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Summary 

Background: The recent emergence, re-emergence and spread of arboviral diseases (e.g. 

yellow fever, dengue, chikungunya and Zika) that are transmitted by Aedes mosquitoes have 

raised concerns worldwide, and especially in tropical and subtropical regions of the world. In 

the past several years, Côte d’Ivoire has experienced sporadic, single and dual outbreaks of 

yellow fever and dengue in the southeastern part of the country, partially explained by high 

rates of urbanization and intensified agriculture. However, the impacts of these anthropogenic 

changes (urbanization and transformation of rainforests to vast agricultural areas) on the 

ecology of Aedes arbovirus vectors remain unexplored. Understanding of the impacts of these 

anthropogenic factors on the ecology of Aedes mosquitoes is crucial for predicting and 

preventing arboviral outbreaks, and developing, optimizing and evaluating existing and novel 

vector control measures and tools aimed at reducing disease incidence. 

Objectives: This PhD thesis aimed to assess the anthropogenic impacts, including effects of 

urbanization and agricultural land use changes, on Aedes mosquito community dynamics in 

yellow fever and dengue foci in southeastern Côte d’Ivoire. The thesis specifically sought to: 

(i) explore the oviposition ecology of Aedes mosquitoes and Aedes aegypti dynamics in 

variously urbanized settings; (ii) assess the larval ecology of Aedes alongside a rural-to-urban 

gradient; and (iii) evaluate the ecology of Aedes mosquitoes along an anthropogenic 

disturbance gradient in oil palm-dominated landscapes. 

Research partnerships: This PhD thesis was carried out within the frame of an existing and 

productive partnership between the Swiss Tropical and Public Health Institute (Swiss TPH) 

and the University of Basel, Basel, Switzerland, the Centre Suisse de Recherches 

Scientifiques en Côte d’Ivoire (CSRS) and the Université Félix Houphouët-Boigny (UFHB), 

Abidjan, Côte d’Ivoire and the Liverpool School of Tropical Medicine (LSTM), Liverpool, 

United Kingdom. The work was funded by Swiss TPH, CSRS and a Scholarship for Foreign 

Students program (FCS), Bern, Switzerland. 

Methods: Aedes mosquito eggs, larvae, pupae and adults were collected along a gradient of 

urbanization (rural, suburban and urban) and different agricultural land uses, including an oil 

palm-dominated landscape (rainforest, polyculture, oil palm monoculture and rural housing 

area). Ovitraps were employed, alongside larval surveys and human-baited double-net trap 

methods from January 2013 to December 2014. Aedes immatures were reared in the 

laboratory until adult stage emerged for subsequent species identification. Socio-ecological 

data were conjointly sampled. 
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Results: Aedes mosquito ecology significantly varied from rural-to-urban areas and among 

human-disturbed ecosystems in oil palm-dominated landscapes. A total of 51,439 specimens 

of Aedes mosquitoes belonging to 20 species (Ae. aegypti, Ae. africanus, Ae. albopictus, 

Ae. angustus, Ae. apicoargenteus, Ae. argenteopunctatus, Ae. dendrophilus, Ae. fraseri, 

Ae. furcifer, Ae. haworthi, Ae. lilii, Ae. longipalpis, Ae. luteocephalus, Ae. metallicus, 

Ae. opok, Ae. palpalis, Ae. stokesi, Ae. unilineatus, Ae. usambara and Ae. vittatus) in rural, 

suburban and urban areas. The highest Aedes species richness (18 species) was observed in 

rural areas. A considerably lower Aedes species richness was noted in suburban (seven 

species) and urban areas (three species). Conversely, the highest Aedes abundance was found 

in urban (n = 26,072 specimens), followed by suburban (n = 16,787 specimens) and rural (n = 

8,580 specimens). Ae. aegypti was the predominant species in all three types of study areas, 

with the highest abundance in urban areas (n = 26,072; 99.4%). 

Aedes mosquito breeding site positivity rate was higher in urban (2,136/3,374; 63.3%), 

followed by suburban (1,428/3,069; 46.5%) and rural (738/2,423; 30.5%) areas. Rural areas 

exhibited a larger array of Aedes breeding sites ranging from natural containers (tree holes, 

coconuts, etc.) to traditional containers (clay pots, calabashes, etc.), and industrial containers 

(cans, tires, etc.) that hosted several wild species. In contrast, the highest proportions of 

artificial breeding sites (cans, tires, vehicle bodies, building tools and water storage 

containers) were found in urban areas where human activities (water storage practices, tire 

selling and environment management) were favourable to the creation of the breeding sites 

and proliferation of Aedes mosquitoes, mainly Ae. aegypti. The predatory larvae of 

Eretmapodites, Toxorhynchites and Culex tigripes were frequently found associated with the 

larvae of Aedes mosquitoes in rural areas. In all areas, the diversity and proportion of Aedes 

breeding sites, specimens and species were higher in the peridomestic zones and during the 

rainy seasons. 

Aedes mosquito diversity and distribution were strongly associated with agricultural 

land-use changes. For example, no Aedes were found in oil palm monocultures. Conversely, 

the highest Aedes species richness (11 species) was observed in the rainforests, while the 

highest Aedes abundance (n = 28,276; 60.9%) was found in the polycultures. Aedes females 

displayed higher anthropophagy tendency in the polycultures (21.5 females/person/day) and 

the rural housing areas (4.5 females/person/day), and poor anthropophagy (0.6 

females/person/day) in the rainforest. Aedes females’ host-seeking activities showed bimodal 

feeding cycles, with interruption from 11:00 to 14:00 hours in the rural housing areas, and a 

continuous pattern in the polycultures. 
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Conclusions: The findings revealed that anthropogenic changes influence significantly the 

ecology of Aedes mosquitoes by shaping the breeding sites, and altering the species diversity 

and abundance towards a predominance of Ae. aegypti in urban areas, lack of species in oil 

palm monocultures, high prevalence of species in polycultures and restriction of wild species 

in rural areas and rainforests that may serve as bridge vectors. Such Aedes species 

segregation thus suggests a coexistence of several arbovirus transmission cycles: enzootic, 

epizootic and epidemic. Moreover, the identification of new Aedes species in rural and 

forested areas supports the existence of still unidentified enzootic sylvatic transmission cycles 

of arboviruses. The high abundance of natural breeding sites (e.g. tree holes) of Aedes 

mosquitoes in the rainforests and rural areas can strongly limit the effectiveness of the 

removals of discarded containers, and calls for integrated vector management strategies. The 

evidence generated by this PhD work provides an important contribution to the 

comprehension of the emergence of arboviral diseases (yellow fever and dengue), Aedes 

vector surveillance and control in the contexts of urbanization and transformation of 

rainforests into large industrial oil palm monocultures. 
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Résumé 

Impacts anthropogéniques sur la dynamique des populations de moustiques du genre 

Aedes en Côte d’Ivoire 

Introduction: Les récentes émergence, réémergence et propagation des maladies arbovirales 

(fièvre jaune, dengue, chikungunya, Zika, etc.) transmises par les moustiques du genre Aedes 

constituent un problème majeur de santé publique à travers le monde, principalement dans les 

régions tropicales et subtropicales incluant les pays africains à revenues faibles et 

intermédiaires. Ces dernières années, la Côte d’Ivoire a été confrontée à de récurrentes 

épidémies sporadiques, isolées ou doubles de fièvre jaune et de dengue, notamment dans la 

région sud-est soumise à une urbanisation galopante et vouée à une agriculture intensive. 

Cependant, les impacts de ces modifications anthropogéniques (urbanisation et la conversion 

des forêts tropicales en de vastes périmètres agricoles) sur l’écologie des Aedes, vecteurs 

d’arboviroses, demeurent encore inexplorés. La compréhension des effets de ces facteurs 

anthropogéniques sur l’écologie des Aedes est cruciale pour la prédiction et la prévention des 

épidémies, et le développement, l’optimisation et l’évaluation des mesures et outils existants 

et nouveaux de lutte antivectorielle afin de réduire l’incidence des arboviroses. 

Objectifs: Cette thèse de doctorat visait à évaluer les impacts des transformations 

anthropogéniques telles que l’urbanisation et les practices agricoles sur la dynamique des 

populations d’Aedes  dans les foyers épidémiques de fièvre jaune et de dengue au sud-est de 

Côte d’Ivoire. Les travaux visaient plus spécifiquement à : (i) explorer l’écologie de 

l’oviposition des Aedes et la dynamique d’Aedes aegypti le long d’un gradient d’urbanisation, 

(ii) évaluer l’écologie larvaire des Aedes suivant le même gradient d’urbanisation, et (iii) 

évaluer l’écologie des Aedes suivant un gradient de perturbations anthropogéniques des 

écosystèmes en zones de palmeraie.  

Partenariats de recherche: Cette thèse de doctorat a été réalisée en partenariat avec 

l’Institut Suisse de Santé Publique et Tropicale (Swiss TPH), Bâle, Suisse ; le Centre Suisse 

de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire ; l’Université 

de Bâle, Bâle, Suisse ; l’Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire ; et 

L’Ecole de Médecine Tropicale de Liverpool (LSTM), Liverpool, Royaume-Uni. Les travaux 

ont été conjointement financés par le Swiss TPH, le CSRS et la Commission Fédérale de 

Bourses pour les Etudiants Etrangers (FCS), Berne, Suisse. 
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Méthodes: Les œufs, larves, nymphes et adultes des Aedes ont été collectés selon des 

gradients d’urbanisation (milieux ruraux, suburbains et urbains) et de perturbations des 

écosystèmes en zones de palmeraie industrielle (forêt, polyculture, monoculture de palmeraie, 

et village) à l’aide de pondoirs-pièges, prospections larvaires et doubles moustiquaires-pièges 

à appâts humains de Janvier 2013 à Décembre 2014. Les formes immatures des moustiques 

collectées ont élevées jusqu’au stade adulte au laboratoire pour l’identification des espèces. 

Les données socio-écologiques ont été également récoltées.  

Résultats: L’écologie des Aedes a significativement varié des milieux ruraux aux milieux 

urbains, et entre les écosystèmes anthropogéniques en zones de palmeraie. Au total, 51 439 

spécimens d’Aedes appartenant à 20 espèces (Ae. aegypti, Aedes africanus, Ae. albopictus, 

Ae. angustus, Ae. apicoargenteus, Ae. argenteopunctatus, Ae. dendrophilus, Ae. fraseri, Ae. 

furcifer, Ae. haworthi, Ae. lilii, Ae. longipalpis, Ae. luteocephalus, Ae. metallicus, Ae. opok, 

Ae. palpalis, Ae. stokesi, Ae. unilineatus, Ae. usambara et Ae. vittatus) ont été collectés en 

milieux ruraux, suburbains et urbains. La plus forte richesse spécifique des Aedes observée en 

milieux ruraux (18 espèces). La richesse spécifique d’Aedes a substantiellement diminué en 

milieux suburbains (sept espèces) et a été plus faible en milieux urbains (trois espèces). En 

revanche, la plus forte abondance d’Aedes a été observé en milieux urbains (n =  26 072 

spécimens), suivis par les milieux suburbains (n = 16 787 spécimens) et ruraux (n = 8580 

spécimens).  Ae. aegypti a été l’espèce prédominante dans les trois types de sites d’étude, 

avec une plus forte abondance en milieux urbains (n = 26 072 ; 99,4%).  

Le plus fort taux de positivité des gîtes larvaires d’Aedes a été détecté en milieux urbains 

(2136/3374; 63,3%), suivis par les milieux suburbains (1428/3069; 46,5%) et ruraux 

(738/2423; 30,5%). Les milieux ruraux ont présenté la plus grande diversité des gîtes 

larvaires d’Aedes allant des gîtes naturels (creux d’arbres, noix de cocos, etc.) aux gîtes 

traditionnels (canaris, calebasses, etc.) et industriels (boites de conserves, pneus, etc.) qui 

hébergeaient diverses espèces sauvages. En revanche, les plus fortes proportions de gîtes 

artificiels (boites de conserves, pneus, carcasses de voitures, matériaux de construction, et 

récipients de stockage d’eau) ont été rencontrées en milieux urbains où les activités humaines 

telles que le stockage d’eau, la vente de pneus, et la gestion de l’environnement étaient 

favorables à la création des gîtes larvaires et à la prolifération des Aedes, particulièrement 

d’Ae. aegypti. Les larves prédatrices of Eretmapodites, Toxorhynchites et Culex tigripes ont 

été fréquemment associées aux larves d’Aedes en milieux ruraux. Dans tous les sites d’étude, 

la diversité and proportions des gîtes larvaires, spécimens et espèces des Aedes ont été plus  
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elevées dans les zones peri-domestiques et durant les saisons pluvieuses.  

Les espèces et leurs gîtes larvaires d’Aedes étaient quasiment absents dans la monoculture de 

palmeraie. A l’inverse, la plus forte richesse spécifique d’Aedes a été observée dans la forêt 

(11 espèces), tandis que la plus forte abondance d’Aedes a été détectée dans la polyculture (n 

= 28 276 ; 60,9%). Les femelles d’Aedes ont présenté une forte tendance à l’anthropophagie 

dans la polyculture (21,48 femelles/homme/jour) et les villages (4,48 femelles/homme/jour), 

et une faible anthropophagie dans la forêt (0,62 femelles/homme/jour). Les cycles 

d’agressivité horaire ont présenté une allure bimodale, avec une interruption entre 11 heures 

du matin et 2 heures du soir dans les villages, et une continuité dans la polyculture. 

Conclusions: Ces résultats révèlent que les modifications anthropogéniques impactent 

significativement l’écologie des Aedes en modulant leurs gîtes larvaires, et en altérant la 

diversité et l’abondance des espèces conduisant ainsi à une forte prédominance d’Ae. aegypti 

en milieux urbains, et un confinement des espèces sauvages aux milieux ruraux et forêts qui 

pourrait servir de vecteurs « ponts ». Une telle ségrégation des espèces d’Aedes suggère une 

coexistence de plusieurs cycles arboviraux: enzootiques, épizootiques et épidémiques. De 

plus, l’identification de nouvelles espèces d’Aedes en zones rurales et forestières augure une 

probable existence des cycles enzootiques ou sylvatiques d’arbovirus non encore identifiés. 

L’abondance des gîtes larvaires naturels (creux d’arbres) d’Aedes dans les forêts et milieux 

ruraux peut fortement limiter l’efficacité de l’élimination des gîtes larvaires artificiels et 

requiert une stratégie de lutte antivectorielle intégrée. Les nouvelles évidences générées par 

cette étude apportent une contribution significative à la compréhension des épidémies 

d’arboviroses (fièvre jaune et dengue), et à la surveillance des Aedes vecteurs et à la lutte 

antivectorielle dans des contextes d’urbanisation et de transformation des forêts en de vastes 

zones agricoles vouées à la monoculture industrielle de palmeraie en Côte d’Ivoire. 
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1. Thesis outline and research questions 

This PhD thesis aims to generate new evidence on the effects of anthropogenic land use 

changes, particularly urbanization and changing patterns of agriculture as drivers of Aedes 

mosquito community dynamics in yellow fever and dengue foci in Côte d’Ivoire. It is divided 

into three main research questions: 

1. How does urbanization affect the oviposition ecology and the species composition of 

Aedes mosquitoes, and how does it influence Ae. aegypti dynamics? 

2. How does urbanization influence the breeding sites, the larval ecology and the species 

dynamics of Aedes mosquitoes? 

3. How do agricultural land use changes influence the ecology of Aedes mosquitoes in 

industrial oil palm-dominated landscapes? 

The thesis commences with an introduction (chapter 2), including a literature review to 

provide an overview of Aedes mosquitoes and the diseases transmitted by these mosquitoes, 

and the effects of anthropogenic land use changes such as urbanization and changing 

partterns of agriculture on the ecology of Aedes mosquitoes. 

The third chapter outlines the background of the thesis, highlighting the identified 

research needs and the specific objectives. Chapter 4 focuses on the methodology used, 

including the description of the study area, and the materials used and the methods applied. 

From the fifth to seventh chapter, three manuscripts which are published (one paper), 

revised and re-submitted (one paper), and prepared for submission for the peer-reviewed 

literature, highlights the finding on the oviposition ecology and the species composition of 

Aedes mosquitoes in variously urbanized settings (chapter 5); larval ecology of Aedes 

mosquitoes alongside a rural-to-urban gradient (chapter 6); the abundance, distribution, host-

seeking behaviours of Aedes mosquitoes along anthropogenic disturbance gradient in oil 

palm-dominated landscapes (chapter 7). 

Chapter 8 presents the overview of the main findings and shows how the results fit into 

the Swiss Tropical and Public Health Institute (Swiss TPH) nexus of innovation, validation 

and application. Moreover, this chapter will discuss the main results in accordance with the 

specific objectives outlined in chapter 3.  

Chapter 9 is the concluding chapter, in which the implications of the findings of this 

PhD study are discussed. This last chapter also provides specific recommendations to the 
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national and broader international communities. Finally, the topics for future study relative to 

the open research needs that will extend our knowledge are outlined. 
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2. Introduction 

2.1. Aedes mosquitoes and arboviruses 

2.1.1. Global situation and in Africa 

Several Aedes mosquito species are involved in the transmission of multiple arthropod-borne 

viruses (arboviruses), including dengue (DENV1-4) and yellow fever, responsible for major 

health burdens worldwide [1, 2]. More than 100 arboviruses are known to cause disease in 

humans [3]. The disability-adjusted life years (DALYs)  attributable to yellow fever, Japa-

nese encephalitis, chikungunya, and Rift Valley fever are estimated to range between 300,000 

and 5,000,000 [3]. Dengue causes 390 million of cases and 20,000 deaths per year [4]. The 

economic burden of dengue in 2013 was estimated at US$ 8.9 billion [5]. Despite an effective 

vaccine, yellow fever causes 200,000 cases and 30,000 deaths annually [6]. In recent years, 

there has been a dramatic resurgence of dengue fever worldwide [4, 7-9] and re-emergence of 

yellow fever in some parts of Africa [10]. Yellow fever outbreaks occurred in Angola from 

December 2015 to October 2016, causing 4,300 suspected cases and 376 deaths, while in 

Brazil there were 555 suspected cases and 107 deaths in January 2017 [11]. In addition, other 

arboviruses vectored by Aedes mosquitoes, such as dengue [12], chikungunya [13], Rift 

valley [14] and Zika virus [15] are emerging or re-emerging in Africa, particularly in West 

Africa [16-19]. More than 90% of the yellow fever cases occurred in sub-Saharan Africa (33 

countries), and most of the outbreaks were reported from in West Africa [20]. The yellow 

fever burden in Africa was estimated for the year 2013 as 130,000 cases with fever and 

jaundice or hemorrhage, including 78,000 deaths [20]. Between 2011 and 2015, US$ 330 

million was used to purchase yellow fever vaccines in endemic countries, including parts of 

Africa [21]. Studies indicate that mortality and morbidity attributable to yellow fever are 

underestimated by a factor of 10-500 [22]. Only 78 million of 656 million cases of fevers 

occurring among the African children are infected with Plasmodium falciparum, and the 

etiologies of other enormous numbers of accurate non-malaria febrile illnesses are poorly 

defined [23].  

 

2.1.2. Situation in Côte d’Ivoire 

In Côte d’Ivoire, yellow fever and dengue occur on epidemic patterns with variable intervals, 

ranging from a few months to decades between the sporadic outbreaks making predictions 

difficult. Single and dual epidemics of dengue and yellow fever involving several wild Aedes 

species and the major urban vector, Ae. aegypti, have been reported in both rural and urban 
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areas [24]. Sylvatic dengue virus circulation, without human infections, was documented by 

isolation of DENV-2 serotype from wild Aedes vectors, including Ae. africanus, Ae. furcifer, 

Ae. luteocephalus, Ae. opok and Ae. vittatus in rural areas in the 1980s [25]. Since then, 

several sporadic outbreaks of dengue DENV-1, DENV-2 and DENV-3 serotypes and yellow 

fever sometimes resulting in fatal outcomes have occurred [26-28]. The outbreaks were 

mostly concentrated within and in surrounding villages and periurban areas of Abidjan, the 

economic capital and the most densely populated city of Côte d’Ivoire [26, 27], where the 

number and abundance of Aedes species are high [28]. The main vector, Ae. aegypti, is 

resistant to common insecticides [29, 30].  

Yellow fever is historically well known as a key factor having forced the transfer of the 

colonial capital of Côte d’Ivoire from Grand-Bassam to Abidjan in 1899 [31, 32]. Between 

1899 and 1903, Grand-Bassam had faced recurrent and severe epidemics of yellow fever that 

had killed at least half of the European populations, totaling around 100 people, and many 

native people [31, 32]. Despite this historical background, the resurgence of yellow fever and 

dengue outbreaks is not presently resolved and their sporadic occurrence creates major public 

health concerns [32]. Between 2001 and 2007, 1,468 suspected, 41 confirmed and 26 fatal 

cases of yellow fever were reported. In 2001, the operational cost of the vaccination 

campaign to combat yellow fever in Abidjan was estimated at FCFA 1.4 billion (approxi-

matively US$ 2.5 million) [33]. During the period of 2007–2001, 111 suspected with 31 

confirmed and 43 deadly cases of yellow fever were notified. The incidence of yellow fever 

gradually increased and peaked in 2011 with 79 cases and 35 deaths. In 2008, 9 cases of 

yellow fever and 2 cases of dengue DENV-3 were recorded. In 2010, 13 confirmed and 2 

fatal cases of yellow fever, and 1 deadly case of DENV-1 were reported. Incomplete 

vaccination coverage (estimated at 67%), non-immunized people movements and changes in 

land-use patterns constitute a risk factor [22]. In recent years, the circulation of dengue 

viruses (DENV-3) among the population through febrile illnesses monitoring was reported in 

Abidjan in 2008, 2010 and 2011-2012 [34, 35]. A recent outbreak of dengue fever occurred 

in urban areas within Abidjan in May 2017. 

 

2.2. Transmission cycles of arboviruses 

The transmission of arboviruses is supported by three transmission cycles: enzootic, epizootic 

and epidemic cycles Arboviruses originated from enzootic (sylvatic/jungle) cycles, associated 

with wild Aedes vectors in rural areas (Figure 2.1) [36-38]. Enzootic cycles are linked to 
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urban transmission cycles by a major domestic vector, Ae. aegypti [36-38]. Both yellow fever 

and dengue viruses are medically important flaviviruses transmitted in an urban cycle 

between humans by Ae. aegypti. Yellow fever occurs in enzootic cycles in Africa and the 

Americas, and dengue occurs in enzootic cycles in Africa and Asia with often epizootic 

outbreaks in rural settings. The enzootic cycles are maintained in the sylvan reservoir hosts 

(non-human primates and birds), although several other mosquito genera or species such as 

Anopheles spp. (An. coustani and An. gambiae), Culex spp. (Cx. perfuscus, Cx. pipiens fatigans 

and Cx. thalassius), Eretmopidites spp. (Er. chrysogaster, Er. inornatus and Er. quinquevittatus), 

Coquellitidia spp. (Cq. fuscopennata), Mansonia spp. (Ma. africana and Ma. uniformis) have 

shown their ability to transmit, or have natural infection and/or laboratory competence for 

arboviruses through the sylvatic cycles in Africa, the majority of the infections is transmitted by 

Aedes species belonging to Stegomyia subgenus followed by Diceromyia and Aedimorphus 

subgenera [10, 36, 37]. Though all Aedes species are potential vectors of arboviruses, the vectors 

reported are Ae. africanus, Ae. albopictus, Ae. aegypti, Ae. furcifer, Ae. luteocephalus, Ae. opok,  

Ae. vittatus, Ae. bromeliae, Ae. keniensis, Ae. neoafricanus, Ae. simpsoni, Ae. metallicus, Ae. lilii, 

Ae. pseudoafricanus, Ae. taylori, Ae. stokesi, Ae. tarsalis, and Ae. dentatus [10, 36, 37].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Transmission cycles of yellow fever virus in Africa and South America. 

The transmission of yellow fever virus is supported by three transmission cycles in Africa (A, B and C) and two transmission 

cycles in South America (A and C) [24]. In the jungle/sylvatic cycle (A), Ae. africanus is responsible for the transmission 

among non-human primates in Africa, while H. janthinomys and S. chloropterus feed on infected non-human primates. In 

the intermediate cycle (B), human activities result in the biting of intermediate cycle Aedes spp. vectors. In the urban 

transmission cycle (C), Ae. aegypti transmits yellow fever virus by feeding on viremic humans. 

A C 

B 



Chapter 2 - Introduction 
 

 

6 
 

However, in the Americas, le jungle cycle is supported by Haemagogus janthinomys and 

Sabethes chloropterus mosquitoes, while Ae. aegypti is responsible for the urban cycle [10, 36, 

37]. Ae. aegypti is well-known to be globally the primary vector of arboviruses [36, 37]. Aedes 

mosquitoes are able to ensure dual horizontal (oral) and vertical (transovarial) transmission 

patterns for arboviruses [36] and ensure their co-circulation during outbreaks [37]. 

 

2.3. Aedes mosquitoes and anthropogenic changes 

Aedes mosquito ecology has been affected by far-reaching impacts of anthropogenic changes 

including human-mediated land use changes such as urbanization and changing patterns of 

agriculture and insecticide uses [39, 40]. Anthropogenic changes can modify at least one of 

the four components of the arbovirus transmission tetrahedron: host-agent-vector-

environment (Figure 2.2). The four components of the transmission tetrahedron are 

interrelated and changes in individual or combination of elements by anthropogenic activities 

such as urbanization, changing patterns of agriculture and insecticide uses may enable or 

disable the arboviral disease transmission [2, 40-42]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Host-agent-vector-environment tetrahedron showing the multidimensional 

nature of arbovirus transmission [39].  

Host-agent-vector-environment tetrahedron has four elements interacting simultaneously. The green base of the 

tetrahedron represents a suitable environment. The red right side of the tetrahedron illustrates the necessity for 

an appropriate mosquito vector population to be present and support within the environment. The yellow left 

side of the tetrahedron displays the agent, arbovirus, which acts as the disease causing pathogens in disease 

transmission. The blue back side of the tetrahedron representing the host population allows for the completion of 

arbovirus transmission cycles, assuming temporal and spatial interaction with the other three elements 

aforementioned. 
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2.3.1. Urbanization 

Urbanization, driven by human population growth and movement, will continue across the 

globe [40]. Urbanization alters Aedes mosquito habitats, hosts and predators, and can increase 

the permeability of the landscape for urban and anthropophilic mosquitoes and decrease 

movement for species that are particularly dependent on natural habitats and hosts [40, 41]. 

Urbanization can be defined as the conversion of forest-to-human habitats, including peri-

domestic and domestic landscapes, rural, suburban and urban settings [41], all of which shape 

and might increase the number of breeding sites, accelerate the development and survivorship 

and enhance the population size of Aedes mosquito [42]. Aedes mosquito-transmitted yellow 

fever, dengue and many other arboviruses have emerged from their sylvatic reservoirs and 

dispersed globally due to the evolving factors that include anthropological behaviours, trade, 

transportation land-remediation, and changes in habitat and host availability [43]. The 

patterns of arboviral disease transmission and its geographic expansion are likely a result of 

intensive urbanization [2, 9, 37, 44]. The management of human waste and water storage 

practices in highly populated urban areas is a challenging issue that often leads to an 

increased availability of discarded containers, water storage receptacles and hosts for the 

proliferation of Aedes mosquitoes [45, 46]. 

 

2.3.2. Agricultural land-use changes 

Agricultural land-use changes result in the deforestation, forest-degradation and forest-

fragmentation that lead to arbovirus emergence or re-emergence [36, 43, 47]. The tropical 

rainforests are rich in biodiversity of Aedes mosquitoes due to their potentials to provide 

several trees with holes that breed larvae and diverse plant species that foliage can supply for 

microbial food sources for the larvae [41, 48]. Native forested-landscapes provide the hosts 

with multiple wild animal species that serve as blood-food sources for adult Aedes mosquito 

females that thus ensure the maintenance of arbovirus circulation among non-human primates 

(sylvatic cycle) [36, 47]. The rainforest also supply for wide range of opportunities of resting 

and mating places, shade and nectar sources for Aedes mosquitoes [48, 49]. Alterations of the 

natural land-covers for agricultural purposes, for example oil palm cultivation, result in the 

losses of Aedes mosquito habitats, hosts and predators, and affect the dynamics, abundance, 

oviposition patterns and host-seeking behaviours of vectors searching for alternative habitats 

and new blood-feeding sources [41, 50]. Such changes in Aedes mosquito behaviours raise 

the arbovirus outbreak risks in human-inhabited areas [51]. Other cultivations such as rubber 

plantations and plants with sheathing leaf axils (e.g. bromeliads, banana and taro), and fruit 
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husks (e.g. coconuts) can be important sources of Aedes mosquitoes [48, 52]. In addition, 

containers used to supply water to animal and plant husbandry support Aedes mosquito larval 

growth [53]. 

 

2.3.3. Insecticide uses 

One of the large-scale environmental impacts that affect the compositional and the 

distributional patterns of insect communities is the application of organochlorine pesticides 

(mostly DDT) in agriculture, forestry and public health [40]. The cessation of the widespread 

use of DDT for agriculture in most parts of the world is believed to be the driving force that 

facilitated the invasion of Aedes mosquitoes and the transmission of arboviruses, such as 

West Nile, Zika, dengue and chikungunya [40]. Intensive insecticide application alters 

ecological processes, structuring mosquito communities by its devastating effects on the 

predators and prey of mosquitoes [40] and induces insecticide-resistance in vectors [54]. Ae. 

albopictus was observed to spread into urban niches vacated by insecticide-induced 

populations reductions, due to the interspecific competitor Ae. aegypti [55]. The spread of 

DDT, pyrethroids, carbamates and organophosphates over large geographical areas to control 

onchocerciasis and human and animal trypanosomiasis vectors from 1966 to 1983 in Côte 

d’Ivoire have induced multiple-resistances of malaria vectors to insecticides [54].  

  

2.3.4. Other abiotic factors 

Climate change is expected to increase the geographical distribution of Aedes vectors and the 

transmission of arboviral diseases worldwide [56]. The topographical diversity and 

distribution of Aedes mosquitoes is influenced by meteorological variables, including the 

climate or the weather components, such as temperature, relative humidity and precipitation 

[41, 57], shade and sunlight [42] and altitude [58]. The seasonal variations in Ae. aegypti and 

Ae. albopictus abundance are strongly associated with rainfall patterns, history, variability 

and intensity that govern the fluctuations of seasonal flooding-drying cycles [59]. Aedes 

mosquito eggs enter into a dormant stage or diapause to withstand desiccation or wintering 

periods during the dry or cold seasons, while precipitations flood the breeding sites and 

increase the abundance of Aedes mosquitoes [41]. The levels of temperature and humidity 

favour or disfavour the egg fertility, hatching rate and desiccation-resistance, larval and adult 

survival or mortality, and the fecundity, gonotrophic cycles and oviposition, blood-feeding 

behaviours of Aedes females [41, 60]. Heavy precipitation flushes eggs, larval and pupae of 

Aedes mosquitoes from their breeding sites [61, 62]. The distribution of Aedes mosquitoes is 
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also governed by the physical and chemical characteristics of the breeding sites, including the 

material type, color, location, water depth, water clearance, substrate type, shade, detrital and 

microbial foods, canopy coverage and microclimate (water temperature and relative 

humidity) [42]. All these factors that influence the distribution of Aedes mosquito vectors 

also shift the transmission patterns of the yellow fever, dengue, chikungunya and other 

arboviruses [41, 61]. 

 

2.3.5. Other biotic factors 

Competition, predation, parasitism, sympathy, coexistence, satyrization and invasion play 

important roles in the Aedes mosquito diversity, abundance and distribution and arbovirus 

transmission [41, 55, 60, 63-65]. Interspecific and intraspecific competitions for food and 

habitat resources can lead to the decline, displacement (competitive displacement) or 

exclusion (competitive exclusion) of the inferior competitor and invasion of the superior 

competitor [41, 63]. Interphyletic competition involving the tadpoles of toad and arachnids 

also alters the distribution of Aedes vectors [55, 63]. Intraguid predation in which the later-

instar larvae of Aedes mosquitoes prey on the newly-hatched conspecifics and the top-down 

predation that imply the predators such as Culex tigripes, Corethrella, Eretmopodites, 

Toxorhynchites mosquitoes, can also exert biocontrol and structure communities [41, 63, 66]. 

Aedes females prefer to oviposit in breeding sites containing predator-killed conspecifics 

because of the microbial byproducts provided by the predation [63]. The parasitism by 

gregarines affects the biological interactions among Aedes mosquito larvae [41]. All these 

biotic interactions influence the life-history traits and biodiversity of Aedes mosquitoes by the 

biotic facilitation or resistance to invasion, resilience, co-existence and exclusion of 

communities, and alter the transmission of arboviral diseases [41]. 

 

2.4. Aedes mosquito life-cycle  

Ae. aegypti and other mosquitoes have a complex life-cycle with dramatic changes in shape, 

function and habitat (Figure 2.3). There is an aquatic phase (larvae, pupae) and a terrestrial 

phase (eggs, adults) in the life-cycle [67]. After taking a blood-meal, Ae. aegypti gravid 

females lay their around 100-200 eggs per batch on the inner, wet walls of containers with 

water such as natural tree holes, or artificial containers like barrels, tires, discarded items, etc. 

The eggs (picture 1) are smooth, long, ovoid shaped and roughly 1 mm long. The eggs can 

develop within two days or remain at dry or dormant state over one year and immediately 

hatch one submerged in water. Larvae (picture 2) hatch when water inundates the eggs as a 
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result of rains or the addition of water by people. In the following days, the larvae will feed 

on microorganisms and particulate organic matter, shedding their skins three times to be able 

to grow from first to fourth instars. When the larva has acquired enough energy and size and 

is in the fourth instar, metamorphosis is triggered, changing the larva into a pupa (picture 3). 

Pupae do not feed; they just change in form until the body of the adult, flying mosquito is 

formed. Then, the newly formed adult (picture 4) emerges from the water after breaking the 

pupal skin. The entire life cycle lasts 8-10 days at room temperature, depending on the level 

of feeding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Aedes mosquito sampling methods 

2.5.1. Egg sampling 

As Aedes mosquito females oviposit on substrates subjected to flooding, ovitraps are a 

commonly used method for sampling their eggs [10, 68, 69]. An ovitrap consists of a dark 

filled container and a thin paddle of wood serving as oviposition substrates [70]. Different 

materials can be used as a container, including tin cans, glasses, plastic, ceramic and bamboo 

cups [68]. Ae. aegypti and Ae. albopictus gravid female prefers ovitrap painted black, red, 

blue, checkered over white, orange, green, striped or ovicups [71, 72]. Oviposition rough 

substrates are preferred over smooth [72]. Adding 10% hay or herbal infusions to the water 

can increase the ovitrap attractiveness [73]. 

Figure 2.3: Aedes aegypti mosquito life-cycle (source: CDC) 
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Ovitraps are easy to construct and use, low-cost, low-tech, and highly sensitive in 

detecting the presence of Ae. aegypti in the environment and thus allow to predict the risk of 

yellow fever and dengue emergence [74]. Contaminated-ovitraps against multiple stages [75], 

or gravid females [76] of Ae. aegypti have been suggested as vector control strategies. 

 

2.5.2. Larval sampling 

The larvae and pupae of Aedes mosquitoes can be sampled using dippers with different sizes 

or capacities (50-500 ml), the aquatic nets and flexible collection tube connected to a manual 

suction pump according to the aperture and the depth of the containers [68, 69]. The larvae 

are collected by skimming the sampling device through the water at an angle or lowering the 

device slowly into the water [69]. The collected larvae are cleaned with tap water and the 

eventual associated predacious larvae such Cx.  tigripes, Eretmapodites and Toxorhynchites 

mosquitoes and other amphibians like tadpoles of toads are removed. The samples are 

transferred into small plastic tubs and transported to the laboratory [69]. Larval sampling also 

allows measuring of the yellow fever and dengue outbreak risks and assessing the biological 

interactions (competition, predation) among Aedes mosquito larvae [42, 48]. 

