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During my PhD training I have extensively investigated the role of chemotactic factors 

involved in the recruitment of beneficial immune cells in human colorectal cancer (CRC). 

This thesis consists of an introduction highlighting the clinical relevance of immune cell 

infiltration in CRC, and providing an overview of CRC microenvironment determinants and 

their possible influence on immune cell migration. A complete description of methods used 

and results obtained is then included. Finally, major findings and their implications are 

reviewed in the discussion.  

The results of this study have been included in a manuscript currently under preparation. 

Beside my main research project, I have also been involved in additional projects of our group 

addressing the prognostic significance of a number of immune cells markers in human CRC, 

including interleukin-17A (IL-17), granulocyte macrophage colony-stimulating factor (GM-

CFS), tumor necrosis factor receptor superfamily, member 4 (TNFRSF4, also known as 

OX40) and programmed death-ligand 1(PD-L1), and the development of innovative 

tridimensional systems for culturing human CRC cells in vitro. Publications resulting from 

these studies are included in the appendix. 
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Summary 

Colorectal cancer (CRC) is a common digestive tract malignancy and a major cause of cancer 

mortality. Several studies have convincingly shown that CRC infiltration by 

immunocompetent cells and, in particular, cytotoxic CD8+ T cells (CTLs), IFN-γ-producing 

T-helper 1 cells (Th1), Foxp3+ regulatory T cells (Tregs), and CD16+ MPO+ neutrophils, is 

significantly associated with prolonged patient survival. However, the chemotactic factors 

driving these cell populations into the tumor site, their cellular sources and their 

microenvironmental triggers remain to be elucidated.  

During my PhD training I have investigated the chemokine/chemokine receptor network 

promoting CRC infiltration by immune cells associated to favorable prognosis.  

In particular, I addressed: 

1. The expression of immune cell markers and their correlation with chemokine 

expression in primary CRC tissues;  

2. The identification of chemokine receptors relevant for CRC infiltration by beneficial 

immune cells; 

3. The chemokine sources in CRC; 

4. The microenvironmental stimuli triggering chemokine production in CRC tissues; 

5. The effects of chemokine production on immune cell recruitment into CRC. 

The expression of a panel of genes encoding 39 chemokines and 7 markers specific for 

defined immune cell populations was assessed by quantitative PCR array in 62 samples of 

freshly excised primary CRC and autologous healthy colonic tissue. Correlations between 

expression of chemokine genes and immune cell markers were then evaluated.  

Furthermore, chemokine receptor profiles were analysed by flow cytometry on cell 

suspensions obtained upon digestion of clinical specimens or on corresponding cell 

populations from autologous peripheral blood. Based on chemokine receptor expression on 
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tumor infiltrating cells and correlations between expression of chemokines and immune cell 

markers, I could identify for each immune cell subset a putative “chemokine signature”: 

1) CCL3, CCL5, CCL8 CXCL9, CXCL10 and CXCL12, associated with recruitment of 

cytotoxic CTLs; 

2) CCL5, CCL22, CXCL9, and CXCL12 correlating with infiltration by Th1;  

3) CCL22 and CXCL12 potentially attracting Tregs;  

4) CXCL2 and CXCL5 promoting chemotaxis of CD16+ MPO+ neutrophils.  

I have further investigated potential chemokine sources and stimuli leading to chemokine 

release within CRC tissues. I found that CRC cells purified from primary tumor specimens 

express many of the genes encoding identified immune cell recruiting chemokines, including 

CCL3, CCL5, CXCL2, CXCL5, CXCL9 and CXCL10. In vitro experiments showed that 

chemokine production by CRC cells is triggered upon their exposure to microbial stimuli, 

such as Toll-like receptor agonists, or CRC-associated bacteria, including Fusobacterium 

nucleatum, Bacteroides Fragilis, Bacteroides vulgatus, and Escherichia Coli, thus suggesting 

that components of the gut flora may critically influence chemokine production in CRC 

tissues. This was indeed confirmed by “in vivo” experiments showing that chemokine gene 

expression in xenografts, generated upon injection of human CRC cells in immunodeficient 

NSG mice, appeared to be related to the presence of commensal bacteria. In particular, 

chemokine gene expression levels in intracecal xenografts, were found to be ≥10 fold higher 

as compared to those of subcutaneous xenografts, and they were significantly reduced upon 

antibiotic treatment of tumor bearing mice.  

Most importantly, a correlation between extent of immune cell infiltration and bacterial load 

was also observed in human CRC samples. Indeed, CRC samples characterized by high 

expression of chemokine and immune cell markers, displayed significantly higher bacterial 

loads, as assessed by analysis of bacterial 16S ribosomal RNA, as compared to samples 
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showing low chemokine expression and immune cell infiltration. In addition, a significant 

correlation between bacterial load and expression of the Th1 marker IRF1, CCL3 and CCL5, 

was also detected. 

Our in vitro and in vivo results cumulatively suggest that bacteria-induced chemokine 

production by tumor cells may lead to tumor infiltration by beneficial immune cells. 

Consistent with this hypothesis, in preliminary “in vitro” experiments, I found that 

supernatants of bacteria-stimulated CRC cells promote chemotaxis of CTLs and Th1 cells to a 

higher extent than untreated tumor cells. 

Additional “in vivo” studies are clearly warranted. In particular, I plan to evaluate 

intratumoral recruitment of CRC-derived CTLs and Th1 cells upon adoptively transfer into 

intracecal xenografts-bearing mice.  

Bacterial species or strains mostly contributing to high chemokine expression and immune 

cell infiltration in human CRC samples also remain to be identified. Microbiome analysis of 

CRC samples characterized by high or low immune cell infiltration might be envisaged in 

future studies. 

The results of the present work together with the proposed additional studies will contribute to 

the understanding of the interplay occurring between gut flora and immune system in CRC, 

and may pave the way towards innovative treatments aimed at modifying the gut flora in 

order to promote CRC infiltration by beneficial immune cell subsets. 
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1.Human colorectal cancer 

1.1 Epidemiology and etiopathogenesis 

Colorectal cancer (CRC) is the third most frequent type of cancer worldwide. In 2012 about 

1,361,000 new CRC cases (9.7% of total cancer incidence) and approximately 694,000 deaths 

(8.5% of total cancer deaths) were globally reported [Ferlay J. et al., 2013]. The highest 

incidence is reported in westernized countries [Center MM., et al., 2009]. In particular, in 

Europe 447,136 new cases of CRC have been reported in 2012 [Ferlay J., et al., 2015]. 

Notably, in Switzerland, CRC causes 1600 deaths per year (National Institute for 

epidemiology and cancer registration, NICER, Switzerland).  

Risk factors include smoking, alcohol intake and increased body weight [Kuipers E., et al 

2015]. Furthermore, chronic colitis due to inflammatory bowel disease (IBD) is also 

associated with an increased risk of CRC. However, IBD explains only 1% of CRC in 

westernized population [Jess T., et al., 2012]. 

CRC results from the accumulation of genetic and epigenetic mutations transforming the 

normal colonic epithelium initially into benign neoplasia (adenoma), and, subsequently, 

invasive adenocarcinoma. The steps involved in this process are described in the classic tumor 

progression model proposed by Fearon and Vogelstein [Fearon & Vogelstein, 1990], (Figure 

I.1). 
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Figure I.1: Adenoma to carcinoma sequences [West NR, et al. 2015]. 

 

Two major types of genomic instability are recognized as alternative mechanisms of CRC 

carcinogenesis. The most common, present in 65-70% of CRCs, is represented by 

chromosomal instability (CIN) defined by the presence of multiple structural or numerical 

chromosome changes in tumor cells. Instead, 15% of CRCs have a near-diploid chromosome 

set, but present instability in at least 2 of five standard microsatellite markers (so called 

microsatellite instability, MSI). Furthermore, approximately 20% of CRCs harbor epigenomic 

instability, either as global hypomethylation or as CpG island methylator phenotype (CIMP) 

[Walther A., et al., 2009].  

Most cases (88%-94%) of CRC are sporadic, i.e. develop upon acquisition of somatic 

mutations. However, 5– 10% of CRC consist of hereditary cancer syndromes. Two main 

autosomal-dominant forms are recognized: 1) hereditary non-polyposis colorectal cancer 

(HNPCC), also known as Lynch syndrome, caused by germ line mutations of mismatch repair 

(MMR) genes, mainly MLH1, MSH2 and MSH6; 2): familial adenomatous polyposis (FAP) 

caused by germ line mutation of APC gene [Cunningham D., et al., 2010]. 
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1.2 Staging and prognosis  

Pathologic evaluation of resected CRC specimens plays a pivotal role in prognostication and 

patient management [Brenner H., et al., 2014]. The method currently used to assess 

prognostic differences among patients is the tumor-node-metastasis (TNM) staging system, 

established by the American Joint Committee on Cancer (AJCC), based on evaluation of 

tumor size (T), lymph node involvement (N) and presence of distant metastases (M) (Figure 

2). Five-year survival rates are estimated approximately around 90% for patients in stage I, 

80%, for patients in stage II, 60% in stage III and only<10%  in stage IV [O’ Connell JB., et 

al., 2004]. 

 

Figure 2: CRC development and TNM staging system. 

 

However, TNM system does not precisely predict clinical outcome. Indeed, patients with 

early stage CRC still have approximately a 20-30% risk of recurrence [Cunningham D., et al., 

2010]. Furthermore, there is significant variation in patients’ outcome also within the same 
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tumor stage [Maguire, et al., 2014]. The possibility to identify high risk patients who may 

benefit of additional systemic therapies through the evaluation of additional prognostic factors 

represents therefore an essential clinical need.  

Numerous putative prognostic molecular and immunohistochemical biomarkers have been 

proposed [Walther A., et al., 2009 and Zlobec I., et al., 2008]. Importantly, KRAS mutation 

status has been found to predict responsiveness to treatment with anti-epidermal growth factor 

receptor EGFR antibodies [Walther A., et al., 2009]. However, the potential use of additional 

putative markers in clinical practice is still under evaluation [Brenner H., et al., 2014]. 

 

1.3 Current treatment guidelines 

In general, the first line of CRC treatment is surgery, aiming at removing the tumor and 

corresponding lymphatic vessels [Kuipers E., et al 2015]. Usually, patients with stage I -II 

tumors do not receive any additional therapy. Instead, when the tumor has spread in to the 

lymph nodes (stage III), surgery is combined with adjuvant or neo-adjuvant chemotherapy, in 

particular with 5-Fluorouracil (5-FU), in combination with Oxaliplatin or Irinotecan. For stage 

IV disease, in which tumor has involved distant organs (metastatic CRC), combined 

chemotherapies are administered together with targeted therapies, such as monoclonal 

antibodies specific for EGFR or vascular endothelial growth factor (VEGF), or small 

molecule-based multikinase inhibitors [Kuipers E., et al 2015]. Response rates to systemic 

therapies remain limited, usually not exceeding 20% of treated patients [Brenner H., et al., 

2014]. The identification of novel and more effective therapeutic approaches would therefore 

be desirable. Recently, the potential efficacy of therapeutic antibodies targeting 

immunological checkpoints, including CTLA4, PD-1 and PD-L1, has also started to be 

evaluated in clinical trials [Le DT., et al., 2015 and Singh PP., 2015]. 
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2.CRC immune contexture 

2.1 Definition of immune contexture 

The term “immune contexture” refers to the analysis of location, density and functional 

orientation, of different tumor infiltrating immune cell populations [Fridman WH., et al., 

2012] (Figure I.3). 

Since a long time, histopathological analysis has provided evidence that tumors are infiltrated 

by different types of immune cells, including lymphocytes, macrophages and granulocytes. 

Immune infiltrates are heterogeneous between tumor types, and largely vary from patient to 

patient. 

Only in the last decade, however, the prognostic significance of specific tumor infiltrating 

immune cell types has been recognized. Comprehensive gene expression and 

immunohistochemical analysis in large cohorts of different types of human tumors, annotated 

with clinico-pathological data, have revealed that tumor infiltration by defined immune cell 

types, their localization within the tumor, and their expression of specific 

cytokines/chemokines, predict patient survival more precisely than TNM staging, thus 

possibly representing a superior prognostic factor [Fridman WH., et al., 2012]. 

The immune contexture has therefore been proposed as additional prognostic tool. Its 

robustness in clinical practice is currently being evaluated by a consortium of experienced 

pathologists worldwide [Galon, et al., 2012]. 
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Figure I.3: The immune contexture [Fridman WH., et al., 2012]. 

 

2.2 Impact of immune contexture in CRC  

CRC is the first tumor type for which the immune contexture has been proven to critically impact 

survival. In particular, Galon and collaborators have reported that high infiltration by CD8+CD45RO+ 

T cells, and IFN-g producing Th1 cells correlates with good prognosis [Galon J., et al., 2006 , Tosolini 

M., et al., 2011 and Camus M., et al., 2009]. More surprisingly, high infiltration by Foxp3+ regulatory 

cells has also be found to  predict better survival [Salama P., et al., 2009 and Frey DM., et al., 2010]. 

In addition, the presence of CD16+ MPO+ cells is also associated with favorable prognosis 

[Sconocchia G., et al., 2010; Hirt C., et al., 2013]. In contrast, the role of IL-17-producing CD4+ T 

cells (Th17) is still controversial.  In a study, based on a small sample cohort (50-200), high 

expression of IL-17 has been found to be associated with unfavorable prognosis [Tosolini M., et al., 

2011]. More recently, however, in a recent study from our group, based on the analysis of a cohort 

including more than 1400 CRC samples, no association with clinical outcome has been found [ 

Amicarella F., et al., 2015], (Table I.1).  
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Table I.1: Prognostic significance of immune cell subsets in CRC. 

 

Mechanisms underlying heterogeneity of tumor infiltration by immune cells in different 

tumors remain to be elucidated. In particular, factors promoting migration of individual 

immune cell populations into the tumor remain to be clarified.  

 

3. Immune cell trafficking in CRC   

3.1 Chemokines and chemokine receptors 

Chemokines are chemotactic cytokines which control migratory patterns and positioning of 

various cell types [Griffith JW. et al., 2014]. Tumors are known to secrete chemokines 

playing a crucial role in the recruitment of different types of proinflammatory leukocytes into 

the tumor microenvironment as well as in many additional biological processes, such as tumor 

growth, survival, migration and angiogenesis [Wang D., et al., 2009 and Balkwill F., 2004].  

More than 40 different chemokines have been identified so far which can be divided in four 

groups, based on the position of the last cysteine residue: CXC (α-family), CC (β-family), C 

(γ-family), and CX3C (δ-family) [Esche C., et al., 2005] (Figure I.4). 
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Figure I.4: Schematic illustrations of the four chemokine subfamilies and the corresponding receptors 

[Rostène W., et al., 2007]. 

 

Chemokine structure appears to be linked to specific functions. In particular, the CXC 

subgroup has been shown to play an important role in angiogenesis in both physiologic and 

pathologic settings [Keeley EC., et al., 2008]. Notably, among this chemokine family, two 

subgroups can be further identified based on the presence or absence of a three amino acid 

sequence, glutamic acid-leucine-arginine (called the “ELR” motif) proximal to the CXC 

sequence. ELR containing (ELR+) CXC chemokines are potent inducer of angiogenesis. 

Instead, non- ELR containing (ELR−) CXC chemokines are potent inhibitors of angiogenesis 

[Lee HJ., et al., 2014]. 

Based on their expression chemokines can also be classified in homeostatic, and 

inflammatory. The former are constitutively expressed, whereas the latter are induced by 

inflammatory stimuli [Le Y., et al., 2004]. However, there are a few chemokines including 
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CCL11, CCL20, CCL22, which are constitutively expressed and can also be upregulated upon 

inflammation. In humans, genes encoding inflammatory chemokines are located in 

chromosomes 4 and 17, whereas those encoding homeostatic chemokines are located 

individually or in miniclusters in different chromosomes [Zlotnik A., et al., 2012]. Notably, as 

a result of chromosomal instability, chemokine genes localized in chromosomes 7, 16 and 19, 

frequently undergo amplifications, whereas chemokine genes localized in chromosome 4 and 

17 are deleted [Bindea G., et al., 2013]. 

Chemokines mediate their biological effects by binding to corresponding receptors. 

Chemokine receptors are members of the class A rhodopsin-like family of seven 

transmembrane domain G protein-coupled receptors (GPCRs) [Borroni EM., et al., 2010]. 

Chemokine receptor activation begins with extracellular ligand binding (Figure I.5) which 

triggers interaction with intracellular quiescent GDP-bearing trimeric G-proteins. This results 

in exchange of GDP for GTP, causing the G-protein to dissociate into G-alpha and G-

beta/gamma subunits. The latter subunit in turn activates enzymes such as phospholipase C 

and phosphoinositide-3-kinase, which convert phosphotidylinositol-4,5-diphosphate (IP2) into 

phosphotidylinositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates the 

influx of calcium ions, and DAG activates protein kinase C (PKC) isoforms. The intracellular 

environment is thus prepared for a cascade of phosphorylation events involving a series of 

kinases (e.g., mitogen-activated protein kinase and protein typsine kinase) and small GTPases 

(e.g., Ras and Rho)  ultimately mediating cellular functions such as adhesion, chemotaxis, 

degranulation, and respiratory burst [Chensue SW., et al., 2001].  

On the other side, chemokine receptors undergo desensitization and regulation. Upon ligation, 

chemokine receptors may be internalized and then degraded or recycled, leaving the 

membrane temporarily unresponsive to further ligand stimulation [Chensue SW., et al., 2001]. 

In particular, the C-terminal region contains target residues that may be phosphorylated by 

GPCR kinases, thus allowing the binding of regulatory molecules called arrestins, ultimately 
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causing uncoupling and desensitization. An additional mechanism of regulation occurs 

through direct inactivation of G-protein activity by GTPases, known as RGS (regulators of G-

protein signaling) proteins [Chensue SW, et al., 2001]. 

 

 

Figure I.5: Chemokine receptor ligation and activation events. [Chensue SW., et al., 2001]. 

 

So called ‘atypical chemokine receptors’ [Mantovani A., et al., 2006], have also emerged as 

important regulators of chemokine function. These receptors, which are characterized by 

inability to signal following ligand binding, have been shown to be able to scavenge 

chemokines and therefore to influence chemokine responses in vivo [Graham GJ., et al., 

2012]. Four atypical receptors, DARC, CCXCKR and CXCR7 and D6, have been identified 

so far [Graham GJ., 2009]. 
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3.2 Role of chemokines in leukocyte trafficking 

Chemokines and chemokine receptors play a crucial role in the complex series of interactions 

between leukocytes and endothelial cells, eventually leading to the extravasion of leukocytes 

from the circulation into tissues. Transitory leukocyte attachment to the endothelium is 

initially mediated by the interaction of adhesion molecules, such as integrins and selectins, 

with their ligands on endothelial cells. However, only engagement of chemokine receptors, 

expressed on leukocytes, with corresponding chemokines on endothelial cells induces the 

arrest of leukocytes under shear flow, and subsequently promotes the diapedesis of the cells 

through the vascular endothelium and their localization into specific microenvironments 

[Masopust D., Schenkel JM., 2013 and Griffith JW., et al., 2014 and Habtezion A., et al., 

2016]. 

 

3.3 Gut homing receptors 

Distinct homing receptor patterns mediate immune cell recruitment into different anatomical 

compartments. In particular, in the absence of inflammation, T cell recruitment into the 

lamina propria of small intestine, is largely dependent on the expression of the integrin α4β7 

and the chemokine receptor CCR9 whose corresponding ligands, mucosal vascular addressin 

cell-adhesion molecule 1(MAdCAM-1) and CCL25, are expressed in the gut lamina propria 

and on epithelial cells [Mora JR., et al., 2006 and Habtezion A., et al., 2016]. However, 

CCL25 expression decreases from the proximal to the distal small intestine [Stenstad H., et 

al., 2007] and it is poor in the colon [Papadakis KA., et al., 2000]. Indeed, CCR9 expression 

does not appear to be required for T cell trafficking into the colon [Papadakis KA., et al., 

2000]. 

CCR6 and its ligand CCL20 have also been shown to significantly contribute to recruitment 

of T cells, and in particular of Th17 cells, into the small and large intestine, upon 
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inflammation [Wang C., et al., 2009]. Colon tissues from patients with IBD express higher 

levels of CCL20 than uninflamed tissues [Kaser A., et al., 2004]. Furthermore, antibodies 

against CCL20 has been shown to block adhesion of T and B cells to inflamed microvessels 

in mice with dextran sodium sulfate (DSS)-induced colitis [Teramoto K., et al., 2005]. 

Finally, CXCR4 and its widely expressed ligand CXCL12 may also participate in lymphocyte 

localization in the gut [Oyama T., et al., 2007]. 

 

3.4 Prognostic significance of chemokine expression in colorectal cancer 

In humans CRC expression of defined chemokines, including CXCL16 [Hojo S., et al., 2007], 

CXCL9, CXCL10 [Mlecnik B., et al., 2010], CXCL13 [Bindea G., et al., 2013], CCL18 

[Yuan R., et al., 2013], and CCL21 [Zou Y., et al., 2013], has been reported to correlate with 

good prognosis. In contrast, expression of CCL7 [Cho YB., et al., 2012], CXCL1 [Wang D., 

et al., 2006 and Ogata H., et al., 2010], CXCL5 [Kawamura M., et al., 2012], CXCL8 [Rubie 

C., et al., 2007], and CXCL12 [Wang SC., et al., 2010 and Kim J., et al., 2005 and 2006] has 

been found to be associated with unfavorable clinical outcome, Mechanisms underlying these 

associations remain to be clarified. Importantly, the nature of the cell populations responding 

to these chemokines and potential chemokine sources have not been elucidated yet. 

 

4. Pathophysiology of CRC microenvironment 

4.1 Physiology of normal colonic mucosa  

The normal colonic mucosa is composed by a single cell layered epithelium, formed by four 

types of intestinal epithelial cells (IEC), including absorptive enterocytes, mucus-producing 

goblet cells, antimicrobial peptides (AMP)-producing Paneth cells, and hormone-producing 

enteroendocrine cells, and by the underlying lamina propria, infiltrated by different type of 
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immune cells, including dendritic cells, macrophages, innate lymphoid cells, T lymphocytes, 

and plasma cells [Abreu MT., 2010]. 

IEC display a polarized structure characterized by an apical and basolateral surface facing the 

intestinal lumen and the lamina propria, respectively. The epithelial layer is overlaid by a 

mucous stratum, composed of secretory mucins (MUCs), mainly MUC2, produced by goblet 

cells, which creates a barrier impermeable to commensal bacteria and other microorganisms 

present in the gut lumen [Abreu MT., 2010] (Figure I.6). The integrity of the barrier is also 

maintained by the presence of adherent and tight junctions holding epithelial cells together 

and regulating the selective para-cellular permeability to solutes and water [Sánchez de 

Medina F., et al., 2014].  

 

 

Figure I.6: Anatomy of the intestinal immune system [Abreu MT., 2010]. 
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4.2 The gut microbiota 

The gastrointestinal tract is heavily colonized by a vast number of microorganisms, mostly 

bacteria, viruses, and fungi, referred to as the gut microbiota or microflora, living in peaceful 

coexistence with their host [Sekirov I., et al., 2010]. Bacteria represent a major component of 

the gut flora. The number of bacterial cells present in the mammalian gut shows a continuum 

going from 10 1 to 10 3 bacteria per gram of content in the stomach and duodenum, 

progressing to 10 4 to 10 7 bacteria per gram in the jejunum and ileum and culminating in 10 11 

to 10 12 cells per gram in the colon. Indeed the colon alone is estimated to contain over 70% 

of all the microbes in the human body [O'Hara AM., et al., 2006]. The majority of the gut 

flora is composed of strict anaerobes. Although, more than 50 bacterial phyla have been 

recognized, two only, Bacteroides and Firmicutes, appear to be dominant, whereas 

Proteobacteria, Verrucomicrobia, Actinobacteria, are present in minor proportions [Donaldson 

GP., et al., 2016] (Figure I.7). 
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Figure I.7: Spatial and temporal aspects of intestinal microbiota composition [Sekirov I., et al., 2010]. 

 

Microbial colonization of human gut begins at birth, upon the passage through the birth canal 

where the fetus is exposed to a complex microbial population. Indeed, the intestinal 

microbiota of newborns has been found to be very similar to the vaginal microbiota of their 

mothers [Mandar R., et al., 1996].  

However, subsequently, the gut microbiota composition is shaped by additional factors, such 

as diet and exposure to antibiotics [Sekirov I., et al., 2010].  

 

4.3 Interactions between gut flora and normal colonic epithelium 

Under normal conditions, interaction between normal colonic epithelial cells and gut 

microbiota is limited and highly regulated. IEC can sense the presence of gut microbiota or 
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their products into the gut lumen thanks to the expression of Pattern recognition receptors 

(PRR) recognizing specific molecular patterns related to commensals, pathogens or cellular 

damage.  Several functionally distinct classes of PRR [Medzhitov R., 2007] including, among 

others, Toll-like receptors (TLR), nucleotide binding oligomerization domain (NOD)-like 

receptors (NLR), and RNA helicases (RIG-I (retinoid acid-inducible gene-I) [Fukata M and 

Arditi M., 2013], are expressed by IEC. In particular, in the intestine and in the colon the 

recognition of commensal bacteria and pathogens is largely mediated by TLRs [Abreu MT., 

2010].  

TLRs are type 1 integral membrane glycoproteins [Martin MU., 2002], and are characterized 

by an extracellular leucine-rich repeat (LRR) domain and an intracellular Toll/IL-1 receptor 

(TIR) domain [Hashimoto C., 1988]. Thirteen mammalian TLRs have been described; 

classified into two subfamilies based on their localization. Cell surface TLRs, including 

TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10; and intracellular TLRs, localized in the 

endosome including TLR3, TLR7, TLR8, TLR9, TLR11, TLR12, and TLR13 [Kawasaki T 

and Kawai T., 2014]. TLRs play a central role as primary sensor of invading pathogens and 

inducers of host antimicrobial defense. Cell surface TLRs recognize microbial membrane 

components, such as lipids, lipoproteins, and proteins, whereas intracellular TLRs sense 

exogenous or endogenous nucleic [Blasius AL. and Beutler B., 2010] (Table I.2). 
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Table I.2: Toll-like receptors and their main ligands [modified from Manaval B., et al., 2011]. 



 

 
 

24 

The activity of TLR agonists occurs through binding to the corresponding TLR receptors. In 

particular, most Toll-like receptors (TLRs) except for TLR3 induce nuclear factor (NF)-κB 

activation through the myeloid differentiation primary response gene 88 (MyD88) pathway. 

In contrast, TLR3 exclusively induces IRF3 activation through the TIR-domain-containing 

adapter-inducing interferon (IFN) - β (TRIF) pathway (Figure I.8), [Fukata M and Arditi M, 

2013].  

 

 

Figure I.8: Mammalian TLR signalling pathways [O’ Neill L., et al., 2013]. 

 

Under homeostatic conditions, colonic IECs express low levels of TLR2, TLR4 and high 

levels of TLR3 and TLR5 [Abreu MT., et al., 2001 and Otte JM., et al., 2004]. Notably, some 

TLRs, such as TLR5 are expressed only at the basolateral surface, whereas others, such as 

TLR9, are expressed at both apical and basolateral surface. However, also in the latter case, 
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TLR function appears to be polarized inasmuch as basolateral TLR engagement has been 

shown to trigger activation of NF-kb pathway, whereas apical engagement leads to its 

inhibition. These evidences are consistent with the hypothesis that inflammatory responses 

should only occurs upon formation of a breach in the epithelial barrier [Abreu MT., 2010]. 

In the presence of inflammation, TLRs expression on IEC is increased. In particular, TLR4 

expression is up regulated by inflammatory cytokines such as, interferon-γ (IFN-γ) and tumor 

necrosis factor (TNF). Notably, high TLR4 expression has been reported in inflammatory 

bowel disease [Abreu MT., et al., 2002 and 2010].  

On the other hand, TLR2 and TLR4 functions are negatively regulated by Toll-interacting 

protein (TOLLIP) [Abreu MT., 2010] an intracellular protein that inhibits TLR2 and TLR4 

signaling through its effect on IL-1R-associated kinases (IRAKs) [Burns K., et al., 2000]. 

Interestingly, IECs from patients affected by inflammatory bowel disease fail to upregulate 

TOLLIP, a finding suggesting that lack of TOLLIP may lead to chronic inflammation [Abreu 

MT., 2010]. 

TLR triggering by microbial stimuli results in a number of protective functions, including 

induction of IEC proliferation upon epithelial cells injury, release of antimicrobial peptides, 

and induction of IgA secretion by B cells [Abreu MT., 2010]. 

 

4.4 Physiopathology of gut epithelium in CRC 

Recent evidence has proved that genetic mutations eventually leading to CRC development 

cause an early alteration of the epithelial barrier, due to decreased mucus production and loss 

of tight junctions [Grivennikov S., et al., 2012]. Commensal bacteria and their products may 

then translocate across the epithelium into the lamina propria, and trigger TLRs expressed on 

the basolateral surface of IEC and on immune cells. This results in the release of pro-

inflammatory factors, ultimately promoting tumor progression (Figure I.9). 
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Figure I.9: Inflammatory Model of the Initiation of Colorectal Cancer 
[Gallimore AM. and Godkin A., 2013]. 

 

Indeed, mice grown under germ free condition or deficient for TLRs or MYD88 show 

reduced tumor development [Rakoff-Nahoum S., et al., 2007], thus suggesting that TLR 

engagement by microbial stimuli promotes tumor growth.  

Interestingly, in humans, defined bacteria species have been found to be abundant in CRC 

tissues [Castellarin M., et al., 2012]. In particular, Fusobacterium nucleatum (F. nucleatum), 

an invasive anaerobic bacterium common in dental plaque and generally associated with 

periodontitis [Castellarin M., et al., 2012], has been found to be overrepresented in CRC as 

compared to corresponding healthy colonic mucosa [Castellarin M., et al., 2012 and Kostic 

AD., et al., 2013]. The significance of this association is still unclear. On the one hand, F. 

nucleatum has been shown to direct promote CRC cell proliferation in vitro upon activation of 

WNT signaling [Rubinstein MR., et al., 2013] and tumor development in vivo [Kostic AD., et 

al., 2013]. On the other hand, it might suppress antitumor immune responses by promoting 

recruitment of myeloid derived suppressor cells [Kostic AD., et al., 2013]and by inhibiting the 

activities of NK and T cell through its interaction with the inhibitor receptor TIGIT [Gur C., 

et al 2015]. 
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Paradoxically, TLR stimulation has also been shown to result in the induction of effective 

anti-tumor immunity [Rhee SH., et al., 2008]. However, underling mechanisms are not fully 

understood. In particular, whether TLR triggering may also lead to production of chemokines 

possibly recruiting effector immune cell populations remains to be thoroughly evaluated. 
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II.  AIM OF THE 

STUDY 
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CRC infiltration by specific immune cells, including CTLs, Th1 cells, and, most surprisingly, 

T regs and CD16+ MPO+ neutrophils, is associated with good prognosis. However, the 

chemotactic factors driving these cell populations into the tumor site, their cellular sources 

and their microenvironmental triggers remain to be elucidated. My PhD work aimed at 

investigating the chemokine/chemokine receptor network promoting CRC infiltration by 

immunocompetent cells associated to favorable clinical outcome. 

In particular I have addressed: 

1. Expression of immune cell markers and their correlation with chemokine expression in 

primary CRC tissues;  

2. Identification of chemokine receptors relevant for CRC infiltration by  beneficial 

immune cells; 

3. Chemokine sources in CRC; 

4. Microenvironmental stimuli triggering chemokine production in CRC tissues; 

5. Effects of chemokine production on immune cell recruitment into CRC tissues. 
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III.  MATERIALS AND 

METHODS 
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1. Clinical specimen collection and processing  

Clinical specimens were collected from consenting patients undergoing surgical treatment at 

Basel University Hospital, St. Claraspital in Basel, Kantonsspital Olten, Kantonspital St. 

