The beneficial effect of bacteria was 

strongly reduced at 20 °C. Neither temperature nor presence of bacteria affected directly 

developing parthenogenetic eggs. The mechanistic basis of this effect of bacteria on 

development is unclear, but these results highlight the complex interplay of biotic and abiotic 

factors influencing animal development after diapause. 

 

 

Introduction 
 
All animals evolved in an environment with an omnipresence of bacteria. Bacteria affect 

animals’ environments from global scales (e.g. driving elemental cycles and ecosystem 

productivity (Howard et al. 2006; van der Heijden et al. 2008)) to extremely local (e.g. 

degrading polysaccharides in the gut (Martens et al. 2011)). Accordingly, animal evolution has 

widely featured adaptations to ecosystems shaped by bacteria (McFall-Ngai et al. 2013), as 

well as interactions with bacteria that affect animals' responses to other environmental 

factors. Bacteria can protect animals and their embryonic stages from pathogens (Gil-Turnes 

et al. 1989), heavy metal pollution (Senderovich & Halpern 2013; Breton et al. 2013), or toxic 

secondary compounds in plant diets (Kohl, Weiss, et al. 2014); conversely, they can convert 

xenobiotics into more harmful forms (Freeland & Janzen 1974; Zheng et al. 2013).  Bacteria 

can provide crucial signals about the environment, as in the case of marine tubeworm larvae 

that use molecules from surface-associated bacteria as cues to settle and metamorphose 

(Shikuma et al. 2014). Presence of bacteria is an environmental factor that induces aspects of 

the development of the vertebrate gut epithelium (Bates et al. 2006) and immune system 

(Ivanov et al. 2009), influencing fat storage (Semova et al. 2012) and systemic inflammatory 
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response (Galindo-Villegas et al. 2012). The role of bacteria in normal animal development 

has been further demonstrated in mosquitoes, which failed to develop past the first larval 

instar without bacteria (Coon et al. 2014), and in Drosophila, which failed to develop under 

nutrient-poor conditions without bacteria (Shin et al. 2011). The specificity, evolutionary 

history, and underlying mechanistic causes of these types of interactions vary widely (Angela 

E. Douglas 2014).  

Under changing environmental conditions, the effects of positive interspecies 

interactions can become dampened or more pronounced. If one or both species are stressed, 

the effect of each individual interaction might be altered, if the ability of one or both species to 

perform their functions is affected or if a particular function becomes more important for 

fitness (Xie et al. 2013; Kiers et al. 2010; Márquez et al. 2007). Furthermore, stressful 

conditions can reveal cryptic phenotypic variation among individuals, meaning the variation 

and net effect of the interaction on the population level might be altered. The stresses caused 

by increasing global temperatures are predicted to affect many insect-symbiont interactions 

(Wernegreen 2012), change the phenology of plant/herbivore or plant/pollinator interactions 

(Musolin et al. 2010), and generally affect the microbial ecology of aquatic environments.  

The water flea Daphnia, a planktonic microcrustacean, is a model for studies of 

organismal responses to ecological challenges in both basic and applied research settings 

(Colbourne et al. 2011). Found in a geographically and ecologically wide range of 

environments, from the tropics to arctic regions, Daphnia species exhibit great phenotypic 

diversity and have been used to test numerous theories in evolutionary ecology (Ebert 2011; 

Altermatt & Ebert 2008; Lynch & Ennis 1983). In addition to being used as an environmental 

quality monitor under contemporary conditions, Daphnia also serves as a record of historical 

adaptation to changing environments through dormant stages archived in sediments, which 

can be “resurrected” and compared to modern phenotypes (Frisch et al. 2014). These resting 

stages, encased in chambers called ephippia, are produced by Daphnia in the sexual phase of 

its reproductive cycle, typically in response to conditions indicating environmental 

deterioration or the end of a season (e.g. crowding or changes in photoperiod). Development 

of the resting stage arrests at the onset of gastrulation, in an approximately 1000-cell stage 

(Baldass 1941) with the embryo contained in a protective, inflexible tertiary egg membrane in 

addition to the two membranes found around directly developing parthenogenetic eggs (Navis 

et al. 2015). These ephippial embryos can then persist for periods of days to decades and be 

dispersed to new habitats, surviving drying, temperature extremes, anoxia and chemical 
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exposure. For simplicity, we refer to the diapausing, tertiary-membrane-bound embryos as 

“eggs” and use “embryo” to refer to all post-diapause developmental stages until the animal 

reaches a freely swimming state. (Throughout this paper we use eggs that have been removed 

from ephippial shells in order to standardize their treatment; we emphasize this to avoid 

confusion arising from the fact that some literature uses “resting egg” to refer collectively to 

the entire ephippium and the embryos inside it.) The cues and environmental conditions 

allowing emergence from diapause are relatively poorly understood (Smirnov 2014; 

Vanvlasselaer & De Meester 2010), but the “seed bank” of resting eggs of Daphnia and other 

invertebrates is recognized as an important component of ecosystem dynamics (Hairston 

1996). Resting stages may spend considerable lengths of time in varying degrees of contact 

with bacteria-rich sediments, and bacteria have been detected on the inside surfaces of 

ephippial shells (Schultz 1977). The roles of bacteria at all stages of the Daphnia life cycle are 

therefore of interest for understanding determinants of phenotype and fitness and subsequent 

effects on the ecosystem. 

We previously found that Daphnia magna raised in sterile environments after 

emerging from surface-sterilized eggs grow more slowly, reproduce less, and die sooner than 

animals subjected to identical treatment but colonized with bacteria (“conventionalized” by 

exposure to bacteria from homogenized adult Daphnia during development) (Sison-Mangus 

et al. 2014). In the course of developing our protocols for germ-free and conventionalized 

animals, we serendipitously observed that under some conditions, a beneficial effect of 

bacteria on fitness could be observed even earlier, during embryonic development of resting 

eggs. In a series of experiments manipulating temperature and bacterial environment of 

surface-sterilized eggs in fully factorial setups, we confirmed that at temperatures of 26-28 °C, 

in the absence of live bacteria, embryonic development failed at higher rates than when 

bacteria were present in the hatching medium. 

 

 

Methods 
 
Comparing hatching rates 

Except where noted, diapausing eggs used in these experiments were collected in a carp pond 

near Munich, Germany (site code DE-K2-2; coordinates = N 48.2046028°, E 011.6793556°). 

Ephippia were collected at this site in 2009 and have since been kept in moist conditions in 

the dark at 4 °C. Eggs were manually removed from ephippia under a dissecting microscope 
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using forceps and transferred to tissue culture plates containing artificial Daphnia medium 

(ADaM) (recipe at http://evolution.unibas.ch/ebert/lab/adam.htm). Collected eggs were 

stored in the dark at 4 °C overnight until experiment was set up the following day.  

To manipulate temperature, we constructed a cooling device to hold six 96-well flat-bottomed 

tissue culture plates (Falcon, Becton Dickinson Labware, Franklin Lakes, NJ, USA) under an 

overhead light with a cooling element under one half of each plate. The temperature in the 

cool half was adjusted to 20 °C (hereafter referred to as “standard” temperature) while the 

temperature in the uncooled half, warmed by the lamp, ranged from 26 to 28 °C (hereafter 

referred to as “warm” temperature).  

All eggs were surface-sterilized in one batch with household bleach (≤5% sodium 

hypochlorite) for 5 minutes in an Eppendorf tube, which was inverted continuously to expose 

all sides of eggs. Bleach was removed and eggs were washed by adding and removing sterile 

(autoclaved) ADaM or water 3 times. Eggs were transferred into a wide, shallow dish of sterile 

ADaM and haphazardly placed in individual wells of 96-well tissue culture plates containing 

180 μl sterile ADaM. No eggs were placed in the wells immediately alongside the temperature 

boundary at the center of the plate.  

Alternating rows of wells were assigned to be sterile (STE) or conventionalized (CONV) 

(randomizing the assignment of the first row), with equal numbers of STE and CONV rows in 

each plate. To the CONV rows, 20 μl Daphnia homogenate (consisting of 10 intermediate-

sized adult Daphnia freshly homogenized in 1.5 ml ADaM) was added. To the STE, 20 μl 

sterile ADaM was added. These procedures were carried out under a sterile laminar flow 

hood. Plates were covered and inspected with an inverted light microscope; any eggs that were 

visibly mechanically damaged were excluded from further analysis. Plates were then placed on 

the cooling device, randomizing which half of the plate was cooled. 