  

2.5.3. Adult sampling 

Aedes mosquito can be collected by trapping or aspirating the emerging, flying, biting and 

resting adults using attractant or non-attractant devices such as floating traps, sweep nets, 

human-landing catches, human or animal-baited double-net traps, indoor insecticide spray, 

mouth aspirator, BG-Sentinel traps, Backpack aspirator, Prokopack aspirator, light or carbon 

dioxide traps [68, 69, 74]. These trapping methods show different performances, mosquito 

species, sex and physiological status of the females (unfed, fed, gravid, parious and unparous) 

according to the attractant (light, carbon dioxide, animal-bait and human-bait), and the 

location (indoor, outdoor) and collection period (night, daytime) [68, 69, 74]. 

 

2.6. Arboviral disease and Aedes vector controls 

The absence of specific treatment (the therapy is mainly symptomatic and supportive), and 

the existence of wildlife reservoir hosts for the arboviruses render elimination difficult or 

impossible, and then the prevention and the control must focus on vaccination and vector 

control programmes [36]. Only yellow fever 17D vaccine, considered to be the safest and 

most efficacious vaccines in use today, and the Japanese encephalitis virus inactivated 

vaccine licensed for human use are available. Despite considerable efforts are being made for 
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developing and testing vaccines for dengue and West Nile viruses, none have been licensed 

for human use. Hence the primary means of control and prevention involve vector control 

using insecticide applications and environment management based on the removals of 

discarded containers. In the mid-1900s, yellow fever was controlled in Francophone Africa 

by vaccination, while both yellow fever and dengue were eliminated in the Americas by 

effective control of the major vector, Ae. aegypti [77]. After this great success, vector control 

programmes failed to maintain control efforts resulting in the return of vectors and viruses 

and thus the resurgence of yellow fever and dengue [77]. Moreover, the principal vector, Ae. 

aegypti, exhibits resistance to several classes of insecticides [78, 79, 80].  
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3. Background of the PhD thesis 

3.1. Identified research needs  

The recent emergence, re-emergence and the spread of Aedes mosquito-transmitted 

arboviruses such as yellow fever, dengue, Zika and chikungunya, paralleled with anthropo-

genic changes, have raised concerns worldwide [1-4]. Anthropogenic land use changes due to 

urbanization and intensified agriculture, and the application of insecticides as public health 

measure, and in agriculture present, huge challenges on the environment, food security and 

people’s well-being [5]. Anthropogenic impacts, driven by human population growth and 

movement, are projected to increase substantially in the future across the globe. As a result, 

the distribution of Aedes vectors and the arboviruses they transmit will alter [5].  

Since the 1900s, Côte d’Ivoire has been repeatedly facing yellow fever and dengue 

outbreaks [6, 7]. Several vectors have been involved, namely, Ae. aegypti, Ae. africanus, 

Ae. furcifer, Ae. luteocephalus, Ae. opok and Ae. vittatus in the rural areas devoted to 

industrial oil palm agriculture, and Ae. aegypti in urban areas [8-14]. A recent outbreak of 

dengue fever occurred in Abidjan in May 2017. At present, 51.9% of the population in Côte 

d’Ivoire live in urban areas [15]. The agrarian land is estimated at 64.8% [16]. The effects of 

anthropogenic changes resulting from land use changes, such as urbanization and intensified 

agriculture in oil palm plantation areas, on the ecology of Aedes mosquitoes are poorly 

explored. A deeper understanding of these factors is essential for developing, optimizing and 

applying at scale novel control strategies and tools aimed at reducing arboviral disease 

transmission.  

 

3.2. Goals and objectives of the PhD thesis 

This PhD thesis aims to improve our understanding of how anthropogenic factors, such as 

land use changes due to urbanization and intensified agriculture in industrial oil palm 

cultivation areas, influence Aedes mosquito community dynamics in yellow fever and dengue 

co-endemic areas of Côte d’Ivoire. To these ends, the thesis has three main goals: 

Goal 1: To improve our understanding of how urbanization influences the oviposition 

ecology and species composition of Aedes mosquitoes in arbovirus foci. 

There are four specific objectives: 

1. to assess the species composition and dynamics of Aedes mosquitoes in a typical 

rural, suburban and urban areas; 



Chapter 3 - Background 
 

 

18 
 

2. to explore the oviposition ecology of Aedes mosquitoes in rural, suburban and urban 

areas;  

3. to determine the geographic variations in the oviposition ecology and species 

composition of Aedes mosquites in rural, suburban and urban areas; 

4. to determine the seasonal variations in the oviposition ecology and species 

composition of Aedes mosquitoes in rural, suburban and urban areas. 

5. to assess the geographic and seasonal dynamics of Ae. aegypti species in rural, 

suburban and urban areas. 

Goal 2: To assess how urbanization affects the breeding sites, larval ecology and species 

composition of Aedes mosquitoes in arbovirus endemic areas. 

There are five specific objectives: 

1. to assess the species composition and dynamics of immature Aedes mosquitoes in 

rural, suburban and urban areas; 

2. to characterize the breeding sites of Aedes mosquitoes in rural, suburban and urban 

areas;  

3. to explore the biological associations at play among immature Aedes mosquitoes in 

rural, suburban and urban areas; 

4. to determine the geographic variations in the breeding sites and species composition 

of immature Aedes mosquites in rural, suburban and urban areas; 

5. to determine the seasonal variations in the breeding sites and species composition of 

immature Aedes mosquites in rural, suburban and urban areas. 

Goal 3: To deepen our understanding of the impacts of agricultural land use changes on the 

abundance, distribution and host-seeking behaviours of Aedes mosquitoes in oil palm-

dominated landscapes. 

There are three pecific objectives: 

1. to assess the abundance of Aedes mosquito species among four macrohabitats: 

rainforest, polyculture, oil palm monoculture and rural-housing areas; 

2. to determine the distribution and the biodiversity of Aedes mosquito species among 

the aforementioned macrohabitats; and 

3. to explore adult Aedes females’ host-seeking behaviours among rainforest, 

polyculture, oil palm monoculture and rural-housing areas. 
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3.3. Research partnerships 

This PhD thesis is carried out within the framework of a partnership between the Swiss 

Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland; Centre Suisse de 

Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire; the University of 

Basel Basel, Switzerland; the Université Félix Houphouët-Boigny of Côte d’Ivoire (UFHB), 

Abidjan, Côte d’Ivoire; and the Liverpool School of Tropical Medicine, Liverpool (LSTM), 

United Kingdom. The work was funded by Swiss TPH, CSRS, and a Scholarship for Foreign 

Students program (FCS), Bern, Switzerland.  
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4. Methodology 

4.1. Study area 

The study was conducted between January 2013 and December 2014 in southeastern Côte 

d’Ivoire, specifically in Abidjan and Aboisso regions, where several Aedes mosquito-

transmitted yellow fever and dengue outbreaks have been reported in the last decades [1-8]. 

The population of Côte d’Ivoire in 2014 was 22,671,331, with the majority living in urban 

areas (51.8%) [9]. The annual population growth rate is estimated at 5.3%. The economy is 

mainly based on agriculture, dominated by the production of cocoa, coffee, rubber and oil 

palm. Abidjan is the economic capital and the most populated town with 4,707,404 

inhabitants, while the population of Aboisso is estimated at 307,852 people. The climate is 

warm and humid and, overall, transitional from equatorial to tropical with four seasons. The 

seasons are more clearly distinguished by rainfall than temperature. The two rainy seasons 

are separated by a dry season. The main rainy season extends from May to July, while the 

shorter occurs in October and November. The main dry season extends from December to 

April. The average annual precipitation ranges from 1,200 to 2,400 mm. The annual 

temperature and relative humidity range around 26.5 °C and 78-90%, respectively.  

 The purpose of the PhD thesis was to assess the effects of anthropogenic land use 

changes, particularly urbanization and industrialized oil palm agricultural land-use changes 

on Aedes mosquito community dynamics and insecticide-susceptibility in Ae. aegypti in 

yellow fever and dengue foci in Côte d’Ivoire. We therefore selected settings with different 

levels of urbanization (rural, suburban, and urban). In rural areas devoluted to industrial oil 

palm plantations, we compared Aedes species composition, breeding sites and behaviours in 

natural rainforests, polyculture crops, oil palm monoculture and housing areas.  

 

4.1.1. Urbanization 

For assessing the effects of urbanization Aedes mosquito ecology, the study was carried out 

in three areas located within the traditional arbovirus foci in southeastern Côte d’Ivoire: the 

villages of Ehania-V1 (geographical coordinates 5° 18 N latitude, 3° 04 W longitude), 

Blockhauss (5° 19 N, 4° 00 W) and Treichville (5° 18 N, 4° 00 W), representing rural, 

suburban and urban settings, respectively (Figures 5.1 and 6.1). The selection of the study 

areas as rural, suburban and urban was mainly based on the population density, state of road, 

land use, business, public services and vegetation cover. 
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Ehania-V1 is a rural area with a population density of approximately 48 people/km
2
 and 

unpaved roads. The village of Ehania-V belongs to the district of Aboisso some 140 km east 

of Abidjan. The residencies are composed of traditional and ordinarily modern houses. This 

area is surrounded by industrial oil palm plantation (Elaesis guineensis) of 11,444 ha and 100 

ha of preserved primary rainforest. The rainforest provides vegetation with dense canopy 

cover and trees, and hosts non-human primates. 

Blockhauss is a suburban area with approximatively 750 people/km
2
 and paved roads. 

This setting is located in the periphery of Abidjan bordered in its northern part by Banco 

National Park with over 3,750 ha of rainforest. The land use comprises a mixture of 

residential buildings, hospitals and schools. The residencies are ordinarily modern houses and 

some blocks with flats. Urbanization is underway at high pace.  

Treichville is an urban and highly populated area with more than 1,800 people/km
2 

and 

paved roads. This setting is the oldest part of Abidjan and is situated in central of thecity. The 

density of the population greatly increases during the daytime due to the convergence of 

people from other municipalities of Abidjan for trading, businesses and sports. The land use 

is essentially residential, commercial, cultural and sportive buildings, seaport and public 

services, such as schools and hospitals, filled with green spaces set apart. The residencies are 

mostly composed of blocks of flats and some ordinarily modern houses. Urbanization is very 

much advanced and there is hardly any additional space for construction of new houses and 

other insfractructure.  

 

4.1.2. Agricultural land-use changes 

The study was carried out in areas of Ehania-V1 comprising the villages of Ehania-V1, Cité-

cadre, Akakro and small villages belonging to the Sud-Comoé region located in southeastern 

Côte d’Ivoire (Figure 7.1). The villages are situated at the interface between the industrial and 

traditional agricultural exploitations. The industrial exploitations are devoted to the 

monoculture of oil palm covering 11,444 ha managed by an agro-industrial unit PALMCI. 

The industrial part also has a preserved rainforest of 100 ha. The traditional exploitations are 

the systems of polyculture comprising oil palm trees, rubber trees, banana, taro, bromeliads 

and cocoa. Several small villages averaging 20 people are dispersed in the traditional lands. 

The preserved rainforest and traditional explorations host threes, bamboo, and diverse animal 

species (primates and birds). The population is composed of people working for agro-

industrial unit PALMCI and on their own lands for subsistence farming.  
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4.2.  Methods 

4.2.1. Study design 

For the study focusing on the effects on urbanization on Aedes oviposition and larval 

ecology, the rural area was divided into three ecozones: domestic, peridomestic and sylvatic 

(paragraphs 5.3.2 and 6.3.3). The suburban and urban areas were divided into domestic and 

peridomestic zones because there were no sylvatic zones. According to Cordellier et al. [10], 

domestic zone refers to the human-inhabited space, the peridomestic zone covers the 

vegetated environment surrounding the domestic zone in which humans usually discard 

artificial items that serve as breeding sites for Aedes mosquitoes, the sylvatic zone is 

primarily a wild environment free of discarded containers that host forests with natural 

containers (e.g. tree holes) and wild animals. 

 In the study assessing the effects of agricultural land uses on Aedes mosquito ecology, 

the study area was divided into four macrohabitats according to the landscape cover 

(paragraph 7.3.3): rainforest, polyculture, oil palm monoculture and rural housing area 

(Figures S7.1 and Table 7.1). The rainforest referred to the area covered with dense forest 

showing natural ecosystem with strong canopy coverage and comprising big threes, creepers, 

fixed masses of bamboo (Bambusae), and wild vertebrate animals such as non-human 

primates, birds and reptiles. The polyculture was defined as an area covered with mosaic of 

multiple crops growing in the same place. As oil palm monoculture, we considered the area 

covered uniquely with oil palm trees. The rural housing areas covered human-inhabited space 

comprising buildings such as houses and and other social buildings.  

 Aedes mosquitoes (Figures 11.1 and 11.2), predatory species (Figure 11.3) and other 

non-Aedes mosquitoes (Figure 11.4) were collected as eggs, larvae, pupae or adults. 

Entomological and socioecological data were sampled and processed using WHO standard 

sensitive sampling methods (Figure 4.1). 

 

4.2.2. Aedes egg sampling 

Aedes spp. eggs were sampled using the standard WHO ovitrap method [10-13]. Ovitraps 

were made of bamboo cut (bamboo-ovitraps) or metallic can cut (metallic-ovitraps) to imitate 

natural and artificial breeding sites of Aedes mosquitoes, respectively (Figures 4.1).  Metallic-

ovitraps were covered with black paint, while bamboo-ovitraps kept their original colors. 

Each ovitrap type had 400 cm
3 

volume, and was filled at ¾ full with distilled water mixed 

with rainwater and 10% infusions of herbs (Panicum maximum) to increase the attractiveness 

of the ovitraps [10, 14-16]. A 5 x 7 x 0.3 cm paddle made of hardboard, rough on one side 
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Figure 4.1: Entomological and socioecological methods 
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and serving as oviposition substrate, was plunged in each box and left for one week during 

each survey. All mosquito samples were stored separately in plastic boxes and transferred in 

a cool box to a field laboratory. 

 

4.2.3. Aedes larval survey 

Readily visible and accessible containers in the selected households and surrounding 

premises were examined for the presence of water and mosquito larvae. In a preliminary 

survey, existing larval breeding sites, such as natural and artificial cavities or containers with 

a potential to contain water were kept in an inventory, characterized and assigned a unique 

label (Table 6.1 and Figure S6.1, and Table 7.1 and Figure S7.1). Microhabitats were 

examined for the presence of water and immature stages of mosquitoes. If mosquito larvae 

and/or pupae were present, the content of microhabitat was completely removed using the 

WHO standard equipment adapted to the aperture and the depth of microhabitats. A flexible 

collection rubber tube connected to a manual suction pump was used to sample water from 

bromeliads and bamboo holes. Ladles of 350 ml capacity were used to collect immature 

mosquitoes from larger breeding sites (e.g. tree holes, recipients, tires and puddles). Non-

Aedes mosquito larvae such as Anopheles spp., Coquelitidia spp., Culex spp., Eretmapodites 

spp., Filcabia spp., Toxorhynchites spp. and Uranotenia spp. were also recorded. The 

predacious larvae of mosquitoes, such as Cx. tigripes, Eretmapodites spp. and Toxorhynchites 

spp. were removed from the samples to avoid predation on the other species and preserved 

separately. The microhabitats sampled were refilled to their initial volume with the original 

water, and completed with tap water. The presence of shade, predators, plant leaves, water, 

and other microhabitat characteristics were recorded. All mosquito samples were stored 

separately in plastic boxes and transported in an icebox to a field laboratory. 

 

4.2.4. Aedes adult sampling 

Adult mosquitoes were sampled using human-baited double-net traps for three consecutive 

days from 04:00 to 20:00 hours (Figure 4.1). A double-net trap was a combination of two 

nets: the internal and small which protected the bait and the external and big net with 

openings in places which allowed the entry of mosquitoes and precluded their exit. For each 

double-net trap, there was a pair of persons: one person inside the small net who served as 

bait to attract mosquitoes, while the other outside the double-net device collected hourly 

mosquitoes trapped within the external net. Each human-baited double-net device was 
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monitored by two teams of two persons who took turns at 12:00 a.m. Volunteers were 

vaccinated against yellow fever and also protected by malaria prophylaxy. 

 

4.2.5. Laboratory treatment procedures 

In the laboratory (Figure 4.1), the paddles were dried during a period of 5 days at 25 ± 1 °C 

room temperature, relative humidity of 80–90% and a 12:12 hours light:dark photoperiod. 

They were screened with white, insect-proof, nylon netting to prevent eventual oviposition 

from other mosquitoes and potential predators. The paddles were then separately immersed in 

plastic cups (6  9  15 cm) 3/4 filled with distilled water for attached egg hatching. The 

process was repeated three times after flooding of 5 days to maximize egg hatching. 

Emerging larvae were counted and recorded. The larvae were reared until adult stage under 

identical conditions as paddle drying. To avoid overcrowding and limit mortality, at most 20 

emerging larvae were placed per 200 ml plastic cup filled to 3/4 with distilled water. Each 

plastic cup was labeled with a unique number of the sample, the study area and the date of 

collection. Larvae were fed each morning (07:00-08:00 hours) with Tetra-Min Baby Fish 

Food
®
. Emerging pupae were transferred to new plastic cups using plastic pipettes for adult 

emergence. The cups containing the pupae were netted to avoid draining the newly hatched 

adults. Culex egg rafts were not dried but were stored at 15 ± 1 °C to avoid desiccation [17]. 

In addition, the larvae hatched from Culex egg rafts and the larvae of Aedes, Culex and 

Eretmapodites found in the collected water from the ovitraps were also separately reared until 

adult stage, under the same conditions as described above. The larval sampled from the field 

were also reared in the same manner. Predacious larvae of Toxorhynchites spp. and 

Cx. tigripes were fed with larvae from colonies that were sampled from the study areas. 

During rearing, emerging adult Aedes spp., Anopheles spp., Coquelitidia spp., Culex spp., 

Eretmapodites spp., Filcabia spp., Toxorhynchites spp. and Uranotenia spp. specimens were 

identified to the species level using morphological criteria [10, 18, 19]. The mosquito 

individuals were stored at subgenus, species and sex levels and the data were recorded in an 

entomology collection database. 
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4.2.6.  Statistical analysis 

All statistical analyses were conducted using Stata version 14.0 (Stata Corporation; College 

Station, TX, USA). A significance level of 5% was set for statistical testing.  

Aedes species proportions were calculated as the percentage of specimens among the total 

mosquito fauna.  

 Aedes species richness was expressed as the number of collected species in each study 

area. Aedes species abundance was assessed as the mean number or the proportion (%) of 

specimens. The frequency of Aedes-positive breeding sites or trap was calculated as the 

percentage of water holding containers or trap with at least one larva or pupa or adult. 

Aedes mosquito biodiversity was assessed by the species diversity, dominance and 

community similarity in the study and among the macrohabitats that were estimated by 

Shannon Index (H) [20], Simpson Index (D) [21] and Sorenson’s Coefficient (CC) [22], 

using the following formula: 

 

 

 The Shannon Index (H) is an information statistic index, which means it assumes all 

species are represented in a sample and that they are randomly sampled.  

p is the proportion (n/N) of specimens of one particular species found (n) divided by the total number of 

specimens found (N). s is the number of species. 

 

 

 

 

 The Simpson Index (D) is a dominance index as it gives more weight to common or 

dominant species.  

p is the proportion (n/N) of specimens of one particular species found (n) divided by the total number of 

specimens found (N). s is the number of species. 

 

 

  

 Sorenson’s Coefficient (CC) helps to assess the community similaries. 

C is the number of species the two communities have in common. S1 is the total number of species found in 

community 1. S2 is the total number of species found in community 2. 
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5.1. Abstract 

Background: Aedes mosquito-transmitted outbreaks of dengue and yellow fever have been 

reported from rural and urban parts of Côte d’Ivoire. The present study aimed at assessing 

Aedes spp. oviposition ecology in variously urbanized settings within arbovirus foci in 

southeastern Côte d’Ivoire.  

Methods: Aedes spp. eggs were sampled using a standard ovitrap method from January 2013 

to April 2014 in different ecosystems of rural, suburban and urban areas. Emerged larvae 

were reared until the adult stage for species identification.  

Results: Aedes spp. oviposition ecology significantly varied from rural-to-urban areas and 

according to the ecozones and the seasons. Species richness of Aedes spp. gradually 

decreased from rural (eight species) to suburban (three species) and urban (one species) areas. 

Conversely, emerged adult Aedes spp. mean numbers were higher in the urban (1.97 

Aedes/ovitrap/week), followed by the suburban (1.44 Aedes/ovitrap/week) and rural (0.89 

Aedes/ovitrap/week) areas. Aedes aegypti was the only species in the urban setting (100%), 

and was also the predominant species in suburban (85.5 %) and rural (63.3 %) areas. The 

highest Ae. aegypti mean number was observed in the urban (1.97 Ae. aegypti/ovitrap/week), 

followed by the suburban (1.20 Ae. aegypti/ovitrap/week) and rural (0.57 Ae. 

aegypti/ovitrap/week) areas. Aedes africanus (9.4 %), Ae. dendrophilus (8.0 %), Ae. 

metallicus (1.3 %) in the rural, and Ae. vittatus (6.5 %) and Ae. metallicus (1.2 %) in the 

suburban areas each represented more than 1 % of the total Aedes fauna. In all areas, Aedes 

species richness and abundance were higher in the peridomestic zones and during the rainy 

season, with stronger variations in species richness in the rural and in abundance in the urban 

areas. Besides, the highest Culex quinquefasciatus abundance was found in the urban areas, 

while Eretmapodites chrysogaster was restricted to the rural areas. 

Conclusions: Urbanization correlates with a substantially higher abundance in Aedes 

mosquitoes and a regression of the Aedes wild species towards a unique presence of Ae. 

aegypti in urban areas. Aedes wild species serve as bridge vectors of arboviruses in rural 

areas, while Ae. aegypti amplifies arbovirus transmission in urban areas. Our results have 

important ramifications for dengue and yellow fever vector control and surveillance strategies 

in arbovirus foci in southeastern Côte d’Ivoire.  

Keywords: Arboviruses, Aedes, Oviposition ecology, Culex, Eretmapodites, Ovitrap, Socio-

ecological survey, Urbanization, Côte d’Ivoire 

 



Chapter 5 – Effects of urbanization on Aedes spp. oviposition ecology 
 

 

31 
 

5.2. Background 

Several Aedes mosquito species are involved in the transmission of arboviral diseases, 

including dengue and yellow fever, responsible for major health burdens worldwide [1-3]. In 

the mid-1990s, yellow fever was controlled in Francophone Africa by vaccination while both 

yellow fever and dengue were eliminated in the Americas by effective control of Aedes 

aegypti [4]. However, in recent years, there has been a dramatic resurgence of dengue fever 

worldwide [5-8] and re-emergence of yellow fever in some parts of Africa [9]. In addition, 

other arboviruses vectored by Aedes mosquitoes, such as chikungunya [10], Rift valley [11] 

and Zika virus [12] are emerging or re-emerging in Africa, particularly in West Africa [13-

15]. The patterns of arboviral disease transmission and its geographic expansion are likely a 

result of intensive urbanization [1, 2, 6, 16]. However, dengue and yellow fever originated in 

enzootic (sylvatic) cycles associated with wild Aedes vectors in rural areas. Enzootic cycles 

are linked to urban transmission cycles by a major domestic vector, Ae. aegypti [17]. 

In Côte d’Ivoire, single and dual epidemics of dengue and yellow fever involving 

several wild Aedes species and the major urban vector, Ae. aegypti, have been reported in 

both rural and urban areas [18]. Sylvatic dengue virus circulation, without human infections, 

was documented by isolation of DENV-2 serotype from wild Aedes vectors, including Aedes 

africanus, Aedes furcifer, Aedes luteocephalus, Aedes opok and Aedes vittatus in rural areas 

in the 1980s [19]. Since then, several sporadic outbreaks of dengue DENV-1, DENV-2 and 

DENV-3 serotypes and yellow fever sometimes resulting in fatal outcomes have occurred 

[20-22]. The outbreaks were mostly concentrated in surrounding villages and periurban areas 

of Abidjan, the economic capital and the most densely populated city of Côte d’Ivoire [21, 

22]. 

The comprehension of the shaping patterns of immature Aedes mosquito ecology along 

the urbanization gradient is of paramount importance in determining their role in maintenance 

of epidemic arboviral diseases transmission [1, 2]. Knowledge of such patterns may therefore 

enable a more effective deployment of vector control measures for the benefit of public 

health. Aedes mosquitoes are readily adapted to a broad range of ecological settings and are 

expected to vary according to natural and urbanized environment [2, 9]. Certain Aedes 

mosquito species are confined and limited to sylvatic, rural or urban areas, whereas others 

have a large distribution and colonize almost every environment, such as the wild, rural and 

urbanized settings, the domestic and peridomestic premises, the types of landscapes and the 

microhabitats [2, 9]. Those species of Aedes occurring in transitional environments may serve 

as bridge vectors between enzootic diseases and humans in rural areas. Moreover, Aedes 
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mosquitoes are the main reservoirs of arboviruses and the longest link of the transmission 

chain since they host the viruses during longer duration compared to humans and wild 

animals [23]. These Aedes vector species show both oral and transovarial infection [23, 24]. 

The extent to which eggs are resistant against desiccation varies between species and strains, 

and depends on climatic conditions [25, 26]. Otherwise, Aedes mosquito species can be 

associated with other mosquito species for different interaction purposes such as predation, 

competition and symbiosis [9]. Eretmapodites chrysogaster is a predaceous mosquito and 

lays its eggs in Aedes species breeding sites [27]. Aedes and Culex species, mainly Cx. 

quinquefascistus and Ae. aegypti, are sympatric and co-occur in the same containers [28].  

Aedes aegypti is an urban species and a major vector of dengue and yellow fever by 

amplifying epidemics among the urban populations [9, 17]. This species consists of two 

subspecies, Ae. aegypti aegypti and Ae. aegypti formosus that are morphologically [29], 

behaviorally and genetically distinct [30-32]. However, there are ambiguities resulting in 

confusion over morphological distinction between the two subspecies of Ae. aegypti in West 

Africa [13, 33].  

Urbanization could potentially modify Aedes mosquito ecology by changing the 

composition and dynamics of species, and increasing the abundance of their breeding sites 

due to environmental changes, and thus contribute to arbovirus outbreaks [2]. However, 

Aedes mosquito egg laying ecology is unknown in arbovirus foci located in variously 

urbanized settings of southeastern Côte d’Ivoire. To fill this gap, our study explored Aedes 

mosquito egg laying patterns, species composition and dynamics in Ehania-V1, Blockhauss 

and Treichville representing rural, suburban and urban settings of southeastern Côte d’Ivoire. 

Because immature mosquitoes are sensitive to environmental changes [2, 25, 26], we 

hypothesized that Aedes mosquito oviposition ecology and species composition, and the 

dynamics of Ae. aegypti change from rural to suburban and urban settings. Field surveys of 

Aedes mosquito egg were performed using highly sensitive sampling method such as 

standardized World Health Organization (WHO) ovitraps [23, 24], larval rearing in the 

laboratory and adult stage identification were conducted to test this hypothesis. The findings 

provide valuable information on Aedes mosquito egg laying patterns, species composition 

and Ae. aegypti dynamics in different urbanized ecosystems. The key results open new 

perspectives for improving current vector control and surveillance strategies for dengue and 

yellow fever that are tailored for specific settings of southeastern Côte d’Ivoire.  
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5.3. Methods 

5.3.1.  Study area 

The study was conducted in three settings in southeastern Côte d’Ivoire: Ehania-V1, 

Blockhauss and Treichville, representing rural, suburban and urban areas, respectively 

(Figure 5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Map of study areas located in southeastern Côte d’Ivoire. The ecological study of 

Aedes mosquitoes was carried out in three areas: a Ehania-V1 (covers the villages of Ehania-V1 and Akakro and represents 

the rural area without major and secondary paved roads. The site is close to the primary rainforest reserve). b Blockhauss 

(comprises the villages of Blockhauss and Petit-Cocody and represents the suburban area with only secondary paved roads. 

It is about 5 km away from the rainforest of Banco National Park). c Treichville (includes the sections of Jacques-Aka and 

Biafra and is the urban area with numerous major and secondary paved roads. It is located in the centre of Abidjan and is 

separated from Blockhauss by Ebrié lagoon). 
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The village of Ehania-V1 (5°18'N, 3°04'W) belongs to the district of Aboisso some 140 km 

east of Abidjan.Ehania-V1 is a rural area with a population density of approximately 48 

people/km
2
 and unpaved roads. The residencies are composed of traditional and ordinarily 

modern houses. This area is surrounded by industrial oil palm plantation (Elaesis guineensis) 

of 11,444 ha and 100 ha of preserved primary rainforest. The rainforest provides strong 

vegetation with dense canopy cover, trees with holes and bamboos and hosts non-human 

primates and birds.Blockhauss (5°19'N, 4°00'W) is located within Abidjan bordered in its 

northern part by Banco National Park with over 3,750 ha of rainforest. This setting is a 

suburban area with c.750 people/km
2
 and paved roads. The land use comprises a mixture of 

residential buildings, hospitals and schools. The residencies are ordinarily modern houses and 

some blocks with flats. Urbanization is underway in untapped spaces. Treichville (5°18'N, 

4°00'W) is situated in central Abidjan and separated from Blockhauss by the Ebrié Lagoon 

that has a width of approximately 4 km. This setting is an urban area with more than 1,800 

people/km
2 

and paved roads. The density of the population greatly increases during the 

daytime due to the convergence of people from other municipalities of Abidjan for trading, 

businesses and sports. The land use is essentially residential, commercial, cultural and 

sportive buildings, seaport, and public services such as schools and hospitals, filled with 

green spaces set apart. The residencies are mostly composed of blocks of flats and some 

ordinarily modern houses. Urbanization is completed due to the lack of availability of 

additional space for the construction of new houses.  

In southeastern Côte d’Ivoire, the climate is warm and humid and overall, transitional 

from equatorial to tropical with four seasons. The seasons are more clearly distinguished by 

rainfall than temperature. The two rainy seasons are separated by a dry season. The main 

rainy season extends from May to July, while a short rainy season occurs in October and 

November. The main dry season extends from December to April. This classic sequence of 

seasonality has been disrupted due to strong climate variability [34]. The average annual 

precipitation ranges from 1,200 to 2,400 mm. The annual temperature is around 26.5 °C and 

the annual relative humidity (RH) ranges between 78 % and 90 %.  

 

5.3.2. Design of sample collection  

Aedes spp. eggs were sampled using the standard WHO ovitrap method [23, 24]. Ovitraps 

were metallic boxes cut with 400 cm
3 

volume
 
and covered with black paint to attract gravid 

female Aedes mosquitoes in search of egg laying grounds. They were filled (75 % full) with 

distilled water mixed with rainwater and 10 % infusions of herbs (Panicum maximum) to 
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increase the attractiveness of the ovitraps [23]. A 5  7  0.3 cm paddle made of hardboard, 

rough on one side and serving as oviposition substrate, was plunged in each box and left for 

one-week period during each of six surveys. The rural area was divided into three ecozones: 

domestic, peridomestic and sylvatic. The suburban and urban areas were divided into 

domestic and peridomestic zones because there were no sylvatic zones. According to 

Cordellier et al. [23], domestic zone refers to the human-inhabited space, the peridomestic 

zone covers the vegetated environment surrounding the domestic zone in which humans 

usually discard artificial items that serve as breeding sites for Aedes mosquitoes, the sylvatic 

zone is primarily a wild environment free of discarded containers that host forests with 

natural containers (e.g., tree holes) and wild animals. In our study, the peridomestic zone 

extended from the edge of the domestic zone to 300 m while the sylvatic zone was located 

from 300 to 800 m around the village. During each of the 6 surveys, 50 ovitraps were 

repeatedly placed in the same location in each defined ecozone. In the human-inhabited zone, 

the ovitraps were suspended at 1.5 m above the ground to secure and protect them. In total, 

900, 600 and 600 ovitraps were deployed in the rural, suburban and urban areas, respectively, 

from January 2013 to April 2014. In addition, from April to July 2013, we conducted socio-

ecological investigations on the 50 households representative of each study area in which 

ovitraps were placed to identify their sociogeographic status. 

  

5.3.3. Key socio-geographic characteristics 

The socio-ecological investigations showed that the surveyed households varied highly along 

the increasing urbanization gradient. The mean number (mean ± standard error) of people per 

household was 5.9 ± 2.8 in the rural, 8.6 ± 2.1 in the suburban and 11.9 ± 3.2 in the urban 

areas. The potential resident containers were mainly discarded items (cans, pots, barrels, 

tyres) (n = 50; 58.0 %) and natural containers (coconut, tree hole, bamboo, snail shell) (46.0 

%) in the rural area. The containers were mostly artificial and discarded receptacles with 78.0 

% and 92.0 % in the suburban and urban areas, respectively. The households stored water in 

the proportions of 88.0 % (n = 50) in the rural, 98.0 % in the suburban and 100 % in the 

urban areas. 
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5.3.4.  Sample laboratory treatment 

In the field, the paddles, Culex egg rafts and remaining water from the ovitraps were 

separately stored in plastic boxes and then transported in a cold box to the laboratory. The 

paddles were dried during a period of 5 days at 25 ± 1 °C room temperature, RH of 80–90 % 

and a 12:12 h light:dark photoperiod. They were screened with white, insect-proof, nylon 

netting to prevent eventual egg laying from other mosquitoes and potential predators. The 

paddles were then separately immersed in plastic cups (6  9  15 cm) 75 % filled with 

distilled water for attached egg hatching. The process was repeated three times after flooding 

of 5 days to maximize egg hatching. Emerging larvae were counted and recorded. As there 

was no reliable larval identification key, the larvae were reared until adult stage under 

identical conditions as paddle drying. To avoid overcrowding and limit mortality, at most 20 

emerging larvae were placed per 200 ml plastic cup filled to 75 % with distilled water. Each 

plastic cup was labeled with a unique number of the sample, the study area and the date of 

collection. Larvae were fed each morning (7:00–8:00 h) with Tetra-Min Baby Fish Food
®
. 

Emerging pupae were transferred to new plastic cups using plastic pipettes for adult 

emergence. The cups containing the pupae were netted to avoid draining the newly hatched 

adults. Culex egg rafts were not dried but were stored at 15 ± 1 °C to avoid desiccation [36]. 

In addition, the larvae hatched from Culex egg rafts and the larvae of Aedes, Culex and 

Eretmapodites found in the collected water from the ovitraps were also separately reared until 

adult stage, under the same conditions as described above. During rearing, emerging adult 

Aedes, Culex and Eretmapodites specimens were identified to the species level using 

morphological criteria [23, 24, 37]. The mosquito individuals were stored at subgenus, 

species and sex levels and the data were recorded in an entomology collection database. 

 

5.3.5.  Statistical analysis 

The measures of Aedes species proportions were expressed as the percentage of specimens 

among Aedes fauna for each study area and analysed using Fisher’s exact test to look at the 

relationship between the species composition and the study area and ecozone, and followed 

by the Proportion-test. Fisher’s exact test was used because expected numbers of specimens 

were equal or less than five. Aedes species richness was assessed as the number of collected 

species in each study area and compared using a one-way analysis of variance (ANOVA), 

followed by Bonferroni’s correction. The species diversity and dominance of Aedes spp. were 

estimated by Shannon-Weaver's index [38] and Simpson's index [39] and analyzed by 
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Kruskal-Wallis test because the log-transformed data exhibited significant deviations from 

normality. The abundance of Aedes spp. and Ae.  aegypti was expressed as the mean number 

of specimens per ovitrap and analysed using repeated measures approaches in a Generalized 

Linear Mixed Model (GLMM) framework in order to take into account the possible 

interactions between the variables "month", "study site" and "ecozone" [35]. To account for 

overdispersion due to excessive numbers of zeroes, the data were log-transformed [log 

(number of specimens + 1)] [36]. The log-transformed data were subjected to GLMM 

procedures and analysed as follows [35]. We compared the mean numbers of Aedes mosquito 

specimens per ovitrap between the study areas, the ecozones and the months using mixed-

effects regression (xtmixed command), performed the joint tests of the interactions and the 

main effects of the study sites, the ecozones and months (contrast command) to understand 

the significant interactions, followed up the simple effects of each study area and ecozone 

over the months by pairwise comparisons (margins and pwcompare commands) and the post-

hoc test of the trends (contrast p. operator) and the post-hoc test of the partial interaction 

(contrast a. operator). The mortality of the larvae during rearing was compared using 

negative binomial error. The extra sub-site, sylvatic zone, was excluded from the analysis 

when performing the comparisons between the study areas, and only included when the 

comparisons were conducted among the ecozones in the rural area. A significance level of 5 

% was set for statistical testing. All data were analysed using Stata version 14.0 (Stata 

Corporation; College Station, TX, USA). 