Gallen, and Ospedale Civico di Lugano. Tumor or healthy tissue fragments were snap frozen 

for RNA extraction or treated by enzymatic digestion in order to obtain single cell 

suspensions. Briefly, tissues were minced and digested in Dulbecco's Modified Eagle Medium 

(DMEM) supplemented with 2 mg/ml collagenase IV (Worthington Biochemical 

Corporation) and 0.2 mg/ml DNAse I (Sigma-Aldrich) for 1 hour at 37°C. Single cell 

suspensions were then filtered through cell strainers (100, 70, and 40 µm diameter, 

sequentially) and used for flow cytometric analysis. In addition, peripheral blood 

mononuclear cells (PBMCs) from healthy donors (HD PB) or from CRC patients (CRC PB) 

were isolated by Ficoll-Hypaque (Histopaque-1077, Sigma-Aldrich) density gradient 

centrifugation and subsequently used for flow cytometry characterization.  

The use of human samples in this study has been approved by the local ethical committee. 

2. Cell lines 

LS180, HT29 and Colo2015 human CRC cell lines were purchased from the European 

Collection of Cell Cultures, and maintained in RPMI 1640 (GIBCO) or, for HT29, McCoy's 

5A medium (Sigma-Aldrich), supplemented with 10% fetal bovine serum, GlutaMAX-I and 

kanamycin (GIBCO). All cell lines were used at early passages.  

3. Bacteria 

Fusobacterium nucleatum (subsp. Nucleatum, ATCC 25586), Bacteroides vulgatus (Eggerth 

and Gagnon, ATCC 8482), and Bacteroides fragilis (non enterotoxigenic strain 9343, ATCC 

25285), were kindly provided by Dr. Nina Khanna, Department of Biomedicine, University of 

Basel. They were cultured under anaerobic conditions. Escherichia coli (Castellani and 
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Chalmers, ATTC 25922) was purchased from American type culture collection (ATCC) and 

cultured in Tryptic Soy Agar/Broth (BD). All bacteria were used upon heat-inactivation at 90° 

for 1 hour.  

4. Flow cytometry  

For the analysis of surface markers, PBMCs from CRC patients, and single cell suspensions 

obtained from freshly excised clinical specimens of CRC and corresponding tumor-free 

colonic mucosa were incubated with fluorochrome-conjugated antibodies for 15 minutes at 4 

°C. For the analysis of intracellular markers, cells were fixed and permeabilized (Intracellular 

Fixation & Permeabilization Buffer Set, eBioscience) and stained intracellularly with specific 

antibodies for 30 minutes at room temperature (RT). Antibodies used are listed in Table III.1 

Specificity clone company 
CD3 SK7 BD Biosciences 
CD4 SK3 BD Biosciences 
CD8 SK1 BD Biosciences 

CD16 3G8 BD Biosciences 
CD66b G10F5 Biolegend 
CCR3 5 E8 BD Biosciences 
CCR4 205410 R&D Systems 
CCR5 2D7 BD Biosciences 
CCR6 R6H1 eBioscience 
CCR9 BBC3M4 eBioscience 

CXCR1 42705 R&D Systems 
CXCR2 48311 R&D Systems 
CXCR3 1C6 BD Biosciences 
CXCR4 12G5 BD Biosciences 

CX3CR1 528728 R&D Systems 
TLR1 GD2.F4 eBioscence 
TLR2 TL2.1 eBioscence 
TLR3 TLR3.7 eBioscence 
TLR4 HTA125 eBioscence 
TLR5 624915 R&D Systems 
TLR6 86B1153.2 IMGENEX 
TLR7 533707 R&D Systems 
TLR8 44C143 IMGENEX 
TLR9 eB72-1665 eBioscence 

TLR10 3C10C5 eBioscence 
 

Table III.1: List of antibody used in this study 
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Stained cells were analyzed by FACSCalibur flow cytometer (BD Biosciences). Tumor cells, 

as identified by the expression of EpCAM+, were sorted by magnetic microbeads (MACS® 

MicroBeadsfrom Miltenyi Biotec) from single cell suspensions obtained upon digestion of 

freshly excised CRC samples. The purity of tumor cells was > 98%, as evaluated by flow 

cytometry.  

5. Real-time reverse transcription PCR assays 

Total RNA was extracted from stored CRC tissues or sorted cell populations using 

NucleoSpin RNA (MACHEREY-NAGEL) and reverse transcribed using the Moloney Murine 

Leukemia Virus Reverse Transcriptase (M-MLV RT, Invitrogen). Quantitative Real-Time 

PCR was performed in the ABI prism™ 7700 sequence detection system, using TaqMan 

Universal Master Mix and No AmpErase UNG (both from Applied Biosystems).  

Commercially available primer sequences used are summarized in Table III.2. 

Gene name code/seq company 
CCL1 Hs00171072_m1 AppliedBiosystems 
CCL2 Hs00234140_m1 " 
CCL3 Hs00234142_m1 " 
CCL4 Hs99999148_m1 " 
CCL5 Hs00982282_m1 " 
CCL7 Hs00171147_m1 " 
CCL8 Hs00271615_m1 " 

CCL11 Hs00237013_m1 " 
CCL13 Hs00234646_m1 " 

CCL14-15 Hs00361122_m1 " 
CCL16 Hs00171123_m1 " 
CCL17 Hs00171074_m1 " 
CCL18 Hs00268113_m1 " 
CCL19 Hs00171149_m1 " 
CCL20 Hs00171125_m1 " 
CCL21 Hs99999110_m1 " 
CCL22 Hs00171080_m1 " 
CCL23 Hs00270756_m1 " 
CCL24 Hs00171082_m1 " 
CCL25 Hs00171144_m1 " 
CCL26 Hs00171146_m1 " 
CCL27 Hs00171157_m1 " 
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CCL28 Hs00219797_m1 " 
CXCL1 Hs00236937_m1 " 
CXCL2 Hs00236966_m1 " 
CXCL3 Hs00171061_m1 " 
CXCL4 Hs00236998_m1 " 
CXCL5 Hs00171085_m1 " 
CXCL6 Hs00237017_m1 " 
CXCL7 Hs00234077_m1 " 
CXCL8 Hs00174103_m1 " 
CXCL9 Hs00171065_m1 " 

CXCL10 Hs99999049_m1 " 
CXCL11 Hs00171138_m1 " 
CXCL12 Hs00171022_m1 " 
CXCL13 Hs00757930_m1 " 
CXCL14 Hs01557413_m1 " 
CXCL16 Hs00222859_m1 " 
CX3CL1 Hs00171086_m1 " 

IRF1 Hs00971960_m1 " 
FOXP3 Hs01085834_m1 " 

CD16A/B Hs00275547_m1 " 
IL17A Hs99999082_m1 " 
T-bet Hs00203436_m1 " 
CD33 HS01076281_m1 " 

CD8 
CTCGGCCCTGAGCAACTC                                               (Forward)  Microsynth 
GGCTTCGCTGGCAGGA                                                    (Reverse) " 
ATGTACTTCAGCCACTTCGTGCCGGTC                        (Probe) " 

IFNγ 
AGCTCTGCATCGTTTTGGGTT                                        (Forward) " 
GTTCCATTATCCGCTACATCTGAA                                (Reverse) " 
TCTTGGCTGTTACTGCCAGGACCCA                             (Probe) " 

16S 
TCCTACGGGAGGCAGCAGT                                            (Forward) " 
GGACTACCAGGGTATCTAATCCTGTT                           (Reverse) " 
CGTATTACCGCGGCTGCTGGCAC                                   (Probe) " 

 
Table III.2: List of primers used in this study 
 

6. CRC cell stimulation with TLR agonists and bacteria  

Cells from LS180, HT29 and Colo205 CRC cell lines, were plated in 24-well plates (Sigma-

Aldrich) (350’000 cells/well in 0.5 ml) in RPMI 1640 and then stimulated at 37°C with a 

panel of TLR agonists, including Lipopolysaccharides (LPS, 1000ng/ml from Escherichia 

coli O111:B4, Sigma-Aldrich), polyinosinic-polycytidylic acid (poly(I:C), 10µg/ml, 

Invivogen), synthetic diacylated lipoprotein (FSL-1, 1µg/ml, Invivogen), and purified 
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flagellin from S. Typhimurium (100ng/ml, Invivogen), or with heat-inactivated bacteria, 

including Fusobacterium nucleatum, Escherichia Coli, Bacteroides vulgatus, and Bacteroides 

Fragilis (bacteria: cell ratio = 30:1). After 4 hours, cells were collected for RNA extraction 

and used for the analysis of chemokine expression. Supernatants were collected from parallel 

cultures after an overnight incubation and used for migration assays.  

7. Migration assay  

Following gradient centrifugation, CD8+ T cells and neutrophils were sorted from peripheral 

blood of healthy donors by magnetic microbeads (MACS® MicroBeadsfrom Miltenyi Biotec, 

and EasyStep enrichment kit from StemCell Technologies, respectively,) according to 

manufacturer’s instructions. The purity of both cell populations was >98%, as confirmed by 

flow cytometry. Chemotaxis assays were performed using 96-well transwell plates with 5-μm 

pore size membranes (Corning Costar). Supernatants from LS180 cells, left untreated or 

treated with different bacteria strains for an overnight period, were added to the lower 

chambers (250 µl/ well). CD8+ T cells and neutrophils (1.5 x 10^4 / well in 80 µl) were 

placed in the upper chamber and allowed to migrate for 90 min at 37°C. Numbers of cell 

migrated into the lower chamber were quantified by flow cytometry. Extent of cell migration 

was expressed as migration index, calculated as numbers of cells migrated towards 

supernatants / number of cells migrated towards control medium.  

8. Generation of CRC xenografts   

In vivo experiments were performed collaboration with Prof. Dr. Borsig Lubor, Institute of 

Physiology, University of Zurich.  

NSG mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) were initially purchased from Charles River 

Germany, and then bred and maintained in our mouse facility. Eight-week old mice were 
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injected subcutaneously or intracecally with LS180 cells (3x10^5/ mouse), resuspended in a 

1:1 mixture of PBS and Matrigel (8.7 mg/ml, Corning Costar).  

For intracecal injection, mice were anesthetized with 10 % Ketamine (0.65 ml/kg 

intraperitoeum, i.p. Streuli Pharma AG) and 2% Xylazine, (0.5 ml/kg, i.p. Streuli Pharma 

AG). After surgery, Meloxicam (2 mg/kg, i.p. Boehringer Ingelheim), as pain killer, was also 

administered. Tumor growth was weekly monitored by palpation. In some experiments, 

starting from day 10 after injection, a randomized group of intracecally injected mice was 

treated with Ampicillin Sodium Salt (1 g/L, Amresco) and Vancomycin Hydrochloride (0.2 

g/L, Bio Basic Canada), administered in the drinking water. Subcutaneously injected mice 

were sacrificed 24 days after injection. Intracecally injected mice were sacrificed on day 31 

after inoculation. Tumors were harvested and snap frozen for RNA extraction. 

9. Statistical analysis 

The significance of differential expression of chemokines and immune cells markers in CRC 

specimens and corresponding healthy mucosa was tested by using Wilcoxon signed rank test. 

Correlations between chemokine expression and immune cell markers were evaluated using 

Spearman correlation assays. Differences in frequencies of chemokines receptor expression 

on CTLs, Th1 and Tregs and neutrophils from peripheral blood of healthy donors or CRC 

patients, and between tumor and control tissues were evaluated by Mann Whitney test. 

Chemokine induction in CRC cells in vitro and in vivo was analyzed using two-way 

ANOVA. Differences in migration rates were tested by one-way ANOVA. Statistical analysis 

was performed by using GraphPad Prism 5 software (GraphPad Software).  
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IV.  RESULTS 
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1. Expression of immune cell markers in primary CRC 

We first evaluated by RT-PCR the expression of genes encoding immune cell markers 

identifying specific immune cell populations predictive of favorable prognosis, including CD8 

for CTLs [Galon J., et al., 2006], T-bet and IRF1 for Th1 [Tosolini M., et al., 2011], Foxp3 

for Tregs [Salama P., et al., 2009 and Frey DM., et al., 2010], and CD16 for neutrophils 

[Droeser RA ., et al 2013], in a cohort of 62 CRC specimens and corresponding tumor-free 

colonic tissues. Clinical-pathological characteristics of patients included in the cohort are 

listed in Table IV.1.  

Patients Characteristics   
    
Age (mean) 71.03 
  

 Sex 
 Male n (%) 34 (54.8) 

Female n (%) 28 (45.2) 
  

 T stage 
 T1 n (%) 0 

T2 n (%) 6 (9.7) 
T3 n (%) 46 (74.2) 
T4 n (%) 10 (16.1) 
  

 N stage 
 N0 (%) 39 (62.9) 

N1 (%) 14 (22.6) 
N2 (%) 9 (14.5) 

 

Table IV.1: Patient Characteristics (n=62) 
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Expression levels of Foxp3 and CD16 genes were significantly increased in CRC (p<0.0001), 

whereas expression of CD8, T-bet and IRF1 genes was comparable in CRC and control 

tissues (Figure IV.1A). However, in a subgroup of CRCs (up to n=15) a marked upregulation 

of the expression of CD8, T-bet and IRF1 genes, as compared to matched control tissues, was 

also observed (Figure IV.1B). Correlations between different immune cell markers were also 

observed. As expected, expression of IRF-1 and T-bet genes, were strongly correlated. More 

surprisingly, expression of both IRF-1 and T-bet genes was associated with that of Foxp3 

gene. Furthermore, a strong correlation between expression of CD8 and T-bet, Foxp3, and 

CD16 genes was also detected (Figure IV.1C).  
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A 

 

B 

 

C 

 

Figure IV.1: Expression of immune cell markers genes in CRC tissue and corresponding tumor-free colonic 
tissues. Total cellular RNA was extracted from freshly excised CRC tissues (bold) and corresponding tumor-free 
colonic mucosa samples (gray) and reverse transcribed (n = 62). Expression of the indicated genes was analyzed 
by qRT-PCR, using, GAPDH house-keeping gene as reference. A. Gene expression levels relative to GAPDH. 
B. Ratio between gene expression levels in CRCs and matched tumor-free tissues. Statistical significance was 
assessed by Wilcoxon signed rank test (***p<0.0001) C. Correlation between CD8; IRF1 and T-bet, Foxp3 and, 
CD16 were detected. Spearman r and relative p-values are indicated in the table. Significant correlation 
coefficients ≥0.3 are indicated in bold. 

 

 



 

 
 

41 

 

2. Chemokine gene expression in primary CRC  

We next evaluated the expression of a large panel of chemokine genes (Table III.2) in the 

same cohort of samples. All chemokines were found to be expressed in CRC, although at 

different levels. Notably, expression levels of CCL3, CCL4, CCL7, CCL17, CCL22, CCL24, 

CCL25, CCL26, CXCL1, CXCL2, CXCCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, 

CXCL9, CXCL10, CXCL11, and CXCL16 were significantly higher in CRC as compared to 

tumor-free colonic mucosa, whereas those of CCL8, CCL11, CCL13, CCL14-15, CCL19, 

CCL20, CCL21, CCL23, CCL28, CXCL12, and CXCL14 genes appeared to be 

downregulated (Figure IV.2 A, B). 

Furthermore, when chemokine expression in tumors was normalized to that detected in 

corresponding tumor-free colonic tissues, a strong upregulation of a panel of chemokines 

including, CCL3-5, CCL7-8, CCL13, CCL20, CCL22, CXCL1-3, CXCL5, CXCL8-12, 

CXCL16, and CX3CL1, was observed in a subgroup of 11 samples (Figure IV.3). 

Importantly, these samples also displayed a higher expression of CD8, IRF1, T-bet, Foxp3 

and CD16 genes (Figure IV.3).  
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A 

 

B 

 

Figure IV.2: Chemokine gene expression in CRC and corresponding tumor-free colonic tissues. Total cellular 
RNA was extracted from freshly excised CRC tissues (n = 62) and corresponding tumor-free colonic tissues, and 
reverse transcribed. Specific gene expression was analyzed by qRT-PCR, using, as reference, GAPDH house-
keeping gene. A. CCL family chemokines. B. CXC family chemokines and CX3CL1. Means are indicated by 
bars. Statistical significance was assessed by Wilcoxon signed rank test (*p<0.05; **p<0.01***p<0.001;). 
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3. Correlations between expression of immune cell markers and chemokine genes in 

CRC 

Prompted by these results, we subsequently evaluated in greater detail correlations between 

expression of the identified chemokines and that of immune cell marker genes (Table VI.2). 

 

Table IV.2: Correlation between gene encoding chemokine and immune cell markers. Total cellular RNA was 
extracted from freshly excised CRC tissues (n = 62) and corresponding healthy mucosa sampled at distance from 
the tumor and reverse transcribed. Specific gene expression was analyzed by qRT-PCR, using, as reference, 
GAPDH house-keeping gene expression. Correlation between CD8; IRF1 and T-bet, Foxp3 and, CD16 and 
chemokines were found. Spearman r and relative p-values are indicated in the table. Significant correlation 
coefficients ≥0.3 are indicated in bold. 

 

CCL3 strongly correlated with CD16 and, to a lower extent, with CD8 and IRF1 gene 

expression. Similarly, CCL4 was strongly associated with CD16, and weakly with CD8 gene 

expression. CCL5 gene expression strongly correlated with CD8 and, IRF-1, and to a lower 

extent, with all other genes under investigation. CCL7, CCL8, and CCL13 were associated 

with expression of CD8 and CD16, and more weakly, with IRF1 gene. CCL20 only correlated 

with CD8. In contrast, CCL22 expression was associated with all markers, but most strongly 

with Foxp3 and IRF1. CXCL1, CXCL2, CXCL5 and CXCL8 were found to be only 

associated with CD16. CXCL9, CXCL10 and CXCL11 positively correlated with the 
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expression of CD16 and to a lower extent with that of T cell markers. CXCL12 expression 

also correlated with CD16 and all T cell markers. CXCL16 was associated with CD16 and 

IRF1, and weakly with CD8. Finally, expression of CX3CL1 correlated with CD16 and, to a 

lower extent, with that of all T cell marker genes. 

 

4. Chemokine receptor expression on CRC infiltrating beneficial immune cells 

We next investigated the molecular background underlying these associations. We 

hypothesized that chemokines associated with expression of specific immune cell markers, 

might have a role in recruiting the corresponding cell populations into tumor tissues. 

Therefore, we first verified whether CRC infiltrating CD8+ lymphocytes, CD4+ T helper 

cells, Tregs and CD16+CD66b+ neutrophils (and corresponding cell populations in tumor-

free colonic tissues and PBMCs) expressed corresponding chemokine receptors.  

CRC infiltrating CD8+ T cells expressed CCR5, (binding CCL3-5, CCL8 and CCL13), 

CXCR3, (the receptor of CXCL9 and CXCL10) and CXCR4 (specific for CXCL12) on a 

large fraction of cells, whereas CCR3 (binding CCL7) and CCR6 (the receptor of CCL20) 

were expressed on smaller subsets. Notably, frequencies of CCR5+, CCR6+, and CXCR4+ 

cells were significantly increased within tissue infiltrating as compared to peripheral blood 

CD8+ cells, whereas no significant differences were observed between CD8+ cells infiltrating 

CRC or tumor-free colonic tissues nor between peripheral blood lymphocytes from patients 

and healthy donors. Unfortunately, expression of the gut homing receptor CCR9 (binding 

CCL25) could be evaluated only on three CRC samples displaying heterogeneous proportions 

of CD8+ T cells. Remarkably, percentages of CCR9+ /CD8+ cells in PBMCs were 

significantly increased in patients as compared to healthy donors. In contrast, cells expressing 

CCR4 and CX3CR1, binding CCL22 and CX3CL1 respectively, were not detected (data not 

shown) (Figure IV.4). 
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Figure IV.4: Chemokine receptor expression in CRC infiltrating CD8+ T cells. PBMC from healthy donors or 
CRC patients, and single cell suspensions obtained from freshly excised clinical specimens of CRC and tumor 
free colonic tissues were surface stained whit antibodies specific for CD8, in combination with the indicated 
chemokine receptors. Percentages of positive cells are shown. Means and standard deviation are indicated by 
bars. Statistical significance was assessed by Mann Whitney test (*p<0.05; **p<0.01; ***p<0.001). 
 

Tumor infiltrating CD4+ (Foxp3-) T helper cells mostly expressed CCR4, CCR5, CXCR3 and 

CXCR4. In addition, CCR3, CCR6 and CCR9 were also expressed in smaller cell fractions. In 

contrast to CD8+ T cells, poor expression of CCR9 was detected on peripheral blood T-helper 
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cells. Frequencies of CCR3+, CCR4+, CCR5+ and CXCR4+ cells were significantly higher 

within tissue infiltrating as compared to PB T helper cells (Figure IV.5). 

 

Figure IV.5: Chemokine receptor expression on CRC infiltrating CD4+ T helper cells. PBMC from healthy 
donors or CRC patients, and single cell suspensions obtained from freshly excised clinical specimens of CRC 
and tumor free colonic tissues were surface stained whit antibodies specific for CD4, in combination with the 
indicated chemokine receptors, and intracellular staining for Foxp3 was then performed. Percentages of CD4+ 
Foxp3-positive cells are reported. Means and standard deviations are indicated by bars. Statistical significance 
was assessed by Mann Whitney test (*p<0.05; **p<0.01). 
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CRC infiltrating Tregs also showed prominent expression of CCR4, CCR5, CXCR3 and 

CXCR4, whereas only small fractions of cells expressed CCR3. Expression of CCR6 and 

CCR9, evaluated so far on two samples only, also appeared to be limited. Moreover, 

percentages of CCR5+ and CXCR4+ cells were significantly increased within tissue 

infiltrating as compared to peripheral blood Tregs, whereas no significant differences were 

observed between Tregs infiltrating CRC or tumor-free colonic tissues. (Figure IV.6). 

 

Figure IV.6: Chemokine receptor expression on CRC infiltrating Tregs. PBMCs from healthy donors or CRC 
patients, and single cell suspensions obtained from freshly excised clinical specimens of CRC and tumor free 
colonic tissues were surface stained with antibodies specific for CD4, in combination with the indicated 
chemokine receptors. Intracellular staining for Foxp3 was then performed. Percentages of CD4+ Foxp3+ 
positive cells are shown. Means and standard deviation are indicated by bars. Statistical significance was 
assessed by Mann Whitney test (*p<0.05; ***p<0.001). 
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CD16+CD66b+ neutrophils in CRC and mucosa tissues similarly expressed CXCR1 (binding 

CXCL8) and CXCR2 (binding CXCL1, 2, CXCL5 and CXCL8) on a large cell fraction 

(approximately up to 60% of cells) This percentage however, appeared to be reduced as 

compared to that of positive cells among circulating neutrophils of both patients and healthy 

donors.  In contrast, no expression of CCR3-5, CXCR3-4 and CXCR6 was detected in any 

neutrophil populations (Figure IV.7). Furthermore, we detected expression of CX3CR1 on a 

small neutrophil subset in peripheral blood of healthy donors (data not shown). We are 

currently evaluating CX3CR1 expression on circulating and tissue infiltrating neutrophils in 

patients.   

 

Figure IV.7: Chemokine receptor expression on CRC infiltrating CD16+CD66b+ neutrophils. Neutrophils from 
healthy donors or CRC patients (EasyStep enrichment kit), and single cell suspensions obtained from freshly 
excised clinical specimens of CRC and tumor free colonic tissues were surface stained with specific antibodies, 
in combination with the indicated chemokine receptors. Percentages of CD16+ CD66b+ positive cells are shown. 
Means and standard deviation are indicated by bars. Statistical significance was assessed by Mann Whitney test 
(*P<0.05; **P<0.01). 
  

In summary, CRC infiltrating immune cell subsets were found to express receptors capable of 

sensing chemokines whose expression is positively associated with that of immune cell 

markers in CRC tissues, thus suggesting a role for these chemokines in immune cell 

recruitment. 
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5. Chemokine signatures underling immune cell recruitment in CRC  

Based on chemokine receptor expression profiles and correlations between expression of 

chemokines and immune cell markers, we could define for each immune cell subset a putative 

“chemokine signature” (Figure IV.8): 

x for CD8+ cells: CCL3, CCL5, CCL8, CCL13, CXCL9, CXCL10 and CXCL12, (and 

to a minor extent CCL4 and CCL7); 

x for Th1: CCL5, CCL22, CXCL9 and CXCL12, (and to a minor extent CCL3, CCL7 

and CCL13); 

x for Foxp3: CCL22 and CXCL12, (and to a minor extent CCL5 and CXCL9); 

x for neutrophils: CXCL2 and CXCL5, (and to a minor extent CX3CL1). 

 

 

 

Figure IV.8:  Schematic representation of putative chemokine signatures for individual immune cell subsets.  

 

6. Chemokine sources in primary CRC 

We next investigated potential chemokine sources in CRC. Indeed, different cell types present 

within the CRC microenvironment including tumor, stromal, endothelial, and immune cells, 

may contribute to chemokine release. We first focused our attention on the major CRC 

component, i.e. the tumor cells. We analyzed by RT-PCR the expression of those chemokines 

found to be upregulated in CRC samples displaying high immune cell infiltration (see Figure 
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IV.3), on total CRC tissues and corresponding purified tumor cells, upon sorting based on 

expression of EpCAM marker. EpCAM+ cells expressed CCL3, CCL4, CCL20, CXCL1 and 

CXCL2, at significantly higher levels than total CRC tissues, thus suggesting that tumor cells 

are a major source of these chemokines. Furthermore, expression of CCL5, CXCL5, CXCL8, 

CXCL9, CXCL10, CXCL11 CXCL12, and CX3CL1, was also detected in purified EpCAM+ 

cells, but was not increased as compared to total CRC tissue, possibly indicating that these 

chemokines are also released by cells other than tumor cells. Finally, CCL7, CCL8, CCL13, 

and CCL22, were detected in CRC tissue but not in purified tumor cells (Figure IV.9). These 

results clearly indicated that tumor cells released a number of chemokines relevant for 

recruitment of CTLs, Th1, Tregs and neutrophils into CRC tissues. 

 

 

Figure IV.9: Chemokine expression in isolated EpCAM+ cell and CRC tissue. Total cellular RNA was 
extracted from freshly excised CRC tissues (n= 10) and from EpCAM+ cells (purity > 97%) sorted from 
corresponding colorectal cancer cell suspensions, obtained upon enzymatic digestion (n=10). Specific gene 
expression was analyzed by qRT-PCR, using, as reference, GAPDH house-keeping gene. Means are indicated by 
bars. Statistical significance was assessed by Mann Whitney test (* p<0.05; **p<0.01). 
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7. Effects of microbial stimulation on chemokine production by CRC cells in vitro  

Subsequently, we sought to elucidate the stimuli leading to chemokine release by CRC cells. 

Given the peculiar features of the gut microenvironment, we hypothesized that chemokine 

production in CRC cells might be induced upon triggering of TLRs, expressed on tumor cells, 

by microbial stimuli derived from gut flora-, possibly translocated into the lamina propria 

across the altered gut epithelium [Grivennikov S., et al., 2012]. We therefore first evaluated 

TLR expression on CRC cells from clinical specimens by flow cytometry. TLR2, TLR3, 

TLR4 and TLR5 were found to be highly expressed both at surface and intracellularly, 

whereas TLR6, TLR8, TLR9 and TLR10 were expressed at lower levels. No significant 

expression of TLR1 and TLR7 was observed (Figure IV.10 A, B). Similar TLR expression 

profiles were detected on a panel of established CRC cell lines (Figure IV.10 C, D). 

 

Figure IV.10. TLR expression on CRC cells. EpCAM + cells sorted from CRC clinical specimens (A, n=7; B, 
n=4) and CRC cells from established cell lines (C,D) were surface (A,C) and intracellularly (B,D) stained with 
antibodies specific for the indicated TLRs. MFI in individual samples or cell lines are shown. Means are 
indicated by bars. 
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We then investigated, the effects of stimulation by microbial products on CRC cells from 

established cell lines. Exposure of CRC cells to purified TLR agonists including Poly(I:C), 

LPS, Flagellin and FSL-1, binding TLR3, TLR4, TLR5, and TLR2/6 resulted in a significant 

upregulation of chemokine genes in all cell lines tested, although to different extents (Figure 

IV.11), thus indicating that TLRs expressed on CRC cells are functional.  

 

Figure IV.11: CRC cell from the indicated established cell lines were treated with LPS, Poly(I:C), Flagellin and 
FSL-1 at the indicated concentrations. Following four hours incubation, gene expression levels of the indicated 
chemokines were analyzed by RT-PCR, using GAPDH housekeeping gene as reference. Data from three 
independent experiments (A) and from one representative experiment (B, C) are shown. Statistical significance 
was assessed by two-way ANOVA test (*=p<0.05). 
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Most importantly, when CRC cells were cultured in the presence of different bacterial species 

known to be abundant in CRC tissues, including Fusobacterium nucleatum, Escherichia Coli, 

Bacteroides vulgatus, and Bacteroides Fragilis [Castellarin M., et al., 2012 and Kostic AD., 

et al., 2013] expression of genes encoding chemokines mediating recruitment of beneficial 

immune cell populations into CRC, was also observed (Figure IV.12). Thus, gut flora-derived 

microbial stimuli are capable of triggering chemokine gene expression in CRC cells in vitro.  

A 

 

B 

 

Figure IV.12: LS180 cells (A) and Primary CRC cells (B, n=1) were treated with heat-killed preparations of the 
indicated bacterial strains at the indicated bacteria/tumor cell ratio. After four hours culture, expression levels of 
the indicated chemokine genes were analyzed by RT-PCR, using GAPDH housekeeping gene as reference. 
Cumulative data from four independent experiments are shown (A). Statistical significance was assessed by two-
way ANOVA test (*=p<0.05). 
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8. Effects of microbial stimulation on chemokine production in vivo 

In order to investigate the impact of the gut flora on chemokine production by CRC cells in 

vivo, we evaluated gene expression levels of the selected chemokine gene panel in tumor 

xenografts generated upon subcutaneous or intracecal injection of CRC cells from established 

cell lines in immunodeficient NSG mice. Whereas subcutaneous xenografts displayed 

chemokine gene expression levels comparable to those of in vitro cultured CRC cells, 

intracecal xenografts showed strong upregulation of a number of chemokines, including 

CCL5, CCL20, CXCL1, CXCL2, CXCL5, CXCL8, and CXCL10 (Figure IV.13). These 

results suggest that exposure to gut environment promotes chemokine gene expression in 

CRC cells.  

 

Figure IV.13: NSG mice were inoculated subcutaneously (n=8) or intracecally (n=14) with LS180 cells (10^5 

cells/mouse). Following tumor development, xenografts were removed and expression levels of the indicated 
chemokine genes were analyzed by RT-PCR, using GAPDH housekeeping gene as reference, in comparison to 
those detectable in in vitro cultured LS180 cells. Statistical significance was assessed by two-way ANOVA test 
(*= p<0.05). 

 

To further verify whether gut commensal bacteria play a role in this phenomenon, we 

evaluated the effect of antibiotic administration to tumor bearing mice on chemokine 

expression detected in intracoecal xenografts. Strikingly, expression of different chemokine 

genes, including CCL5, CCL20, CXCL5, and CXCL10, was significantly reduced in 

intracecal xenografts of treated mice as compared to controls (Figure IV.14). Moreover, 
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expression levels of CCL5, CCL20 and CXCL5 genes significantly correlated with bacterial 

loads (r=0.671 p=0.002; r=0.484, p=0.042; r=0.545, p=0.019, respectively). Thus, gut 

commensal bacteria promote the expression of genes encoding chemokines putatively 

contributing to CRC infiltration by immune cells.  

 

Figure IV.14: NSG mice were inoculated subcutaneously (n=4) or intracecally (n=18) with LS180 cells (10^5 

cells/mouse). Following tumor development, a group of mice (n=10) bearing intracecal xenografts were treated 
with Ampicillin and Vancomycin for three weeks. Xenografts were then removed and expression levels of the 
indicated chemokine genes and bacterial 16s were analyzed by RT-PCR, using GAPDH housekeeping gene as 
reference. Statistical significance was assessed by Mann Whitney test (*=p<0.05). 
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9. Effects of chemokine production on immune cell recruitment into CRC tissues 

Next, we evaluated whether chemokines released by CRC cell upon bacteria stimulation promote 

immune cell migration in vitro. In particular, we tested chemotaxis of peripheral blood CD8+ T cells, 

CD4+ T cells (including T-regs), and neutrophils, towards supernatants of LS180 cells untreated or 

stimulated with CRC-associated bacteria (Figure IV.15).  

