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1 List of abbreviations 

 

5`UTR 5`untranslated region 

A. thaliana Arabidopsis thaliana 

Ac/Ds Activator/Dissociation 

AGO ARGONOUTE 

AP aspartic proteinase 

ATRX5 or 6 ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 or 6 

AZA 5-azacytidine 

BARE-1 or 2 Barley Retro Element-1 or 2 

CMT3 CHROMOMETHYLASE3 

CS control stress (24h @ 6°C + 24h @ 24°C) 

CTD c-terminal domain 

DCL DICER-LIKE 

DDM1 DECREASE IN DNA METHYLATION 1 

DDT dichlorodiphenyltrichloroethane 

DNMtase DNA methyltransferase 

DRM DOMAINS REARRANGED METHYLASE 

dsRNA double stranded RNA 

E. coli Escherichia coli 

eccDNA extrachromosomal circular DNA 

ecDNA extrachromosomal complementary DNA 

EMS ethylmethansulfonat 

epiRIL epigenetic recombinant inbred line 

EU European Union 

EuGH Europäischer Gerichtshof (European Court of Justice) 

FWA FLOWERING WAGENINGEN 

GMO genetically modified organism 

H3K27m histone 3 lysine 27 methylation 

H3K9 histone 3 lysine 9 

H3K9m2 histone 3 lysine 9 di-methylation 

HDA6 HISTONE DEACETYLASE 6 

HRE heat response element 

HS heat stress (24h @ 6°C + 24h @ 37°C) 

IN integrase 

IRAP inter retrotransposon amplified polymorphism 
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KYP KRYPTONITE 

LARD large retrotransposon derivative 

LINE long interspersed nuclear element 

M. domestica Malus domestica 

mC 5-methylcytosin 

MET1 METHYLTRANSFERASE1 

NRPB (Pol II) RNA polymerase II  

NRPB1 or 2 RNA polymerase II subunit 1 or 2 

NRPD (Pol IV) RNA polymerase IV 

NRPE (Pol V) RNA polymerase V 

O. sativa Oryza sativa 

ORF open reading frame 

PBS primer binding site 

PSC Zürich-Basel Plant Science Center 

PTGS post transcriptional gene silencing 

PTT polypurine tract 

RdDM RNA-directed DNA methylation 

RDR RNA-DEPENDENT RNA POLYMERASE 

retroTE retrotransposon 

RH RNaseH 

RT reverse transcriptase 

sidRNA dicer independent small RNA 

SINE short interspersed nuclear element 

siRNA small interfering RNA 

SUVH SUPPRESSOR OF VARIEGATION 3–9 

HOMOLOGUE 

TALEN transcription activator-like effector nuclease 

TE transposable element 

TIR terminal inverted repeat 

TRIM terminal-repeat retrotransposons in miniature 

TSD target site duplication 

TSS transcriptional start site 

VLP virus-like particle 

Z zebularine 

ZFN zinc finger nuclease 
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2 Summary 

Environmental stresses can trigger the activation and amplification of retrotransposons 

(retroTEs) in eukaryotes. The mobilization of retroTEs via their characteristic copy and 

paste mechanism, known to induce (epi)genetic diversity, is one the major drivers of 

genome evolution in plants and possibly most eukaryotes. Due to their potential as 

powerful mediators of adaptation to different environmental conditions, retroTEs are 

increasingly gaining attention as an endogenous genetic resource that could be 

harnessed for plant breeding. However, as transposition can also lead to detrimental 

mutations, retroTE mobility is normally limited by sophisticated silencing pathways 

implemented by their hosts.  

In this work, I uncover the role of RNA polymerase II (Pol II) as a key regulator of 

retroTE-activity. By using two different inhibitors that specifically target the initiation of 

TE-silencing in plants, I was able to mobilize a stress responsive retroTE in Arabidopsis 

and thus opened up the so far sealed (epi)genetic resource of retroTEs for plant 

breeding. Due to the observation that the treatment with the two inhibitors also 

mobilized a retroTE in the distantly related rice crop, I conclude that this approach 

could in principle be used to mobilize retroTEs in virtually any plant.  

Besides major advances in the field of epigenetics and retroTE- silencing, this work 

indeed provides the basis for a completely new approach that has also been patented 

and already commercialized in a start-up company. Thus, the second part of this thesis 

is thematically situated at the interface of science & innovation and science & policy. 

The described measures taken to communicate and discuss this new breeding 

approach form the basis for the futures public debate on the topic. 
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3 General introduction 

Prior to the groundbreaking discovery of transposable elements (TEs) by Barbara 

McClintock (McClintock 1950) in the mid of the 20th century, the genetic information 

encoding for a certain phenotype had been assumed to be organized in a 

unidimensional and static way. Challenging this generally accepted theory, 

McClintocks observation of unmappable “mutable” loci underlying the highly diverse 

variegated kernel color of maize, initially did not attract a great deal of attention. Today 

it is known that the presence of potentially mobile genetic elements, like the Ac/Ds 

system discovered by McClintock, is the rule rather than the exception. Indeed, TEs 

have been detected in all organisms tested so far and in some extreme cases like 

maize and barley they make out more than 80% of the genome (Schnable et al. 2009; 

Wendel et al. 2016).  

In stark contrast to their previous image as “parasitic elements” or “junk DNA” (Ohno 

1972), increasing knowledge in the field of TE-research has rather revealed a multitude 

of cases illustrating their indispensable function during development, response to 

environmental triggers and as drivers of evolution. Apart from a multitude of examples 

found in plants, prominent findings from other kingdoms of life including humans are 

completing the latest image of TEs as vital basic modules of life (Chuong et al. 2017). 

For instance, the analysis of the genome of the black truffle (Tuber melanosporum) 

genome revealed a high number of unsilenced, active TEs in this species. Based on 

this observation the authors concluded this to be a mechanism to actively promote 

genome plasticity that allows truffle to adapt to sudden environmental changes 

(Montanini et al. 2014). Another striking example for the adaptive potential of mobile 

elements was found in Drosophila, where the insertion of a TE upstream of a 

cytochrome P450-gene underlies the emergence of insecticide (DDT)-resistant 

individuals (Chung et al. 2007). In humans there is increasing evidence for the pivotal 

role of TEs during fundamental developmental processes such as neurogenesis that 

ultimately allowed for the evolution of the enormous complexity of the human brain 

(Erwin et al. 2014). Consistent with the importance of TEs in developmental processes, 

more and more studies report on for the fatal consequences of misregulated TEs in 

humans. Thus, TEs and particularly LINE-1-elements are currently attracting great 

attention in cancer research (Burns 2017). 
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Against the background of the versatile functions of TEs that are partially based on 

highly conserved principles, I will hereafter focus on TEs and more specifically 

retrotransposons (retroTEs) in plants. 

 

3.1 Transposable elements in plant genomes  

 Life cycle and general classification 

Depending on the mechanism of transposition, TEs are assigned to two major classes. 

Class I TEs are evolutionary closely related to retroviruses and also referred to as 

retrotransposons (retroTEs). These elements fully depend on transcription by the host 

RNA polymerases II (Pol II) - or in special cases Pol III - and amplify themselves via 

an RNA intermediate resulting in a “copy and paste” transposition. In contrast, class II 

elements, also known as DNA-transposons, transpose without producing an RNA-

intermediate, usually resulting in a “cut and paste” movement. Because of the 

increasing taxonomical complexity of known TEs, a regularly updated classification 

system is required (Piegu et al. 2015). However, in general, both main classes of TEs 

can be further subdivided according to their distinct structural and enzymatic 

characteristics.  

For retroTEs, the main criterion for differentiation is the presence or absence of two 

long terminal repeats (LTRs) with the same orientation at the 5`and 3`end of the 

transposing unit. Plant LTR-retroTEs can range in size from less than 1 kb to up to 22 

kb (Ogre element in pea) (Neumann et al. 2003). The LTRs, 0.085 kb-  5 kb in length 

(Zhao et al. 2016), contain both regulatory regions and the transcriptional start site 

(TSS) needed for transcription of the TE by the host Pol II (Fig. 1) (Grandbastien 2015). 

Transcripts originating from the 5´ LTR play two important roles in the retroTE life cycle. 

On one hand, they code for the retroTE-replication machinery or polyprotein (POL) 

consisting of the aspartic proteinase (AP), the reverse transcriptase (RT), the 

ribonuclease RNaseH (RH), the integrase (INT) and for the structural GAG capsid 

proteins that form a virus-like particle (VLP) (Grandbastien 2015). On the other hand, 

they serve as the template for reverse transcription resulting in extrachromosomal 

complementary retroTE-DNA (ecDNA) that is potentially capable to enter the nucleus 

and to integrate into genomic DNA (Schulman 2013). As transcription of LTR-retroTEs 

starts and ends within the LTRs, the region upstream of the TSS in the 5` LTR and 
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downstream the terminator site in the 3´ LTR is missing in the initial transcript that 

serves as a template for reverse transcription (Fig. 1). Hence, these regions would get 

lost unless restored in a complex mechanism during cDNA synthesis. Based on the 

homology of the two LTRs, retroTEs have evolved a mechanism to restore missing 

sequence information at both extremities of the LTRs using the homolog sequence that 

adjoins the internal domain of the TE. Two specific domains are crucial during this 

process: primer binding site (PBS) and polypurine tract (PPT) (Schulman 2013) (Fig. 

1).  

Depending on the sequential arrangement of the protein domains in the TE-body, LTR-

TEs are further subdivided into Ty1-copia (Pseudoviridae) and Ty3-gypsy 

(Metaviridae)- retroTEs (Wicker et al. 2007) (Fig. 1).  

 

 

 

 

Figure 1 Schematic representation of the structure of copia and gypsy- like 

LTR-retrotransposons in plants. Upon activation, often mediated by regulatory 

motifs (green asterisks) located in the LTRs, transcription by the host Pol II starts at 

the transcriptional start sides (TSSs) that are located within in the 5´- and the 3´-LTR 

of the TE. Transcription from the 5´ LTR generates template transcripts that are 

either translated into the GAG capsid protein (gag), the polyprotein consisting of the 

aspartic proteinase (ap), the integrase (int), the reverse transcriptase (rt) and the 

RNaseH (rh) or used as a template for reverse transcription into TE- cDNA. The 

primer binding site (PBS) and the polypurine tract (PPT) are indicated. Transcription 

originating in the 3´ LTR generates read-out RNA of flanking genomic regions. 

Depending on the sequential arrangement of int, rt and rh LTR retrotransposons are 

subdivided into copia and gypsy-like elements. Adapted from (Grandbastien 2015; 

Wicker et al. 2007). 
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While intact copia and gypsy– like retroTEs code for all domains needed for their 

transposition, several additional non-autonomous LTR-retroTEs are known in plants. 

These include LARDs (Large Retrotransposon Derivatives) (Kalendar et al. 2004) 

TRIMs (Terminal-Repeat Retrotransposons In Miniature) (Witte et al. 2001) and 

SMARTs (Small LTR Retrotransposons) (Gao et al. 2012). All three families lack the 

coding regions needed to produce their own replication machinery. Instead, they carry 

an internal non-coding region that ranges in size from less than 0.3 kb (SMARTs and 

TRIMS) to up to 3.5 kb (LARDS). For their replication, these elements depend on 

proteins encoded by related autonomous elements. A descriptive case of this kind of 

functional trans-compensation of domains between related retrotransposons was 

shown for the BARE-1 and 2 copia-like LTR-retroTEs in barley. Due to a mutation in 

the open reading frame (ORF) of its structural GAG protein, BARE-2 itself is considered 

to be non-autonomous. However, thanks to a high degree of homology, the BARE-2-

retroTE can utilize BARE-1-GAG to fulfill its own lifecycle (Tanskanen et al. 2007). 

Although possibly biased by different class-dependent approaches of transposon 

annotations, retroTEs and more precisely LTR-retroTEs usually represent the largest 

class of TEs in currently known plant genomes (Fig. 2) (Vitte et al. 2014). 

Non-LTR retroTEs in plants are represented by autonomous LINEs (long interspersed 

nuclear elements) and non-autonomous SINEs (short interspersed nuclear elements 

(Schmidt 1999). Transcription of LINEs is driven by an internal Pol II promoter located 

within in the 5´ UTR, making the process of self-amplification less complex. LINEs 

generally don`t code for structural capsid proteins such as the GAG. Rather, they use 

an RNA-binding protein that assembles together with the RT and RH to form a 

ribonucleoprotein instead of a VLP. Furthermore, the mechanism of integration differs 

between LTR and non-LTR elements. While reverse transcription of LTR-retroTEs 

takes place in the cytoplasm and is hence spatially separated from integration, LINE-

elements integrate by target-primed reverse transcription and without making use of 

an integrase (Schulman 2013). In contrast to all previously described TEs, SINEs are 

derived from RNA-polymerase III transcripts such as 5S RNAs, 7SL RNA and tRNAs. 

They carry an internal Pol III promoter for transcription but depend on autonomous 

LINE-elements for their proliferation (Schulman 2013; Sun et al. 2007; Wenke et al. 

2011).  
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According to the current classification, DNA transposons generally comprise elements 

that do not rely on an RNA-intermediate for their transposition. With few exceptions 

such as Helitrons that transpose in a rolling circle-like mechanism (Kapitonov and 

Jurka 2001) the vast majority of class II elements in plants move through “cut and 

paste”, hence in a conservative mode of transposition. For this purpose, they solely 

encode for a single protein called the transposase. Analogous to the LTRs of class I 

elements, the internal region of DNA transposons is flanked by two terminal inverted 

repeat (TIR) sequences that are essential for transposition. The transposase catalyzes 

both the excision and the ligation of the DNA transposon into the target site. After 

integration, the sticky ends that are generated during the excision, are filled up a by a 

Figure 2 Transposon content and diversity in 24 sequenced crop genomes in 

the context of their phylogenetic relationship. The number below the species 

name indicates the total fraction of the genome annotated as TE-derived. The pie 

charts indicate the determined proportions of TE-subclasses. Adapted from (Vitte et 

al. 2014). 



3. General introduction 

6 
 

DNA polymerase and a DNA ligase. This results in an element-specific target site 

duplication (TSD) at both termini of the TE. Both length of the TSD and the sequence 

of TIR and the sequence similarities of their transposases can be used to further 

subdivide class II elements. Accordingly, plant DNA-TEs are classified into six different 

subgroups: Tc1-Mariner, hAT, Mutator, P, PIF-Harbinger and CACTA (Wicker et al. 