 

5.4.  Results  

5.4.1.  Species composition of emerged adult mosquitoes   

The mortality of the larvae hatched from Aedes spp. eggs during the rearing to adult stage 

was not statistically significant (all P > 0.478) thus making the comparison of emerged adults 

possible. Table 5.1 shows the species composition of adult Aedes spp. emerged from eggs 

collected from the different study areas. Totals of 2,441, 2,440 and 3,098 adult Aedes spp. 

emerged from the eggs collected in the rural, suburban and urban areas, respectively. Aedes 

species belonged to three subgenera (Stegomyia, Aedimorphus and Diceromyia) in the rural 

areas, two subgenera (Stegomiya and Aedimorphus) in the suburban areas and a single 

subgenus (Stegomyia) in the urban areas. The species richness of Aedes spp. gradually 

decreased from the rural (eight species) to the suburban (three species) and urban (one 

species) areas. Fisher’s exact test indicated that Aedes species richness significantly varied  
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Table 5.1: Species composition of emerged adult Aedes spp. collected in the rural, suburban and urban areas of southeastern Côte d’Ivoire 

Subgenus Species 
Rural Suburban Urban 

Female Male Total % MO ± SE Female Male Total % MO ± SE Female Male Total % MO ± SE 

Aedes (Stegomyia) Aedes aegypti 913 841 1,754 63.3
a 

0.57 ± 0.05 1,124 1,035 2,159 85.5
a 

1.20 ± 0.09 1,521 1,577 3,098 100 1.97 ± 0.10 

Aedes africanus 137 139 276 9.4
b 

0.08 ± 0.02 0 0 0 0 0 0 0 0 0 0 

Aedes dendrophilus 122 139 261 8.0
b 

0.07 ± 0.02 0 0 0 0 0 0 0 0 0 0 

Aedes metallicus 22 14 36 1.3
c 

0.01 ± 0.01 20 12 32 1.2
c 

0.01 ± 0.01
 

0 0 0 0 0 

Aedes usambara 20 12 32 0.5
c 

0.01 ± 0.00 0 0 0 0 0 0 0 0 0 0 

Aedes fraseri 6 11 17 0.3
c 

0.01 ± 0.00 0 0 0 0 0 0 0 0 0 0 

Aedes luteocephalus 8 3 11 0.3
c 

0.00 ± 0.00 0 0 0 0 0 0 0 0 0 0 

Aedes (Aedimorphus) Aedes vittatus 0 0 0 0 0 130 119 249 6.5
b 

0.09 ± 0.02 0 0 0 0 0 

Aedes (Diceromyia) Aedes furcifer 20 14 34 0.7
c 

0.01 ± 0.01 0 0 0 0 0 0 0 0 0 0 

Total 
Abundance 1,248 1,173 2,421 100 0.89 ± 0.06 1,274 1,166 2,440 100 1.44 ± 0.09 1,521 1,577 3,098 100 1.97 ± 0.10 

Richness (no. of spp.) 8 3 1 

Letters indicate the results of the Proportion-test. Groups that do not share the same letter for the same study area are significantly different (P < 0.05) 

Abbreviations: MO, mean number per ovitrap; SE, standard error of the mean number per ovitrap 
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from one study area to another (all P < 0.001).  Proportion-testing indicated that there was a 

significant difference in Aedes species proportions in the rural (χ
2
 = 9411.15, df = 7, P < 

0.0001) and the suburban (χ
2
 = 5052.86, df = 2, P < 0.0001) areas. Aedes aegypti was the 

predominant species with significantly higher proportions among Aedes fauna collected in the 

rural (Z = 18.91, P < 0.001) and suburban areas (Z = 7.83, P < 0.001), and the sole Aedes 

species in the urban areas. Aedes africanus and Ae. dendrophilus in the rural areas and Ae. 

vittatus in the suburban areas were found in significantly higher proportions. Aedes 

metallicus represented more than 1 % of the total Aedes fauna in the rural and the suburban 

areas whereas Ae. furcifer, Ae. fraseri and Ae. luteocpehalus were collected in lower 

proportions in the rural areas.  

Non-Aedes mosquito species were also sampled in the all study areas. Totals of 277, 

108 and 67 specimens of Culex spp. were sampled from the rural, suburban and urban areas, 

respectively. In the rural area, Culex spp. was composed of three species, Cx. nebulosus (n = 

277; 49.4 %), followed by Cx. quinquefasciatus (28.2 %) and Cx. poicilipes (22.4 %). The 

diversity of Culex spp. then decreased to a single species, Cx. quinquefasciatus, in the 

suburban (n = 108) and urban (n = 133) areas. Eretmapodites spp. was restricted to the rural 

area and composed of only one species, Er. chrysogaster, with 274 specimens.  

 

5.4.2.  Richness, diversity and dominance of Aedes spp.  

Table 5.2 presents the species richness, diversity and dominance of Aedes spp. in all of the 

study areas and different ecozones. Aedes spp. species richness was significantly different 

among the study areas (F = 18.60, df = 2, P = 0.0001) and ecozones (F = 9.24, df = 6, P < 

0.0001), with higher numbers of species in the rural area and the peridomestic zone of the 

same area. The species diversity of Aedes spp. was statistically different among the study 

areas (χ
2
 = 14.00, df = 2, P = 0.0009) and ecozones (χ

2
 = 27.65, df = 6, P = 0.0001), with 

higher values for both diversity indices in the rural area and the sylvatic zone of the rural 

area. Moreover, Aedes spp. species dominance was significantly different among the study 

areas (χ
2
 = 13.86, df = 2, P = 0.0011) and ecozones (χ

2
 = 28.00, df = 6, P = 0.0001), with 

higher Simpson's index values in the urban area and both peridomestic and domestic zones of 

the urban area. 
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Table 5.2: Species richness, diversity and dominance of Aedes spp. in the rural, 

suburban and urban areas and ecozones in southeastern Côte d’Ivoire 

Area / Ecozone Richness 
Shannon's 

diversity index 

Simpson's 

dominance index 

Area    

Rural
 

8
a 

1.39
a 

0.55
b 

Suburban
 

3
b 

0.57
a,b 

0.79
a,b 

Urban
 

1
b 

0
b 

1
a 

Ecozone 

Sylvatic
1 

5
a,b 

1.90
a 

0.28
c 

Peridomestic
1 

7
a,b 

1.23
a,b 

0.58
b,c 

Domestic
1 

5
b,c 

0.75
a,b,c 

0.77
a,b,c 

Peridomestic
2 

3
b,c 

0.67
a,b,c 

0.74
a,b,c 

Domestic
2 

3
b,c 

0.35
a,b,c 

0.89
a,b,c 

Peridomestic
3 

1
c 

0
c 

1
a 

Domestic
3 

1
c 

0
c 

1
a 

Letters indicate the results of one-way ANOVA test followed by Bonferroni correction (richness) and 

Kruskal-Wallis test (Shannon diversity index, Simpson dominance index). Groups that do not share the 

same letter are significantly different (P < 0.05) 
1
Ecozone in the rural area 

2
Ecozone in the suburban area 

3
Ecozone in the urban area 

 

5.4.3.  Dynamics of Aedes spp. numbers  

The highest mean numbers of emerged adult Aedes spp. were found in the urban setting (1.97 

± 0.10 Aedes/ovitrap/week), followed by the suburban (1.44 ± 0.09 Aedes/ovitrap/week) and 

rural (0.89 ± 0.06 Aedes/ovitrap/week) areas. The mean numbers of emerged adult Aedes spp. 

were significantly different between the rural and urban areas (Z = 5.01, P ˂ 0.001). The 

effects and the interactions among the study areas, the ecozones and months, and the trends 

of Aedes spp. numbers over the months were statistically significant (Table 5.3).  

Table 5.4 summarizes the geographical variation of adult Aedes species collected in 

each of the three study areas. In the rural areas, specimens of Ae. africanus, Aedes 

dendrophilus, Aedes metallicus and Aedes fraseri were collected in the domestic zone, while 

significant numbers of Ae. aegypti were sampled in the sylvatic zone. Emerged adult Aedes 

spp. mean numbers were significantly higher in the peridomestic zone with 1.36 ± 0.14 

Aedes/ovitrap/week in the rural (Contrast = 0.50, Z = 5.16, P ˂ 0.001), suburban (2.10 ± 0.15 

Aedes/ovitrap/week; Contrast = -4.89, Z = -4.81, P ˂ 0.001) and urban (2.80 ± 0.21 

Aedes/ovitrap/week; Contrast = -0.49; Z = -4.85, P ˂ 0.001) areas.  
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Table 5.3: Effects, interactions and trends of Aedes spp. and Ae. aegypti numbers in the rural, suburban and 

urban areas in southeastern Côte d’Ivoire. The results are the outputs of the Generalized Linear Mixed Model 

(GLMM) procedures. The extra sub-site, sylvatic zone, was excluded from the data 

 
Aedes spp. Aedes aegypti 

χ
2
 df P χ

2
 df P 

1. Main effect & interaction       

1.1. Main effect       

Study area 20.16 2 < 0.00001* 50.37 2 < 0.00001* 

Ecozone 43.76 1 < 0.00001* 26.32 1 < 0.00001* 

Month 112.78 5 < 0.00001* 82.67 5 < 0.00001* 

1.2. Interaction       

Study area  ecozone 7.09 2 0.0288* 13.25 2 0.0013* 

Study area  month 15.90 10 0.1027 26.52 10 0.0031* 

Ecozone  month 12.26 5 0.0314* 8.69 5 0.1221 

Study area  ecozone  month 14.96 10 0.1335 8.29 10 0.6003 

2. Post-hoc test of trends       

2.1. Study area Trend       

Rural Linear 2.55 1 0.1102 0.43 1 0.5109 

Quadratic 1.19 1 0.2752 2.81 1 0.0935 

Cubic 9.36 1 0.0022* 5.20 1 0.0225* 

Quartic 6.08 1 0.0136* 4.70 1 0.0302* 

Quintic 1.03 1 0.3099 0.06 1 0.7999 

Suburban Linear 7.31 1 0.0068* 4.86 1 0.275 

Quadratic 2.91 1 0.0880 0.92 1 0.3377 

Cubic 10.09 1 0.0015* 5.67 1 0.0173* 

Quartic 16.54 1 < 0.00001* 7.05 1 0.0079* 

Quintic 0.46 1 0.4969 3.58 1 0.0584 

Urban Linear 26.45 1 < 0.00001* 27.16 1 < 0.00001* 

Quadratic 0.02 1 0.8767 0.02 1 0.8798 

Cubic 15.22 1 0.0001* 15.64 1 0.0001* 

Quartic 28.58 1 < 0.00001* 29.42 1 < 0.00001* 

Quintic 2.67 1 0.1020 2.74 1 0.0981 

Joint 128.68 15 < 0.00001* 109.47 15 < 0.00001* 

2.2. Ecozone        

Peridomestic Linear 23.32 1 < 0.00001* 21.11 1 < 0.00001* 

Quadratic 1.24 1 0.2658 0.53 1 0.4679 

Cubic 17.00 1 < 0.00001* 9.87 1 0.0017* 

Quartic 47.09 1 < 0.00001* 31.48 1 < 0.00001* 

Quintic 2.87 1 0.0900 0.21 1 0.6487 

Domestic Linear 8.28 1 0.0040* 3.96 1 0.0465* 

Quadratic 1.08 1 0.2978 1.71 1 0.1915 

Cubic 17.26 1 < 0.00001* 15.23 1 0.0001* 

Quartic 7.85 1 0.0051* 7.46 1 0.0063* 

Quintic 0.02 1 0.8846 0.23 1 0.6330 

Joint 122.97 10 < 0.00001* 90.52 10 < 0.00001* 

*Significant effects (P < 0.05) 

Abbreviations: χ
2
, chi-square; df, degrees of freedom; P, P-value 
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Table 5.4: Geographical variations in the number of emerged adult species of Aedes spp. in the rural, suburban and urban areas in southeastern Côte d’Ivoire 

Species 

Rural Suburban Urban 

Sylvatic zone Peridomestic zone Domestic zone Peridomestic zone Domestic zone Peridomestic zone Domestic zone 

n MO ± SE n MO ± SE n MO ± SE n MO ± SE n MO ± SE n MO ± SE n MO ± SE 

Aedes aegypti 132 0.15 ± 0.04 901 0,85 ± 0.12 721 0.84 ± 0.10 1,353 1.64 ± 0.14 806 0.86 ± 0.11 1,938 2.80 ± 0.21 1,160 1.34 ± 0.16 

Aedes africanus 106 0.10 ± 0.03 161 0.14 ± 0.04 9 0.01 ± 0.01 0 0 0 0 0 0 0 0 

Aedes dendrophilus 121 0.11 ± 0.03 91 0.07 ± 0.03 49 0.05 ± 0.02 0 0 0 0 0 0 0 0 

Aedes metallicus 2 0.00 ± 0.00 7 0.01 ± 0.00 27 0.02 ± 0.01 28 0.02 ± 0.01 4 0.01 ± 0.01 0 0 0 0 

Aedes usambara 0 0 32 0.02 ± 0.02 0 0 0 0 0 0 0 0 0 0 

Aedes fraseri 0 0 1 0.00 ± 0.00 16 0.01 ± 0.01 0 0 0 0 0 0 0 0 

Aedes luteocephalus 0 0 11 0.01 ± 0.01 0 0 0 0 0 0 0 0 0 0 

Aedes vittatus 0 0 0 0 0 0 201 0.15 ± 0.05 48 0.30 ± 0.00 0 0 0 0 

Aedes furcifer 34 0.02 ± 0.02 0 0 0 0 0 0 0 0 0 0 0 0 

Abundance 395 0.44 ± 0.03 1,204 1.36 ± 0.14 822 1.01 ± 0.01 1,582 2.10 ± 0.15 858 0.94 ± 0.11 1,938 2.80 ± 0.21 1,160 1.34 ± 0.16 

Abbreviations: n, total number of specimens; MO, mean number of specimens per ovitrap per week; SE, standard error of the mean 
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Additional files 1 and 2: S5.1 Figure and Table S5.1 indicate the seasonal variation of 

emerged adult Aedes spp. in all of the different study areas. Aedes metallicus, Aedes 

usambara, Ae. fraseri, Ae. luteocephalus and Ae. furcifer were not collected in January 2014 

and April 2014. However, Ae. aegypti was sampled in all surveys in each study area. In all of 

the study areas, higher numbers of emerged adult Aedes spp. were found in July 2013 with 

1.47 ± 0.18 Aedes/ovitrap/week in the rural, 2.31 ± 0.29 Aedes/ovitrap/week in the suburban 

and 4.06 ± 0.28 in the urban areas (Figure 5.2). Conversely, the significantly respective 

lowest numbers of Aedes spp. were recorded in January 2014 with 0.47 ± 0.13 (all P ˂ 0.05), 

0.43 ± 0.17 (all P ˂ 0.05) and 0.47 ± 0.11 (all P ˂ 0.001) Aedes/ovitrap/week.  

 

 

 

 

 

 

 

5.4.4.  Dynamics of Ae. aegypti 

A total of 1,754 (n = 2,421; 63.3 ± 1.2%) adult Ae. aegypti emerged from the eggs collected 

from the rural areas, 2,159 (n = 2,440; 85.5 ± 0.8%) from the suburban and 3,098 (n = 3,098; 

100 %) from the urban areas (Table 5.1). The highest mean numbers of Ae. aegypti were 

found in the urban setting, with 1.97 ± 0.10 Ae. aegypti/ovitrap/week. Considerably lower 

mean numbers were recorded in the rural and suburban settings, with 0.57 ± 0.05 and 1.20 ± 

0.09 Ae. aegypti/ovitrap/week, respectively. Aedes aegypti mean numbers were significantly 

Figure 5.2: Monthly variations in mean numbers of emerged adult Aedes spp. as a 

function of the rainfall period. Rainfall was unexpectedly high in April 2013. The highest precipitations 

(374 mm) occurred in June 2013. Error bars show the standard error (SE) of the mean number of Aedes spp. per 

ovitrap. The letters indicate the results of the data analysed as repeated measures by Generalized Linear Mixed Model 

(GLMM) procedures. Groups that do not share a same letter are significantly different (P ˂ 0.05). 
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different between the urban and rural (Z = 6.23, P < 0.001), and the suburban and rural (Z = 

2.15, P < 0.05) areas. The effects of and interactions among the study areas, ecozones and 

months, and the trends of Ae. aegypti numbers over the months were statistically significant 

(Table 5.3).  

Figure 5.3 shows the geographical variations of adult Ae. aegypti mean numbers and 

frequencies. Significantly higher mean numbers per ovitrap of Ae. aegypti were found in the 

peridomestic zones with 0.85 ± 0.12 Ae. aegypti/ovitrap/week in the rural (Contrast = 0.48, Z 

= 5.68, P ˂ 0.001); 1.64 ± 0.14 Ae. aegypti/ovitrap/week in the suburban (Contrast = -0.36, Z 

= -3.65, P ˂ 0.001); and 2.80 ± 0.21 Ae. aegypti/ovitrap/week in the urban (Contrast = -0.49, 

Z = -5.04, P ˂ 0.001) settings. Aedes aegypti was collected in all of the ecozones of each 

study area. Its frequencies gradually increased from the sylvatic zone of the rural area (n = 

395; 33.4 %) to the domestic zone of the urban area (n = 1,160; 100 %) (Z = 31.43, P ˂ 

0.001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 shows the monthly variations of emerged adult Ae. aegypti mean numbers in 

relation to the rainfall. Emerged adult Ae. aegypti mean numbers significantly varied as a 

function of rainfall fluctuation in the all study areas. The highest mean numbers were found 

Figure 5.3: Geographical variations in mean numbers and frequencies of emerged 

adult Ae. aegypti. Error bars show the standard error (SE) of the mean number per ovitrap (MO) and the 

frequency. The letters indicate the results of the data analysed as repeated measures by Generalized Linear Mixed 

Model (GLMM) procedures for the mean number and Proportion-test for the frequency. Groups that do not share a 

same letter are significantly different (P ˂ 0.05). Abbreviations: MO, mean numbers per ovitrap; SZ, sylvatic zone; 

PZ, peridomestic zone; DZ, domestic zone  
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during the rainy season in July 2013 with 0.96 ± 0.14 Ae. aegypti/ovitrap/week in the rural 

and 4.06 ± 0.28 Ae. aegypti/ovitrap/week in the urban areas, and in October 2013 with 1.65 ± 

0.25 Ae. aegypti/ovitrap/week in the suburban areas. In urban areas, Ae. aegypti mean 

numbers dramatically declined in January 2014 (0.47 ± 0.11 Ae. aegypti/ovitrap/week) 

compared to July 2013 (Contrast = -1.25, Z = -7.88, P ˂ 0.001). In the same study area, Ae. 

aegypti numbers were significantly higher in January 2013 (3.08 ± 0.11 Ae. 

aegypti/ovitrap/week) compared to January 2014 (Contrast = -1.02, Z = -6.57, P ˂ 0.001). 

 

5.5.  Discussion 

To our knowledge, this is the first study exploring oviposition ecology of Aedes mosquitoes 

in variously urbanized settings of Côte d’Ivoire. Importantly, several species of Aedes were 

involved in previous dengue and yellow fever outbreaks in Côte d’Ivoire [18-22]. The 

outbreaks might be explained by the paucity of vector control strategies. A deeper 

understanding of the modifications induced by urbanization in the ecology of Aedes 

mosquitoes is crucial. Our data suggest that Aedes oviposition ecology and species 

Figure 5.4: Monthly variations in mean numbers of emerged adult Ae. aegypti as a 

function of the rainfall period. Rainfall was unexpectedly high in April 2013. The highest 

precipitations (374 mm) occurred in June 2013. Error bars show the standard error (SE) of the mean 

number of Ae. aegypti per ovitrap. The letters indicate the results of the data analysed as repeated measures 

by Generalized Linear Mixed Model (GLMM) procedures. Groups that do not share a same letter are 

significantly different (P ˂ 0.05). 
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composition, and Ae. aegypti dynamics differ from rural to suburban and urban areas in 

southeastern Côte d’Ivoire.  

Our data highlighted that the mean numbers of emerged adult Aedes spp. increase from 

rural to urban areas. An increase in Aedes species prevalence and abundance by urbanization 

was indicated by Li et al. [2]. This phenomenon is probably due to elevated numbers of Aedes 

breeding sites such as tyres, discarded cans or water storage containers, provided by 

urbanizing environment [2]. In addition, an urbanized environment accelerates Aedes 

mosquito development and survivorship [2]. By increasing Aedes spp. abundance, 

urbanization could potentially aggravate epidemic risk factors for arbovirus.  

Our results showed that urbanization alters Aedes mosquito species composition 

towards dominance of Ae. aegypti in the urban areas, while rural and suburban areas favour 

other wild Aedes species, including Ae. vittatus, Ae. dendrophilus, Ae. africanus, Ae. 

luteocephalus, Ae. furcifer, Ae. metallicus, Ae. usambara and Ae. fraseri. Aedes aegypti eggs 

are expected to be more desiccation-resistant [23, 24]; this might raise their ability to survive 

in a deforested environment such as the urban areas exposed to direct sunlight and thus 

increase the species geographical invasion. Conversely, the wild Aedes species collected only 

in the rural and suburban settings probably originated from a natural environment such as the 

preserved rainforest and the Banco National Park forest, respectively. The disappearance of 

wild Aedes species in the urban settings might be explained by the destruction of the natural 

environment for building houses and other infrastructure. The removal of vegetation due to 

house constructions and other infrastructure developments results in direct exposure of Aedes 

spp. breeding sites to solar radiation. The wild Aedes species eggs from rural settings could 

be protected against solar radiation by rainforest canopy [40] since they are laid in tree holes 

[41] and bamboo internodes [42] filled by rainwater and maintained under low temperature. It 

is conceivable that wild Aedes species that lay more fragile and desiccation-sensitive eggs 

remain confined to the rural areas, mainly in the rainy forest [23, 24]. Additional field 

manipulations and experiments under controlled laboratory conditions testing the different 

Aedes species egg desiccation-resistance levels may be useful to better understand the 

segregation among the species and the population growth rates. Indeed, the forest-dwelling 

Aedes species that are still present in the rural areas may play a key role as bridge vectors 

between the sylvatic cycles of dengue, yellow fever and other viruses among non-human 

primates and humans [17]. The vector role of these Aedes species is subtle and difficult to 

trace, and often remains undetected because there are no traditional epidemiological risk 

indicators such as the house index, container index or Breteau index [43]. However, the 



Chapter 5 – Effects of urbanization on Aedes spp. oviposition ecology 
 

 

47 
 

exclusive existence of predators such as Er. chrysogaster in the rural areas might influence 

the abundance of Aedes species [27, 42]. Eretmapodites chrysogaster is also suspected to 

transmit arboviruses in tropical Africa [23]. In summary, the segregation induced by 

urbanization in Aedes species diversity is consistent with the known arbovirus transmission 

cycles in tropical Africa [17] and merits further consideration for dengue and yellow fever 

surveillance.  

Our results suggested that the geographical and seasonal variations of Aedes spp. are 

associated with urbanized settings. The preference of Aedes spp. to lay eggs in the 

peridomestic vicinity confirms previous findings from urban areas in Brazil [44] and Vietnam 

[45]. Peridomestic premises are in close proximity to human residencies, and hence the 

principal blood-meal sources of adult Aedes mosquitoes. Furthermore, they also provide ideal 

ecosystems such as dense vegetation favourable for Aedes spp. refugia [46] and natural 

breeding sites such as tree holes [42, 47] and artificial containers as discarded cans and old 

vehicle tyres [48, 49]. Regarding the seasonal variation, Aedes spp. mean numbers were 

strongly associated with rainfall patterns, history, variability and intensity. The fluctuations in 

Aedes spp. counts could be influenced by seasonal flooding-drying cycles as reported in Côte 

d’Ivoire [18] and Brazil [44]. Aedes spp. eggs probably enter into a dormant stage to 

withstand desiccation periods during the dry season, while precipitations might flood the 

breeding sites and increase the abundance of Aedes spp. [50]. However, the sudden decline of 

Aedes spp. numbers in October 2013 in the urban setting might be due to heavy precipitations 

and exacerbated flushing of their eggs because of the lack of protective vegetation in the 

built-up environment [51]. 

Finally, our findings revealed that Ae. aegypti is the most common species along the 

increasing urbanization gradient and the unique Aedes species in urban settings thus 

suggesting  particular attention on its egg laying patterns and population dynamics. Aedes 

aegypti is an urban species that preferentially feeds on humans [52] and is well adapted to 

live in close proximity to human habitats [53]. Such highly anthropophilic behaviour may 

enhance human-to-human transmission of arboviruses and trigger dengue and yellow fever 

outbreaks. The dominance of Ae. aegypti in still urbanizing and already urbanized areas of 

Africa is well documented [8, 9, 18] and is possibly due to its plastic oviposition behaviour 

allowing the colonization of natural and artificial environments [9, 42]. Otherwise, the rising 

occurrence of Ae. aegypti was also coupled with the increasing presence of another urban, 

anthropophilic and sympathric species, Cx. quinquefasciatus [54-56] and the lack of 

predators such as Er. chrysogaster [27] in the urban area. In contrast, the specimens of Ae. 
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aegypti unexpectedly collected in the sylvatic zone are, perhaps, members of the Aedes 

aegypti formosus, the ancestral progenitor of Aedes aegypti aegypti and the only sylvan form 

known in West Africa [30, 31]. Aedes aegypti formosus has no white scales on the first 

abdominal tergite and a dark or black cuticle. This subspecies is exophilic, preferentially 

feeds on wild animals and breeds in natural containers such as tree holes [32, 57, 58], 

whereas, Ae. aegypti aegypti has scales on the first abdominal tergite and a lightly tanned 

cuticle and tends to be endo- and anthropophilic and breed in man-made containers [31]. 

However, contrary to East Africa [29, 30, 57], the scaling and behavioural patterns do not 

match with the discrete genetic differences in allozymes and microsatellites for Ae. aegypti 

collected in West Africa [13, 31, 33, 40, 59]. This results in confusion over morphological 

distinction between the two forms [13]. Due to these ambiguities, we were not able to 

confirm which Ae. aegypti form was represented among the sylvan specimens collected in the 

rural area. Above all, the urban and sylvan forms of Ae. aegypti are both competent arbovirus 

vectors in West Africa [13]. 

Urbanization continues at a rapid pace in Côte d’Ivoire, particularly in the southeastern 

part resulting in drastic segregation among Aedes species by favouring Ae. aegypti and 

restricting wild Aedes species to rural areas. These trends were paralleled by recurrent 

resurgences of yellow fever and dengue in recent years. However, yellow fever is historically 

well known as a key factor having forced the transfer of the colonial capital of Côte d’Ivoire 

from Grand-Bassam to Abidjan in 1899 [60]. Despite this historical and present background, 

the resurgence of yellow fever and dengue outbreaks is not resolved and their sporadic 

occurrence creates major public health concerns [60]. Between 2001–2007, 1,468 suspected, 

41 confirmed and 26 fatal cases of yellow fever were reported. During the period of 2007–

2001, 111 suspected with 31 confirmed and 43 deadly cases of yellow fever were notified. 

The incidence of yellow fever gradually increased and peaked in 2011 with 79 cases and 35 

deaths. In 2008, 9 cases of yellow fever and 2 cases of dengue DENV-3 were recorded. In 

2010, 13 confirmed and 2 fatal cases of yellow fever, and 1 deadly case of DENV-1 were 

reported. The strengthened warning systems and the operated vector control are usually 

performed in urban areas, mainly in Abidjan, the economic capital.  Our study suggests that 

while vector control should focus on urban areas, rural areas are important as they may serve 

as transition zones for (re-)introduction of arboviral diseases through sylvatic bridge vectors. 

Because rural areas host various wild vectors, they act as a potential reservoir and originator 

of arboviruses from which urban areas are (re-)infected. Therefore, the rural areas also need 

to be considered when elaborating and applying arbovirus vector surveillance and control 
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strategies. Aedes species control strategies could apply the lethal ovitrap [61] and autocidal 

[62] gravid ovitrap-based on mass trapping method.  

 

5.6.  Conclusions 

In arbovirus foci of the southeastern Côte d’Ivoire, urbanized environment correlates with a 

substantially higher abundance in Aedes species and a regression of the Aedes wild species 

towards a unique presence of Ae. aegypti. Aedes aegypti is expected to drive arbovirus 

transmission in the urban areas, while other species probably serve as potential bridge vectors 

between sylvatic and urban cycles of human arboviral infections in the rural areas. Our 

findings provide valuable information on Aedes spp. ecology patterns in variously urbanized 

settings and therefore suggest that the rural areas also need to be considered when 

implementing arbovirus vector surveillance and control strategies. 

 

5.7.  Additional files 

 

 

S5.1 Figure: Monthly variations in Aedes spp. positivity index in function of the 

rainfall period. Rainfall was unexpectedly high in April 2013. The highest precipitations (374 mm) 

occurred in June 2013. Error bars show the standard error (SE) of the mean of the positive ovitrap index. 

Groups that do not share a same letter are significantly different (p ˂ 0.05).  

  



Chapter 5 – Effects of urbanization on Aedes spp. oviposition ecology 
 

 

50 
 

 

 

 

 

 

Table S5.1: Seasonal variations in the number of emerged adult species of Aedes spp. in the rural, suburban and urban areas in southeastern Côte d’Ivoire 

Species 

Rural Suburban Urban 

Jan-Apr 2013 Jul-Oct 2013 Jan-Apr 2014 Jan-Apr 2013 Jul-Oct 2013 Jan-Apr 2014 Jan-Apr 2013 Jul-Oct 2013 Jan-Apr 2014 

n MO ± SE n MO ± SE n MO ± SE n MO ± SE n MO ± SE n MO ± SE n MO ± SE n MO ± SE n MO ± SE 

Aedes aegypti 603 0.50 ± 0.09 759 0.80 ± 0.10 392 0.45 ± 0.07 778 1.43 ± 0.15 843 1.55 ± 0.18 538 0.75 ± 0.13 1,308 2.55 ± 0.02 1,210 2.70 ± 0.19 580 1.03 ± 0.13 

Aedes africanus 94 0.08 ± 0.03 105 0.09 ± 0.03 77 0.07 ± 0.03 0 0 0 0 0 0 0 0 0 0 0 0 

Aedes dendrophilus 84 0.06 ± 0.03 79 0.08 ± 0.03 98 0.08 ± 0.03 0 0 0 0 0 0 0 0 0 0 0 0 

Aedes metallicus 33 0.02 ± 0.02 3 0.00 ± 0.00 0 0 13 0.02 ± 0.02 0 0 19 0.02 ± 0.02 0 0 0 0 0 0 

Aedes usambara 32 0.02 ± 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aedes fraseri 16 0.01 ± 0.01 1 0.00 ± 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aedes luteocephalus 0 0 11 0.01 ± 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aedes vittatus 0 0 0 0 0 0 55 0.06 ± 0.03 166 0.21 ± 0.06 28 0.03 ± 0.03 0 0 0 0 0 0 

Aedes furcifer 31 0.02 ± 0.01 3 0.00 ± 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Abundance 893 0.85 ± 0.11 961 1.17 ± 0.12 567 0.69 ± 0.09 846 1.62 ± 0.15 1,009 2.08 ± 0.19 585 0.83 ± 0.14 1,308 2.55 ± 0.02 1,210 2.70 ± 0.19 580 1.03 ± 0.13 

Abbreviations: n, number of specimens; MO, mean number of specimens per ovitrap per week; SE, standard error of the mean 
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Abbreviations 

GLMM, Generalized Linear Mixed Model; MO, mean number per ovitrap; DZ, domestic 

zone; PZ, peridomestic zone; SZ, sylvatic zone. 
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6.1. Abstract 

Background 

Failure in detecting naturally occurring breeding sites of Aedes mosquitoes can bias the 

conclusions drawn from field studies, and hence, negatively affect intervention outcomes. We 

characterized the habitats of immature Aedes mosquitoes and explored species dynamics 

along a rural-to-urban gradient in a West Africa setting where yellow fever and dengue co-

exist. 

Methodology 

Between January 2013 and October 2014, we searched for immature Aedes mosquitoes in 

water containers in rural, suburban, and urban areas of south-eastern Côte d’Ivoire, using 

standardized sampling procedures. Immature mosquitoes were reared in the laboratory and 

adult specimens identified at species level. 

Principal findings 

We collected 6,159, 14,347, and 22,974 Aedes mosquitoes belonging to 17, 8, and 3 different 

species in rural, suburban, and urban environments, respectively. Ae. aegypti was the most 

prevalent species in all study areas, with higher abundance in urban areas (99.37%). Overall, 

11 Aedes larval species not previously sampled in an oviposition study conducted in the same 

areas, were identified: Ae. albopictus, Ae. angustus, Ae. apicoargenteus, Ae. argenteo-

punctatus, Ae. haworthi, Ae. lilii, Ae. longipalpis, Ae. opok, Ae. palpalis, Ae. stokesi, and 

Ae. unilineatus. Aedes breeding site positivity was associated with study area, container type, 

shade, vegetal detritus, water turbidity, geographic location, season, and the presence of 

predators. We found proportionally more positive breeding sites in urban (2,136/3,374; 

63.3%), compared to suburban (1,428/3,069; 46.5%) and rural areas (738/2,423; 30.5%). In 

the urban setting, the predominant breeding sites were industrial containers, such as tires and 

discarded containers. In suburban areas, containers made of traditional material such as clay 

and wood were most frequently encountered. In rural areas, natural containers (rock holes, 

animal detritus, tree holes, fruit husks, and leaves) were common and represented 22.1% 

(163/738) of all Aedes-positive containers, hosting 18.7% of Aedes fauna. The proportion of 

positive containers was higher during the rainy season than during the dry season, and in peri-

domestic sites compared to domestic sites. Predatory mosquitoes Culex tigripes were 

commonly sampled, while Toxorhynchites and Eretmapodites were mostly collected in rural 

areas. 
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Conclusions/significance 

In south-eastern Côte d’Ivoire, urbanization is associated with high abundance of Aedes 

larvae and a predominance of artificial containers as breeding sites, mostly colonized by Ae. 

aegypti in urban areas. Nevertheless, natural containers are still common in rural areas 

harboring several Aedes species and, therefore, limiting the impact of systematic removal of 

discarded containers on the control of arbovirus diseases. 

 

Author summary 

Outbreaks of yellow fever and dengue caused by Aedes mosquitoes have been repeatedly 

reported in rural and urban areas in humid tropical Africa, including Côte d’Ivoire. Although 

controlling immature stages of Aedes mosquitoes in their aquatic habitats before they become 

adult vectors remains the best method to fight arboviral diseases, failure to identify the larval 

habitats can compromise intervention success. We studied the larval ecology of Aedes 

mosquitoes in different settings (rural, suburban, and urban) in Côte d’Ivoire. We found that 

the degree of urbanization was significantly associated with Aedes breeding sites. Compared 

with rural areas, urban and suburban areas were characterized by high numbers of Aedes 

mosquito breeding sites that were mostly artificial containers (e.g., tires and discarded 

containers), inhabited by the larvae of Ae. aegypti. In rural areas, natural containers (e.g., tree 

holes, bamboos, and rock holes) harbored several other Aedes species not found elsewhere. 

Our results suggest that removal of discarded containers - a common practice in arbovirus 

control programs - in urban areas does not suffice for controlling arboviral diseases because 

urban areas remain exposed to (re)infestation due to natural containers that host several Aedes 

species in rural areas. Additional vector control strategies, combining tools and methods, are 

required. 