 

FigureIV.15: A. Migration of CTLs, CD4+ T cells (including T-regs) and neutrophils purified from PBMCs of 
healthy donors, towards control medium or supernatants from LS180 untreated or exposed for an overnight 
period to the indicated bacteria. Means ± SD from experimental triplicates are indicated. Statistical significance 
was assessed by one-way ANOVA test (*= p<0.05). 
 

Supernatants from untreated CRC cells induced vigorous migration of CD4+ T cells and 

neutrophils but not of CD8+ T cells. Upon stimulation with Fusobacterium nucleatum and 

Escherichia Coli, but not Bacteroides Fragilis nor Bacteroides vulgatus, increased migration 

of CD4+ T cells and, to a lower extent, of CD8+ T cells was observed. In contrast, 

chemotaxis of neutrophils was not increased but rather appeared to be slightly reduced upon 

bacteria stimulation. These data suggest that the capacity of CRC cells to recruit immune cells 

into tumor tissues might be modulated by commensal bacteria.  

To gain insights into the potential impact of commensal bacteria on chemokine expression, 

and consequently immune cell infiltration in vivo, we evaluated bacterial loads in our cohort 

of human CRC samples (see Figure IV.3). Notably, CRC samples characterized by elevated 

chemokine expression and high immune cell infiltration displayed significantly higher 

bacterial loads as compared to poorly infiltrated samples (Figure IV.16A). Furthermore, 
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bacterial loads significantly correlated with expression levels of CCL3, CCL5 and IRF1 

(Figure IV.16B), thus suggesting that bacterial stimulation may particularly favor recruitment 

of Th1 cells. 

 

Figure IV.16: Bacterial loads were assessed on freshly excised CRC tissues and corresponding healthy mucosa. 
(n = 62) by evaluating 16s expression, by qRT-PCR, using, GAPDH as house-keeping gene. A. Ratio between 
16s expression in tumors and corresponding healthy tissues. B. Correlations between expression of 16S and that 
of CCL3, CCL5, and IRF-1. Spearman r and relative p-values are indicated. 
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OUTLOOK 

 

  



 

 57 

1. Discussion 

During the past decade it has been recognized that CRC infiltration by specific immune cell 

subsets, including CTLs, Th1 cells, Tregs, and CD16+MPO+ neutrophils, predicts good 

prognosis. However, mechanisms underlying tumor infiltration by these cell subsets remain to 

be elucidated. During my PhD I aimed at identifying chemotactic factors possibly involved in 

this phenomenon, their cellular sources and the stimuli eliciting their production within the 

CRC microenvironment.  

Our data indicate that in CRC:  

a) defined “chemokine signatures” underlie CRC infiltration by specific immune cell 

subsets; 

b) tumor cells per se act as a source of chemokines promoting recruitment of beneficial 

immune cells; 

c) gut commensal bacteria modulate chemokine expression by tumor cells “in vitro” and 

in mouse xenografts; 

d) bacterial loads appear to be associated to chemokine expression and immune cell 

infiltration in human CRC samples. 

 

a) “Chemokine signatures” underlying CRC infiltration by specific immune cell subsets 

The combined analysis of chemokine gene expression in tumor tissues, and its correlation 

with immune cell markers and chemokine receptor expression on infiltrating immune cells, 

including CTLs, Th1, Tregs and neutrophils, led us to the identification, of a prominent 

“chemokine signature” for each cell subset (Figure IV.8).  

As expected, neutrophil-associated signature was completely distinct from that of T cell 

subsets. In contrast, CD8+ T cell and Th1 chemokine signatures largely overlapped, thus 
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indicating that these two subsets may be concomitantly recruited. Indeed, we observed a 

significant positive correlation between expression of CD8 and IRF-1 markers (Table IV.1).  

Treg-associated signature also partially overlapped with that of CTLs and Th1 cells. Although 

unexpected, this finding is not surprising considering chemokine receptor expression profiles 

of CRC infiltrating Tregs, largely resembling those of Th1 and, to a lower extent, CTLs. 

Accordingly, Foxp3 expression in CRC tissues significantly correlated with that of both CD8 

and IRF-1 genes (Table IV.1). Notably, in a melanoma model, recruitment of T regs has been 

shown to be dependent on release of CCL17 and CCL22 by tumor infiltrating CTLs [Spranger 

S., et al., 2013]. In our cohort, we did not find significant CCL22 production by tumor cells 

(see Figure IV.9). Intriguingly however, a significant correlation between expression of CD8 

and CCL22 genes was observed (Table IV.2), possibly suggesting that CCL22 may be 

produced by CRC infiltrating CTLs. Further studies are warranted to verify whether CTLs 

may actually contribute to Tregs recruitment into CRC tissues through CCL22.  

b) Tumor cells as source of immune cells recruiting chemokines 

Expression of immune cell recruiting chemokines in CRC tissue has been previously 

described [Mlecnik B., et al., 2010]. However, cellular sources remain to be defined. Here we 

show that tumor cells per se express a spectrum of chemokines potentially recruiting immune 

cell populations associated to a favorable prognosis (Figure IV.9). In particular, tumor cells 

appeared to express genes encoding CCL3, CCL4 and CCL20, promoting recruitment of 

CTLs and Th1 cells, and CXCL1 and CXCL2, attracting neutrophils. In contrast, expression 

of chemokine genes involved in the recruitment of Tregs, such as CCL22, although being 

detected in CRC tissues, was not observed in tumor cells.  

Remarkably, CRC samples displayed heterogeneous chemokine gene expression levels 

possibly reflecting peculiar molecular characteristics of tumor cells or different 

microenvironmental conditions. Genomic alterations occurring in CRC cells have been 
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reported to result in either loss or amplification of chemokine genes [Bindea G., et al., 2013]. 

More recently, epigenetic silencing of Th1-type chemokines in CRC has also been described 

[Peng D., et al., 2015 and Nagarsheth N., et al., 2016].  

Thus, differential genomic and epigenomic instability may at least partially explain the 

heterogeneity of chemokine gene expression across different samples. Accordingly, different 

CRC cell lines, although maintained under comparable culture conditions, displayed a certain 

degree of variability in chemokine production capacity (Figure IV.11). Importantly however, 

chemokine gene expression levels in xenografts generated by CRC cells from the same cell 

line varied according to the site of tumor cell inoculation (Figure IV.13), thus indicating that 

micro-environmental stimuli also play a relevant role in modulating chemokine gene 

expression. 

c) Impact of gut commensal bacteria on chemokine expression by tumor cells  

CRC arise within a peculiar microenvironment which is normally populated by trillions of 

microorganisms. Upon cancer development, due to the loss of mucus production and of 

functional tight junctions, commensal bacterial translocate into the lamina propria 

[Grivennikov S., et al., 2012] and directly act on tumor cells. This phenomenon has been 

previously shown to induce pro-tumorigenic effects resulting either from direct interaction of 

bacteria with tumor cells [Rubinstein et al., 2013 and Arthur JC., et al, 2012] or from the 

release of protumorigenic cytokines by defined immune cell populations exposed to bacterial 

stimulation [Grivennikov S., et al., 2012].  

Unexpectedly, we found that commensal bacteria also trigger in CRC cells the release of 

chemokines eventually leading to the recruitment of beneficial immune cells. Indeed, upon 

exposure to specific CRC-associated bacteria, chemokine expression was induced in CRC cell 

lines in vitro (Figure IV.12). Accordingly, in “in vivo” experiments significantly higher 

chemokine gene expression levels were detected in intracecal as compared to subcutaneous 
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xenografts (Figure IV.13). These differences were no longer evident upon antibiotic treatment 

of tumor bearing mice, thus indicating that chemokine gene expression by tumor cells 

requires the presence of commensal bacteria (Figure IV.14). 

The potential contribution of individual bacterial species remains to be defined. Our “in vitro” 

experiments suggest that different species of CRC-associated bacteria may differentially 

modulate chemokine production by CRC cells. Indeed, whereas neutrophils recruiting 

chemokine gene expression was effectively induced in CRC cells by all tested bacterial 

strains, expression of T cell recruiting chemokine genes was mainly promoted by Escherichia 

Coli and Bacteroides Fragilis (Figure IV.12). Furthermore, only CRC cell stimulation with 

Escherichia Coli resulted in increased T cell chemotaxis in vitro (see Figure IV.15). It is 

tempting to speculate that the composition of gut flora in CRC patients may concur with the 

genetic characteristics of the tumor to determine extent and quality of immune cell 

infiltration.  

Molecular mechanisms mediating the cross-talk between CRC cells and gut bacteria also 

remain to be elucidated. Colon epithelial cells are capable of sensing gut microorganism 

through PRRs, including TLRs. Our data suggest that TLR triggering on tumor cells may 

contribute to these phenomena. Indeed, we found TLRs expression on primary CRC cells 

(Figure IV.10). Furthermore, stimulation with purified TLR agonists resulted in marked 

induction of chemokine gene expression in CRC cells (Figure IV.11). However, further 

studies are warranted to precisely identify which TLRs, and, possibly, other PRRs are 

engaged by individual CRC associated bacterial species.  

d) Impact of gut bacteria and chemokines expression on CRC infiltration by immune 

cells 

Our in vitro and in vivo results, cumulatively suggest that bacteria-induced chemokine 

production by tumor cells may lead to tumor infiltration by beneficial immune cells. 
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Consistent with this hypothesis, in preliminary “in vitro” experiments, supernatants of 

bacteria-stimulated CRC cells promoted chemotaxis of CTLs and Th1 cells to a higher extent 

than those of untreated tumor cells (Figure IV.15). Moreover, in clinical CRC samples the 

extent of immune cell infiltration appeared to correlate with chemokine gene expression 

levels and bacterial loads (Figure IV.16). In particular, significant association between 

bacterial loads and expression of the Th1 marker IRF-1 and of Th1-recruiting chemokines 

was observed, thus possibly suggesting that bacteria might play a major role in the 

recruitment of Th1 cells.  

This finding may appear counterintuitive in the light of our in vitro and in vivo results 

showing preferential production of myeloid cells recruiting chemokines by CRC cells upon 

bacterial stimulation. However, the cascade of events leading to recruitment of beneficial 

immune cells may comprise a number of different steps. We may hypothesize that bacteria 

may first promote the recruitment of neutrophils, and then stimulate them to release T cell 

recruiting chemokines. Additional “in vivo” studies in support of this concept are required. 
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2. Outlook 

We are currently establishing a suitable “in vivo” model to formally prove the role of gut 

bacteria in promoting CRC infiltration by immune cells. In particular, we envisage to evaluate 

recruitment of CRC-derived CD8+ and Th1 cells, adoptively transferred following in vitro 

expansion into NSG mice, into intracecal tumor xenografts, generated upon inoculation of 

CRC cells from cell lines or from autologous primary tumors. To this aim, CTLs and Th1 

cells from several CRC samples have already been expanded. Autologous primary CRC cells 

have also been xenografted in NSG mice in order to allow their in vivo expansion.  

We plan to initially assess the effects of antibiotic treatment on intratumoral immune cell 

recruitment. Subsequently, the contribution of individual CRC-associated bacteria species to 

the modulation of immune cell recruitment will also be evaluated, upon colonization of tumor 

bearing mice with defined bacterial strains.  

Bacterial species or strains mostly contributing to high chemokine expression and immune 

cell infiltration in human CRC samples still remain to be identified. Recent work has revealed 

that specific bacteria are overrepresented in CRC tissues as compared to corresponding non 

tumoral tissues [Castellarin M., et al., 2012 and Kostic AD., et al., 2013]. However, their 

potential correlation with chemokine expression profiles and tumor infiltration by defined 

immune cell subsets has not been studied yet. 

We envisage to perform microbiome analysis in homogenous small groups of CRC samples 

characterized by high or low immune cell infiltration. Identified bacterial species or strains 

will then be tested for their capacity to elicit chemokine production by tumor cells and to 

favor immune cell recruitment by using the in vivo model described above. 

These studies might shed light on the interplay occurring between gut flora and immune 

system in CRC. Furthermore, they may pave the way towards innovative treatments aimed at 

modifying the gut flora in order to promote CRC infiltration by beneficial cell types. Notably 
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in a clinical trial administration of defined strains of probiotics, including Bifidobacterium 

longum and Lactobacillus johnsonij to CRC patients prior to tumor resection, resulted in 

increased numbers of tumor infiltrating T cells [Gianotti L., et al., 2010], thus suggesting a 

possible modulation of local immunity by the administered probiotics. However, phenotypes 

of infiltrating T cells have not been evaluated in detail. We plan to investigate the capacity of 

commercially available probiotics to elicit chemokine production by CRC cells in vitro and 

promote CRC infiltration by clinically relevant myeloid and T cell populations in vivo. Based 

on the result of these studies, administration of probiotics found to be effective in CRC 

patients undergoing surgery might eventually be envisaged.  
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Abstract Background: Programmed cell death 1 (PD-1) receptor triggering by PD ligand 1
(PD-L1) inhibits T cell activation. PD-L1 expression was detected in different malignancies
and associated with poor prognosis. Therapeutic antibodies inhibiting PD-1/PD-L1 interac-
tion have been developed.
Materials and methods: A tissue microarray (n = 1491) including healthy colon mucosa and
clinically annotated colorectal cancer (CRC) specimens was stained with two PD-L1 specific
antibody preparations. Surgically excised CRC specimens were enzymatically digested and
analysed for cluster of differentiation 8 (CD8) and PD-1 expression.
Results: Strong PD-L1 expression was observed in 37% of mismatch repair (MMR)-proficient
and in 29% of MMR-deficient CRC. In MMR-proficient CRC strong PD-L1 expression cor-
related with infiltration by CD8+ lymphocytes (P = 0.0001) which did not express PD-1. In
univariate analysis, strong PD-L1 expression in MMR-proficient CRC was significantly asso-
ciated with early T stage, absence of lymph node metastases, lower tumour grade, absence of
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vascular invasion and significantly improved survival in training (P = 0.0001) and validation
(P = 0.03) sets. A similar trend (P = 0.052) was also detectable in multivariate analysis includ-
ing age, sex, T stage, N stage, tumour grade, vascular invasion, invasive margin and MMR
status. Interestingly, programmed death receptor ligand 1 (PDL-1) and interferon (IFN)-c
gene expression, as detected by quantitative reverse transcriptase polymerase chain reaction
(RT-PCR) in fresh frozen CRC specimens (n = 42) were found to be significantly associated
(r = 0.33, P = 0.03).
Conclusion: PD-L1 expression is paradoxically associated with improved survival in MMR-
proficient CRC.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Tumour-infiltrating lymphocytes (TILs) are widely
considered to reflect primary host immune response
against solid tumours. Recent reports have demon-
strated a direct correlation between colorectal cancer
(CRC) patient survival and tumour infiltration by clus-
ter of differentiation 8 (CD8) positive T lymphocytes
expressing typical activation markers.1,2 However, the
immune system is characterised by the presence of a
number of inhibitory mechanisms preventing ‘excessive’
lymphocyte activation.3 In particular, programmed cell
death receptor 1 (PD-1; CD279) is typically expressed
by activated lymphocytes.4 Its engagement by specific
ligands, including PD ligand 1 (PD-L1; B7-H1;
CD274) and PD ligand 2 (PD-L2; B7-DC; CD273),
induces down-regulation of antigen-stimulated lympho-
cyte proliferation5,6 and cytokine production,6,7 ulti-
mately resulting in lymphocyte ‘exhaustion’ and in the
induction of immunological tolerance.6,8–10

PD-L1 is constitutively expressed by T and B cells,
macrophages and dendritic cells (DC) and is up-regu-
lated upon activation by interferons (IFN).8,9 PD-L1 is
also expressed on additional cell types including endo-
thelial, pancreatic and muscle cells.4 In contrast, PD-
L2 expression is much more restricted and typically
detectable in activated DC and macrophages.9 Impor-
tantly, up-regulation of the expression of PD-1 ligands
in malignant cells has been suggested to play a central
role in tumour-immune system interaction5,11 since, by
triggering PD-1, cancer cells might shut down specific
immune responses. Indeed, the expression of PD ligands
on tumour cells was shown to suppress the cytolytic
activity of CD8+ T-cells.12,13

PD-L1 and, to a lesser extent, PD-L2, have been
reported to be expressed by tumour cells of different ori-
gins, including glioblastoma, ovarian and renal cell car-
cinomas, squamous cell carcinoma of the head and neck,
oesophageal and non-small cell lung cancers.5,14–18 A
strong correlation between expression of PD ligands
on tumour cells and severe prognosis has been observed
in oesophageal cancer and in renal cell carcinoma.15,17

Capitalising on this background, PD-1/PD-L1 blockade
by anti PD-1 or anti PD-L1 monoclonal antibodies has
been envisaged as an appealing option to activate the

host immune system to eradicate tumours. Recently,
promising results of phase I clinical trials involving
patients bearing a variety of malignancies have been
published.19–21

Expression of PD-L1 in human CRC has not been
addressed so far. In this study we used a tissue micro-
array (TMA)22 including 1420 well documented, clini-
cally annotated CRC specimens23 to investigate the
expression of PD-L1 in CRC and its clinical significance.

2. Materials and methods

2.1. Tissue microarray construction

The TMA used for this study includes 1420 unse-
lected, non-consecutive, primary, sporadic CRCs trea-
ted between 1987 and 1996, and 71 normal mucosa
specimens from the Institute of Pathology of the Univer-
sity of Basel (Switzerland), the Institute of Clinical
Pathology, Basel (Switzerland) and the Institute of
Pathology of the Stadtspital Triemli, Zürich (Switzer-
land). TMA was constructed with materials collected
from the Tissue Biobank of the Institute of Pathology,
University Hospital Basel. This institution performs
translational research with the approval of the EKBB
(Ethics Committee Beider Basel) in compliance with eth-
ical standards and patient confidentiality. Construction
of this TMA has been previously described in detail.23

Briefly, formalin-fixed, paraffin-embedded tissue blocks
from resected CRC were obtained. Tissue cylinders with
a 0.6 mm diameter were punched from representative
tissue areas of each donor tissue block and brought into
one recipient paraffin block (30 ! 25 mm). Each TMA
spot included at least 50% tumour cells.

2.2. Immunohistochemistry

Four micron sections of TMA blocks were trans-
ferred to an adhesive-coated slide system (Instrumedics
Inc., Hackensack, NJ, United States of America
(USA)). Standard indirect immunoperoxidase proce-
dures were used for immunohistochemistry (IHC;
ABC-Elite, Vector Laboratories, Burlingame, CA,
USA). Briefly, slides were dewaxed and rehydrated in
distilled water. Endogenous peroxidase activity was
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blocked using 0.5% H2O2. The sections were treated with
10% normal goat serum (DakoCytomation, Carpinteria,
CA, USA) for 20 min and incubated with primary anti-
bodies at room temperature. Two primary PD-L1
(CD274) specific reagents were used: a monoclonal anti-
body (mAb, clone 27A2, MBL, Woburn, MA, USA)24

and a polyclonal preparation (ab82059, Abcam, Cam-
bridge, United Kingdom (UK)).25 Subsequently, sections
were incubated with peroxidase-labelled secondary anti-
body (DakoCytomation, Glostrup, Denmark) for
30 min at room temperature. For visualisation of the anti-
gen, the sections were immersed in 3-amino-9-ethylcar-
bazole plus substrate-chromogen (DakoCytomation)
for 30 min and counterstained with Gill’s haematoxylin.
Data used for the analysis of correlations with the expres-
sion of other immune markers such as CD8, PD-1,
T-intracellular antigen-1 (TIA-1) and Fork Head box
P3 (FOXP3) were in part available from previous
studies.26,27

Two independent observers, blinded to any prior infor-
mation on clinicopathological features of the patients’
samples, examined the immunohistochemical slides. Per-
centages of PD-L1 positive tumour cells and staining inten-
sity were evaluated for each punch. Staining intensity was
scored as previously reported.24 Outcome analysis was
mainly based on staining intensity because in the case of
PD-L1 positivity nearly all tumour cells were stained, and
tumours with weak or moderate expression were collectively
classified as ‘low’ PD-L1 positive (Fig. 1).24

2.3. Flow cytometric analyses

Following the Basel Institutional Review Board
approval (63/07), tissues from surgically removed CRC
and adjacent normal mucosa were minced, centrifuged,
and resuspended in RPMI 1640 medium supplemented
with 5% foetal calf serum, 2 mg/ml collagenase IV,
0.1 mg/ml hyaluronidase V and 0.2 mg/ml DNAse I
(Sigma–Aldrich, Basel, Switzerland). Following a 12-h
digestion, cell suspensions were filtered and centrifuged.
Mononuclear cells were isolated by Ficoll-Hypaque gra-
dient separation, stained with CD8 (clone RPA-T8) and
PD-1 (clone MIH4) specific fluorochrome-conjugated
monoclonal antibodies (Becton–Dickinson, San Jose,
CA, USA), and analysed by flow cytometry using a 2-
laser BD FACSCalibur (Becton–Dickinson, San Jose,
CA, USA). Propidium iodide (PI) positive cells were
excluded from the analysis. Results were analysed by Cell
Quest (Becton–Dickinson, San Jose, CA, USA) and Flow
Jo (Tree Star, Ashland, OR, USA) computer softwares.

2.4. Clinicopathological features and mismatch repair
status

Available clinicopathological data included age, sex,
pathological tumour stage (pT) stage, pathological

lymph node stage (pN) stage, tumour grade, vascular
invasion, tumour border configuration and disease-spe-
cific survival. Tumour border configuration was evalu-
ated using the original H&E slides of the resection
specimens corresponding to each tissue microarray
punch. Any disagreement between the numbers of avail-
able tissue punches and clinicopathological features
shown was due to the fact that occasionally specific clin-
icopathological data were not available. CRCs were
stratified according to DNA mismatch repair (MMR)
status as described elsewhere.28,29 Briefly, MMR-profi-
cient tumours were defined as those simultaneously
expressing MutL homolog 1 (MLH1), mutS homolog
2 (MSH2) and mutS homolog 6 (MSH6), while
MMR-deficient tumours were defined as those lacking
expression of at least one of these markers. Based on
these features, 1197 CRCs could be classified as
MMR-proficient and 223 as MMR-deficient. 47.6% of
the patients were male and 34.9% of them were bearing
right-sided tumours. Rectal tumours accounted for
34.4% of the cases and the mean tumour diameter was
4.75 cm. The predominant tumour stage was pT3
(64.8%) with over 50% of the samples pN0 (52.2%)
and G1 or G2 (87.2%). Vascular invasion was present
in 27.7% of the tumours and the overall 5-year survival
was 56.4%. Clinicopathological data of the different
CRC subsets are summarised in Table 1.

2.5. Quantitative real-time PCR

Total cellular RNA was extracted from CRC surgical
specimens (n = 42) and reverse transcribed as previously
described.30 CDNAs were then amplified in the presence
of primers and probes specific for glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) house-keeping
gene,31 IFN-c30 or PD-L1genes (Assays-on-demand,
Applied Biosystems, Rotkreuz, Switzerland) by using a
7300 Real Time PCR system (Applied Biosystems)
according to manufacturer’s recommendation. Specific
gene expression was quantified by using GAPDH gene
as reference.32

2.6. Statistical analysis

Differences in clinic-pathological features between
negative, low and strong intensity PD-L1 positive CRCs
were analysed using v2 or Fisher’s exact tests, while dif-
ferences in the number of infiltrating immune cells were
investigated by using the non-parametric Wilcoxon
Rank Sum test. Correlation analyses were performed
using Spearman’s rank correlation coefficient and agree-
ment was calculated by Cohen’s kappa statistics. Sur-
vival analysis was performed using one third of the
total MMR-proficient collective as training set and the
remaining two thirds as validation set. PD-L1 expres-
sion levels had a dichotomous character: absent or low
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or, high. The survival analysis was performed with the
Kaplan–Meier method and the two curves were com-
pared with the log rank test. Subsequently, the PD-L1
expression status was entered into uni- and multivariate
Cox regression analysis. Hazard ratios (HR) and 95%
confidence intervals (CI) were used to determine the
prognostic effect of PD-L1 expression on survival time.
The MMR-deficient CRC was analysed as a separate
cohort.

Regarding tumour infiltrating cells detected as con-
tinuous variables, following proof of significant correla-
tion with survival by univariate Cox regression, we used
classification and regression trees analysis to calculate
threshold values utilised to draw Kaplan–Meier
curves.34 Analyses were performed using SPlus software

(Version 6.1, Insightful Corporation, Seattle, WA,
USA). Data reporting was performed according to the
REMARK criteria.35

Correlations between the expression of different
genes, as detected by quantitative reverse transcriptase
polymerase chain reaction (RT-PCR) were evaluated
by using Spearman’s correlation coefficient (r) and P
values <0.05 were considered statistically significant.

3. Results

3.1. Immunohistochemical detection of PD-L1

Representative stainings of the tissues under investi-
gation, as observed upon incubation with 27A2 mAb

Fig. 1. Programmed cell death ligand 1 (PD-L1) staining in healthy colon mucosa and in colorectal cancer (CRC). Normal colon mucosa (panel A)
and CRC samples (panels B–D) were stained with a PD-L1 specific monoclonal antibody (clone 27A2). Tumour punches are representative of
negative (panel B), low (panel C) and high (panel D) PD-L1 specific staining intensities. Zoom (20!) of strong PD-L1 expression by tumour cells
with high number of PDL-1 positive tumour infiltrating cells is shown in panel E.
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specific for PD-L1, are shown in Fig. 1. PD-L1 was
detectable in epithelial cells from normal colonic mucosa
(Fig. 1A), and, importantly, in cancer cells (Fig. 1C–E).

In 433 MMR-proficient CRC (36%) a strong positiv-
ity (Fig. 1D) was observed, whereas in 723 and 41 cases,
respectively, PD-L1 expression was low (Fig. 1C), or
absent (Fig. 1B). Among the 223 MMR-deficient cases
a strong positivity was observed in 62 cases (29%),
whereas in 143 and 6 cases, respectively, PD-L1 expres-
sion was low or absent. Comparable stainings were also
observed following incubation with polyclonal ab82059
antibody (Abcam, Cambridge, UK). This second stain-
ing was analysed by a second specialised investigator.
The resulting combined inter-observer and inter-testing
Kappa value of 0.29 ± 0.049 indicated a fairly signifi-
cant (P < 0.001) agreement between experiments, anti-
bodies and observers.

3.2. Correlation of PD-L1 expression with
clinicopathological features

In univariate analysis, strong PD-L1 expression was
associated with early T stage (P = 0.002; OR = 2.14,
CI = 0.87–5.22), absence of lymph node metastasis
(P = 0.015; OR = 2.29, CI = 1.16–4.54), lower tumour
grade (P = 0.002; OR = 2.33, CI = 0.91–5.98) and
absence of vascular invasion (P = 0.017; OR = 2.49,
CI = 1.29–4.77) in MMR-proficient CRC (Table 2). Sim-
ilar results were also observed upon TMA staining with
the second reagent used in our study (data not shown).

3.3. PD-L1 expression correlates with high CD8+ T-cell
infiltration in MMR-proficient CRC

PD-L1 interaction with PD-1 expressed by activated
T-cells has been shown to promote the induction of lym-
phocyte ‘exhaustion’.6,8,9 Therefore, in order to evaluate
the immunological context of PD-L1 expression, we
analysed correlations with the expression of CD8, PD-
1, TIA-1 and FOXP3 markers.26,27

Interestingly, in MMR-proficient CRC a direct corre-
lation between PD-L1 expression in tumour cells and
absolute numbers per punch of CD8+ tumour-infiltrat-
ing lymphocytes, as detected in >1000 specimens,27

was observed. In particular, CD8+ infiltration was sig-
nificantly (P = 0.0024) higher in weakly to moderately
(low) PD-L1 positive tumours than in negative cases
and even higher (P = 0.0006) in strongly positive
tumours, as compared to low positivity CRC
(Fig. 2A). Indeed, except for two cases, all CRCs with
low PD-L1 expression displayed a CD8+ infiltration
by <10 cells per punch. In contrast, no significant corre-
lation between PD-L1 expression and CRC infiltration
by cells expressing TIA-1, a granule-associated cytotoxic
protein typically detectable in activated cytotoxic T
cells36 or CRC infiltration by FOXP3+ cells,26,27 could

be observed (data not shown). Notably, PD-1 expres-
sion was detectable in small numbers of CRC infiltrating
lymphocytes and in only 5% of all cases.27 These data
indicate that PD-L1 expression in MMR-proficient
CRC cells is paradoxically associated with tumour infil-
tration by CD8+ T cells which do not express the PD-1
co-receptor. No significant association was found
between CD8+ T cell infiltration and PD-L1 expression
in MMR-deficient cases.

3.4. Ex vivo analysis of PD-1 expression on CD8 positive
lymphocytes in CRC and normal colon mucosa

To further characterise CRC immune infiltrates we
performed an ex vivo analysis of CD8+ CRC infiltrating
lymphocytes in freshly excised tumour tissues and corre-
sponding normal mucosa (n = 7). In accordance with
TMA staining data (see above), this flow cytometry
study confirmed that PD-1 expression in infiltrating
CD8+ lymphocytes is extremely limited in both CRC
(3.5 ± 2.4%) and normal mucosa (1.6 ± 1%; Fig. 2B
and C).

3.5. Prognostic significance of PD-L1 expression

Median overall survival was 32 and 23 months for
patients with MMR-proficient tumours with high

Table 1
Summary of patient characteristics (n = 1420).

Clinicopathological
features

Frequency
N (%)

Age (n = 1420) Mean (range) 69.9 (30–96)
Gender (n = 1414) Female 741 (52.4)

Male 673 (47.6)
Tumour location (n = 1400) Left-sided 430 (30.7)

Right-sided 488 (34.9)
Rectum 482 (34.4)

pT stage (n = 1387) pT1 62 (4.5)
pT2 203 (14.6)
pT3 899 (64.8)
pT4 223 (16.1)

pN stage (n = 1363) pN0 711 (52.2)
pN1 358 (26.3)
pN2 294 (21.6)

Tumour grade (n = 1385) G1 31 (2.2)
G2 1177 (85.0)
G3 177 (12.8)

Histological subtype (n = 1420) Mucinous 119 (8.4)
Other 1301 (91.6)

Vascular invasion (n = 1385) Absent 1002 (72.4)
Present 383 (27.7)

Tumour border configuration
(n = 1384)

Pushing 513 (37.1)

Infiltrating 871 (62.9)
Mismatch repair (MMR)

status (n = 1420)
Proficient 1197 (84.3)

Deficient 223 (15.7)
Survival time (months)

(n = 1379)
Five-year survival
rate (95% confidence
interval (CI))

56.4 (54–59)
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PD-L1 expression and no or low PD-L1 expression,
respectively. This difference was significant in univariate
analysis (P = 0.003; HR = 0.84 (0.79–0.88); Table 3). A
training set consisting of about 1/3 of the MMR-profi-
cient CRC cases was also stained with the second poly-
clonal antibody preparation. With either staining high
PD-L1 expression levels positively correlated with
improved overall survival (P = 0.0001 and P = 0.008,
respectively; Fig. 3A and B). The remaining samples
were stained with only one antibody. In this validation
set, similar significant results were observed
(P = 0.035; Fig. 3C). Several randomisations of the
overall MMR-proficient cohort were tested and all
results were found to be comparable.

In MMR-deficient CRC no significant correlation
between PD-L1 expression and survival could be
observed (data not shown).

In multivariate Cox regression analysis including age,
gender, T stage, N stage, tumour grade, vascular inva-
sion, invasive margin and MMR status, a trend
(P = 0.052) suggesting a correlation between high PD-
L1 expression in tumour cells and improved survival
in CRC could still be observed (Table 3). These uni-
and multivariate results indicate a significant, moderate
correlation (HR = 0.85) between high expression of PD-
L1 and good prognosis.

3.6. PD-L1 expression in tumour infiltrating cells

PD-L1 expression in non-cancerous interstitial cells
was usually limited (cell/punch range: 0–44; median/
mean: 0 cell/punch), as tested in a more restricted test

group of MMR-proficient CRC (n = 424). However,
classification and regression tree analysis33,34 helped to
define a cut-off (22 cells/punch) that identified a small
(2.5%) percentage of cases with relatively high PD-L1
positive cell infiltration. Patients bearing these tumours
also had a significantly (P = 0.006) improved survival
as compared with patients bearing tumours with lower
interstitial numbers of PD-L1 positive cells (Figs. 1E
and 3B). This correlation was confirmed by Cox regres-
sion analyses based on dichotomous values (P = 0.0001;
HR = 0.78, CI = 0.71–0.84) or on continuous values
(P = 0.026; HR = 0.97, CI = 0.96–0.98).