Substantial numbers of free-swimming hatchlings were observed in the warm 

treatment 3 days after the experiment was set up, and in the cool treatment 1 day later, 

consistent with previous observations of temperature effects on development time. We 

checked for hatchlings daily and report the proportion of free-swimming hatchlings in each 

treatment combination on the fifth day after the experiment was set up, when emergence of 

new hatchlings in both temperature conditions had slowed or stopped. Development was 

analyzed as a binary variable, “success” or “failure,” with “success” defined as a neonate freely 

swimming in the well. The “failure” category consisted of multiple outcomes, mainly divisible 

into i) eggs that show no signs of development visible with light microscopy and ii) hatchlings 
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or embryos exhibiting severe, obvious morphological abnormalities preventing them from 

swimming normally, such as misshapen carapaces and eyes, stunted or missing appendages 

or setae, or prematurely broken membranes. The failure category also included any 

developing embryos that had not reached a free-swimming state by the end of the experiment 

but did not have any obvious abnormalities, which always comprised less than 1-3% of the 

totals at the time points in the experiments when outcomes were reported. We used 

swimming vs. non-swimming as our criterion in order to be conservative in our 

categorization, as it was not possible for the observer to be blinded to the treatment since 

bacteria or Daphnia homogenate were sometimes visible in the wells under the microscope. 

Except where differences are noted, these assay procedures were repeated in all following 

experiments. 

To test if the observed effect was specific to the Munich population, a similar 

experiment was carried out using ephippia collected from a rock pool in Finland. These eggs 

were conventionalized with a homogenate of animals originating from this population.  

 

Effects of individual bacterial strains 

To confirm that the observed effects in the bacterial treatment were due to bacteria, and not to 

some other component of the homogenized Daphnia body, we conducted an experiment using 

pure cultures of bacterial strains isolated from apparently healthy field-collected Daphnia or 

laboratory-grown algal food. Five strains – Pseudomonas sp, Burkholderiales sp, Aeromonas 

sp, Brevundimonas sp (from Daphnia) and Variovorax sp (from algae) – were arbitrarily 

selected from the laboratory stock collection and their effect on hatching was contrasted with 

germ-free conditions at 22-23 (due to technical problems with the cooling device) and 27 °C. 

These strains were grown for 3 days in liquid LB medium (Sigma-Aldrich) at 37 °C with 

shaking, without regard to the growth phase each culture would reach during this time. 

Culture medium was removed by decanting after centrifugation, and bacteria were 

resuspended in sterile ADaM and diluted in ADaM to roughly the same final OD600 

(calculated to be ~0.017-0.019, except for Burkholderiales, the concentration of which was 

~0.001 because the culture did not grow to sufficient density). Another treatment consisted of 

a mixture of these strains. A treatment using whole-Daphnia homogenate as the bacterial 

source was also included, but all wells with this treatment became thickly overgrown with 

filaments of an unidentified bacterium, preventing normally and abnormally developed 

animals from being accurately distinguished. This treatment was therefore excluded from 
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analysis. Hatching rates were reported as in the previous experiment but on the fourth day 

instead of the fifth. 

 

Effect of heat-killed or low dose bacteria 

To determine whether the beneficial effect on hatching could be obtained by exposure to a 

generic microbial signal (e.g. lipopolysaccharide), we conducted an experiment with 

Pseudomonas and Brevundimonas administered either live or heat-killed. Both strains were 

cultured for 7 days. They were then diluted to OD600 = 0.2 and half of each culture was heat-

killed at 80 °C for 1 hour. 20 μl of the live or heat-killed suspensions was added to wells 

containing 180 μl of sterile ADaM. 

To determine whether a low dose of bacteria could produce the beneficial effect, we 

administered Pseudomonas at doses of 200 or 200,000 CFU (as determined by spread-

plating dilutions) per egg.  

 

Timing of bacterial effect 

We wished to see whether bacteria would still have a beneficial effect if added after 16 hours of 

development at the warm temperature. (This timepoint was chosen based on results of a 

previous pilot study.) We inoculated two separate liquid cultures of Pseudomonas from single 

colonies on LB agar plates, 16 hours apart. The first culture was washed and diluted and 

added to treated eggs in wells as in the previously described experiments; the second was 

washed and diluted in the same way 16 hours later and added to a subset of bacteria-free eggs. 

At this time 20 μl of sterile ADaM was added to both bacteria-free and Pseudomonas-treated 

disturbance control groups. A subset of eggs was inspected with the microscope at 16 hours to 

approximately determine the average developmental stage at this point, and two 

Pseudomonas-treated individuals were removed from the wells and treated with DAPI stain 

(VectaShield kit) to visualize bacterial presence on the egg. A standard-temperature treatment 

was not included in this experiment.  

 

Effect on directly developing eggs 

To examine the effect of temperature and bacteria on non-diapausing eggs, we used 

parthenogenetic eggs of three different Daphnia clones (called Mu12, T2 and T3) originating 

from the same Munich location as the collected ephippia. 
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Three isofemale lines were established by hatching ephippia and kept under standard 

laboratory conditions for several generations before the experiment: 400 ml jars of ADaM 

kept at 16:8 light:dark cycle at 20 °C and fed every other day with 50 million cells of the green 

alga Scenedesmus sp. 

For the experiment, one-day-old juveniles were placed individually in 100 ml jars filled 

with ADaM and kept under standard laboratory conditions until they reached maturity. When 

the first offspring were present, the adult animals were transferred to new jars with fresh 

medium. Following this, the eggs from the second clutch were collected within 24 h of being 

deposited, by sucking them out of the brood pouch with a Pasteur pipette and transferring 

them to a 1.5-ml Eppendorf tube. At this stage, the asexual eggs are still encased in a chorion, 

similarly to diapausing eggs. The collected eggs were surface-sterilized following the protocol 

of Peerakietkhajorn et al (2015). In short, the eggs were incubated for 30 min in 0.25% 

glutaraldehyde and washed three times with sterile water before they were placed individually 

in the wells of a 96 well plate. Resting eggs from ephippia were surface-sterilized using the 

same method and included for comparison. Pseudomonas suspension or sterile ADaM were 

added as previously. Wells were checked twice daily for swimming hatchlings.  

 

Statistical analysis 

All statistical analyses were performed using the software package R 3.1.3 (R Core Team). The 

proportion of freely swimming hatchlings in each condition was analyzed with logistic 

regression (binomial error distribution with logit link function), setting warm and sterile 

conditions as the reference levels in each analysis. In the experiment examining directly 

developing eggs, these eggs were analyzed with a genotype effect included while ephippial 

eggs were analyzed in a separate model. Binomial confidence intervals were calculated for 

each treatment combination using the default Wilson method in the R package Hmisc.  

 

 

Results 
 
In a comparison of eggs exposed to bacteria-free or “conventionalizing” conditions (addition 

of a homogenate of lab Daphnia with complete microbiota), a clear interaction between 

temperature and bacterial treatment was observed (Figure 1A). Under standard (20 °C) 

conditions, bacteria-free and conventionalized eggs had similarly high rates of successful 

development (i.e. developing to a free-swimming state). Under warm (26-28 °C) conditions, 
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however, the rate of successful development of bacteria-free eggs was dramatically lower 

compared to conventionalized eggs. Unsuccessful development in all groups consisted of a 

combination of different outcomes, from eggs displaying no apparent signs of development to 

a variety of abnormal phenotypes lacking the ability to swim freely (Figure 1B). Observed 

abnormalities included malformed carapaces and eyes; broken membranes spilling yolk; and 

stunted appendages with missing setae. A similar difference in successful development under 

warm conditions was observed using eggs from a population originating from a Finnish rock 

pool (13/32 (41%) success in bacteria-free, 20/25 (80%) success in conventionalized, Fisher’s 

exact test p=0.003). 

 

 

 

Figure 1. A (top). Proportions of resting eggs that reached a free-swimming state under warm and standard, 
bacteria-free (STE) and conventionalized (CONV) conditions. N=57 to 60 individuals in each treatment 
combination. Error bars represent 95% binomial confidence intervals. Odds ratio for CONV vs STE under warm 
conditions: 5.9. For logistic regression results see Table 1A. B (bottom). Examples of developmental 
abnormalities observed; photos shown are from warm, bacteria-free condition of experiment. At right, an 
example of a normally developed neonate; image compiled from stacked photographs of an immobilized 
individual. Photos have been converted to grayscale, and brightness and contrast have been adjusted.  
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In an experiment using single strains of lab-cultured bacteria under warm and 

standard temperature conditions, the bacteria-free group under warm conditions again had 

the lowest rate of successful development out of all treatments (Figure 2). Of the bacterial 

strains tested, the Pseudomonas sp strain resulted in the highest rate of successful 

development under warm conditions, significantly higher than that of the bacteria-free group. 

Since the Pseudomonas strain appeared to recapitulate the effect of Daphnia homogenate, 

further experiments aiming for more controlled conditions were conducted using this strain.  