 

6.2. Introduction 

Several Aedes species act as vectors of arboviral diseases, such as yellow fever, dengue, 

chikungunya, Rift valley fever, and Zika virus infections that are of public health relevance 

[1]. The transmission patterns of these arboviruses and their geographic expansion are 

expected to change due to environmental transformation, including urbanization [2, 3]. 

Besides yellow fever, other arboviruses are likely underestimated and underreported in Africa 

because of low awareness by health care providers, other prevalent non-malaria febrile 

illnesses, and lack of diagnostic tests and systematic surveillance [4]. Nevertheless, yellow 
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fever, dengue (DENV1-4), chikungunya, and Zika viruses are currently circulating in West 

Africa through the sylvatic, rural, and epidemic cycles maintained by wild and urban vectors 

[5, 6]. Côte d’Ivoire has been repeatedly facing yellow fever and dengue outbreaks involving 

several vectors such as Aedes africanus, Ae. furcifer, Ae. luteocephalus, Ae. opok, and 

Ae. vittatus in rural, and Ae. aegypti in urban areas [7, 8]. These outbreaks have often 

occurred in foci characterized by high rates of urbanization due to economic development 

supported by palm oil and rubber farming, trade, and traffic [7]. 

Arboviral disease transmission is influenced by community-level effects of container-

dwelling Aedes mosquito larvae by regulating the production and fitness of adult vectors [9]. 

Aedes mosquito larvae are highly sensitive to environmental changes, including urbanization 

[10]. Some Aedes species (e.g., Ae. aegypti) inhabit a wide variety of containers ranging from 

natural containers (e.g., tree and bamboo holes) to artificial containers (e.g., tires, discarded 

items, and other water containers) due to their ecologic plasticity [11], while others are 

restricted to specific breeding sites because of the higher sensibility of their offspring to 

environmental changes [12]. The ecologic plasticity allows Ae. aegypti and Ae. albopictus to 

spread worldwide by sea, air, and land transportations, and to adapt to new and changing 

environments [10]. 

The choice of breeding sites is governed by competition and predation among immature 

stages of Aedes and other mosquitoes that co-exist in the same breeding site [11, 12]. For 

example, intra- and interspecific competition between Ae. aegypti and Ae. albopictus [13] and 

among several Aedes species [12] has been reported. Moreover, mosquito species such as 

Toxorhynchites spp., Eretmapodites spp., and Culex tigripes predate on the larvae of Aedes 

mosquito species [12, 13]. The biotic factors may also interact with abiotic factors, such as 

the climate [13]. As larvae directly depend on water, precipitation is the most important 

physical factor. The complex patterns of flooding and drying of larval breeding sites govern 

arboviral transmission [14]. 

In Côte d’Ivoire, yellow fever has been a key factor that forced the transfer of the 

colonial capital from Grand-Bassam to Bingerville near Abidjan in 1899 [15]. However, 

more than a century later, yellow fever (and dengue) outbreaks still remain an unresolved 

public health issue [7, 8, 15]. During arbovirus epidemics, vector controls are mostly based 

on the systematic removal of artificial Aedes breeding sites in urban areas. 

The most effective vector control strategy is the control of immature stages in their 

aquatic habitats [12]. Hence, effective larval control requires a deep understanding of larval 
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ecology. Our study aimed to characterize the dynamics of Aedes larval breeding sites, species 

composition, and biological associations in terms of geographic and seasonal variations along 

a rural-to-urban gradient in south-eastern Côte d’Ivoire. As Aedes mosquito larvae are highly 

sensitive to environmental changes [10], we hypothesized that larval breeding sites differ in 

species composition between urban and rural areas. 

 

6.3. Methods 

6.3.1.  Ethics statement 

The study protocol received approval from the local health and other administrative 

authorities. In addition, all entomologic surveys and sample collections carried out on private 

lands or private residential areas were done with the permission and written informed consent 

of the residents. This study did not involve endangered or protected species. 

 

6.3.2. Study area 

The study was conducted in three areas located within a traditional arbovirus focus in south-

eastern Côte d’Ivoire: Ehania-V1 (geographic coordinates 5° 18’ N latitude, 3° 4’ W 

longitude), Blockhauss (5° 19 N, 4° 0’ W), and Treichville (5° 18 N, 4° 0’ W), representing 

an increasing urbanization gradient (Figure 6.1). The degree of urbanization is characterized 

by land use, vegetation coverage, human population density, state of roads, and public 

services, as described in Zahouli et al. [16]. 

Natural and artificial containers such as tree holes, bamboo, fruit husks, tires, discarded 

items, and water storage receptacles that may serve as potential breeding sites for Aedes 

mosquitoes vary according to human habitation and activities. The rural area is surrounded by 

farms of palm oil trees (Eleasis guineensis) covering 11,444 ha and a preserved rainforest of 

100 ha, while the suburban area is located about 2 km away from the Banco National Park 

with over 3,750 ha of rainforest. The rainforest is inhabited by a diverse fauna (e.g., primates 

and birds) that serve as hosts for Aedes mosquitoes. 

The climate is characterized by high temperature and precipitation with two rainy 

seasons. The seasons are distinguished by rainfall rather than temperature. The main rainy 

season extends from May to July, while the shorter rainy season occurs from October to 

November, with distinct dry seasons in between. The average annual precipitation ranges 

from 1,200 to 2,400 mm. The annual average temperature and relative humidity are around 

26.5 °C and 80-90%, respectively. 
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Figure 6.1: Location of the study areas in south-eastern Côte d’Ivoire. The larval breeding 

sites of Aedes mosquitoes were monitored in three areas: Ehania-V1 (A), Blockhauss (B), and Treichville (C), 

representing rural, suburban, and urban settings, respectively. The study site of Ehania-V1 includes the villages 

of Ehania-V1 and Akakro and represents the rural area without major and secondary paved roads. The site is in 

close proximity to a primary rainforest. The study site of Blockhauss covers the villages of Blockhauss and 

Petit-Cocody and represents the suburban area with only secondary paved roads. It is about 5 km away from the 

rainforest of the Banco National Park. The study site of Treichville comprises the sections of Jacques-Aka and 

Biafra and is an urban area with numerous major and secondary paved roads. It is located in the center of 

Abidjan and is separated from Blockhauss by the Ebrié lagoon. 

 

6.3.3.  Study design 

Aedes larval breeding sites were sampled quarterly in domestic (space inhabited by humans) 

and peri-domestic (surrounding vegetated environment within a 600 m radius from the 

domestic areas) sites in rural, suburban, and urban areas from January 2013 to October 2014. 

While water-holding containers, tree holes, and bamboo were repeatedly sampled, other 

potential breeding sites were sampled for the presence of immature stages of Aedes 

mosquitoes. All accessible properties were surveyed simultaneously in the three settings. 

Some properties could not be sampled because the residents refused to provide access or 

because there were physical barriers of access. 
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6.3.4.  Characterization of Aedes breeding sites 

Potential larval breeding sites of Aedes mosquitoes were sampled in all three study sites by 

teams consisting of four trained mosquito collectors in each study area. Each mosquito 

collector team was composed of the same persons during all surveys. The number of these 

experienced mosquito collectors were constant on any one day in each study area, whereas 

the teams made rotations from one study area to another in order to ensure similar sampling 

efforts and efficiency in all the three study areas, and minimize potential sampling bias. The 

collectors worked from 8:00 to 16:00 hours, and spent proportionally equal time period 

searching for potential mosquito breeding sites in the study areas.  

Readily visible and accessible containers in the selected households and surrounding 

premises were examined for the presence of water and mosquito larvae. In a preliminary 

survey, existing larval breeding sites, such as natural and artificial cavities or containers with 

a potential to contain water were kept in an inventory and assigned a unique label. Based on 

this preliminary survey, potential breeding sites were classified into two categories, three sub-

categories and 16 types, depending on their location, origin, material, and container type 

(Table 6.1 and S6.1 Figure). The breeding sites were assessed for abiotic and biotic 

characteristics, including geographic location (domestic and peri-domestic sites), color, 

exposure to sunlight (full shade, no exposure to sunlight; partial shade, partial exposure to 

sunlight; no shade, permanent exposure to sunlight), turbidity (transparent/clear, colored, 

opaque), substrate type (no substrate, foliage, moss, soil), surface of water, depth, presence of 

mosquito larvae and predators (larvae of Cx. tigripes, Eretmapodites, spp., and 

Toxorhynchites spp., mosquitoes, and toad tadpoles, and arachnids). 

 

6.3.5.  Mosquito sampling 

Larvae and pupae of Aedes mosquitoes were sampled using the World Health Organization 

(WHO) standard equipment adapted to the aperture and the depth of larval habitats. A 

flexible collection tube connected to a manual suction pump was used to sample water from 

bromeliads and bamboo holes. Scoops of 350 ml capacity were used to collect immature 

mosquitoes from larger breeding sites (e.g., tree holes, recipients, tires, and puddles). The 

collected Aedes mosquito were counted using a pipette and classified as young larvae (1-2 

instar), old larvae (3-4 instar), and pupae. Non-Aedes mosquito larvae such as Anopheles 

spp., Coquelitidia spp., Culex spp., Eretmapodites spp., Filcabia spp., Toxorhynchites spp., 

and Uranotenia spp. were also recorded.  
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Table 6.1: Classification of Aedes mosquito breeding sites sampled in south-eastern Côte d’Ivoire from January 2013 to October 2014 

N° Breeding site Definition 

I Natural
a,b

 Containers created without or by indirect intervention of humans 

A Rock hole
c 

Irregular and shallow shapes of massive stone of different sizes well exposed to sunlight 

B Animal detritus
c
 Debris of animal such as snail shells (carapaces of Achatina spp.) and animal bones 

C Tree hole
c
 Rot and pan holes of different shapes and volume located from 0 to 2 m above the ground level 

D Bamboo
c
 Cut of fixed masses of bamboos (Bambusae) and bars of bamboos used as fences 

E Leaf
c
 

Sheathing leaf axils from plants such as bromeliads (Ananas spp.), bananas (Musa spp.) and taros (Colocasia spp.), and fallen sheets on 

the floor 

F Fruit husk
c
 Skins of the coconuts (Cocos spp.) and the flowers of bananas (Musa spp.) 

II Artificial
a
 Containers created by direct intervention of humans 

II-1 Traditional
b
 Handcrafted items 

G Clay pot
c
 Ceramic containers made of clay by a potter 

H Wood-container
c
 Containers fabricated of woods such as mortars, calabashes, boats and statutes 

I Metallic pot
c
 Containers made of metals such cooking pots made by smiths 

II-2 Industrial
b
 Containers manufactured by factories 

J Tarp
c
 Plastic sheets left at the ground or covering house roofs holding puddles (temporary small water collections) formed after rainfall 

K Discarded container
c
 Human wastes such as broken plastic bottles, bowls, metal boxes, used  cans, vases, coolers, refrigerators, shoes and toys 

L Tire
c
 Bicycle, vehicle, and machine wheels left outdoors 

M Vehicle tank
c
 Reservoirs of  abandoned cars and machines 

N Vehicle carcasses
c
 Plastic and metallic debris of abandoned cars and machines 

O Building tool
c
 Materials used to build and improve the houses such air conditioner, bricks, metal sheets, toilets and flower pots 

P Water storage container
c
 Plastic and metallic receptacles used to store potable water 

a,b,c
: The inspected containers were grouped into the 2 categories

a
 , 3 sub-categories

b
 and 16 types

c
 as defined above. The container type often reflects the name of the container. 
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The predacious larvae of mosquitoes, such as Cx. tigripes, Eretmapodites spp., and 

Toxorhynchites spp. were removed from the samples to avoid predation on the other species 

and preserved separately. All mosquito samples were stored separately in plastic boxes and 

transported in an icebox to a field laboratory. 

 

6.3.6.  Laboratory procedures 

In the laboratory, mosquito larvae were reared until they reached the adult stage. In order to 

minimize mortality, a maximum of 20 larvae were placed in 200 ml plastic cups, filled with 

150 ml distilled water and covered with netting. Larvae of Aedes and other mosquitoes were 

fed each morning between 07:00 and 08:00 hours with Tetramin Baby Fish Food. Predacious 

larvae of Toxorhynchites spp. and Cx. tigripes were fed with larvae from colonies specially 

sampled from the study areas. Emerging adult mosquitoes were identified to species level 

using a morphological key [17]. As larval mortalities were low, the proportion of mosquito 

species was estimated on the basis of emerging adults. Adult specimens were stored by 

species and recorded in an entomology collection database.  

 

6.3.7. Statistical analysis 

The frequency of Aedes-positive breeding sites (FP) was calculated as the percentage of 

water holding containers with at least one larva or pupa (numerator) among the wet 

containers (denominator). The proportion of Aedes-positive breeding site types among the 

Aedes-positive breeding sites (PP) was expressed as the percentage of each Aedes-positive 

container type (numerator) among the total Aedes-positive containers (denominator) in each 

study area. To test whether there was a difference in the number of positive breeding sites 

and the number of available wet containers in each category, we used Fisher’s exact and a χ
2
 

tests, as appropriate, to test for differences in the frequency of Aedes-positive breeding sites 

across the three study areas and between the domestic and peri-domestic sites, and between 

dry and rainy seasons. 

 Aedes species proportions were calculated as the percentage of specimens belonging to 

the genus Aedes for each study area and then compared between breeding sites as above. 

Larval abundances of Aedes mosquitoes were standardized as the mean numbers of larvae per 

liter of water, expressed as the geometric mean, known as Williams’ mean (i.e., log[number 

of mosquito larvae + 1]) [18], and compared using the Kruskal-Wallis test, followed by 

Mann-Whitney. The Mann-Whitney U test was also performed to compare pairs of study 
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areas when the Kruskal-Wallis H test showed a significant difference or only two habitats. 

Aedes species richness was defined as the number of collected species in each study area and 

compared using a one-way analysis of variance (ANOVA), followed by the Tukey post-hoc 

test for post-hoc pairwise comparisons [19]. Aedes species diversity and dominance were 

estimated using the Shannon-Weaver index [20] and Simpson index [21] and analyzed using 

a Kruskal-Wallis test. Kruskal-Wallis test was performed because a test for normality showed 

a significant difference in the variances after log-transforming the data. A significance level 

of 5% was set for statistical testing. All statistical analyses were conducted using Stata 

version 14.0 (Stata Corporation; College Station, TX, United States of America).  

 

6.4. Results 

6.4.1. Mosquito species composition 

Table 6.2 shows the species composition of adult mosquitoes that emerged from the larvae 

and pupae sampled from the breeding sites along the rural-urban gradient in south-eastern 

Côte d’Ivoire and reared after transfer to the laboratory. In total, 7,661, 16,931, and 26,968 

adult mosquitoes emerged from the collected larvae in rural, suburban, and urban areas, 

respectively. The rural setting had the highest mosquito species diversity (eight genera and 37 

species), followed by the suburban setting (four genera and 14 species), and the urban setting 

(three genera and nine species). The genus Aedes predominated throughout, with proportions 

of 80.40% (n = 7,661) in rural, 84.75% (n = 16,931) in suburban, and 85.19% (n = 26,968) in 

urban settings. The rural setting had the largest number of Aedes species (17 species), 

followed by the suburban (eight species) and urban settings (three species). 

The predacious mosquito species Cx. tigripes was sampled in each of the three study 

settings, while the predators Eretmapodites chrysogaster, Eretmapodites inornatus, and 

Toxorhynchites brevipalpis were primarily collected in rural settings. Moreover, several other 

vector competent mosquito species, namely Anopheles coustani, An. gambiae, Coquelettidia 

fuscopennata, Cx. quinquefasciatus, and Cx. poicilipes were sampled. 
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Table 6.2: Species composition of emerged adult mosquitoes collected as larvae in the rural, suburban and 

urban areas in arbovirus-endemic areas in south-eastern Côte d’Ivoire from January 2013 to October 2014 

Genus Species 
Rural Suburban Urban 

F M T % F M T % F M T % 

Aedes Ae. aegypti 2331 2296 4627 60.40 6651 6827 13478 79.61 11526 11303 22829 84.65 

Ae. africanus 69 74 143 1.87 0 0 0 0.00 0 0 0 0.00 

Ae. albopictus 0 0 0 0.00 0 0 0 0.00 2 0 2 0.01 

Ae. angustus 14 19 33 0.43 23 20 43 0.25 0 0 0 0.00 

Ae. apicoargenteus 4 1 5 0.07 0 0 0 0.00 0 0 0 0.00 

Ae. argenteopunctatus 1 1 2 0.03 0 0 2 0.01 0 0 0 0.00 

Ae. dendrophilus 122 114 236 3.08 5 1 6 0.04 0 0 0 0.00 

Ae. furcifer 134 145 279 3.64 3 3 6 0.04 0 0 0 0.00 

Ae. haworthi 0 0 0 0.00 23 28 51 0.30 0 0 0 0.00 

Ae. lilii 41 33 74 0.97 0 0 0 0.00 0 0 0 0.00 

Ae. longipalpis 7 4 11 0.14 0 0 0 0.00 0 0 0 0.00 

Ae. luteocpehalus 49 43 92 1.20 0 0 0 0.00 0 0 0 0.00 

Ae. metallicus 41 38 79 1.03 7 11 18 0.11 0 0 0 0.00 

Ae. opok 19 24 43 0.56 0 0 0 0.00 0 0 0 0.00 

Ae. palpalis 126 118 244 3.18 0 0 0 0.00 0 0 0 0.00 

Ae. stokesi 0 2 2 0.03 0 0 0 0.00 0 0 0 0.00 

Ae. unilineatus 41 33 74 0.97 0 0 0 0.00 0 0 0 0.00 

Ae. usambara 18 23 41 0.53 0 0 0 0.00 0 0 0 0.00 

Ae. vittatus 91 83 174 2.27 384 359 743 4.39 65 78 143 0.53 

Total 3108 3051 6159 80.40 7096 7251 14347 84.75 11593 11381 22974 85.19 

Anopheles An. coustani 1 2 3 0.04 0 0 0 0.00 0 0 0 0.00 

An. gambiae 41 37 78 1.02 46 37 83 0.49 63 68 131 0.48 

An. pharoensis 10 7 17 0.22 6 2 8 0.05 1 0 1 0.01 

An. rufipes 0 1 1 0.01 0 0 0 0.00 0 0 0 0.00 

An. ziemani 6 7 13 0.17 0 0 0 0.00 0 0 0 0.00 

Total 58 54 112 1.46 52 39 91 0.54 64 68 132 0.49 

Coquelitidia Cq. cristata 1 3 4 0.05 0 0 0 0.00 0 0 0 0.00 

Cq. fuscopennata 3 0 3 0.04 0 0 0 0.00 0 0 0 0.00 

Total 4 3 7 0.09 0 0 0 0.00 0 0 0 0.00 

Culex Cx. annulioris 5 2 7 0.09 0 0 0 0.00 0 0 0 0.00 

Cx. cinereus 48 46 94 1.23 0 0 0 0.00 0 0 0 0.00 

Cx. decens 12 17 29 0.38 10 13 23 0.14 7 11 18 0.07 

Cx. nebulosus 56 42 98 1.28 39 34 73 0.42 23 18 41 0.14 

Cx. poicilipes 137 126 263 3.43 0 0 0 0.00 0 0 0 0.00 

Cx. quinquefasciatus 321 297 618 8.07 1165 1099 2264 13.37 1761 1873 3634 13.48 

Cx. tigripes 34 39 73 0.95 59 72 131 0.77 78 91 169 0.63 

Total 613 569 1182 15.43 1273 1218 2491 14.70 1869 1993 3862 14.32 

Eretmapodites Er. chrysogaster 57 66 123 1.61 2 0 2 0.01 0 0 0 0.00 

Er. inornatus 3 5 8 0.10 0 0 0 0.00 0 0 0 0.00 

Er. quinquevittatus 9 4 13 0.17 0 0 0 0.00 0 0 0 0.00 

Total 69 75 144 1.88 2 0 2 0.01 0 0 0 0.00 

Filcabia Fi. circumtesta 0 1 1 0.01 0 0 0 0.00 0 0 0 0.00 

Total 0 1 1 0.01 0 0 0 0.00 0 0 0 0.00 

Toxorhynchites Tx. brevipalpis 28 18 46 0.60 0 0 0 0.00 0 0 0 0.00 

Tx. lutescens 4 3 7 0.09 0 0 0 0.00 0 0 0 0.00 

Total 32 21 53 0.69 0 0 0 0.00 0 0 0 0.00 

Uranotenia Ur. mashonensis 2 1 3 0.04 0 0 0 0.00 0 0 0 0.00 

Total 2 1 3 0.04 0 0 0 0.00 0 0 0 0.00 

Total 3886 3775 7661 100 8423 8508 16931 100 13526 13442 26968 100 

F: Female, M: Male, T: total numbers of mosquitoes.  %: proportion in percentage (%) of specimens of mosquitoes. 
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6.4.2. Ecological characterization of Aedes species and breeding sites 

Table 6.3 summarizes the species composition of Aedes mosquitoes collected as larvae 

among different types of breeding sites in the rural, suburban and urban areas. Ae. aegypti 

and Ae. vittatus were commonly encountered in the three settings. Ae. aegypti was the most 

prevalent species in the all study areas, and exhibited rising abundance from rural (n = 6,159; 

75.12%) to suburban (n = 14,347; 93.94%)  and urban (n = 22,974; 99.37%) areas. Besides, 

the highest prevalence of Ae. vittatus (5.18%) was found in suburban areas. In rural areas, 

Ae. furcifer (4.53%), Ae. palpalis (3.96%), Ae. dendrophilus (3.83%), Ae. vittatus (2.83%), 

Ae. africanus (2.31%), Ae. luteocephalus (1.49%), Ae. metallicus (1.28%), Ae. lilii (1.22%), 

and Ae. unilineatus (1.20%) were collected at frequencies above 1%. We also found two 

specimens of Ae. albopictus (0.01%) in the urban settings. 

 The presence of Aedes mosquito larvae in breeding sites significantly varied by species 

(Table 6.3). For example, Ae. aegypti were found in all types of Aedes-positive breeding sites 

sampled in all the three study areas. Moreover, Ae. dendrophilus, Ae. furcifer, and 

Ae. luteocephalus were found in all container types in the rural areas, while Ae. vittatus and 

Ae. metallicus were collected from both natural and artificial containers in the suburban 

areas. Ae. africanus, Ae. lilii, Ae. unilineatus, and Ae. usambara were mostly present in 

natural containers such as tree holes, bamboo, and fruit husks in rural settings. 

 

6.4.3.  Associations among different Aedes species 

Several species were found together in the same breeding sites. For example, Ae. aegypti, 

Ae. dendrophilus, Ae. furcifer, and Ae. africanus shared the same breeding sites in the rural 

areas, whereas Ae. aegypti co-existed with Ae. vittatus in suburban settings (n = 1,295; 

12.8%). These two species co-occurred, albeit at low frequency (n = 57; 0.3%) in urban 

breeding sites. Additionally, Cx. quinquefasciatus and An. gambiae were often collected 

together with Ae. aegypti in tires and discarded containers in peri-domestic environments in 

the three study areas. 

Mosquito predators, such as Cx. tigripes, Er. chrysogaster, and Tx. brevipalpis were 

found in the same breeding sites as Ae. aegypti, Ae. dendrophilus, Ae. furcifer, and 

Ae. africanus in rural settings. These ecologic associations were most present in tree holes, 

discarded containers and tires in the rural areas and in peri-domestic breeding sites in the 

rainy season. 
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Table 6.3: Proportions (%) of Aedes mosquito species collected as larvae among different types of breeding sites in the rural, suburban and urban areas in south-eastern Côte d'Ivoire from January 2013 to 

October 2014 

Species 
Natural

a,b
 

Artificial
a
 

Total Traditional
b
 Industrial

b
 

Total 
Rock

c
 Anim

c
 Leaf

c
 Husk

c
 Bamb

c
 Tree

c
 Total Clay

c
 Wood

c
 Metal

c
 Total Tarp

c
 Disca

c
 Tire

c
 Tank

c
 Carca

c
 build

c
 Stora

c
 Total 

Rural                                           

Ae. aegypti 0.41 0.47 0.54 4.58 1.27 1.23 8.49 4.34 1.64 3.41 9.38 3.88 12.97 26.04 3.52 6.10 2.24 2.48 57.25 66.63 75.12 

Ae. africanus 0.00 0.00 0.00 0.50 0.70 1.12 2.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 2.31 

Ae. angustus 0.05 0.00 0.00 0.03 0.00 0.10 0.18 0.00 0.00 0.00 0.00 0.00 0.05 0.31 0.00 0.00 0.00 0.00 0.36 0.36 0.54 

Ae. apicoargenteus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.08 0.08 

Ae. argenteopunctatus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.03 0.03 

Ae. dendrophilus 0.00 0.13 0.26 0.18 0.15 0.29 1.01 0.05 0.26 0.11 0.42 0.15 0.62 1.56 0.00 0.08 0.00 0.00 2.40 2.83 3.83 

Ae. furcifer 0.32 0.00 0.00 0.00 0.31 0.75 1.38 0.00 0.00 0.00 0.00 0.52 0.18 1.74 0.26 0.45 0.00 0.00 3.15 3.15 4.53 

Ae. lilii 0.00 0.00 0.17 0.60 0.08 0.05 0.90 0.00 0.00 0.00 0.00 0.05 0.05 0.16 0.00 0.06 0.00 0.00 0.32 0.32 1.22 

Ae. longipalpis 0.00 0.00 0.00 0.11 0.05 0.02 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 

Ae. luteocephalus 0.00 0.05 0.00 0.18 0.00 0.11 0.34 0.00 0.00 0.00 0.00 0.05 0.19 0.68 0.00 0.23 0.00 0.00 1.15 1.15 1.49 

Ae. metallicus 0.08 0.00 0.00 0.00 0.00 0.05 0.13 0.47 0.08 0.34 0.89 0.00 0.06 0.19 0.00 0.00 0.00 0.00 0.26 1.15 1.28 

Ae. opok 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.03 0.00 0.62 0.00 0.00 0.00 0.00 0.65 0.65 0.70 

Ae. palpalis 0.70 0.00 0.06 0.15 0.21 0.71 1.83 0.29 0.15 0.00 0.44 0.29 0.34 0.94 0.00 0.11 0.00 0.00 1.69 2.13 3.96 

Ae. stokesi 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 

Ae. unilineatus 0.00 0.03 0.00 0.13 0.08 0.28 0.52 0.26 0.05 0.18 0.49 0.00 0.00 0.15 0.00 0.05 0.00 0.00 0.19 0.68 1.20 

Ae. usambara 0.00 0.00 0.00 0.00 0.42 0.24 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 

Ae. vittatus 0.21 0.00 0.00 0.00 0.10 0.39 0.70 0.10 0.23 0.15 0.47 0.44 0.34 0.62 0.08 0.06 0.11 0.00 1.66 2.13 2.83 

Total 1.77 0.68 1.03 6.46 3.37 5.40 18.7 5.56 2.41 4.19 12.14 5.40 14.83 33.04 3.86 7.14 2.35 2.48 69.14 81.29 100 

Suburban                                           

Ae. aegypti na 0.06 0.00 0.47 0.24 0.00 0.77 2.47 1.15 2.52 6.14 2.83 26.21 42.70 2.10 8.21 1.92 3.06 87.03 93.17 93.94 

Ae. angustus na 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.06 0.15 0.00 0.05 0.10 0.00 0.00 0.00 0.00 0.15 0.30 0.30 

Ae. argenteopunstatus na 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Ae. dendrophilus na 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.03 0.04 

Ae. furcifer na 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 

Ae. haworthi na 0.00 0.00 0.00 0.00 0.02 0.02 0.16 0.01 0.00 0.17 0.08 0.00 0.07 0.00 0.01 0.00 0.00 0.16 0.33 0.36 

Ae. metallicus na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.10 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.13 0.13 

Ae. vittatus na 0.08 0.00 0.04 0.15 0.00 0.27 0.53 0.27 0.78 1.58 0.62 0.47 1.81 0.03 0.00 0.30 0.09 3.32 4.91 5.18 

Total na 0.14 0.01 0.55 0.39 0.03 1.12 3.25 1.45 3.44 8.14 3.53 26.73 44.73 2.13 8.22 2.22 3.15 90.71 98.87 100 

Urban                                           

Ae. aegypti na 0.00 0.00 0.18 0.13 na 0.32 0.45 0.41 1.11 1.97 1.97 24.49 60.14 2.67 3.83 0.67 3.32 97.08 99.05 99.37 

Ae. albopictus na 0.00 0.00 0.00 0.00 na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 

Ae. vittatus na 0.00 0.00 0.03 0.05 na 0.08 0.10 0.00 0.00 0.10 0.24 0.03 0.15 0.00 0.00 0.00 0.02 0.44 0.54 0.62 

Total na 0.00 0.00 0.21 0.18 na 0.40 0.55 0.41 1.11 2.07 2.21 24.52 60.30 2.67 3.83 0.67 3.34 97.53 99.60 100 

%: percentage; 
a,b,c

: The inspected containers were grouped into the 2 categories
a
 , 3 sub-categories

b
 and 16 types

c
 as indicated above. The container type often reflects the name of the container. The total numbers of specimens 

of Aedes mosquitoes collected were 6,159, 14,347 and 22,974 specimens in the rural, suburban and urban areas, respectively. Rock: rock holes, Anim: animal detritus, Husk: fruit husks, Bamb: bamboo holes, Tree: tree holes, 

Clay: clay pots, Wood: wood-containers, Metal: metallic pots, Disca: discarded containers, Tank: vehicle tanks, Carca: vehicle carcasses, Building: Building tool, Stora: water storage containers. 
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6.4.4.  Aedes breeding site positivity 

Among 3,569, 4,882, and 5,783 containers inspected in rural, suburban and urban settings, 

2,423, 3,069, and 3,374 were wet,  respectively. The urban setting had a significantly higher 

Aedes-positive breeding site rate (2,136/3,374; FP = 63.3%) as compared to suburban 

(1,428/3,069; FP = 46.5%) and rural settings (738/2,423; FP = 30.5%) (χ
2
 = 478.9, df = 2, p < 

0.05) (S6.1 Table). The Mann-Whitney U-test indicated that the abundance of immature 

Aedes mosquitoes in one study area was significantly different compared to another. A 

significantly higher abundance of immature Aedes mosquitoes was found in urban areas with 

larval densities of 1.26 ± 0.01 larvae/l, followed by the suburban areas with 0.77 ± 0.01 

larvae/l and rural areas with 0.42 ± 0.01 larvae/l (χ
2
 = 663.3, df = 2, p < 0.001) (Table 6.4). 

Urban setting show significantly higher proportions of pupae (n = 23,126; 14.9%) and 3-4 

instar larvae compared to rural setting with 9.6% (n = 6,212) of pupae and 47.8% of 3-4 

instar larvae (P < 0.05). The presence of immature Aedes mosquitoes was significantly 

associated with the sites, seasons, breeding site types and categories, substrates, color, vegetal 

detritus, shade, water turbidity, and predators (P < 0.05). 

 

6.4.5.  Dynamics of Aedes breeding sites 

Figure 6.2 shows that the Aedes-positive microhabitat rate varied widely from one breeding 

site type to another in all three areas. The rural area showed the largest variability in Aedes 

breeding sites grouped into 16 types, followed by the suburban and urban areas presenting 15 

and 12 microhabitat types, respectively. S6.1 Table indicates that immature Aedes mosquitoes 

were found in both natural (163/738; PP = 22.1%) and artificial (575/738; PP = 77.9%) 

breeding sites in the rural, and mostly in artificial breeding sites in the suburban (1,405/1,428; 

PP = 98.4%) and urban (2,129/2,136; PP = 99.7%) areas, including higher proportions of 

industrial containers in the urban areas (2,066/2,136; PP = 96.7%). In the rural areas, the 

main Aedes-positive breeding sites represented natural types, such as three holes (62/69; FP = 

89.9%), bamboo (17/45; FP = 37.8%), and fruit husks (59/195; FP = 30.3%), traditional 

containers such as metallic (27/44; FP = 61.4%) and clay pots (44/101; FP = 43.6%) and 

wood-containers (24/69; FP = 34.8%); and industrial containers such as tarps (41/66; FP = 

62.1%), tires (183/324; FP = 56.5%), vehicle tanks (41/84; FP = 48.8%), discarded containers 

(104/254; FP = 40.9%), and vehicle carcasses (68/171; FP = 52.0%). 
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Table 6.4:  Dynamics of Aedes mosquito species collected as larvae among breeding sites in the rural, suburban and urban areas  in south-eastern Côte d’Ivoire 

Term 

Rural Suburban Urban 

Abundance 

(Mean ± 

SE) 

Richness 

Shannon’s 

diversity 

index 

Simpson’s 

dominance 

index 

Abundance 

(Mean ± 

SE) 

Richness 

Shannon’s 

diversity 

index 

Simpson’s 

dominance 

index 

Abundance 

(Mean ± 

SE) 

Richness 

Shannon’s 

diversity 

index 

Simpson’s 

dominance 

index 

Areas 0.42 ± 0.01 17 1.64 0.57 0.77 ± 0.01 8 0.38 0.89 1.26 ± 0.01 3 0.06 0.99 

Site             

   Peri-domestic 0.65 ± 0.02 16 1.69 0.55 1.39 ± 0.02 8 0.39 0.89 2.10 ± 0.01 3 0.04 0.99 

   Domestic 0.13 ± 0.01 14 1.20 0.70 0.23 ± 0.01 3 0.35 0.88 0.88 ± 0.37 2 0.13 0.97 

Breeding site             

   Rock hole 0.22 ± 0.08 6 2.18 0.26 na na na na na na na na 

   Animal detritus 0.12 ± 0.04 4 1.41 0.52 0.78 ± 0.30 2 0.99 0.51 0.00 ± 0.00 0 na na 

   Leaf axil 0.10 ± 0.03 4 1.68 0.36 0.06 ± 0.06 1 0.00 1.00 0.00 ± 0.00 0 na na 

   Fruit husk 0.44 ± 0.04 9 1.62 0.52 0.71 ± 0.15 3 0.76 0.73 0.67 ± 0.29 2 0.54 0.78 

   Bamboo 0.34 ± 0.06 10 2.64 0.22 0.51 ± 0.21 2 0.96 0.53 0.78 ± 0.26 2 0.85 0.60 

   Tree hole 0.98 ± 0.05 15 3.13 0.14 0.21 ± 0.14 2 0.97 0.52 na na na na 

 Natural  0.32 ± 0.02 15 2.75 0.25 0.46 ± 0.18 6 1.31 0.52 0.02 ± 0.01 2 0.72 0.68 

   Clay pot 0.58 ± 0.06 7 1.23 0.62 0.74 ± 0.07 4 1.09 0.61 0.99 ± 0.12 2 0.70 0.69 

   Wood  0.50 ± 0.08 6 1.04 0.67 0.63 ± 0.08 4 0.87 0.66 1.06 ± 0.19 1 0.00 1.00 

   Metallic pot 1.23 ± 0.10 5 1.04 0.67 0.83 ± 0.06 4 1.04 0.59 0.88 ± 0.09 1 0.00 1.00 

 Traditional 0.67 ± 0.04 7 1.31 0.61 0.92 ± 0.07 5 1.07 0.61 1.02 ± 0.14 2 0.29 0.90 

   Tarp 0.80 ± 0.08 8 1.50 0.53 0.60 ± 0.06 3 0.83 0.67 0.88 ± 0.08 2 0.49 0.81 

   Discarded 0.73 ± 0.04 10 0.88 0.77 0.99 ± 0.02 3 0.15 0.96 1.83 ± 0.02 2 0.01 0.99 

   Tire 1.20 ± 0.04 12 1.37 0.63 1.78 ± 0.02 6 0.30 0.91 2.30 ± 0.02 3 0.03 0.99 

   Vehicle tank 0.63 ± 0.07 3 0.50 0.84 1.45 ± 0.10 2 0.12 0.97 1.93 ± 0.06 1 0.00 1.00 

   Vehicle carcasses 0.51 ± 0.04 8 0.95 0.73 0.89 ± 0.04 2 0.01 0.99 1.36 ± 0.06 1 0.00 1.00 

   Building tools 0.70 ± 0.11 2 0.28 0.91 1.01 ± 0.08 2 0.57 0.77 0.91 ± 0.10 1 0.00 1.00 

   Water storage 0.03 ± 0.01 1 0.00 1.00 0.07 ± 0.01 2 0.19 0.94 0.13 ± 0.01 1 0.06 0.99 

 Industrial 0.80 ± 0.02 13 1.16 0.69 1.32 ± 0.01 6 0.27 0.92 2.12 ± 0.01 3 0.04 0.99 

 Artificial 0.70 ± 0.02 13 1.23 0.68 1.17 ± 0.01 6 0.36 0.89 2.07 ± 0.01 3 0.06 0.99 

SE: Standard error of the mean number of mosquitoes per liter of water. The abundance is expressed as the mean number of Aedes mosquito larvae per liter of water (Larve/liter) and calculated as 

Williams’ mean. 
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Figure 6.2: Dynamics of Aedes mosquito breeding sites in rural, suburban, and urban 

areas in south-eastern Côte d’Ivoire. Error bars show the standard error (SE). 