3.7. Correlation between IFN-c and PDL-1 gene
expression in CRC

Detection of programmed death receptor ligand 1
(PDL-1) expression in melanoma cells has recently been
suggested to mirror IFN-c gene expression by tumour
infiltrating lymphocytes.37 In order to verify whether a
similar association could also be postulated in CRC,
the expression of PDL-1 and IFN-c genes was quantita-
tively evaluated in surgically excised tumour specimens
(n = 42). Indeed, we found that expression of PDL-1
and IFN-c genes were significantly correlated
(P = 0.03, r = 0.33).

4. Discussion

The aim of this study was to analyse the expression of
PD-L1 in a large series of CRC samples and to evaluate
its clinical relevance. Here we report that untransformed

Table 2
Association between programmed cell death ligand 1 (PD-L1) specific staining and clinico-pathological features in mismatch repair (MMR)-
proficient colorectal cancer patients (n = 1197).

Frequency N (%) P-value

PD-L1
Negative

PD-L1
Low

PD-L1
Strong

Age (n = 1141) (years) Mean (min, max) 67.7 (40–83) 70.4 (30–96) 69.6 (36–96) 0.201
Tumour diameter (n = 1088) (mm) Mean (min, max) 54.3 (4–100) 48.3 (5–150) 45.5 (5–120) 0.008
Gender (n = 1143) Female 22 (53.7) 335 (49.7) 217 (50.7) 0.858

Male 19 (46.3) 339 (50.3) 211 (49.3)
Tumour location (n = 1129) Left-sided 27 (65.9) 455 (68.3) 321 (76.1) 0.017

Right-sided 14 (34.2) 211 (31.7) 101 (23.9)
Histologic type (n = 1197) Mucinous 8 (19.5) 55 (7.6) 20 (4.6) <0.001

Other 33 (80.5) 668 (92.4) 413 (95.4)
pT stage (n = 1117) T1–2 6 (14.6) 120 (18.3) 113 (26.8) 0.002

T3–4 35 (85.4) 535 (81.7) 308 (73.2)
pN stage (n = 1098) N0 14 (35.9) 321 (49.8) 233 (56.3) 0.015

N1–2 25 (64.1) 324 (50.2) 181 (43.7)
Tumour grade (n = 1117) G1–2 35 (85.4) 565 (86.5) 394 (93.1) 0.002

G3 6 (14.6) 88 (13.5) 29 (6.9)
Vascular invasion (n = 1118) Absent 22 (53.7) 463 (70.8) 314 (74.2) 0.017

Present 19 (46.3) 191 (29.2) 109 (25.8)
Tumour border configuration (n = 1118) Pushing 32 (78.1) 521 (79.7) 337 (79.7) 0.969

Infiltrating 9 (21.9) 133 (20.3) 86 (20.3)
Five-year survival rate (n = 1054) (95% confidence interval (CI)) 35.6 (21–50) 49.7 (45–54) 62.4 (57–67) <0.001
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normal epithelial cells of colon mucosa do express PD-
L1. More importantly, we have observed that PD-L1
expression is markedly enhanced in tumour cells in over
30% of CRC.

Unexpectedly, strong PD-L1 expression in MMR-
proficient CRC was found to be associated with early
tumour stage, absence of lymph node metastases, lower
tumour grade, absence of vascular invasion and a signif-
icantly improved 5-year survival. More remarkably, a
strong PD-L1 expression in CRC appeared to be para-
doxically associated with high numbers of tumour infil-
trating CD8+ T cells. These cells however, did not
express the PD-1 co-receptor. High PD-L1 expression
in non-cancerous interstitial cells, as detectable in a
small number of cases (2.5%), was also found to be asso-
ciated with a more favourable prognosis.

Cancers are frequently infiltrated by lymphocytes and
TILs are widely considered to reflect host immune
response against malignancy.38 In defined cancer types,
tumour-infiltration by lymphocytes has been shown to
be associated with improved prognosis. In particular,
CRC infiltration by CD3+ T cells or by CD8+ lympho-
cytes expressing the CD45RO activation marker has
been suggested to be endowed with high prognostic
value.1

However, tumour-immune system interaction is
highly dynamic. Cancer cells might escape from destruc-
tion by immunocompetent cells by taking advantage of
a range of different mechanisms.39 Down-regulation of
the expression of HLA determinants or tumour associ-
ated antigens or alterations in the antigen processing
machinery might prevent tumour cell recognition by
specific T cells.40 Alternatively, production of immuno-
suppressive factors or intratumoural recruitment of
immunosuppressive cell populations, including regula-
tory T-cells and myeloid derived suppressor cells,39

might contribute to the generation of a tumour microen-
vironment unfavourable to the elicitation of effective
antitumour immune responses.

Notably, it has been shown that cancer cells from
solid tumours are able to up-regulate the expression of
PD-1 ligands, thereby providing inhibitory signals
down-modulating T-cell activation and ultimately shut-
ting down immune responses41 and inducing specific tol-
erance.42 Expression of PD-1 ligands on tumour cells
was also shown to suppress the cytolytic activity of
CD8+ T cells.12,13 Indeed, PD-L1 has been shown to

Table 3
Uni- and multivariate Cox-regression analysis in all colorectal cancers (CRCs) (n = 1420).

Features Univariate Multivariate

Hazard ratio (HR) (95% confidence interval (CI)) P-value HR (95% CI) P-value

Programmed cell death ligand 1 (PD-L1) 0.85 (0.81–0.89) 0.0003 0.92 (0.88-0.96) 0.052
Age (continuous) 1.02 (1.02–1.02) <0.0001 1.03 (1.02–1.04) <0.0001
Sex (men–women) 1.16 (1.12–1.20) 0.0002 1.17 (1.13–1.21) <0.0001
pT (pT: 1,2,3,4) 3.14 (1.76–5.61) <0.0001 1.79 (1.71–1.87) <0.0001
Grade (1,2,3) 1.78 (1.67–1.88) <0.0001 1.14 (1.02–126) 0.29
pN (pN: 0,1,2) 2.41 (2.36–2.46) <0.0001 1.91 (1.85–1.97) <0.0001
Vascular invasion 2.78 (2.69–2.86) <0.0001 1.45 (1.36–1.54) <0.0001
Invasive margins 2.50 (2.41–2.59) <0.0001 1.63 (1.53–1.73) <0.0001
Mismatch repair (MMR) status 1.74 (1.61–187) <0.0001 1.72 (1.59–1.76) <0.0001

Fig. 2. CD8+ T-cell infiltration in colorectal cancer (CRC): numbers
and phenotype. (A) Absolute numbers of CD8+ T-cells counted in
individual CRC punches (n = 1082) were correlated with the intensity
of programmed cell death ligand 1 (PD-L1) specific staining, as
detectable in the same specimen. (B and C) CRC surgical specimens
were enzymatically digested and immediately stained with fluoro-
chrome labelled mAbs recognising CD8 and PD-1. Panel B reports one
representative staining, whereas panel C summarises results from the
seven freshly excised specimens investigated for PD-1 expression on
CD8+ cells in this study. Data in panel B are expressed as percentages
of the total number of cells in the digested specimen, whereas data in
panel C are expressed as percentages of CD8+ cells showing evidence
of PD-1 expression. NM = normal mucosa.
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be expressed in different tumours, including glioblas-
toma, pancreas, ovarian, breast, renal cell carcinomas,
head and neck squamous cell carcinomas as well as
oesophageal, and non-small cell lung cancers.14–

17,24,43,44 Most importantly, a strong correlation
between the expression of PD-1 ligands on tumour cells
and severe prognosis has been observed.

Based on this background, the inhibition of PD-1/
PD-L1 interaction has been proposed as a therapeutic
target and PD-1 and PD-L1 specific monoclonal anti-
bodies have been successfully developed and tested in
phase I clinical trials.19–21 In this context, our results
are surprising and underline the specificities of tumour
immune system interaction in CRC. Importantly how-
ever, no clinical responses have been observed to date
in patients with CRC treated with therapeutic antibod-
ies against PD-1 or PD-L1.20,21

What are the possible mechanisms underlying the
favourable effect of PD-L1 over-expression in MMR-
proficient CRC? Our data clearly indicate that CD8+

T cell infiltration is unexpectedly increased in MMR-
proficient CRC with high PD-L1 expression. These TILs
do not express PD-1.

It is of note that in our study, overexpression of PD-
L1 in tumour cells was not associated with an improved
survival in MMR-deficient CRC. These tumours are
known to be infiltrated by higher numbers of lympho-
cytes and to be characterised by a more favourable

prognosis as compared to MMR proficient tumours.26

Thus, we might hypothesise that the association between
PD-L1 expression in CRC cells and favourable progno-
sis in MMR proficient tumours could be related to the
concomitant increase in CD8+ T cell infiltration.

Interestingly, IFN-c gene expression in CRC tissues
has been reported to be associated with a favourable
prognosis.2 This cytokine, typically produced by acti-
vated T cells has been shown to promote the expression
of PD-1 ligands in different cell types, thus suggesting
that the association of PD-L1 overexpression in MMR
proficient CRC with a favourable prognosis might mir-
ror tumour infiltration by IFN-c producing T cells.37

Indeed, we found that PDL-1 and IFN-c gene expres-
sion are significantly (r = 0.33, P = 0.03) correlated in
CRC. However, since PDL-1 gene expression was also
observed in the absence of detectable IFN-c gene
expression, other, presently undefined mechanisms are
also likely to be involved in the elicitation of the favour-
able prognostic effects associated with PDL-1 expression
by CRC cells.

On the other hand, the intestinal immune system is
shaped by a continuous interaction with commensal
microbiota.45 Possibly, as a consequence of this specific
microenvironment, CRC infiltration by immunocompe-
tent cells is associated with paradoxically peculiar fea-
tures.46 Indeed, we and others26,47 have previously
demonstrated that, in contrast to a wide range of human

Fig. 3. Effect of programmed cell death ligand 1 (PD-L1) expression by cancer and tumour infiltrating cells on overall survival in patients with
mismatch repair (MMR)-proficient colorectal cancer (CRC). Kaplan–Meier overall survival curves of patients bearing MMR-proficient CRC
divided into training and validation set. Stratification occurs according to strong PD-L1 staining of tumour cells (blue line) and low to absent PD-
L1 expression in tumour cells (black line). (A) Set 1, PD-L1 detection by monoclonal antibody. (B) Set 1, PD-L1 detection by polyclonal antibodies
as scored by a second investigator. (C) Set 2: validation set. (D) Kaplan–Meier overall survival curves stratified according to PD-L1 expression in
cancer infiltrating cells. Data refer to high (blue line) or low to absent (black line) infiltration by PD-L1+ cells. The threshold was defined at P22
cells per punch (see Section 2).
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cancers, CRC infiltration by FOXP3+ regulatory T cells,
is associated with an improved prognosis. Furthermore,
it has been observed that CRC infiltration by myeloid
cells is also associated with a favourable prognosis.48,49

The results of this study contribute to the character-
isation of the complex features inherent with gut micro-
environment and with CRC-immune system interaction.
Further research is warranted to clarify molecular mech-
anisms underlying increased CD8+ T cell infiltration in
PD-L1-high CRC. Nevertheless, PD-L1 expression in
MMR-proficient CRC appears to play a conspicuously
different role, as compared to a large variety of other
solid tumours. Indeed, our data suggest that the role
of immunological checkpoint markers could be different
in different anatomical districts.
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Abstract
Purpose: Colorectal cancer infiltration by CD16þmyeloid cells correlates with improved prognosis. We

addressed mechanistic clues and gene and protein expression of cytokines potentially associated with

macrophage polarization.

Experimental Design: GM-CSF or M-CSF–stimulated peripheral blood CD14þ cells from healthy

donors were cocultured with colorectal cancer cells. Tumor cell proliferation was assessed by 3H-thymidine

incorporation. Expression of cytokine genes in colorectal cancer and autologous healthymucosa was tested

by quantitative, real-time PCR. A tumor microarray (TMA) including >1,200 colorectal cancer specimens

was stainedwithGM-CSF- andM-CSF–specific antibodies. Clinicopathological features and overall survival

were analyzed.

Results:GM-CSF induced CD16 expression in 66%" 8% of monocytes, as compared with 28%" 1%

in cells stimulated by M-CSF (P ¼ 0.011). GM-CSF but not M-CSF–stimulated macrophages significantly

(P < 0.02) inhibited colorectal cancer cell proliferation. GM-CSF gene was expressed to significantly (n¼
45, P < 0.0001) higher extents in colorectal cancer than in healthy mucosa, whereas M-CSF gene

expression was similar in healthy mucosa and colorectal cancer. Accordingly, IL1b and IL23 genes,

typically expressed by M1 macrophages, were expressed to significantly (P < 0.001) higher extents in

colorectal cancer than in healthy mucosa. TMA staining revealed that GM-CSF production by tumor cells

is associated with lower T stage (P ¼ 0.02), "pushing" growth pattern (P ¼ 0.004) and significantly (P ¼
0.0002) longer survival in mismatch-repair proficient colorectal cancer. Favorable prognostic effect of

GM-CSF production by colorectal cancer cells was confirmed by multivariate analysis and was

independent from CD16þ and CD8þ cell colorectal cancer infiltration. M-CSF expression had no

significant prognostic relevance.

Conclusions: GM-CSF production by tumor cells is an independent favorable prognostic factor in

colorectal cancer. Clin Cancer Res; 20(12); 3094–106. !2014 AACR.

Introduction
Chronic inflammation is known to play a decisive role in

cancer outgrowth and progression by powerfully shaping
tumor microenvironment (1, 2). Tumor cells may produce
factors promoting maturation and functional differentia-
tion of resident pro-inflammatory cells. In turn, these cells
may favor tumor angiogenesis and enhance cancer cell
invasiveness. However, chemokine production within
cancerous tissues may selectively chemoattract circulating
cells expressing specific receptors, resulting in a peculiar
composition of the cancer microenvironment, potentially
affecting tumor progression and, ultimately, clinical prog-
nosis (3–5). In particular, tumor infiltration by myeloid
cells has frequently been associated with poor prognosis in
different types of cancer, including, among others, breast,
thyroid, and renal cell carcinoma and melanoma (6).
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Colorectal cancer represents a major cause of cancer-
related death in different geographic areas. A variety of
current experimental models of colorectal cancer induction
do support the notion of an important causal role of
inflammation (6, 7). Indeed, chronic inflammation, as
observed in different types of inflammatory bowel diseases
(IBD), is known to be associated with increased colorectal
cancer incidence in humans (6, 7).
However, in sporadic colorectal cancer, accounting for a

large majority of these tumors, evidence of a clinically
significant inflammatory state, possibly associated with
cancer outgrowth, is infrequently observed. While ques-
tioning the pertinence of several murinemodels to sporadic
human colorectal cancer, these common clinical observa-
tions urge addressing the issue of the role of innate and
adaptive immune responses in these cancers.
A number of studies have convincingly demonstrated

that colorectal cancer infiltration by T cells, and, in partic-
ular, by CD8þ lymphocytes, is associated with improved
survival. These cells usually display a memory (8, 9) and
activated (10) phenotype. Colorectal cancer infiltration by
FOXP3þ T cells has also been shown to be paradoxically
associated with good prognosis (11, 12).
In contrast, the functional relevance of colorectal cancer

infiltration by cells of the innate immune system is still
unclear. NK-cell infiltration is relatively rarely detectable
and it is devoid of prognostic significance (13). Instead, at
difference with a variety of cancers of diverse histologic
origin (14), colorectal cancer infiltration by macrophages
has been shown to be associated with favorable prognosis
(15). Therefore, in this context, colorectal cancer seems to
represent an important exception.

In the same line, we have observed that infiltration by
myeloid CD16þ cells represents a novel, independent,
favorable prognostic factor in colorectal cancer (16).

In this study we have attempted to unravel mechanistic
clues possibly underlying these effects, and to address the
expression at the gene and protein level of cytokines and
chemokines associated with chemoattraction and function-
al polarization of macrophage subsets possibly endowed
with antitumor potential.

Materials and Methods
Generation and phenotypic and functional
characterization of polarized macrophages

Monocytes were isolated from peripheral blood mono-
nuclear cells (PBMC) of healthy donors to a >98% purity
by using anti-CD14-coated magnetic beads (Miltenyi).
Purified cells were cultured for 6 to 7 days in the presence
of recombinant GM-CSF (Laboratorio Pablo Cassar!a) or
M-CSF (R&D Systems) at 50 to 5 ng/mL concentrations in
RPMI 1640 medium supplemented with antibiotics, gluta-
mine, nonessential aminoacids, sodium pyruvate, HEPES,
b-mercaptoethanol and 10% fetal calf serum (FCS; all from
Invitrogen Life Sciences), thereafter referred to as complete
medium, according to previously published protocols (17).

Freshly isolated or cultured cells were stained with CD16-,
CD163-, andCD204-specific fluorochrome-conjugatedanti-
bodies (Becton Dickinson), and analyzed by using a 2-laser
FACSCalibur flow cytometer (Becton Dickinson). Propi-
dium iodide (PI) positive cells were excluded from the
analysis. Results were analyzed by Cell Quest (Becton Dick-
inson) and Flow Jo (Tree Star) computer softwares.

Authenticated, established human colorectal cancer cell
lines Colo205 and HCT116 were purchased from the Euro-
pean Collection of Cell Cultures (ECACC) and cultured in
completemedium. To evaluate their cytostatic capacity, 6 to
7 days cytokine-stimulated macrophages (see above) were
cocultured in 96-well plates (Falcon) at different effector:
target ratios with 3,000 tumor cells for 2 days. 3H-Thymi-
dine (Amersham GE) was then added (1 mCi/well) for
overnight incubation. Cultures were then harvested and
tracer incorporation was measured by b-counting.

Gene expression analysis
Total cellular RNA was extracted from surgical specimens

of colorectal cancer and autologous healthy mucosa sam-
pled at distance from the tumor and reverse transcribed.
Predeveloped Taqman assays (Applied Biosystems) were
used to quantitatively evaluate the expression of a panel of
cytokine and chemokine genes by using ABI Prism 7300
PCR system (Applied Biosystems). Data are reported as
relative expression normalized to GAPDH house-keeping
gene amplification. Expression of individual genes was
analyzed by using the 2$DDc

T method (18).

Tumor microarray construction
The tumor microarray (TMA) utilized in this study has

been described in detail in previous reports (19, 20).

Translational Relevance
GM-CSF is a powerful activator of myeloid cells.

However, its role in cancer immunobiology is debated
because it was shown to promote the generation of
myeloid-derived suppressor cells. Here, we report that
GM-CSF induces in human macrophages the ability to
inhibit the proliferation of colorectal cancer cells in
vitro. GM-CSF gene is expressed to significantly higher
extents in colorectal cancer than in autologous healthy
mucosa. By using a large (>1,200) number of speci-
mens, we demonstrate that in mismatch repair profi-
cient (MMRp) cancers, GM-CSF production by colo-
rectal cancer cells is associated with improved survival
in univariate and multivariate analyses. The favorable
prognostic relevance of GM-CSF production by colo-
rectal cancer cells is particularly evident in MMRp
cancers in which poor CD8þ T-cell infiltration is
detectable. These data underline specificities of colo-
rectal cancer immunobiology and indicate that prog-
nostic significance of defined tumor microenviron-
mental features critically depends on tumor types and
related anatomic districts.
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Briefly, it includes 1,420 unselected, nonconsecutive, pri-
mary sporadic colorectal cancers, treated between 1987 and
1996, and71normalmucosa specimens. These sampleswere
collected from the Tissue Biobank of the Institute of Pathol-
ogy, University Hospital Basel, performing translational
research with the approval of the Ethical Committee Beider
Basel (EKBB), in compliance with ethical standards and
patient confidentiality. Tissue cylinderswith a 0.6-mmdiam-
eter from formalin-fixed, paraffin-embedded tissue blocks
from resected colorectal cancer were punched from repre-
sentative tissue areas and brought into 1 recipient paraffin
block (30 % 25 mm), using a semiautomated tissue arrayer.
Punchesweremade fromthe centerof the tumor toguarantee
that each TMA spot included at least 50% tumor cells.

Clinicopathological annotation included patient age,
tumor diameter, location, pT/pN stage, grade, histologic
subtype, vascular invasion, border configuration, presence
of peritumoral lymphocytic inflammation at the invasive
tumor front and disease-specific survival (Table 1). Tumor
border configuration and peritumoral lymphocytic inflam-
mation were evaluated by using the original hematoxylin

and eosin (H&E) slides of the resection specimens corre-
sponding to microarray punches, as previously described
(20). Numbers of lymph nodes evaluated ranged between 1
and 61 with mean and median of 12 and 11, respectively.
MMR status was evaluated by immunohistochemistry
according to MLH1, MSH2, and MSH6 expression (20), as
previously described. The TMA under evaluation included
1,031 MMR-proficient and 194 MMR-deficient tumors.
Follow-up data were available for 1,379 patients with
mean/median and interquartile range (IQR) event-free fol-
low-up time of 67.7/68 and 45 to 97 months.

Immunohistochemistry
Indirect immunoperoxidase protocolwas used for immu-

nohistochemistry (ABC-Elite, Vector Laboratories). Follow-
ing slide dewaxing and rehydration endogenous peroxidase
activity was blocked using 0.5%H2O2. Epitope retrieval was
achieved by incubation in Epitope Retrieval Reagent 2
(EDTA buffer, pH 9; Leica Biosystems) at 100&C for 30
minutes, as previously described (20), before staining. The
sections were treated with 10% normal goat serum

Table 1. Association of GM-CSF staining and clinicopathological features in colorectal cancer (n¼ 1,239)

Histoscorea

Low High

Clinicopathological features N ¼ 475 (38.3%) N ¼ 764 (61.7%) P

Age (n ¼ 1,239), y Mean, range 69.4 (39–95) 69.8 (30–96) 0.537b

Tumor diameter (n ¼ 1,235), mm Median, mean, range 50, 49.7 (4–150) 45, 48.6 (5–160) 0.146c

Gender (n ¼ 1,239) Female 248 (52.2) 407 (53.3) 0.760c

Male 227 (47.8) 357 (46.7)
Tumor location (n ¼ 1,225) Left-sided 297 (63.6) 502 (66.2) 0.380d

Right-sided 170 (35.4) 256 (33.8)
pT stage (n ¼ 1,213) pT1-2 76 (16.5) 166 (22.1) 0.020d

pT3-4 386 (83.5) 585 (77.9)
pN stage (n ¼ 1,197) pN0 230 (50.2) 406 (54.9) 0.126d

pN1-2 228 (49.8) 333 (45.1)
Tumor grade (n ¼ 1,212) G1-G2 400 (87.5) 658 (87.2) 0.9195d

G3 57 (12.5) 97 (12.8)
Vascular invasion (n ¼ 1,212) Absent 324 (70.7) 559 (74.1) 0.222d

Present 134 (29.3) 195 (25.9)
Tumor growth pattern (n ¼ 1,212) Pushing/expanding 150 (32.8) 310 (41.1) 0.004d

Infiltrating 308 (67.2) 444 (58.9)
Peritumoral lymphocyte infiltration (n ¼ 1,213) Absent 357 (77.9) 598 (79.2) 0.655d

Present 101 (22.1) 157 (20.8)
Local recurrence (n ¼ 433) Absent 69 (55.2) 185 (60.1) 0.410d

Present 56 (44.8) 123 (39.9)
Distant metastasis (n ¼ 440) Absent 110 (85.3) 252 (81.0) 0.356d

Present 19 (14.7) 59 (19.0)
Postoperative therapy (n ¼ 437) None 97 (75.7) 250 (80.9) 0.282d

Treated 31 (24.3) 59 (19.1)
Overall survival (n ¼ 1,206) 5-y (95% CI) 51.3 (46.7–56.4) 62.1 (58.4–66) 0.0002e

aGM-CSFstaining intensity (0–3)multipliedby frequency (%)of stainedcells. BasedonROCcurvesanalysis, a valueof 115wasused to
discriminate between sampleswith low or high histoscore. bt Test was used for age analysis because of normal distribution; cWilcoxon
(Mann–Whitney test) was used for tumor diameter analysis. dDiscrete/qualitative variables: x2 test; elog-rank test was used to compare
overall survival rates. Statistically significant P values are reported in boldface.
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(DakoCytomation) for 20 minutes and incubated for 60
minutes at room temperature with monoclonal antibodies
recognizing M-CSF (110-57176; Novus Biologicals) or
CX3CL1/fractalkine (89229; Abcam) or overnight at 4&C
(21) with a GM-CSF–specific reagent (100-65022; Novus
Biologicals). Slides were then incubated with peroxidase-
labeled secondary antibody (DakoCytomation) for 30min-
utes at room temperature, immersed in 3-amino-9-ethyl-
carbazole plus substrate-chromogen (DakoCytomation)
for 30minutes, and counterstainedwithGill’s hematoxylin.

Evaluation of immunohistochemistry
Percentages of positive tumor cells and staining intensi-

ties in each punch were evaluated and samples were clas-
sified as negative (0), weakly positive (1), moderately pos-
itive (2), andhighly positive (3). A histoscorewas calculated
by multiplying staining intensity (0–3) by percentages of
positive cells, as previously described (22). Immunohisto-
chemical slides were independently examined by 3 experi-
encedpathologists (L. Terracciano, L. Tornillo, B. Angrisani)
blinded to any prior information on clinicopathological
features of the patients’ samples, with excellent correlation
between measurements.

Statistical analysis
Gene expression data from different tissues were com-

pared by using the nonparametric Wilcoxon test for paired
samples.
For outcome assessment, cut-off values used to classify

colorectal cancer with low or high parameters of interest
were obtained by ROC curves based on histoscore analyses,
evaluating sensitivity and false-positive rate for the discrim-
ination of survivors and nonsurvivors, on all tumor sam-
ples. Threshold values thus obtained were compared with
the expression levels in nonmalignant andmalignant colon
tissues and final threshold values were set according to
biologic significance. x2 or Fisher exact tests were used to
determine the association of GM-CSF expression and clin-
icopathological features. Survival curves were constructed
according to the Kaplan–Meier method. Log ranks were
calculated to test for differences between survival curves.
Multivariate regression analysiswas performed according to
Cox proportional hazard models including CD16þ and
CD8þ cell infiltration, age, gender, T and N stage, tumor
grade, vascular invasion, invasive margin, and MMR status.
Wald tests statistic was used to test the hypothesis that GM-
CSF provides significant information to the model. Subse-
quently, data obtained from multivariate Cox regression
analysis were tabulated including hazard ratios (HR) and
95% confidence intervals (CI). Multivariate Cox regression
analysis was performed by using 955 cases because missing
values were excluded from the model. M-CSF and CX3CL1
were not integrated in the Cox hazard regression model
because specific staining did not show significant prognos-
tic relevance in univariate analysis.
Spearman’s rank correlation was used to analyze the

association between GM-CSF, M-CSF, CX3CL1, and
CD16þ and CD8þ cell infiltration. Two-tailed P values

<0.05 were considered significant for all analyses. Statistical
analyses were performed using R i386 Version 2.15.2
(http://www.R-project.org).

Results
Phenotypes of GM-CSF– and M-CSF–activated
monocytes

Human CD14þ peripheral blood monocytes were cul-
tured in the presence of GM-CSF or M-CSF. Consistent with
the M1/M2 polarization model (5, 17), we observed that
following a 6- to 7-day culture in the presence of 25 to 6.25
ng/mL GM-CSF, a significantly higher percentage of cells
expressedCD16, as comparedwith cultures performed in the
presence of the same concentrations ofM-CSF (average" SE:
66%" 8.7% vs. 28%" 11.4%, n¼ 6, P¼ 0.011; Fig. 1A and
B). In contrast, percentages of cells expressing CD204molec-
ular scavenger were significantly increased in M-CSF cells, as
comparedwithGM-CSF–stimulated cells (average" SE: 85%
"6.5%vs.41%"10%,n¼6,P¼0.008). Percentagesof cells
expressingCD163did not significantly differ in cells cultured
in the presence of M-CSF or GM-CSF (average " SE: 78% "
6.5% vs. 65% " 10.1%, n ¼ 6, P ¼ 0.27). Representative
histograms and cumulative data derived from 6 experiments
with cells fromdifferent donors are reported in Fig. 1A and B.

Cytostatic activity of GM-CSF–activated macrophages
against colorectal cancer cells

We then tested the effects of GM-CSF– and M-CSF–
stimulated macrophages on the proliferation of MMR pro-
ficient (MMRp) Colo 205 colorectal cancer cells.

Following 6 to 7 days stimulation in the presence of 25 to
6.25 ng/mL GM-CSF, monocytes were able to significantly
inhibit colorectal cancer cell proliferation (Fig. 1C). This
effect was dependent on effector:target (E:T) ratios and on
GM-CSF doses used in the initial stimulation phase. In
sharp contrast, monocytes cultured in the presence of the
same concentrations of M-CSF, were devoid of antiproli-
ferative ability, irrespective of E:T ratios (Fig. 1C). Effects of
GM-CSF–stimulated monocytes were not mediated by sol-
uble factors. Indeed, neither recombinant GM-CSF nor
culture supernatants did inhibit colorectal cancer cell pro-
liferation. Moreover, macrophages did not induce apopto-
sis of target cells, as indicated by lack of annexin V binding,
but rather exerted cytostatic effects. Interestingly, GM-CSF–
stimulatedmonocytes at 10:1 E:T ratioswere as effective as a
30 mg/mL concentration of the pyrimidin analog 5FU in
inhibiting colorectal cancer proliferation (data not shown).

Comparable results were observed upon culture in the
presence of GM-CSF but not M-CSF–stimulated monocytes
by usingMMR-deficient (MMRd)HCT116 colorectal cancer
cells as targets (data not shown).

GM-CSF and M-CSF gene expression in colorectal
cancer and in corresponding, autologous healthy
mucosa

To obtain an insight into local tumor microenvironment
conditions, we then addressed the expression of GM-CSF
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and M-CSF genes in surgically excised paired specimens of
colorectal cancer and autologous healthy mucosa sampled
at distance from the cancerous tissue (23).

GM-CSF genewas expressed to significantly higher extents
in colorectal cancer tissue, as compared with corresponding
autologous healthy mucosa [median, IQR: 6.167E10$5,
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Figure 1. Phenotypic and functional differentiation of GM-CSF– andM-CSF–stimulated monocytes. Peripheral blood CD14þmonocytes from healthy donors
were magnetically sorted and cultured in the presence of GM-CSF or M-CSF (12.5 ng/mL). Cells were then washed and stained with mAbs recognizing the
indicated markers (A and B). Representative results referring to uncultured monocytes (gray lines), M-CSF treated (black lines), and GM-CSF treated
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2.7E10$5–2.6E10$4 vs. 4.03E10$6, 0–1.91E10$5, n ¼ 45, P
< 0.0001]. In contrast,M-CSF gene expressionwas similar in
healthy colon mucosa and in the corresponding colorectal
cancer tissues (median, IQR: 1.8E10$2, 5.6E10$3–5.2E10$2

vs. 3.8E10$2, 2.3E10$2–1E10$1, n¼ 46, P ¼ 0.25). Accord-
ingly,GM-CSF/M-CSFgeneexpression ratiowas significantly
higher in tumor tissue than in the corresponding autologous
mucosa (0.025 vs. 0.0014, P < 0.0001; Fig. 2A).