2007). Analogical to retroTEs, there are examples for non-autonomous DNA-

transposons in plants. These include miniature inverted-repeat transposable elements 

(MITEs) that can be highly abundant in crop genomes (Vitte et al. 2014). In rice it was 

shown that non-autonomous MITEs depend on autonomous Tc1-Mariner elements for 

their mobility (Feschotte et al. 2003).  

Although DNA-TEs typically transpose in a conservative process and without using an 

RNA intermediate, they can occasionally increase in copy number if transposition 

happens during the S phase of cell replication (Chen et al. 1987; Zhang et al. 2014). 

 

 Impact of transposable elements on genome size and architecture 

As TEs represent substantial portions of plant genomes, they also play important roles 

as structural elements that shape genome architectures (Bennetzen and Wang 2014). 

The structural analysis and comparison of various sequenced angiosperm genomes 

including Arabidopsis, soybean and rice, has revealed that there is a strong positive 

correlation between the TE content and the actual genome size (Tenaillon et al. 2010). 

Besides drastic events such as whole genome duplications, TE-bursts are the main 

contributors to increases in genome size. With few exceptions, such as a reported 

burst of MITEs in rice (Naito et al. 2006), retroTE proliferation through copy and paste 

is the main driver of genome expansions in plants (Lee and Kim 2014; Piegu et al. 

2006; Zedek et al. 2010). Such expansions are often triggered by a massive 

amplification of a few TE-families or individual elements (Bennetzen and Wang 2014). 

The potentially unlimited growth in genome size resulting from the copy and paste 

activity of active class I elements would ultimately lead to potentially adverse effects to 

the host (Bennett 1972; Bennetzen and Kellogg 1997; Bennetzen et al. 2005; Diez et 

al. 2013; Schubert and Oud 1997). Hence, unlimited accumulation of transposable 

elements in plant genomes is counteracted by illegitimate and homologous 

recombination events resulting in loss of DNA and genome shrinking (Devos et al. 
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2002; Hawkins et al. 2009). Sufficient sequence homology needed for homologous 

recombination can either exist between the two LTRs of one element but also between 

LTRs of two closely related retroTEs. This type of inter-element recombination can 

result in chromosome rearrangement and deletions of larger genomic fragments 

(Bennetzen and Wang 2014). Isolated LTRs, also called soloLTRs are abundant 

remnants of such events in plant genomes (Devos et al. 2002; Ma et al. 2004; Shirasu 

et al. 2000). Besides their substantial role as regulators of genome size, plant TEs are 

pivotal for global genome architecture. For instance, there is evidence from rice and 

maize that TE insertions have been driving the evolution of the centromeric regions of 

chromosomes that are crucial during cell replication (Gao et al. 2015; Sharma et al. 

2013; Wolfgruber et al. 2009). On a smaller scale, active TEs can contribute to the 

evolution of new genes by mediating gene fragment transduction or exon shuffling 

(Elrouby and Bureau 2010; Jiang et al. 2004). It has further been reported that mobile 

Helitrons and MULE-elements (so called Pack-MULEs) can capture and amplify 

functional genes in maize and rice (Jameson et al. 2008; Jiang et al. 2004). 

 

 Retrotransposons in the model plant Arabidopsis thaliana 

Depending on the annotation methods used to detect TEs (Joly-Lopez and Bureau 

2014) current estimations of TE-derived DNA in the Arabidopsis thaliana genome 

range from 15 % (de la Chaux et al. 2012) to up to 23.7 % (Hu et al. 2011). Confirming 

the general trend in plants, class I elements represent the larger share of TE-derived 

DNA in Arabidopsis although their overall copy number (9 021) is assumed to be 

smaller compared to that of more abundant but shorter class II elements (12 631) (de 

la Chaux et al. 2012). As also reported for many crop genomes (Vitte et al. 2014), 

gypsy and copia-like TEs are the predominant retroTEs in Arabidopsis (Buisine et al. 

2008; Quadrana et al. 2016; The_Arabidopsis_Genome_Initiative 2000).  

Genome wide analyses suggest that family-specific patterns of TE-distributions exist 

in eukaryotes (Sultana et al. 2017). In Arabidopsis, the three main types of class I TEs, 

copia, gypsy and LINE differ in abundancy along the chromosomes (Underwood et al. 

2017). While gypsy elements are more likely to be found in close proximity to 

centromeres, it appears that copia and LINE elements are more frequently observed 

in pericentromeric regions. Furthermore, there is evidence that copia elements in 
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Arabidopsis tend to be more often linked to coding regions (Ito et al. 2011; Quadrana 

et al. 2016). Although similar family specific patterns of TE-distribution have also been 

reported for maize (Baucom et al. 2009) Arabidopsis seems to be an exception 

considering the equal TE-distributions in other crops such as apple (Daccord et al. 

2017) and rice (Mirouze and Vitte 2014; Nobuta et al. 2007). 

 

3.2 Regulation of retrotransposition in plants 

 DNA methylation 

DNA methylation at cytosines in the form of 5-methylcytosine (mC) is a key feature of 

epigenetic regulation and silencing of potentially mobile genetic elements in plants 

(Miura et al. 2001). The abundancy of mC has been shown to correlate with the 

presence of repetitive elements and transposons in the genome of Arabidopsis 

substantiating the role of DNA-methylation in regulating the activity of these elements 

(Cokus et al. 2008; Zhang et al. 2006). Depending on the sequence context (CG, CHG 

or CHH where H can be any base but G), it has been proposed that plants have evolved 

different families of specialized DNA-methyltransferases (DNMtases) to establish or 

maintain DNA-methylation (Henderson and Jacobsen 2007). Global DNA-methylation 

levels in Arabidopsis have previously been determined to be approximately 24 % (CG), 

6.7.% (CHG) and 1.7 % (CHH), respectively (Cokus et al. 2008). 

 

3.2.1.1 Maintenance methylation 

Following DNA replication that results in hemimethylated DNA, the specific mC-pattern 

of the newly synthetized daughter strand has to be restored. In case of symmetric 

methylation in the CG-context, METHYLTRANSFERASE1 MET1 (Finnegan et al. 

1996; Kankel et al. 2003) which is a homologue of the mammalian maintenance 

methyltransferase Dnmt1 (Finnegan and Dennis 1993) adds methyl groups to the new 

unmethylated daughter strand. Symmetric CHG methylation in plants is catalyzed by 

the plant specific CHROMOMETHYLASE3 (CMT3) and in a reinforcing loop triggered 

by the activity of the histone 3 lysine 9 (H3K9) methyltransferase KRYPTONITE (KYP, 

also known as SUPPRESSOR OF VARIEGATION 3-9 HOMOLOGUE 4, SUVH4), 

SUVH5 and 6 (Ebbs and Bender 2006; Jackson et al. 2004; Jackson et al. 2002; 

Lindroth et al. 2001). Recently, MET2a, a less well characterized homolog of MET1 
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has also been reported to be important for CHG methylation exclusively at active TE 

families in Arabidopsis (Quadrana et al. 2016; Stroud et al. 2013). So far, two different 

mechanisms leading to specific methylation at asymmetric CHH sites are known in 

plants. While CMT2 recognizes H3K9me2, a heterochromatic mark co-localizing with 

long TEs (Gouil and Baulcombe 2016), activity of the de novo methyltransferase 

DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) is guided by 

sequence specific small interfering (si)RNAs (Cao and Jacobsen 2002).  

 

3.2.1.2 RNA-directed DNA methylation (RdDM) 

The potential of retroTEs to produce and integrate intact and unmethylated copies of 

themselves along the genome triggered the evolution of specialized silencing 

machineries in plants as well as in animals and fungi (Wheeler 2013). Generally, these 

silencing mechanisms are based on the production of highly specific small non-coding 

RNA molecules that guide the silencing machinery to the corresponding locus in the 

genome. In plants, this process known as RNA-directed DNA methylation (RdDM) 

(Matzke et al. 2015; Wassenegger et al. 1994) is based on the activity of two additional 

plant specific RNA-polymerases, NRPD (Pol IV) and NRPE (Pol V) that have evolved 

as specialized paralogs of NRPB (Pol II) (Herr et al. 2005; Kanno et al. 2005; Matzke 

et al. 2015; Onodera et al. 2005; Pontier et al. 2005; Ream et al. 2009). In contrast to 

Pol II which is the main source of gene-transcripts in plants, mutants of Pol IV and V 

do not show any developmental defects in Arabidopsis (Pontier et al. 2005). The core 

of this complex silencing pathway, also called the “canonical RdDM“, is now well 

investigated in Arabidopsis (Wendte and Pikaard 2017).  

Current models suggest that in a first step, RNA-DEPENDENT RNA POLYMERASE 2 

(RDR2), converts non-coding RNAs produced by Pol IV into double stranded RNAs 

(dsRNAs) (Haag et al. 2012; Law et al. 2011). These non-coding dsRNAs are 

subsequently processed by DCL3 (DICER-LIKE 3) into 24 nt siRNAs, stabilized by 

methylation of their 3`-OH groups (Yang et al. 2006) and loaded onto AGO4 (Zilberman 

et al. 2003) or AGO6 (Zheng et al. 2007). Finally, presumably mediated by specific 

base pairing of AGO4-bound siRNAs with a nascent Pol V transcript (Wierzbicki et al. 

2009), DRM2 is recruited resulting in a highly specific methylation of the Pol V 

transcribed loci in all three sequence contexts (Böhmdorfer et al. 2014).  
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Besides this well studied Pol IV-RDR2-dependent branch of the “canonical” RdDM 

pathway, there is emerging evidence for the importance of alternative routes of siRNA 

biogenesis resulting in Pol V-dependent TE-silencing (Cuerda-Gil and Slotkin 2016) in 

plants. With few exceptions including the Pol IV-NERD RdDM pathway (Pontier et al. 

2012), these so-called “non-canonical” RdDM pathways have in common that they are 

directly dependent on transcriptional activity of Pol II. Although reverse genetic 

approaches for studying Pol II-dependent silencing mechanisms are limited by a 

drastic loss of viability of Pol II-mutants (Zheng et al. 2009) there is an increasing 

evidence describing silencing pathways acting downstream of Pol II (Fig. 3). 

Accordingly, it was shown that Pol II transcripts can be processed into primary 21-22 

nt siRNAs in a RDR6-DCL2-DCL4-dependent manner (Nuthikattu et al. 2013). There 

is recent evidence, that this pathway also termed RDR6-RdDM targets especially 

transcriptionally active, full length TEs in Arabidopsis (Panda et al. 2016). Importantly, 

primary siRNAs whose production can also be triggered by the DCL1-dependent 

formation of microRNAs (Creasey et al. 2014) can feed into an RNAi loop leading to a 

strong RDR6-dependend accumulation of secondary siRNAs and post transcriptional 

gene silencing (PTGS) (Cuerda-Gil and Slotkin 2016). Besides the RDR6-DCL2-

DCL4-dependent production of 21-22 nt siRNAs, Pol II transcripts can also be 

processes in a RDR6-DCL3-dependet manner resulting in 24 nt siRNAs, presumably 

reflecting partial redundancy and potential functional compensation between DCL2/4 

and DCL3 in specifically silencing TEs present in high copy numbers in the genome 

(Gasciolli et al. 2005; Mari-Ordonez et al. 2013).  

Only recently, another Pol II-dependent “non-canonical” RdDM pathway that also relies 

on DCL3 but that functions independently of RDRs resulting in the production of 24 nt 

siRNAs has been identified in Arabidopsis (Panda et al. 2016). It is presumed that this 

kind of RDR-independent TE silencing is triggered by the formation of imperfectly 

paired dsRNAs as they occur after transcription of inverted repeats. This scenario has 

been reported for the Mu killer locus that causes stable trans silencing of potentially 

active members of the the MuDR-family in maize (Slotkin et al. 2005). As transcription 

by Pol II directly precedes dicing by DCL3 it is self-evident that this pathway is also 

important in re-silencing TEs that are in a transcriptionally active state (Panda et al. 

2016).  
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Figure 3 Current model for the presumed mechanism of the “non-canonical” 

expression-dependent RdDM leading to retroTE silencing in plants. Four known 

major routes for the processing of Pol II-derived sense-transcripts of retroTEs 

resulting in the production of retroTE-specific siRNAs are depicted. The interaction 

of AGO-bound siRNAs with scaffold transcripts produced by Pol II or Pol IV guides 

the DNMtase DRM2 and leads to highly specific and stable methylation (red lollipops) 

of the previously active retroTE and potentially other homologous copies in the 

genome. Numbers in brackets indicate key references that lead to this model as 

follows: (1) (Ye et al. 2016); (2) (Panda et al. 2016); (3) (Mari-Ordonez et al. 2013); 

(4) (Nuthikattu et al. 2013). See text and (Cuerda-Gil and Slotkin 2016) for details. 



3. General introduction 

12 
 

Another Pol II-dependent mechanism for the production of small RNAs triggering initial 

TE-silencing was found to be independent of DCL-enzymes (Ye et al. 2016). The 

authors of this study detected a new class of dicer independent small RNAs (sidRNAs) 

that ranged from 20-60 nt in size. Based on their observations they concluded that 

these sidRNAs are generated by stepwise trimming of the 3` end of AGO4-bound Pol 

II or Pol IV transcripts originating from active loci including retroTEs.  

Although the various routes of siRNA biogenesis described above can be disentangled 

based on their specific mechanistic properties, their actual biological function and 

importance is challenging to be determined. For instance, Panda and colleagues found 

evidence that a functional loss of the RDR6-RdDM pathway can be compensated by 

Pol IV-dependent silencing. More importantly, it seems that the transcriptional state of 

a TE predetermines which of the above described RdDM pathways becomes dominant 

in (re)-silencing certain TEs (Panda et al. 2016).  

 

 Chromatin state 

Chromatin density is a key regulatory element of gene regulation and TE-silencing in 

plants. Nucleosomes have approximatively 146 bp of DNA wrapped around a histone 

core complex and form the basic repeating units of eukaryotic chromatin. The core 

complex itself consists of eight histone proteins and more specifically of two dimers of 

H2A and H2B and a tetramer composed of two dimers of histones H3 and H4 (Luger 

et al. 1997).  

Besides the reported distinct distribution of different histone variants (Stroud et al. 

2012; Yelagandula et al. 2014), dynamic chemical modifications, such as acetylation, 

phosphorylation or methylation, of the N-terminal histone tails strictly correlate with the 

expressional state of chromosomal regions in Arabidopsis (Fuchs et al. 2006). There 

is evidence for a very close connection between DNA-methylation pathways and 

certain types of histone modifications in plants. For instance, it was reported that CHG-

methylation correlates with histone H3 lysine nine di-methylation (H3K9me2) 

(Bernatavichute et al. 2008; Jackson et al. 2004) which is considered as an indicator 

for the presence of heterochromatin (Fuchs et al. 2006). A simultaneous knock-out of 

the histone methyltransferases SUVH4-6 resulted in the concomitant reduction of 

H3K9me2 and non-CG DNA methylation resulting in release of TE-transcription (Ebbs 
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and Bender 2006). Likewise, it was shown that TEs coincide with high levels of histone 

3 lysine 27 monomethylation and that defects in the H3K27 monomethyltransferases 

ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATRX6 resulted in 

transcriptional up-regulation of TEs (Jacob et al. 2010). 