 

 

Figure 2. Proportions of resting eggs reaching a free-swimming state when exposed to different bacterial strains 
under warm and standard temperature conditions. STE=bacteria-free, Arm03=Aeromonas sp, 
Bdm07=Brevundimonas sp, Bkd02=Burkholderiales sp, Pdm06=Pseudomonas sp, Vvox01=Variovorax sp, 
Mix=mixture of these five bacterial strains. N=26 to 30 in each treatment combination. Horizontal line 
represents successful development at sterile warm condition, for comparison. Odds ratio for Pdm06 vs. sterile 
under warm condition: 21.7. Error bars represent 95% binomial confidence intervals. For logistic regression 
results see Table 1B.              
 
 

Eggs treated with heat-killed Pseudomonas had rates of failure similar to bacteria-free 

eggs under warm conditions (Figure 3), indicating that the beneficial function of the bacterial 

cells was inactivated by heat. The Brevundimonas strain from the previous experiment was 

also tested in this experiment; it provided a significant improvement in hatching rates over 

the bacteria-free condition, but a smaller benefit than Pseudomonas. The effect of 

Pseudomonas was also tested at two different doses (Figure 4); the higher dose had a stronger 

beneficial effect than the low dose. 
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Figure 3. Proportions of resting eggs reaching a free-swimming state when exposed to live and heat-killed 
Pseudomonas (Pdm) and Brevundimonas (Bdm) under warm and standard temperature conditions. N=28 to 30 
in each treatment combination except for heatkill Bdm/warm: n=16. Odds ratio for live Pseudeomonas vs. sterile 
under warm condition: 18. Error bars represent 95% binomial confidence intervals. For logistic regression 
results see Table 1C. 
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Figure 4. Proportions of resting eggs reaching a free-swimming state when exposed to different doses of 
Pseudomonas (Pdm) bacteria. N=27 to 30 in each treatment combination. Error bars represent 95% binomial 
confidence intervals. Odds ratio for Pseudomonas high dose vs. sterile: 8.22. For logistic regression results see 
Table 1D. 

 

Adding Pseudomonas to bacteria-free embryos 16 hours after they had been placed 

under warm conditions did not improve rates of successful development over embryos that 

were bacteria-free for the entirety of the experiment (Figure 5). Therefore bacteria could only 

rescue the development of embryos if they were already present less than 16 hours after the 

onset of the warm temperature condition.  Observation of a subset of these embryos at 16 

hours showed that none of the eggs had yet shed their outer, inflexible membrane. Most of the 

embryos observed had begun to show some slight differentiation of segments at this point. 

DAPI staining of eggs exposed to Pseudomonas for 16 hours showed bacterial cells irregularly 

distributed on the surface of the egg, with no apparent pattern. 
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Figure 5. Comparison of successful development rates of eggs exposed to Pseudomonas from beginning of 
experiment or after 16 hours of bacteria-free development under warm conditions. Control treatments disturbed 
by pipetting at 16 hours are included. N=38 to 40 per treatment group. Error bars represent binomial confidence 
intervals. Odds ratio for Pseudomonas always present vs. no bacteria: 7.2. For logistic regression results see 
Table 1E. 

 

The bacterial and temperature treatments had no effect on the development success of 

directly developing parthenogenetic eggs of three different Daphnia genotypes (Figure 6). 

Therefore this effect seems to be limited to resting eggs. Resting egg development showed the 

same pattern of bacterial and temperature effects in this experiment as in previous ones, 

indicating that the observed effect was not dependent on whether hypochlorite or 

glutaraldehyde was used for surface-sterilization. 

Overall across our experiments, exposure to bacteria (either whole-Daphnia 

homogenate or Pseudomonas sp) increased the odds of successful development under warm 

conditions by ratios ranging from 4.6 to 21.7 (Table 2).  
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Figure 6. Effect of bacteria-free (STE) and Pseudomonas-exposed (Pdm) conditions on development at 
standard and warm temperature for directly developing parthenogenetic eggs of three different Daphnia clones 
as well as ephippial eggs. N=29 to 30 per treatment combination. Error bars represent 95% binomial confidence 
intervals. Separate logistic regressions were performed for ephippial and parthenogenetic eggs, setting sterile 
and warm condition as reference level in both. Odds ratio for ephippial eggs Pseudomonas-exposed vs. sterile 
under warm conditions: 4.7. For logistic regression results see Table 1F. 
 
 
Table 2. Consistent effects of conventionalizing bacteria or Pseudomonas sp across experiments. Shown are 
odds ratios of successful development of the bacterial treatment significantly differing from sterile reference 
condition in each experiment. 
  Warm condition Standard condition 
Experiment/trial Odds ratio Fisher’s exact test 

p-value 
Odds ratio Fisher’s exact test 

p 
Fig. 1 5.9 0.00014 0.87 0.83 
Fig. 2 21.7 .00041 1.42 0.58 
Fig. 3 18 1.1e-5 5.6 0.015 
Fig. 4 8.22 0.0009 2.74 0.299 
Fig. 5 7.2 9.2e-5 na na 
Fig. 6 4.7 0.0082 1.59 0.58 
Mean +/- s.e.m. 10.95 +/- 2.89  2.44 +/- 0.85  
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Table 1. Coefficients of logistic regressions. In all models, sterile and warm conditions are set as the reference 
levels unless otherwise noted. Asterisks represent p-values significant at the .05 (*), .01 (**), and .001 (***) alpha 
levels. 

Estimate  Std. Error  z value  Pr(>|z|)     
A. Effect of conventionalizing bacterial mixture (Figure 1) 
 (Intercept)         0.2469      0.2669    0.925   0.355058     
CONV         1.7775      0.4827    3.683   0.000231 *** 
STANDARD temp       0.8518      0.4080    2.087   0.036845 *   
CONV:STANDARD    -1.9111      0.6438   -2.968   0.002995 **  

 

B. Effect of individual bacterial isolates (Figure 2) 

 (Intercept)            0.1431      0.3789    0.378    0.70570    
Arm03                0.5500      0.5570    0.988    0.32340    
Bdm07                0.5500      0.5570    0.988    0.32340    
Bkd02                0.8220      0.5623    1.462    0.14381    
Mix                  0.4447      0.5469    0.813    0.41619    
Pdm06                3.0758      1.0876    2.828    0.00468 ** 
Vvox01               0.4447      0.5469    0.813    0.41619    
STANDARD        0.5500      0.5418    1.015    0.31004    
Arm03:STANDARD     -0.1446      0.8067   -0.179    0.85776    
Bdm07:STANDARD      0.3662      0.8368    0.438    0.66163    
Bkd02:STANDARD     -0.2158      0.8236   -0.262    0.79327    
Mix:STANDARD        0.4308      0.8312    0.518    0.60425    
Pdm06:STANDARD     -2.7191      1.2352    -2.201    0.02771 *  
Vvox01:STANDARD     0.6947      0.8597    0.808    0.41904    
 
C. Effect of heatkilled bacteria (Figure 3) 
(Intercept)            -0.693147    0.387298   -1.790    0.07350 .   
live Bdm                1.491655    0.557773    2.674    0.00749 **  
heatkilled Bdm             0.944462    0.635585    1.486    0.13729     
live Pdm               2.890372    0.721325    4.007   6.15e-05 *** 
heatkilled Pdm            -0.318454    0.566087   -0.563    0.57374     
STANDARD temp         1.128465    0.547478    2.061    0.03928 *   
live Bdm:STANDARD      -0.055171    0.865624   -0.064    0.94918     
heatkill Bdm:STANDARD   0.006515    0.930699    0.007    0.99442     
livePdm:STANDARD      -1.166206    1.020683   -1.143    0.25322     
heatkillPdm:STANDARD   1.226870    0.824822    1.487    0.13690     
 

D. Effect of low dose of Pseudomonas (Figure 4) 

(Intercept)                -0.2683      0.3684   -0.728    0.46655    
Pdm high dose                2.1008      0.6525    3.220    0.00128 ** 
Pdm low dose                 0.5559      0.5306    1.048    0.29478    
STANDARD temp                    1.4578      0.5675    2.569    0.01021 *  
Pdm high dose:STANDARD   -1.0932      0.9912    -1.103    0.27004    
Pdm low dose:STANDARD   -1.0524      0.7966    -1.321    0.18647    
 
E. Effect of adding Pseudomonas after 16h of development under warm conditions (Figure 5). Sterile and 
undisturbed set as reference levels. 
(Intercept)     -1.0516      0.3147    -3.342   0.000832 *** 
Pdm added 16h          0.2792      0.4509    0.619   0.535786     
Pdm always           1.9370      0.3591    5.394   6.89e-08 *** 
disturbed       0.1925      0.3591    0.536   0.591799     
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Discussion 
 