Expression of genes predominantly associated withM1
and M2 macrophages in colorectal cancer and in
corresponding, autologous healthy mucosa
To obtain insights into specific gene signatures eventually

detectable in clinical specimens, we assessed IL23 and IL1b
gene expression in paired colorectal cancer and autologous
healthy mucosa samples. We found that these genes were
expressed to significantly higher extents in colorectal cancer
than in matched healthy mucosa (median, IQR: IL23:
2E10$3, 9E10$4–5.1E10$3 vs. 5E10$4, 1.4E10$4–
1.1E10$3, n ¼ 47, P < 0.0001; IL1b: 2E10$2, 7.7E10$3–
5.2E10$2 vs. 7.5E10$3, 2.3E10$3–1.6E10$2, n ¼ 48, P ¼
0.001; Fig. 2B). However, expression of IL12p35 gene,
reportedly typically observed in M1 cells, was detectable to
significantly higher extents in healthy mucosa than in
matched tumor tissues (median, IQR: 9.3E10$4, 3E10$4

–2.2E10$3 vs. 3.5E10$4, 1.9E10$4–8.5E10$4, n ¼ 46, P ¼
0.01; Fig. 2B).
M2 polarized macrophages are characterized by the abil-

ity to produce IL10 (5). Indeed, we did not observe signif-
icant differences in IL10 gene expression between healthy
mucosa and tumor tissue (median, IQR: 6.4E10$4,
3.1E10$4–1.2E10$3 vs. 3.4E10$4, 1E10$4–1E10$3, n ¼
46, P ¼ 0.41).
Furthermore, expression of TNFa, IL6, and IL12p40

genes was also similarly detectable in healthy mucosa and
corresponding colorectal cancer tissue (median, IQR: TNFa:
6.7E10$4, 1.7E10$4–1.6E10$3 vs. 8E10$4, 3.1E10$4–
1.8E10$3, n ¼ 47, P ¼ 0.089; IL6: 5.1E10$5, 8.6E10$6–
6.1E10$4 vs. 2.7E10$4, 5.9E10$5–9.6E10$4, n ¼ 45, P ¼
0.17; IL12p40: 6.8E10$5, 3.19E10$5–2.7E10-4 vs. 7.5E10$5,
1.8E10$5–2.1E10$4, n ¼ 46, P ¼ 0.7; Fig. 2B).
Thus, conventional patterns of polarized macrophage

gene expression do not seem to fully fit gene signatures
detectable in colorectal cancer (4, 5). However, consistent
with gene expressionprofiles commonly attributed topolar-
ized macrophages (5), M-CSF and IL10 and GM-CSF and
TNFa gene expression in colorectal cancer tissues were
highly significantly correlated (r ¼ 0.63, P < 0.0001 and
r ¼ 0.49, P < 0.0001, respectively; Fig. 2C).

Prognostic relevance of GM-CSF expression in
colorectal cancer
We then explored GM-CSF and M-CSF expression, at the

protein level, by using a TMA including 50 healthy mucosa
tissues and 1,239 different colorectal cancer specimens
annotated with clinicopathological data. Specific staining
was evaluated by multiplying staining intensity (0–3) by
percentages of positive cells (22).

In 60% of colorectal cancer, a diffuse and strong GM-
CSF–specific staining involving a large majority of tumor
cells with a negligible contribution of interstitial cells could
be observed. In the remaining 40% of cases, similarly to
healthy mucosa specimens, GM-CSF–specific staining of
tumor cells was weak or negative (Fig. 3A and B). GM-
CSF–specific histoscore median values were 140, 170, 105,
and 170 in healthy mucosa, total colorectal cancer, and
MMRd and MMRp colorectal cancer, respectively (Supple-
mentary Fig. S1). Thus, colorectal cancer MMRp expressed
significantly more GM-CSF protein (P ¼ 0.0001) than
MMRd colorectal cancer. In the latter cancers, histoscore
values were even lower than in healthy mucosa.

Based on this analysis, and on results of ROC curves and
regression trees, we established GM-CSF threshold histo-
score value for survival analyses at 115.Analysis of TMAdata
(Table 1) indicates that colorectal cancer displaying high
GM-CSF–specific staining are characterized by a significant-
ly lower pT stage (P¼ 0.02), and a significantly (P¼ 0.004)
more frequently detectable pushing/expanding, as opposed
to infiltrating (20), growth pattern. Overall survival, as
evaluated in the whole TMA seemed to be correlated
with GM-CSF expression (P ¼ 0.0002 at 5 years, n ¼
1206), as detectable at the protein level. In particular, this
effect was specifically observed in MMRp colorectal cancer
(n ¼ 1014; P < 0.0001). In contrast, GM-CSF expression
had no effect on overall survival of patients with MMRd
colorectal cancer (n ¼ 192; P ¼ 0.927; Fig. 3E and F).

GM-CSF maintained its prognostic significance (P ¼
0.036) also in multivariate Cox regression analysis (Table
2), together with high CD16þ (P ¼ 0.002) and CD8þ (P ¼
0.04) cell infiltration, age (P < 0.00001), gender (P <
0.0001), pT/N stage, vascular invasion, tumor border con-
figuration, and microsatellite instability.

Detection of M-CSF could only be performed in a subset
of the TMA including 37 healthymucosa and 743 colorectal
cancer. M-CSF staining was usually diffuse with different
intensity (Fig. 3C and D). Absent or very low intensity
(below the score of 115) was observed in 48.6% (19/37)
of healthy mucosa and in 82% (614/743) of the colorectal
cancer (P ¼ 0.002). No differential M-CSF expression was
detectable MMRp and MMRd tissues (P ¼ 0.6; Supplemen-
tary Fig. S1). In the patients with colorectal cancer with
higher M-CSF expression (129/743, 17%), we did not
observe improved survival neither in MMRp (P ¼ 0.124)
nor in MMRd (P ¼ 0.283) cases (Fig. 3G and H).

Correlations between GM-CSF production and
colorectal cancer infiltration by immunocompetent
cells

We explored the relationship eventually occurring
between GM-CSF production by colorectal cancer cells and
cancer infiltration by CD16þ or CD8þ cells, significantly
associated with favorable prognosis (8–10, 16, 20).

Surprisingly, GM-CSF staining did not seem to be asso-
ciated with CD16þ cell infiltration (P ¼ 0.59).

Combined Kaplan–Meier survival analysis (Fig. 4A and B)
indicates that patients with CD16þ cell infiltration of MMRp
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Figure 2. Cytokine gene expression in freshly excised colorectal cancer and corresponding healthy mucosa. Total cellular RNA was purified from freshly
excised colorectal cancer and autologous healthy mucosa specimens and reverse transcribed. Expression of GM-CSF and M-CSF genes was assessed
by quantitative RT-PCR, by using GAPDH house-keeping gene, as reference. GM-CSF/M-CSF gene expression ratios were also calculated (A). The
expression of additional cytokine genes was similarly evaluated (B), and the correlation between GM-CSF and TNFa, andM-CSF and IL10 gene expression
was analyzed (C). n.s., nonsignificant.
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Figure 3. Prognostic significance of
GM-CSF and M-CSF protein
expression in colorectal cancer. A
colorectal cancer TMAwas stained
with GM-CSF (A and B) or M-CSF
(C and D) specific reagents.
Representative samples with low
or high specific histoscores are
shown in A and C and B and D,
respectively (magnification: %20).
Based onROCcurves derived from
histoscore data, the prognostic
significance of GM-CSF (E and F)
andM-CSF (G andH) could thenbe
analyzed in MMRp (E and G) and
MMRd (F and H) colorectal cancer.
In both panels, red lines and black
lines refer to cases with high and
low cytokine expression,
respectively. Number of events
(¼ deaths) and total number of
cases are also reported.
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colorectal cancer and high GM-CSF production have a sig-
nificantly better prognosis than those with low CD16þ cell
infiltration and low GM-CSF production (P ¼ 0.000193).

However, in CD16þ cell infiltrated colorectal cancer, GM-
CSF production did not seem to significantly influence
overall survival. No effects were detectable inMMRd cancers.

Figure 4. Prognostic significance of
GM-CSF in colorectal cancer as
related to levels of infiltration by
immunocompetent cells. The
prognostic significance of GM-
CSF production was analyzed in
tumors stratified according to their
high or poor infiltration by CD8þ or
CD16þ cells (10, 15, 20) in MMRp
and MMRd colorectal cancer.
Kaplan–Meier curves in A and B
display the combined effects of
GM-CSF expression (score
threshold at 115) and CD16þ cell
infiltration (16) inMMRpandMMRd
colorectal cancer, respectively.
Black lines: both markers low; blue
lines: both markers elevated; red
lines: high CD16þ cell infiltration
and low GM-CSF expression;
green lines: low CD16þ cell
infiltration and high GM-CSF
expression. Number of events
(¼ deaths)/total number of cases
are also reported. Similarly,
Kaplan–Meier curves in C and D
display the combined effects of
GM-CSF expression and CD8þ

infiltration (10, 20) in MMRp and
MMRd colorectal cancer,
respectively. Black lines: both
markers low; blue lines: both
markers elevated; red lines: high
CD8þ cell infiltration and low GM-
CSF expression; green lines: low
CD8þ cell infiltration and high
GM-CSF expression. Number of
events (¼ deaths)/total number of
cases are also reported.

Table 2. Multivariate hazard Cox regression survival analysis

HR (95% CI) P

GM-CSF (low vs. high) 0.808 (0.706–0.909) 0.036
CD8 (low vs. high) 0.763 (0.626–0.899) 0.048
CD16 (low vs. high) 0. 716 (0.608–0.824) 0.002
Age (continuous) 1.033 (1.028–1.038) <0.00001
Gender (women vs. men) 0.656 (0.554–0.757) <0.0001
pT stage (1, 2, 3, 4) 1.900 (1.807–1.993) <0.00001
pN stage (0, 1, 2) 1.882 (1.809–1.954) <0.00001
Tumor grade (1, 2, 3) 1.259 (1.114–1.403) 0.11
Vascular invasion (0, 1)a 1.413 (1.300–1.525) 0.002
Tumor border configuration (0, 1)b 1.429 (1.302–1.556) 0.005
Microsatellite stability (deficient vs. proficient) 1.692 (1.534–1.849) 0.0009

NOTE:Multivariate analysis showingHRs andP values for all colorectal cancer (n¼ 975, because ofmissing values, see "Materials and
Methods"), as conferred by high GM-CSF expression, CD8þ and CD16þ infiltrating cell density, age, gender, tumor size, nodal status,
tumor grade, vascular invasion, tumor border configuration, and microsatellite stability.
a0: absent, 1: present.
b0: pushing, 1: infiltrating.
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GM-CSF staining was also unrelated with colorectal can-
cer infiltration by CD8þ cells (r Spearman: 0.09). However,
most interestingly, in colorectal cancer characterized by
poor CD8þ T cell infiltration, a condition known to be
associated with severe prognosis (8–10, 20), GM-CSF pro-
duction by cancer cells was highly significantly correlated
with improved overall survival inMMRp (P¼ 0.00004) but
not in MMRd colorectal cancer (Fig. 4C and D).

Expression of CX3CL1/fractalkine gene in colorectal
cancer
CX3CL1/fractalkine has been shown to selectively attract

CD16þ monocytes, which do express cognate CX3CR1
receptor (24) and CX3CL1/fractalkine gene expression has
been suggested to associate with favorable prognosis in
colorectal cancer (25).
We observed that CX3CL1/fractalkine gene is expressed to

significantly higher extents in colorectal cancer than in
corresponding healthy mucosa (median, IQR: 1.8E10$2,
9.3E10$3–8.5E10$2 vs. 9.2E10$3, 4.6E10$3–4.7E10$2, n¼
22, P ¼ 0.0028) and that the specific gene product is
detectable by ELISA in supernatants from established colo-
rectal cancer cell lines (Supplementary Fig. S2AandB).Most
interestingly, CX3CL1/fractalkine protein is also detectable
in colorectal cancer (Supplementary Fig. S2C and D). TMA
analysis indicates that this protein is detectable to signifi-
cantly higher extents in colorectal cancer than in healthy
mucosa (P ¼ 0.0045). However, its expression was devoid
of prognostic significance andunrelated to colorectal cancer
infiltration by CD16þ myeloid cells (data not shown).

Discussion
In previous work we showed that colorectal cancer infil-

tration by CD16þmyeloid cells is associated with improved
prognosis (16). Here we have addressed mechanistic
clues possibly underlying these effects, by analyzing the
antitumor potential of in vitro polarized macrophages.
Furthermore, and most importantly, we have explored the
expression at the gene and protein level of cytokines and
chemokines associated with functional polarization and
chemoattraction of macrophage subsets possessing antitu-
mor capacity and their prognostic significance.
M-CSF and GM-CSF are known to be involved in the

polarization of anti-inflammatory/pro-angiogenic M2 and
pro-inflammatory/antitumor M1 macrophages, respective-
ly (5, 17). Here we show that upon GM-CSF but not M-CSF
in vitro stimulation, peripheral blood monocytes from
healthy donors become capable of exerting cytostatic effects
on colorectal cancer cells. However, the analysis of >40
matched pairs of colorectal cancer and autologous healthy
mucosa clearly indicates that malignant tissues are typically
characterized by an increased expression of GM-CSF gene,
as comparedwith autologous healthymucosa. Accordingly,
colorectal cancer tissues are characterized by a cytokine gene
expression signature reminiscent, although not fullymatch-
ing, of that observed in activated M1 cells, including high
IL1b and IL23 gene expression (5).

Per se, these data might still be consistent with a patho-
genic role of local inflammation in colorectal cancer, as
suggested by a number of experimental models (6). How-
ever, by using a large number of surgical specimens
(>1,000) annotated with an exhaustive clinical database,
we report here that high GM-CSF expression at the protein
level in colorectal cancer is associated with favorable prog-
nosis, although only in MMRp cases. In contrast, M-CSF
protein expression, as detectable in our TMA, does not seem
to be significantly associated with clinicopathological fea-
tures or overall survival. Importantly, TMA analysis reveals
that GM-CSF is predominantly produced by tumor cells.

GM-CSF plays a key role in the differentiation and func-
tional maturation of different myeloid populations.

Because of its ability to activate antigen-presenting cells,
this cytokine has been widely used in cancer immunother-
apy (26, 27). GM-CSF–transfected primary tumor cells and
established tumor cell lines have been used for vaccination
purposes (27). Moreover, recombinant GM-CSF has been
utilized as supportive cytokine to supplement immuniza-
tion targeting tumor-associated antigens (TAA) implemen-
ted through administration of peptides, antigen-pulsed
dendritic cells or recombinant viruses.

GM-CSF has also widely been used in combination with
IL4 or IFN type I (28) in the in vitro dendritic cell gene-
ration. A number of studies indicate that treatment of
peripheral blood monocytes with GM-CSF leads to polar-
ization toward a M1 pro-inflammatory phenotypic and
functional profile, whereas M-CSF promotes the differen-
tiation of alternatively activated M2 macrophages posses-
sing pro-angiogenic and anti-inflammatory properties (17).

However, GM-CSF has also been shown to promote the
generation of myeloid-derived suppressor cell (MDSC;
refs. 29 and 30), characterized by a powerful ability to
inhibit T-cell proliferation and to promote the expansion of
CD4þ/FOXP3þ regulatory T cells. Notably, increased num-
bers of myeloid cells with phenotypic and functional pro-
files closely overlapping those of MDSC have been detected
in peripheral blood of patients bearing cancers following
treatment with GM-CSF (31).

Myeloid cell colony-stimulating factors have been found
to be produced by different types of carcinoma cells. In
particular, GM-CSF production by tumor cells has been
shown to be associated with increased recurrence rate and
metastasis formation in head and neck cancers (32). Fur-
thermore, GM-CSF production by breast cancer cells was
suggested to enhance tumor growth and to promote the
formation of bone metastases, possibly by stimulating
resident macrophages or by inducing osteoclast differenti-
ation and activation (33). Lung cancer cells have also been
shown to produce GM-CSF and their proliferation may be
enhanced by exogenous GM-CSF (34).

We and others have previously shown that colorectal
cancer cells do produce GM-CSF (21, 35). Interestingly,
colorectal cancer cell lines producing GM-CSF have been
suggested to be highly aggressive in vivo (36), possibly
because of the activation of macrophages, promoting stro-
mal reactivity. In addition,GM-CSFproductionby colorectal
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cancer cells from liver metastases has been suggested to
promote tumor growth by a paracrine loop implying hep-
arin-binding EGF production by activated tumor-infiltrating
macrophages (37).

Most recently however, immune-dependent and
immune-independent antitumor activities of GM-CSF in
human colorectal cancer have been suggested (38). In a
group of 124 patients, association with favorable prognosis
was detectable in 8 patients bearing tumors concomitantly
expressing genes encoding GM-CSF and both receptor sub-
units (38). However, MMR status of colorectal cancer was
not analyzed, GM-CSF protein expression was not investi-
gated and the association with macrophage and T-cell
infiltration or with the expression of additional cytokines
promoting their polarization was not explored.

Within this frame our data provide important novel
information on the role of GM-CSF in colorectal cancer
microenvironment. First, we show here that GM-CSF is
predominantly produced by MMRp colorectal cancer cells.
Despite their higher genomic stability, these cancers are
characterized by amore severe prognosis, as compared with
MMRd colorectal cancer. Furthermore, we report that
although recombinant GM-CSF is per se ineffective, colo-
rectal cancer cell lines are sensitive to the cell–cell contact-
dependent cytostatic effects of GM-CSF–activated macro-
phages. However, although previously published data from
our groups indicate that colorectal cancer infiltration by
cells expressing CD16 is associated with improved progno-
sis (16), we did not observe any significant correlation
between GM-CSF–specific staining and CD16þ cell infiltra-
tion in the TMA under investigation.

We reasoned that tumor infiltration by CD16þ myeloid
cells might result from the functional maturation/differen-
tiation of cells residing into colonic tissues promoted by
factors present in local microenvironment or from the
selective chemoattraction of circulating cells endowed with
specific phenotypic and functional features (24).

Therefore, we explored the potential prognostic role of
CX3CL1/fractalkine, a chemokine selectively attracting
CD16þ peripheral monocytes (24) in colorectal cancer.
This chemokine has been found to be expressed in colo-
rectal cancer cells and, based on the analysis of a small
(n¼ 80) number of specimens, it has been suggested to be
associated with favorable prognosis in colorectal cancer
(25, 39). Our data show that CX3CL1/fractalkine gene
expression can indeed be observed to significantly higher
extents in colorectal cancer than in matched healthy
mucosa. However, protein detection in colorectal cancer
tissue sections is infrequent and devoid of clinical
significance.

Taken together, these data suggest that colorectal cancer
microenvironment contains factors promoting both local
CD16þ myeloid cell differentiation and specific chemoat-
traction, such as GM-CSF and CX3CL1/fractalkine. How-
ever, although neither of these factors correlates significant-
ly with CD16þmyeloid cell infiltration in colorectal cancer,
GM-CSF detection is associated with favorable prognosis in
a large colorectal cancer subset.

Most obviously, other CD16$ cell types possibly favoring
tumor progression might be responsive to GM-CSF (40).
Indeed, their activities might eventually "mask" or modu-
late the favorable effects of this cytokine promoting the
expansion of CD16þ myeloid cells at the tumor site. Alter-
natively, in defined subgroups of patients, myeloid cells
might be hypo-responsive to GM-CSF. Interestingly, a
decreased expression of GM-CSF receptor a chain CD116,
accompanied by hypo-responsiveness to cytokine stimu-
lation, has recently been observed in peripheral blood
monocytes and granulocytes from patients with IBD (41).
However, recruitment, differentiation, and elicitation of
antitumoral effects of CD16þ myeloid cells might require
other factors in addition to GM-CSF. It is tempting to
speculate that bacterial products possibly deriving from
gut lumen might be of relevance in this context, possibly
through TLRs triggering.

Indeed, GM-CSF–transduced murine CT-26 colorectal
cancer cells have been repeatedly tested in experimental
models in the past. Dranoff and colleagues originally
reported that irradiated, GM-CSF–transduced, CT-26 are
more effective than wild-type cells in inducing antitumor
immunity upon subcutaneous administration. However,
live transduced CT-26 cells were not tested (42). Colombo
and colleagues have reported (43) that subcutaneous injec-
tion of live GM-CSF–transduced cells resulted in rapid
tumor growth, similarly to wild-type cells. In both series
of studies, cellswere injected subcutaneously. Therefore, the
role of mucosal immune response and gut microbiome
could not be addressed. This aspectmight represent amajor
difference between the above-cited experimental models
and clinical reality. Furthermore, importantly, paradoxical
effects of GM-CSF used as adjuvant for tumor-specific
vaccination were more recently reviewed (44). These data
suggest that low doses injected locally might be helpful,
whereas systemic administration of high doses could be
ineffective or detrimental.

Although further research is warranted to clarify under-
lying molecular mechanisms, our data emphasize the prog-
nostic significance of GM-CSF production by colorectal
cancer cells. In this context, it is particularly interesting that
GM-CSF seems to possess a major favorable prognostic
significance in colorectal cancer, which are not infiltrated by
CD8þT cells. Therefore, although adaptive immunity seems
to play an important role in the control of colorectal cancer
progression, other mechanisms, possibly related to innate
immune system activation,might still be significantly active
in its absence. Thus, GM-CSF might bona fide be included
in the hierarchy of cell subsets and soluble factors of
relevance in shaping the clinical course of colorectal cancer.

Cytokine and chemokine gene expressionhas been exten-
sively investigated in colorectal cancer tissues (9, 45). How-
ever, to the best of our knowledge, this is one of the first
studies addressing the prognostic significance of cytokine
and chemokine expression at the protein level in a large
number of patients.

It has been highlighted that a number of conventional
assumptions related to cancer-immune system interaction
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do not seem to apply to colorectal cancer (46). For instance,
at difference with a large number of cancer types, we
and others have shown that colorectal cancer infiltration by
FOXP3þ cells is associated to improved prognosis (11, 12).
Accordingly, in keeping with the proposed colorectal cancer
paradoxical scenario, we and others have previously
observed that colorectal cancer infiltration by myeloid cells
is also associated with relatively good prognosis (15, 16).
Our data unravel a further important paradoxical colorectal
cancer feature, represented by the favorable prognostic role
of GM-CSF.
Most interestingly, our data reveal that CD8þ andCD16þ

cell infiltration andGM-CSF production by tumor cells play
independent antitumor roles. While underlining the com-
plexity of colorectal cancer microenvironment, these find-
ings suggest that the peculiar immunobiology of these
cancers could provide important hints for the development
of innovative treatments.
Colorectal cancer treatment options, including curative

or palliative surgical resection, neoadjuvant, adjuvant, and
palliative chemotherapy are currently largely based on
tumor–node–metastasis (TNM) staging. However, conven-
tional staging seems to be relatively inefficient in daily
clinical practice, frequently leading to overtreatment or
undertreatment (47, 48). In this respect, analysis of colo-
rectal cancer immunocontexture (49) seems to identify a set
of markers largely independent from TNM staging but also
associated with a high prognostic relevance, as detectable in
large cohorts of patients. It is tempting to speculate that, in a
next future, relatively limited constellations of markers,
possibly includingGM-CSF production by colorectal cancer
cells, might be integrated into novel staging procedures,
helping to identify subsets of patients eligible for effective
therapies while sparing them unnecessary treatments and
improving their quality of life.
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a b s t r a c t

Anticancer compound screening on 2D cell cultures poorly predicts “in vivo” performance, while con-
ventional 3D culture systems are usually characterized by limited cell proliferation, failing to produce
tissue-like-structures (TLS) suitable for drug testing. We addressed engineering of TLS by culturing
cancer cells in porous scaffolds under perfusion flow. Colorectal cancer (CRC) HT-29 cells were cultured
in 2D, on collagen sponges in static conditions or in perfused bioreactors, or injected subcutaneously in
immunodeficient mice. Perfused 3D (p3D) cultures resulted in significantly higher (p < 0.0001) cell
proliferation than static 3D (s3D) cultures and yielded more homogeneous TLS, with morphology and
phenotypes similar to xenografts. Transcriptome analysis revealed a high correlation between xenografts
and p3D cultures, particularly for gene clusters regulating apoptotic processes and response to hypoxia.
Treatment with 5-Fluorouracil (5-FU), a frequently used but often clinically ineffective chemotherapy
drug, induced apoptosis, down-regulation of anti-apoptotic genes (BCL-2, TRAF1, and c-FLIP) and
decreased cell numbers in 2D, but only “nucleolar stress” in p3D and xenografts. Conversely, BCL-2 in-
hibitor ABT-199 induced cytotoxic effects in p3D but not in 2D cultures. Our findings advocate the
importance of perfusion flow in 3D cultures of tumor cells to efficiently mimic functional features
observed “in vivo” and to test anticancer compounds.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Established cell lines play a central role in tumor cell biology
investigations and in the development of novel anticancer treat-
ments [1,2]. Their availability in large quantities and their relatively
stable phenotypes, transcriptomes and functional characteristics
represent obvious advantages. Screening of novel antitumor com-
pounds is currently based on the assessment of their ability to

inhibit proliferation or to induce cytotoxicity in human cancer cell
lines cultured in high-throughput formats. Frequently however,
“in vitro” behavior of established cell lines poorly mirrors “in vivo”
cancer cell features [3].

Based on this background, a variety of innovative “in vitro”
technologies are currently being developed to provide the scientific
community with advanced models potentially overcoming limita-
tions of current assays and eventually improving their predictive
performance [4,5]. A series of studies have underlined that culture
in bi-dimensional (2D) or tri-dimensional (3D) systems differen-
tially affects sensitivity of cancer cells to compounds used in cancer
treatment [6e9] or to immune effector cells specific for human
tumor associated antigens [10]. These findings have been related to
a variety of mechanisms, including differential drug penetration
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and cell proliferation in different cell layers and modulation of
defined signaling pathways, in 2D cultures and in 3D tumor-like
structures.

3D cancer cell culture technologies have been suggested to
mimic, at least in part, “in vivo” tumor microenvironmental con-
ditions such as cell-to-cell contact and cell-extracellular matrix
(ECM) interactions, or generation of hypoxic-necrotic areas,
potentially playing a role in tumormetabolism and progression and
in metastasis formation [11,12]. Alternative models, based on
seeding and culture of tumor cells within porous 3D scaffolds
composed of different materials with potentially tunable architec-
tural complexity, have also been described [13,14].

Notably however, although 3D cultures may share morpholog-
ical and biochemical features of “in vivo” growing tumors, they are
usually characterized by poor cell proliferation and display only
scattered areas of clustered tumor cells, with limited resemblance
to xenografts and human malignant tissues [13,14], possibly due to
mass transport limitations associated with tissue growth [15].

The use of bioreactor devices has been proposed to provide a
dynamic culture environment promoting tissue viability, matura-
tion and availability of bioactive factors, thereby supporting the
generation of uniform tissue-like structures (TLS) [16]. In the
context of tumor cell cultures, most bioreactor-based approaches
have introduced agitation techniques and microfluidic platforms
[17e19], generating hydrodynamic conditions in the form of
convectional fluid flow around cells and tissues. However, result-
ing superficial flows in those systems are of limited effectiveness
to address internal transport limitations [20], which in turn criti-
cally affect cell behavior and function as well as drug penetration
[21].

Bioreactor devices applying direct perfusion were shown to
provide uniform cell distribution [22], allowing the development
and maintenance of uniformly viable large tissues for prolonged
culture times [22,23]. Perfusion flow velocities may be regulated to
control flow-induced shear stress and local oxygen distributions
within 3D constructs [24]. Such systems have been utilized in a
variety of applications for tissue engineering [23,25], but their
potential for tumor tissue formation “in vitro” has not been
explored so far.

Colorectal cancer (CRC) is the third most common malignancy
worldwide both inwomen and men [26]. Despite major progress in
the understanding of its molecular pathogenesis and the develop-
ment of new therapies over the last decade, cure rates remain low
[27]. In this study, we comparatively analyzed morphology, cell
phenotype, proliferation rates, gene expression profiles and sensi-
tivity to drug treatment in CRC cells growing in 2D cell cultures, in
tumor TLS generated in perfusion-based bioreactors and in xeno-
grafts in immunodeficient mice. We here report that culture of CRC
cells in perfused 3D (p3D) cultures results in the formation of tu-
mor TLS characterized by high similarities with “in vivo” xenografts
generated in immunodeficient mice.

2. Materials and methods

2.1. Cell lines and scaffolds

HT-29, SW480 and DLD-1 CRC cell lines and PC-3 (prostate
cancer), A549 (non-small cell lung cancer) and BT474 (breast-can-
cer) cell lines were obtained from the American Type Culture
Collection (ATCC) and authenticated by short tandem repeat (STR)
DNA profiling. Cells were passaged for less than 6 months after
resuscitation. HT-29 cells were maintained in McCoy's 5A medium
(SigmaeAldrich) containing 10% heat-inactivated fetal calf serum,
GlutaMAX-I, and Kanamycin sulphate (all from Gibco, Life Tech-
nologies). All other cancer cell lines were cultured in RPMI-1640

(SigmaeAldrich) containing 10% heat-inactivated fetal calf serum,
0.1% 2-b-Mercaptoethanol (SigmaeAldrich), GlutaMAX-I, MEM
non-essential aminoacids (NEAA), Sodium Pyruvate, HEPES buffer
and Kanamycin sulphate. Collagen scaffolds (Ultrafoam, Avitene)
obtained from Davol, were cut with 6e8 mm biopsy punches prior
to cultures. A non-woven polyethylene (PET, 185 g/m2) scaffold
mesh was obtained from Norafin Industries and silk scaffolds were
a gift from Dr. Sourabh Ghosh, Indian Institute of Technology, Delhi,
India [28]. Prior to use, PET and silk scaffolds were autoclaved and
cut by a biopsy punch.

2.2. Cell culture in 2D, and in static and perfused 3D conditions

For standard 2D cell cultures we used 75 cm2 culture flasks or 8-
well-tissue chamber slides (Becton Dickinson) and 5 ! 105-106/mL
cell concentrations. For static 3D (s3D) cell cultures, 6-well-plates
(Becton Dickinson) were coated with 1 mL of 1.5% Agar in DMEM
(SigmaeAldrich) at least one day before use and kept at 4 "C. Static
seeding was achieved by resuspending 106 cells in 40 mL of medium
and letting them attach to scaffolds for 1 h at 37 "C. Culturemedium
(5 mL) was then added. For perfused 3D (p3D) cultures, we used a
commercially available (Cellec Biotek AG) perfusion bioreactor
system [29]. Cells (106) were seeded and perfused overnight at a
superficial velocity of 400 mm/s. After a 24 h cell seeding phase,
superficial velocity was reduced to 100 mm/s.

Cell seeding efficiency on different scaffolds was determined by
analyzing DNA content in constructs harvested after overnight
culture. Briefly, samples were digested with proteinase K solution
(SigmaeAldrich) for 16 h at 56 "C, as previously described [29], and
DNA quantity was evaluated by CyQUANT Cell Proliferation Assay
(Invitrogen) according to manufacturer's protocols. Fluorescence
was measured by a Spectra-Max Gemini XS Microplate Spectro-
fluorometer (Molecular Devices), at 485 nm excitation and 538 nm
emission wavelengths. Seeding efficiencies were calculated as
percentages of the original cell input detectable in cultured
constructs.

Cell proliferation was determined in constructs harvested at
various time points using an MTT assay (SigmaeAldrich), as pre-
viously described [28], and pH levels in culture supernatants were
measured by standard methods.

2.3. Immunofluorescence, cytofluorimetry and
immunohistochemistry

Constructs retrieved following 7 or 14 days cultures were fixed
overnight in 1.5% paraformaldehyde at 4 "C and paraffin embedded
(TPC15 Medite). Sections (5 mm) were deparaffinized, re-hydrated
and stained with hematoxylin and eosin (H&E). Culture chamber
slides used for 2D cultures were fixed with paraformaldehyde and
directly stained with H&E.

Immunofluorescence analyses were performed following
deparaffinization, re-hydration and antigen retrieval at 95 "C for
30minwith ready-to-use S1700 solution (DAKO). Proliferating cells
were identified using a Ki67 specific rabbit monoclonal antibody
(mAb) (ab27619, AbCAM) and apoptotic cells were identified using
a cleaved caspase 3 specific rabbit mAb (cCl3, Asp175, rabbit mAb
#9664, Cell Signaling) [30]. As secondary reagent, we used an
Alexa-Fluor 488 labeled goat-anti-rabbit polyclonal antibody (A-
11034, Invitrogen) at a 1:400 final dilution. Nuclei were counter-
stained with DAPI (Invitrogen). Histological and immunofluores-
cence sections were analyzed using a BX-61 microscope (Olympus).

Alternatively, for cytofluorimetric analysis, cells were extracted
from scaffolds by treatment with TrypLE (Gibco, Life Technologies)
for 10 min, followed by incubation in 0.3% collagenase (Wor-
thington) for 30 min at 37 "C, as previously described [31], and
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stained with Annexin V FITC/PI according to manufacturer's pro-
tocol (Becton Dickinson) or with a Ki67 specific mAb (see above).
Cells were analyzed by flow cytometry (FACScalibur, BD).