Besides the addition of repressive marks, it was also reported that the active removal 

of activating marks, such as histone acetylation plays an important role for TE-

silencing. For instance, knocking-out HISTONE DEACETYLASE 6 (HDA6) led to a loss 

of heterochromatin formation. It is assumed that an interaction between HDA6 and 

MET1 results in locus specific methylation in the CG-context thereby forming the basis 

for subsequent non-CG methylation resulting in silent chromatin (To et al. 2011). 

Consequently, it was found that a subset of TEs are transcriptionally reactivated in the 

hda6 background (Liu et al. 2012; Probst et al. 2004). 

A key-factor that mediates the crosstalk between the chromatin state and DNA-

methylation in Arabidopsis is the chromatin-remodeling ATPase DECREASE IN DNA 

METHYLATION 1 (DDM1). By providing DNMtases access to heterochromatin 

(Zemach et al. 2013), DDM1 has been reported to play an important general role in 

maintaining CG and non-CG methylation (Jeddeloh et al. 1999; Vongs et al. 1993) and 

TE-silencing (Lippman et al. 2003; Miura et al. 2001; Tsukahara et al. 2009). Mutating 

DDM1 results in a loss of H3K9me2, a global reduction of CG-DNA methylation and a 

decrease of heterochromatin condensation at TEs in Arabidopsis (Gendrel et al. 2002; 

Lippman et al. 2004). As a consequence, ddm1 plants show a genome-wide 

upregulation of TEs (Lippman et al. 2004) and it was shown that inbreeding of ddm1 

mutant lines resulted in transposition of various class I and II TEs, including gypsy and 

copia elements (Tsukahara et al. 2009). Due to its central function in maintaining TE-

silencing, several main discoveries elucidating expression-dependent TE-silencing 

pathways such as the RDR6- or the DCL3-dependent RdDM have been made in the 

ddm1-background where TEs are in a more “active state” (McCue et al. 2015; 

Nuthikattu et al. 2013; Panda et al. 2016) 
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3.3 Retrotransposons: Linking the genome to the environment 

 Stress-dependent activation of retrotransposons in plants 

Already in the mid of the last century, when Barbara McClintock published her 

pioneering work on DNA-TEs in maize she described them as “controlling elements” 

(McClintock 1950; McClintock 1956) and linked their activation to the occurrence of a 

“challenge” or a stress (McClintock 1984). She suggested that the occurrence of 

“genomic shocks” as for example of global mutations caused by irradiation could 

trigger the activation of transposition in plants (McClintock 1984). Today her 

revolutionary hypotheses have been confirmed in a multitude of studies that clearly 

illustrate the role of both classes of TEs as potentially mobile regulatory elements and 

sensors of various stresses (Negi et al. 2016). Generally, retroTE-activity can be 

detected during different stages of their life cycle (Schulman 2013). As reviewed by 

Negi and colleagues, most of the currently known examples for the stress-dependent 

activation of class I elements are based on the detection of increased TE-transcript 

levels (Negi et al. 2016). 

 

3.3.1.1 Examples for environmental stimuli 

The list of conditions reported to induce retroTE-transcription comprises a broad panel 

of various biotic and abiotic stresses including tissue culture. In Arabidopsis there is 

evidence that elicitation with bacterial flagellin (Yu et al. 2013), heat (Pecinka et al. 

2010; Tittel-Elmer et al. 2010), arsenic stress (Castrillo et al. 2013) salt stress, nutrition 

starvation as well as abscisic acid and cytokinin treatment (Duan et al. 2008; Zeller et 

al. 2009) can trigger the transcriptional activation of certain retroTEs. From what was 

found in other plant species including important crops, the list of activating 

environmental conditions can be expanded by treatment with the fungal elicitor 

cryptogein (Nicotiana tabacum) (Anca et al. 2014), wounding (Quercus suber, 

Solanum chilense) (Rocheta et al. 2012; Tapia et al. 2005), aphids infestation (Pinus 

sylvestris) (Voronova et al. 2014), cold (Citrus sinensis) (Butelli et al. 2012), water 

deficiency (Zea mays) (Lu et al. 2011), UV-light (Avena sativa and Cucumis 

melo)(Kimura et al. 2001; Ramallo et al. 2008) and herbicide treatment with atrazine 

(Oryza sativa) (Zhang et al. 2012). In rice, there is further evidence that inter-specific 

hybridization events can trigger retrotransposition of some class I elements (Wang et 

al. 2009). 
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3.3.1.2 Mechanisms underlying the stress response of LTR-retrotransposons 

As described above (Fig. 1) transcription of copia and gypsy-type class I elements 

initiates at the TSSs of both 5`and 3` LTRs. As reviewed by Galindo-Gonzalez and 

colleagues, there are some well-studied cases in plants elucidating the molecular 

mechanism behind the observed stress-dependency of retroTE-activation (Galindo-

Gonzalez et al. 2017). Hence, it was shown for different stress-responsive class I 

elements that cis-regulatory motifs in the LTRs play a pivotal role in converting an 

environmental trigger into transcriptional upregulation and retroTE-mobilization 

(Casacuberta and Grandbastien 1993; Takeda et al. 1998; Tapia et al. 2005). In this 

regard, a well-studied retroTE is the heat responsive Ty1/copia-like retroTE ONSEN 

(AtCOPIA78) in Arabidopsis (Pecinka et al. 2010; Tittel-Elmer et al. 2010). A closer 

examination of the promoter in the ONSEN-LTRs revealed that all eight copies in the 

Columbia ecotype of Arabidopsis contain a heat response element (HRE) with the 

consensus sequence nTTCnnGAAn (Cavrak et al. 2014). This study further provided 

evidence that binding of specific heat shock factors (HSFs) such as HSFA2 to these 

HREs mediates the heat-stress dependent activation of ONSEN transcription (Cavrak 

et al. 2014).  

 

  Impact on gene structure and expression 

3.3.2.1 Insertional mutagenesis 

Transposition of class I elements can affect gene expression in various ways (Lisch 

2013). Loss of function mutations caused by insertions into regulatory regions or 

introns and exons of genes are commonly observed in plant genomes. Apart from 

obvious phenotypes caused by insertions of these elements mobilized in silencing 

mutants of Arabidopsis (Mirouze et al. 2009; Tsukahara et al. 2009) many examples 

are found among selected crop varieties. For instance, photoperiod-insensitivity in 

cultivars of Glycine max (Kanazawa et al. 2009), parthenocarpy in varieties of Malus 

domestica (Yao et al. 2001) and an observed dwarf phenotype in Oryza sativa (Chen 

et al. 2017) have been linked to insertional mutagenesis causes by class I elements. 
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3.3.2.2 Impact on splicing 

Besides causing loss of function mutations, retroTE-insertions can also lead to 

changes in splicing. In case of three different alleles of the waxy gene involved in 

amylose biosynthesis in maize it was shown that insertions of class I elements into 

introns can cause alternative splicing (Varagona et al. 1992). A recent study in oil palm 

further illustrated that also dynamic epigenetic modifications of inserted retroTEs can 

result in drastic phenotypic changes. Hence, it was reported that alternative splicing 

caused by hypo-methylation of a LINE element inserted in the intron of the homeotic 

gene DEFICIENS underlies the mantled somaclonal variant of oil palm (Ong-Abdullah 

et al. 2015). 

 

3.3.2.3 Expressional changes in retrotransposon-flanking regions 

Functional copia and gypsy elements are flanked by identical LTRs with the same 

orientation. Hence, transcription originating at the TSS in the 3`LTR (Fig. 1) may also 

drive expression of flanking genomic regions (Chuong et al. 2017; Grandbastien 2015). 

Depending on the cis regulatory elements of the retroTE, this so-called “read-through” 

transcription can therefore also be stress-dependent. In blood oranges, this kind of 

stress-dependent gene activation mediated by the 3`LTR of a retroTE has been shown 

to account for the accumulation of anthocyanins following cold-stress. Mechanistically, 

the cold responsive promoter in the 3`LTR drives the expression of a MYB 

transcriptional activator of anthocyanin production (Butelli et al. 2012). It was also 

reported that following a recombination event in some orange cultivars, the remaining 

soloLTR of the same retroTE is sufficient to cause the same cold-dependent 

phenotype. Striking evidence for the importance of various TE-super-families including 

retroTEs as mediators of abiotic stress responses was found in maize. It was revealed 

that as much as 33 % of genes that are only expressed in response to abiotic stresses 

are associated with upstream inserted TEs (Makarevitch et al. 2015). 

Besides read-through transcription, the insertion of a retroTE close to a gene can also 

give rise to the recruitment and spreading of repressive epigenetic marks resulting in 

slicing of flanking regions (Sigman and Slotkin 2016). A famous example for the 

alteration of the epigenetic landscape flanking a class I element (SINE-element) has 

been reported for the FLOWERING WAGENINGEN (FWA)-locus in Arabidopsis 
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(Kinoshita et al. 2007). In this case, the closely inserted retroTE mediates 

establishment of DNA-methylation and hence forms the basis for imprinting of the 

FWA-locus (Fujimoto et al. 2008). TEs can thus bring endogenous genes under 

epigenetic control. 

 

3.3.2.4 Gene movement 

The regulation and expression of a gene can be fundamentally changed if it is relocated 

into a different genomic region. There is increasing evidence that TEs can contribute 

to such major events in plants (Lisch 2013). A striking example for a retroTE-mediated 

gene movement was found in Solanum lycopersicum where a 24.7 kB gene duplication 

event resulted in the evolution of the SUN locus that is underlying the oval shape of 

Roma tomatoes (van der Knaap et al. 2004; Xiao et al. 2008). 

 

3.4 Retrotransposons as a tool for crop improvement and breeding 

As described above and reviewed by (Vitte et al. 2014) ongoing retrotransposition 

events substantially contribute to phenotypic diversity of various crops. With growing 

knowledge of the causes and the consequences of class I element mobility in crops, 

they are increasingly seen as a valuable resource to advance plant breeding (Mirouze 

and Vitte 2014; Paszkowski 2015). However, due to sophisticated TE-silencing 

mechanism described above, there are relatively few cases where the frequency of 

retrotransposition was efficiently increased in plants. Exceptions are found in cases 

where plants are exposed to major stresses such as growth in tissue culture (Hirochika 

et al. 1996; Masuta et al. 2017) or when strong genomic stresses, like during inter-

specific hybridization, occur (Wang et al. 2009).  

 

 Detection of retrotransposition events 

A prerequisite for harnessing class I elements for plant breeding is their efficient 

detection during and after transposition (Vitte et al. 2014). Advances in sequencing 

technologies and downstream data processing significantly contributed to the recent 

progress in the field of TE-research. Especially the availability of longer sequencing 

reads overcomes detection limitations of TE-associated structural variants caused by 
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the repetitive nature of TEs (Debladis et al. 2017). Recently developed methods to 

specifically sequence the active “mobilome” (mobile genetic elements in a cell) will 

further enhance the use of TEs in plant breeding (Lanciano et al. 2017).  

 

 Genetic engineering  

Fundamental discoveries elucidating TE-silencing pathways in plants were achieved 

by studying knock-out mutants of the Arabidopsis model plant (Ito et al. 2011; Mirouze 

et al. 2009; Miura et al. 2001). In principle, the approach of using mutants defective in 

TE-silencing could also be promising to induce retrotransposition in crops. Indeed, 

there are examples for the analogical mobilization of retroTEs in crops. In rice for 

instance, the mobilization of the copia-like retroTE Tos17 was enhanced by knocking 

out a H3K9 methyltransferase (Ding et al. 2007). However, the limited availability of 

mutant alleles (Paszkowski 2015) that are in addition possibly accompanied by severe 

side-effects like observed in rice (Hu et al. 2014) or maize (Li et al. 2014), currently 

restricts the use of retroTEs in crop breeding. Yet, recent major advances in the field 

of genetic engineering and DNA-sequencing opens up completely new possibilities 

(Springer and Schmitz 2017). Besides targeted mutagenesis of TE-silencers by means 

of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases 

(TALENs) or CRISPR-Cas9 systems, especially specific “epigenome editing” using for 

example a nuclease deficient Cas9 protein (dCAS9) fused to a methyltransferase (Park 

et al. 2016) are catalyzing the progress in the field.  

  

 Transient inhibition of retrotransposon silencing 

An alternative approach to increase retroTE mobility in plants is to transiently inhibit 

enzymes involved in epigenetic silencing (Pecinka and Liu 2014). By targeting highly 

conserved silencing-pathways, the drug-mediated retroTE-activation does neither 

require prior knowledge of the DNA-sequence nor elaborate genetic engineering. 

Originally developed as agents in cancer therapy (Lyko and Brown 2005), mainly 

inhibitors of DNMtases such as the cytidine-analogues 5-azacytidine (AZA) and 

zebularine (Z) are now also commonly used to induce epigenetic changes in plants 

(Griffin et al. 2016). During cell replication, both cytidine-analogues are incorporated 

into the DNA. In bacterial model systems, it was shown that the presence of these 
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cytidine-analogues leads to a very stable (Z) (Champion et al. 2010) or even covalent 

(AZA) (Santi et al. 1983) binding of DNMtases to the DNA resulting in a depletion of 

active DNMtases and subsequent loss of DNA methylation. In plants, transient 

inhibition of DNMtases leads to a reduction of methylation levels in all sequence 

contexts (Griffin et al. 2016). In case of Z, that is considered to be more stable 

compared to AZA, the observed reduced DNA-demethylation resulted in the 

transcriptional release of the non-LTR retroTE LINE1-4 in Arabidopsis (Baubec et al. 

2009). 