We have shown a consistent positive effect of exposure to bacteria on the successful 

development of Daphnia magna from resting eggs at a temperature of 26-28 °C. Under warm 

conditions, the rate of successful development of eggs without bacteria in their environment is 

much lower than that of eggs exposed to bacteria, with a higher incidence of severe 

morphological abnormalities resulting in fewer freely swimming neonates in bacteria-free 

conditions. This effect is observable both using a complete suite of Daphnia-associated 

bacteria derived from homogenizing whole adult daphnids, and with at least one individual 

strain (Pseudomonas sp) of bacteria. Since a strain with this positive effect was observed in an 

arbitrary selection of five bacterial strains from our collection, we assume that this property 

may be relatively widespread among Daphnia-related bacteria. This would be similar to 

results from studies of mosquitoes, in which a wide range of bacterial strains promoted larval 

development (Coon et al. 2014). Interestingly, the mixture of the five strains tested did not 

have the same beneficial effect as the Pseudomonas strain alone, indicating either that 

Pseudomonas was not present at a high enough concentration in the mixture to have an effect, 

or that the strains in this particular mixture had antagonistic effects on each other with 

respect to their effect on the embryo. It is unknown to which bacteria, and in which 

combinations, eggs would be exposed in natural settings. The ephippia in which eggs are 

deposited are derived from maternal carapaces, and bacteria have been observed on their 

internal surfaces (Schultz 1977). Many egg-containing ephippia collected from natural 

sediments are partially degraded or not completely sealed (personal observation), permitting 

exposure to environmental bacteria. Natural environments would almost certainly contain 

harmful bacteria in addition to potentially beneficial ones, making the effects of bacteria in 

natural settings difficult to predict. 

Among the animals that failed to develop normally, abnormality appeared to arise at 

different developmental stages. Among those that resembled undifferentiated eggs at the end 

of the experiment, our methods could not distinguish whether this was due to developmental 

failure/death at a very early stage or due to continued diapause. Bacteria could be involved in 

diapause termination, analogously to bacteria that induce metamorphosis between life stages 

in some marine invertebrates (Shikuma et al. 2014). However, a majority of the unsuccessful 

outcomes consisted of visibly initiated but abnormal development, so we presume that the 

effect observed in this experiment is primarily one related to embryonic development in 

general rather than diapause termination specifically. Nonetheless, organisms with a 
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diapausing embryonic stage are an interesting case study on the subject of ecological 

dimensions of development (Gilbert & Epel 2009), since they face a unique set of challenges 

related to the developmental environment: they must be impervious to environmental 

conditions for the length of diapause, respond appropriately to cues indicating favorable 

conditions for emerging from diapause, and complete development in environments 

potentially very different from those experienced by their parents. Understanding the 

environmental parameters that affect successful development in these organisms could 

therefore be useful for understanding how these complex responses are regulated.  

It is unclear whether the observed effect of bacteria is indirect or direct; e.g. whether 

bacteria act by modifying the chemical or physical environment around the egg, thus creating 

conditions more favorable for development, or whether bacteria are engaged in some kind of 

specific, direct molecular interaction with the developing embryo. A combination of indirect 

and direct effects is also possible. For example, in Aedes aegypti mosquitoes, bacteria were 

hypothesized to stimulate hatching by decreasing the dissolved oxygen concentration locally 

around eggs (Gillett et al. 1977), but also appeared to have a stimulating effect at high oxygen 

conditions (Ponnusamy et al. 2011). Such observations highlight the necessity of keeping 

microbial activities in mind as environmental factors that modify the effects of other 

environmental parameters. Normal development failed to be rescued when we added bacteria 

to bacteria-free embryos after 16 hours of development at the warm temperature. This could 

be either because this window represents a critical phase in the development of the embryo, or 

because it takes longer than 16 hours for the beneficial effect of the bacteria to take effect (e.g. 

if a bacterially produced factor must accumulate to a certain level in the water before it can 

benefit embryos).  

The phenotypes observed in this experiment were not completely penetrant. 

Developmental abnormalities were diverse and occurred at many different stages. A fraction 

of individuals failed to develop normally in all treatments (consistent with previous 

observations of resting egg hatching), and a portion (usually 30-50%) of individuals 

successfully developed to a freely swimming stage even in the warm, bacteria-free treatment. 

This could reflect heterogeneity in the experimental conditions (e.g. between wells of the 

culture plates) or heterogeneity in the embryos. The field-collected resting eggs used in this 

study vary in genotype, size, length of time since deposition, and most likely maternal 

condition. Accordingly, there could be genetic or maternal factors that affect the extent to 

which an individual is sensitive to temperature and bacteria. Strong genetic variation in 
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responses to microbiota has been observed in Drosophila nutrition-related traits (Dobson et 

al. 2015). The outcomes observed here resemble environmental canalization (Flatt 2005), 

with bacteria in some way contributing to the homeostatic mechanism that stabilizes the 

phenotypic outcome under the elevated temperature condition. Stressful conditions reveal 

cryptic phenotypic variation in many organisms (Badyaev 2005); our results suggest that such 

conditions may reveal cryptic variation in dependency on microorganisms. Viewed another 

way, given that many stress responses are generalized (Feder & Hofmann 1999; Jones et al. 

2015), it is possible that pathways activated by exposure to bacteria are also protective against 

heat. Since resting egg hatching occurs not only in spring, but also in summer when dried-out 

shallow pools are refilled by rain, some populations could either regularly or unpredictably 

experience the temperatures used in our experiments.  

The development of parthenogenetic eggs of three different genotypes was unaffected 

by either temperature or bacterial presence in our experiment. The beneficial role of bacteria 

could be related to specific characteristics of resting eggs, such as the tertiary membrane. On 

the other hand, one study reported high rates of inviability and developmental abnormalities 

in the parthenogenetic eggs of microbiota-free Daphnia mothers under sterile conditions 

(Peerakietkhajorn, Kato, et al. 2015). Since gut microbiota are thought to contribute to the 

nutrition of adult Daphnia (Gorokhova et al. 2015), and resting eggs are often produced under 

conditions of high crowding that are accompanied by food scarcity, sensitivity to absence of 

bacteria could be a characteristic of eggs produced by undernourished mothers. Studies have 

demonstrated various effects of maternal nutritional status on disease resistance of offspring 

(Mitchell & Read 2005).  If the effect observed here involves cross-talk between immune-

related and other developmental signaling pathways, interesting connections could be made 

to studies in ecoimmunology investigating connections between health, disease and various 

ecological stressors.  

Extended exposure to sodium hypochlorite of developing Daphnia resting embryos is 

toxic (Raikow et al. 2007), while brief exposure to sodium hypochlorite of uninduced resting 

eggs is a routine laboratory procedure (Luijckx et al. 2012) which has no apparent negative 

effects when eggs are hatched in conventional (nonsterile) conditions. In our experiments, 

eggs briefly (5 minutes) exposed to hypochlorite and then re-inoculated with bacteria had 

restored or elevated hatching success compared to eggs kept sterile after exposure. Therefore 

it is possibly worth expanding toxicological studies to investigate whether the effects of toxic 

compounds or other stressors on animals could be partly due to their effects on microbes in 
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the animals’ environment. Similarly, transformation of toxicants by bacteria in the 

environment may be another critical parameter in determining safe exposure levels.  

The molecular basis of the developmental abnormalities observed in these experiments 

is unknown, but some similar morphological abnormalities in Daphnia are reported in the 

ecotoxicology literature as consequences of exposure to chemicals with endocrine-disrupting 

properties, particularly with effects on ecdysteroids (Mu & Leblanc 2002; Flaherty & Dodson 

2005). Since ecdysone signaling is also involved in processes dependent on bacteria (i.e. 

invertebrate immune response) (Regan et al. 2013; Rus et al. 2013), we speculate that absence 

of bacteria could result in hormonal dysregulation with negative consequences for 

development. Several studies have noted the close link between innate immune regulation 

and regulation of development and growth (Shin et al. 2011; McFall-Ngai 2002), and the 

coincident signaling pathways underlying both (McFall-Ngai et al. 2013; Hayden & Ghosh 

2004). Since animal developmental programs evolved in the presence of bacteria, it is 

conceivable that normal development can depend on processes sensitive to bacterial presence 

even in early stages. It remains to be seen how relevant the effect observed here is in natural 

settings; however, these findings potentially have general relevance to the understanding of 

the complex ecological dimensions of development and of the effects of bacterial activities on 

other organisms in the ecosystem. 
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Additional Data 
 
Table S1 shows the results of additional trials on the effects of bacteria on development 

conducted as the methodology for this study was being developed and additional parameters 

were tested. These trials were not included in the main study due to either methodological 

concerns or because of redundancy with other results. The main effect – of bacteria-free 

embryos having the lowest rate of successful development under warm conditions – was 

consistent across all trials except two that had confirmed bacterial contamination. Names of 

bacterial strains refer to Ebert lab culture collection. Table S2 shows additional examples of 

developmental abnormalities observed in warm, bacteria-free conditions.
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Table S1. 