 

 In the urban setting, the most common Aedes breeding sites comprised of industrial 

containers such as tires (1,087/1,236; FP = 87.9%), discarded containers (601/767; FP = 

78.4%), canisters (77/94; FP = 81.9%), vehicle carcasses (91/131; FP = 69.5%), and water 

storage containers (141/896; FP = 15.7%). Water storage containers were found to be more 

frequently infested with immature stages of Aedes mosquitoes in the urban than in the 

suburban (χ
2
 = 17.3, df = 1, p < 0.001) or rural settings (χ

2
 = 57.3, df = 1, p < 0.001). 

Furthermore, there was a statistically significant difference in Aedes mosquito positivity rate 

in water storage container between the suburban and rural settings (χ
2
 = 15.8, df = 1, p < 

0.001). Besides the variations in the frequency in the colonization of Aedes breeding sites, the 

most abundant Aedes breeding sites were tires and discarded containers in all the study areas 

(all p < 0.05) (Fig 3). Also frequently positive were natural breeding sites such as tree holes 

(62/738; PP = 8.4%), fruit husks (59/738; PP = 8.0%), industrial containers such as tarps 

(41/738; PP = 5.6%), vehicle tanks (n = 41/738; PP = 5.6%) and vehicle carcasses (68/738; 

PP = 9.2%) in the rural area, and water storage containers (141/2,136; PP = 6.6%) in the 

urban area (Figure 6.3). 
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Figure 6.3: Frequency of Aedes mosquito breeding sites in rural, suburban, and urban 

areas in south-eastern Côte d’Ivoire. Error bars show the standard error (SE). 

 

6.4.6.  Ecological variations in Aedes species 

Table 6.4 summarizes the abundance, richness, diversity, and dominance of Aedes mosquito 

species according to the breeding site types among macrohabitats and study areas. The 

indices highly varied between the study areas and breeding sites, with overall higher values in 

peri-domestic environments. The highest larval abundances of Aedes mosquitoes were 

recorded in tires in the all study areas (p < 0.05). In addition, tree holes and metallic pots in 

the rural, vehicle tanks and building tools in the suburban and discarded containers, vehicle 

tanks and vehicle carcasses in the urban areas were also highly productive breeding sites for 

Aedes mosquito (S6.2 Figure). Aedes species richness was significantly different among the 

microhabitats in the rural (F = 4.3; df = 16; p < 0.001), suburban (F = 9.2; df = 7; p < 0.001), 

and urban settings (F = 11.1; df = 2; p < 0.001). Significantly higher numbers of species (13 

species) were found in tree holes in the rural areas. The rural areas showed the highest 

species diversity, as demonstrated by a Shannon’s diversity index of 1.64, followed by 0.38 

for the suburban and 0.06 for the urban areas. Among the breeding sites, the highest 

Shannon’s diversity index was found in the rural areas for the tree holes with a value of 3.13. 

Conversely, Simpson’s dominance index of Aedes species significantly decreased from the 

urban (0.99) to suburban (0.89) and rural (0.57) areas (F = 16.2; df = 3; p < 0.001). 
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6.4.7.  Geographic shifts in Aedes breeding sites 

Table 6.5 shows that the proportion of breeding sites positive for Aedes larvae significantly 

varied across the peri-domestic and domestic sites in all study areas. Overall, compared to 

domestic environment, peri-domestic sites showed a higher proportion of significantly Aedes-

positive breeding sites, with FP of 84.8% (1,753/2,066) in urban (χ
2
 = 1,100; df = 1; p < 

0.001), 70.2% (1,176/1,676) in suburban (χ
2
 = 829.2; df = 1; p < 0.001) and 42.6% 

(636/1,492) in rural (χ
2
 = 271.5; df = 1; p < 0.001) areas (Table 6.5). In rural areas, 87.7% 

(143/163) of the natural breeding sites that hosted Aedes larvae were located in the peri-

domestic sites. High numbers of tires were found infested in the domestic site, with FP of 

66.5% (151/227) Aedes-positive breeding sites in the urban, and 35.8% (63/176) in the 

suburban area. 

 

6.4.8.  Seasonal shifts in Aedes breeding sites 

In all study areas, the proportion of Aedes-positive breeding sites and the number of larvae 

varied significantly over time with more breeding sites being positive during the rainy season 

(Figure 6.4 and S6.3 Figure). During the rainy season, proportionally more breeding sites 

were positive. The frequencies of Aedes-positive breeding sites were 69.6% (1,650/2,369) in 

the urban (χ
2
 = 137.7; df = 1; p < 0.001), 52.9% (1,196/2,263) in the suburban (χ

2
 = 138.4; df 

= 1; p < 0.001), and 34.6% (642/1,857) in the rural (χ
2
 = 63.5; df = 1; p < 0.001) areas (S6.2 

Table). Significantly more Aedes-positive breeding sites were observed during the rainy 

season in the rural, urban, and suburban areas, with FP of 40.0% (187/468) and 72.0% 

(521/724) in July 2013, and 56.6% (327/578) in October 2013, respectively (S6.3 Figure). 

Moreover, higher densities of immature Aedes mosquitoes were recorded in July 2013 with 

0.62 ± 0.03 and 1.70 ± 0.03 larvae/l in the rural, urban and, suburban areas, respectively, and 

in October 2013 with 1.02 ± 0.02 larvae/l (Figure 6.5). There were significant differences in 

the highest Aedes microhabitat rates (χ
2
 = 121.2; df = 2; p < 0.001) and the highest abundance 

(χ
2
 = 156.5; df = 2; p < 0.001) between the tree study areas. The highest frequency (i.e., 

352/393; FP = 89.6%) of Aedes-positive breeding sites was observed in the peri-domestic 

macrohabitats in the urban areas during the rainy season in October 2013. 
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Table 6.5: Geographical variations in Aedes mosquito breeding site positivity across the sites in the rural, suburban and urban areas in south-eastern Côte d’Ivoire 

from January 2013 to October 2014 

Breeding site 

Rural Suburban Urban 

Peri-domestic Domestic Peri-domestic Domestic Peri-domestic Domestic 

N n FP PP N n FP PP N n FP PP N n FP PP N n FP PP N n FP PP 

Natural                                                 

Rock hole 42 6 14.3 0.9 0 0 na 0.0 0 0 na 0.0 0 0 na 0.0 0 0 na 0 0 0 na 0.0 

Animal detritus 76 8 10.5 1.3 6 0 0 0.0 6 3 50.0 0.3 0 0 na 0.0 2 0 0 0 0 0 na 0.0 

Leaf axil 151 11 7.3 1.7 0 0 na 0.0 19 3 15.8 0.3 0 0 na 0.0 6 0 0 0 0 0 na 0.0 

Fruit husk 166 49 29.5 7.7 29 10 34.5 9.8 13 9 69.2 0.8 13 2 15.4 0.8 8 3 37.5 0.2 0 0 na 0.0 

    Bamboo 45 17 37.8 2.7 0 0 na 0.0 15 4 26.7 0.3 0 0 na 0.0 9 4 44.4 0.2 0 0 na 0.0 

       Tree hole 56 52 92.9 8.2 13 10 76.9 9.8 11 2 18.2 0.2 0 0 na 0.0 0 0 na 0 0 0 na 0.0 

Total 536 143 26.7 22.5 48 20 41.7 19.6 64 21 32.8 1.8 13 2 15.4 0.8 25 7 28 0.4 0 0 na 0.0 

    Traditional                                                 

       Clay pot 73 36 49.3 5.7 28 8 28.6 7.8 64 34 53.1 2.9 26 9 34.6 3.6 21 14 66.7 0.8 8 4 50.0 1.0 

Wood 42 21 50.0 3.3 27 3 11.1 2.9 41 20 48.8 1.7 26 11 42.31 4.4 11 7 63.6 0.4 3 1 33.3 0.3 

       Metallic pot 32 22 68.8 3.5 12 5 41.7 4.9 72 43 59.7 3.7 33 18 54.5 7.1 36 30 83.3 1.7 12 7 58.3 1.8 

Total 147 79 53.7 12.4 67 16 23.9 15.7 177 97 54.8 8.2 85 38 44.7 15.1 68 51 75 2.9 23 12 52.2 3.1 

Industrial                                                 

       Tarp 39 27 69.2 4.2 27 14 51.9 13.7 47 38 80.9 3.2 85 15 17.6 6.0 58 32 55.2 1.8 37 14 37.8 3.7 

Discarded 213 96 45.1 15.1 41 8 19.5 7.8 578 385 66.6 32.7 167 32 19.2 12.7 691 563 81.5 32.1 76 38 50.0 9.9 

Tire 286 172 60.1 27.0 38 11 28.9 10.8 520 462 88.8 39.3 176 63 35.8 25.0 1009 936 92.8 53.4 227 151 66.5 39.4 

Vehicle tank 81 40 49.4 6.3 3 1 33.3 1.0 46 34 73.9 2.9 0 0 na 0 91 76 83.5 4.3 3 1 33.3 0.3 

       Carcasses 167 68 40.7 10.7 4 0 0.0 0.0 224 125 55.8 10.6 13 8 61.5 3.2 124 88 71.0 5.0 7 3 42.9 0.8 

Building tool 15 9 60.0 1.4 23 7 30.4 6.9 20 14 70.0 1.2 38 20 52.6 7.9 0 0 na 0.0 39 23 59.0 6.0 

Water storage 8 2 25.0 0.3 680 25 3.7 24.5 0 0 na 0.0 816 74 9.1 29.4 0 0 na 0.0 896 141 15.7 36.8 

    Total 809 414 51.2 65.1 816 66 8.1 64.7 1435 1058 73.7 90.0 1295 212 16.4 84.1 1973 1695 85.9 96.7 1285 371 28.9 96.9 

Artificial 956 493 51.6 77.5 883 82 9.3 80.4 1612 1155 71.7 98.2 1380 250 18.1 99.2 2041 1746 85.5 99.6 1308 383 29.3 100 

TOTAL 1492 636 42.6 100 931 102 11.0 100 1676 1176 70.2 100 1393 252 18.1 100 2066 1753 84.8 100 1308 383 29.3 100 

N: number of wet containers, n: number of Aedes-positive breeding sites, FP: frequency of Aedes-positive breeding sites among wet containers, PP: proportion of each Aedes-positive breeding site 

type among the all Aedes-positive breeding site types. The units of FP and PP are percentage (%). 
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Figure 6.4: Monthly variations in the occurrence of immature stages of Aedes 

mosquitoes in rural, suburban, and urban areas in south-eastern Côte d’Ivoire. 

 

 

 

 

Figure 6.5: Monthly variations in the abundance of immature stages of Aedes 

mosquitoes in rural, suburban, and urban areas in south-eastern Côte d’Ivoire. Error bars 

show the standard error (SE). 
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6.5. Discussion 

When designing strategies to monitor and control Aedes arbovirus vectors in their breeding 

sites, failure to identify the broad spectrum of potentially available breeding sites will bias the 

results from field sampling and will thus negatively affect the impact of larval control 

interventions. Our study pertaining to larval habitats of Aedes mosquitoes alongside a rural-

to-urban gradient within yellow fever and dengue co-endemic areas in the south-eastern part 

of Côte d’Ivoire provided strong evidence for influence on species structure, microhabitats, 

and biological interactions among the immature forms (Figure 6.6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Synthesis of how urbanization shapes immature Aedes mosquito breeding 

sites and species in south-eastern Côte d’Ivoire. 

 

Compared to a previous study conducted in the same area of Côte d’Ivoire [16], the 

current study identified 11 additional Aedes species (i.e., Ae. albopictus, Ae. angustus, 

Ae. apicoargentus, Ae. argenteopunctatus, Ae. haworthi, Ae. lilii, Ae. longipalpis, Ae. opok, 

Ae. palpalis, Ae.  stokesi, and Ae. unilineatus) and 16 additional non-Aedes species that may 

influence arbovirus transmission patterns. To our knowledge, Aedes mosquito species such as 

Ae. lilii, Ae.  stokesi, and Ae. unilineatus, and others such Cq. fuscopennata and 

Tx. brevipalpis appear to be reported for the first time in Côte d’Ivoire. Ae. albopictus is not 

native to Côte d’Ivoire, but has previously been reported [22]. Presumably the species has 

been introduced through the seaport bordering the urban municipality of Treichville. The 

higher numbers of Aedes species is likely due to abundant presence of natural and artificial 

breeding sites, and their potentials to provide suitable microenvironments. Gravid Aedes 
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females select oviposition sites according to their physical, chemical, and biological 

characteristics [11, 12] and these may change in space and time over the year [16]. 

The public health relevance of Aedes mosquitoes results from their invasiveness and 

ecologic plasticity, competence for multiple pathogens, potential as bridge vectors due to 

their opportunistic feeding behavior and adaptation to urban, rural, and forest areas [23]. 

Almost all of the container-specialist Aedes mosquitoes collected as larvae such as Stegomyia 

subgenus, including Ae. aegypti, Ae. africanus, Ae. albopictus, Ae. angustus, Ae. apico-

argenteus, Ae. luteocephalus, Ae. metallicus, Ae. opok, Ae. vittatus, Ae. unilineatus, and 

Ae. usambara species, and Diceromyia and Aedimorphus subgenera comprising respectively 

Ae. furcifer and Ae. stokesi species have been shown to carry and/or to transmit in nature over 

24 viruses, including yellow fever, dengue, Zika, chikungunya, and Rift Valley in the tropical 

regions [5, 6]. In addition, Ae. (Aedimorphus) argenteopunctatus in South Africa [24] and 

Ae. (Neomelaniconion) palpalis [25] which show vector competence for Rift Valley fever 

virus in vitro and the other Aedes species like Ae. (Stegomyia) dendrophilus, Ae. (Stegomyia) 

lilii and Ae. (Aedimorphus) haworthi which belong to the same subgenera of species involved 

in the transmission of the arboviruses thus could be suspected as potential vectors of diseases. 

Still, Ae. (Finlaya) longipalpis belonging to the same Finlaya subgenus with Ae. niveus 

which has been the principal vector of dengue virus in Malaysia [26] may potentially transmit 

arboviruses in Côte d’Ivoire. Among non-Aedes mosquitoes, Er. chrysogaster, Er. inornatus 

and Cq. fuscopennata have been found to have natural infection while Er. quinquevittatus has 

exhibited laboratory competence with yellow fever virus in Africa [6]. Moreover, 

An. coustani has been found to be infested with Zika virus [27], while O’nyong-nyong and 

chikungunya viruses have been isolated from An. gambiae [28]. Cx. quinquefasciatus [25] 

and Cx. poicilipes [26] have been shown susceptible to transmit Rift Valley fever virus. In 

conclusion, as in Senegal [12], the collections of immature stages of non-anthropophagic, 

unexpected and new potential vectors in rural areas suggest the co-existence of several still 

unidentified arbovirus cycles in south-eastern Côte d’Ivoire. 

Our results also revealed that, urban areas showed higher capacity to support Aedes 

breeding sites and larvae than suburban and rural areas. The higher numbers of positive 

breeding sites and higher abundance of Aedes mosquito larvae may be due to the destruction 

of natural vegetation coverage for infrastructure buildings in the urbanized areas that may 

affect biological factors (e.g., fauna and flora), and increase the radiation budget thus 

modifying the microenvironments within and around the microhabitats [29]. Increased 
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exposure to sunlight probably accelerates Aedes mosquito larval development and thus 

increases the size of adult vectors that possibly find more opportunities of blood feeding 

sources from larger human populations in urban areas [16, 29]. Still, urban Aedes populations 

are probably less exposed to the pressures from agricultural insecticide and predators (e.g., 

Eretmapodites spp. and Toxorhynchites spp.) compared to rural communities. We also found 

that less than two-thirds of breeding sites were infested with Aedes larvae thus suggesting that 

not all available containers filled with water were occupied by at least one larva or pupa of 

Aedes mosquitoes and the immature Aedes mosquitoes were not randomly distributed [12]. 

The presence of empty containers might imply that the gravid females of Aedes mosquitoes 

select their egg-laying sites carefully according to their physical characteristics (e.g., depth, 

color, clearance, surface, location, height, shade, sun exposure, and food sources) [12, 29], 

and biological interactions (e.g., competition and predation) [10, 11, 30] at play within the 

water-holding container systems. 

In our larval surveys, we documented distinct geographic and seasonal variations in 

terms of the proportions of positive breeding sites and abundance of Aedes mosquitoes in all 

areas. Indeed, the highest proportions and relative abundance of Aedes mosquitoes were 

observed among vegetated peri-domestic breeding sites and during the rainy seasons in all 

areas. The shade of the vegetation reduces the water temperature [12], thus protecting 

breeding sites from drying out. Moreover, leaves supply organic detritus and associated 

microorganisms that may serve as food sources for the mosquito larvae [10]. The geographic 

and seasonal patterns in Aedes breeding sites are important from an epidemiologic 

perspective and suggest that the rainy season is the best period of time to identify breeding 

sites, while during the dry season it would be an ideal period of time to control immature 

Aedes mosquitoes, with particular attention for peri-domestic environments. 

Our data revealed that the pattern of Aedes mosquito breeding sites changes 

substantially from natural containers to artificial containers along a rural-to-urban gradient. 

Although artificial breeding sites dominate in all areas, there is a higher proportion of natural 

containers (e.g., rock holes, animal detritus, leaf axils, fruit husks, bamboo, and tree holes) in 

rural areas, traditional containers (e.g., clay pots, wood-containers, and metallic pots) in 

suburban areas. However, in the urban areas, the most productive breeding sites for Aedes 

mosquito were industrial containers (e.g., tarps, discarded tires, vehicle tanks, carcasses, 

building tools, and water storage containers). The availability of, and the segregation among, 

Aedes breeding sites probably result from the strong impacts of human activities on the 
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environment, while the natural breeding sites are provided by the natural landscape and 

agriculture [12]. We observed that tree holes, tires, and water storage containers showed 

higher Aedes species richness in rural, higher Aedes abundances in all areas, and high 

Ae. aegypti infestation rates in urban areas, respectively. Tree holes, found in the preserved 

rainforest, seem to provide ideal larval habitats for several species due to their greater 

stability, various trophic inputs, and retention of rainwater for longer periods of time [12]. 

Used tires are mostly associated with the palm oil industry in rural areas, production of the 

local dish “Attiéké” in suburban areas, and selling of tires and car repairs in urban areas. Tree 

holes and tires have bigger volumes and are expected to better protect the immature forms of 

Aedes mosquitoes against flushing during heavy rains [12, 14]. Moreover, tires are black-

colored containers that are highly attractive to the gravid Aedes females searching for 

oviposition sites [11, 31]. The high number of water barrels infested with Aedes larvae might 

be due to the water being held for longer periods [32]. 

Taken together, Aedes species diversity, richness, abundance, and dominance signify-

cantly changed from rural to urban settings. The variations in Aedes mosquito species may be 

explained by the sensitivity of their larvae to environmental changes induced by urbanization 

[10, 12]. Native species such as Ae. africanus, Ae. argenteopunctatus, Ae. longipalpis, 

Ae. stokesi and Ae. usambara were restricted to natural breeding sites in the rural areas. 

However, other wild species, such as Ae. furcifer, Ae. dendrophilus, Ae. palpalis, Ae. vittatus, 

Ae. luteocephalus, and Ae. metallicus were also surprisingly frequent in artificial containers. 

In contrast, our surveillance failed to sample Ae. fraseri that have been collected by ovitraps 

in the rural areas previously [16], probably due to its possible cryptic breeding sites or 

potential height-dependent oviposition behavior. The existence of multiple types of behavior 

in the same Aedes mosquito species may indicate the existence of generalist species or sibling 

strains of individuals from various origins [6, 11] that have experienced different selective 

urbanization pressures.  

Lastly, our study showed that Ae. aegypti, the primary vector of yellow fever, dengue, 

chikunguya, and Zika viruses [1-3], was the most prevalent species in all study areas, 

exhibiting an increasing abundance along rural-to-urban gradient towards an higher 

abundance in urban areas where larvae mostly inhabit in anthropogenic containers (e.g., tires, 

discarded containers). However, Ae. aegypti displayed behavioral plasticity in that the 

females lay eggs in a vast array of containers ranging from natural containers such as rock 

holes, tree holes, and bamboo to a wide range of man-made containers [11], including water 
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storage containers in urban areas [32]. The ecologic variations in oviposition behavior of 

Ae. aegypti and other Aedes mosquitoes may be discussed in ecologic, evolutionary, and 

epidemiologic approaches [11], and suggest possible overlaps of sylvan and urban vector 

distributions thus linking several potential mixed arbovirus transmission cycles [5, 6, 12, 16]. 

In addition, if highly infested microhabitats are targeted for removal, Aedes mosquito females 

may possibly adapt to changes in breeding habitats and alternatively oviposit in other 

containers previously unoccupied [33]. The ability of Ae. aegypti to adapt ovipositional 

behaviors to changing environments possibly enabling to overcome ecological constraints 

(e.g., instability and disturbance of the breeding sites) imposed by urbanization [10, 11]. Ae. 

aegypti-transmitted yellow fever outbreaks are historically well known in Côte d’Ivoire to 

have forced the transfer of the capital from Grand-Bassam to Abidjan in 1899 [15]. Since 

then, several unpredictable resurgences of yellow fever and dengue have been occurring in 

rural and urban areas causing many suspected, confirmed and fatal cases, and remain 

presently an unresolved major public health concern [7, 15, 34], with the current outbreak of 

dengue DENV-3 resulting in one confirmed and 17 suspected cases recorded in Abidjan in 

May 2017. Our study suggests that the unique removal of artificial containers that is a 

common practice in arbovirus control programs in Côte d’Ivoire might not effectively control 

diseases in the south-eastern part of the country. Vector control measures should combine 

removal of artificial containers [6] and autocidal gravid ovitrap-based on mass trapping [35], 

and insecticide auto-dissemination approaches [36]. 

 

6.6. Conclusions 

In south-eastern Côte d’Ivoire, urbanization is associated with larval habitats of Aedes species 

at a finer scale by driving their breeding sites from natural to artificial containers, and at the 

larger scale by transforming rural to urban areas. Ae. aegypti is most prevalent in urban areas, 

suggesting that urbanization is a driver for producing suitable breeding sites for this mosquito 

species, and hence related disease outbreaks. However, rural settings still support irremovable 

containers such as natural breeding sites that host several wild Aedes species and Ae. aegypti. 

Therefore, even effective removal of discarded containers in urban areas (a common practice 

in arbovirus control programs) might not be sufficient to control arboviral diseases. Instead, 

vector control strategies should embrace a more holistic approach, combining different tools 

and methods of proven efficacy [6, 35, 36]. 
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S6.1 Figure: Range of Aedes mosquito breeding sites surveyed in rural, suburban, and 

urban areas in south-eastern Côte d’Ivoire. The container type often reflects the name of the 

container and the categories include containers that provide comparable larval habitats as follows: I. natural 

containers: A: rock hole, B: animal detritus, C: leaf, D: fruit husks, E: bamboo, F: tree hole; and II. artificial 

conatiners composed of: II.1. traditional containers: G: clay pot, H: wood-container, I: metallic pot; and II.2. 

industrial containers: J: traps, K: discarded container, L: tire, M: vehicle tank, N: vehicle carcasses, O: building 

tool, P: water storage container. 

I. Natural conatiners 

 

II.1. Traditional conatiners 

 

II.2. Industrial conatiners 

 
II. Artificial conatiners 
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S6.2 Figure: Variations in abundance of Aedes mosquito among breeding sites in rural, 

suburban, and urban areas in south-eastern Côte d’Ivoire. Error bars show the standard error 

(SE). 

 

 

 

 

S6.3 Figure: Monthly variations in the proportions of Aedes-positive breeding sites in 

rural, suburban, and urban areas in south-eastern Côte d’Ivoire. Error bars show the standard 

error (SE).  
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S6.1 Table: Dynamics of Aedes mosquito breeding sites in the rural, suburban and urban areas in south-eastern Côte d’Ivoire from January 2013 to October 

2014 

Breeding site 
Rural Suburban Urban 

N n FP (%) PP (%) N n FP (%) PP (%) N n FP (%) PP (%) 

Natural                         

Rock hole 42 6 14.3 0.8 0 0 na 0.0 0 0 na 0.0 

Animal detritus 82 8 9.8 1.1 6 3 50.0 0.2 2 0 0.0 0.0 

Leaf axil 151 11 7.3 1.5 19 3 15.8 0.2 6 0 0.0 0.0 

Fruit husk 195 59 30.3 8.0 26 11 42.3 0.8 8 3 37.5 0.1 

Bamboo 45 17 37.8 2.3 15 4 26.7 0.3 9 4 44.4 0.2 

Tree hole 69 62 89.9 8.4 11 2 18.2 0.1 0 0 na 0.0 

Total 584 163 27.9 22.1 77 23 29.9 1.6 25 7 28.0 0.3 

Traditional                         

Clay pot 101 44 43.6 6.0 90 43 47.8 3.0 29 18 62.1 0.8 

Wood 69 24 34.8 3.3 67 31 46.3 2.2 14 8 57.1 0.4 

Metallic pot 44 27 61.4 3.7 105 61 58.1 4.3 48 37 77.1 1.7 

Total 214 95 44.4 12.9 262 135 51.5 9.5 91 63 69.2 2.9 

Industrial                         

Tarp 66 41 62.1 5.6 132 53 40.2 3.7 95 46 48.4 2.2 

Discarded 254 104 40.9 14.1 745 417 56.0 29.2 767 601 78.4 28.1 

Tire 324 183 56.5 24.8 696 525 75.4 36.8 1236 1087 87.9 50.9 

Vehicle tank 84 41 48.8 5.6 46 34 73.9 2.4 94 77 81.9 3.6 

Carcasses 171 68 39.8 9.2 237 133 56.1 9.3 131 91 69.5 4.3 

Building tool 38 16 42.1 2.2 58 34 58.6 2.4 39 23 59.0 1.1 

Water storage 688 27 3.9 3.7 816 74 9.1 5.2 896 141 15.7 6.6 

Total 1625 480 29.5 65.0 2730 1270 46.5 88.9 3258 2066 63.4 96.7 

Artificial 1839 575 31.3 77.9 2992 1405 47.0 98.4 3349 2129 63.6 99.7 

TOTAL 2423 738 30.5 100 3069 1428 46.5 100 3374 2136 63.3 100 

N:  number of wet containers, n: number of Aedes-positive breeding sites, FP: frequency of positive breeding sites among wet containers, PP: proportion of each Aedes breeding site type 

among Aedes-positive containers. 
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S6.2 Table: Seasonal variations in Aedes mosquito breeding site positivity in the rural, suburban and urban areas in south-eastern Côte d’Ivoire from January 2013 to October 

2014 

Breeding site 

Rural Suburban Urban 

Dry season Rainy season Dry season Rainy season Dry season Rainy season 

N n FP PP N n FP PP N n FP PP N n FP PP N n FP PP N n FP PP 

Natural                                                 

Rock hole 6 1 16.7 1.0 36 5 13.9 0.8 0 0 na 0.0 0 0 na 0.0 0 0 na 0 0 0 na 0.0 

Animal detritus 2 0 0.0 0.0 80 8 10.0 1.2 2 0 0.0 0.0 4 3 75.0 0.3 0 0 na 0 2 0 0.0 0.0 

Leaf axil 13 0 0.0 0.0 138 11 8.0 1.7 3 0 0.0 0.0 16 3 18.8 0.3 2 0 0 0 4 0 0.0 0.0 

Fruit husk 12 2 16.7 2.1 183 57 31.1 8.9 2 0 0.0 0.0 24 11 45.8 0.9 2 0 0.0 0.0 6 3 50.0 0.2 

Bamboo 3 1 33.3 1.0 42 16 38.1 2.5 2 0 0.0 0.0 13 4 30.8 0.3 0 0 na 0.0 9 4 44.4 0.2 

Tree hole 11 9 81.8 9.4 58 53 91.4 8.3 2 1 50.0 0.4 9 1 11.1 0.1 0 0 na 0 0 0 na 0.0 

Total 47 13 27.7 13.5 537 150 27.9 23.4 11 1 9.1 0.4 66 22 33.3 1.8 4 0 0.0 0.0 21 7 33.3 0.4 

Traditional                                                 

Clay pot 21 11 52.4 11.5 80 33 41.3 5.1 15 3 20.0 1.3 75 40 53.3 3.3 5 2 40.0 0.4 24 16 66.7 1.0 

Wood 6 2 33.3 2.1 63 22 34.9 3.4 7 1 14.3 0.4 60 30 50.0 2.5 2 0 0.0 0.0 12 8 66.7 0.5 

Metallic pot 3 1 33.3 1.0 41 26 63.4 4.0 17 8 47.1 3.4 88 53 60.2 4.4 9 4 44.4 0.8 39 33 84.6 2.0 

Total 30 14 46.7 14.6 184 81 44.0 12.6 39 12 30.8 5.2 223 123 55.2 10.3 16 6 37.5 1.2 75 57 76.0 3.5 

Industrial                                                 

Tarp 12 3 25.0 3.1 54 38 70.4 5.9 5 3 60.0 1.3 127 50 39.4 4.2 23 4 17.4 0.8 72 42 58.3 2.5 

Discarded 45 10 22.2 10.4 209 94 45.0 14.6 132 59 44.7 25.4 613 358 58.4 29.9 178 120 67.4 24.7 589 481 81.7 29.2 

Tire 66 33 50.0 34.4 258 150 58.1 23.4 163 102 62.6 44.0 533 423 79.4 35.4 299 240 80.3 49.4 937 847 90.4 51.3 

Vehicle tank 4 2 50.0 2.1 80 39 48.8 6.1 3 2 66.7 0.9 43 32 74.4 2.7 13 6 46.2 1.2 81 71 87.7 4.3 

Carcasses 39 3 7.7 3.1 132 65 49.2 10.1 52 16 30.8 6.9 185 117 63.2 9.8 35 18 51.4 3.7 96 73 76.0 4.4 

Building tool 5 2 40.0 2.1 33 14 42.4 2.2 15 6 40.0 2.6 43 28 65.1 2.3 28 19 67.9 3.9 11 4 36.4 0.2 

Water storage 318 16 5.0 16.7 370 11 3.0 1.7 386 31 8.0 13.4 430 43 10.0 3.6 409 73 17.8 15.0 487 68 14.0 4.1 

Total 489 69 14.1 71.9 1136 411 36.2 64.0 756 219 29.0 94.4 1974 1051 53.2 87.9 985 480 48.7 98.8 2273 1586 69.8 96.1 

Artificial 519 83 16.0 86.5 1320 492 37.3 76.6 795 231 29.1 99.6 2197 1174 53.4 98.2 1001 486 48.6 100 2348 1643 70.0 99.6 

TOTAL 566 96 17.0 100 1857 642 34.6 100 806 232 28.8 100 2263 1196 52.9 100 1005 486 48.4 100 2369 1650 69.6 100 

N: number of wet containers, n: number of Aedes-positive breeding sites, FP: frequency of positive breeding sites among wet containers, PP: proportion of each Aedes breeding site type 

among Aedes-positive containers. The units of FP and PP are percentage (%). 



Chapter 6 – Effects of urbanization on Aedes mosquito larval ecology 
 

 

85 

 
 

Acknowledgments 

The authors are grateful to PALMCI staff, health authorities, local authorities, and residents 

in the study areas and the mosquito collection teams. 

 

6.8. References 

1. Murray CJL, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-

adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a 

systematic analysis for the global burden of disease study 2010. Lancet. 2012;380: 2197-

2223. 

2. Gubler DJ. Dengue, urbanization and globalization: the unholy trinity of the 21
st
 century. 

Trop Med Health. 2011;39: 3-11. 

3. Weaver SC. Urbanization and geographic expansion of zoonotic arboviral diseases: 

mechanisms and potential strategies for prevention. Trends Microbiol. 2013;21: 360-363. 

4. Gething PW, Kirui VC, Alegana VA, Okiro EA, Noor AM, et al. Estimating the number 

of paediatric fevers associated with malaria infection presenting to Africa’s public health 

sector in 2007. PLoS Med. 2010;7: e1000301. 

5. Huang YJS, Higgs S, Horne KMcE, Vanlandingham DL. Flavivirus-mosquito 

interactions. Viruses. 2014;6: 4703-4730. 

6. WHO. Yellow fever. Rapid field entomological assessment during yellow fever outbreaks 

in Africa. Methodological field approaches for scientists with a basic background in 

entomology. Australia: Biotext Pty Ltd; 2014. 

7. Koné AB, Konan YL, Coulibaly ZI, Fofana D, Guindo-Coulibaly N, Diallo M, et al. 

Entomological evaluation of the risk of urban outbreak of yellow fever in 2008 in Abidjan, 

Côte d’Ivoire. Med Sante Trop. 2013;23: 66-71. 

8. Konan YL, Coulibaly ZI, Allali KB, Tétchi SM, Koné AB, Coulibaly D, et al. 

Management of the yellow fever epidemic in 2010 in Séguéla (Côte d’Ivoire): value of 

multidisciplinary investigation. Sante Publ. 2014;26: 859-867. 

9. Lounibos LP, O’Meara GF, Nishimura N, Escher RL. Interactions with native mosquito 

larvae regulate the production of Aedes albopictus from bromeliads in Florida. Ecol 

Entomol. 2003; 28: 551–558. 

10. Leisnham, Juliano S. Impacts of climate, land use, and biological invasion on the ecology 

of immature Aedes mosquitoes: implications for La Crosse emergence. Ecohealth. 2012;9: 

217-28. 

11. Abreu FVS, Morais MM, Ribeiro SP, Eiras AE. Influence of breeding site availability on 

the oviposition behavior of Aedes aegypti. Mem Inst Oswaldo Cruz. 2015;110: 669-676. 

12. Diallo D, Diagne C, Hanley KA, Sall AA, Buenemann M, Ba Y, et al. Larval ecology of 

mosquitoes in sylvatic arbovirus foci in southeastern Senegal. Parasit Vectors. 2012;5: 

286. 

13. O’Neal PA, Juliano SA. Seasonal variation in competition and coexistence of Aedes 

mosquitoes stabilizing effects of egg mortality or equalizing effects of sources? J Anim 

Ecol. 2013;82: 256-265. 

14. Seidahmed OME, Eithahir EAB. A sequence of flushing and drying of breeding habitats 

of Aedes aegypti (L.) prior to the low dengue season in Singapore. PLoS Negl Trop Dis. 

2016;10: e0004842. 

15. Komono BD. La fievre jaune en Côte d’Ivoire. Historique, actualité et perspectives de 

recherche pour la lutte. Med Afr Noire. 2012;5910: 459-469. 



Chapter 6 – Effects of urbanization on Aedes mosquito larval ecology 
 

 

86 

 
 

16. Zahouli JBZ, Utzinger J, Adja MA, Müller P, Malone D, Yao Tano Y et al. Oviposition 

ecology and species composition of Aedes spp. and Aedes aegypti dynamics in variously 

urbanized settings in arbovirus foci in southeastern Côte d’Ivoire. Parasit Vectors. 2016;9: 

523. 