 

3.5 Policy related aspects of bridging science and innovation 

Due to the limitations described above, the approach of harnessing epigenetics and 

endogenous mobile genetic elements for plant breeding has so far not been actively 

implemented. At the same time, recent technological achievements are catalyzing 

research and contribute to the rediscovery of TEs as important drivers of evolution 

(McClintock 1950; Mirouze and Vitte 2014; Paszkowski 2015). Hence, with the aim to 

develop a method to allow for the stress-dependent mobilization of retroTEs for plant 

breeding, this project was situated at the interface of basic research and the 

implementation of a new breeding technology. At this stage of development it was 

therefore- besides providing a proof of concept in the laboratory- also important to set 

the right course for futures steps in the process of bringing the method developed in 

the frame of this thesis to the market. Thus, important policy-related aspects linked to 

the project can be summarized as follows: 

 Assess the patentability of the method; 

 Disseminate scientific results to inform different stakeholders involved; 

 Initiate a stakeholder dialog on the acceptance of the new method. 
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3.6 Aims of the thesis 

The versatility of TEs as main components of eukaryotic genomes is currently 

attracting the attention of scientists from various fields of research. As natural drivers 

of plant evolution, TEs are particularly interesting as a so far widely underutilized 

genetic resource for crop breeding. Even though new methodologies are catalyzing 

the overall gain of knowledge, there are still major scientific questions that remain to 

be answered. Besides the elucidation of silencing mechanisms that safeguard genome 

stability, research in the field of TE-biology also aims to understand how transposable 

elements shape genomes and their epigenetic landscapes. These findings are, in turn, 

used to assess the role of TEs during development, in creating phenotypic diversity or 

in mediating adaptation  

The aims of my dissertation are to elucidate the fundamental mechanisms involved in 

retroTE-silencing in the model plant Arabidopsis and to apply these findings to induce 

retrotransposition in crops such as soybean and rice. In doing so, I will follow the 

approach of mobilizing retroTEs using inhibitor molecules that specifically target highly 

conserved pathways in plants. More specifically I will try to address the presumably so 

far underestimated role of Pol II as a key-regulator of retroTEs mobility in plants and 

more generally in eukaryotes. Due to the fact that retrotransposition can entail a broad 

panel of (epi)genetic changes, one objective of this work is also to track the phenotypes 

linked to novel retroTE-insertions in the successive generations. 

As the approach of using specific inhibitors does not comprise genetic engineering, it 

could in principle also open up new avenues to accelerate plant breeding for the 

organic sector. This work also aims at providing a basis that will allow for a fruitful 

discourse between different stakeholders in the field of conventional and organic 

breeding. Hence, the implementation of different measures at the science and policy 

interface are also key elements of this thesis. 
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4 RNA polymerase II regulates retrotransposon mobility in 

Arabidopsis 

A modified version of this chapter was published in Thieme, M. et al., (2017). Inhibition 

of RNA polymerase II allows controlled mobilisation of retrotransposons for plant 

breeding. Genome Biology 18, 134. 

 

4.1 Abstract 

To ensure genome integrity several silencing mechanisms have evolved to repress 

retrotransposon mobility in plants. Even though retroTEs fully depend on 

transcriptional activity of the host RNA polymerase II (Pol II) for their mobility, it was so 

far unclear whether Pol II is directly involved in repressing their activity. Here I show 

that plants defective in Pol II activity lose DNA methylation at repeat sequences and 

produce more extrachromosomal retroTE DNA of the ONSEN-retroTE upon heat 

stress in Arabidopsis. I demonstrate that Pol II acts at the root of transposon silencing 

presumably in a DCL-dependent and RDR-independent manner. Preliminary data 

further suggest that pairing of Pol II-derived sense and antisense transcripts could 

generally initiate RDR-independent retroTE-silencing in plants.  

 

4.2 Introduction 

Like retroviruses, LTR-retroTEs (class I elements), which represent the most abundant 

class of transposable elements (TEs) in eukaryotes, transpose via a copy and paste 

mechanism. This process requires the conversion of a full length RNA-polymerase II 

(Pol II) transcript into extrachromosomal complementary DNA (ecDNA) by reverse 

transcription (Schulman 2013). In their life cycle LTR-retroTEs can produce 

extrachromosomal circular DNA (eccDNA) which is an indicator for their ongoing 

activity (Lanciano et al. 2017). As transposition of class I elements can jeopardize 

genome integrity, plants have evolved several regulatory pathways to retain control 

over the activity of these potentially harmful mobile genetic elements. Cytosine 

methylation (mC) plays a central role in TE-silencing in plants (Miura et al. 2001). In 

addition, plants have evolved two Pol II-related RNA-polymerases Pol IV and Pol V 

that are essential to provide specific silencing signals leading to RNA-directed DNA 
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methylation (RdDM) at retroTEs (Matzke et al. 2015) thereby limiting their mobility (Ito 

et al. 2011; Mirouze et al. 2009; Tsukahara et al. 2009). More recently, various 

additional non-canonical Pol IV-independent RdDM pathways have been described 

(Cuerda-Gil and Slotkin 2016). Notably it was found that Pol II itself also plays an 

important role in RdDM (Gao et al. 2010; Zheng et al. 2009) by feeding template RNAs 

into downstream factors such as RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) 

resulting in a dicer-dependent or independent initiation and establishment of TE-

specific DNA methylation (Cuerda-Gil and Slotkin 2016). Beyond that, recent work 

suggests a new “non-canonical” branch of RdDM that specialized in targeting 

transcriptionally active full-length TEs (Panda et al. 2016). This pathway functions 

independently of RDRs via Pol II transcripts that are directly processed into siRNAs by 

DCL3.  

Here, we wanted to investigate if Pol II could play a direct role in repressing retroTE 

mobility in plants. For that purpose we chose the well-characterized heat-responsive 

copia-like ONSEN retroTE (Cavrak et al. 2014; Ito et al. 2011) of Arabidopsis and took 

advantage of the hypomorphic nrpb2-3 mutant allele that accumulates reduced NRPB2 

(the second-largest component of Pol II) protein levels (Zheng et al. 2009). 

 

4.3 Results 

 RNA polymerase II represses the heat-dependent activation of ONSEN 

Using quantitative real-time PCR (qPCR), we determined that challenging nrpb2-3 

seedlings by heat stress (HS) led to a mild increase in total ONSEN copy number (sum 

of extrachromosomal complementary DNA (ecDNA), extrachromosomal circular DNA 

(eccDNA) and new genomic insertions) relative to control stress (CS) and compared 

to the wild-type (WT, Fig. 4a). This result was supported by the observed dose 

responsive increase in ONSEN copy number after HS and pharmacological 

inactivation of Pol II with α-amanitin (A), a potent Pol II inhibitor (Lindell et al. 1970) 

that does not affect Pol IV or Pol V (Haag et al. 2012) (Fig. 4a and b). In order to test 

the interaction between Pol II-mediated repression of retroTE activation and DNA 

methylation we grew WT and nrpb2-3 plants on media supplemented with zebularine 

(Z), an inhibitor of DNA methyltransferases active in plants (Baubec et al. 2009) and 

submitted them to HS.  
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Figure 4 Pol II represses the heat stress dependent mobility of the ONSEN 

retrotransposon in Arabidopsis. ONSEN copy number in Arabidopsis seedlings 

measured by qPCR directly after CS and HS-treatments. a In the WT and the nrpb2-

3 mutant and after HS plus treatments with α-amanitin (A, 5 μg/ml) or zebularine (Z, 

10 µM) (mean ± s.e.m., n= 6 biological repetitions). b In the WT and after HS plus 

treatment with A at different concentrations (µg/ml) as specified in the figure labels 

(mean ± s.e.m., n= 4 biological repetitions). c In the WT and after HS plus treatment 

with Z (40 µM) or a combination of A (5 µg/ml) and Z (A&40Z) (mean ± s.e.m., n= 3 

biological repetitions). d In the WT after chemical treatment with A (5 µg/ml), Z (40 

µM) the combination of A and Z (A&Z) or in the nrpb2-3 and nrpd1 backgrounds 

following CS. (mean ± s.e.m., n= 3 biological repetitions). All values are relative to 

ACTIN2. * = P<0.05; **=P<0.01. 
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To ensure the viability of the nrpb2-3 seedlings we choose a moderate amount of Z 

(10 μM). The presence of Z in the medium during HS generally enhanced the 

production of ONSEN copies. Importantly, this induced increase in ONSEN copy 

number was more distinct in the nrpb2-3 background (Fig. 4a). This indicated that both, 

DNA methylation and Pol II transcriptional activity contribute to the repression of 

ONSEN ecDNA production. Because both DNA methylation and Pol II can be inhibited 

by the addition of specific drugs we wanted to test if treating WT plants with both A and 

Z at the same time could strongly activate and even mobilize ONSEN after a HS 

treatment. We grew WT seedlings on MS medium supplemented with Z (40 μM) 

(Baubec et al. 2009) individually or combined with A (5 µg/ml, A&Z). In conformity with 

the strong activation of ONSEN in HS and Z-treated nrpb2-3-seedlings, the combined 

treatment (A&Z) of the WT gave rise to a high (Fig. 4c) HS-dependent (Fig. 4d) 

increase of ONSEN copy number, comparable to nrpd1 (Fig. 9).  

We noted that the overall amplitude of HS-dependent ONSEN activation could vary 

between different waves of stress applications in terms of copy number (Fig. 4a-c, 5 

and 9). Yet, the observed enhancing effect of an inhibition of Pol II and DNA-

methyltransferases with A and Z on ONSEN activation was consistent in independent 

experiments (Fig. 4a-c, 5 and 9).  
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Additional data further indicate that the observed additive effect of the combined 

treatment of A and Z also occurs when the two inhibitors are used in different ratios 

such as 10 µM zebularine combined with 20 µg/ml α-amanitin (Fig. 5). 

 

To detect activated retroTEs at the genome-wide level we took advantage of the 

production of extrachromosomal circular DNA (eccDNA) by active retroTEs. EccDNA 

is a byproduct of the LTR-retroTE life cycle (Flavell and Ish-Horowicz 1981). Using 

mobilome sequencing, that comprises a specific amplification step of circular DNA 

followed by high-throughput sequencing to identify eccDNA derived from active LTR-

retroTEs (Lanciano et al. 2017), we found that only ONSEN was activated by HS in 

combination with A&Z (Fig. 6). Confirming our qPCR data, more ONSEN-specific reads 

were detected in the presence of A and Z in the medium. 
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Figure 5 Different concentrations of A&Z can be combined to induce the heat-

dependent ONSEN-activation in the WT of Arabidopsis. ONSEN copy number in 

seedlings measured by qPCR directly after CS and HS-treatments and after HS plus 

treatments with Z (10 µM), A (10-20 µg/ml) or a combination of A (20 µg/ml) and Z 

(mean ± s.e.m., n= 3 biological repetitions, all values are relative to ACTIN2). 
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Figure 6 Combined treatment of A&Z induces the heat-dependent detection 

of reads originating from eccONSEN in a mobilome of the Arabidopsis WT. 

Abundance of reads from the mobilome-sequencing libraries of WT Arabidopsis 

plants mapping at TE-annotated loci from seedlings after: a growth under long day 

conditions (LD), b CS plus treatment with A (5 µg/ml) and Z (40 µM) (A&Z), c HS 

and d HS plus treatment with A&Z. Each dot represents the normalized coverage 

per million mapped reads per all TE-containing 100bp windows obtained after 

aligning the sequenced reads on the five chromosomes (black and grey circles). 

Red dots indicate the position of 100bp windows corresponding to ONSEN loci. 
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 Inhibition of Pol II reduces global DNA-methylation  

To better understand the mechanisms by which the α-amanitin and zebularine-

treatments enhanced the activation of ONSEN after HS at the DNA level, we assessed 

how they influenced genome-wide DNA methylation using whole-genome bisulfite 

sequencing after CS. Overall, we found that all drug treatments affected global DNA 

methylation levels. While the treatment with Z affected all sequence contexts, we 

observed that inhibition of Pol II primarily affected cytosine methylation in the CHG and 

CHH sequence contexts (where H is an A, T or a G). The combined A&Z treatment 

had a slightly additive de-methylating effect in the CHG and CHH contexts compared 

to A or Z alone (Fig. 7a, b and d). DNA methylation levels at one ONSEN locus 

(AT1TE12295) is depicted in Fig. 7c. Treatment with A lead to a slight decrease in 

DNA methylation, which was more apparent in Z and A&Z treated plants. We further 

confirmed these results by a chopPCR at the long terminal repeat (LTR) of a selected 

ONSEN endogenous locus (AT1TE12295) (Fig. 7d). Treating plants with A or Z 

individually resulted in reduced DNA methylation levels in the CHH context at the 

ONSEN LTR after CS (Fig. 7d). The simultaneous inhibition of Pol II and DNMTases 

led to a loss of DNA methylation at a level comparable to the RdDM-deficient nrpd1 

mutant.  
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Figure 7 Simultaneous inhibition of DNA methyltransferases and Pol II reduces 

global CHH methylation and mimics TE-silencing deficiency of nrpd1. a Genome-

wide DNA methylation levels in the WT after CS and CS plus treatments with A (5 

µg/ml), Z (40 µM) or a combination of A and Z (A&Z) shown for the three sequence 

contexts (brown for CG, yellow for CHG and blue for CHH). b Same as (a) but only 

depicting the CHH context data for clarity. c Methylome-data of treated and untreated 

plants at an ONSEN locus located on Chromosome 1 (ONSEN is indicated in yellow, 

its LTRs in red). d DNA methylation analysis of the ONSEN LTR in untreated and A (5 

µg/ml), Z (40 µM) or A&Z-treated seedlings of the WT and the nrpd1 mutant after CS. 

Gels depict PCR products obtained from genomic DNA that was either undigested 

(input) or digested with the methylation sensitive restriction enzyme DdeI (reporting on 

CHH methylation here). ACTIN2 is included as a control for complete DdeI digestion. 
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 Pol II transcripts feed into DCL3-RdDM 

We then wanted to test how the drug-induced loss of DNA methylation could affect 

ONSEN transcript accumulation after a heat shock (HS). For that purpose a northern 

blot was performed directly after HS in WT plants in the presence or absence of the 

aforementioned drugs. We found that treatment with Z alone resulted in the highest 

ONSEN-transcript level after HS (Fig. 8). Considering the data obtained on ONSEN 

ecDNA (Fig. 4c), we concluded that a substantial proportion of these Z-induced 

transcripts were not suitable templates for ONSEN ecDNA synthesis.  

 

In Drosophila, it has been shown that Pol II-mediated antisense transcription results in 

the production of TE-derived siRNAs in a Dicer-2 dependent manner (Russo et al. 

2016). Supporting this notion for Arabidopsis, a recent publication pointed out the 

importance of DCL3 in regulating ONSEN in the ddm1 background (Panda et al. 2016).  
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Figure 8 Treatment with the inhibitors A and Z and HS specifically alters the 

heat-dependent ONSEN-transcript accumulation in the WT. Northern blot 

detecting ONSEN-transcripts directly after CS, HS and HS plus treatment with A (5 

µg/ml), Z (40 µM) or a combination of A and Z (A&Z) in the WT and after HS in nrpd1. 