Testing Treatments  population Environment Results Comments 

Basic experiment evaluating effect of 
bacteria  

sterile Munich K2-2 middle lab 
(warm) 

9/43 (21%) Possibly flawed randomization 
procedure Daph. homogenate 26/45 (58%) 

Basic experiment evaluating effect of 
bacteria  

sterile Munich K2-2 middle lab 
(warm) 
 

11/53 (20%) Frequently disturbed 

untreated eggs 13/55 (23%) 

Daph. homogenate 19/50 (38%) 

Different bacterial sources sterile Munich K2-2 middle lab  
(warm) 

9/33 (27%) Possibly flawed randomization 
procedure nonsterile ADaM 8/35 (23%) 

Daph. homogenate 26/36 (72%) 

Ephippia/sediment 
homogenate 

25/36 (69%) 

sterile climate room 
(cool) 

33/44 (75%) 

nonsterile ADaM 37/43 (86%) 

Daph. homogenate 36/46 (78%) 

Ephippia/sediment 
homogenate 

29/42 (69%) 

Testing cooling device sterile Munich K2-2 cool device 13/19 (68%) Possibly flawed randomization 
procedure Daph. homogenate 12/19 (63%) 

sterile warm device 5/17 (29%) 

Daph. homogenate 14/19 (74%) 

sterile climate room 6/13 (46%) 

Daph. homogenate 13/17 (76%) 

Basic experiment evaluating effect of 
bacteria  

sterile Munich K2-2 cool device 34/45 (76%) PCR revealed contamination 

Daph. homogenate 36/46 (78%) 

sterile warm device 36/43 (83%) 

Daph. homogenate 40/43 (93%) 

Dosage experiment sterile Munich K2-2 cool device >80% PCR and culturing revealed 
contamination; trial terminated Pdm06-high >80% 

Pdm06-low >80% 

Bdm07-high >80% 

Bdm07-low >80% 

sterile warm device >80% 
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Pdm06-high >80% 

Pdm06-low >80% 

Bdm07-high >80% 

Bdm07-low >80% 

Evaluating effects of bacterial culture 
filtrate 

sterile Munich K2-2 cool device 23/29 (79%) Bench setup was disturbed, possibly 
affecting temperature. A few "Filtrate" 
wells show evidence of bacteria still 
being present. Pdm culture seems to 
continue to grow in wells (visibly 
cloudy). 

sterile LB 24/28 (86%) 

Filtrate LB 21/28 (75%) 

Pdm06 in LB 17/28 (61%) 

sterile warm device 10/29 (34%) 

sterile LB 17/30 (57%) 

Filtrate LB 21/30 (70%) 

Pdm06 in LB 29/30 (97%) 

Evaluating effect of supplementing 
with 20-hydroxyecdysone (20E) 

sterile Munich K2-2 cool device 40/48 (83%) 20E added at beginning of experiment - 
unclear how long it stays in medium Pdm06 45/50 (90%) 

sterile + 0.5 uM 
20E 

38/50 (76%) 

sterile + EtOH 
vehicle 

39/50 (78%) 

sterile warm device 23/49 (47%) 

Pdm06 46/50 (92%) 

sterile + 0.5 uM 
20E 

22/49 (45%) 

sterile + EtOH 
vehicle 

22/47 (47%) 

Basic experiment evaluating effect of 
bacteria, with additional quality 
control: 
well-aerated medium, checked at 
16h, no eggs in any edge wells 

sterile Munich K2-2 cool device 46/71 (65%)  

Daph. homogenate 43/71 (60%) 

sterile warm device 54/72 (75%) 

Daph. homogenate 20/72 (28%) 

Evaluating effect of supplementation 
with vitamin B12 

sterile Munich K2-2 cool device 30/45 (67%)  

sterile + .01 mg/ml 
vit B12 

38/47 (81%) 

Pdm06 37/48 (77%) 

sterile warm device 23/46 (50%) 

sterile + .01 mg/ml 
vit B12 

19/48 (40%) 
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Pdm06 40/47 (85%) 

Evaluating effect of Pseudomonas on 
ephippial eggs of inbred lines 

sterile clone CHH-
434Inb2 

cool device 16/39 (41%)  

Pdm06 31/40(78%) 

sterile warm device 6/40 (15%) 

Pdm06 22/39 (56%) 

sterile FAinb3 cool device 1/25 (4%) 

Pdm06 3/25 (12%) 

sterile warm device 0/24 (0%) 

Pdm06 3/24 (13%) 

Comparing effect of different strains 
of Pseudomonas and E. coli 

Ecoli Munich K2-2 cool device 23/28 (82%) Strains had different growth rates and 
cell counts Pdm01 29/30 (97%) 

Pdm02A 24/30 (80%) 

Pdm02D 29/30 (97%) 

Pdm06 22/29 (76%) 

Pdm16 27/30 (90%) 

sterile 20/29 (69%) 

Ecoli warm device 21/30 (70%) 

Pdm01 25/30 (83%) 

Pdm02A 27/29 (93%) 

Pdm02D 25/30 (83%) 

Pdm06 24/30 (80%) 

Pdm16 24/29 (83%) 

sterile 10/30 (33%) 

Evaluating effect of Pseudomonas 
and Sphingomonas strain; 
outcomes scored while blinded to 
treatment (neonate swimming visible 
to naked eye) 

sterile Munich K2-2 middle lab 
(warm) 

3/60 (5%) Sphingomonas did not re-grow on 
culture plate when sampled from 
experiment; later learned that 
Sphingomonas strains can be sensitive 
to 4 degrees C (used as temporary 
storage during setup of experiment) 
(Julia Vorholt, personal 
communication) 
 
 

Sgm02 4/60 (7%) 

Pdm06 34/60 (57%) 
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Table S2. Examples of developmental abnormalities of resting eggs developing under warm, 
bacteria-free conditions. 
Stunted or missing appendages and setae; misshapen carapace and eye: 

   

   

  

Eye formed but no segmentation or other morphological features; broken or “exploded” 
membranes: 

 

Note: similar outcomes can be found across all treatment groups but are most frequent in 

warm, bacteria-free conditions. Diagnostic character for scoring outcomes is swimming 

ability.  
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Abstract 
 
Host-associated microbiota vary across host individuals and environmental conditions, but 

the relative importance of nature and nurture is difficult to disentangle. We sought to 

experimentally determine the factors shaping the microbiota of the planktonic Crustacean 

Daphnia magna interact. We used clonal lines from a wide geographic distribution, which 

had been kept under standardized conditions for over 30 generations. Replicate populations 

were kept for three generations at 20 and 28 °C. Host clonal line, environment (i.e. 

temperature) and their interaction influenced microbiota community characteristics and the 

abundance of common microbial species, with the interaction of host clonal lineage and 

environmental effects generally explaining a high degree of variance for community 

composition, while microbial diversity was better explained by clonal host lineage alone. Our 

results highlight the prominent effects that host clonal lineage and its interaction with the 

environment has on host-associated microbiota. 

 

 

Introduction 
 
Environmental and genetic factors contribute to the composition of animal-associated 

microbiota. The environment can affect the microbial pool to which a host is exposed or alter 

the physiology of the host’s microbes, thereby influencing its community structure (Fan et al. 

2013; Seedorf et al. 2014). The genotype of a host, on the other hand, can impact its 

microbiota by regulating microbial recognition and selection, influence immune parameters 

and the biochemical conditions of tissues (Garrett et al. 2010; Franzenburg et al. 2012). The 

involvement of environmental factors and host genetics in controlling a host’s microbiota has 

been demonstrated (Benson et al. 2010; Campbell et al. 2012), and we aim to investigate the 

degree to which a combination of both (i.e. host clonal lineage and environmental 

interactions) influence the structure of host-associated microbiota, which is considered to be a 

polygenic trait (Benson et al. 2010).  