Standard procedures (ABC-Elite, Vector Laboratories) were used
for immunohistochemical analysis of paraffin embedded sections
from TLS. Briefly, 5 mm slides were dewaxed and re-hydrated in
distilled water. Endogenous peroxidase activity was blocked using
0.5% H2O2. Sections were treated with 10% normal goat serum
(DakoCytomation) for 20 min and incubated with monoclonal
mouse anti-human CDX2 (clone AMT28, 1:50, Abcam) and Cyto-
keratin 20 (clone Ks20.8, 1:50, DAKO) primary antibody for one
hour at room temperature. Subsequently, sections were incubated
with peroxidase-labelled secondary antibody (DakoCytomation)
for 30 min at room temperature. For antigen visualization, sections
were immersed in 3-amino-9-ethylcarbazole plus substrate-
chromogen (DakoCytomation) for 30 min, and counterstained
with Gill's hematoxylin.

2.4. Quantification of gene expression by quantitative real-time PCR

Total cellular RNA was extracted by using NucleoSpin RNA II kit
(MachereyeNagel) and reverse transcribed, as previously described
[32]. Quantitative Real-Time PCR (qRT-PCR) assays were performed
in the presence of primers and probes specific for the indicated
genes (Assays-on-demand, Applied Biosystems). Normalization of
gene expression was performed using GAPDH as reference gene
[33].

2.5. RNA-sequencing and analysis

Purity of total cellular RNAwas evaluated by a 2100 Bioanalyzer
(Agilent Technologies). Non-stranded RNA libraries were prepared
by using the Illumina TruSeq sample preparation kit and sequenced
on Illumina HiSeq 2000 sequencer (Illumina).

Single-end RNA-seq reads (50-mers) were mapped to the hu-
man genome assembly, version hg19, with SpliceMap [34], imple-
mented in Bioconductor's package QuasR. By using RefSeq mRNA
coordinates from UCSC (genome.ucsc.edu, downloaded in January
2014) and the qCount function, we quantified gene expression as
the number of reads that started within any annotated exon of a
gene. Nucleotide sequences are deposited in the NCBI at GSE57961.

After quality control, we excluded from analysis a single sample
from 2D cultures due to degraded RNA (reads obtained only at the
end of transcripts) and poor correlation to other samples. Differ-
entially expressed genes were identified using the edgeR package
(version 3.4.2) [35]. Multidimensional scaling was used to visualize
the relation between different cultures conditions. Differentially
expressed genes, defined as having FDR # 0.05 in any pairwise
comparison, were clustered into 13 clusters using PAM algorithm
[36]. Individual clusters were tested for enrichment in functional
annotations using DAVID and REVIGO bioinformatics resources, as
previously described [37,38].

2.6. “In vitro” and “in vivo” drug-sensitivity assays

Chemotherapeutic agents were used at the following concen-
trations in “in vitro” assays: 5-Fluoruracil (5-FU, Teva Pharma),1 mg/
ml and 10 mg/mL; Oxaliplatin (Sanofi-Aventis), 1 mg/mL and 10 mg/
mL; Irinotecan (Pfizer), 10 mg/mL and 100 mg/mL; Sunitinib (LC
Laboratories), 0.8 mg/mL and 8 mg/mL; ABT-199 (Active Bio-
chemicals), 2.2 mg/mL.

“In vitro” tests were performed in standard 2D in 96 or 12 flat
bottomwells trays (Falcon) following a one day pre-culture or in 3D
perfused bioreactors following a four days pre-culture. In all con-
ditions, a 105 cells/mL concentration was used. Effects of

chemotherapeutic agents were assessed after 48 or 96 h by DNA
content analysis, as described above. Flow cytometric, histological
and immunofluorescence studies were performed at the same
times.

“In vivo” assays were performed at Oncotest GmbH. Briefly,
NMRI-mice were injected with 4000000 HT-29 cells in Matrigel
(Becton Dickinson). After reaching a tumor volume of 6 mm3,
usually after 21 days, a 5-FU bolus (50 mg/kg) was administered and
animals were sacrificed after 48 or 96 h. Xenografts were explanted
and further analyses were performed in Basel, as for the “in vitro”
conditions. In each experiment, four mice per time point and
condition were used.

2.7. Statistical analysis

Data are presented as mean values ± standard deviations (SD).
Statistical comparisons between groups were performed by one or
two-way analysis of variance (ANOVA) followed by post-hoc Tukey
or Bonferroni tests. In all cases, p values # 0.05 were considered
statistically significant. GraphPad Prism (Software Inc.) and R
version 3.0.2 (http://www.R-project.org) softwares were used for
statistical analysis.

3. Results

3.1. Generation of tumor tissue-like structures on 3D scaffolds in
perfused bioreactors

To evaluate the possibility to engineer “in vitro” TLS, we seeded
cells from established tumor cell lines onto 3D porous scaffolds
located within perfused bioreactor chambers (Fig. 1A) [23,31]. In
this device, cells suspensions and culture media flow directly
through the pores of the 3D scaffolds, resulting in efficient and
uniform cell distribution [23], and allowing the subsequent
development and maintenance of a uniformly viable tissue for
prolonged culture times [22]. Different types of scaffolds were
initially tested (Supplementary Fig. S1A). However, PET scaffolds
were difficult to process for histological analysis and silk scaffolds
underwent substantial structural modifications upon perfusion.
Instead, collagen scaffolds were found to be compatible with
perfusion, likely because of their natural composition, fiber struc-
ture, and simplicity of histological processing and cell retrieval by
using commercially available enzymes. Therefore, this material was
selected and used for the rest of our study.

Since we are particularly interested in the investigation of
colorectal cancer (CRC) cell biology and microenvironmental fea-
tures [39e41], we addressed in detail the generation of TLS upon
3D culture of cells from established CRC cell lines in p3D. HT-29,
DLD-1 and SW480 CRC cell lines could be maintained in culture
for over 7 days in the bioreactor system under investigation and
developed TLS (Supplementary Fig. S1B). Mismatch repair profi-
cient HT-29 cell line, yielding high-density tissue-constructs upon
p3D culture (see below), was selected for additional studies.

The p3D cultures were characterized by a clearly more homo-
geneous cell seeding as compared to s3D ones, and by a higher cell
density, as detectable by whole scaffold MTT uptake after a 7 days
culture (Fig. 1B, upper and lower panels, respectively). Growth
curves of cells cultured in 2D, s3D or p3D, displayed markedly
different patterns (Fig. 1C). Standard monolayers reached a plateau
after 3 days, whereas cells in p3D cultures displayed a significantly
slower proliferation (Fig. 1C). Remarkably however, the lowest
proliferation rate was observed in s3D cultures performed by using
the same collagen scaffold as in p3D. In analogy with trends pub-
lished using a variety of other cell types [25], this is possibly due to
mass transport limitations, resulting in decreasing nutrient and
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oxygen availability. These growth patterns were mirrored by
decreasing pH values over time (Supplementary Fig. S2).

H&E staining showed that perfusion promoted the generation of
high density, homogeneous TLS (Fig. 1D, upper panel). In contrast,
and consistent with previous studies [13,14], in s3D cultures small
tumor areas were only detectable on the outer rims of the scaffolds
while inner parts were largely free of tumor cells (Fig. 1D, lower
panel). Average cross-sectional areas covered by tumor tissues in
p3D cultures were over 10-fold larger than those measured in s3D
conditions (Fig. 1E).

To address the broad applicability of p3D tumor cell culture, we
tested a variety of cell lines of different histological origin, including
PC-3 (prostate cancer), A549 (non-small cell lung cancer) and
BT474 (breast cancer), in the bioreactor system under investigation.
Different cell lines showed slightly different growth patterns in p3D
cultures. For example, whereas HT-29 cells were growing as tumor
nodules, DLD-1 cells formed tissue-like structures oriented by the
scaffold-fibers. In all cases, however, p3D cultures resulted in the
expansion of higher cell numbers, as compared to s3D cultures, and
in the generation of larger TLS (Supplementary Fig. S3).

3.2. Histological and transcriptional profiles of p3D tumor cultures

Histological characteristics of HT-29 CRC cells cultured in

monolayers and of tissue-like 3D structures generated in p3D or
s3D were then evaluated in comparison with xenografts obtained
“in vivo” upon subcutaneous (s.c.) injection in immunodeficient
mice (Fig. 2A). HT-29 cells cultured in 2D showed homogeneous cell
shape and nodular-like growth upon H&E staining. Culture in s3D
conditions resulted in the generation of small tissue nodules
(Fig. 2A). HT-29 cell culture in p3D conditions promoted the for-
mation of large, anaplastic tumor TLS integrating into the collagen
scaffold. Interestingly, HT-29 cells from p3D cultures and xeno-
grafts displayed a high grade of mitotic figures and atypical mitoses,
as well as signet ring cells and acini-like structures (Supplementary
Fig. S4A, B).

Cytokeratin 20 (CK20) was consistently expressed in all culture
conditions and in xenografts, whereas CDX2 [42] was undetectable
in cells from 2D cultures and expressed to different extents in HT-
29 cells from s3D and p3D cultures and xenografts (Fig. 2A).

In agreement with the observed proliferation rates (Fig. 2B),
Ki67 positive cells were ubiquitously detectable in monolayer cul-
tures, rare in s3D cultures and detectable to higher extents in both
p3D cultures and xenografts (Fig. 2A). Conversely, cCl3 positive,
apoptotic HT-29 cells were rare in monolayer cultures, but detect-
able to significantly higher extents in TLS from s3D than in p3D
cultures or xenografts (Fig. 2A, C).

Transcriptional profiles of cells cultured in the different

Fig. 1. Growth characteristics of perfused and static tridimensional cultures. A: A schematic view of the bioreactor utilized for the culture of tumor cells in perfused tridimensional
(p3D) conditions. This device includes a perfusion chamber allocating a 3D porous scaffold. Cell suspensions or culture media may be introduced into the bioreactor through its
valves. Fluid flow in alternate directions directly through the scaffold/resulting tissue is generated by using a pump connected with the bioreactor, programmed to deliver defined
flow velocities. B: MTT staining of collagen scaffolds seeded with HT-29 cells in p3D (upper panel) or in s3D (lower panel) conditions, following a 7 days culture (scale bar: 1 mm). C:
Proliferation kinetics of HT-29 cells under different culture conditions. D: H&E staining of whole scaffold sections from p3D (upper left panel) or s3D (lower left panel) cultures
(scale bar: 200 mm). E: Histomorphometric assessment of tumor tissue areas in whole scaffold sections from s3D and p3D cultures of HT-29 cells (right panel) (***: p < 0.001).
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conditions under investigation and growing in xenografts were
investigated by RNA sequencing. A comparative analysis revealed
high similarities between all “in vitro” cultures and xenografts
(r > 0.97). However, the expression of defined gene clusters
appeared to be differentially regulated in 2D, s3D and p3D cultures
and xenografts (Fig. 3). In particular, genes from cluster #2 con-
trolling, among other functions, ribosome biogenesis and trans-
lationwere highly expressed in 2D cultures. In contrast, genes from
cluster #12, associated with cell cycle control and DNA transcrip-
tion and repair, were expressed to higher extents in 3D cultures and
xenografts, as compared to 2D cultures. On the other hand,
expression of gene clusters controlling, among other processes,
apoptosis and response to hypoxia (i.e., #10 and #4), was more
similar to xenografts in p3D than in 2D or s3D cultures. Instead,
gene clusters regulating cell adhesion and migration, as well as
immune-related processes (i.e., #1 and #11), were expressed to
uniquely high extents in xenografts, possibly due to the interaction
with murine stromal and innate immune system cellular compo-
nents “in vivo”.

Taken together, thesedata clearly indicate that p3D culture ofHT-
29 CRC cells promotes the formation of relatively large tumor TLS,
characterized by proliferation, and apoptotic rates as well as gene
expression andphenotypicprofiles similar to tumor tissues “invivo”.

3.3. Response of HT-29 p3D culture to chemotherapeutic treatment

We then explored responsiveness to current chemotherapy
treatments in p3D cultures and xenografts, using, as control,
currently utilized, standard 2D cultures. As s3D cultures failed to
induce the generation of TLS of sizes amenable to drug testing and
were characterized by negligible cell proliferation and high
apoptotic rates, they were not further considered as experimental
group.

We treated p3D cultured cells and xenografts with 5-Fluoruracil
(5-FU), which is included in standard neo-adjuvant and adjuvant
protocols for CRC treatment. For “in vitro” studies, 5-FUwas used at
a 1 mg/mL concentration, whereas for xenograft treatment we chose
a 50 mg/kg dose, which has been reported to produce plasma levels
similar to those used “in vitro” [43].

Following a 48 h treatment, signs of cellular “stress” were
detectable to different extents in all cultures and in xenografts
(Fig. 4A) [44]. In 2D cultures, nucleoli became prominently visible
in all cells, whereas in p3D cultures and xenografts this effect was
significantly reduced (Fig. 4B, left panel).

Remarkably, in 2D cultures total cell number was decreased by
about 50% following a 48 or 96 h exposure to 5-FU (Fig. 4B, middle
panel). In contrast, in p3D cultures and xenografts no significant

Fig. 2. Comparative analysis of phenotype and proliferation potential of HT-29 cells cultured in different conditions. A: HT-29 cells cultured in the indicated conditions or injected
subcutaneously in NMRI-mice (xenografts) were stained by H&E or by Cytokeratin 20 (CK20) or CDX2 specific mAbs. Specific binding was visualized by standard immunohisto-
chemical techniques. In parallel experiments, cells were stained by using fluorochrome labeled Ki67 and Cleaved Caspase 3 (cCl3) specific mAbs (scale bar: 50 mm). B: Proliferation
index was calculated as ratio of Ki67 þ cells to total cell number. C: Apoptotic index was calculated as ratio of cCl3þ cells to total cell number. (***: p < 0.001).
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reduction of total cell numbers or tumor volumes could be
observed (Fig. 4B). Similar trends were also observed by using other
drugs commonly utilized in CRC treatment (Supplementary Fig. S5).
In agreement with these data, a significant increase in apoptotic cell
numbers upon treatment was observed in 2D, but not in p3D cul-
tures or xenografts after 96 h of treatment (Fig. 4B, right panel).

To obtain a more detailed insight into the effects of 5-FU
treatment on cells cultured in different conditions and in xeno-
grafts, we analyzed by qRT-PCR the expression of a large panel of
genes potentially regulating defined tumor environmental features,
cell cycle and apoptosis induction. Expression of PD-L1 [45] and
CCL22 chemokine genes was similarly increased upon 5-FU treat-
ment in 2D, p3D cultures and in xenografts (Supplementary
Fig. S6A, B). In contrast, IL-8 gene expression was exclusively
increased in 5-FU treated HT-29 cells cultured in 2D, but not in p3D
cultures or xenografts (Supplementary Fig. S6C). Most importantly,
the expression of genes associated to anti-apoptotic effects, such as
BCL-2, TRAF-1 and c-FLIP, was significantly down regulated upon 5-
FU treatment in 2D cultures (Fig. 4C). In contrast, c-FLIP and TRAF-1
gene expression was unaffected in p3D cultures or xenografts.
Regarding BCL-2 expression, marginal, non-significant, decreases
were observed in p3D cultures and similarly non-significant in-
creases were detected in treated xenografts. Taken together, our

data suggest that responsiveness to 5-FU treatment appears to
follow similar patterns in p3D cultures and xenografts.

Based on data emerging from 5-FU treatment of HT-29 cells, we
reasoned that inhibition of anti-apoptotic proteins could poten-
tially represent a viable treatment strategy in CRC. Interestingly, a
BCL-2 inhibitor (ABT-199) has recently been developed for leuke-
mia treatment [46]. This drug had no effect on HT-29 cells cultured
in 2D, whereas a significant reduction in the number of HT-29 cells
cultured in p3D was detectable upon 48 h treatment (Fig. 5A).
Annexin V-PI staining showed that ABT-199 treatment led to a two-
fold (46.6% vs. 22.4%) increase in the percentage of HT-29 cells
undergoing apoptosis, as compared to untreated or 5-FU treated
cells. Accordingly, H&E staining of ABT-199 treated p3D cultures
documented a marked reduction in size of HT-29 tissue-like
structures (Fig. 5B).

4. Discussion

In this study we have used a perfused bioreactor system pre-
viously utilized for the culture of different mesenchymal cell types
[20,31]to address the generation of TLS from established cancer cell
lines and to explore their functional characteristics. We observed
that p3D culture of established human tumor cell lines resulted in

Fig. 3. Next generation sequencing transcriptome analysis of HT-29 cells cultured in 2D, s3D and p3D conditions or growing as xenografts. Total cellular RNA was extracted from
cells cultured according to the indicated conditions or growing as xenografts. Expression profiles and enriched pathways in selected gene clusters were analyzed based on DAVID
Functional Annotation and REVIGO using GO Biological Processes.
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the rapid generation of TLS characterized by more homogeneous
cellular organization and significantly higher cell yields, as
compared to s3D cultures. Most importantly, apoptosis, prolifera-
tion rates and response to 5-FU in p3D cultures matched those
detectable in xenografts of the same cells in immunodeficient mice.

We have studied in detail the HT-29 CRC cell line. Culture of
these cells in collagen sponges under perfusion flow resulted in the
generation of acini-like formations, reminding histological features
of differentiated colorectal mucosa. Interestingly, the formation of

these structures was previously attributed to cellular polarization
associated with modifications of culture medium and, possibly,
related to glutamine deprivation [47]. CDX2 homeobox gene has
been shown to be highly expressed in colonic adenocarcinomas,
typically displaying a high intensity specific staining in 90% of cases
[42]. In our study, HT-29 cells cultured in 2D did not express CDX2.
However, specific staining was readily observed, to different in-
tensities, upon culture in 3D, irrespective of perfusion, or upon
injection in immunodeficient animals, thereby further supporting
the notion of the high similarity between 3D cultures of established
cancer cell lines and xenograft specimens.

These data prompted us to perform a comparative analysis by
next generation sequencing of the whole transcriptome of HT-29
cells cultured in different conditions or growing as xenografts.
This study indicates that gene expression profiles of cultured or
xenografted HT29 cells are highly similar. However, defined gene
clusters appeared to be differentially expressed in cells cultured in
2D, s3D, and p3D cultures or xenografts. In particular, it is
remarkable that clusters of genes regulating apoptotic process and
response to hypoxia appeared to be similarly expressed in p3D
cultures and in xenografts. These findings might be related to the
maintenance of inner tissue structures in p3D cultures and to their
exposure to oxygenation gradients, thereby mimicking the pres-
ence of hypovascularized areas in “in vivo” xenografts.

We then addressed the sensitivity to drug treatment of tumor
TLS generated in p3D, in comparison with xenografts, and con-
ventional HT-29 monolayers, the current standard. While HT-29
cells in 2D cultures were highly sensitive to 5-FU treatment, p3D
cultures and xenografts were similarly characterized by a partial
sensitivity, as indicated by cell “stress” signs in the absence of
significant cytotoxicity. These effects were accompanied by typical
gene signatures. In particular, 5-FU induced BCL-2, c-FLIP and TRAF-
1 gene down-regulation in treated HT-29 cell monolayers. How-
ever, the expression of these genes was not significantly affected in
“stressed” HT-29 cells from treated xenografts or p3D cultures. Our

Fig. 4. Responsiveness of HT-29 cells cultured in different conditions to 5-FU treatment. A: HT-29 cells were cultured in the indicated conditions or injected subcutaneously in
NMRI-mice. Cultures and experimental animals were then treated by 5-FU (1 mg/mL and 50 mg/kg, respectively), for 48 h, as detailed in “Materials and methods”. Cells and tissue
sections were stained by H&E according to standard methods (scale bar: 100 mm). B: Percentages of cells showing evidence of nucleolar stress in untreated cultures and animals or
following a 48 h 5-FU treatment (left panel). Effects of 48 and 96 h 5-FU treatment on total tumor cell number or tumor volume as assessed by DNA staining, as compared to
untreated controls (middle panel). Increases in apoptotic tumor cell percentages upon 5-FU treatment in comparison to untreated controls, as measured by Annexin V-PI staining
(right panel). C: Total cellular RNA was also extracted from HT-29 cells cultured according to the indicated conditions or growing as xenografts in NMRI-mice following a 24 h
treatment with 5-FU, and reverse transcribed. Expression of BCL-2 (left panel), c-FLIP (middle panel) and TRAF-1 (right panel) genes was measured by qRT-PCR, using GAPDH gene
expression as reference. (*: p < 0.05; **: p < 0.01; ***: p < 0.001).

Fig. 5. Differential responsiveness to 5-FU and BCL-2 inhibition by HT-29 cells in 2D
and p3D cultures. A: Effects of 48 h treatment with 5-FU or ABT-199 on total numbers
of HT-29 cells cultured in 2D or in p3D cultures, as measured by DNA dye staining. B:
H&E staining of p3D cultures of HT-29 cells untreated (Ctrl) or following treatment
with 5-FU or ABT-199. Scale bar: 50 mm (**: p < 0.01; ***: p < 0.001).
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results underline that the same CRC cell line cultured in p3D and
xenografts not only shares similar functional, phenotypic and gene
expression profiles, but is also characterized by a similar unre-
sponsiveness to drug treatment.

These data, concurrently underlining the major role potentially
played by the expression of anti-apoptotic genes in the resistance to
5-FU treatment, have urged us to investigate the effects of newly
developed anti BCL-2 pharmacological treatments. Intriguingly,
ABT-199, a promising BCL-2 inhibitor currently being tested in
clinical trials for chronic lymphocytic leukemia [46], did not impact
on viability of HT-29 cells cultured inmonolayers. In sharp contrast,
ABT-199 treatment of p3D cultures led to substantial decreases in
total cell numbers. Further research is warranted to clarify molec-
ular mechanisms underlying differential sensitivity to BCL-2 inhi-
bition in different culture systems and with additional cell lines.
Nevertheless, collectively, these findings indicate that standard 2D
assays not only overestimated the antitumor effectiveness of 5-FU,
but dramatically underestimated the therapeutic potential of un-
related compounds [48], which was, instead, revealed by p3D
cultures.

Thus, p3D cultures may represent “in vitro” models of CRC of
potentially high significance in drug screening and to address drug
resistance mechanisms or basic tumor biology issues under
controlled conditions by taking advantage of human cells. More-
over, the p3D culture system described here may be used to effi-
ciently mimic phenotypic and functional features observed in
animal models and clinical specimens. Similar technologies could
also be used to generate primary tumor cultures from clinical
specimens for personalized treatment assessment.

Our study has several limitations. In particular, molecular
mechanisms underlying differential phenotypic, transcriptional
and functional profiles detectable in monolayers, s3D and p3D
cultures are largely unclear. Furthermore, most obviously, p3D
cultures fail to account for the huge complexity of cancer micro-
environment and for tumor cell heterogeneity. In order to partially
address the latter issues, the p3D culture system could also be
extended to include the co-culture of a variety of tumor cells with
additional, non-transformed cell types such as mesenchymal stro-
mal cells, tumor-associated fibroblasts or endothelial and immu-
nocompetent cells, in order to explore tumor specific
microenvironmental features [4]. On the other hand, the use of
tumor TLS generated in p3D, eventually produced in miniaturized
systems [18,49], properly adapted for the application of direct
perfusion, could help to overcome limitations inherent in the use of
human cell lines xenografts for drug screening. This could be
especially relevant regarding costs, time requirements and con-
founding effects of murine stromal and innate immune system
cells.
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ABSTRACT
Background: OX40 is a TNF receptor family member expressed by activated 

T cells. Its triggering by OX40 ligand promotes lymphocyte survival and memory 
generation. Anti-OX40 agonistic monoclonal antibodies (mAb) are currently being 
tested in cancer immunotherapy. We explored the prognostic significance of tumor 
infiltration by OX40+ cells in a large colorectal cancer (CRC) collective. 

Methods: OX40 gene expression was analyzed in 50 freshly excised CRC and 
corresponding healthy mucosa by qRT-PCR. A tissue microarray including 657 
clinically annotated CRC specimens was stained with anti-OX40, -CD8 and -FOXP3 
mAbs by standard immunohistochemistry. The CRC cohort was randomly split into 
training and validation sets. Correlations between CRC infiltration by OX40+ cells 
alone, or in combination with CD8+ or FOXP3+ cells, and clinical-pathological data 
and overall survival were comparatively evaluated. 

Results: OX40 gene expression in CRC significantly correlated with FOXP3 
and CD8 gene expression. High CRC infiltration by OX40+ cells was significantly 
associated with favorable prognosis in training and validation sets in univariate, 
but not multivariate, Cox regression analysis. CRC with OX40high/CD8high infiltration 
were characterized by significantly prolonged overall survival, as compared to tumors 
with OX40low/CD8high, OX40high/CD8low or OX40low/CD8low infiltration in both uni- and 
multivariate analysis. In contrast, prognostic significance of OX40+ and FOXP3+ cell 
infiltration was not enhanced by a combined evaluation. Irrespective of TNM stage, 
CRC with OX40high/CD8high density infiltrates showed an overall survival similar to that 
of all stage I CRC included in the study. 

Conclusions: OX40high/CD8high density tumor infiltration represents an 
independent, favorable, prognostic marker in CRC with an overall survival similar to 
stage I cancers.
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INTRODUCTION

Colorectal cancer (CRC) represents the second 

most common cause of cancer-related death [1]. Surgical 

resection remains the mainstay of CRC therapy, and 

complete removal of the tumor may be achieved in a 

majority of patients. Radiotherapy, and chemotherapy 

represent additional standard treatments, currently 

administered according to histological findings, using the 
TNM staging system [2]. 

Histological staging however, fails to account for 

recurrences observed in patients treated for early stage 

CRC or for long term survival of patients bearing advanced 

stage CRC [3]. A variety of reports convincingly indicate 

that the composition of the tumor microenvironment is 

critical for CRC progression and that the immune system 

plays a pivotal prognostic role [4-6].

High densities of infiltrating CD8+ T cells are 
associated with improved disease-free and overall survival 

in CRC [4-8] and the analysis of tumor infiltration by 
immune cells has been suggested to outperform the 

prognostic significance of TMA staging [5, 6]. Molecular 
mechanisms underlying the anti-tumor effects of the 

immune infiltrate are largely unclear [4, 9]. Nevertheless, 
the expression of activation markers by CRC infiltrating 
CD8+ T cells has been shown to improve their predictive 
potential [8]. Unexpectedly, CRC infiltration by FOXP3+ 
regulatory T cells (Treg) and myeloid cells was also 

found to be associated with improved prognosis [10-

12], at difference with a variety of cancers of different 

histological origin [13, 14]. 

OX40 (CD134) is a co-stimulatory, trans-membrane 
molecule of the tumor necrosis factor-receptor superfamily 

[15, 16] expressed by activated CD4+ and CD8+ T cells 
[17-19]. Engagement of OX40 by OX40-ligand expressed 
by antigen presenting cells (APC) enhances CD4+ and 
CD8+ cell proliferation, stimulates cytokine production 
and promotes survival of antigen-specific memory T 
cells [20-22]. Based on this background, OX40 targeted 
immunotherapy treatments are being tested in patients 

with advanced cancers [23, 24].

A previous study, based on the analysis of 72 

patients with CRC, suggests that OX40 expression 
by CRC infiltrating cells correlates with favorable 
prognosis [25]. This information could be of potentially 
high clinical relevance since it might contribute to the 

definition of a constellation of markers allowing a more 
precise identification of patients with CRC who might 
benefit from current therapies, while sparing unnecessary 
treatment to others. Furthermore, patients potentially 
taking advantage of OX40 targeted immunotherapy might 
also be characterized.

We used a tumor microarray (TMA) including 

>600 clinically annotated CRC to address the prognostic 

significance of CRC infiltration by OX40+ cells, as 
evaluated in combination with CD8+ and FOXP3+ cell 

infiltration. 

RESULTS

OX40 gene expression in CRC and healthy 
mucosa

We comparatively addressed OX40 gene expression 
in CRC tissues and in corresponding healthy mucosa 

sampled at distance from the tumor (n = 49). We found 
(Figure 1A) that OX40 gene is expressed to similar extents 
(P = 0.3) in cancerous and healthy colon tissues. These 

results were matched by publicly available data indicating 

that in five out of seven databases OX40 gene expression 
did not significantly differ in CRC and healthy tissues [29, 
32] (data not shown),

Expression of OX40 gene and genes associated 
with favorable clinical course in CRC

Expression of a variety of immune cell markers 
within CRC tissues has been shown to be associated 

with defined clinical outcomes [4-6]. Based on this 
background, we assessed the correlation between OX40 
gene expression and that of a panel of genes of known 

prognostic significance. 
In our cohort of CRC tissues (n = 49) OX40 gene 

expression was very strongly (Spearman r = 0.8, P < 

0.0001) associated with FOXP3 [10, 11] gene expression 
(Figure 1B). Strong associations were also evident 
between OX40 and IRF1 (Spearman r = 0.67, P < 0.0001) 

or TBET (Spearman r = 0.57, P < 0.0001) genes [5, 6]. 
Furthermore, OX40 gene expression was also moderately 
associated with CD8 gene expression (Spearman r = 0.33, 
P < 0.02). In contrast, no significant associations were 
detected between OX40 and CD16, IL17A or IFN-γ gene 
expression [12, 37] (Figure 1B). These data were largely 
consistent with those emerging from TCGA database 

(Supplementary Figure 1), although in this cohort (n 

= 380) OX40 gene expression was also significantly 
associated with CD16 and IFN-γ gene expression. Taken 
together these data urged the evaluation of the prognostic 

significance of OX40+ infiltrate in CRC.

TMA analysis

A total of 657 CRC tissues were analyzed. Median 
age was 71 years (range: 36-96), 54.6% of the patients 
were female, and 45.4% were male. 65% of the tumors 
were located in the left hemicolon, and the remaining 

35% in the right hemicolon. Median tumor size was 
50mm (range: 5-170). Most patients presented T3 lesions 
(63.3%), and 50.7% were node negative (N0). 85.5% 
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 Table 1: Clinical-pathological characteristics of the overall CRC patient cohort and their association with levels of 
OX40+ infiltrate.

Total 
N=657*

OX40 low

N=440*
OX40 high

N=217*
OX40 low vs 

high

Characteristics N or 
mean

(% or 
range)

N or 
mean

(% or 
range)

N or 
mean

(% or 
range) P**

Age,  years (median, 

mean)

71, 

69.9 (36-96) 72, 

70.5 (36-96) 70, 68.6 (40-90) 0.02

Tumor size in mm 

(median, mean)

50, 
51.7 (5-170) 45, 

51.5 (5-170) 50, 50.2 (7-160) 0.827

Sex 0.539
Female (%) 359 (54.6) 247 (56.1) 112 (51.6)
Male (%) 298 (45.4) 193 (43.9) 105 (48.4)

Anatomic site of the 

tumor
0.037

Left-sided (%) 425 (64.7) 272 (61.8) 153 (70.5)
Right-sided (%) 228 (34.7) 165 (37.5) 63 (29.0)

T stage

T1 (%) 29 (4.4) 11 (2.5) 18 (8.3) <0.0001

T2 (%) 103 (15.7) 62 (14.1) 41 (18.9)
T3 (%) 416 (63.3) 284 (64.5) 132 (60.8)
T4 (%) 91 (13.8) 74 (16.8) 17 (7.8)

N stage

N0 (%) 333 (50.7) 203 (46.1) 130 (59.9) 0.002

N1 (%) 174 (26.5) 127 (28.9) 47 (21.7)

N2 (%) 128 (19.5) 97 (22.0) 31 (14.3)

Tumor grade 0.739

G1 (%) 15 (2.2) 9 (2.0) 6 (2.8)
G2 (%) 562 (85.5) 377 (85.7) 185 (85.2)
G3 (%) 60 (9.1) 42 (9.6) 18 (8.3)

UICC 
Stage IA (%) T1N0 21 (3.2) 9 (2.0) 12 (5.5) 0.0003

Stage IB (%) T2N0 73 (11.1) 44 (10.0) 29 (13.4)

Stage IIA (%) T3N0 202 (30.7) 123 (30.0) 79 (36.4)

Stage IIB-C (%) T4N0 30 (4.6) 25 (5.7) 5 (2.3)

Stage III (%) N+ 296 (45.1) 220 (50.0) 76 (35.0)

Tumor border 

configuration
Infiltrative (%) 418 (63.6) 285 (64.8) 133 (61.3) 0.568
Pushing (%) 218 (33.2) 143 (32.5) 75 (34.6)

Vascular invasion

No (%)  462 (70.3) 300 (68.2) 162 (74.7) 0.044

Yes (%)  175 (26.6) 129 (29.3) 46 (21.2)
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were grade 2 tumors and 61.3% showed infiltrative tumor 
border configuration. Vascular invasion was absent in 
the majority of cases (70%). TMA included 552 MMR-
proficient tumors and 105 MMR-deficient tumors (16%), 
as defined according to MLH1, MSH2 and MSH6 
expression [38]. Median overall survival was of 92 months 
(0-152) (Table 1). This collective was randomly splitted 
into two similar training and validation subsets (Table 1s).