Black arrow indicates the ONSEN full length transcript. Below, a Midori-stained 

agarose-gel is shown as a loading control.  
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To elucidate whether the effect of the inhibition of Pol II was also dicer-dependent, we 

grew both an rdr6 and a dcl2/3/4-triple mutant of Arabidopsis on A, applied HS and 

measured ONSEN ecDNA levels. Strikingly, we found that A was still enhancing 

ecDNA accumulation in rdr6, whereas inhibition of Pol II had no additional effect in the 

dcl2/3/4 triple-mutant (Fig. 9). 

 

 

To further examine whether the inhibition of Pol II would impair RDR6-independent 

RdDM pathways, we analyzed the recently described DCL3-RdDM target AtSINE4 

(At3TE40740) (Panda et al. 2016) and found a strong decline of DNA-methylation in 

all sequence contexts after inhibition of Pol II. Strikingly, the combined treatment with 

A and Z resulted in an almost complete loss of DNA-methylation in the CHH-context 

at this locus (Fig. 10). 
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Figure 9 Inhibition of Pol II leads to a dicer-dependent activation of ONSEN 

following HS. ONSEN copy number measured by qPCR directly after CS and HS-

treatments in seedlings of WT, rdr6, dcl2/3/4 and nrpd1 plants directly after CS, HS 

and HS plus treatment with A (5 µg/ml), Z (40 µM) or a combination of A&Z (n= 3 

biological repetitions, values relative to ACTIN2; * = P<0.05; ** = P<0.01). 
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Using strand-specific northern probes, we wanted to test whether a switch in ONSEN- 

antisense transcription following the inhibition of Pol II could be responsible for the 

observed general reduction in ONSEN-repression. Using three different probes 

specific for the HRE, the GAG and the RVT (Fig. 11, preliminary data) we were able to 

detect ONSEN antisense transcripts both in the WT and the mutant backgrounds. 

Interestingly, we already detected antisense-transcripts after CS in the WT. Most 

importantly, we found that especially the double treatment (HS+A&Z) significantly 

changed the observed size-patterns, resulting in an accumulation of shorter transcripts 

in all three blots. This effect was most obvious for the RVT-probe where also a slight 

reduction in the longest band compared to Col HS was observed. 
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Figure 10 Inhibition of Pol II reduces methylation at the DCL3-RdDM locus 

AtSINE4. Methylome-data of the WT after CS and CS plus treatment with A (5 µg/ml) 

and Z (40 µM) or a combination of A and Z (A&Z) at the DCL3-RdDM target AtSINE4 

(At3TE40740). The percentage of methylated cytosines in the CG, CHG and CHH 

sequence contexts (where H is an A,T or a G) are depicted. See legend for color 

code. 
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Figure 11 Inhibition of Pol II and DNMTases alters the accumulation of ONSEN 

antisense transcripts. Detection of ONSEN antisense transcripts in Arabidopsis 

seedlings directly after CS and HS-treatments in WT, nrpb2-3 and nrpd1 plants and 

in the WT after HS plus treatments with α-amanitin (A, 5 μg/ml) or zebularine (Z, 40 

µM) or the combination of both inhibitors (A&Z). Region-specific probes for ONSEN 

were used for hybridization. From the left: HRE, GAG and RVT. The membrane was 

stripped twice prior to hybridizations with new probes. The loading control is shown 

under the blot (three times the same image). As the size marker is not visible, only 

qualitative comparisons can be drawn. Preliminary data. 



4. RNA polymerase II regulates retrotransposon mobility in Arabidopsis 

33 
 

4.4 Discussion 

In this study, we show the importance of Pol II in the repression of TE mobility in plants. 

By choosing the well-characterized heat inducible ONSEN-retroTE, we were able to 

specifically address the role of Pol II in silencing transcriptionally active endogenous 

retroTEs in wild-type plants. Recent studies propose Pol II as the primary source for 

the production of retroTE-silencing signals that can then feed into the RNA silencing 

and DNA methylation pathways (Cuerda-Gil and Slotkin 2016). Our data strongly 

support these findings at two levels: First, we found that inhibition of Pol II activity 

reduced the degree of DNA methylation at ONSEN demonstrating its distinct role in 

this process and that Pol II also contributes to reinforcing silencing at the genome-wide 

level primarily in the CHH but also in the CHG contexts. Second, our finding that DCL-

enzymes are sufficient to process the silencing-signal produced by Pol II suggest that 

Pol II acts at very early steps in the retroTE silencing pathway by providing substrates 

to these enzymes. The observation that inhibition of Pol II in the rdr6 background still 

further enhanced ONSEN accumulation after HS supports the notion that Pol II plays 

a central role in the previously proposed expression-dependent RdDM pathway 

(Panda et al. 2016).  

The strong de-methylation of the DCL3-RdDM-traget AtSINE4 (AT3TE40740) after the 

A-treatment supports the model in which Pol II-derived transcripts are processed in a 

DCL3-dependent manner. The fact that the degree of de-methylation following the A-

treatment at this specific locus was even stronger than after a general inhibition of 

DNMtases with zebularine underlines the importance of Pol II as an epigenetic 

regulator of retroTEs. Furthermore this is a clear indicator for the locus-specificity of 

different variants of silencing pathways that regulate retroTE-activity in plants. Our 

findings may indicate that Pol II is primarily involved in silencing young, recently active 

retroTEs and perhaps to a lesser extent other tightly silenced TEs. Indeed, there are 

indications for very recent transposition events for ONSEN in natural populations of 

Arabidopsis (Quadrana et al. 2016). 

Key to the understanding of the mechanism behind the epigenetic regulation of 

transcriptionally active TEs may not only lie in the quantity but rather the quality of Pol 

II derived transcripts. Yet the fact that Pol II- derived transcripts are partially translated 

or used as a template for reverse transcription opens up an additional level for potential 

regulation of retroTE activity. Indeed, it was found that the BARE1-retrotransposon in 
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barley is transcribed into three different types of Pol II-derived transcripts with distinct 

functions needed during BARE1 retrotransposition (Chang et al. 2013). To account for 

such differences in transcript qualities, we favored to perform a northern blot over using 

RT-PCRs to measure ONSEN-expression. The observed diversity of size classes on 

the northern blot clearly indicated heat-stress dependent production of subgenomic 

ONSEN- transcripts. The induction of unfavorable relative amounts of different types 

of transcript pools could be an explanation for the observed discrepancy of total 

ONSEN transcript accumulation and measured ecDNA in Z-treated seedlings. This 

substantiates the notion that both quantity and quality of retroTE-transcripts affect 

regulation, reverse transcription and successful integration of class I elements in 

plants. 

In S. cerevisiae and D. melanogaster Pol II-mediated intra-element antisense 

transcription is known to regulate TE-activity (Berretta et al. 2008; Russo et al. 2016). 

Besides a potential drug-induced shift in the ratio of different classes of subgenomic 

sense-transcripts, we hypnotize that altered antisense-transcription of ONSEN could 

account for its observed drug-induced activation following HS. In a preliminary 

experiment, we were indeed able to detect various ONSEN antisense-transcripts even 

in the absence of HS. This finding suggests that Pol II-mediated transcription 

originating from bidirectional TSSs in the LTRs of plant retroTEs plays a key-role in 

initiating and maintaining retroTE silencing. Although we observed clear shifts in the 

patterns of ONSEN-antisense transcripts following the drug-treatments, the 

consequences observed in this preliminary experiment remain elusive. Still, the fact 

that sense-antisense pairing of Pol II-transcripts, can result in the RDR-independent 

initial formation of TE dsRNAs substantiated the importance of these preliminary data. 

Once processed by DCL-enzymes, these primary dsRNAs can be amplified under the 

involvement of RDR6 in RNAi-loops ultimately resulting in PTGS and robust epigenetic 

silencing (Cuerda-Gil and Slotkin 2016). Due to such RDR-dependent amplifications 

of siRNAs, already small alterations of the initial dsRNA production caused by minor 

drug-induced shifts of antisense-transcripts can have a major impact on retroTE-

silencing (Lisch and Bennetzen 2011). The fact that both DNA-methylation and the 

observed changes in ONSEN-antisense-transcript levels already occurred in the 

absence of HS, could furthermore indicate that Pol II actively surveils potentially mobile 

genetic elements already prior to their stress-induced activation.  



4. RNA polymerase II regulates retrotransposon mobility in Arabidopsis 

35 
 

Therefore, as a next step it will be of great interest to systematically test if Pol II-

dependent (subgenomic) antisense transcription of TEs and subsequent dicer-

dependent processing prior to or during stress may be the key to solve “the chicken 

and the egg problem” of de novo-silencing functional retroTEs in eukaryotes (see 

general discussion). 

Overall, these findings lead to the question as to when plants do lower their guards: 

under which condition could Pol II be less effective in silencing TEs? Certain stresses 

that affect the cell cycle have been reported to lead to the inactivation of Pol II 

(Oelgeschläger 2002; Palancade and Bensaude 2003). That would provide a window 

of opportunity for TEs to be mobilized. Therefore, combined stresses that affect the 

cell cycle and activate TEs may lead to actual TE bursts under natural growth 

conditions. Interestingly, it has been reported that retroTE-derived short interspersed 

element (SINE) transcripts can inhibit Pol II activity (Pai et al. 2014). This strongly 

suggests the presence of an ongoing arms-race between retroTEs and Pol II. 

Considering that almost all organisms analyzed so far have TEs (Huang et al. 2012) 

and RNA polymerases (Lazcano et al. 1988) and the reliance of TEs on host RNA 

polymerases, it may - from an evolutionary point of view - not come as a surprise that 

Pol II also has a function as an important regulator of retroTE activity.  

Without challenging the importance of Pol IV and V as key regulators of retroTEs 

including ONSEN (Ito et al. 2011) our data indicate that the role of Pol II at the root of 

TE-silencing has for a long time been underestimated. The approach of specifically 

inhibiting Pol II with α-amanitin circumvents the adverse effects that arise by mutating 

this vital enzyme and opens up new possibilities to elucidate processes at the origin of 

TE-silencing in eukaryotes. As a next step this will for the first time allow to assess the 

phenotypic consequences caused by potential heritable (epi)genetic changes 

triggered by induced retroTE-busts in wild-type plants. 
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4.5 Material and Methods 

Experiments were conducted as described in (Thieme et al. 2017).  

Additional experiments were performed as follows: 

 ChopPCR for CHH-methylation at the ONSEN-LTR 

20 ng of total genomic DNA was isolated from the aerial part of at least ten Arabidopsis 

seedlings and digested with the methylation sensitive restriction enzyme DdeI (NEB) 

at 37 °C over night. Following heat inactivation at 60°C for 20 min, the digested DNA 

was used as a template for the chopPCR (primers listed in table 1). ACTIN2 served as 

a control for the digest. Undigested DNA was used as a loading control. PCR products 

were separated on a 1% agarose gel stained with Midori Green. 

 

Table 1 Primer names and sequence used for chopPCRs. 

Name Sequence 5`->3` 

286 OnsenBis F1 GGTTGAAGGGTYAAAGAGTAAAT 

287 OnsenBis R1 CCTCCAAACTACAAAATATCTAAAA 

835 Chop PCR ACT2 F TGTAGTGTCGTACGTTGAACAGAAAGC 

836 Chop PCR ACT2 R TTGGCACAGTGTGAGACACACCA 

 

 

 

 

 

 

 

 

 

 

 



4. RNA polymerase II regulates retrotransposon mobility in Arabidopsis 

37 
 

 Detection of ONSEN-derived antisense transcripts 

Total RNA from the aerial part of at least ten Arabidopsis seedlings was isolated using 

the TRI Reagent (Sigma) according to the manufacturer’s recommendations. RNA 

concentration was measured (Qubit RNA HS Assay Kit, Thermo Fisher) and 12 μg of 

RNA separated on a denaturing (formaldehyde) 1.5% agarose gel, blotted on a 

Hybond-N+ (GE Healthcare) membrane and hybridized with radioactive [γP32]-ATP 

labelled (T4 Polynucleotide Kinase, NEB) and purified (illustra, MicroSpin G-25 

Columns, GE Healthcare) probes (table 2) over night at 42°C. Prior to re-hybridization 

membranes were stripped by adding boiling solutions of 0.5xSSC+0.5%SDS and 

0.1xSSC+0.5% SDS.  

 

Table 2 Probes used for the detection of ONSEN antisense transcripts. 

Name Sequence 5`->3` 

ONSEN 5`HRE probe for 
antisense 

AAGTTCTAGAGTTTTCTCTAGAAATATCATCAT
TTCCACCTCCTTAAAAG 

ONSEN GAG RT fw GTCGTTGAAGCTACGTCGGCG 

ONSEN REV RT fw GGCAATTGGCGTGAAGTGGGT 
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5 Evolutionary consequences of an induced burst of ONSEN in 

Arabidopsis 

A modified version of this chapter was published in Thieme, M. et al., (2017). Inhibition 

of RNA polymerase II allows controlled mobilisation of retrotransposons for plant 

breeding. Genome Biol 18, 134. 

 

5.1 Abstract 

Retrotransposons play a central role in plant evolution and could be a powerful 

endogenous resource to induce genetic and epigenetic variability for crop breeding. In 

the previous chapter I have shown that inhibition of RNA-polymerase II and DNA-

methyltransferases leads to a very strong HS-dependent activation of the ONSEN-

retroTE in Arabidopsis (chapter 4). Here, I demonstrate that the combined inhibition of 

both DNA methylation and restriction of Pol II activity lead to a strong stress-dependent 

mobilization of the heat responsive ONSEN retroTE in Arabidopsis seedlings. The 

progenies of treated WT-plants contained up to 75 new ONSEN insertions in their 

genome. These novel ONSEN insertions are stably inherited over three generations of 

selfing. Repeated application of HS in progeny plants containing increased numbers 

of ONSEN copies did not result in an increased activation of this transposon compared 

to control lines. Supporting the role of retroTEs as important drivers of plant evolution, 

progenies with additional ONSEN copies showed a broad panel of environment-

dependent phenotypic diversity. This suggests that Pol II can regulate the speed of 

plant evolution by fine-tuning the amplitude of transposon mobility in plants. These 

findings represent a proof of concept for futures application of inhibitors to induce 

controlled retrotransposition for plant breeding. 
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5.2 Introduction 

In plants, TEs are increasingly seen as a source for genetic and epigenetic variability 

and thus important drivers of evolution (Belyayev 2014; Huang et al. 2012; Lisch 2013; 

Paszkowski 2015) (see general introduction). Induced mobilization of endogenous TEs 

in plants has so far been very inefficient, thus limiting their use in basic research and 

plant breeding (Paszkowski 2015).  