Changes in the expression of phenotypic traits due to environmental factors may be 

parallel or non-parallel among host genotypes. Non-parallelism is observed as when hosts 

with different genetic backgrounds respond differently to environmental conditions and it 

produces interspecific variation, from which diversification may arise (Pfennig et al. 2010; 

Moczek et al. 2011). Environmental components strongly affect host-associated microbiota, 
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including diet (David et al. 2013; Carmody et al. 2015), salinity (Schmidt et al. 2015), and 

exposure to pathogen or infection status (Cariveau et al. 2014; Jani & Briggs 2014). Studies 

that investigated genetic and environmental interactions used in bred host individuals to test 

the effect of diet (Parks et al. 2013; Carmody et al. 2015) because inbred lines allow 

replication of genotypes, but at the cost of unnaturally low levels of heterozygosity and 

associated inbreeding depression. Our current study avoids this problem by using natural 

clonal hosts reared under different environmental conditions. 

We use the freshwater crustacean Daphnia magna, which reproduces via cyclic 

parthenogenesis, to test how different host clonal lines and temperature conditions (20 and 

28 °C) influence their host-associated microbiota. Daphnia-associated microbiota are an 

integral part of their biology. Studies with germ-free D. magna, revealed their dependence on 

microbes for survival and reproduction (Callens et al. 2015; Peerakietkhajorn et al. 2015; 

Sison-Mangus et al. 2015), and certain strains of bacterioplankton increase Daphnia 

fecundity (Peerakietkhajorn et al. 2016). Additionally, the presence of bacteria helps resting 

eggs develop normally at higher temperatures, suggesting an important interaction between 

temperature and bacteria with functional implications (Mushegian et al. 2016).  

Temperature has shown to disrupt normal host-microbe symbioses in a variety of 

animals (Prado et al. 2010; Fan et al. 2013; Lokmer & Wegner 2015). The way in which 

organisms respond to temperature shifts has significant implications for their health and 

persistence. Our study organism, D. magna, exhibit both local adaptation and adaptive 

phenotypic plasticity with regard to temperature tolerance (Yampolsky et al. 2014a), and 

genotypes differ in their gene expression levels and ability to function at high temperatures 

(Yampolsky et al. 2014a; Yampolsky et al. 2014b). We use D. magna clones that had been 

kept for at least five years (> 75 generations) under standardized stock center conditions, 

where the acquisition of microbiota through an open culture system was possible. All these 

clones had been established from planktonic females collected in the field, and no attempts 

had been made to alter or clear their natural microbiota. These clones had been collected from 

in a wide range of climatic conditions, allowing us to further test to what degree their 

conditions at the site of origin may have influenced their microbiota. Our analysis highlights 

the role that host clonal line and its interaction with the environment has in shaping a host’s 

microbiota. 
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Methods 
 
Daphnia magna is a planktonic crustacean, found in small to large sized ponds and lakes with 

a distribution across Eurasia, North America and parts of Africa. Under laboratory conditions 

animals can be kept clonal for many years. Animals are 0.6 to 5 mm in length and reach 

maturity at about 8 to 15 days at 20 °C. The animals used in this study were treated identically 

to those detailed in Yampolsky et al. (2014a), in which a geographically diverse set of D. 

magna clones, originating from locations with varying temperature regimes, were used to 

study local adaptation and phenotypic plasticity to temperature tolerance. The D. magna 

clones included in this study were a subset of the clones used by Yampolsky et al. (2014a). For 

the current analysis, we focused on 16 host clones (Table 1). We excluded 6 clones from the 

Yampolsky et al. (2014a) study because (i) clone KE-1-1 was later suspected to be mixed up 

with another clonal line, (ii) clones DE-Iinb-1 and FI-Xinb-3 are inbred lines, (iii) clone FI-

FAT-1-6 was excluded from the analysis due too low 16S rDNA sequencing coverage, and (iv) 

clone FI-FSP1-16 and FI-FHS2-11 were split among the two extraction groups (discussed 

below).  

Before the experiment, all clones had been kept for at least five years under laboratory 

conditions identical to the experimental conditions at 20 °C in the same walk-in climate 

chamber. For the experiment, clonal lines were acclimated for at least three generations to 

constant temperatures of either 20 or 28 °C. We choose these two temperature conditions 

because one is close to the physiological optimum of Daphnia (20 to 23 °C) and the other is at 

the upper extreme where reproduction for all clones was still possible (28 °C). Although this 

temperature range is perhaps broader than would be expected by long-term ecological change 

(climate change), seasonal temperature variation can easily include this temperature range. In 

particular, populations in the Southern part of the species distribution are exposed to extreme 

summer temperatures, and populations also live in very small water bodies that change 

quickly due to strong solar radiation. Thus, we believe that our experimental conditions are 

within the natural range of what our study species experiences. 

Six independent replicate populations per clone were kept in separate jars for each 

temperature. Before and during the experiment, all animals were kept in open jars filled with 

non-sterile medium (ADaM, Klüttgen et al. 1994) and fed non-sterile food (chemostat grown 

green algae Scenedesmus sp.). These conditions allowed for Daphnia to pick up microbiota 

from surrounding environmental sources such as the food and medium. The 28 °C treatment 
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was chosen as the upper limit at which all D. magna clones are able to reproduce and 

complete their life cycle based on a pilot experiment.  

From each temperature and clone line treatment, three adult D. magna from the third 

generation were collected from 3 of the 6 replicate populations. Individual Daphnia were 

rinsed twice with sterile medium under a laminar flow hood in a 24 well-plate then placed 

into separate Eppendorf tubes. Animals were then immersed in 200 µL of TE 1X buffer (10 

mM Tris-HCl, 1 mM EDTA, pH 8) and kept at -20 °C until DNA extraction. 

 

Amplicon sequencing of Microbiota 

DNA was extracted from D. magna using a cetyl trimethylammonium bromide (CTAB)-based 

isolation protocol. Animals were ground with a sterile pestle in a lysozyme solution, followed 

by incubation at 37 °C for 45 min during which extraction was mixed at 850 rpm. Proteinase 

K was added to achieve a 300 μg/mL solution, which was then mixed at 850 rpm for 1 h at 55 

°C. After the addition of 15 μL of 20 mg/mL RNase A solution, 300 μL of CTAB 2X, 12 μL of 

0.2% β-mercaptoethanol and 60 μL of 20% PVP were added, and then samples were mixed 

for 1 hr at 300 rpm and 65 °C.  We then added 1 volume of chloroform isoamyl alcohol (CIA) 

to the samples, followed by centrifugation for 8 minutes at 12,000 rpm at 15 °C and collection 

of the aqueous phase. The CIA and centrifugation steps were repeated, and approximately 1 

volume of CIA was added. The nucleic acids were then precipitated from the aqueous phase 

with 50 μL of sodium acetate 3M pH 5.2 and 900 μL of cold isopropanol. After an overnight 

incubation, samples were centrifuged for 30 min at 14,000 rpm at 4 °C. Pellets were rinsed 

with 70 % v/v cold ethanol twice and then were dried using a Speed-Vac for 10 min at 45 °C 

prior to resuspension in 30 μL of TE buffer.  

The V3-V5 region of the eubacterial 16S rDNA gene (positions 327-969) was amplified 

with PCR and sequenced using 454 LibL sequencing technology (Roche, Switzerland) from 

two to three replicates per host genotype per acclimation temperature (N = 89). Denoised 

reads of average Phred quality score above 25 over a window of 25 bp and of length between 

400 and 480 bp were retained (i.e. encompassing the V3 and V4 variable regions). Singletons 

and chimeras identified with UCHIME (Edgar et al. 2011) were removed. Filtered reads were 

then clustered into operational taxonomic units (OTUs) at 97% sequence identity level using 

USEARCH v8.0.1623 (Edgar 2010). Taxonomic assignment was done using BLAST (Altschul 

et al. 1990) against the Greengenes database v13_8 (McDonald et al. 2012) with default 

settings. The most abundant sequence in each OTU cluster was chosen as the representative 
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sequence of that OTU and sequences were aligned with PyNAST (Caporaso et al. 2010a). The 

sequences belonging to the genus Pasteuria were filtered from the DNA libraries because it is 

a known bacterial pathogen of Daphnia that is regularly worked with in the same laboratory. 

It appeared that the Pasteuria ramosa reads found were from PCR contamination, which was 

corroborated with additional testing. Due to negative blank extractions, we believe the 

contamination was restricted only to Pasteuria and not other bacterial species. A phylogenetic 

tree was then built using RAxML v8.1.20 (Stamatakis 2014) for computation of weighted 

UniFrac distances (Lozupone et al. 2007). OTU count tables were built in QIIME 

(Quantitative Insights Into Microbial Ecology) software package v1.9.0 (Caporaso et al. 

2010b). 