Prognostic significance of CRC infiltration by 
OX40/CD134 cells

CRC included in the TMA under investigation 

were infiltrated to different extents by OX40+ cells 
(Figure 2A). Clinical-pathological characteristics of 
training and a validation subset did not significantly 
differ (supplementary Table 1). Cut-off score of OX40+ 
CRC infiltrating cells for the assessment of their clinical 
relevance (n = 40) was defined by survival ROC curves 
in the training set (see above). Table 1 shows data related 

to each clinical-pathological feature, reported as absolute 

numbers and percentages. Dropouts due to missing 
information or to loss of punches during TMA staining 

and preparation represented < 10% of data.
Kaplan-Meier plots indicate that in both training 

and validation groups high OX40+ infiltration in CRC is 
significantly associated with favorable prognosis (Figure 
2B). However, the good survival impact of high OX40+ 
infiltrating cells, failed to reach the threshold of statistical 
significance in multivariate analysis (P = 0.8).

Synergistic prognostic significance of CRC 
infiltration by OX40+ and CD8+ cells

OX40 is expressed upon activation by FOXP3+ 
and CD8+ human T cells [17, 39]. CRC infiltration 
by cells expressing either marker, known to correlate 

with favorable clinical course [5, 6, 8, 10, 11], was also 
associated with favorable prognosis in our cohort of 

patients (data not shown). Importantly, gene expression 

data support a significant correlation between OX40 and 
FOXP3 and CD8 gene expression (see above). Therefore, 
we explored the potentially synergistic prognostic 

significance of the expression of these markers.
Kaplan-Meier plots revealed that combination 

of high OX40+ and CD8+ infiltration (Figure 3C) was 
highly significantly associated with increasingly favorable 
clinical course, as compared to CRC displaying high 

CD8+ but low OX40+ cell infiltration or CD8+ low but 
OX40+ high cell infiltration (P = 0.0001). In contrast, 

prognostic significance of OX40+ cell infiltration in CRC 
was not significantly improved if data were analyzed in 
combination with FOXP3+ cell infiltration (Figure 3B). 
However, poor CRC infiltration by OX40+ and FOXP3+ 
cells was indeed associated with severe prognosis. These 

findings were confirmed in the “training” and “validation” 
subsets (data not shown). 

Univariate Cox regression analysis of CRC 
subgroups identified according to high or low OX40+ and/
or CD8+ infiltration (supplementary Table 2), revealed 
that T and N stage and 5 year overall survival rate where 
associated with OX40+ and CD8+ density. CRC of pT3-4 
or pN1-2 stage did show significantly poorer infiltration 
by OX40+ and CD8+ cells (P = 0.00005 and P = 0.00004, 

respectively). Mean survival time for patients bearing 

tumors with OX40+ and CD8+ high, OX40+ low and 

Microsatellite Stability

Proficient (%) 552 (84.0) 362 (82.3) 190 (87.6) 0.104

Deficient (%) 105 (16.0) 78 (17.7) 27 (12.4)

Rectal cancers (%) 219 (33.3) 131 (29.8) 88 (40.6) 0.013

Rectosigmoid cancers 

(%) 41 (6.2) 33 (7.5) 8 (3.7)

Median overall survival 

time (months) 
92 0-152 77 0-152 101 0-150 <0.0001

5-year overall survival % 
(95%CI) 55.4 51.6 – 

59.6 49.9 45.2 – 
55.1 66.1

59.9 – 
72.9 0.0003

*Percentages may not add to 100% due to missing values of defined variables. 
**Age and tumor size were evaluated using the Mann–Whitney test. Gender, anatomical site, T stage, N stage, grade, 
vascular invasion, and tumor border configuration were analyzed using the χ2 or Fisher exact test depending on the number 
of observations. Survival analysis was performed using the Kaplan-Meier method and comparatively analyzed with the log-

rank test.
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CD8+ high, OX40+ high and CD8+ low and OX40+ low 
and CD8+ low infiltrate was 53.8 (±16.5), 45.7 (±21.4), 
43.2 (±21.3) and 38.6 (±22.5) months, respectively. Five 
year overall survival rate was 82% (CI: 72-94%) for 
patients presenting with high OX40+ and CD8+ tumor 
infiltration, and 48% (CI: 43-54%) for patients bearing 
tumors with poor OX40+ and CD8+ density (P = 0.0001). 

Multivariate Hazard Cox regression survival 

analysis revealed that the combination of high density 

OX40+ and CD8+ cell infiltration (HR = 0.95; 95%CI 

= 93-97; P = 0.006) represents an independent positive 

prognostic factor for overall survival in CRC. Age (HR = 

1.03; 95%CI = 1.01-1.04; P < 0.00001), gender (HR = .65; 
95%CI = .53-.77; P = 0.0003), T-stage (HR = 1.94; 95%CI 
= 1.82-2.05; P < 0.00001), N-stage (HR = 1.88; 95%CI 
= 1.80-1.97; P < 0.00001) and microsatellite instability 

(HR = 1.82; 95%CI = 1.64-2.01; P = 0.001) were also 

independently associated with favorable prognosis in 

multivariate survival analysis (Table 2). 

Figure 1: Gene expression profiles in CRC. Total cellular RNA was extracted from freshly excised CRC tissues (n = 48) and 
corresponding healthy mucosa sampled at distance from the tumor and reverse transcribed. Specific gene expression was analyzed by qRT-
PCR, using, as reference, GAPDH house-keeping gene expression. 
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Table 2: Uni and Multivariate Hazard Cox regression survival analysis 
Univariate Multivariate

 HR 95% CI p-values HR 95% CI p-values
OX40 (continuous) 0.99 0.99-0.99 <0.0001 n.i.

CD8 (continuous) 0.99 0.98-0.99 0.007 n.i.

FoxP3 (continuous) 0.88 0.81-0.94 0.049 n.i.

OX40 high/low
0.63 0.51-0.75 0.0001 n.i.

CD8 high/low 0.54 0.37-0.70 0.0002 n.i.

OX40highCD8high 0.93 0.92-0.95 <0.0001 0.95 0.93-0.97 0.006

FoxP3 high/low
0.77 0.66-0.88 0.02 0.84 0.72-096 0.15

Age 1.02 1.01-1.03 0.0001 1.03 1.02-1.04 <0.00001

Gender (men vs women) 0.67 0.67-0.67 0.0002 0.65 0.53-0.77 0.0003

pT stage 2.25 2.16-2.34 <0.000001 1.94 1.82-2.05 <0.00001

Tumor grade 1.51 1.36–1.67 0.008 1.22 1.03-1.41 0.28
pN stage 2.28 2.21-2.35 <0.000001 1.88 1.80-1.97 <0.00001

Vascular invasion 2.46 2.35-2.58 <0.000001 1.48 1.35-1.62 0.004

Tumor border configuration 2.03 1.90-2.16 <0.000001 1.39 1.24-1.54 0.029
Microsatellite stability (deficient 

vs. proficient) 1.55 1.38-1.72 0.01 1.82 1.64-2.01 0.001

Uni- and multivariate Cox-regression analyses showing Hazard Ratios and P-values. 
The multivariate model included 556 patients, due to missing values related to CD8+ and FOXP3+ density, 
age, sex, tumor size, tumor grade, vascular invasion, tumor border configuration and microsatellite stability.
n.i.: not included in the final multivariate model.

Figure 2: Prognostic significance of OX40 expression by CRC infiltrating cells. A. CRC TMA was stained with OX40 specific 
reagents, as detailed in “materials and methods”. Panel A.shows representative punches with different extents of OX40+ cell infiltration 
(magnification 20X).Kaplan-Meier plots depicting the prognostic significance in randomly generated training and validation cohorts (panel 
B.). Number of events ( = deaths) and total number of cases in each cohort are reported.
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Figure 3: Combined Kaplan- Meier analysis of OX40+ and CD8+ infiltration results in enhanced prognostic significance 
in CRC. OX40+ in the overall collective (panel A.); OX40+ combined with FOXP3+ (panel B.); OX40+ combined with CD8+ cell 
infiltration (panel C.); comparative evaluation with conventional TNM staging (panel D.); OX40+/CD8+ in low stage CRC(panel E.) and 

in high grade (panel F.).
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Comparative analysis of the prognostic 
significance of OX40+ and CD8+ infiltration and 
AJCC staging

Previous studies suggest that infiltration by immune 
cells might outperform conventional tumor staging in CRC 

prognostic assessment (4). Therefore, we comparatively 

evaluated the prognostic significance of OX40+ and 
CD8+ infiltration and AJCC staging (Figure 3 panel C, 
D). Survival probability at five years was 85.2% (C.I. 
72.6%-99.9%) for patients with low (IA, IB and IIA) 
AJCC stage and 78.6% (C.I. 59.8%-100%) for patients 
with high stage (IIB, IIC and III) (Figure 3, panel E, F). 
Prognostic impact of OX40/CD8 high density infiltration 
did not reach significance threshold (P = 0.2) for patients 

with low stages, since the overall survival in this cohort 

is inherently good and analysis of a larger number 

of patients would be required. However, of peculiar 
clinical importance is the significant (P = 0.03) favorable 

prognostic impact of high density OX40+ and CD8+ cell 
infiltration in high AJCC stage CRC. Thus, irrespective of 
their AJCC staging, CRC highly infiltrated by OX40+ and 
CD8+ cells are characterized by a prognosis similar to that 
of stage I patients CRC (Figure 3, panel C-F). 

DISCUSSION

Experimental models show that signaling through 
OX40 co-stimulatory molecule promotes the generation 
of T cell memory thereby significantly enhancing 
antigen specific re-call responses [22, 40]. Furthermore, 
administration of agonistic OX40 specific mAbs enhances 
anti-tumor immune responses “in vivo” in different models 
[41]. Responsiveness to treatment is accompanied by 

increasing densities of OX40+ CD8+ T cells within the 
tumor tissue and decreasing FOXP3+ Treg infiltration 
[24]. Based on this background, similar reagents are 

currently being tested in clinical immunotherapy trials 

[23, 42].

Although analysis of CRC immune-contexture is 

increasingly gaining clinical relevance [4-6], prognostic 

significance of OX40 expression in CRC infiltrating cells 
has only been explored in one study evaluating a cohort of 

72 patients [25].
Here, we report that in CRC OX40 gene expression 

is significantly correlated to that of CD8, FOXP3, TBET 
and IRF1 genes, typically expressed in tumors with 
favorable prognosis [5, 6].

Indeed, the analysis of >600 clinically annotated 

CRC specimens indicates that OX40+ cell infiltration is 
significantly associated with increased overall survival, 
although this favorable prognostic effect could not be 

confirmed in multivariate analysis. 
Most importantly however, a combined evaluation 

shows for the first time that CRC infiltration by high 

density OX40+ and CD8+ cells is highly significantly 
associated with favorable clinical course, as also evident 

upon multivariate analysis. Strikingly, CRC with high 

OX40+ and CD8+ cell infiltration, irrespective of their 
TNM stage, are characterized by a prognosis similar to 

that of low (IA-IB) stage cancers within the whole cohort 

under investigation. 

In contrast, interestingly, no such effects were 

observed upon combined analysis of both OX40+ and 
FOXP3+ cell CRC infiltration.

These data do not provide obvious mechanistic 

insights. However, it has been shown in “in vivo” 
models that effects of OX40 triggering are enhanced 
in the presence of “danger” signals [22]. Indeed, CRC 
carcinogenesis is typically characterized by early loss 

of the barrier function of intestinal mucosa [43]. Thus, a 

variety of TLR agonists might provide adequate “danger” 
signals potentially supporting the induction of antitumor 

effects associated with OX40 stimulation.
Besides activated T lymphocytes, OX40 expression 

has also been observed in natural killer T cells and 

neutrophils [17]. However, in our gene expression studies 

we did not observe a significant correlation between 
expression of OX40 and expression of CD16 gene, 
typically detectable in these cell types. 

Our study has limitations, including its retrospective 
nature. However, data emerging from large retrospective 

analyses may help in the development of targeted 

prospective studies, currently being planned by our 

groups. Furthermore, the cohort investigated in this 
study includes patients bearing CRC surgically treated 

between 1985 and 1998, e.g. prior to a widespread use of 
neoadjuvant treatment regimens. Therefore, although our 

results may not be fully representative of current clinical 

treatment, they are more likely to faithfully mirror CRC 

immunobiology, in the absence of chemo-irradiation 

treatments. 

On the other hand, TMA technology may 
insufficiently represent tumor tissue heterogeneity. 
However, punches included in the TMA under 

investigation are derived from the tumor center and do 

include at least 50% cancer cells. Furthermore, the number 
of CRC considered (>600) is likely to compensate at least 

in part for the diversity of immune contexture within 

different areas of individual biopsies.

Nevertheless, our data indicate that OX40 and 
CD8 specific staining may outperform TNM staging, 
thus potentially contributing to clinical decision making 

in sizeable groups of patients. On the other hand, 
they underline the critical relevance of OX40 in CRC 
immunobiology. Further research is warranted to unravel 
underlying molecular mechanisms.
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MATERIALS AND METHODS

Gene expression analysis

Total cellular RNA was extracted from surgical 

specimens of CRC and autologous healthy mucosa 

(HM) sampled at distance from the tumor and reverse 

transcribed [26]. Pre-developed Taqman®
 assays (Applied 

Biosystems) were used to quantitatively evaluate the 
expression of a panel of cytokine and chemokine genes by 

using ABI Prism 7300 PCR system (Applied Biosystems). 
Data are reported as relative expression normalized to 
GAPDH house-keeping gene amplification. Expression of 
individual genes was analyzed by using the 2

-ΔΔc
T

 
method 

[27].

Public databases

Gene expression databases included in Oncomine 
databank [28] were used to analyze OX40 gene 
expression in CRC in comparison with normal tissues. 

Seven databases, including a total of 812 samples, 
were identified. Skrzypczak [29], Hong [30] and Kaiser 
[31] databases utilized Human Genome U133 Plus 2.0 
technology (Affymetrix), whereas Gaedcke [32] used 

Agilent platform. Instead, TCGA data were obtained by 

using next generation sequencing (NGS) technology and 
Ki [33] data are based on a not pre-defined platform. 

Tissue microarray construction

657 unselected, non-consecutive, clinically 
annotated, primary CRC specimens were included in 

the TMA following approval by the Regional Ethical 
Committee (EKBB, Basel Stadt and Basel Land). 
Formalin-fixed, paraffin-embedded tissue blocks were 
prepared according to standard procedures. Tissue 

cylinders with a diameter of 0.6 mm were punched from 

morphologically representative areas of each donor block 

and brought into one recipient paraffin block (30x25mm), 
using a semi-automated tissue arrayer. Each punch was 
made from the center of the tumor so that each TMA spot 

consisted of at least 50% tumor cells. 

Clinical-pathological features

Clinical-pathological data for the patients included 

in the TMA are listed in Table 1. Briefly, data were 
collected retrospectively in a non-stratified and non-
matched manner. Annotation included patient age, tumor 

diameter, location, pT/pN stage, grade, histologic subtype, 
vascular invasion, border configuration, presence of 
peritumoral lymphocytic inflammation at the invasive 

tumor front and disease-specific survival. Tumor border 
configuration and peritumoral lymphocytic inflammation 
were evaluated using the original H&E slides of the 
resection specimens corresponding to each tissue 

microarray punch [34]. 

Immunohistochemistry

Standard indirect immunoperoxidase procedures 

were used for immunohistochemistry (IHC; ABC-Elite, 
Vector Laboratories, Burlingame, CA). Slides were 
dewaxed and rehydrated in distilled water. Endogenous 
peroxidase activity was blocked using 0.5% H2O2. 
Sections were incubated with 10% normal goat serum 
(DakoCytomation, Carpinteria, CA) for 20 min and 
incubated with primary antibody at room temperature. 

Primary antibodies used were specific for OX40 
(polyclonal anti-CD134/OX40, ab119904, Abcam, 
Cambridge, UK), CD8 (clone C8/144B, DakoCytomation, 
Switzerland) and FOXP3 (clone 236A/E7, Abcam, 
Cambridge, UK) [7, 10]. Subsequently, sections were 
incubated with peroxidase-labelled secondary antibody 

(DakoCytomation) for 30 min at room temperature. 
To visualize the antigen, sections were immersed in 

3-amino-9-ethylcarbazole plus substrate-chromogen 
(DakoCytomation) for 30 min, and counterstained with 
Gill’s hematoxylin.

Evaluation of immunohistochemistry

Immunohistochemical readings were performed 

by trained research fellows [B.W. or R.D.] and data were 
independently validated by an additional investigator 

[L.To.]. Tumor infiltrating cells were counted for each 
punch (approximately one high power [20x] field). Data 
regarding CRC infiltration by FOXP3+ and CD8+ were 
available from our previous publications [7, 8, 10]. 

Statistical analysis

Data were analyzed using the Statistical Package 
Software R (Version 3.1.3, www.r-project.org). Following 
confirmation histogram and the Kolgomorov-Smirnov test, 
descriptive statistic included mean ± standard deviation 
for parameters with Gaussian distribution or percentage 

of frequencies for occurrences. 
The TMA collective of 657 CRC was randomly split 

into training and validation subsets with approximately 

equal numbers of patients (n = 329 and n = 328, 
respectively). Associations with survival were explored 

using the Cox proportional hazards regression model. Cut-

off values used to classify CRC with low or high immune 

cell infiltration were obtained by ROC curves (survival 
ROC package), evaluating sensitivity and false positive 



Oncotarget37597www.impactjournals.com/oncotarget

rate for the discrimination of survivors and non-survivors 

with respect to the Kaplan-Meier method, on the training 

subset and validated on the validation subset [35, 36]. The 
threshold value for OX40+ infiltration, calculated in the 
training test was 40 cells/TMA-punch. This value was 
reconfirmed in the validation set. Further specific scores 
were set at 10 cells/TMA-punch for CD8 and 17 cells/
TMA-punch for FOXP3, as previously calculated in larger 
collectives by our team [8, 10]. 

Chi-Square, Fisher’s Exact, and Kruskal-Wallis 
tests were used to determine the association of OX40+ 
and CD8+ infiltration and clinical-pathological features. 
Univariate survival analysis was performed by the 
Kaplan-Meier method and log rank test. The assumption 

of proportional hazards was verified for all markers by 
analyzing correlation of Schoenfeld residuals and ranks of 

individual failure times. Any missing clinical-pathological 

information was assumed to be missing at random. 

Subsequently, OX40, CD8, and FOXP3 cell infiltration 
data were entered into multivariate Cox regression analysis 

and hazard ratios (HR) and 95% confidence intervals (CI) 
were used to determine prognostic effects on survival time. 

P-values < 0.05 were considered statistically significant. 
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ABSTRACT
Background The immune contexture predicts
prognosis in human colorectal cancer (CRC). Whereas
tumour-infiltrating CD8+ T cells and myeloid CD16+
myeloperoxidase (MPO)+ cells are associated with
favourable clinical outcome, interleukin (IL)-17-producing
cells have been reported to correlate with severe
prognosis. However, their phenotypes and functions
continue to be debated.
Objective To investigate clinical relevance, phenotypes
and functional features of CRC-infiltrating, IL-17-
producing cells.
Methods IL-17 staining was performed by
immunohistochemistry on a tissue microarray including
1148 CRCs. Phenotypes of IL-17-producing cells were
evaluated by flow cytometry on cell suspensions
obtained by enzymatic digestion of clinical specimens.
Functions of CRC-isolated, IL-17-producing cells were
assessed by in vitro and in vivo experiments.
Results IL-17+ infiltrates were not themselves
predictive of an unfavourable clinical outcome, but
correlated with infiltration by CD8+ T cells and CD16+
MPO+ neutrophils. Ex vivo analysis showed that tumour-
infiltrating IL-17+ cells mostly consist of CD4+ T helper
17 (Th17) cells with multifaceted properties. Indeed,
owing to IL-17 secretion, CRC-derived Th17 triggered
the release of protumorigenic factors by tumour and
tumour-associated stroma. However, on the other hand,
they favoured recruitment of beneficial neutrophils
through IL-8 secretion and, most importantly, they drove
highly cytotoxic CCR5+CCR6+CD8+ T cells into tumour
tissue, through CCL5 and CCL20 release. Consistent
with these findings, the presence of intraepithelial, but
not of stromal Th17 cells, positively correlated with
improved survival.
Conclusions Our study shows the dual role played by
tumour-infiltrating Th17 in CRC, thus advising caution
when developing new IL-17/Th17 targeted treatments.

INTRODUCTION
The tumour immune contexture—that is, type,
location, density and functional orientation of
tumour-infiltrating immune cells,1 predicts clinical
outcome in human colorectal cancer (CRC). In par-
ticular, CD45RO+ memory T lymphocytes, cyto-
toxic CD8+ T cells (CTLs) and interferon
(IFN)-γ-producing T helper 1 cells (Th1) have been
found to be associated with prolonged survival,

irrespective of tumour stage (5–7). Unexpectedly,
Foxp3+ regulatory T cells (Tregs),2 3 CD16+ and
myeloperoxidase (MPO)+ myeloid cells,4–6 also

Significance of this study

What is already known on this subject?
▸ Infiltration of colorectal cancers (CRCs) by

defined populations of immune cells predicts
clinical outcome irrespective of tumour stage.

▸ CRC-infiltrating CD8+ T cells and CD16+
myeloperoxidase (MPO)+ neutrophils have been
found to be associated with prolonged survival,
whereas infiltration by interleukin
(IL)-17-producing cells, as evaluated in a
limited number of cases, has been suggested to
correlate with more severe prognosis.

▸ IL-17 is a proinflammatory cytokine mediating
protumorigenic and proangiogenic effects.

▸ Monoclonal antibodies targeting IL-17/
IL-17-receptor or impairing expansion of
IL-17-producing cells may represent a new
therapeutic option in CRC.

What are the new findings?
▸ Analysis of a large cohort of CRCs shows that

tumour-infiltrating IL-17-producing cells are not
themselves predictive of poor clinical outcome.

▸ Intraepithelial localisation of CRC-infiltrating
IL-17+ cells is associated with improved survival.

▸ CRC infiltration by IL-17+ cells correlates with
the presence of beneficial CD8+ T cells and
CD16+ MPO+ neutrophils.

▸ CRC-infiltrating IL-17+ cells, mostly consisting
of polyfunctional T helper 17 cells (Th17), can
recruit highly cytotoxic CD8+ T cells into
tumour nests through CCL5 and CCL20 release.

How might it impact on clinical practice in
the foreseeable future?
▸ By disclosing the dual role played by CRC-Th17,

our findings question therapeutic approaches
aimed at inhibiting Th17 development or
expansion, possibly resulting in impaired
tumour infiltration by beneficial effector cells.
The positive contribution of Th17 to
anti-tumour immune responses should not be
disregarded when developing new IL-17/Th17
targeted treatments in CRC.
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correlate with favourable clinical outcome. In contrast, tumour
infiltration by interleukin (IL)-17A-producing cells, evaluated so
far in a limited number of cases (50–200), appears to be asso-
ciated with unfavourable prognosis.7 8

IL-17A (hereafter referred to as IL-17) is an inflammatory
cytokine, secreted by different cell types, including CD4+ T
helper cells (Th17),9 10 CTLs, γδT cells, Tregs,11–13 natural killer
(NK) cells, NKT cells, lymphoid tissue inducer (LTi)-like cells
and neutrophils.14 15 IL-17 plays a prominent role in protective
immune responses against bacterial and fungal infections and in
the pathogenesis of inflammatory disorders.9 10 16

Experimental models indicate that IL-17 promotes intestinal
tumorigenesis,17–22 either by favouring proliferation of aberrant
epithelial cells21 or by inducing IL-6 release by tumour-associated
stroma.18 Furthermore, IL-17 promotes angiogenesis through
vascular endothelial growth factor (VEGF) production,18 20 thus
mediating tumour resistance to antiangiogenic treatments.18

Monoclonal antibodies targeting IL-17/IL-17-receptor, or
cytokines, such as IL-23, supporting Th17 development, have
been recently developed and their clinical application in several
inflammatory and autoimmune diseases is being evaluated.23–25

These reagents may provide a new therapeutic option in
CRC.26 However, before testing IL-17/Th17-targeted treat-
ments, a more comprehensive analysis of CRC-infiltrating,
IL-17-producing cells is required.27

We evaluated the prognostic significance of IL-17 in a tissue
micro-array (TMA) including 1148 CRC cases and we investi-
gated phenotypes and functions of CRC-derived IL-17+ cells.
Here we show that CRC-infiltrating IL-17-producing cells,
mainly consisting of polyfunctional Th17, do not themselves
predict clinical outcome, but rather play a dual role. On the one
hand, owing to IL-17 secretion, they favour release of protu-
morigenic factors by tumour and tumour-associated stroma.
However, on the other hand, they promote recruitment of bene-
ficial neutrophils and CTLs by secreting specific chemokine and
cytokine patterns. Interestingly, the presence of intraepithelial
Th17 was significantly associated with patient survival, consist-
ent with the ability of Th17 to drive beneficial immune cells into
the tumour. The potential contribution of tumour-infiltrating
Th17 to anti-tumour immune responses should not be disre-
garded when considering new IL-17/Th17 targeted treatments.

MATERIALS AND METHODS
Immunohistochemistry
A previously described TMA, including 1420 non-consecutive
primary CRCs and 71 normal colonic mucosa samples,2 4–6 28

was stained with a goat polyclonal anti-human IL-17 antibody
(R&D Systems; staining I). IL-17 expression was evaluable in
1151 CRCs and 39 healthy mucosa samples. A randomised sub-
group, including 746 CRCs and 27 healthy mucosa cases, was
stained with a rabbit polyclonal anti-human IL-17 antibody
(H-132, Santa Cruz Biotechnology; staining II). Secondary stain-
ings and negative controls were performed as described.29

Protein markers were scored by three observers (AL, FA and
FT). Cases were classified in four groups, according to numbers
of positive cells/punch (0, 1–10, 11–50, >50). Staining proto-
cols for CD8, CD16 and MPO have been previously
reported.4 6 28 Clinical information (see online supplementary
table S1) was retrieved from patient records. The use of this
information was approved by local ethical authorities.

Clinical specimen collection and processing
Clinical specimens were collected from consenting patients
undergoing surgical treatment at Basel University Hospital,

St Claraspital Basel, Kantonsspital Olten, Kantonsspital St
Gallen and Ospedale Civico Lugano. Tumour and correspond-
ing tumour-free mucosa fragments were snap-frozen for RNA
extraction or enzymatically digested (2 mg/mL collagenase IV,
Worthington Biochemical Corporation and 0.2 mg/mL DNAse I,
Sigma-Aldrich, for 1 h at 37°C) to obtain single cell
suspensions.

Flow cytometry and cell sorting
Cell suspensions from CRCs and tumour-free mucosa, and per-
ipheral blood mononuclear cells (PBMC) of healthy donors
(HDs) or patients with CRC, were incubated with 50 ng/mL
phorbol 12-myristate 13-acetate, 1 μg/mL ionomycin and 5 μg/
mL brefeldin A (Sigma-Aldrich) for 5 h. Cells were fixed and
surface stained with fluorochrome-conjugated antibodies specific
for human CD3, CD4, CD8, CD45RO, CD56, CD127, CCR6,
HLA-DR, γδTCR (all from BD Biosciences), V α 24 J α 18 TCR
(eBioscience) and CD66b (BioLegend). Intracellular staining was
then performed with antibodies specific for human IL-17
(eBioscience), IFN-γ, tumour necrosis factor (TNF)-α, IL-22,
IL-21, IL-8 (all from BD Biosciences) or granulocyte-
macrophage colony stimulating factor (GM-CSF) and Foxp3
(BioLegend).

Chemokine receptor expression on CD8+ T cells was evalu-
ated in CRC samples and autologous PBMC by surface stain-
ing with anti-human CCR5, CCR6 and CXCR3 antibodies
(BD Biosciences). Stained cells were analysed by FACSCalibur
flow cytometer (BD Biosciences) and FlowJo software (Tree
Star).

Tumour, endothelial and mesenchymal cells were sorted from
CRC cell suspensions using a BD Influx (BD Biosciences), upon
staining with EpCAM-, CD31- and CD90-specific antibodies
(BD Biosciences), respectively.

T cell expansion and cloning
CRC-isolated T lymphocytes were stimulated with 1 μg/mL of
phytohaemagglutinin (Sigma-Aldrich) and expanded in medium
supplemented with 100 IU/mL IL-2 (Roche Applied Science)
and 5% of pooled human AB serum (provided by
Blutspendenzntrum Beider Basel, Basel University Hospital) for
20 days. Th17 cells, identified based on CD4+ CXCR3-CCR4
+CCR6+ phenotype,30 were sorted by flow cytometry and
further expanded as bulk populations. Th17 clones (hereafter
referred to as CRC-Th17) were subsequently generated from
bulk populations by limiting dilution. Supernatants from Th17
bulk populations and clones were obtained by T cell activation
with plate bound anti-CD3 (10 μg/mL, clone UCHT1,
eBioscience) and soluble anti-CD28 antibodies (1 μg/mL, clone
CD28.2, BD Biosciences). After overnight culture, supernatants
were collected and used for determination of cytokine contents
by ELISA and for migration assays.

Real-time reverse-transcription PCR
Total RNA was extracted from tissues or sorted cells using the
RNeasy Mini Kit protocol (Qiagen), treated with DNAse I
(Invitrogen) and reverse transcribed using the Moloney murine
leukemia virus reverse transcriptase (M-MLV RT, Invitrogen).
Quantitative real-time PCR was performed in the ABI prism
7700 sequence detection system, using TaqMan Universal Master
Mix and No AmpErase UNG (both from Applied Biosystems).
Commercially available primers and probes specific for human
IL-17A (Hs99999082_m1), CCL5 (Hs00982282_m1), CXCL9
(Hs00171065_m1) and CXCL10 (Hs99999049_m1, all from
Applied Biosystems) were used.
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Cell lines
Human CRC cell lines LS180, COLO205 and HT29, purchased
from the European Collection of Cell Cultures, were maintained
in RPMI 1640 (GIBCO) or, for HT29, McCoy’s 5A medium
(Sigma-Aldrich), supplemented with 10% fetal bovine serum,
GlutaMAX-I and kanamycin (GIBCO). HMEC cells (provided
by Professor T Resink, University of Basel) were cultured in
EBM-2 medium (Lonza). Tumour-associated stromal cells
(TASC) were expanded from CRC samples in α-MEM (GIBCO)
supplemented with 10% fetal bovine serum and 5 ng/mL FGF-2
(R&D Systems).

In vitro migration assay
Migration of neutrophils, isolated from PBMC of HDs by mag-
netic beads (EasyStep enrichment kit, StemCell Technologies),
was assessed in transwell plates (5 mm pore size, Corning
Costar), towards Th17 supernatants or recombinant cytokines
(IL-17, R&D Systems, 50 ng/mL; IL-8, R&D Systems, 100 ng/
mL; GM-CSF, R&D Systems, 100 ng/mL), for 90 min at 37°C.
In specific experiments, anti-IL-8 or anti-GM-CSF antibodies
(10 μg/mL, R&D Systems) were added to Th17 supernatants.