Although the activity of retroTEs depends on transcription by the host RNA polymerase 

II, we have previously shown that a functional loss of Pol II leads to an increased 

accumulation of ONSEN ecDNA following HS (chapter 4). The additional treatment 

with zebularine, a general inhibitor of DNMTases, resulted in a very strong ONSEN 

ecDNA-accumulation in the WT. In fact, the level of ecDNA in treated WT-seedlings 

was comparable to that in the nrpd1-mutant. It was previously shown that the strong 

ONSEN-accumulation in heat-stressed nrpd1-plants can result in the acquisition of 

novel ONSEN insertions that can be tracked in the following generations (Ito et al. 

2011). Although the endogenous ONSEN copy number is known to vary between 

different accessions (Quadrana et al. 2016) its mobility in WT plants has so far not 

been observed in real time.  

Here, we wanted to investigate whether HS and simultaneous inhibition of TE-defense 

with A and Z would lead to a mobilization of ONSEN resulting in novel insertions of this 

retroTE in Arabidopsis. As TE-bursts lead to a strong increase in (epi)genetic diversity, 

we also addressed the question whether we could detect phenotypes emerging in 

plants containing an induced increase of ONSEN copy numbers. 
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5.3 Results 

 Pol II-deficiency and inhibition of DNA-methylation leads to retrotransposition of 

ONSEN 

To complete their lifecycle, the reverse transcribed ecDNA of activated retroTEs has 

to integrate back into the genome (Schulman 2013). Given that we observed a strong 

increase in ONSEN copy number after HS and treatment with moderate amounts of Z 

in the nrpb2-3 background (chapter 4), we wanted to address the inheritance of 

additional ONSEN copies to the offspring. For this, we collected all seeds of individual 

heat stressed and Z-treated WT and nrpb2-3 plants and grew several S1 (selfed 1st 

generation) -descendants per parental plant under controlled conditions on soil. We 

then extracted and pooled DNA from n>7 S1-individuals from the same parent and 

compared the average ONSEN copy number by qPCR. We observed a distinct 

increase of the overall ONSEN copy number exclusively in the nrpb2-3 background 

(Fig. 12).  

 

Due to this observation and the fact that the combined inhibition of DNMtases and Pol 

II resulted in a very high accumulation of ONSEN copy numbers after HS - essentially 

mimicking plants defective in NRPD1 (chapter 4) – we wanted to test whether the 
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Figure 12 Detection of increased ONSEN copy numbers in S1 pools of heat-

stressed and Z-treated nrpb2-3 plants. ONSEN copy number measured by qPCR 

in pooled seedlings of the S1-generation of heat stressed and zebularine-treated (10 

µM) WT (light grey bars) and nrpb2-3 plants (dark grey bars) that were grown under 

control conditions on soil relative to a control stressed WT-plant (black bar) (mean ± 

s.e.m., n=3 technical repetitions, all values relative to ACTIN2). 



5. Evolutionary consequences of an induced burst of ONSEN in Arabidopsis 

41 
 

induced activation of ONSEN would also lead to novel insertions in the WT. In a similar 

approach (Fig. 13) like for the Z-treated and heat stressed nrpb2-3 plants, we first 

screened by qPCR if, and at which frequencies, new ONSEN copies could be detected 

in the progeny of A&Z-treated and heat stressed plants (Fig. 14).  

Heat stress and treat (A&Z) seedlings on plate 

Rescue individual seedlings on soil 

Collect seeds from individual treated plants 

Grow S1-descendants from individual 
parental plants on soil 

Pool DNA of n>7 S1- 
seedlings 

qPCR for average ONSEN copy 
number to screen for promising 

pools (Fig. 14) 

Isolate individual S1 plants from 
promising WT pools (Fig. 14) 

 DNA from leaves of 
individual S1 plants 

qPCR to measure ONSEN copy 
number in individual plants    

(Fig. 15)  

Keep hc-lines (#1-7) 

Parental generation 

S1 generation 

S2&3 generations 

Track ONSEN copy number in individual hc-lines (Fig. 16)   

Figure 13 Schematic representation of the experimental setup used to select 

for ONSEN hc-lines following the HS and A&Z-treatment in the parental-

generation. Dataobtained by qPCRs on pooled or individual progeny plants are 

depicted in Fig. 14-16. 
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In fact, we found new ONSEN insertions in 29.4% of the tested (n=51) S1 pools (DNA 

extracted from n>7 S1-individuals descending from the same parent) with measured 

ONSEN copy-numbers reaching up to 52 insertions (Fig. 14). 

 

 

To confirm new ONSEN insertions in the progeny of treated plants, we separated 

seedlings (n= 4- 7, named with individual numbers or letters as supplements the actual 

names of the pool) from a subset of positive S1-pools depicted in Fig. 14 grew them 

under controlled long day conditions and used qPCRs to measure total ONSEN-copy 

numbers on an individual basis (Fig. 15). The analysis of individual lines from selected 

positive S1-pools with an average ONSEN-copy number >10 clearly indicated 

ONSEN-transposition following HS and A&Z-treatment in the parental plant. The 
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Figure 14 Detection of increased ONSEN copy numbers in S1 pools of heat-

stressed and A&Z-treated WT plants. Parental plants were heat stressed and 

treated in independent experiments (characters a-c) with a combination of A (5 µg/ml) 

and Z (40 µM). Pooled (n>7) S1-descendants of individual treated plants were 

analyzed here. Pools with clearly increased ONSEN-copy numbers (>10) are marked 

in red and turquoise. Pools marked in turquoise were selected for an analysis on an 

individual basis. Names of selected pools are specified above the respective bars (see 

Fig. 15a-g). ONSEN-copy number measured by qPCR (mean ± s.e.m., n=3 technical 

repetitions, values relative to ACTIN2). 
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individual ONSEN-copy number differed between S1-individuals originating from the 

same parent and ranged up to 83 copies (Fig. 15f). In the majority of cases, we 

observed that siblings that were selected from the same pool resembled each other in 

total ONSEN copy numbers (Fig. 15a-d and f) showing either a similar gain in copies 

or the original number of eight endogenous copies initially present in the Columbia 

accession of Arabidopsis. Based on this observation we choose to keep one ONSEN 

high-copy line (hc-line) per pool and confirmed the presence of novel ONSEN copies 

in this subset of independent individual high copy plants in the S2 generation by qPCR 

(Fig. 16a).  

To ascertain the integration of novel ONSEN copies into the genome, we ligated 

previously digested DNA that was extracted from hc-lines and three control lines to 

adaptors and amplified the ligation product in a PCR using primers specific to ONSEN 

and to the adaptor (transposon display). The separation of the obtained PCR-products 

clearly showed the presence of additional bands compared to the control lines 

indicating the presence of novel inserted ONSEN copies in the genome of all seven 

selected hc-lines (Fig. 16b). Tracking ONSEN copy numbers in these hc-lines over 

three generations of selfing and growth under controlled long-day conditions indicated 

that the new insertions were stably inherited (Fig. 16a). Notably, one of the selected 

hc-lines (#6) produced only very few seeds and became extinct after the S2 generation 

(Fig. 16a). 
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Figure 15 Detection of distinct patterns of ONSEN copy numbers among S1-

siblings originating from a heat stressed and A&Z-treated WT plant. ONSEN 

copy numbers in individual plants (named with the pool name and an individual 

name supplement) isolated from selected S1-pools of heat-stressed and A (5 

µg/ml) and Z (40 µM)-treated WT plants (Fig. 14) are depicted. Plants that were 

kept for analysis of successive generations (S2 and 3) are highlighted in turquoise. 

Selected ONSEN high-copy lines (hc-lines) were renamed with numbers (#1-7) 

above the turquoise bars in (a-g). The progeny-pool (S2 generation) of line ext5c5 

(orange bar) showed segregation for an albino phenotype (Fig. 20). ONSEN-copy 

number measured by qPCR (mean ± s.e.m., n=3 technical repetitions, values 

relative to ACTIN2). 
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By cloning and sequencing of PCR products obtained from the transposon display (Fig. 

16b) followed by genotyping we were able to track down 11 novel ONSEN insertions 

in hc-line 3. We found ONSEN to be inserted in exons, introns and between genes on 

all five chromosomes of Arabidopsis (Fig. 17 and 19). 

 

M 

0.25  

0.75  
0.5  

kb 

0

20

40

60

80

100

a b c 1 2 3 4 5 6 7

O
N

S
E

N
c
o
p
y
 n

u
m

b
e
r 

S1

S2

S3

a 

hc-lines controls 

b M 

Figure 16 Drug-induced mobilization of ONSEN in wild-type Arabidopsis 

plants. a ONSEN copy number in the S1, S2 and S3 generation of HS (a-c) and HS 

with A (5 µg/ml) and Z (40 µM) treated WT plants (hc-lines 1-7) measured by qPCR 

(n= 3 technical replicates, values relative to ACTIN2). qPCR-Data for the S3-

generation of line 6 in (a) are missing due to severe infertility and extinction of this 

line. b Transposon display testing seedlings in the S2 generation for novel ONSEN 

insertions. A GeneRuler 1 kb DNA Ladder (Thermo Scientific) was used a size 

marker (M). 
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a b 

c 

d 

TT6 

Figure 17 Summary of confirmed novel ONSEN insertions in hc-line 3. a Overview 

of insertion sites shown in (b) (red bar) and the location of the ONSEN insertion in the 

TT6-gene depicted in close-up in Fig. 19 (blue bar) b Close-up of regions with new 

ONSEN insertions (red bar) in the S2 generation of a selected heat stressed and A (5 

µg/ml) and Z (40 µM) treated WT plant (hc-line 3). Orientation of novel ONSEN 

insertions is indicated with red arrows. c A scheme to exemplify the annotation of 

sequences that lead to the identification of novel ONSEN insertion sites depicted in (b) 

shown for insertion # 9. Colors correspond to the pGEM-T vector (light blue) used for 

cloning, the ONSEN- 3`LTR (red), the Copia 78 TE 3`LTR primer (dark green) that was 

used for the preceding TE-Display PCR and the genomic region (turquoise) flanking 

the 3`LTR of the new ONSEN insertion. d Summary of coordinates (base 5` of 

insertion) of new ONSEN insertions shown in (a) and (b). Numbering corresponds to 

(b). Sequences of primers used to confirm new ONSEN insertions are given with the 

numbering corresponding to (b) in table S1 in (Thieme et al. 2017). 
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 ONSEN high-copy lines show phenotypic diversity  

TE insertions can interrupt genes or alter their expression by recruiting epigenetic 

marks or by stress-dependent readout transcription from the 3’LTR into flanking 

regions (Lisch 2013). To test this, we grew the S2-plants of the selected hc-lines under 

long and short-day conditions. Interestingly, we observed that many hc-lines showed 

clear and homogenous phenotypes in response to the different growth conditions 

(plant size, chlorophyll content and flowering time (Fig. 18a and b)). 

To demonstrate that ONSEN insertions could directly influence such developmental 

phenotypes, we closely investigated hc-line 3 that produced white seeds (Fig. 19a). 

Using a candidate gene approach, we found that an ONSEN insertion in transparent 

testa 6 (TT6, AT3G51240, Flavanone 3-hydroxylase) (Fig. 19b) was responsible for 

the recessive white seed phenotype (Appelhagen et al. 2014; Rosso et al. 2003). This 

was confirmed by the segregation analysis of the F2 generation of a cross between 

the WT and hc-line 3 (Fig. 19a) followed by genotyping (Fig. 19c). 
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Figure 18 ONSEN high-copy lines show a broad panel of phenotypes. 

Photographs of selected hc-lines in the S2-generation originating from HS (a-c) or 

HS and A (5 µg/ml) and Z (40 µM) treated WT Arabidopsis plants showing both 

homogeneous and environment-dependent phenotypic variability induced by the 

ONSEN mobilization when grown under long (a) and short day conditions (b). 

Pictures of hc-line 6 are missing due to severe infertility and extinction of this line. 
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When growing a pool of plants in the S2-progeny of a sibling of hc-line 6 (name: ext 

5c5 see Fig. 15f) we made the striking and reproducible observation that a certain 

percentage (~15-20%) of individuals in this pool showed a lethal albino phenotype at 

the seedling stage (Fig. 20). This indicated the segregation of a causative genetic 

mutation in this line. 

Figure 19 Transparent testa phenotype of hc-line 3 co-segregates with an 

ONSEN insertion in TT6. Seed-phenotypes (a) and corresponding genotypes (c) of 

a segregating F2 population (1-22) obtained from a cross between the WT and hc-

line 3 (hc) are shown. b Schematic representation of primers used for genotyping of 

the ONSEN insertion. For the WT-PCR depicted in the upper part of (c) the light (tt6 

fw) and dark (tt6 rev) green primers flanking the TT6 locus (AT3G51240) were used. 

The ONSEN insertion in TT6 was detected by a combination of the light green primer 

with the red primer specific to the ONSEN LTR (Copia 78 3`LTR, red arrow). Primer 

sequences are given in table S1 of (Thieme et al. 2017). 
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 Genetic stability of ONSEN high-copy lines under HS  

To address the question whether re-application of heat-stress would lead to a burst of 

ONSEN-transposition in hc-lines, we applied heat-stress with and without A&Z-

treatment to the S3-generation of two selected hc-lines (#3 & 4) and measured ONSEN 

copy number by qPCR. We found that the re-application of HS and drugs in the S3 

generation of these hc-lines did not lead to a stronger accumulation of ONSEN copies 

compared to control lines and rather observed a stronger silencing in lines with more 

integrated ONSEN copies (Fig. 21). 

 

 

 

 

 

Figure 20 Segregation of an albino phenotype within the progeny of an hc-line. 