17. Harbach R. The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. 

Zootaxa. 2007;1668: 1-766. 

18. Williams CB. The use of logarithms in the interpretation of certain entomological 

problems. An Appl Biol. 1937;24: 404-414. 

19. Kirk, Roger E. (1998) Experimental Design: Procedures for the Behavioral Sciences, 

Third Edition. Monterey, California: Brooks/Cole Publishing. ISBN 0-534-25092-0. 

20. Weaver W, Shannon CE. "The Mathematical Theory of Communication," Urbana, Illinois: 

University of Illinois. 1949. 

21. Simpson EH. Measurement of diversity. Nature. 1949;163-168. doi:10.1038/163688a0. 

22. Konan YL, Coulibaly ZI, Koné AB, Ekra KD, Doannio JM-C, Dosso M, et al. Species 

composition and population dynamics of Aedes mosquitoes, potential vectors of 

arboviruses, at the container terminal of the autonomous port of Abidjan, Côte d’Ivoire. 

Parasite. 2013;20: 13. 

23. Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes 

albopictus: current knowledge and future perspectives. Trends Parasitol. 2013;29: 9. 

24. Jupp PG, Cornel AJ. Vector competence tests with Rift Valley fever virus and five South 

African species of mosquito. J Am Mosq Control Assoc. 1988;4: 4-8. 

25. Turell MJ, Linthicum KJ, Patrican LA, Davies FG, Kairo A and Bailey CL. Vector 

competence of selected African mosquito (Diptera: Culicidae) species for Rift Valley 

fever virus. J Med Entomol. 2008;45: 102-108. 

26. Vasilikas N, Cardosa J, Hanley KA, Holmes EC, Weaver SC. Fever from the forest: 

prospects for the continued emergence of sylvatic dengue virus and its impact on public 

health. Nat Rev Microbiol. 2011;9: 532-541. 

27. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G. et al. Zika virus: 

History, emergence, biology, and prospects for control. Antiviral Res. 2016;130: 69-80. 

28. Vanlandingham DL, Hong C, Klingler K, Tsetsarkin K, McElroy KL, Powers AM, 

Lehane MJ, Higgs S. Differential infectivities of o’nyong-nyong and chikungunya virus 

isolates in Anopheles gambiae and Aedes aegypti mosquitoes. Am J Trop Med Hyg. 

2005;72: 616–621. 

29. Li Y, Kamara F, Zhou G, Puthiyakunnon, Li C, Liu Y,  et al. Urbanization increases Aedes 

albopictus larval habitats and accelerates mosquito development and survivorship. PLoS 

Negl Trop Dis. 2014;8: e3301. 

30. Albeny-Simoes D, Murell EG, Elliot SL, Andrade MR, Lima E, Juliano SA et al. 

Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed 

conspecifics. Oecologia. 2014;175: 481-492. 

31. Yee DA, Abuzeineh AA, Ezeakacha NF, Schelble SS, Glasgow W, Flanagan SD et al. 

Mosquito larvae in tires from Mississippi, United States: The efficacy of abiotic and biotic 

parameters in predicting spatial and temporal patterns of mosquito populations and 

communities. J Med Entomol. 2015;52: 394-407. 

32. Ibarra AM, Ryan SJ, Beltran E, Mejia R, Silva M, Munoz A. Dengue vector dynamics 

(Aedes aegypti) influenced by climate and social factors in Equator: implications for 

targeted control. PLoS One. 2013;8: e78263. 

33. Cavalcanti LPG, Oliveira RMAB, Alencar CH. Changes in infestation sites of female 

Aedes aegypti in Northeast Brazil. Rev Soc Bras Med Trop. 2016;49: 498-501. 



Chapter 6 – Effects of urbanization on Aedes mosquito larval ecology 
 

 

87 

 
 

34. WHO. Communicable disease epidemiological profile: Côte d’Ivoire. WHO/HSE/GAR/ 

DCE/2010.3. 

35. Mackay AJ, Amador M, Barrera R.  An improved autocidal gravid ovitrap for the control 

and surveillance of Aedes aegypti. Parasit. Vectors. 2013; 6:225. 

36. Caputo B, Lenco A, Cianci D, Pombi M, Petrarca V, Baseggio A et al. The ‘auto-

dissemination’ approach: a novel concept to fight Aedes albopictus in urban areas. PLoS 

Negl Trop Dis. 2013;6: e1793.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7 - Effects of agricultural land-use change on Aedes mosquito ecology 
 

 

88 

 
 

7. ARTICLE 3: Effect of land-use changes on the abundance, distribution, and 

host-seeking behavior of Aedes arbovirus vectors in oil palm-dominated 

landscapes, southeastern Côte d'Ivoire 

 

Julien B. Z. Zahouli
1,2,3,4*

, Benjamin G. Koudou
3,5,6

, Pie Müller
1,2

, David Malone
7
, Yao 

Tano
4,6

, Jürg Utzinger
1,2 

 

1 Swiss Tropical and Public Health Institute, Basel, Switzerland, 2 University of Basel, 

Basel, Switzerland, 3 Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, 

Côte d’Ivoire, 4 Unité de Formation et de Recherche Biosciences, Université Félix 

Houphouët-Boigny, Abidjan, Côte d’Ivoire, 5 Centre for Neglected Tropical Diseases, 

Liverpool School of Tropical Medicine, Liverpool, United Kingdom, 6 Université Nangui-

Abrogoua, Abidjan, Côte d’Ivoire, 7 Innovative Vector Control Consortium, Liverpool 

School of Tropical Medicine, Liverpool, United Kingdom 

 

 

*
Julien B.Z. Zahouli; julien.zahouli@unibas.ch 

 

 

 

 

 

Short title: Aedes mosquito ecology and land-use changes  

 

 

 

This manuscript has been submitted to 

PLoS One 

 

 

 



Chapter 7 - Effects of agricultural land-use change on Aedes mosquito ecology 
 

 

89 

 
 

7.1. Abstract 

Background 

Identifying priority areas for vector control is of considerable public health relevance. 

Arthropod-borne viruses (arboviruses) spread by Aedes mosquitoes are (re)emerging in many 

parts of the tropics, partially explained by changes in agricultural land-use. We explored the 

effects of land-use changes on the abundance, distribution, and host-seeking behavior of 

Aedes mosquitoes along a gradient of anthropogenic disturbance in oil palm-dominated 

landscapes in southeastern Côte d’Ivoire. 

Methodology 

Between January and December 2014, eggs, larvae, pupae, and adult Aedes mosquitoes were 

sampled in four types of macrohabitats (rainforest, polyculture, oil palm monoculture, and 

rural housing area), using standard procedures (bamboo-ovitraps, metallic-ovitraps, larval 

surveys, and human-baited double-net traps). Immature stages were reared and adult 

mosquitoes were identified at species level. 

Principal findings 

In total, 28,276 Aedes specimens belonging to 11 species were collected. No Aedes-positive 

microhabitat and only four specimens of Ae. aegypti were found in oil palm monoculture, 

The highest abundance of Aedes mosquitoes (60.9%) was found in polyculture, while the 

highest species richness (11 species) was observed in rainforests. Ae. aegypti was the 

predominate Aedes species, exhibiting high anthropophilic behavior. Three species 

(Ae. aegypti, Ae. dendrophilus, and Ae. vittatus) bit humans in polyculture and rural housing 

areas, with respective biting rates of 21.48 and 4.48 females/person/day. Unexpectedly, all 

three species were also feeding during darkness. Aedes females showed bimodal daily 

feeding cycles with peaks at around 8:00 a.m. and 5:00 p.m. Host-seeking activities were 

interrupted between 11:00 a.m. and 2:00 p.m. in rural housing areas, while no such 

interruption occurred in polyculture. Some rainforest-dwelling Aedes species displayed little 

preference to feed on humans. 

Conclusions 

In southeastern Côte d’Ivoire, the agricultural land-use/land-cover changes due to the 

conversion of rainforests into oil palm monocultures influence the abundance, distribution, 

and host-seeking behaviors of anthropophagic and non-anthropophagic Aedes vectors. As a 

result there is higher risk of humans to arbovirus transmission in polyculture and rural 
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housing areas. There is a need for integrated vector management, including landscape 

epidemiology and ecotope-based vector control. 

 

7.2. Introduction 

Arthropod-borne viruses (arboviruses) have (re)emerged from their sylvatic reservoirs of 

Africa and the Americas. Indeed, arboviruses are dispersed globally, and they are responsible 

for various diseases [1]. Several Aedes species act as vectors of arboviral diseases, such as 

yellow fever, dengue, chikungunya, Rift valley fever, and Zika that are of considerable public 

health relevance [1]. The resurgence of these mosquito-borne diseases and their geographic 

expansion has long been associated with human-induced modifications of terrestrial 

ecosystems [2]. Identifying priority areas for integrated vector management is crucial for 

public health because the ecology (i.e., abundance, distribution, and behaviors) of Aedes 

mosquito vectors is likely to alter with human-induced land use changes, including 

deforestation, intensification of agriculture, and urbanization [2- 4]. 

The expansion of tropical oil palm (Elaesis guineensis) plantations is a major driver of 

deforestation and threatens biodiversity, including arthropods [5, 6]. Wild palm trees have a 

life-span of up to 200 years, and an economic life-span of 25-30 years, after which trees are 

cut down and replaced with young palm plants. The planting density ranges from 120 to 160 

palms/ha. Changes in land-use can result in the losses of Aedes mosquito habitats, hosts, and 

predators, which, in turn, affect the dynamics, abundance, oviposition, and host-seeking 

behaviors of vectors searching for alternative habitats and new blood-feeding sources [2]. In 

contrast, other cultivations such as rubber plantations, and plants with sheathing leaf axils 

(e.g., banana, bromeliads, and taro), and fruit husks (e.g., coconuts) can be important sources 

of Aedes mosquito breeding as they retain water for larval breeding [7, 8]. Additionally, 

containers used to supply water to animals and plants support Aedes mosquito larval growth 

[9]. Anthropogenic chemical uses such as pesticides (e.g., insecticides, fungicides, herbicides, 

and rodenticides) are drivers of changes in mosquito populations [10]. While the 

transformation of native rainforests into human settlements might destroy natural breeding 

sites of Aedes, it might result in an increase of artificial containers (e.g., tires and discarded 

water storage containers) that serve as microhabitats for immature Aedes [2]. Moreover, open 

areas directly exposed to sunlight that are created after the removal of natural vegetation 

accelerate mosquito development and survivorship [4, 8]. Tropical rainforests are rich in 

biodiversity, including Aedes that might breed in tree holes that are protected by foliage and 
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contain microbial food sources for mosquito larvae [2, 7]. Moreover, the diverse fauna in the 

rainforest [7] serves as blood sources for host-seeking Aedes females, thereby maintaining the 

circulation of arboviruses among non-human primates (sylvatic cycle) [11, 12]. 

Deforestation, forest-degradation, and forest-fragmentation have been associated with 

arbovirus emergence or re-emergence [11, 12]. The effects of these multiple anthropogenic 

changes in land use on mosquito communities and the risk of disease transmission in the 

tropics may be further amplified by precipitation [2, 13]. 

In the southeastern part of Côte d’Ivoire, where large parts of rainforests have been 

converted into oil palm plantations, several outbreaks of yellow fever and dengue have been 

documented [14]. The outbreaks have been associated with vectors such as Ae. aegypti, 

Ae. africanus, Ae. furcifer, Ae. luteocephalus, Ae. opok, and Ae. vittatus [15, 16]. At present, 

Côte d’Ivoire is the third largest African producer of palm oil with an annual production of 

about 1.8 million tons. Palm oil production generates 3.1% of the national gross domestic 

product (GDP) [17]. There are plans to further enlarge the national production of palm oil, 

which might increase human-induced pressures on rainforest [18]. 

There is a lack of knowledge on how agricultural land-use changes affect the ecology of 

Aedes vectors in oil palm-dominated landscapes of Côte d’Ivoire. It is important to deepen 

the understanding of this relationship to provide a better land-use strategy for the reduction of 

arboviral disease risks. We hypothesize that the abundance, distribution, and oviposition and 

host-seeking behaviors of Aedes mosquito species differ depending on the main landscape 

type. 

 

7.3. Methods 

7.3.1. Ethics statement 

The study protocol was approved by the local health and other administrative authorities. In 

addition, all entomologic surveys and sample collections carried out on private lands or 

private residential areas were done with the permission and written informed consent of the 

residents. Volunteers were vaccinated against yellow fever and protected against malaria with 

medical prophylaxis. This study did not involve endangered or protected species. 
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7.3.2. Study area 

 The study was carried out in the Sud-Comoé region (geographic coordinates 5° 28’ N 

latitude, 3° 12’ W longitude) located in the south-eastern part of Côte d’Ivoire (Fig 7.1). The 

estimated human population in the Sud-Comoé region is 642,000 with people mainly living 

in rural settings. The economic activities are primarily based on subsistence agriculture. 

Additionally, there is some industrial exploitations of oil palm monocultures (approximately 

30,000 ha), managed by the commercial company PALMCI. Chemical products (i.e., 

insecticides, fungicides, and herbicides) are intensively used for oil palm plantation and crop 

protection [19].  

 

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Location of the study areas in southeastern Côte d’Ivoire. The study was carried out 

in the villages located in oil palm plantation areas belonging to the Sud-Comoé region. The study area covers the villages of 

Ehania-V1, Cité-cadre and Akakro situated at the interface between the industrial oil palm plantation and traditional 

agricultural smallholdings. The industrial exploitations are devoted to the monoculture of oil palm plantations (Eleasis 

guineensis) covering over 30,000 hectares managed by an integrated agro-industrial unit of PALMCI. In the industrial part, a 

primary rainforest of over 100 ha has been preserved intact and forbidden of any human activities. In the traditional lands, 

the agricultural exploitation systems are polycultures comprising oil palm trees, rubber trees, banana, taro, bromeliads, and 

cocoa growing in the same space. Several small villages averaging 20 people are dispersed in these smallholdings.  
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The natural vegetation mostly constitutes of rainforest. Several small villages are dispersed 

across the landscape. The rainforest and traditional agriculture host trees, bamboo, and 

diverse animal species (primates, and birds). 

The climate in the study area is characterized by high temperature and precipitation with 

two rainy seasons. The seasons are distinguished by rainfall rather than temperature. The 

main rainy season extends from May to July, while the shorter rainy season lasts from 

October to November, with distinct dry seasons in between. The average annual precipitation 

ranges from 1,200 to 2,400 mm. The annual average temperature and relative humidity are 

around 26.5 °C and 80-90%, respectively. 

Our study was conducted in the Aboisso department, covering some 625 km
2
 and an 

estimated population of 21,300 people, many of which work for PALMCI. The workers leave 

the villages in the morning to work in the farms and return back in the afternoon. 

 

7.3.3. Study design 

The study area was divided into 10 blocks around the eight villages of Ehania (Ehania-

V1-8), Cité-Cadre and Akakro. In each block, four types of macrohabitats of roughly equal 

size were classified as rainforest, polyculture, oil palm monoculture, and rural housing areas 

based on the land-cover features (Table 7.1 and S7.1 Figure). The blocks with the villages of 

Ehania-V1, Cité-Cadre, and Akakro were selected for this study (Figure 7.1). Eggs, larvae, 

pupae, and adults of Aedes mosquitoes were sampled every month during 12 cross-sectional 

surveys from January to December 2014. There were four defined macrohabitats and we used 

metallic-ovitraps, bamboo-ovitraps, larvae surveys, and human-baited double-net traps for 

mosquito collection (S7.2 Figure).  

 

7.3.4. Aedes mosquito egg collection 

Aedes spp. eggs were collected monthly using 30 bamboo-ovitraps and 30 metallic-ovitraps 

during the 12 cross-sectional surveys in each macrohabitat. Bamboo-ovitraps were made of 

cut bamboo, and metallic-ovitraps made of a tin can cut to imitate natural and artificial 

breeding sites of Aedes mosquitoes, respectively. Metallic-ovitraps were painted black, while 

bamboo-ovitraps were not painted. Both ovitrap types had a volume of 400 cm
3
 and were 

filled to ¾ with water. The water was a mix of distilled water, rainwater, and a 10% hey 

infusion with Panicum maximum to increase the attractiveness of the ovitraps [20]. A 5 cm x 

7 cm x 0.3 cm paddle made of hardboard served with its rough surface as an oviposition
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Table 7.1: Classification of Aedes habitats sampled in oil palm-dominated landscapes in southeastern Côte d’Ivoire from January to December 2014 

 Term Definition 

I Macrohabitat
1 

Landscape covering specific floristic area and presenting ecological or phyto-geographical aspects roughly homogeneous  

A Rainforest
a 

Area covered with dense forest showing natural ecosystem with strong canopy coverage and comprising big threes, creepers,  fixed masses of 

bamboo (Bambusae), and wild vertebrate animals such as  primates, birds, and reptiles 

B Polyculture
a 

Area covered with mosaic of oil palm trees (Eleasis guineensis) mixed with other multiple crops composed of the plants of several industrial 

crops such as rubber (Hevea brasiliensis), cocoa (Theobroma cacao), coffee (Coffea spp.), papaya (Carica papaya), coconuts (Cocos spp.) 

and avocado (Persea Americana), and food-crops such as bananas (Musa spp.), taro ( Colocasia spp.), bromeliads (Ananas comosus), yam 

(Dioscorea spp.), maize (Zea mays), and cassava (manihot esculenta) growing in the same space. Natural trees, fixed masses of bamboo 

(Bambusae), and degraded or secondary forest relics are dispersed  in several places in the area 

 Oil palm monoculture
a 

Area covered uniquely with the monoculture of oil palm trees (Eleasis guineensis) 

D Rural-housing area
a 

Area covered with human-inhabited space comprising buildings such as houses, markets, hospitals, schools, and other social edifices 

II Microhabitat
1 

Containers that have potentials to hold water and serve as breeding sites for  Aedes mosquito larvae 

II.1 Naturally-occurring microhabitat
2 

Containers created without or by indirect intervention of humans 

E Natural tree hole
b 

Rot and pan holes of different shapes and volume located from 0 to 2 m above the ground level 

F Bamboo hole
b 

Cut of fixed masses of bamboo (Bambusae) 

G Natural plant leaf
b 

Sheathing leaf axils from plants such as Sanseviera spp. and Xanthosoma spp. and sheets from Thaumatococcus daniellii  fallen on the floor 

H Other natural microhabitat
b
  Non-ligneous containers such as snail shells and rock holes  

II.2 Agriculturally-occurring microhabitat
2 

Containers created by growing crops cultivated by humans 

I Crop fruit husk
b 

Skins of the coconuts (Cocos spp.) and cocoa (Theobroma cacao) 

J Crop flower
b 

Flowers of bananas (Musa spp.) 

K Crop leaf
b 

Sheathing leaf axils from plants such as bromeliads (Ananas comosus), taros (Colocasia spp.),  and bananas (Musa spp.), and fallen sheets on 

the floor 

L Cultivated plant hole Growing plant holes of different shapes and volume located from 0 to 2 m above the ground level such as papaya ( Carica papaya), coffee 

(Coffea spp.), avocado (Persea Americana), and cocoa (Theobroma cacao) 

II.3 Man-made microhabitat
2 

Containers created by direct intervention of humans 

M Crop collection container
b 

Containers such as ceramic, cemented, glass, plastic and metallic receptacles used to collect crops such as rubber latex collection cups. 

N Husbandry watering container
b 

Containers such as ceramic, cemented, glass, plastic and metallic receptacles used to store water for watering plant or animal husbandry. 

O Discarded container
b 

Worn cans, tires, tarps, broken bottles, buckets, shoes, calabashes, mortars, building tools and debris of abandoned cars and machines  

P Household water container
b 

Containers such as ceramic, cemented, glass, plastic and metallic receptacles used to store potable water or collect rainwater for drinking, 

cooking or washing 
1
: habitat classe, 

 a
: macrohabitat type, 

 2
: microhabitat catergory, 

b
:microhabiat sub-category. 
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substrate and was plunged into each container and left for one week during each of the 12 

surveys. 

 

7.3.5. Microhabitat surveys and Aedes spp. larval sampling 

In a preliminary survey, existing larval breeding sites, such as natural and artificial cavities or 

containers with a potential to contain water were defined as microhabitats for Aedes larvae. 

Based on this preliminary survey, microhabitats were classified into three categories and 12 

sub-categories depending on their occurring process, and the use (Table 1 and S1 Figure). We 

sampled up to 30 microhabitats of each of the 12 sub-category types among each 

macrohabitat. Microhabitats were examined monthly for the presence of water and immature 

stages of mosquitoes during 12 surveys between January and December 2014. If mosquito 

larvae and/or pupae were present, the content of microhabitat was completely removed using 

the following equipment: flexible rubber tube connected to a manual suction pump, ladles, 

and pipettes. Immature forms of Aedes and other non-Aedes mosquitoes such as Anopheles 

spp., Culex spp., Eretmapodites spp., and Toxorhynchites spp. were sampled and recorded 

separately. The predacious larvae of mosquitoes, such as Cx. tigripes, Eretmapodites spp., 

and Toxorhynchites spp. were removed from the samples and preserved separately to avoid 

predation on the other species. The microhabitats sampled were refilled to their initial volume 

with the original water, and topped up with distilled water or rainwater according to their 

flooding mechanism. The presence of shade, predators, and plant leaves in the microhabitats 

were recorded. 

 

7.3.6. Aedes adult abundance and host-seeking behavior surveillance 

Adult mosquitoes were sampled using four human-baited double-net traps in each 

macrohabitat type for three consecutive days from 04:00 a.m. to 08:00 p.m. during 12 

monthly cross-sectional surveys in 2014. A double-net trap was a combination of two nets: an 

inner, smaller net that protected the human bait and an outer, larger net with two openings on 

each of the four sides which allowed the entry of mosquitoes yet precluded their exit (S7.2 

Figure) [21]. For each double-net trap, there was a pair of persons: one person was located 

inside the small net and served as bait to attract mosquitoes. The other person was located 

outside the double-net device and collected the mosquitoes trapped within the outer net, once 

every hour. Each trap was monitored by two teams of two persons each that took turns 

beginning at 12:00 a.m.  
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7.3.7. Laboratory treatment procedures 

All mosquito samples were stored separately in plastic boxes and transported in a cool-box to 

a nearby field laboratory. In the laboratory, mosquito larvae were reared until they reached 

the adult stage. In order to minimize mortality, a maximum of 20 larvae were placed in 200 

ml plastic cups, filled with 150 ml distilled water and covered with netting. Larvae of Aedes 

and other mosquitoes were fed each morning between 07:00 a.m. and 08:00 a.m. with 

Tetramin Baby Fish Food. Predacious larvae (e.g., Toxorhynchites spp. and Cx. Tigripes) 

were fed with larvae from additionally sampled mosquitoes from the study areas. Emerging 

adults and collected adult mosquitoes were identified to species level using a morphological 

key [20, 22]. As larval mortalities were low, the proportion of mosquito species was 

estimated on the basis of emerging adults. Adult specimens were stored by species and 

recorded in an entomology collection database.  

 

7.3.8. Statistical analysis 

The proportion of Aedes species were calculated as percentage of specimens among Aedes 

fauna. We used Fisher’s exact test to determine the relationship between species composition 

and the macro- and microhabitats. Fisher’s exact test was employed because expected 

numbers of specimens were equal or less than five. Aedes species richness was expressed as 

the number of collected species in each study area and compared using a one-way analysis of 

variance (ANOVA), followed by Bonferroni’s correction. The species diversity, dominance, 

and community similarity of Aedes spp. in the study and among the macrohabitats were 

estimated by Shannon-Weaver’s index (H), Simpson’s index (D), and Sorenson’s coefficient 

(CC), and analyzed by Kruskal-Wallis test because the log-transformed data exhibited 

significant deviations from normality. For the samples collected by bamboo-ovitraps, 

metallic-ovitrap, and double-net trap, we used repeated measures approaches in generalized 

linear mixed models (GLMM), in order to take into account possible interactions between the 

variables “macrohabitats” and “month” [23]. The frequency of Aedes-positive microhabitats 

was calculated as the percentage of water holding containers with at least one larva or pupa 

and analyzed using a GLM approach. To account for overdispersion due to excessive 

numbers of zeroes, the data were log-transformed [log (number of specimens + 1)]. A 

significance level of 5% was set for statistical testing. All statistical analyses were conducted 

using Stata version 14.0 (Stata Corporation; College Station, Texas, United States of 

America). 
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7.4. Results 

7.4.1. Mosquito species composition 

Table 7.2 shows the species composition of adult mosquitoes collected as eggs, larvae, pupae, 

and adults using bamboo ovitrap, metallic ovitrap, larval survey, and human-baited double-

net trap methods. A total of 30,449 mosquito specimens were collected, comprising different 

medically important genera, such as Aedes, Anopheles, Culex, Mansonia, and predatory 

larvae of Eretmapodites and Toxorhynchites. For any sampling method, Aedes mosquitoes 

dominated the fauna, representing 92.9% of the total fauna with 11 species. The proportions, 

sex, and the numbers of mosquito species varied substantially between sampling methods 

(Table 7.2). Overall, Aedes mosquitoes lacked in the oil palm monoculture, and conversely 

abounded in the other macrohabitats, with higher abundance in the polyculture (Figure 7.2) 

and higher species richness in the rainforest (Table 7.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Aedes mosquito species occurrence among macrohabitats in oil palm-

dominated landscapes in southeastern Côte d’Ivoire from January to December 2014. 
Error bars represent the standard error (SE). Letters indicate the results of the GLMM. Groups that do not share the same 

letter for the same sampling method are significantly different. 
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7.4.2. Distribution of Aedes immature stages across macrohabitats 

Figure 7.2 Table 7.3 immature Aedes species occurrence, stratified by macrohabitats. Overall, 

the study area showed Aedes-positivity indices of 35.0% (482/1,378) in the bamboo-ovitraps, 

41.9% (577/1,377) in metallic-ovitraps, and 45.6% (801/1,756) in the microhabitats. The 

highest Aedes-positivity indices in the bamboo-ovitraps (177/350; 50.6%) and in the metallic-

ovitraps (232/344; 67.4%) were found in the polyculture environment. Conversely, GLMM 

indicated that Aedes-positivity indices were significantly lower in oil palm monoculture 

compared to the other macrohabitats (p <0.05) (S1 Table). 

 Microhabitat Aedes-positivity indices widely varied from one macrohabitat to another 

(Table 7.3 and S7.3 Figure). No Aedes-positive microhabitats were found in oil palm 

monoculture. In contrast, the highest Aedes-microhabitats positivity index was estimated for 

the rainforest (94/161; 58.4%), followed by the polyculture (388/737; 52.6%), and the rural 

housing area (319/858; 37.2%). In the rural housing area, water containers were highly 

infested with Aedes larvae (159/229; 69.4%), and reached 86.4% (19/22) in December 2014 

during the long dry season. In the polyculture site, the highest Aedes-infectivity index 

(135/167; 80.8%) was observed among the discarded containers. 

Table 7.4 shows the proportions of each type of Aedes-positive microhabitats among 

the whole Aedes-positive microhabitats in each macrohabitat. In the rainforest, all the Aedes-

positive breeding sites (94/94; 100%) were naturally occurring microhabitats, while 95.0% 

(303/319) of Aedes-positive microhabitats were man-made containers in the rural housing 

area. The polyculture macrohabitat had substantial proportions of all Aedes-positive 

microhabitat types, with 24.2% (94/388) of naturally-occurring, 24.8% (96/388) of 

agriculturally-occurring and 51.0% (198/388) of man-made microhabitats. Taken together, in 

the study area, the Aedes-positive breeding sites were dominated by man-made microhabitats 

(501/801; 62.6%), followed by naturally-occurring microhabitats (198/801; 24.7%), and 

agricultural microhabitats (102/801; 12.7%) (S7.4 Figure). Overall, a part the oil palm mono-

cultures, Aedes-microhabitat positivity indices were higher during the dry season (S7.5 

Figure), whereas the highest proportions of Aedes-positive microhabitats were recorded 

during the rainy seasons (S7.6 Figure) in the other macrohabitats and the whole study area. 

 The frequency of microhabitats with shade, plant leaves, and predators varied among the 

macrohabitats. The highest proportions of shaded microhabitats (n = 607; 96.9%), and 

microhabitats with plant leaves (92.6%) were found in the rainforest. Wet microhabitats 

containing at least one of the predatory larvae of Toxorhynchites spp., Eretmapodites spp., 
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Table 7.2: Species composition of mosquitoes sampled in oil palm-dominated landscapes   in southeastern Côte d’Ivoire from January to December 2014  

Genus Species 
Bamboo-ovitrap Metallic-ovitrap Larval survey Double-net trap Total 

F M T % F M T % F M T % F M T % F M T % 

Aedes Ae. aegypti 1382 1343 2725 8.9 2052 1952 4004 13.1 3909 3742 7651 25.1 6735 1286 8021 26.3 14078 8323 22401 73.6 

                      Ae. africanus 163 167 330 1.1 199 193 392 1.3 120 141 261 0.9 59 9 68 0.2 541 510 1051 3.5 

  Ae. dendrophilus 410 408 818 2.7 528 481 1009 3.3 405 384 789 2.6 302 58 360 1.2 1645 1331 2976 9.8 

  Ae. fraseri 16 11 27 0.1 27 38 65 0.2 16 21 37 0.1 0 0 0 0.0 59 70 129 0.4 

  Ae. furcifer 41 35 76 0.2 62 70 132 0.4 145 122 267 0.9 23 3 26 0.1 271 230 501 1.6 

  Ae. lilii 26 16 42 0.1 13 15 28 0.1 9 5 14 0.0 0 0 0 0.0 48 36 84 0.3 

  Ae. luteocephalus 42 50 92 0.3 67 49 116 0.4 27 27 54 0.2 0 0 0 0.0 136 126 262 0.9 

  Ae. metallicus 13 16 29 0.1 44 49 93 0.3 25 23 48 0.2 0 0 0 0.0 82 88 170 0.6 

  Ae. opok 13 30 43 0.1 9 1 10 0.0 8 7 15 0.0 0 0 0 0.0 30 38 68 0.2 

  Ae. palpalis 6 6 12 0.0 19 13 32 0.1 55 62 117 0.4 3 1 4 0.0 83 82 165 0.5 

  Ae. vittatus 29 13 42 0.1 98 80 178 0.6 57 38 95 0.3 119 35 154 0.5 303 166 469 1.5 

  Total 2141 2095 4236 13.9 3118 2941 6059 19.9 4776 4572 9348 30.7 7241 1392 8633 28.4 17276 11000 28276 92.9 

Anopheles An. pharoensis 0 0 0 0.0 0 0 0 0.0 8 2 10 0.0 0 0 0 0.0 8 2 10 0.0 

                     An. gambiae 0 0 0 0.0 0 0 0 0.0 39 48 87 0.3 19 2 21 0.1 58 50 108 0.4 

  An. ziemani 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 1 0 1 0.0 1 0 1 0.0 

  Total 0 0 0 0.0 0 0 0 0.0 47 50 97 0.3 20 2 22 0.1 67 52 119 0.4 

Culex Cx. nebulosus 19 27 46 0.2 52 43 95 0.3 15 19 34 0.1 6 0 6 0.0 92 89 181 0.6 

                     Cx. poicilipes 32 36 68 0.2 29 41 70 0.2 73 54 127 0.4 48 5 53 0.2 182 136 318 1.0 

  Cx. quinquefasciatus 74 62 136 0.4 89 71 160 0.5 218 176 394 1.3 56 11 67 0.2 437 320 757 2.5 

  Cx. tigripes 3 4 7 0.0 13 6 19 0.1 79 95 174 0.6 3 0 3 0.0 98 105 203 0.7 

  Total 128 129 257 0.8 183 161 344 1.1 385 344 729 2.4 113 16 129 0.4 809 650 1459 4.8 

Eretmapodites Er. chrysogaster 87 69 156 0.5 76   76 0.2 112 97 209 0.7 48 14 62 0.2 323 180 503 1.7 

                      Total 87 69 156 0.5 76 0 76 0.2 112 97 209 0.7 48 14 62 0.2 323 180 503 1.7 

Mansonia Ma. africana 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 6 0 6 0.0 6 0 6 0.0 

                     Ma uniformis 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 2 1 3 0.0 2 1 3 0.0 

  Total 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 8 1 9 0.0 8 1 9 0.0 

Toxorhynchites Tx. brevipalpis 0 0 0 0.0 0 0 0 0.0 47 36 83 0.3 0 0 0 0.0 47 36 83 0.3 

Total 0 0 0 0.0 0 0 0 0.0 47 36 83 0.3 0 0 0 0.0 47 36 83 0.3 

Total 
Abundance  2356 2293 4649 15.3 3377 3102 6479 21.3 5367 5099 10466 34.4 7430 1425 8855 29.1 18530 11919 30449 100 

No. of species 16 16 19 15 22 

F: female, M: male, T: total, %: percentage 
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Table 7.3: Aedes mosquito infectivity patterns among the macrohabitats and the study area in southeastern Cote d’Ivoire from January to December 2014 

Term 

Macrohabitat 
Study area 

Rainforest Polyculture Oil palm monoculture Rural-housing area 

n1 n2 PI n1 n2 PI n1 n2 PI n1 n2 PI n1 n2 PI 

Bamboo-ovitrap
1
 346 151 43.6 350 177 50.6 343 0 0.0 339 154 45.4 1378 482 35.0 

Metallic-ovitrap
2
 344 152 44.2 344 232 67.4 349 2 0.6 340 191 56.2 1377 577 41.9 

Microhabitat
3
 161 94 58.4 737 388 52.6 0 0 NA 858 319 37.2 1756 801 45.6 

Naturally-occurring microhabitat
3
 161 94 58.4 148 94 63.5 0 0 NA 47 10 21.3 356 198 55.6 

Natural tree hole
3
 54 45 83.3 42 33 78.6 0 0 NA 4 1 25.0 100 79 79.0 

Bamboo hole
3
 51 38 74.5 29 21 72.4 0 0 NA 13 4 30.8 93 63 67.7 

Natural plant leaf
3
 52 9 17.3 29 7 24.1 0 0 NA 11 0 0.0 92 16 17.4 

Other natural microhabitat
3
 4 2 50.0 48 33 68.8 0 0 NA 19 5 26.3 71 40 56.3 

Agriculturally-occurring microhabitat
3
 0 0 NA 314 96 30.6 0 0 NA 49 6 12.2 363 102 28.1 

Crop fruit husk
3
 0 0 NA 91 47 51.6 0 0 NA 26 6 23.1 117 53 45.3 

Crop flower
3
 0 0 NA 68 3 4.4 0 0 NA 16 0 0.0 84 3 3.6 

Crop leaf
3
 0 0 NA 96 11 11.5 0 0 NA 0 0 NA 96 11 11.5 

Cultivated plant hole
3
 0 0 NA 59 35 59.3 0 0 NA 7 0 0.0 66 35 53.0 

Man-made microhabitat
3
 0 0 NA 275 198 72.0 0 0 NA 762 303 39.8 1037 501 48.3 

Crop collection container
3
 0 0 NA 57 33 57.9 0 0 NA 6 2 33.3 63 35 55.6 

Husbandry watering container
3
 0 0 NA 51 30 58.8 0 0 NA 229 159 69.4 280 189 67.5 

Discarded container
3
 0 0 NA 167 135 80.8 0 0 NA 167 105 62.9 334 240 71.9 

Household water container
3
 0 0 NA 0 0 NA 0 0 NA 360 37 10.3 360 37 10.3 

Double-net trap
4
 144 37 25.7 144 134 93.1 144 0 0.0 144 112 77.8 576 283 49.1 

n1: numbers of ovitraps recovered
1,2

,
 
wet microhabitats

3
 or double-net traps installed

4
, n2: numbers of Aedes-positive ovitraps

1,2
, Aedes-positive microhabitats

3
 or Aedes-positive double-net traps

4
, PI: 

Aedes-positivity index. PI is expressed as percentage (%). 
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Table 7.4: Proportions (%) of each Aedes-positive microhabitat type among the all Aedes-positive microhabitats in macrohabitats and study area in southeastern 

Cote d’Ivoire in January to December 2014 

Term 

Macrohabitat 
Study area 

Rainforest Polyculture Oil palm monoculture Rural-housing area 

n PPM PPSA n PPM PPSA n PPM PPSA n PPM PPSA n PPSA 

Naturally-occurring microhabitat 94 100.0 11.7 94 24.2 11.7 0 NA 0.0 10 3.1 1.2 198 24.7 

Natural tree hole 45 47.9 5.6 33 8.5 4.1 0 NA 0.0 1 0.3 0.1 79 9.9 

Bamboo hole 38 40.4 4.7 21 5.4 2.6 0 NA 0.0 4 1.3 0.5 63 7.9 

Natural plant leaf 9 9.6 1.1 7 1.8 0.9 0 NA 0.0 0 0.0 0.0 16 2.0 

Other natural microhabitat 2 2.1 0.2 33 8.5 4.1 0 NA 0.0 5 1.6 0.6 40 5.0 

Agriculturally-occurring microhabitat 0 0.0 0.0 96 24.7 12.0 0 NA 0.0 6 1.9 0.7 102 12.7 

Crop fruit husk 0 0.0 0.0 47 12.1 5.9 0 NA 0.0 6 1.9 0.7 53 6.6 

Crop flower 0 0.0 0.0 3 0.8 0.4 0 NA 0.0 0 0.0 0.0 3 0.4 

Crop leaf 0 0.0 0.0 11 2.8 1.4 0 NA 0.0 0 0.0 0.0 11 1.4 

Cultivated plant hole 0 0.0 0.0 35 9.0 4.4 0 NA 0.0 0 0.0 0.0 35 4.4 

Man-made microhabitat 0 0.0 0.0 198 51.0 24.7 0 NA 0.0 303 95.0 37.8 501 62.6 

Crop collection container 0 0.0 0.0 33 8.5 4.1 0 NA 0.0 2 0.6 0.2 35 4.4 

Husbandry watering container 0 0.0 0.0 30 7.7 3.7 0 NA 0.0 159 49.8 19.9 189 23.6 

Discarded container 0 0.0 0.0 135 34.8 16.9 0 NA 0.0 105 32.9 13.1 240 30.0 

Household water container 0 0.0 0.0 0 0.0 0.0 0 NA 0.0 37 11.6 4.6 37 4.6 

Total 94 100 11.7 388 100 48.5 0 NA 0.0 319 100 39.8 801 100 

n: numbers of Aedes-positive microhabitats, PPM: proportions of Aedes-positive microhabitat type among the whole Aedes-positive microhabitats in each macrohabitat. PPSA: proportions of 

Aedes-positive microhabitat type among the whole Aedes-positive microhabitats in the study area. PPM and PPSA are expressed as percentage (%). 
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and Cx. tigripes mosquitoes were also mostly encountered in the rainforest (n = 161; 63.4%). 