 

Data analysis 

Data were rarefied to 2,650 reads per sample prior to analyses. All extractions done in this 

study were performed either between 9 March and 12 April 2013 (early extraction group) or 

between 9 December 2013 and 31 January 2014 (late extraction group). An analysis of the 

data determined that the date (early vs. late extraction group) at which we extracted the DNA 

from the samples had a very strong effect on the microbiota composition of Daphnia magna 

(Figure S1). The early extraction group clearly separated along from the late extraction group 

in multivariate analyses. Because most samples from the same clone were extracted in the 

same period, we separated our analyses into two extraction groups, , both of which include 8 

clones in the study, for all further analysis.  

For each of the two extraction groups, which were analyzed separately, we used the 

vegan package (Oksanen et al. 2015) in R v3.1.2 (R Core Team, 2014) to analyze whole 

community structure using relative abundances projected on the non-metric 

multidimensional space (NMDS). For a more detailed analysis we focused on the 10 most 

abundant OTUs that were dominant in both extraction groups. These 10 OTUs made up the 

majority of the relative abundance of both libraries, comprising 76.1% of the early extraction 

group’s library and 68.3% of the late extraction group’s library. Within each extraction group, 

we performed type III ANOVAs to determine the effect of clone, temperature and the 

interaction of clone and temperature on the arc-sin transformed relative abundance. Levene’s 

test was used to check for homoscedasticity of variances. 

In addition to Bray-Curtis distances, we used weighted UniFrac distances (Lozupone et 

al. 2007), which incorporates microbial phylogenetic relatedness into abundance-based 
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distance measurements. The effects of acclimation temperature, D. magna genotype, and 

their interaction on microbial community structure were analyzed by permutational 

multivariate analysis of variance (adonis function in vegan with 99,999 permutations) using 

both Bray-Curtis and weighted UniFrac distance matrices. Within QIIME, MetagenomeSeq 

(Paulson et al. 2013) was employed to determine which OTUs significantly differed between 

treatments across all OTUs present in our samples. 

 

 

Results 
 
Effects of genotype, environment and their interaction on microbiota 

Based on Bray-Curtis distances, the composition of microbiota differs due to the interaction of 

host clonal line and acclimation temperature, while weighted UniFrac reveals differences 

across acclimation temperature and host clonal line with no interaction effect. The two 

measures of alpha diversity (microbial phylogenetic diversity and Chao1) show differences 

across host genotype (Table 1).  

The 10 most abundant OTUs that were present in both extraction batches made up 

76.6% of the early extraction group dataset and 70.2% of the late extraction group dataset, 

and they were predominantly composed of members from the family Comamonadaceae. 

Comamonadaceae accounted for 5 of the top 10 most abundant OTUs with the other 5 OTUs 

composed of diverse bacterial orders. We tested for interaction effects of host clonal line and 

environmental effects to see if host-associated microbial communities exhibit parallel 

response to temperature treatment. Of the 10 most abundant OTUs, 5 show significant non-

parallel changes (host clonal line × environmental effect, Fig. 2) across both extraction groups 

(Table 2). After accounting for multiple comparisons 3 of the non-parallel host clonal line × 

temperature interactions remained significant, and when combined those OTUs accounted for 

a relative abundance of 46.2% of the Daphnia microbiota. The differential abundance analysis 

that we ran also showed 4 OTUs (Table 3) that were significantly different across the two 

temperature treatments. 
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Discussion 
 
We use clonal host individuals to investigate the effect of host clonal line, temperature, and 

their interaction on host-associated microbiota. We found that host clonal line × temperature 

interactions affect the community structure and the relative abundance of half of the 

dominant members of D. magna microbiota. We also found that diversity of microbial 

community is more affected by host clonal background rather than the temperature 

treatment.  

The D. magna host lines used in this study were kept as monoclonal populations for at 

least five years in the laboratory after being cloned from females collected in their native 

habitats. Lab conditions were identical for all D. magna in this study including the culture 

room, medium, food quality and quantity, feeding schedule, temperature and day/night 

rhythm. The homogenous lab environment apparently did not eradicate the differences of the 

ancestral microbiota. However, we cannot determine if the strong clonal line effects and 

interaction effects between host clonal line and the environment we see are due to a carry-

over effect of the microbiota each host brought into the lab or due to the genetic influence in 

determining which microbes establish within each host given an array of possible 

environmental bacterial that they encounter. Distinguishing between these hypotheses 

requires further experiments.  

Five of the ten most abundant OTUs are assigned to the family Comamonadaceae 

(OTUs 1, 3, 4, 8, and 12) and account for the most abundant family within D. magna 

microbiome, making up 70.0% of the microbiota. Overall three of the four most abundant 

Comamonadaceae OTUs show considerable host clonal line × temperature interactions, and 

these three OTUs accumulatively account for 46.2% of the sequenced microbiota. A number of 

previous studies have noted the prevalence and stressed the importance of Comamonadaceae 

on Daphnia, in particular bacteria in the genus, Limnohabitans (Qi et al. 2009; Freese & 

Schink 2011). Limnohabitans has been implicated in important ecosystem processes such as 

the transfer of dissolved organic carbon in lake food webs (Eckert & Pernthaler 2014). Our 

results suggest that the genotype of Daphnia impacts the relative abundance of 

Limnohabitans OTUs. In particular, the representative sequence of OTU 3, which is the 

second most abundant OTU and strongly influenced by host clonal line, matches 100% to a 

Limnohabitans OTU that was suggested to play an important role in the food web of a large 

pre-alpine lake (Lake Zurich) (Eckert & Pernthaler 2014) (Genbank Accession #: HF968601). 
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Our results suggest that such food web effects might be influenced by the composition of the 

Daphnia population and thus may have broader implications for ecosystem processes. 

Temperature has mixed effects on different systems, including no change (Lokmer & 

Wegner 2015) or an alteration in microbial diversity (Wilkins et al. 2015). The difference in 

relative abundance of OTUs between the two acclimation temperatures may be due to a 

modification in the host’s selectivity for those particular microbes at different temperatures, a 

result of the physiological limitations of the bacteria or due to a difference in competitive 

ability at the different temperatures (Nishiguchi 2000; Webster et al. 2008). 

The significant host clonal line and environmental interaction effect for half of the 

abundant OTUs, suggests that the host may be mediating the effect of temperature. There are 

also significant interaction effects across community composition of the D. magna microbiota 

as a whole when considering the PCoAs from Bray-Curtis, but not weighted UniFrac 

distances. The difference between these two metrics is most likely due to the microbes that 

differ between host clone lines. The prevalence of host clonal line × temperature effects may 

indicate that the genetic variation that exists in D. magna may enable diverse responses of 

their microbiota to a change in temperature. Although we cannot surmise if these patterns in 

microbiota would provide a selective advantage from the experiment at hand, the presence of 

marked host clonal line × temperature effects shows that responses of microbiota to 

environmental change are specific to the clonal line. 

 

Conclusion 

Overall, the consistent effect of host clonal line × temperature on the relative abundance of 

many of the most dominant OTUs suggests that D. magna clonal background has a non trivial 

influence on regulating its microbiota. Environmental main effects are weaker than host 

clonal background effects, but they are often specific to particular host clone lines and 

bacterial species, resulting in significant interaction effects. Based on this study, the 

specialization of microbes to habitats and host species (Mariadassou et al. 2015) appears to 

extend to host clonal lines. The effect of host clonal line is further underlined by the strong 

clonal differences found after animals were kept for at least 30 generations under identical, 

open-culture, laboratory conditions and exposure to the same microbiota in medium, food, 

and air. This is even more surprising as D. magna does not transmit microbes with their eggs, 

although the rearing of the eggs in an open maternal brood pouch allows for transmission 

from maternal microbes to the offspring (Ebert 2013; Sison-Mangus et al. 2015). Thus, all 
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microbes have to colonize the developing host de novo every generation. The presence of 

microbes from the common laboratory environment seems not to have had a lasting impact 

on this, but it is still feasible that each population seeds its tank with specific microbiota. A 

number of microbial community constituents seem largely resilient to temperature-induced 

changes in microbiota, and those that shift due to temperature-induced changes, do so in a 

way that is mediated by the host clonal line. How each host clonal line responds to 

environmental change, however, is difficult to predict until the ultimate genetic cues dictating 

microbial differences across host clonal lines are deciphered. 
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Figures 

Fig. 1: Analyses of microbiota from 16 host clones at 20 and 28 °C, showing (A) 8 clones that 

were in the early extraction group (stress = 0.21) and (B) 8 clones that were in the late 

extraction group (stress = 0.20). Data are shown with non-metric multidimensional scaling, 

where distance between points represents ecological distance between communities (based on 

Bray-Curtis distances). 
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Fig. 2: Microbiota community changes across 16 host clonelines and two temperatures, 

including (A) change in diversity (B) changes in OTU 1 (family Comamonadaceae) and (C) 

changes in OTU 3 (family Comamonadaceae). Both OTU 1 and OTU 3 as well as OTU 4, 8, and 