Seedlings in the progeny of the S1- generation of plant ext 5c5 (see Fig. 15f) showed 

segregation of a mutation causing an albino phenotype when grown under long day 

conditions. Albino plants are highlighted with white arrows. 
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Figure 21 Heat-stress-induced activation of ONSEN in the S3 generation after 

initial HS-treatment. ONSEN copy number measured by qPCR directly after CS (a) 

and HS or HS plus treatments with α-amanitin (A, 5 μg/ml) and zebularine (Z, 40 μM) 

(b) in seedlings of the WT, the control line a and the hc-lines 3 and 4. ONSEN copy 

number is shown relative to the WT CS (a) or HS (b) (mean ± s.e.m., n= 3 biological 

repetitions, all values relative to ACTIN2). 
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5.4 Discussion 

We previously observed that both a hypomorphic mutation in the second largest 

subunit of Pol II and its inhibition with α-amanitin in combination with a chemical DNA 

de-methylation with Z can trigger a very strong heat-dependent accumulation of 

ONSEN in Arabidopsis (chapter 4). This led us to investigate whether some of these 

ONSEN copies would stably integrate into the genome and could be detected in the 

progeny of heat-stressed seedlings. As transposition is known to be a stochastic 

process (Ito et al. 2011; Matsunaga et al. 2015) we first choose to measure the average 

ONSEN-copy number of several pooled S1 seedlings that originated from the same 

parent. The observation that only pools in the progeny of heat-stressed and Z-treated 

nrpb2-3 plants showed a significant increase in ONSEN copy number supports our 

previous findings on the importance of Pol II in TE-silencing (chapter 4). Based on this 

result, we used the same approach to screen for additional ONSEN copies in the 

progeny of heat-stressed and A&Z-treated WT plants grown under control conditions 

and found an increase of ONSEN-copy number in 29.4% of the tested S1 pools. By 

first demonstrating an increase in copy number by qPCR on an individual basis, 

followed by sequencing and genotyping of true novel ONSEN copies in a selected hc-

plant, we substantiated the approach of testing pooled S1-seedlings. Thus, the 

possibility that increased ONSEN-copy numbers detected in soil-grown S1 pools could 

have been caused by the induction of ecDNA-production by other stresses such as 

bacterial infection known to activate ONSEN-transcription (Yu et al. 2013) is unlikely. 

However, further evidence gained through additional experiments like transposon 

display or sequencing would be needed to certify novel ONSEN- insertions in the 

nrpb2-3 background. 

Interestingly, we observed that ONSEN copy numbers in individual S1-progeny plants 

often depicted a binary pattern meaning that hc-lines within one pool showed a very 

similar number of ONSEN copies whereas the others did not gain any copies. This 

could suggests that ONSEN transposed at an early developmental stage in the 

germline-progenitors of the parent resulting in mosaic-plants producing self-pollinating 

flowers with little diversity for ONSEN-copy numbers. The fact that we also observed 

homozygous insertions already in the S1-generation of treated plants supports this 

conclusion. Furthermore, this clearly indicated that ONSEN at least partially already 

transposed before the development of female and male gametes. However, this 
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question should be systematically addressed by testing individual siliques of treated 

parental plants as reported previously in the nrpd1-mutant background (Matsunaga et 

al. 2015). In doing so, also the exact degree of homozygosity of novel insertions in the 

S1-generation as well as in the somatic tissue of the paternal plant should be taken 

into account.  

When tracking ONSEN- copy numbers over three generations we generally observed 

a high degree of stability within each of the tested hc-lines. The observed fluctuations 

of copy numbers can be explained by segregation of heterozygous insertions. The 

observed occurrence of around 15-20 % albino seedlings among siblings in the S2 

generation of an hc-line is likely to be yet another illustrative indicator for the 

segregation of ONSEN insertions. Moreover, we also detected heterozygous insertions 

by genotyping novel ONSEN copies identified in hc-line 3.  

On the other hand, we also found homozygous insertions of ONSEN that resulted in 

very stable phenotypes such as the transparent testa phenotype in hc-line 3. 

Interestingly, we also noted several environment-dependent alterations of complex 

traits such as early flowering and biomass production that could be caused by various 

(epi)genetic changes caused by novel ONSEN insertions (Lisch 2013). Indeed, our 

observations confirm the previous finding that ONSEN tends to integrate close to or 

into gene-rich region in Arabidopsis (Ito et al. 2011; Underwood et al. 2017). In line 

with this, it was recently reported that ONSEN-transposition into euchromatic regions 

of a heat stressed nrpd1-plant was the reason for an abscisic acid-insensitivity 

phenotype that was observed in its progeny (Ito et al. 2016). Even though we were 

able to clearly link the observed transparent testa phenotype to the homozygous 

insertion of ONSEN in the TT6 locus (AT3G51240) it remains unclear whether 

transposition of other TEs or possible drug-induced epigenetic or genotoxic effects 

could underlie some of the observed phenotypes. For instance it was shown that a Z-

treatment can induce DNA damage during strand synthesis in DNA replication (Liu et 

al. 2015) and lead to the induction of class II CACTA-elements in Arabidopsis (Griffin 

et al. 2016). Nonetheless, our findings will allow future studies on the potential 

beneficial role TEs play in the adaption to stresses in wild-type plants. Indeed, two 

recent studies point out the adaptive potential of retroTEs and -more specifically- of 

ONSEN copy number variation in natural accessions (Quadrana et al. 2016) and in the 

RdDM-mutant backgrounds of Arabidopsis (Ito et al. 2016). Upon mobilization, the 
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heat-responsive elements in the LTRs of ONSEN (Pietzenuk et al. 2016) can create 

new gene regulatory networks responding to HS (Ito et al. 2011). Therefore, it will now 

be of great interest to test if the ONSEN hc-lines obtained in this study are better 

adapted to HS. This will open up the possibility to test if retroTE-induced genetic and 

epigenetic changes more rapidly create beneficial alleles than if it would occur by 

random mutagenesis. Whole-genome (bisulfite) sequencing in combination with 

repeated backcrossing, phenotyping and assessment of stress-dependent 

transcriptional changes in hc-lines will allow for a differentiation of possible 

mechanisms underlying the overserved phenotypic diversity. 

Finally, the observation that HS did not lead to a stronger activation of ONSEN in hc-

lines compared to WT plants suggests that genome stability is not compromised in 

these lines. This result can be explained by at least two possible mechanisms: (i) The 

occurrence of insertions of inverted duplications of ONSEN, such as has been 

observed for the Mu killer locus in maize (Slotkin et al. 2005). Such insertions will lead 

to the production of double-stranded RNAs that feed into gene silencing and thereby 

limit the activity of that TE. (ii) Another possibility is the balance of retroTE-activity and 

integrated copy number as it has been described for EVADE in Arabidopsis (Mari-

Ordonez et al. 2013). In this case when a certain TE copy number threshold is reached 

robust transcriptional gene silencing takes over, thereby limiting retroTE mobility and 

ensuring genome stability. Although it is hard to draw general conclusions from this 

two case observations, it can be speculated that the observed balance of copy number 

and activity of retroTEs is one of the fundamental mechanisms that explains their 

success in co-evolution with their host. In addition, the stability of new retroTE 

insertions is an important aspect in light of the future use of TEs in crop breeding and 

trait stability. 

TEs are important contributors to genome evolution. The ability to mobilize them in 

plants and possibly in other eukaryotes in a controlled manner with the straightforward 

drug application shown here opens up the possibility to study their importance in 

inducing genetic and epigenetic changes resulting from external stimuli. Because the 

induced transposition of ONSEN can efficiently produce TE-tagged (epi)genetic 

diversity resulting in developmental changes in Arabidopsis, it will be very interesting 

to test if specific stress-induced TE activation can be used for directed crop breeding 

for improved stress tolerance in the near future. 
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5.5 Material and Methods 

Experiments were performed according to (Thieme et al. 2017). 
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6 Induced activation of retrotransposons in crops 

A modified version of this chapter was published in Thieme, M. et al., (2017). Inhibition 

of RNA polymerase II allows controlled mobilisation of retrotransposons for plant 

breeding. Genome Biol 18, 134. 

 

6.1 Abstract 

Retrotransposons are increasingly seen as a valuable endogenous genetic resource 

that could be harnessed for plant breeding. However, as they are under strict 

epigenetic regulation their controlled mobilization has so far been limited. Here I show 

that the combined chemical inhibition of Pol II and DNMTases that has previously been 

reported to mobilize a stress responsive retroTE in Arabidopsis (chapter 5) also leads 

to the activation of a class I element in rice (Oryza sativa). Based on this observation, 

I conclude that RNA polymerase II is a highly conserved player of TE-silencing in plants 

that can now be targeted by a straightforward drug application. As rice and Arabidopsis 

differ significantly in their epigenetic landscape but still show a response to the 

combined drug-treatment, I further conclude that this new approach could be used to 

mobilize retroTEs in virtually any plant. In a first attempt to broaden the reported 

applicability of the two drugs to induce retrotransposition, I thus present and discuss a 

preliminary approach to activate class I elements in soybean (Glycine max). 
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6.2 Introduction 

We have previously shown that the combined inhibition of DNMtases and RNA 

polymerase II leads to heat-stress- dependent activation (chapter 4) and mobilization 

(chapter 5) of the ONSEN retroTE in Arabidopsis. Plants with additional ONSEN copies 

showed a striking phenotypic diversity (chapter 5) that was partially dependent on the 

exposure to different environmental conditions. As retroTEs are important drivers of 

genome evolution (Lisch 2013) and could therefore be an interesting genetic resource 

for plant breeding (Paszkowski 2015) these observations in the model plant 

Arabidopsis lead us to test whether the same approach could also trigger ecDNA 

production, an intermediary step in the life cycle of retrotransposons, in crops. With the 

aim to generalize our findings from Arabidopsis we choose to apply the same treatment 

to rice (Oryza sativa) a genetically well-characterized (Kawahara et al. 2013) 

monocotyledonous crop.  

a 

b 

Figure 22 Differences in the epigenetic and TE-landscapes of Arabidopsis and 

rice. a Chromosome-wide distribution of DNA methylation (red: mCG, blue: mCHG, 

green: mCHH) in sliding windows of 100kb or 50kb in Arabidopsis and rice, 

respectively. b Chromosome-wide distribution of repeat density (in %) in sliding 

windows of 100kb. Chromosome coordinates are given in Mb. Figure adapted from 

(Mirouze and Vitte 2014). 
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Importantly, both the epigenetic and the TE landscape of rice differ significantly from 

Arabidopsis (Liu et al. 2017; Mirouze and Vitte 2014). Thus, TEs that are generally 

more abundant in the rice genome (see general introduction) are also more equally 

distributed across the rice chromosomes. As a consequence, the degree of DNA-

methylation, which is known to correlate with the presence of TEs in the genome, also 

differs drastically between Arabidopsis and rice (Fig. 22). 

As a second genetically well-characterized crop (Fang et al. 2017) to test the efficiency 

of the two inhibitors A&Z we choose soybean (Glycine max) which is currently one of 

the most important crops worldwide (Wilson 2008). Similar to rice, soybean 

significantly differs from Arabidopsis both at the DNA-methylation level (Mirouze and 

Vitte 2014) and the content and distribution of TE annotations in its genome (Fig. 2). 

As retroTEs are known to often depend on (a)biotic stress for their activation (Negi et 

al. 2016) and we have previously shown that inhibition of TE-silencing in combination 

with the occurrence of an abiotic stress can lead to efficient retrotransposition in 

Arabidopsis (chapters 4 & 5) we also wanted to address the question whether we could 

mobilize stress-responsive retroTEs in soybean. In a preliminary experiment, we chose 

to apply cold-stress as an inducer of retroTEs in soybean. In soybean, cold-tolerance 

is one of the main breeding objectives to reduce yield losses in Switzerland. Low 

temperatures can for instance trigger flower abscission (Schori and Charles 2004). The 

identification and potential mobilization of a cold-stress responsive retroTE in soybean 

could therefore significantly accelerate soybean-breeding for Switzerland and other 

areas with suboptimal climate. 
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6.3 Results 

 Simultaneous inhibition of Pol II and DNMtases mobilizes a copia-like 

retrotransposon in rice 

To capture drug-induced mobilized retroTEs, we followed the same approach as for 

Arabidopsis (chapter 4) and characterized the active mobilome in rice seedlings that 

were grown on MS medium supplemented either with no drugs, A (5 µg/ml) only, Z (40 

µM) only or the combination of A and Z. We generally noted that both drugs and 

especially Z present in the medium negatively affected the growth of rice seedlings 

(Fig. 23) in vitro. 

 

After the extraction and processing of DNA from the aerial parts of treated rice 

seedlings, we performed mobilome-sequencing (as explained in chapter 4) in order to 

detect activated retroTEs. We found that Houba, a copia-like retroTE (Panaud et al. 

2002), was highly activated only when plants were treated with the combination of A&Z 

(Fig. 24). Bona fide activity of Houba was supported by the detection of mobilome-

sequencing reads originating from eccDNA containing LTR-LTR junctions (Fig. 25). 

The presence of closed Houba-circles and thus the mobility (see chapter 4) of Houba 

was further confirmed by an inverse PCR using a pair of primers designed to only 

amplify closed Houba eccDNA (Fig. 24b). As a control for equal amounts of template 

in the inverse PCR we used primers specific to chloroplast DNA (Fig. 24d).  

Figure 23 Representative phenotypes of seedlings of Oryza sativa japonica 

after growth on medium containing A, Z or a combination of both inhibitors. 

Seedlings were germinated and grown for 10 days on medium containing no drugs 

(K), α-amanitin (5 µg/ml) (A), zebularine (40 µM) (Z) or a combination of both 

inhibitors (A&Z). The aerial parts of three treated seedlings were used for the 

mobilome analysis. 
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Figure 24 Drug-induced activation of the Houba retrotransposon in 

Oryza sativa. Mobilome analysis of DNA extracted from seedlings after 

growth on control conditions (C), A (5 µg/ml), Z (40 µM), and the combination 

of A&Z. a Logarithmic ratio of detail of the depth of coverage obtained after 

aligning the sequenced reads on one Houba element. b Scheme of primers 

localization (black bar: Houba element, arrows: PCR primers, red box: LTR). 

c circular forms of Houba are specifically detected in plants treated with both 

A&Z using inverse PCR with primers shown in (b). d Specific PCR on 

chloroplast DNA is shown as a loading control. Total DNA subjected to a 

rolling circle amplification was used as a template. 
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In a preliminary experiment, we also applied HS (37°C, 24h) to rice seedlings grown 

on control and A&Z-containing medium. However, we could not detect a distinct 

activation of a heat-responsive retroTE in the mobilomes of these plants. However, in 

line with the previous observation that the A&Z-treatment specifically led to an 

accumulation of eccDNA of Houba, we were also able to show by inverse PCR that 

production of Houba eccDNA was induced independently of the applied HS (Fig. 26, 

preliminary data). 