The polyculture area also hosted higher numbers of microhabitats with shade (n = 2,117; 

54.5%), plant leaves (n = 2,117; 59.6%), and predators (n = 737; 29.9%) compared with the 

rural housing areas. 

 

7.4.3. Aedes species distribution, biodiversity and dynamics  

Table 7.5 presents the geographic distribution and biodiversity of Aedes species among the 

macrohabitats in the study area. Ae. aegypti was the dominant species (n = 28,276; 79.2%), 

and all of the macrohabitats with 49.2% in the polyculture, 25.7% in the rural-housing areas, 

and 4.3% in the rainforest. Other Aedes species such as Ae. dendrophilus (10.5%), 

Ae. africanus (3.7%), Ae. furcifer (1.8%), and Ae. vittatus (1.7%), represented more than 1% 

of the total Aedes fauna in the study area. However, Ae. africanus (3.4%) showed its highest 

abundance in the rainforest, whereas the highest proportions of Ae. dendrophilus (7.6%) and 

Ae. furcifer (1.2%) were found in the polyculture area. The proportion of Ae. dendrophilus 

was above 1.0% in the rural housing area. 

 Aedes species numbers, diversity (F = 17.12; df = 3, p <0.05), and dominance (F = 

11.04; df = 3, p <0.05) varied among the study area and the macrohabitats (Table 7.5). The 

highest Aedes species richness (n = 11) and the highest species diversity (Shannon Index H = 

1.54) were observed in the rainforest, while oil palm monoculture exhibited the poorest 

diversity with one species and null Shannon index. The rural housing area displayed 

significantly higher Aedes species dominance (Simpson index D = 0.085) compared with the 

rainforest (Simpson index D = 0.28), the study area (Simpson index D = 0.64), and the 

polyculture (Simpson index D = 0.67). The community similarity of Aedes species between 

the macrohabitats also significantly altered (χ
2
 = 13.36; df = 3, p <0.05) (Table 7.5). 

According to Sorenson’s coefficient (CC = 1), Aedes mosquito community in the study area 

were similar to those inhabiting the rainforest. Compared with the rainforest, the polyculture 

showed the highest community similarity with Sorenson’s coefficient of 0.95, followed by 

the rural-housing area with a Sorenson’s coefficient of 0.85. In contrast, the Aedes 

communities in the rainforest and oil palm monoculture showed with 0.17 the lowest value 

for the Sorenson’s coefficient. 
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Table 7.5: Aedes species distribution and biodiversity among macrohabitats in oil palm-dominated landscapes in southeastern Côte d’Ivoire between January and 

December 2014 

Species 

Macrohabitat 
Study area 

Rainforest Polyculture Oil palm monoculture Rural-housing area 

Number % Number % Number % Number % Number % 

Ae. aegypti 1213 4.3 13903 49.2 4 0.01 7281 25.7 22401 79.2 

Ae. africanus 948 3.4 61 0.2 0 0.0 42 0.1 1051 3.7 

Ae. dendrophilus 544 1.9 2150 7.6 0 0.0 282 1 2976 10.5 

Ae. fraseri 129 0.5 0 0.0 0 0.0 0 0.0 129 0.5 

Ae. furcifer 24 0.1 352 1.2 0 0.0 125 0.4 501 1.8 

Ae. lilii 53 0.2 31 0.1 0 0.0 0 0.0 84 0.3 

Ae. luteocephalus 96 0.3 158 0.6 0 0.0 8 0.0 262 0.9 

Ae. metallicus 25 0.1 126 0.4 0 0.0 19 0.1 170 0.6 

Ae. opok 24 0.1 34 0.1 0 0.0 10 0.0 68 0.2 

Ae. palpalis 35 0.1 130 0.5 0 0.0 0 0.0 165 0.6 

Ae. vittatus 24 0.1 289 1 0 0.0 156 0.6 469 1.7 

Abundance (no. of specimens) 3115 11.0 17234 60.9 4 0.01 7923 28.0 28276 100 

Species richness (no. of species) 11 10 1 8 11 

Species diversity (Shannon Index (H)) 1.54 0.74 0.00 0.40 0.84 

Species dominance (Simpson Index (D)) 0.28 0.67 1.00 0.85 0.64 

Community similarity (Sorenson’s coefficient (CC)) 1.00 0.95 0.17 0.84 1.00 

0.95 1.00 0.18 0.89 0.95 

0.17 0.18 1.00 0.22 0.17 

0.84 0.89 0.22 1.00 0.84 

1.00 0.95 0.17 0.84 1.00 

%: proportions of Aedes specimens calculated as percentages (%). In each row, a macrohabitat with a Sorenson's coefficient of 1 was used as a reference to calculate the Sorenson's coefficients for 

the other macrohabitats. 
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 Table 7.6 indicates Aedes species abundance among the macrohabitats in the study 

area. No Aedes eggs, larvae, pupae, or adults were collected in the oil palm monoculture 

using bamboo-ovitrap, larval survey, and double-net trap methods, except the four eggs 

sampled with the metallic-ovitraps. However, higher mean numbers (mean ± standard error) 

of Aedes specimens with 2.32 ± 0.07 eggs/bamboo-ovitrap/week, 4.18 ± 0.07 eggs/metallic-

ovitrap/week, and 26.01 ± 0.12 adults/double-net trap/day were found in the polyculture. The 

mean numbers in bamboo-ovitrap deployed in oil palm monoculture was significantly lower 

than the rainforest (Z = 1.96, p <0.05) and rural housing area (Z = 2.06, p <0.05) (S2 Table). 

The mean numbers of Aedes eggs collected using metallic-ovitrap were significant different 

between the oil palm monoculture and the rainforest (Z = -2.04, p = 0.041) (S3 Table), 

between the polyculture and the rainforest (Z = -3.45, p = 0.001) (S4 Table). GLMM sowed 

that the mean numbers of Aedes eggs were significantly lower in oil palm monoculture than 

the other macrohabitats (p <0.05) (S5 Table). The rural-housing area (0.63 ± 0.03 

larvae/microhabitat) and the polyculture (0.60 ± 0.02 larvae/microhabitat) showed higher 

means of Aedes larvae compared with the other macrohabitats. In the rainforest, the tree holes 

were the most Aedes-inhabited containers, with 1.87 ± 0.12 larvae/microhabitats. The 

rainforests were free of any agricultural and man-made microhabitats, while the polyculture 

macrohabitat hosted all types of microhabitats, except for the household water containers. In 

the rural housing areas, the water containers were the most important producers of Aedes 

larvae with a mean of 2.47 ± 0.07 larvae/microhabitat. In the discarded containers Aedes 

immatures were also highly abundant with a mean number of 1.46 ± 0.05 larvae/ 

microhabitats. 

 Fig 7.3 shows the seasonal dynamics of whole Aedes species populations, sampled as 

eggs, larvae, pupae, and adults, over time among the macrohabitats in the study area. In the 

study area and macrohabitats, Aedes species abundance varied as a function of rainfall over 

time. Aedes abundance reached the first series of peaks in June, during the long rainy season, 

proportions of 19.1% (n = 28,276) in the study area, 12.4% in the polyculture, 4.6% in the 

rural-housing area, 2.0% in the rainforest, and 0.01% in oil palm monoculture. The second 

series of peaks occurred in October, during the short rainy season, with 13.9% in the study 

area, 9.0% in the polyculture, 3.3% in the rural-housing area, and 1.6% in the rainforest. 
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Table 7.6: Aedes mosquito abundance patterns among the macrohabitats and study area in southeastern Cote d’Ivoire between January and December 2014 

Term 

Macrohabitat 
Study area 

Rainforest Polyculture Oil palm monoculture Rural-housing area 

n1 n2 Mean ± SE n1 n2 Mean ± SE n1 n2 Mean ± SE n1 n2 Mean ± SE n1 n2 Mean ± SE 

Bamboo-ovitrap
1
 346 1018 1.28 ± 0.06 350 1899 2.32 ± 0.07 343 0 0 339 1319 1.73 ± 0.06 1378 4236 1.13 ± 0.03 

Metallic-ovitrap
2
 344 1198 1.44 ± 0.06 344 2830 4.18 ± 0.07 349 4 0.01 ± 0.004 340 2027 2.72 ± 0.07 1377 6059 1.61 ± 0.03 

Microhabitat
3
 607 671 0.36 ± 0.03 2117 5339 0.60 ± 0.02 0 0 NA 1497 3338 0.63 ± 0.03 4221 9348 0.57 ± 0.02 

Naturally-occurring microhabitat
3
 607 671 0.36 ± 0.03 435 1537 0.80 ± 0.06 0 0 NA 191 53 0.09 ± 0.03 1233 2261 0.45 ± 0.03 

Natural tree hole
3
 92 372 1.87 ± 0.12 82 688 2.40 ± 0.18 0 0 NA 46 8 0.05 ± 0.05 220 1068 1.48 ± 0.09 

Bamboo hole
3
 189 257 0.48 ± 0.06 89 377 0.95 ± 0.14 0 0 NA 56 18 0.11 ± 0.06 334 652 0.52 ± 0.05 

Natural plant leaf
3
 283 33 0.05 ± 0.02 111 54 0.14 ± 0.05 0 0 NA 28 0 0 422 87 0.07 ± 0.02 

Other natural microhabitat
3
  43 9 0.08 ± 0.06 153 418 0.69 ± 0.09 0 0 NA 61 27 0.15 ± 0.07 257 454 0.43 ± 0.06 

Agriculturally-occurring  microhabitat
3
 0 0 NA 1118 1001 0.22 ± 0.02 0 0 NA 275 51 0.05 ± 0.02 1393 1052 0.19 ± 0.02 

Crop fruit husk
3
 0 0 NA 338 556 0.41 ± 0.05 0 0 NA 98 51 0.14 ± 0.06  436 607 0.35 ± 0.04 

Crop flower
3
 0 0 NA 266 16 0.02 ± 0.01 0 0 NA 54 0 0 320 16 0.02 ± 0.01 

Crop leaf
3
 0 0 NA 360 75 0.06 ± 0.02 0 0 NA 89 0 0 449 75 0.05 ± 0.01 

Cultivated plant hole
3
 0 0 NA 154 354 0.69 ± 0.08 0 0 NA 34 0 0 188 354 0.54 ± 0.07 

Man-made microhabitat
3
 0 0 NA 564 2801 1.50 ± 0.06 0 0 NA 1031 3234 0.98 ± 0.03 1595 6035 1.15 ± 0.03 

Crop collection container
3
 0 0 NA 141 454 0.83 ± 0.10 0 0 NA 39 5 0.07 ± 0.05 180 459 0.63 ± 0.08 

Husbandry watering container
3
 0 0 NA 63 303 1.99 ± 0.16 0 0 NA 272 1362 2.47 ± 0.07 335 1665 2.37 ± 0.06 

Discarded container
3
 0 0 NA 360 2044 1.74 ± 0.07 0 0 NA 360 1560 1.20 ± 0.07 720 3604 1.46 ± 0.05 

Household water container
3
 0 0 NA 0   NA 0 0 NA 360 307 0.24 ± 0.04  360 307 0.24 ± 0.04 

Double-net trap
4
 144 228 0.71 ± 0.07 144 7166 26.01 ± 0.12 144 0 0 144 1239 4.89 ± 0.10 576 8633 3.06 ± 0.07 

n1: number of recovered bamboo-ovitraps
1
 or number of recovered metallic-ovitraps

2
 or microhabiats

3
 or double- net trap

4
, n2: number of eggs, larvae or adults of Aedes collected, SE: standard error of 

the mean numbers. Mean is mean numbers of Aedes eggs per bamboo-ovitraps
1
, mean numbers of Aedes eggs per metallic-ovitraps

2
, mean numbers of Aedes larvae per  microhabitats

3
 or mean 

numbers of Aedes adults per double-net trap
4
, The units are egg/bamboo-ovitrap/week for bamboo-ovitraps

1
, egg/metallic-ovitrap/week for metallic-ovitraps

2
,  larvae/microhabitats for microhabitats

3
, 

and adult/trap/day for double-net traps
4
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Figure 7.3: Monthly variations in the abundance of Aedes mosquitoes in oil palm-

dominated landscapes in southeastern Côte d’Ivoire from January to December 2014. 

Error bars represent the standard error (SE). 

 

7.4.4. Adult Aedes females’ host-seeking behaviors 

The mean biting rates of Aedes females were estimated at 2.76 ± 0.07 females/person/day in 

the study area. Over 93.0% (n = 7,241) of biting was inflicted by Ae. aegypti. Conversely, the 

females of several other species such as Ae. fraseri, Ae. lilii, Ae. luteocephalus, 

Ae. metallicus, and Ae. opok were not sampled using the human-baited double-net device 

(Table 7.2). The highest mean biting rates were found in the polyculture macrohabitat (21.48 

± 0.12 females/person/day), followed by the rural housing areas (4.48 ± 0.10 

females/person/day), and the rainforest (0.62 ± 0.6 females/person/day). No Aedes females 

were collected in the oil palm monoculture. GLMM revealed significant differences in the 

mean biting rates comparing rainforest with polyculture (Z = 2.47, p = 0.014), and rainforest 

with housing area (Z = 2.37, p = 0.018) (S7.3 Table). 

 Figure 7.4 presents the seasonal dynamics of Aedes host-seeking in the study area and 

the macrohabitats. GLMM indicated that the biting rates of Aedes females significantly 

varied over the months (p <0.05) (S7.5 Table), and peaked in June during the long rainy 

season and in October during the short rainy season across all macrohabitats, except for the 

oil palm monoculture (Figure 7.3). The major biting rate peaks of Aedes females averaged 

109.54 ± 0.07 females/person/day in the polyculture, 16.14 ± 0.17 females/person/day in the 

rural housing area, 8.44 ± 0.30 females/person/day in the study area, and 3.18 ± 0.24 
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females/person/day in the rainforest in June. The secondary most important biting rates 

occurred in October with 74.5 ± 0.10 females/person/day in the polyculture, 10.7 ± 0.27 

females/person/day in the rural-housing areas, 6.33 ± 0.29 females/person/day in the study 

area, and 2.27 ± 0.32 females/person/day in the rainforest. 

 

Figure 7.4: Monthly variations in Aedes mosquito females’ host-seeking activities in oil 

palm-dominated landscapes in southeastern Côte d’Ivoire from January to December 

2014. Error bars represent the standard error (SE). 

 

 Figure 7.5 shows the daily host-seeking activity cycles of Aedes mosquito females in the 

study area and across the different macrohabitats. Aedes females fed from 04:00 a.m. to 8:00 

p.m., covering daytime (06:00 a.m. to 6:00 p.m), and darkness (04:00 a.m. to 06:00 a.m. and 

6:00 p.m to 8:00 p.m.) in all macrohabitats, except in the oil palm monoculture (Figure 7.5A). 

The biting cycles showed two peaks, with the main peak observed between 4:00 p.m. and 

5:00 p.m. and a lower peak between 07:00 a.m. and 08:00 a.m. Ae. aegypti, Ae. dendrophilus, 

and Ae. vittatus followed the same host-seeking patterns (Figure 7.5A) with stronger human 

biting intensity in Ae. aegypti in the study area (Fig 5B), the polyculture (Figure 7.5C), and 

the rural housing areas (Figure 7.5D). In contrast to these similarities, there was also some 

dissimilarity in that host-biting activity was interrupted from 11:00 a.m. to 2:00 p.m. in the 

rural housing area but continued in polyculture macrohabitat (Figure 7.5A). 



Chapter 7 - Effects of agricultural land-use change on Aedes mosquito ecology 
 

 

108 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Nycthemeral dynamics of Aedes mosquito females’ host-seeking activities in oil palm-dominated landscapes in southeastern 

Côte d’Ivoire from January to December 2014. A: All species in all the macrohabitats and the study area, B: Prevalent Aedes species (> 1%) in the study area, C: Prevalent 

Aedes species (> 1%) in the polyculture, Prevalent Aedes species (> 1%) in the rural-housing areas. 

C 

A B 

D 
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Table 7.7. Synthesis of how land-use changes shape the ecology of Aedes mosquitoes in oil palm-dominated areas in southeastern Côte d’Ivoire 

 Rainforest Polyculture Oil palm monoculture Rural housing area Study area 

Bamboo-ovitrap positivity (%) 43.6 50.6 0.0 45.4 35.0 

Metallic-ovitrap positivity (%) 44.2 67.4 0.6 56.2 41.9 

Microhabitat positivity (%) 58.4 52.6 0.0 37.2 45.6 

Microhabitat type      

Naturally-occurring (%) 100 51.0 0.0 95.0 55.6 

Agriculturally-occurring (%) 0 24.8 0.0 1.9 28.1 

Made-made (%) 0 24.2 0.0 3.1 48.3 

Double net trap positivity (%) 25.7 93.1 0.0 77.8 49.1 

Species richness (no of species) 11 10 1 8 11 

Abundance (%) 11.0 60.9 0.01 28.0 100 

Host-seeking activity (mean ± SE) 0.62 ± 0.06 21.48 ± 0.12 0.00 4.48 ± 0.10 2.76 ± 0.07 

Arbovirus-risk - ++ -- + + 

-- : very low risk, - : low risk, + : high risk, ++ : very high risk; %: percentage; SE: Standard error of the mean. Host-seeking activity is expressed as the mean numbers of Aedes females 

collected per human-baited double-net trap. The unit of host-seeing activity is female/person/day. Overall, there was a lack of Aedes microhabitats and species in the oil palm 

monoculture resulting in very low arbovirus-risk. In contrast, the highest abundance of Aedes mosquitoes was found in the polyculture where arbovirus-risk is expected to be very high. 

The highest species richness was observed in the rainforest where the preference of Aedes females to feed on humans was little. The rural housing area and the whole study area hosted 

substantial numbers of Aedes mosquitoes and arbovirus-risk is expected to be high in rural housing area and moderate in the whole study area.  



Chapter 7 - Effects of agricultural land-use change on Aedes mosquito ecology 
 

 

110 

 
 

7.5. Discussion 

Our study revealed no Aedes-positive microhabitats and only four specimens of Ae. aegypti in 

oil palm monocultures, coupled with high Aedes species richness in the rainforests, and high 

biting rates in polyculture and rural housing areas. As identifying priority areas for integrated 

vector management is of considerable importance for public health [3, 24], this study 

examined – for the first time – the effects of land-use changes on Aedes mosquito abundance, 

distribution, and human host seeking behavior in oil palm dominated landscapes of yellow 

fever and dengue foci in the south-eastern part of Côte d’Ivoire. Our data showed that Aedes 

mosquito species displayed several significant differences in community composition, 

distribution, and host-seeking behavior across different land-covers, with the highest species 

richness observed in rainforest, highest species numbers in the polyculture macrohabitats, the 

lowest species richness and numbers in oil palm monoculture, and stronger anthropophagic 

behaviors in the polyculture and rural housing areas (7.7 Table and S7.6 Figure).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.6: Hypothesis on the effects of land-use changes on Aedes mosquito ecology and 

arbovirus-risks in oil palm-dominated landscapes in southeastern Côte d’Ivoire. Human-

induced land-use changes into the original tropical rainforests (A) for their conversion into large industrial oil palm 

plantations have probably resulted in changes in land covers creating four ecologically distinct macrohabitats: rainforest (B), 

polyculture (C), oil palm monoculture (D) and rural housing area (E). The conversion of the rainforests into large oil palm 

monoculture has led to the losses of forest-dwelling Aedes mosquito breeding sites and hosts thus increasing ecological 

pressure for searching alternative breeding sites and hosts in the three other macrohabitats. Aedes mosquitoes possibly found 

new breeding sites as anthropogenic containers abundantly encountered in the rural housing area and polyculture where 

humans (inhabitants and workers) are usually present thus resulting in higher abundance of vectors and high high-risks of 

arboviruses’ transmission in these areas. In contrast, the arboviral transmission risks are low in the oil palm monoculture due 

to the lack Aedes mosquitoes, and in the rainforest due to the low anthropophagy of forest-dwelling Aedes species.  
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Such distributional differences in Aedes vectors are likely to shape the distributions of 

arboviral disease transmission risks between landscapes, with low-risk and high-risk areas 

(Fig 7.6). The following points are offered for consideration. First, holistically, our study 

yielded high species richness and high numbers of mosquitoes, with the dominance of 

medically important Aedes species in different anthropogenic landscape-use changes in areas 

devoted to oil palm plantations. Several Aedes species such as Ae. aegypti, Ae. africanus, 

Ae. furcifer, Ae. luteocephalus, Ae. opok, and Ae. vittatus have been known to vector at least 

one of the viruses, including yellow fever, dengue, and chikungunya in Côte d’Ivoire [15, 16] 

and Senegal [7, 25, 26]. The high Aedes species diversity is consistent with previous studies 

conducted in distinct landscapes in rural areas of Senegal [7, 25, 26]. This could be due to the 

heterogeneity of landscapes (rainforest, polyculture, oil palm monoculture, and housing 

areas) that possibly provide a wide range of larval habitats, resting and mating places, and 

nectar and blood-food sources [7, 25]. Second, we used diverse sampling methods (i.e., 

bamboo-ovitraps, metallic-ovitraps, larval surveys, and human-baited double-net traps) 

targeting different development stages (i.e., egg, larvae, pupae, and adults) of Aedes 

mosquitoes during the dry and rainy seasons. Due to logistical limitations, our study only 

focused on Aedes mosquito dwelling up to 2 m above ground, and the anthropophagic 

populations that are active between 04:00 and 20:00 hours. Some canopy-dweller [26], 

nighttime-biter [27, 28], and zoophilic [29] Aedes species were probably missed by the 

current sampling techniques. A vertical stratification study, circadian (24-hours period) 

sampling design, and animal-baited trapping could possibly provide deeper insight into the 

ecology of Aedes mosquitoes living in the canopies, darkness-dependent biting, and 

zoophagic behaviors, respectively. 

Third, from a reductionist view, we found compositional differences in Aedes species 

among the landscape covers, suggesting ecologically filtering effects of land-use changes on 

Aedes mosquito communities, as observed in arthropods [30]. Bernues-Baneres et al. [31] 

have observed variations in faunistic diversity of mosquitoes according to the typology of 

land-covers in Spain. Because of their high sensitivity to environmental changes, mosquitoes 

have been suggested as bio-indicators of forest degradation level in Brazil [32]. In our study 

area, Aedes species were absent in oil palm monocultures, while they were abundantly 

present in polyculture environment and rural housing areas. This may suggest the 

displacement of Aedes mosquitoes vectors primarily from the forested areas transformed into 

oil palm plantations toward preserved rainforest, the polyculture, and rural housing areas for 
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searching alternative breeding sites [33, 34], and blood-food sources [21]. In the first possible 

scenario, under the increased pressure exerted by Aedes mosquito populations, they become 

highly abundant during the rainy season on the hosts and breeding sites available in the 

preserved rainforest. The ecologic Aedes-rainforest balance is probably interrupted, and 

hence, leading to the diffusion of forest-dwelling anthropozoophilic Aedes species toward the 

rural human-inhabited areas. Similar findings have been reported in rural areas of Senegal, 

where Aedes vectors have invaded villages from surrounding landscapes and the risk of 

arboviral infection became highest at the edges of the villages [26]. These wild Aedes species 

that have both horizontal/oral and vertical/transovarial transmission competences for 

arbovirus probably transmit viruses that they have previously taken from forest-dwelling 

animals to villagers thus linking the jungle/sylvatic cycles to emergence/rural cycles [12, 20, 

21]. Alternatively, the second scenario is that people working in polyculture could be bitten 

by a virus-infected Aedes mosquito, which might carry the virus to rural housing areas that 

are already colonized by potential competent vectors [20]. These competent vectors may 

disseminate viruses among the populations. Both scenarios are expected to increase yellow 

fever and dengue emergence and re-emergence risks, especially since they do not exclude 

mutually [20], because people live in close proximity to wildlife. 

Fourth, Aedes mosquitoes still appear to show diverse and atypical breeding patterns 

across macro- and microhabitats leading to horizontal stratification among species with lack 

of Aedes mosquitoes in the oil palm monocultures and strong colonization of the other 

macrohabitats (i.e., rainforest, polyculture, and rural housing areas). These findings 

corroborate previous results showing that land-use changes affect the ecology of immature 

Aedes mosquitoes in the United States of America [2] and in rural areas of Senegal [7]. 

Ferraguti et al. [3] have reported that mosquito richness is higher in natural areas compared to 

anthropized areas. Polyculture area has more positive effects on the abundance and species 

richness of terrestrial arthropod than monoculture in oil palm production landscapes in 

Peninsular Malaysia [5, 35]. Indeed, oil palm plantations alter ecosystem functioning [36], 

and reduce species richness and abundance compared with forested areas [37] due to the 

losses of habitats and hosts [5, 6]. Moreover, the drastic decline in Aedes species in oil palm 

monocultures could probably be exacerbated by multiple and intense uses of chemical 

products such as insecticides and herbicides for crop protection [19]. Aedes species have 

adapted alternatively their oviposition and blood-feeding behaviors to anthropogenic habitats 

and hosts that are available in the polyculture and rural housing areas [7]. Polyculture still 
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had naturally-occurring microhabitats (i.e., tree and bamboo holes), developed multiple 

agriculturally occurring microhabitats (i.e., crop fruit husks, flower, sheathing leaf axils, and 

cultivated plant holes), and received several man-made containers (i.e., crop collection 

containers, discarded containers). Indeed, people discarded high numbers of containers such 

as old tires, parts of vehicles and machines in the maintenance of the agricultural lands, tarps, 

cans, and other worn items in surrounding polyculture since they directly live in close 

proximity to their smallholdings. Besides, urbanized housing areas are also incriminated to 

replace the natural microhabitats (e.g., tree holes, bamboo) by the artificial microhabitats 

(e.g., tires, discarded containers, water storage containers), increase numbers of 

microhabitats, expose these breeding sites to higher magnitude of solar radiation and enhance 

the population size of Aedes mosquitoes [38]. In these areas, containers serving as waterers 

for the poultry husbandry during the dry season were found to be highly infested with 

Ae. aegypti larvae, as observed in bird cages in Malaysia [9]. Anthropogenic environments 

also act as limiting factors for the Aedes mosquito predators (e.g., Eretmapodites spp. and 

Toxorhynchites spp.) [4]. Hence, Aedes species that uniquely oviposit in natural containers 

(e.g., tree holes) [7], lay more fragile and desiccation-sensitive eggs, and need rainwater for 

hatching of the eggs [4], have height-oviposition behaviors [7]. Microbial inputs from 

predation as food sources for their offspring [2], and wild animal hosts as blood-meals for the 

adult females [29], were probably restricted to the rainforest [4, 7]. Indeed, the specialists that 

are strictly ecologic demanding remain confined to particular ecotopes (e.g.  rainforest), 

while the generalists (i.e., Ae. aegypti) spread and colonize any environment [4, 7]. All these 

biotic and abiotic factors interact with the rainfalls that habitually ensure the flooding of the 

breeding sites to induce significant variations in the abundance and distribution of Aedes 

mosquito species, all which may link the different possible arbovirus transmission cycles and 

increase exposure of human populations to arbovirus-risks [12]. 

Finally, Aedes mosquito females seem to exhibit similarities and dissimilarities in host-

seeking behaviors between the types of land cover that acted as a series of ecological filters 

[30]. Aedes mosquitoes were seeking for humans in every land cover type studids here, 

except for the oil palm monoculture. Moreover, the vectors displayed low preference for 

feeding on humans in the rainforest. Host-seeking activities were higher in both polyculture 

and rural housing areas, and biting activity showed one peak in the morning and one peak in 

the evening. However, biting cycles were interrupted between 10:00 and 14:00 hours in the 

rural housing areas and maintained in the polyculture. The unexpected ecologic variations in 
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Aedes biting behavior suggest a complex pattern of arbovirus transmission in the large-scale 

development of oil palm-planted landscapes. Such outstanding spillovers might be 

attributable to the adaptation of Aedes species to land-use patterns, and human activities and 

movements. In fact, the absence of aggressive Aedes females in oil palm monoculture could 

be explained by the losses of their habitats and animal hosts [6], while the disinterest of 

rainforest-dwelling vectors into feeding on humans could be due to their preference to feed 

on wild animals [29]. When the vector aggressiveness peaked, in the morning and in the 

evening, humans are generally within housing areas suggesting that high exposures to 

arboviruses occur in the villages [21, 25]. The interruption of host-seeking activities of Aedes 

females coincided with the migration of workers to the industrial oil palm farming and other 

people to their own smallholdings. Such an accordance of malaria vector behaviors to human 

movements has been reported in rubber plantations in Thailand [39]. The gap observed in 

host-seeking activities also corresponded to the sunlight intensity in the rural-housing areas 

that are directly exposed to solar radiation due to the lack of natural vegetation coverage. As 

observed in poikilothermic animals, including insects [40], Aedes host-seeking behavior was 

probably most affected by the sun in the housing area. Conversely, the continuous biting 

cycles of Aedes females in polyculture could be explained by the permanent presence of 

workers that may habitually serve as blood-food sources [39], and the shade provided by the 

abundance of vegetation coverage that probably reduces the negative effects of sunlight 

radiation on host-searching activities. The surprising darkness-biting activities could be 

interpreted as residual biting activities of Aedes mosquitoes that feed nightly on wild animals 

[21, 26, 29]. The nocturne biting activities of the well-known daytime Aedes mosquitoes has 

been reported on Ae. aegypti in Côte d’Ivoire [27] and Ae. albopictus in Cameroon [28]. The 

extent of such atypical host-seeking activity rhythm observed in our study region could have 

important epidemiologic implications, and needs to be analyzed at greater depth and over 

larger scales. We conclude that in the southeastern part of Côte d’Ivoire, agricultural land-use 

is changing as a result of transforming rainforests into oil palm monocultures, which 

significantly influences the composition, distribution, oviposition patterns, and host-seeking 

behavior of Aedes mosquito species. In turn, there is a lack of Aedes mosquitoes in oil palm 

monocultures and a strong colonization of polyculture and rural housing areas. Hence, 

humans are primarily exposed to Aedes bites and arbovirus risk around their homes and 

farming plots. In oil palm-planted areas, arboviral disease control strategy should encompass 

integrated approaches, including landscape epidemiology and ecotope-based vector control. 
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7.6. Supporting information 

 

 

 

 
 

 

 

S7.1 Figure: Different macro- and microhabitat types sampled for Aedes mosquitoes in 

oil palm-dominated landscapes in southeastern Côte d’Ivoire. Potential habitats of Aedes 

mosquitoes are stratified into two habitat types: I: macrohabitats, and II: microhabitats. The habitat type often reflects the 

name of the habitats and the categories include habitats that provide comparable Aedes mosquito habitats. The macrohabitats 

area divided into four ecological blocks: A: Rainforest that was the preserved dense forest hosting several plant species of 

threes, creepers, and bamboo, and animals; B: Polyculture that covered a mixture of cultivated plants such as oil palm tree, 

rubber, taro, banana, coconuts, and native threes; C: Oil palm monoculture that was covered uniquely with industrial oil 

palm trees; and D: rural-housing area that was the human-inhabited space. The microhabitats were summarized into II.1: 

Naturally-occurring microhabitats that comprised E: Natural tree hole, F Bamboo hole, G: Natural plant leaf, and H: Other 

natural microhabitats; II.2: Agriculturally-occurring microhabitats that were composed of : I: Crop fruit husk, J: Crop flower, 

K: Crop leaf, and L: Cultivated plant hole; and II.3: Man-made microhabitats that represented: M: Crop collection container,  

N: Husbandry watering container, O: Discarded container, and P: Household water container. Containers categorized “other 

natural microhabitats” were the snail shells and the rock holes. 
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II.1: Naturally-occurring microhabitats 

 

 

 

 

 

 

 

 

 

 II.1: Agriculturally-occurring microhabitats 

 

 

 

 

 

 

 

 

 

 II.1: Man-made microhabitats 

 

 

 

 

 

 

 

 

 

 

II: Microhabitats 
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S7.2 Figure: Standardized devices and methods used for sampling different life stages of 

Aedes mosquitoes in the study areas. A: Bamboo-ovitrap, B: Metallic-ovitrap, C: Larval survey, D: Human-

baited double net trap. 
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S7.3 Figure: Aedes mosquito species occurrence among the microhabitats in 

different macrohabitats in southeastern Côte d’Ivoire from January to December 

2014. Error bars represent the standard error (SE). NOM: naturally-occurring microhabitat, AOM: agriculturally-

occurring microhabitat, MMM: man-made microhabitat. 

 

 

S7.4 Figure: Relative proportions (%) of the different types of microhabitats among 

Aedes-positive microhabitats in the macrohabitats in southeastern Côte d’Ivoire 

from January to December 2014. Error bars represent the standard error (SE). NOM: naturally-occurring 

microhabiat, AOM: agriculturally-occurring microhabitat, MMM: man-made microhabitat. 
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S7.6 Figure: Monthly variations in different types of microhabitats among Aedes-

positve microhabitats in the macrohabitats in southeastern Côte d’Ivoire from 

January to December 2014.  
Error bars represent the standard error (SE).  