12 (not pictured) all have significant shows significant interaction effects based on different 

reaction norms across temperatures for different host clone lines, which are listed along the x-

axis. The 8 clones shown in the left panels were in the early extraction group while the 8 

clones in the rights panels were in the late extraction group. 
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Supplementary Figure 1: separation of Daphnia magna microbiota A) according to clone 

identity and B) according to date of extraction. Data are shown with non-metric 

multidimensional scaling, where distance between points represents ecological distance 

between communities (based on Bray-Curtis distances). Clone identity, temperature and 

extraction date all were significant within an Adonis analysis (p < 0.001). Due to confounding 

of extraction date and clone, the early extraction group (extracted between 6 March 2013 – 12 

April 2013) and the late extraction group (extracted between 9 December 2013 – 31 January 

2014) were separated during further analysis. Within the late and early extractions, extraction 

date no longer had a significant effect within Adonis analyses.  
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a) Adonis (Bray-Curtis)

Host clone line F(7,31) = 2.695  p < 0.001 F(7,26) = 2.832  p < 0.001

Acclimation temperature F(1,31) = 6.438  p < 0.001 F(1,26) = 5.806  p < 0.001

Host clone line x acclimation temperature F(7,31) = 2.840  p < 0.001 F(7,26) = 3.125  p < 0.001

b) Weighted UniFrac

Host clone line F(7,31) = 2.233  p = 0.001 F(7,26) = 2.055  p < 0.012

Acclimation temperature F(1,31) = 3.696  p = 0.006 F(1,26) = 4.634  p < 0.005

Host clone line x acclimation temperature F(7,31) = 1.491  p = 0.062 F(7,26) = 1.259  p = 0.210

c) Phylogenetic Diversity 

Host clone line F(7,31) = 2.405  p = 0.043 F(7,26) =  3.538  p = 0.008

Acclimation temperature F(1,31) = 0.528  p = 0.473 F(1,26) = 3.659  p = 0.067

Host clone line x acclimation temperature F(7,31) = 1.804  p = 0.122 F(7,26) = 1.388  p = 0.252

d) Microbial Diversity (Chao1)  

Host clone line F(7,31) = 2.233  p = 0.019 F(7,26) = 4.020  p = 0.004

Acclimation temperature F(1,31) = 3.696  p = 0.054 F(1,26) = 1.897  p = 0.180

Host clone line x acclimation temperature F(7,31) = 1.491  p = 0.137 F(7,26) = 1.251  p = 0.312

Late Extraction GroupEarly Extraction Group

Table 1: Effects of host genotype, acclimation temperature, and their interaction on microbial community composition of 

Daphnia magna. Differences in Bray-Curtis distances and weighted UniFrac distances were tested with Adonis (99999 

permutations). The differences in bacterial diversity, including Phylogenetic Diversity and Chao1 indices, are calculated 

using an ANOVA (type III Sum of Squares). Significant p-values are in bold.

 

 

  



 151 

OTU 8 (Family Comamonadaceae, 19.4%): 

Host clone line F(7,31) = 1.978  p = 0.091 F(7,26) = 3.989  p = 0.004 *

Acclimation temperature F(1,31) = 6.439  p = 0.016 F(1,26) = 0.782  p = 0.385

Host clone line x acclimation temperature F(7,31) = 4.065  p = 0.003 * F(7,26) = 5.537  p < 0.001 *

OTU 3 (Family Comamonadaceae, Genus Limnohabitans, 19.2%):

Host clone line F(7,31) = 6.033  p < 0.001 * F(7,26) = 6.309  p < 0.001 *

Acclimation temperature F(1,31) = 0.514  p = 0.479 F(1,26) = 0.191  p = 0.666

Host clone line x acclimation temperature F(7,31) = 3.065  p =0.0143 * F(7,26) = 6.255  p < 0.001 *

OTU 4 (Family Comamonadaceae, 14.7%):

Host clone line F(7,31) = 1.985  p = 0.089 F(7,26) =  0.831  p = 0.571

Acclimation temperature F(1,31) = 1.640  p = 0.210 F(1,26) = 0.042  p = 0.839

Host clone line x acclimation temperature F(7,31) = 2.192  p = 0.063 F(7,26) = 1.207  p = 0.334

OTU 1 (Family Comamonadaceae, 7.6%)

Host clone line F(7,31) = 16.711  p < 0.001 * F(7,26) = 17.121  p < 0.001 *

Acclimation temperature F(1,31) = 2.256 p = 0.143 F(1,26) = 0.372  p = 0.547

Host clone line x acclimation temperature F(7,31) = 8.568  p < 0.001 * F(7,26) = 12.414  p < 0.001 *

OTU 11 (Order [Saprospirales], 2.5%):

Host clone line F(7,31) = 6.034  p < 0.001 * F(7,26) = 0.674  p = 0.692

Acclimation temperature F(1,31) = 0.012  p = 0.915 F(1,26) = 10.479  p = 0.003 *

Host clone line x acclimation temperature F(7,31) = 3.674  p = 0.005 * F(7,26) = 1.662  p = 0.163

OTU 6 (Family Halomonadaceae, 2.4%):

Host clone line F(7,31) = 1.243  p = 0.310 F(7,26) = 1.698  p = 0.105 *

Acclimation temperature F(1,31) = 0.017  p = 0.898 F(1,26) = 3.419  p = 0.076

Host clone line x acclimation temperature F(7,31) = 1.760  p = 0.132 F(7,26) = 2.863  p = 0.024 *

OTU 26 (Order Rhizobiales, 2.4%):

Host clone line F(7,31) = 6.735  p < 0.001 * F(7,26) = 3.989  p = 0.452

Acclimation temperature F(1,31) = 4.780  p = 0.036 F(1,26) = 0.782  p < 0.001 *

Host clone line x acclimation temperature F(7,31) = 4.896  p < 0.001 * F(7,26) = 5.537  p = 0.045

OTU 7 (Genus Rhodobacter, 1.8%):

Host clone line F(7,31) = 2.008  p = 0.086 F(7,26) = 1.933  p = 0.153

Acclimation temperature F(1,31) = 0.467  p = 0.499 F(1,26) = 0.506  p = 0.483

Host clone line x acclimation temperature F(7,31) = 1.778  p = 0.127 F(7,26) = 2.497  p = 0.042

OTU 12 (Family Comamonadaceae, Genus Hydrogenophaga, 1.8%):

Host clone line F(7,31) = 2.646  p = 0.029 F(7,26) = 3.989  p = 0.210

Acclimation temperature F(1,31) = 4.281  p = 0.046 F(1,26) = 0.782  p = 0.738 *

Host clone line x acclimation temperature F(7,31) = 2.763  p = 0.024 F(7,26) = 5.537  p = 0.026

OTU 36 (Genus Flavobacterium, 1.6%):

Host clone line F(7,31) = 0.437  p = 0.871 F(7,26) = 3.504  p = 0.009

Acclimation temperature F(1,31) = 0.036  p = 0.851 F(1,26) = 2.643  p = 0.116

Host clone line x acclimation temperature F(7,31) = 0.411  p = 0.888 F(7,26) = 1.188  p = 0.344

Table 2: Effects of host clonal line, acclimation temperature, and their interaction on the most abundant OTUs of Daphnia magna. The 

realtive abundace of the OTU across combined extraction groups is shown next to the lowest taxonomic classification. Differences in 

OTU realtive abundance are calculated using an ANOVA (type III Sum of Squares) for each extraction group. Significant p-values are in 

bold and values with asterisks remain significant after adjustment for multiple comparisons using the Benjamini & Hochberg procedure. 

Levene's Test was used to test homogenity of variance, which only OTU 36 of the late extraction group failed.

Early Extraction Group Late Extraction Group

 

 

 

  



 152 

OTU ID

adjusted p-

value (EG)

adjusted p-

value (LG) Direction Taxonomy

OTU 45 0.0029 p > 0.0001 decrease at high temperature

k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; 

o__Methylophilales; f__Methylophilaceae

OTU 23 0.0039 p > 0.0001 decrease at high temperature

k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 

o__Xanthomonadales; f__Sinobacteraceae; g__Nevskia; 

OTU 1 0.0001 0.0019 decrease at high temperature

k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; 

o__Burkholderiales; f__Comamonadaceae

OTU 353 0.0024 0.0205 increase at high temperature

k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; 

o__Rhizobiales

Table 3: OTUs identified by a differential abundance analysis who's relative abundance changes between two temperature regimes in 

both extraction groups  (P > 0.05 after accounting for multiple comparisons)

 

 

 