Migration of CD8+ T cells, sorted from PBMC of HDs by
magnetic microbeads (Miltenyi Biotec) and pre-activated over-
night with anti-CD3/CD28 antibodies, was evaluated in trans-
well plates (5 mm pore size) towards Th17 supernatants,
supernatants of HMEC cells, untreated, or exposed overnight to
Th17 supernatants or recombinant proteins (IL-17, 50 ng/mL;
TNF-α, 1 ng/mL, R&D Systems; IFN-γ, 1 ng/mL, Biolegend; or
their combination), or towards CCL5 (60 and 200 ng/mL, R&D
Systems) and/or CCL20 (300 and 1000 ng/mL, R&D Systems).
Depletion of CCL5 and/or CCL20 from Th17-derived superna-
tants was obtained by specific capture antibodies (R&D
Systems). Cell migration was quantified by flow cytometry.

ELISA
Cytokine/chemokine contents in supernatants were assessed by
ELISA using CCL5, CCL20, CXCL10 and VEGF DuoSet
ELISA (all from R&D Systems) and IL-6-specific reagents (BD
Biosciences).

T cell migration into engineered tumours
Tridimensional tumour tissues were engineered in a previously
described bioreactor system.31 HT29 cells (1×106) were
injected and perfused through a collagen scaffold (Ultrafoam
Avitene Collagen Hemostat, Davol Inc). At day 7, 5×106

CRC-Th17 cells were injected and, after overnight incubation,
were activated by CytoStim (Miltenyi Biotec) for 3 h. After
extensive washing, perfusion was stopped and CD8+CD45RO
+, sorted from PBMC of HDs, were then injected and allowed
to spontaneously migrate overnight. Tissues were enzymatically
digested and analysed by flow cytometry. Additionally,
paraffin-embedded or cryosections were collected for H&E
staining and immunofluorescence analysis.

Histological and immunofluorescence analysis
Paraffin sections (5 μm) were stained with H&E and analysed by
light microscopy. Cryosections (10 μm) were incubated with
rabbit polyclonal anti-human CD8 (Abcam) and mouse mono-
clonal anti-human CD4 (DakoCytomation) antibodies, or with
rabbit polyclonal anti-human IL-17 (H-132, Santa Cruz
Biotechnology) and mouse monoclonal EpCAM (Cell
Signalling), followed by secondary species-specific Alexa Fluor
488- or Alexa Fluor 547-conjugated antibodies (Invitrogen).

Nuclei were counterstained with 4,6-diamidino-2-phenylindole.
Sections were examined under an Olympus BX61 fluorescence
microscope (Olympus) and images captured with 10× and 20×
magnifications using a F-VIEW II camera (Olympus) and
AnalySIS software (Soft Imaging System GmbH).

In vivo migration assay
LS180 cells were inoculated subcutaneously in 8-week-old NSG
mice (Charles River, Germany). CRC-Th17 and CD8+ T cells,
isolated from PBMC of HDs, were activated overnight with
anti-CD3/CD28 antibodies. Carboxyfluorescein succinimidyl
ester-labelled CD8+ T cells were adoptively transferred by intra-
venous injection in tumour-bearing mice (maximum tumour
volume 1 cm3) alone or together with Th17 (5×106 cells/
subset/mouse). After 48 h, tumours were harvested and frequen-
cies of CD8+CSFE+ T cells in tumour cell suspensions were
evaluated by flow cytometry.

Statistical analysis
CRC cases were classified into four categories according to
numbers of IL-17+ cells/punch (0; 1–10; 11–50; >50). Specific
cut-off values for CD8, CD16 and MPO (10, 50 and 60,
respectively) were obtained by receiver operating curve (ROC)
analysis.4 6 28

A χ2 test was used to determine the significance of differences
between dichotomous variables. Survival analysis was depicted
by Kaplan–Meier method and compared with log-rank test.
Statistical analyses were performed using R (V.2.15.2, http://
www.r-project.org).

Differences in frequencies of IL-17+ cells within PBMC of
HDs or patients with CRC and between tumour and control
tissues were evaluated by t test. Differences in migration rates
and cytokine release were tested by one way analysis of variance
using GraphPad Prism5 (GraphPad Software).

RESULTS
CRC-infiltrating IL-17+ cells do not predict clinical outcome
IL-17+ cells were evaluated by immunohistochemistry upon
staining of a characterised TMA (38–39 and see online supple-
mentary table S1) with two different polyclonal anti-IL-17 anti-
bodies (staining I, figure 1A and staining II, see online
supplementary figure S1A). Results obtained from the two stain-
ings showed good and significant correlation (r=0.436
p<0.00001, weighted Cohen κ=0.284). IL-17+ cells were
detectable within epithelial and stromal compartments.
Numbers of intraepithelial IL-17+ cells were significantly
higher in tumour samples than in normal colonic mucosa
(figure 1Β). Accordingly, higher IL-17 mRNA levels in CRC
than in corresponding control tissues were detected (see online
supplementary figure S1B).

No association between IL-17+ infiltrates and tumour loca-
tion, mismatch repair status or tumour border configuration was
seen (table 1). In a limited group of cases for which additional
clinical information was available, no correlation between
numbers of IL-17+ cells and local recurrences (n=446), or
distant metastasis (n=452) was seen (table 1). In contrast, IL-17
+ cells strongly correlated with peritumoral lymphocytic infil-
tration (p<0.001). A slight increase in IL-17+ cell numbers was
seen in tumours characterised by early T and N stage, low grade
and absence of vascular invasion. Unexpectedly, no significant
impact of IL-17+ cells on overall survival (figure 1C left panel,
n=1151 and see online supplementary figure S1C, n=649) or
relapse-free survival (figure 1C right panel, n=443) was seen.
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Tumour infiltration by IL-17+ cells is associated with the
presence of CTLs and neutrophils
Interestingly, IL-17 was found to correlate significantly with
CD16, MPO and CD8 markers (figure 1D), predictive of
improved survival in the same TMA.4 6 32 CD16 and MPO are
expressed in a subset of HLA-DR- CD15+ CD66b+ myeloid
cells, mostly including activated neutrophils.4 6 Indeed, numbers

of IL-17+ cells also correlated with those of infiltrating poly-
morphonuclear cells (see online supplementary figure S1D).

We wondered whether the positive impact of these popula-
tions might mask the negative prognostic significance of IL-17+
cells. However, also in cases stratified for CD16, MPO or CD8
expression, no effect of IL-17 on survival was found (see online
supplementary figure S2).

Figure 1 Tumour infiltration by interleukin-17 (IL-17)-producing cells does not predict survival in colorectal cancer (CRC). IL-17 expression was
evaluated by immunohistochemistry on a tissue microarray (TMA) including 1151 cases of primary CRC. (A) Representative pictures of IL-17 staining
I (see ‘Materials and methods’). Numbers of IL-17+ cells per punch are indicated. (B) Distribution of IL-17+ cells within the epithelial or stromal
fraction of healthy colonic tissues (Ctr) or tumour samples (T). Statistical significance was assessed by χ2 test. (C) Kaplan–Meier curves illustrating
overall survival (OS, left panel) and relapse-free survival (RFS, right panel) probability according to IL-17+ cell density. Numbers of deaths/total cases
within each category are indicated. Statistical significance was assessed by log-rank test. (D) Numbers of IL-17+ cells within CRC cases characterised
by low or high infiltration of CD16+, MPO+ and CD8+ cells, according to cut-off scores identified by receiver operating characteristic curve analysis,
as described in ‘Materials and methods’. Statistical significance was assessed by χ2 test. MPO, myeloperoxidase.
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CRC-infiltrating IL-17+ cells consist of Th17 cells
We next assessed phenotypes of CRC-infiltrating IL-17+ cells,
in freshly isolated clinical specimens, by flow cytometry
(figure 2). IL-17 production was exclusively observed within
CD3+ T cells, whose large majority expressed CD4, CD45RO
and CCR6 (figure 2A, B). Interestingly, 27±24% of infiltrating
IL-17+ cells also expressed Foxp3 (figure 2A, B). Sporadically,
IL-17+ CD8+ T cells were detected (figure 2A, B).

Large proportions of γδT cells and CD66b+ neutrophils (up
to 24±5% and 13±9%, respectively) were detectable, but only
a minor fraction (<1%) of those cell types showed evidence of
IL-17 production. CD56+NK, Vα24/Jα18TCR+NKT and CD3
−CD127+ LTi-like cells were detected in limited numbers
and did not include significant fractions of IL-17+ cells (figure
2A, B). Evaluation of absolute cell numbers confirmed that
the large majority of IL-17+ cells were CD3+ cells (see online

supplementary figure S3). Thus, CRC-infiltrating, IL-17-
producing cells mainly consist of memory Th17.

Th17 frequencies were significantly higher in tumours than in
corresponding healthy tissues or autologous PBMC, whereas no
significant difference was observed between PBMC of patients
with CRC and HD (figure 2C).

Importantly, a significant fraction of CRC-infiltrating Th17
also produced TNF-α, IL-21, IL-22, GM-CSF, IFN-γ, and IL-8
(figure 2D, E). Th17 clones expanded from CRC-infiltrating
CD4+ T cells (CRC-Th17) also released TNF-α, IL-21, IL-22,
GM-CSF, IFN-γ and IL-8, in addition to IL-17 (see online sup-
plementary figure S4), thus indicating that CRC-infiltrating
Th17 are polyfunctional effector cells.

CRC-Th17 mediate protumorigenic effects in an
IL-17-dependent manner
The lack of association between IL-17-producing cells and
unfavourable clinical outcome was an unexpected finding con-
sidering the suggested protumorigenic activity of IL-17.7 8

This prompted us to investigate the functional properties of
CRC-Th17.

We conditioned CRC, endothelial cells (EC) and TASC with
supernatants obtained from CRC-Th17 clones or bulk popula-
tions. No significant effects on cell proliferation were detected
(see online supplementary figure S5). VEGF production by CRC
cells was slightly increased by Th17 supernatants and it was
inhibited upon IL-17 neutralisation (figure 3A and see online
supplementary figure S6A). IL-6 release by EC and TASC was
strongly induced by Th17 supernatants in an IL-17-dependent
manner (figure 3B and see online supplementary figure S6B).
Thus, IL-17 released by CRC-Th17 cells appears to mediate
protumorigenic effects mainly by acting on EC and TASC.

CRC-Th17 promote neutrophil recruitment and activation
We next investigated the molecular background underlying the
association between Th17 and CD16+MPO+ myeloid cells or
CD8+CTLs. The phenotypic analysis ruled out the possibility
that neutrophils or CTLs could be the IL-17 producers.
Alternatively, we investigated whether Th17 cells may recruit
these cell populations into tumour tissues either directly or by
eliciting chemokine release by stromal cells.33 34

Neutrophils are known to migrate in response to IL-8.
Indeed, supernatants from CRC-Th17 clones and bulk popula-
tions induced vigorous neutrophil migration in an
IL-8-dependent manner (figure 4A and see online supplemen-
tary figure S7A, respectively), whereas other Th17 cytokines,
including IL-17 and GM-CSF, appeared to play no role in this
phenomenon (figure 4A and see online supplementary figure
S7B). Interestingly, exposure of neutrophils to Th17 superna-
tants also significantly enhanced MPO release, independently of
IL-17, IL-8 or GM-CSF (figure 4B and see online supplemen-
tary figure S7C). Thus, CRC-Th17 might directly promote neu-
trophil recruitment and activation into CRC.

CRC-Th17 favour CTL recruitment by triggering chemokine
release from EC
In line with previous findings,35 circulating and tumour-
infiltrating CTLs were found to express CCR5 and CXCR3
receptors (figure 5A), enabling them to respond to CCL5 and
CXCL9/CXCL10, respectively.

These chemokines were all expressed on whole CRC tissues
(figure 5B). Upon sorting of tumour, stromal and EC from spe-
cimens, CCL5 and CXCL10 were expressed at the highest level
within the endothelial compartment (figure 5C), whereas no

Table 1 Association of IL-17 lymphocyte count and
clinicopathological features in CRC (n=1148)

Clinicopathological features

IL-17* lymphocyte count

p ValueMedian/mean Min–max

All 3/13.8 0–350
Tumour location
Right-sided 3/12.6 0–200 0.94†
Left-sided 3/14.3 0–332 0.13‡
Rectum 4/13.7 0–350

MMR status
Proficient 3/13.6 0–350 0.18
Deficient 4/14.5 0–167

pT stage
pT1–2 5.5/15.1 0–150 0.03
pT3–4 3/13.7 0–350

pN stage
pN0 4/15.5 0–350 0.03
pN1–2 3/12.3 0–350

Tumour grade
G1–2 4/14.2 0–350 0.01
G3 2/12.1 0–200

Vascular invasion
Absent 4/15.1 0–350 0.03
Present 3/10.7 0–250

Tumour border
Pushing 4/12.3 0–250 0.78
Infiltrating 3/14.9 0–350

Peritumoral lymphocytic inflammation
Absent 3/13.4 0–350 <0.001
Present 7.5/15.8 0–250

Local recurrence
Absent 1/8.5 0–350 0.35
Present 1/6.1 0–200

Distant metastasis
Absent 1/8.2 0–350 0.10
Present 1/3.8 0–30

Death
Censured 3/14.1 0–350 0.5
Present 4/13.8 0–332

p Value calculated according to the Mann–Whitney test. Significant p values are
shown in bold.
*As assessed by staining I (see ‘Materials and methods’).
†Right-sided versus left-sided.
‡Right-sided or left-sided versus rectum.
CRC, colorectal cancers; IL, interleukin; MMR, mismatch repair.
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CXCL9 was detected. EC exposure to CRC-Th17 supernatants
strikingly enhanced their ability to release CCL5 and CXCL10
(figure 5D) and to promote CTL migration (figure 5E). Notably,
these effects were not elicited by IL-17, nor were they inhibited
after IL-17 neutralisation, but instead appeared to depend on
Th17-derived TNF-α (figure 5F, G and see online supplementary
figure S8). Thus, Th17 may favour CTL recruitment into CRC
by triggering chemokine release from tumour-associated EC.

CRC-Th17 directly attract CTLs in vitro
Intriguingly, we observed that supernatants from CRC-Th17
bulks and clones significantly induced CTL migration also in the
absence of EC (figures 5E, 6A and see online supplementary
figure S9A), thus suggesting that Th17 may release chemoattrac-
tants directly acting on CTLs.

In CRC-Th17 supernatants we detected significant amounts
of CCL5, in addition to CCL20, a known Th17-derived

Figure 2 Colorectal cancers (CRC)-infiltrating interleukin (IL)-17+ cells are polyfunctional Th17. Single cell suspensions from freshly excised clinical
specimens of CRC and corresponding tumour-free colonic mucosa (Ctr) and peripheral blood mononuclear cells from healthy donors (PBMC HD) or
patients with CRC (PBMC Pz), were incubated with phorbol 12-myristate 13-acetate (PMA)/ionomycin/brefeldin for 5 h. Surface staining for specific
cell population markers and intracellular staining for Foxp3 and cytokines was then performed. (A) Representative flow cytometric analysis of CRC
infiltrates stained for IL-17 and the indicated cell-specific markers. Tumour-infiltrating cells are gated based on physical parameters, as defined by
analysis of autologous PBMC. (B) Frequencies of cells positive for the indicated markers within gated IL-17+ cells. Means are indicated by bars.
Numbers of samples evaluated for each marker are indicated in parentheses. (C) Frequencies of IL-17+ cells on gated CD3+ T cells obtained from
PBMC HD or PBMC CRC and single cell suspensions from freshly excised clinical specimens of Ctr and corresponding CRC. Means are indicated by
bars. Numbers of samples evaluated for each marker are indicated in parentheses. Statistical significance was assessed by t test. (D) Representative
flow cytometric analysis of intracellular cytokine staining on gated CRC-infiltrating CD3+CD4+ cells. (E) Frequencies of cells positive for the indicated
cytokines gated on CD3+CD4+ IL-17+ T cells. Means are indicated by bars. Numbers of samples evaluated for each cytokine are indicated in
parentheses. GM-CSF, granulocyte-macrophage colony stimulating factor; IFN, interferon; TNF, tumour necrosis factor.
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chemokine (figure 6B and see online supplementary figure S9B).
CTL migration was marginally impaired by CCL5 depletion,
whereas it was markedly reduced upon CCL20 removal (figure
6C). However, CCL5 increased CTL migration to low CCL20
concentrations (figure 6D), thus revealing a synergism between
these two chemokines. CCR6, the receptor for CCL20, was
expressed on a subset of CRC-infiltrating CTLs (figure 6E).
Frequencies of CCR6+CTLs were significantly higher in CRC
than in autologous control tissues or PBMC (figure 6E).
Importantly, most CCR6+CTLs (up to 62±10%) also expressed
CCR5 (figure 6F). Furthermore, CCR5+CCR6+CTLs were
positive for TIA-1 (figure 6F), a cytotoxic granule-associated,
RNA-binding protein whose expression by CRC-infiltrating
CTLs is associated with survival advantage.28 Thus, through
CCL5 and CCL20 CRC-Th17 target highly cytotoxic T cells.

CRC-Th17 cells promote CTL recruitment into CRC tissues
We next assessed whether Th17-mediated effects might be rele-
vant for CTL recruitment into tumours.

We engineered tridimensional tumour-like tissues by culturing
HT29 cells on collagen scaffolds in perfused bioreactors31 36

(see online supplementary figure S10A, B). CRC-Th17 were

added into the system under perfusion, allowing their localisa-
tion in proximity of tumour nests (see online supplementary
figure S10C) and were subsequently activated (figure 7A).
Perfusion was then stopped and CTLs were applied. After an
overnight incubation, tumour infiltration by CTLs was evaluated
(figure 7B, C and see online supplementary figure S10D). CTLs
were found in tumour-like tissues, in proximity of tumour cells
(figure 7B) and their frequencies were significantly higher in the
presence of activated CRC-Th17 (figure 7C).

Accordingly, when CTLs were adoptively transferred in
tumour-bearing mice together with Th17, significantly higher
numbers of tumour-infiltrating CTLs were detected as compared
with mice transferred with CTLs alone (figure 7D). Thus,
CRC-Th17 directly attract CTLs into tumours.

These findings suggested that CRC-Th17 localised into the
tumour nests might play a beneficial role by recruiting CTLs
close to tumour cells. Indeed, when we evaluated the prognostic
significance of IL-17+ cells according to their localisation, the
presence of intraepithelial, but not of stromal IL-17+ cells, posi-
tively correlated with absence of local recurrence and prolonged
relapse-free survival (see online supplementary table S2 and
figure 8).

Figure 3 Colorectal cancers (CRC)-Th17 mediate protumorigenic effects in an interleukin (IL)-17-dependent manner. Endothelial cells (EC),
tumour-associated stromal cells (TASC) and CRC cell lines (LS180, COLO205) were conditioned for 24 h with CRC-Th17 supernatants untreated (Th17
SN) or pretreated with anti-IL-17 neutralising antibodies (Th17+ anti-IL-17). Vascular endothelial growth factor (VEGF) (A) or IL-6 (B) release was
measured in culture supernatants by ELISA. Statistical significance was analysed by one-way analysis of variance. Data refer to experimental
triplicates from two independent experiments performed with supernatants from two different clones. Ctr, healthy colonic tissue.
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DISCUSSION
The goal of our study was to investigate the clinical relevance
of CRC-infiltrating, IL-17-producing cells in a large patient
cohort and to characterise in detail their phenotypes and
functional properties. Upon analysis of >1000 primary CRC
cases, we found that CRC-infiltrating IL-17+ cells are not
themselves predictive of patient survival but, their prognostic
significance rather appears to depend on their localisation
within CRC tissue. Indeed, intraepithelial, but not stromal
IL-17+ cells, were associated with improved prognosis. Ex
vivo analysis showed that tumour-infiltrating, IL-17-produ-
cing cells mostly consist of polyfunctional Th17, releasing a
spectrum of cytokines and chemokines, in addition to IL-17.
Through IL-17, CRC-Th17 triggered the release of protu-
morigenic factors mainly by tumour-associated stroma.
However, by releasing additional chemokines, they also
appeared to contribute to the recruitment of beneficial
effector cells into tumours. In particular, through IL-8 they
promoted the recruitment of CD16+ MPO+ neutrophils.
Most importantly, through CCL5 and CCL20, they attracted
cytotoxic CTLs into tumour nests. Accordingly, in our patient
cohort, CRC infiltration by Th17 cells correlated with that by
neutrophils and CTLs.

Based on these findings, the lack of association between total
numbers of Th17 cells and prognostic significance is not surpris-
ing. Indeed, the potentially negative impact of IL-17 is probably
counterbalanced by recruitment of beneficial effector cells. In
previous reports, however, an association between total IL-17+
infiltrates and unfavourable clinical outcome was observed.7 8

Although a few differences in the protocol used in our study as
compared with others must be acknowledged (ie, in our work
IL-17 positivity was assessed by three independent observers,
whereas in the study by Tosolini et al8 the TMA staining was
quantified by image software), the discrepancy between ours
and previous studies probably relies on the different numbers of
cases evaluated (527 and <2008 vs 1148). Notably, we obtained
comparable results upon TMA staining with two different
IL-17-specific antibodies.7 8

Importantly, our study reveals a previously unrecognised posi-
tive prognostic significance of intraepithelial Th17 cells, suggest-
ing a critical contribution of these cell subsets to the
recruitment of CTLs and neutrophils into tumour nests.

IL-17-production by CD4+ cells has been previously
reported in CRC.37–39 However, whether other cell types may
also contribute to IL-17 release within CRC tissues remained to
be assessed. We observed that most IL-17+ cells are CD3+
CD4+ T cells, expressing CD45RO and CCR6 and including a
subset of Foxp3+ cells. In contrast, no significant IL-17 produc-
tion was seen within other cell subsets, including CTLs and
innate lymphoid and myeloid cell populations.

IL-17-producing Foxp3+ cells were previously described
within CRC tissues,37 38 40 but their functional role remains
unclear. Remarkably, CRC infiltration by Tregs correlates with
prolonged patient survival.2 3

A recent study reported γδT cells as a major IL-17 source in
human CRC.41 We also observed considerable percentages of
γδT cells within CRC infiltrates, but only a negligible fraction of
them showed IL-17 production ability. However, the patients
examined in the study by Wu et al41 and in our study belong to
two different ethnic and geographical groups (ie, China and
Switzerland, respectively), therefore probably differing in the
composition of their gut flora.42 This may be of relevance when
considering cell populations, such as γδT and Th17 cells, whose
function is modulated by defined microbiota.22 43 44 Thus, this
discrepancy may be due to the presence, in the patients evalu-
ated, of distinct gut microbial species, possibly driving preferen-
tial expansion of IL-17-producing γδTor Th17 cells.

The ability of Th17 to recruit effector cells appears to be
dependent on their capacity to release cytokines other than
IL-17. Indeed, Th17 supernatants promoted neutrophil recruit-
ment in an IL-8-dependent fashion and enhanced secretion of
MPO, a lysosomal enzyme possibly involved in the mechanisms
underlying the favourable effect of MPO+ neutrophils in
CRC.4 In addition, CRC-Th17 supernatants activated tumour-
associated EC to release CCL5 and CXCL10, attracting CTLs.
Importantly, tumour-infiltrating Th17 proved capable of directly

Figure 4 Colorectal cancers (CRC)-infiltrating Th17 favour recruitment and activation of neutrophils. (A) Migration of neutrophils, purified from
blood of healthy donors, towards control medium (Ctr), supernatants of Th17 clones expanded from CRC-infiltrating cells (Th17 SN) or Th17
supernatants pre-treated with anti-interleukin (IL)-17 (Th17 SN+ anti-IL-17), anti-IL-8 (Th17 SN+ anti-IL-8), or anti-granulocyte-macrophage colony
stimulating factor (anti-GM-CSF antibodies) (Th17 SN+ anti-GM-CSF), was evaluated after 90 min incubation by flow cytometry. Data refer to
experimental triplicates from three independent experiments performed with supernatants from three different clones. Means±SD are depicted.
Statistical significance was assessed by one-way analysis of variance (ANOVA). (B) Myeloperoxidase (MPO) release by neutrophils exposed to control
medium (Ctr), Th17 supernatants (Th17 SN) or Th17 supernatants pretreated with anti-IL-17, IL-8 or GM-CSF antibodies was assessed after 4 h
incubation by ELISA. Means±SD are depicted. Data refer to experimental triplicates from three independent experiments performed with
supernatants from three different clones. Statistical significance was assessed by one-way ANOVA.
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Figure 5 Th17 cells favour recruitment of CD8+ T cells by triggering chemokine release from endothelial cells (EC). (A) Peripheral blood cells (PB,
n=7) and tumour cell suspensions from patients with colorectal cancer (CRC) (n=12) were surface stained for CD8 in combination with the indicated
chemokine receptors. Left panels: representative flow cytometric analysis. Right panels: percentages of CD8+ cells expressing the indicated
chemokine receptors. Means±SD are depicted. (B) The expression of the indicated chemokine genes was assessed on CRC samples (n=21) by
quantitative PCR. Expression levels relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are depicted. (C) Endothelial, tumour and stromal
cells were sorted from cell suspensions derived from CRC specimens by flow cytometry, based on CD31, EpCAM and CD90 expression, respectively.
mRNA levels of the indicated chemokine genes were assessed in sorted cells by quantitative PCR. Gene expression levels relative to GAPDH are
depicted. Data refer to analysis of one representative sample out of four. (D) Chemokine release by HMEC cells untreated (EC) or exposed overnight
to recombinant interleukin-17 (rIL-17; 50 ng/mL) (EC+IL-17) or to Th17 clone supernatants (EC+Th17 SN), was measured by ELISA. Chemokine
content in Th17 SN was also assessed as control. Data refer to experimental triplicates from three experiments performed with three different clones
from one patient. Means±SD are depicted. Statistical significance was assessed by one-way analysis of variance (ANOVA). (E) Migration of CD8+ T
cells, purified from peripheral blood mononuclear cells (PBMC) of healthy donors, towards supernatants of HMEC cells untreated (EC), or exposed to
rIL-17 (50 ng/mL) (EC+IL17) or Th17 supernatants (EC+Th17), was assessed after 90 min of incubation by flow cytometry. Migration towards Th17
supernatants (Th17 SN) was also assessed as control. Data refer to experimental triplicates from three experiments performed with three different
clones from one patient. Means±SD are depicted. Statistical significance was assessed by one-way ANOVA. (F and G) Chemokine contents (F) and
cytotoxic T lymphocyte (CTL) chemoattraction capacity (G) of supernatants from HMEC cells untreated (EC), exposed overnight to Th17 supernatants
(EC+Th17 SN), or exposed to Th17 supernatants pretreated with anti-IL-17 (EC+Th17+anti-IL-17) or anti-tumour necrosis factor α (anti-TNF-α)
antibodies (EC+Th17+anti-TNF-α). Data refer to three experiments performed with supernatants of Th17 bulk populations derived from three
different samples. Means±SD are depicted. Statistical significance was assessed by one-way ANOVA.
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recruiting highly cytotoxic TIA-1+ CCR5+ CCR6+ CTLs
through own production of CCL5 and CCL20. Interestingly,
CCL5 and CCL20 appeared to synergise. Although CCL5 could
not itself induce CTL migration, it could increase CTL response
to low CCL20 concentrations.

In a melanoma mouse model, Th17 have been previously
shown to favour tumour infiltration by CTLs, ultimately mediat-
ing tumour eradication.45 46 These in vivo models, however,
could not discriminate between direct and indirect effects of
Th17 on CTL recruitment. Therefore, to assess the relevance of

the direct Th17-mediated effects on CTLs, we took advantage
of an engineered tridimensional tumour tissue infiltrated by
Th17 cells, in the absence of EC. Furthermore, we adoptively
transferred human CTLs and Th17 in immunodeficient mice
bearing human tumour xenografts. Strikingly, in both experi-
mental systems, the presence of activated Th17 cells markedly
enhanced CTL recruitment into the tumour.

These data suggest that Th17 cells may promote tumour infil-
tration by CTLs through a double axis: on the one hand, they
might favour EC activation leading to CTL recruitment from the

Figure 6 Th17 cells directly attract
cytotoxic CD8+ T cells. (A) Migration
of CD8+ T cells towards control
medium (Ctr) or supernatants of two
different colorectal cancer (CRC)-Th17
clones (Th17.15 SN and Th17.71 SN),
was assessed after 90 min incubation
by flow cytometry. (B) Chemokine
release by Th17 clones (Th17.15 and
Th17.71), activated with plate bound
anti-CD3 and soluble anti-CD28
antibodies for an overnight period, was
measured by ELISA. Means±SD of
experimental triplicates are depicted.
(C) Migration of CD8+ T cells towards
Th17 clone supernatants depleted of
CCL5 (Th17 SN−CCL5), CCL20 (Th17
SN−CCL20) or both (Th17 SN−CCL5
−CCL20), relative to control (migration
towards untreated Th17 supernatants).
(D) Migration of CD8+ T cells towards
Th17 clone supernatants (Th17 SN) or
towards low or high doses of
recombinant CCL20 (300 and 1000 ng/
mL, respectively) and CCL5 (60 and
200 ng/mL, respectively). (A–D) Means
±SD from experimental triplicates are
depicted. One representative
experiment out of two is shown.
Statistical significance was assessed by
one-way analysis of variance (ANOVA).
(E) Representative flow cytometric
analysis of CRC infiltrates stained for
CD8 and CCR6 markers (left panel).
Frequencies of CCR6+CD8+ T cells
were measured by flow cytometry in
peripheral blood mononuclear cells of
healthy donors (PBMC HD n=7) or
patients with CRC (PBMC Pz n=12)
and in single cell suspensions from
freshly excised clinical specimens of
tumour-free colonic mucosa (Ctr) and
corresponding CRC (n=12). Means are
indicated by bars. Statistical
significance was assessed by t test. (F)
Left and middle panels: representative
flow cytometric analysis of
CRC-infiltrating CD8+ T cells stained
for CCR6, CCR5 and TIA-1. Right
panel: frequencies of CCR6+ CCR5+
cells within TIA-1- or TIA-1+
CRC-infiltrating CD8+ T cells (n=7).
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Figure 7 Th17 cells promote recruitment of cytotoxic CD8+ T cells into colorectal cancer (CRC) tissues. (A) CRC-Th17-infiltrating engineered tumour
tissues (see online supplementary figure S10) were left untreated or were activated by adding CytoStim to the perfusion medium. Culture media were
collected 20 h later and chemokine contents were assessed by ELISA. Statistical significance was assessed by Mann–Whitney test. (B and C) Three hours
after Th17 activation, the perfusion in the bioreactor was stopped and CD8+ T cells were added to the system. After an overnight period, scaffolds were
removed and tumour infiltration by CD8+ T cells was evaluated by immunofluorescence analysis upon staining with CD4- and CD8-specific antibodies (B)
and by flow cytometry upon staining of single cell suspensions with EpCAM-, CD4- and CD8-specific antibodies (C). Percentages of CD8+ cells in tumour
tissues infiltrated by resting or activated Th17 cells are reported. Means±SD from three experimental replicates performed with one Th17 clone are
depicted. Statistical significance was assessed by Mann–Whitney test. (D) CSFE+CD8+ T cells were adoptively transferred in tumour bearing mice alone
or together with equal numbers of CRC-Th17 (four mice/condition). Absolute numbers of CD8+CSFE+ T cells were evaluated by flow cytometry upon
staining of tumour and Th17 cells with anti-EpCAM and anti-CD4 antibodies, respectively. Statistical significance was assessed by Mann–Whitney test.

Figure 8 Intra-epithelial localisation of interleukin (IL)-17+ cells correlates with prolonged relapse-free survival (RFS) survival. Kaplan–Meier curves
illustrating RFS probability according to infiltration by IL-17+ cells within the epithelial (left panel) or stromal (right panel) compartment. Numbers
of deaths/total cases within each category are indicated. Statistical significance was assessed by log-rank test.
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blood stream, on the other, they might directly guide the posi-
tioning of CTLs in proximity of tumour cells. Altogether our
data reveal a positive contribution of Th17 cells to beneficial anti-
tumour immune responses developing in CRC and underline
their pleiotropic function resulting from the production of a
broad spectrum of cytokines and chemokines beyond IL-17.

This may, at least partially, explain the discrepancies between
results obtained from studies evaluating the effects of IL-17 or
IL-17 signalling only and those examining functions of the
whole Th17 cell subset.47–50

Our findings have important clinical implications. Indeed, the
positive contribution of Th17 to anti-tumour immune responses
should not be disregarded when developing new IL-17/Th17
targeted treatments in CRC, possibly resulting in impaired
tumour infiltration by beneficial effector cells.
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