 

S7.5 Figure: Monthly variations in Aedes mosquito species occurrence among the 

microhabitats in different macrohabitats in southeastern Côte d’Ivoire from 

January to December 2014.  
Error bars represent the standard error (SE). 
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8. Discussion 

8.1. Overview 

Aedes mosquito community dynamics and transmission of arboviral diseases are driven by 

far-reaching impacts of anthropogenic changes, including human-mediated land-use changes 

(e.g. urbanization and changing patterns of agriculture) and insecticide uses [1-6]. Land-use 

changes have been associated with modifications of biodiversity that might be governed by 

changes in the availability and suitability of mosquito habitats, and thus are a key driver in a 

range of infectious disease outbreaks, including arboviruses [5, 7, 8]. Urbanization continues 

at a high pace, particularly in low- and middle-income countries (LMICs) of Africa, and is 

one of the most ecologically modifying phenomena that influences the larval habitats, the 

development and survivorship of Aedes mosquitoes [9]. Additionally, changing patterns of 

agriculture, particularly oil palm monocultures, are a threat for tropical rainforests and might 

enhance the transmission of arboviral diseases [10]. Indeed, tropical rainforests usually host a 

large diversity of Aedes species [11-13], while deforestation and conversion of forested areas 

into human settlements and agricultural lands can modify Aedes species composition and 

distribution, and has been associated with altered arbovirus transmission [1, 14]. 

 

8.2. Key findings and structure of discussion 

The aim of this PhD thesis was to generate new evidence on anthropogenic effects (e.g. 

urbanization and changing patterns of agriculture) on Aedes mosquito community dynamics 

in yellow fever and dengue foci in Côte d’Ivoire. The main focus is on the effects of land-use 

changes, including urbanization and agricultural practices, on the ecology of Aedes 

mosquitoes. The assessment of Aedes mosquito ecology along a rural-to-urban gradient and 

in an industrial oil palm monoculture in Côte d’Ivoire are showcased by (i) exploring the 

oviposition ecology of Aedes mosquitoes and the dynamics of Ae. aegypti in variously 

urbanized settings (rural, suburban and urban) (Chapter 5); (ii) characterizing the larval 

ecology of Aedes mosquitoes alongside a gradient of increasing urbanization (rural, suburban 

and urban) (Chapter 6); and (iii) assessing the abundance, distribution and host-seeking 

behaviours of Aedes mosquitoes in oil palm cultivation-dominated landscapes (Chapter 7). 

The main contributions of this PhD thesis are discussed, with an emphasis on three goals, 

as outlined in section 3.2: 
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 Goal 1: To improve our understanding of how urbanization influences the oviposition 

ecology and species composition of Aedes mosquitoes in arbovirus foci; 

 Goal 2: To assess how urbanization affects the breeding sites, larval ecology and species 

composition of Aedes mosquitoes in arbovirus endemic areas; 

 Goal 3: To deepen our understanding of the impacts of agricultural land use changes on 

the abundance, distribution and host-seeking behaviours of Aedes mosquitoes in oil palm-

dominated landscapes. 

In view of the results presented in this thesis, a set of conclusions and recommendations 

are drawn. Limitations of our work are discussed and research needs highlighted. 

 

8.3. Main contributions of current PhD thesis 

Our data on the risk of Aedes mosquito-transmitted arboviral disease outbreaks will inform 

local populations, health authorities, decision makers and scientists on the risk of emergence 

and re-emergence of yellow fever and dengue. In turn, possible actions to reduce exposure 

are revealed. With such practical knowledge and new evidence at hand, collaboration 

between different stakeholders can be fostered and community engagement into Aedes vector 

surveillance and control further enhanced in order to reduce the burden of arboviral diseases. 

 

8.4. Social-ecological characteristics in rural, suburban and urban areas 

Our social-ecological investigations revealed that several factors varied along a rural-to-urban 

gradient. These factors include the number and density of people, availability of containers 

that may serve as breeding sites for Aedes mosquitoes and water storage practices in surveyed 

households (Chapter 5) 

Our findings on social-ecological characteristics along a rural-to-urban gradient suggest 

important variations among Aedes mosquito species numbers and abundance. Indeed, the 

increasing human population density and number of artificial containers in urban settings is 

likely to go hand-in-hand with a higher abundance of anthropophagic Aedes species, such as 

Ae. aegypti [9]. In contrast, the wide range of natural and artificial containers in rural settings 

may be favourable to the diversity and the richness of Aedes species [14]. Additionally, the 

high proportion of households storing water for long duration is favourable for the infestation 

of the water storage containers with the larvae of Aedes mosquitoes, mainly Ae. aegypti, as 

reported in urban settings of Equator [15] and Porto Rico [16]. Ultimately, the social-
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ecological factors, including increased human population size, unmanaged environments and 

water storage practices, are expected to increase the risks of emergence or re-emergence of 

yellow fever and dengue in areas undergoing rapid urbanization [8, 13, 17, 18, 19]. 

8.5. Effects of urbanization on Aedes mosquito community dynamics 

Taken together, our oviposition and larval ecological studies revealed that Aedes mosquito 

species composition, egg-laying patterns, breeding site characteristics and the biological 

interactions among species varied considerably along a rural-to-urban gradient (Chapters 5 

and 6). 

 

8.5.1. Aedes species composition 

Urbanization strongly affects Aedes mosquito ecology. For example, we found that Aedes 

mosquito species richness was higher in rural compared to suburban and urban areas. 

Conversely, Aedes mosquito abundance was higher in urban compared to suburban and rural 

areas. Ae. aegypti was the predominant species in the three different types of study areas and 

exhibited particularly high dominance in the urban areas. In rural and suburban areas, several 

other wild Aedes species were recorded, including Ae. africanus, Ae. angustus, Ae. Apico-

argenteus, Ae. argenteopunctatus, Ae. dendrophilus, Ae. fraseri, Ae. furcifer, Ae. haworthi, 

Ae. lilii, Ae. longipalpis, Ae. luteocephalus, Ae. metallicus, Ae. opok, Ae. palpalis, Ae. stokesi, 

Ae. unilineatus, Ae. usambara and Ae. vittatus. 

The observed variations in anthropophagic and non-anthropophagic Aedes mosquito 

species diversity and abundance along a rural-to-urban gradient in yellow fever and dengue 

foci within southeastern Côte d’Ivoire suggest the existence of several arboviral transmission 

cycles [11, 13, 14]. Indeed, the forest-dwelling Aedes species that are still present in the rural 

area may play a key role as bridge vectors between the sylvatic cycles of dengue, yellow 

fever and other viruses among non-human primates and humans, while Ae. aegypti, which is 

the main vector and has high anthropophilic behaviour in urban areas, is expected to ensure 

human-to-human transmission of arboviruses that may cause outbreaks [11, 13]. The species 

belonging to the Stegomyia subgenus, such as Ae. aegypti, Ae. africanus, Ae. albopictus, 

Ae. angustus, Ae. apicoargenteus, Ae. fraseri, Ae. luteocephalus, Ae. metallicus, Ae. opok, 

Ae. vittatus, Ae. unilineatus and Ae. usambara, and the Diceromyia and Aedimorphus 

subgenera comprising Ae. furcifer and Ae. stokesi, respectively, have been shown to carry 

and/or transmit in nature over 24 viruses, including yellow fever, dengue, Zika, chikungunya, 
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and Rift Valley in tropical regions [11, 12]. In addition, Ae. (Aedimorphus) argenteopunc-

tatus in South Africa [20] and Ae. (Neo-melaniconion) palpalis [21], which show vector 

competence for Rift Valley fever virus in vitro and the other Aedes species like 

Ae. (Stegomyia) dendrophilus, Ae. (Stegomyia) lilii and Ae. (Aedimorphus) haworthi, which 

belong to the same subgenera involved in the transmission of the arboviruses, could be 

suspected as potential vectors. Of note, Ae. (Finlaya) longipalpis belonging to the same 

Finlaya subgenus with Ae. niveus that is the principal vector of dengue virus in Malaysia 

[22], may potentially transmit arboviruses in Côte d’Ivoire. The collection of several non-

anthropophagic species – unexpected and new potential vectors in rural areas – suggest the 

co-existence of several still unidentified arbovirus cycles in southeastern Côte d’Ivoire. 

The current PhD thesis suggests that, while vector control should primarily focus on 

urban settings, rural areas are important as they may serve as transition zones for the 

introduction or reintroduction of arboviral diseases through sylvatic bridge vectors. Because 

rural areas hosts various wild vectors, they act as a potential reservoirs and originators of 

arboviruses from which urban areas might be (re-)infected. Hence, rural settings also need to 

be considered when elaborating and applying arbovirus vector surveillance and control 

strategies. 

 

8.5.2. Aedes oviposition patterns 

Aedes oviposition patterns substantially varied between rural, suburban and urban settings. 

The mean number of Aedes collected as eggs was higher in urban settings compared to 

suburban and rural settings, while the diversity of Aedes species was highest in the rural 

setting, especially in the sylvatic zone. 

Changes observed in Aedes species composition and diversity might be governed by 

specific desiccation-resistance levels of their eggs to environmental changes induced by 

urbanization [23]. Eggs laid by Ae. aegypti mosquitoes – the predominant species in urban 

settings – are expected to be particularly desiccation-resistant [24, 25]. Hence, this mosquito 

species might raise the ability to survive in deforested environments that are exposed to direct 

sunlight. It follows that the capacity of eggs of Ae. aegypti increases the species geographical 

spread, which, in turn, results in higher abundance and enhanced risk of arboviral outbreaks 

[11-13]. Conversely, wild Aedes species, such as Ae. africanus, Ae. dendrophilus, Ae. fraseri, 

Ae. furcifer, Ae. luteocephalus, Ae. metallicus, Ae. usambara and Ae. vittatus, which were 
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collected in both rural and suburban settings, probably originate from the surrounding 

rainforests where they possibly ensure the maintenance of arboviruses among wild animals. 

Their drastic decline in urban settings might be explained by the destruction of natural 

environments in the face of house construction and other infrastructures. The removal of 

vegetation due to house constructions and other infrastructure developments results in direct 

exposure of Aedes breeding sites to solar radiation. The wild Aedes species eggs could be 

protected against solar radiation by rainforest canopy since they are laid in tree holes and 

bamboo holes filled by rainwater and maintained at relatively low and relatively stable 

temperatures [14, 26]. It is conceivable that wild Aedes species that lay more fragile and 

desiccation-sensitive eggs remain confined in rural areas, mainly in the rainforest [24, 25]. 

The research pursued in the current PhD shows that urbanization induces segregation 

among Aedes species by exposing their eggs to different types of environments, leading to 

specific geographical distributions of vectors, which govern the transmission of arboviruses. 

 

8.5.3. Aedes breeding sites 

Aedes mosquito breeding sites change profoundly from natural containers to artificial 

containers and from rural to suburban and urban areas. A common feature is the higher 

proportions of artificial breeding sites in the three types of typical study areas. However, 

urban areas show higher capacity to support artificial containers and Ae. aegypti larvae, while 

rural areas show strong ability to host natural containers that harbour several wild Aedes 

species. 

Shifts in Aedes mosquito breeding sites, their availability and diversity, as well as the 

number of larvae revealed strong anthropogenic impacts on the environment induced by 

urbanization. The dominance of artificial breeding sites of Aedes mosquitoes is consistent 

with the findings reported in China [9], and could be explained by the destruction and the 

conversion of natural environments (e.g. rainforests) into human settlements that are likely to 

increase from rural to urban. Natural landscape provide abundant Aedes breeding sites (e.g. 

rock holes, animal detritus, leaf axils, fruit husks, bamboo and tree holes), while wild Aedes 

species are mostly found in rural areas. Human activities provide anthropogenic containers, 

including traditional containers (e.g. clay pots, wood-containers and metallic pots) and 

industrial containers (e.g. tarps, discarded tires, vehicle tanks, building tools and water 

storage containers) in urban settings that are suitable breeding sites for Aedes mosquitoes, 
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mainly for Ae. aegypti [27]. Moreover, Ae. aegypti exhibit ecological plasticity breeding in 

natural containers (i.e. tree holes) in rural areas and artificial containers (e.g. tires and 

discarded containers) in urban areas and predominated in all areas thus suggesting the 

existence of the sylvan form, Ae. aegypti formosus, and the urban form, Ae. aegypti aegypti 

known in West Africa [28-30]. Tree holes in the rainforests showed the highest Aedes species 

richness, probably because of their ability to provide ideal larval habitats, greater stability, 

various trophic inputs from leaves of diverse plant species, retention of rainwater under 

relatively lower temperature for longer periods due to forest canopy coverage, protection 

against flushing of egg and larvae, and protection against solar radiation and human mediated 

disturbances [7, 14]. The availability of discarded tires that have been recorded as the most 

productive Aedes breeding sites was attributable to specific devices (e.g. vehicles and 

machines) used in oil palm industrial plantations in rural areas, the production of the local 

dish “Attiéké” in suburban areas and selling of tires and other car devices in urban areas. 

Discarded containers (e.g. cans, boxes, coolers and toys) that exhibited high Aedes-infestation 

rates were provided by the byproducts from human activities that have been phrased “human 

civilization wastes” [24]. In anthropic environments, Aedes females can lay their eggs in a 

large range of ephemeral containers that are susceptible to human-made disturbance [23]. 

Other important Aedes breeding sites were water storage containers in urban areas [15, 16], 

clay pots in the suburban and rural areas [24], and poultry husbandry watering containers in 

the rural areas as observed in Malaysia [31]. 

Taken together, the current PhD highlights that urbanization strongly impacts on Aedes 

mosquito habitats, by shifting the breeding sites from natural to artificial containers, offering 

suitable conditions for Ae. aegypti, the main vector species of yellow fever and dengue. 

Notwithstanding, rural areas still support substantial proportions of natural breeding sites for 

several Aedes species suggesting that the unique removals of artificial containers, that are the 

common practices in arboviral control programmes, might not be efficient to control 

arboviral diseases. Instead, vector control strategies and systems should embrace a more 

holistic approach, combining removals of artificial containers [12] and autocidal gravid 

ovitrap-based on mass trapping [32], and insecticide auto-dissemination approaches [33]. 

 

8.5.4. Biological associations among Aedes breeding sites 

We found multiple ecological associations among Aedes species co-occurring in the same 

breeding sites with other Aedes species (competition), An. gambiae and Cx. quinquefasciatus 
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(sympatry), and the predatory larvae of Cx. tigripes, Eretmapodites and Toxorhynchites 

mosquitoes (predation) with particularly strong intensity observed in rural settings. 

Biological interactions among Aedes species may possibly explain their ecological 

segregation along a rural-to-urban gradient, with the restriction of wild species in rural areas 

and the invasion of Ae. aegypti in urban areas. Indeed, inter- and intraspecific competitions 

for food and habitat resources probably resulted in the decline of wild Aedes species 

considered as inferior competitors (competitive exclusion) and the spread of Ae. aegypti that 

is known as the superior competitor (competitive displacement) [7, 34]. The sympatric co-

existence of Ae. aegypti with Cx. quinquefascitaus and An. gambiae in the same containers 

could be due to the similar feeding patterns of their larvae on the identical microbial inputs 

and their adults that are highly anthropophagic [18]. The predatory acts of Cx. tigripes, 

Eretmopodites and Toxorhynchites mosquitoes probably exerted biocontrol on Aedes species 

and structured communities by maintaining species biodiversity in rural areas, as reported in 

the United States of America [7, 34-36]. Keystone predation allows the persistence of 

biodiversity in a community as the predators prey disproportionally on competitively 

dominant prey, thus releasing the poorer competitors from interspecific competition [34]. 

Moreover, some Aedes females prefer to oviposit in breeding sites containing predator-killed 

conspecifics because of the microbial byproducts provided by the predation [35], while others 

avoid containers with predators by applying skipping oviposition behaviours [23]. 

The research presented in the current PhD thesis suggests that the biological interactions 

reported in our study region may influence the life-history traits and biodiversity of Aedes 

mosquitoes by the biotic facilitation or resistance to invasion, resilience, persistence, co-

existence and exclusion of communities, thus altering the transmission of arboviral diseases 

[7]. 

 

8.5.5. Geographical variations among Aedes species and breeding sites 

We documented substantial variations in the geographical distribution of Aedes species and 

breeding sites along a rural-to-urban gradient. The highest numbers of Aedes specimens and 

positive containers were observed in peri-domestic zones in three study areas, while higher 

Aedes species richness were found in the sylvatic zone in the rural areas. 

As described above, the preference of Aedes mosquitoes to oviposit in peri-domestic 

zones, as already observed in Brazil [37, 38], could be due to their ability to provide ideal 
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larval habitats with greater stability, various trophic inputs from foliage for the larvae, 

retention of rainwater under relatively lower temperature for longer periods due to vegetation 

coverage, protection of breeding sites against flushing of egg and larvae and lower exposure 

to human induced disturbances [7, 14]. Moreover, the breeding sites are natural containers 

(e.g. tree holes, bamboo holes and coconuts) that result from natural vegetation, as well as 

artificial containers (e.g. cans and tires) discarded in peri-domestic vicinity [26, 39, 40]. Peri-

domestic premises are in close proximity to human residencies, and hence the principal 

blood-meal sources for adult Aedes mosquitoes, particularly the highly anthropophagic 

species of Ae. aegypti [41]. The sylvatic zones in rural areas provide similar conditions, but 

with greater numbers of natural breeding sites and various organic detritus and 

microorganisms derived from diverse plant species as food sources for Aedes larvae, and wild 

animals as hosts for adult Aedes blood-meal sources. Natural ecosystems supply for wide 

range of opportunities of resting and mating places, shade and nectar sources for Aedes 

mosquitoes [14, 42]. 

Our findings show that the peri-domestic zones have higher potentials for hosting Aedes 

species, and merit particular consideration for dengue and yellow fever surveillance. 

 

8.5.6. Seasonal variations among Aedes species and breeding sites 

We found that Aedes mosquito diversity, abundance and the availability of their breeding 

sites were strongly associated with rainfall patterns and other social-ecological features. 

Overall, the higher numbers of Aedes species and specimens, and positive breeding sites were 

found during the rainy seasons in all study areas. However, we recorded sometimes strong 

declines in Aedes abundance during rainy seasons and increases in water holding container 

infectivity with Ae. aegypti larvae during the dry seasons in urban areas. 

The seasonal fluctuations in Aedes mosquito abundance could be influenced by seasonal 

flooding-drying cycles of their breeding sites alternatively flooded by rainfalls and dried by 

solar power, as reported in Côte d’Ivoire [43] and Brazil [38]. Aedes mosquito eggs probably 

enter into a dormant stage and are maintained as “germ banking” to withstand desiccation 

periods during the dry seasons until return of rainy seasons, which might flood the breeding 

sites and increase the abundance of Aedes mosquitoes [23, 44]. However, heavy 

precipitations may result in the flushing of their eggs, larvae and pupae due to the lack of 

protective vegetation in the built-up environment and the decline of Aedes mosquito numbers 
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during the rainy season in urban settings, as observed in October 2013 in urban settings [45, 

46]. In contrast, Aedes species that breed in tree holes in the rural rainforest are less exposed 

to such rainfall flushing events [14]. Increased infestation rates of water storage containers 

with Ae. aegypti larvae might be due to household water storing practices by holding of water 

in uncovered receptacles for long duration [15, 16]. 

In summary, the current PhD thesis shows the complex effects of rainfall, which is the 

main climatic factor in the humid tropics differently influencing the seasonal variations in 

Aedes mosquitoes. These effects are expected to alter the temporal and geographical 

distributions of vectors, and hence, the risks of arbovirus outbreaks [45]. 

 

8.6. Impacts of oil palm agricultural land use changes on Aedes mosquitoes 

The ecological study conducted on Aedes mosquito communities in oil palm-dominated 

landscapes of Côte d’Ivoire showed that the agricultural land-use/land-cover changes, as a 

result of the conversion of rainforests for the expansion of oil palm monoculture, have 

significantly influenced the composition, distribution, oviposition patterns, and host-seeking 

behaviours of Aedes mosquito species (Chapter 7). Indeed, no Aedes-positive microhabitats, 

larvae and adults of Aedes mosquito were obtained in oil palm monocultures. Conversely, 

high abundance of Aedes mosquitoes was found in polycultures, while the highest Aedes 

species richness was observed in the rainforest. The females of Aedes mosquitoes exhibited 

poor preference in feeding on humans in the rainforest. In contrast, they presented strong 

anthropophagic behaviours in polyculture and rural-housing areas. 

 

8.6.1. Aedes mosquito species composition 

We found a high species richness and high abundance of Aedes mosquitoes with the 

dominance of medically important species. Indeed, several Aedes species sampled (i.e. 

Ae. aegypti, Ae. africanus, Ae. furcifer, Ae. luteocephalus, Ae. opok and Ae. vittatus) have 

been known to host or transmit at least one type of viruses among yellow fever, dengue, 

chikungunya and Zika pathogens in different rural landscapes in Côte d’Ivoire [43, 47] and 

Senegal [12, 14, 29, 42, 48]. This high Aedes species biodiversity could be explained by the 

heterogeneity of the landscapes (rainforest, polyculture, oil palm monoculture and rural-

housing areas) that provides a wide range of opportunities for larval breeding sites, microbial 

food sources for immature forms, and resting, refuge and mating places, nectar and blood-

food sources for adults [14, 42]. 
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The diversity and abundance of Aedes mosquito species revealed by this PhD thesis 

suggest a high level of exposure of human population living in oil palm-dominated 

landscapes to arbovirus transmission [8, 11, 13]. This finding is of direct public health 

relevance. 

 

8.6.2. Landscape-based distribution of Aedes mosquitoes 

This PhD study documented several important differences in the composition, distribution 

and behaviours of Aedes mosquito species across specific landscapes. For example, several 

Aedes species were absent in oil palm monocultures, while they were present and abundant in 

surrounding ecosystems, namely, rainforest, polyculture and rural-housing areas. These 

compositional and distributional differences may be due to the high sensitivity of mosquitoes 

to changing environments, as reported in Spain [49], and have been suggested as bio-

indicators of forest degradation level in Brazil [50]. Indeed, oil palm monocultures alter 

ecosystem functioning [51], and reduce species richness and abundance, compared with 

native forested areas [52] due to the losses of habitats and hosts [53, 54]. The destruction of 

the rainforests for the creation of the large industrial oil palm plantations have probably 

induced the migration and the invasion of the polyculture and the rural housing compounds 

by Aedes mosquitoes searching for alternative habitats and hosts. The polycultures still have 

naturally-occurring microhabitats (e.g. tree holes), develop multiple agriculturally-occurring 

microhabitats (e.g. coconuts, flower and cultivated plant holes) and contain man-made 

containers discarded by humans (e.g. cans and tires) and provide hosts, such as plantation 

workers, as blood-food sources. The rural housing areas also provide human blood-feeding 

sources, and several containers such as discarded containers, tires and discarded vehicle and 

machine devices used in the maintenance of the oil palm plantations, crop collection 

containers and husbandry watering containers that were highly infected with the larvae of 

Ae. aegypti and other Aedes mosquito species. 

The compositional and distributional shifts induced into Aedes species by the creation of 

large industrial oil palm plantations are expected to increase the exposure of inhabitants and 

workers to high arboviral transmission risks in the polyculture and rural housing areas. 
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8.6.3. Aedes females’ host-seeking behaviours 

This PhD thesis also revealed that the females of Aedes mosquitoes presented poorer 

preference to feed on humans in the rainforest, and higher anthropophagic behaviours in rural 

housing areas and polycultures where they adapt their host-seeking behaviours to workers’ 

movements. 

The lack of aggressive Aedes females in oil palm monocultures could be explained by the 

losses of their habitats and animal hosts, and the use of chemals for crop protection [54]. The 

poor anthropophagy exhibited by Aedes females in the rainforest could be due to their 

preference to feed on wild animals [55]. The high anthropophagy of wild Aedes mosquito 

species, such as Ae. dendrophilus and Ae. vittatus, could be explained by their probable 

blood-feeding behavioural adaptation to humans. When the vector aggressiveness peaked, in 

the morning and in the evening, humans are generally within housing areas, suggesting that 

high exposures to arboviruses occur in the villages [42, 56]. The interruption of host-seeking 

activities of Aedes females coincided with the migration of workers to industrial oil palm 

farming and other people to their own smallholdings. Such an accordance of malaria vector 

behaviours to human movements has been reported in rubber plantations in Thailand [57]. 

The gap observed in host-seeking activities also corresponded to the intensification of 

sunshine in the rural housing areas that are directly exposed to solar radiation due to the lack 

of natural vegetation coverage. As observed in poikilothermic animals, including insects [58], 

Aedes females’ host-seeking behaviours were probably affected in housing area by direct 

sunlight. Conversely, the continuous biting cycles of Aedes females in polyculture could be 

explained by the permanent presence of workers that may habitually serve as blood-food 

sources [57], and the shade provided by the abundance of vegetation coverage that probably 

reduces the negative effects of sunlight radiation on host-seeking activities. 

The observed ecological variations in Aedes females’ host-seeking behaviours favour and 

render complex the patterns of arbovirus transmission in large-scale development of oil palm-

dominated landscapes. 
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8.7. Conclusions 

Key findings from this PhD thesis suggest that there is a need for new vector control methods 

and strategies within southeastern Côte d’Ivoire, especially in rural settings. Indeed, the 

unique removal of discarded containers in urban areas that is commonly applied in arbovirus 

control programmes might not be sufficient to control arboviral diseases, because several 

wild vectors breed in irremovable breeding sites, such as tree holes that are widespread in the 

rainforest nearby. The high numbers of anthropophagic and non-anthropophagic Aedes 

species in rural areas suggest the co-existence of several and still unidentified arbovirus 

sylvatic cycles that are possibly linked to the rural cycles by bridging vectors and to urban 

cycles by Ae. aegypti, which is expected to be involved in inter-human transmission of 

yellow fever and dengue in urban areas [11-13]. As a result, while vector control should 

focus on urban areas, rural areas may serve as transition zones for (re-)introduction of 

arboviral diseases through sylvatic bridge vectors. Because rural areas host various wild 

vector species, they act as a potential reservoir and originator of arboviruses from which 

urban areas might become (re-)infected. Moreover, large industrial oil palm monocultures, by 

eliminating Aedes habitats and hosts, directed the migration of vectors towards the human 

population living in rural housing areas and working in polycultures, where arbovirus 

outbreak risks are expected to further gain in intensity. It follows that the control of arboviral 

diseases should embrace integrated and approaches, including ecotope-based vector 

surveillance and control combining different tools and methods of proven efficacy (e.g. lethal 

ovitrap [59] and autocidal gravid ovitrap-based on mass trapping methods [32]), management 

of discarded containers [12] and water storage practices [15, 16, 60] in urban areas, and 

setting-specific oil palm cultivation practices in rural areas. Hence, the government, the 

national programme for public hygiene, the private sectors (e.g. PALMCI) and scientists 

alike are called to discuss the key findings presented here, and to elaborate and apply 

arbovirus vector surveillance and control in Côte d’Ivoire. 

 

8.8. Contribution of the PhD thesis to innovation, validation and application 

The findings of this PhD thesis advance various issues of validation and application, two of 

the three key pillars (i.e. innovation, validation and application) of Swiss TPH in the area of 

research and development activities in public health (Table 8.1). Innovation refers to basic 

research in the laboratory, development of new tools (e.g. diagnostics, drugs and vaccines) 

and elaboration of novel concepts and methods for epidemiology and public health. Through 
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validation, newly developed tools, concepts and methods are tested under ‘real-life’ field 

conditions. Research findings and gained knowledge from rigorous validation in the field can 

then be transformed into policies and applied at larger scales [61]. 

Table 8.1: Contribution of the PhD thesis to the Swiss TPH nexus of “innovation, validation 

and application” 

Chapter Innovation Validation Application 

Chapter 5  

- 

 Comparison of Aedes mosquito 

oviposition patterns along a rural-to-

urban gradient 

 Determination of potential Aedes 

vector species according to 

urbanization levels 

 Adaptations of vector control to 

the urbanization levels 

Chapter 6  

- 

 Identification of shifts in Aedes 

mosquito breeding sites along a 

rural-to-urban gradient 

 Identification of predacious species 

 Limitations in the current vector 

control measures 

 Suggestions of additional control 

measures 

Chapter 7  

 

           - 

 Comparison of Aedes mosquito 

distribution between different 

landscapes with findings from 

entomological surveys 

 Identification of high risk 

ecosystems of getting yellow 

fever and dengue in oil palm-

dominated landscapes 

 Ecotope-based vector control 
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9. Conclusions and recommendations 

The findings of the current PhD thesis make a contribution to further the understanding of the 

impacts of anthropogenic changes on Aedes mosquito community dynamics and have direct 

public health implications for the prevention and a better understanding of yellow fever and 

dengue outbreaks in Côte d’Ivoire and elsewhere in Africa. Two important environmental 

modifying phenomena were studied, namely urbanization and changing patterns of 

agriculture (large-scale oil palm cultivation). Our study underscores the importance of having 

detailed context-specific comprehension of how Aedes mosquito ecology is governed under 

different forces of urbanization and oil palm cultivations in order to propose actions to protect 

public health. Three main conclusions are offered for discussion: 

 First, we showed that urbanization shifts the composition of Aedes mosquitoes by driving 

Aedes wild species from rural areas towards a higher abundance of Ae. aegypti – the major 

vector species of yellow fever and dengue – in urban areas. Of note, Aedes mosquito 

breeding sites are governed by natural containers (e.g. tree holes) and artificial containers 

(e.g. tires and discarded containers). Importantly, the rural areas contain several natural 

habitats in the rainforest that host many different wild Aedes species, while water storage 

containers are highly infested with Ae. aegypti larvae in the urban areas. Hence, the 

removal of discarded containers, which is the main strategy for vector control, might not 

efficiently control arboviral disease vectors. 

 Second, the study revealed that agricultural oil palm land use changes modify the 

distribution, oviposition patterns and host-seeking behaviours of Aedes mosquitoes. 

Indeed, oil palm plantations have induced major losses of wild Aedes mosquito habitats 

and hosts that alternatively have adapted their oviposition to artificial containers (e.g. tires 

and discarded containers) in the rural housing areas, and their feeding-behaviours to 

humans working the polyculture and living in the rural housing areas where yellow fever 

and dengue outbreaks are expected to increase. 

 Third, our research suggests that urbanization and agriculture have induced a significant 

segregation among Aedes mosquito community dynamics that could be incriminated to 

have epidemiological bearing with direct public health relevance. The invasion of the 

polyculture and rural housing areas by the Aedes vectors expose the workers and the 

whole populations to arboviruses that wild species have previously taken from wild 

animals dwelling in the rainforest, thus bridging the sylvatic/jungle cycles to the 
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rural/emergence cycles in rural areas. The action of connecting the epidemiological cycles 

of arboviruses is likely to be extended by urbanization by increasing the abundance of 

Ae. aegypti, which is well known to link the rural emergence cycles to urban epidemic 

cycles of yellow fever and dengue in tropical Africa. 

In view of the conclusions offered above, the following recommendations are proposed 

to mitigate Aedes mosquitoes and reduce exposure of the populations to yellow fever and 

dengue outbreak risks:  

 There is a need for an integrated vector management programme, to be implemented by 

the National Programme for Public Hygiene. Such a programme should combine the 

removals of discarded containers with other methods of proven efficacy, such as the 

deployment of lethal ovitraps and autocidal gravid ovitrap-based on mass trapping in the 

rural areas. 

 The local populations should be trained on detecting Aedes mosquito larvae, assessing the 

risks, environmental management through mosquito control campaigns conducted by 

awareness and surveillance programs and committees. This would build-up the local 

capacity for conducting and interpreting assessments on Aedes mosquito infestation and 

risks of yellow fever and dengue epidemics, and makes the best use of the data to 

implement preventive actions. Such a policy may require additional resources to build and 

strengthen local capacities, and should be organized and implemented by the 

municipalities. Developing sanitation safety planning approaches to include in-depth 

health risk prevention could have high potentials for minimizing public health implications 

and maximize gains for the efforts of the protection of the population. 

 Populations living in urban areas should be sensitized on risks of infestation of containers 

with Aedes larvae by holding water for long duration and educated on better water storage 

practices, such as covering water holding-containers and daily cleaning of the water 

containers. The tire-dealers should be informed on the risks of contamination of the 

rainwater-holding tires left outdoors with Aedes larvae that is expected to increase the 

risks of yellow fever and dengue epidemics. 

 Rural dwellers should be sensitized on the risks of yellow fever and dengue by creating 

settlements near the rainforests surrounded by large oil palm plantations and other 

polycultures because these environments host several wild Aedes species that have 

potentials to transmit arboviruses. 
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 There is a pressing need for vaccination campaigns against yellow fever, especially to 

trigger protective actions for workers and the local populations living in rural areas 

because the efforts of removals of discarded containers may not be sufficient to reduce 

Aedes mosquito populations at acceptable level, and thus the risks of emergence or re-

emergence of yellow fever might remain high after the aforementioned interventions. 
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10. Outlook and research needs 

In face of rapid population growth that goes hand-in-hand with urbanization and changing 

patterns of agriculture in Africa, including Côte d’Ivoire, managing public health concerns 

arising from anthropogenic land-use changes is a challenging and burning issue. With the 

practical knowledge and evidence currently at hand, reaching the reduction of risks of 

emerging and re-emerging diseases, such as yellow fever and dengue, requires joint efforts 

and integrated management approaches, involving the local population, disease control 

managers, scientists and other stakeholders. In light of the experience and findings from the 

present PhD thesis, the following research needs arise: 

 Pursue additional case studies on the effects of anthropogenic changes, including 

urbanization and changing patterns of agriculture with an emphasis on the ecology of 

Aedes mosquitoes and the transmission dynamics of yellow fever and dengue. 

 Analyse each Aedes mosquito species for the presence of the yellow fever and dengue 

viruses and their blood-feeding preference on engorged females in order to establish the 

transmission cycles of viruses and the diseases they cause. 

 Assess the predatory effects of Cx. tigripes, Eretmapodites and Toxorhynchites 

mosquitoes on Aedes mosquitoes in order to develop a biological control tool, method and 

strategy, mainly against vectors dwelling within the rainforests in natural containers (e.g. 

tree holes). 

 Assess the insecticide-susceptibility in Aedes adults and larvae in order to implement 

modified autocidal gravid ovitrap methods and the auto-dissemination technique using the 

males as vehicles for larval insecticides to target the Aedes species that are out of the 

spectrum of the discarded container removal methods. 

 Evaluate the infection rate of dengue viruses among the populations living in rural and 

urban areas in the study region. 

 Assess the risks of yellow fever and dengue outbreaks using standard entomological 

indicators, such as house index (HI), Breteau index (BI) and container index (CI). 

 Assess the egg hatching rates of each Aedes species at different levels of urbanization 

(rural, suburban and urban) to better understand the segregation induced by urbanization 

into the oviposition and the species composition. 
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 Assess the oviposition behaviours of Aedes species to deepen our understanding of process 

involve in the colonization of artificial containers in the rural areas as bio-resistance or 

resilience to anthropogenic changes. 

 Identify the insecticides-susceptibility levels and eventual insecticide-resistance genes in 

Ae. aegypti. 

 Determine the molecular forms of Ae. aegypti (Ae. aegypti aegypti (Aaa), Ae. aegypti 

formosus (Aaf) or another subspecies) that exhibit important ecological variations in 

geographical distribution (from rainforest-to-urban settings) and breeding sites (from 

natural containers (e.g. tree holes) to artificial containers (e.g. discarded containers, tires 

and water storage receptacles). 
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Eggs 

Figure 11.1: Immature forms of Aedes mosquitoes (e.g., Ae. aegypti) encountered in 

southeastern Côte d’Ivoire. 

A: white larva of Ae. aegypti; B: brown larva of Ae. aegypti 

 

Larvae Pupa 

 

Ae. aegypti Ae. africanus Ae. dendrophilus Ae. furcifer 

Ae. metallicus Ae. opok Ae. palpalis Ae. vittatus 

Figure 11.2: Adult specimens of Aedes mosquito species commonly found in 

southeastern Côte d’Ivoire 
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Figure 11.3: Predatory mosquito larvae sampled in southeastern Côte d’Ivoire 

Toxorhynchites sp. Eretmapodites sp. Culex tigripes 

Anopheles sp. Culex sp. Eretmapodites sp. 

Mansonia sp. Toxorhynchites sp. 

Figure 11.4: Adult specimens of non-Aedes mosquito genera commonly found in 

southeastern Côte d’Ivoire 
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