READ   1    CTTTTAAGGAGGTCCCCCTCTCCTAGAATAAGCAAGGTGGTACTAAACTCCACATGCATG   60

            ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ref    290  CTTTTAAGGAGGTCCCCCTCTCCTAGAATAAGCAAGGTGGTACTAAACTCCACATGCATG   231

READ   61   CCATCCTATGAGGTGGGCTTTTGTGATTTTCCAAAGAATTAATCTTCGAGTGGGCTAAGG   120

            |||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||

ref    230  CCATCCCATGAGGTGGGCTTTTGTGATTTTCCAAAGAATTAATCTTCGAGTGGGCTAAGG   171

READ   121  CCCATTCATTAATTCCAACAATCCCCCACATTGTTGAGATTATGGGCATATAATGATTTA   180

            ||||||||||||||||||||           |||||||||||||||||||||| ||||||

ref    170  CCCATTCATTAATTCCAACA-----------TGTTGAGATTATGGGCATATAAGGATTTA   122

READ   181  ATTTATTCCATAAATAAATCATGACATTACAGATGAAAACTAGCATGAACGCATCATTAG   240

            ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ref    121  ATTTATTCCATAAATAAATCATGACATTACAGATGAAAACTAGCATGAACGCATCATTAG   62

READ   241  ATCTACACATG  251

            |||||||||||

ref    61   ATCTACACATG  51

3’ LTR 5’ LTR

Figure 25 Houba forms LTR-LTR junction eccDNAs when treated with the 

combination of A&Z. Alignment between a sequencing read resulting from the 

mobilome sequencing of A (5 µg/ml) and Z (40 µM) -treated plants (top) and an 

artificial junction corresponding to the 3’ part of the 3’ LTR (blue box) fused to the 5’ 

part of the 5’ LTR (yellow box). 
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In the case of the heat responsive retroTE ONSEN, we have previously linked the 

detection of mobilome-reads originating from eccDNA to the presence of novel ONSEN 

copies in individuals of the successive generation (chapter 5). To address the question 

whether extrachromosomal Houba copies induced by the A&Z-treatment could also be 

detected in the progeny of a A&Z-treated rice plants, we performed an IRAP (inter 

retrotransposon amplified polymorphism)-analysis (Yuzbasioglu et al. 2016). In a 

preliminary approach, we choose to compare individuals originating from four different 

panicles of a control plant that was only heat-stressed and in total twelve individuals 

from four panicles of one A&Z-treated and heat-stressed rice plant (Fig. 27, preliminary 

data). We noted distinct band patterns in each of the samples indicating a high degree 

of diversity of Houba-insertions between individual plants and also within one panicle 

(Fig.27, preliminary data). Notably, distinct band patterns were also observed between 

individuals originating from the tested control plant. However, due to a limited 

resolution, we observed a high degree of overlap between bands of different sizes. 

Furthermore, the PCR-efficiency between samples was highly variable, resulting in 

systematic and possibly unspecific differences between band intensities.  

1  
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Figure 26 Drug-induced activation of the Houba retroTE in Oryza sativa. The 

agarose-separated products of an inverse PCR (as explained in Fig. 24b) on total 

DNA extracted from  seedlings after growth on control conditions (C), heat stress 

(HS), A (5 µg/ml), Z (40 µM) the combination of A&Z and HS+A&Z that was subjected 

to a rolling circle amplification is depicted. Circular forms of Houba are predominantly 

detected in plants treated with both A&Z. Preliminary data. 
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We could therefore not determine whether actual transposition events occurred as a 

result of our treatments. 

 

 

A&Z-treated controls 

M    a     b    c     d    1    2a    2b   2c   2d   3a  3b   3c   3d  4a   4b   4c    M 

Figure 27 IRAP-analysis for the detection of Houba-copy number variation 

in rice. IRAP-analysis of the Houba-retroTE in the S1-generation of heat-

stressed (a-d) and heat-stress and A (5 µg/ml) and Z (40 µM) treated O. sativa 

seedlings (1-4c). Control plants a-d originate from seeds of four independent 

panicles of one heat stressed rice seedling. Same numbers in labels of A&Z-

treated plants indicate that they origin from the same panicle of the tested 

parental plant. The PCR products of the IRAP-analysis were separated on a 

Midori-stained acrylamide gel, a GeneRuler 1 kb DNA Ladder (Thermo 

Scientific) was used as a size marker (M). Preliminary data. 
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 Testing A&Z-treatments to induce retrotransposition in soybean 

Due to our previous observation that the combination of 5 µg/ml α-amanitin and 40 µM 

zebularine led to the detection of extrachromosomal DNA of the retroTEs Houba in rice 

and the heat-responsive ONSEN element in Arabidopsis (chapter 4) we wanted to test 

whether the same treatment would also activate class I elements in the dicotyledonous 

crop soybean. For that we germinated seeds of soybean on control medium or medium 

containing 5 µg/ml α-amanitin and 40 µM zebularine. As already previously observed 

in rice (Fig. 23), we noted that the drug-treatment caused a distinct negative effect on 

the root and shoot growth of soybean seedlings (Fig. 28). 

 

 

 

 

a b 

c d 

Figure 28 Representative phenotypes of seedlings of Glycine max (Wm82) 

after growth on medium containing a combination of the inhibitors A&Z. 

Seedlings were germinated and grown for 16 days on medium containing no 

drugs (a and b) or a combination of  α-amanitin (5 µg/ml) and (A), zebularine (40 

µM) (Z) (c and d). Plants were either grown under control conditions (a and c) or 

cold stressed at 4°C for 48 h (b and d). 
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Despite the negative effects of A&Z on the growth performance of soybean in vitro, we 

observed a high degree of recovery and survival when seedlings were subsequently 

rescued on soil and grown until seed maturity under controlled conditions in the 

greenhouse (Fig. 29). 

 

 

We further attempted to analyze the mobilomes of soybean in DNA extracted from the 

first emerging true leaves following growth on control medium or the A&Z-treatment in 

combination with or without cold-stress. However, by mapping all reads of the 

individual mobilomes to a concatenation of all known LTR-TEs of soybean (Du et al. 

2010), we could not detect major condition-dependent distinct patterns of coverage 

that would indicate the activation of a specific LTR-retroTE in this preliminary 

experiment (Fig. 30). 

 

Figure 29 Representative example for a cold and A&Z-treated seedling of 

soybean (Wm82) that was rescued from A&Z-containing medium and grown for 

ten days on soil. 
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Figure 30 Coverage of mobilome-reads mapped to the concatenation of all 

known LTR-retroTEs of soybean. Mobilome-reads from DNA extracted from the 

control sample (a) and the sample obtained after the A&Z-treatment and cold stress 

(b) are depicted. The average (black bars) and maximum (yellow bars) coverage is 

depicted in a log scale.  
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6.4 Discussion 

As described above, experiments on TEs or epigenetics in the model plant Arabidopsis 

are not necessarily valid in crops such as rice or soybean (Mirouze and Vitte 2014). 

However, from a mechanistic point of view, the high degree of enzymatic homology 

especially of RNA-polymerase II between different plant species (Nawrath et al. 1990) 

and eukaryotes in general (Ream et al. 2009; Sweetser et al. 1987), strongly suggested 

that A&Z would also interfere with TE-silencing in plants other than Arabidopsis. 

Indeed, we found that the double-treatment specifically activated the Houba retroTE in 

rice confirming this assumption. By testing several Arabidopsis mutants impaired in 

different branches of the RdDM-pathway we have previously found strong evidence 

that the recently discovered DCL3-RdDM (Panda et al. 2016) is a main target 

responsible for the strong activation of ONSEN after HS and the A&Z-treatment 

(chapter 4). As discussed above and also suggested by (Panda et al. 2016) the DCL3-

dependent route of siRNA biogenesis is assumed to be especially important to silence 

evolutionary young and transcriptionally active retroTEs in plants. Indeed, there are 

indications that Houba (Vitte et al. 2007) just like ONSEN (Quadrana et al. 2016) 

showed very recent natural transposition events in the rice and the Arabidopsis 

genomes, respectively. Houba is the most abundant retroTE of the copia family in rice 

and has been active in the last 500’000 years (Wicker and Keller 2007). Based on 

these two cases including distantly related species such as Arabidopsis and rice it can 

be speculated that similar expression dependent silencing mechanisms that directly 

depend on a silencing signal produced by Pol II generally exist in plants. Moreover, it 

would be interesting to determine whether there are structure-dependent subtle 

subclass-specific differences in TE-silencing, potentially caused by subgenomic 

transcription (chapter 4). This could explain the observation that the A&Z-treatment 

only induced two very distantly related members of the copia-subfamily in rice and 

Arabidopsis. The analysis of genome-wide methylation patterns after inhibition of Pol 

II and/or DNMtases, possibly in combination with reverse genetic approaches (Stroud 

et al. 2013) could further elucidate the role of Pol II in surveilling genome integrity in 

rice. 

In contrast to the strict heat-stress dependence of ONSEN (chapter 4 and (Cavrak et 

al. 2014)) we noted that the production of eccDNA of Houba in rice was already 

triggered after germination and growth on ½ MS medium containing the combination 
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of A&Z in the absence of additional stresses. It is known that drastic events such as 

tissue culture can activate retroTEs in rice (Hirochika et al. 1996). Keeping this in mind, 

it would be interesting to systematically test to what extend different parameters such 

as pH, UV-light, humidity or sucrose present in the medium could influence the level 

of Houba activation in rice seedlings grown on sterile culture. Indeed, we observed that 

the vitality of rice seedlings was negatively affected by the A&Z- treatment, suggesting 

suboptimal growth conditions. In Arabidopsis, several key-findings such as the 

important role of Pol IV in TE-silencing (Ito et al. 2011) have been substantiated by 

using ONSEN as a by now well-characterized stress responsive model-TE (Cavrak et 

al. 2014). Further studies elucidating the exact mechanisms underlying the activation 

of Houba could allow its application as an endogenous model-retroTE for basic 

research in the important rice crop.  

A recent publication revealed, that in some rice cultivars, transposition of Houba can 

cause a high degree of polymorphic insertions in somatic tissue extracted from roots 

and leaves (Yuzbasioglu et al. 2016). By using the same technical approach to detect 

inter retrotransposon amplified polymorphisms (IRAPs) we attempted to demonstrate 

the correlation of Houba eccDNA accumulation following A&Z-treatment and the 

detection of novel insertions that could be tracked in the successive generation of rice 

cultivar Nipponbare. Although we also observed a high degree of polymorphisms 

between tested lines, we could not exclude the possibility that either somatic 

transposition of Houba or random fluctuations of the efficiency of the IRAP-analysis 

have led to the observed band patterns. Therefore, the transgenerational transposition 

of Houba still needs to be confirmed and may be hampered by the already very high 

Houba copy number present in the rice genome (Vitte and Panaud 2005). However, 

novel powerful tools such as highly sensitive digital droplet PCRs to determine copy 

number variations (White et al. 2014) or newly developed sequencing technologies 

such as Oxford Nanopore Sequencing (Debladis et al. 2017) might overcome current 

limitations in the detection of transposition events of high-copy TEs such as Houba in 

rice. Thus, the technological advance that allows for the generation of significantly 

longer sequencing reads compared to Illumina sequencing will facilitate a more reliable 

detection of novel TE-copies also in complex genomes (Debladis et al. 2017). In that 

case, the preliminary observation that heat-stress did not affect the A&Z-dependent 

induction of Houba, opens up the possibility to determine whether a potential insertion-
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site preference of Houba would be affected by the concurrent presence of heat-stress. 

In addition, the successful identification and knowledge of Houba as being highly active 

after the A&Z-treatment might also allow for forward genetic approaches using only 

endogenous genetic material as previously shown for ONSEN in Arabidopsis (chapter 

5). 

Due to the promising results from rice, we also attempted to activate and mobilize 

retroTEs by inhibiting Pol II and DNMTases in soybean. In a first trial we used the same 

concentrations of the two inhibitors α-amanitin and zebularine that we demonstrated 

to be efficient in both Arabidopsis and rice. Like in rice, we observed a distinct negative 

phenotypic effect of the two inhibitors on the seedling growth of soybean suggesting 

the efficient uptake of at least one of the two drugs. Due to this observation, we choose 

to analyze the active mobilome of the first true leaves of soybean. However, unlike the 

activation of Houba in rice and ONSEN in Arabidopsis, we failed to detect significant 

levels of treatment-specific eccDNA that would indicate the distinct activity of class I 

elements of soybean. There are several different possible explanations for this 

observation. Although we saw an obvious impact of the two chemicals on the growth 

performance of soybean seedlings it is possible that the effect of the two drugs in the 

first true leaves was buffered by the considerably bigger seeds and higher biomass of 

soybean compared to Arabidopsis and rice. As the Z-mediated reduction of DNA-

methylation depends on the inhibition of maintenance methylation and therefore on 

repeated cell replication (Baubec et al. 2009), it is likely that its effect was buffered by 

the significantly larger soybean cotyledons compared to Arabidopsis. A tissue-specific 

release of repeat-repression following Z-treatment and RdDM-dependent restoration 

of silencing in true leaves has also been reported for Arabidopsis (Baubec et al. 2014). 

It is known that siRNAs produced upon active de-methylation of DNA in companion 

cells ensure proper TE-silencing in gametes of Arabidopsis (Ibarra et al. 2012). Based 

on such observations it has been speculated that mobile siRNAs originating from 

cotyledons could be involved in ensuring TE-silencing in early vegetative tissue in 

Arabidopsis (Baubec et al. 2014). Whether such effects could also counteract or buffer 

the chemical inhibition of silencing pathways in soybean remains to be determined. 

More importantly, similar to rice, it was reported that the epigenetic landscape of 

soybean differs dramatically from Arabidopsis (Schmitz et al. 2013). Thus it is known 

that global mC-content in all three sequence contexts of soybean is considerably higher 
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compared to both Arabidopsis and rice (Mirouze and Vitte 2014). The strong activation 

of retroTEs following the A&Z- treatment is based on the reduction of mC-levels in the 

genome. It is possible that the used concentrations of the two inhibitors was not high 

enough to shift silenced retroTEs into an active state (see general discussion). To 

counteract the generally increased levels of DNA-methylation in soybean it might 

therefore be necessary to test increased concentrations and different ratios of the two 

inhibitors A&Z. As a control, it could be useful to monitor the efficiency and impact of 

A&Z on the level of DNA-methylation both in cotyledons and true leaves. The high 

vitality of cold-stressed soybean-plants on soil rescued from medium containing A (5 

µg/ml) and Z (40 µM) supports this notion. Therefore, soybean but also rice could also 

be treated with significantly higher amounts of the two inhibitors. Indeed, we have 

previously shown a dose-response for the induced activation of ONSEN in 

Arabidopsis. Once the optimal balance between survival rate and efficient DNA-

demethylation is found, the mobilome analysis could also be repeated with variations 

in or combinations of different stress treatments such as cold or heat.  

As TE-activity can differ between various varieties of the same crop as it was observed 

for Houba in rice (Yuzbasioglu et al. 2016), it would be very interesting to investigate 

and compare cultivar-specific mobilomes in response to stress. The tremendous 

impact of retrotransposition on gene-expression and the emergence of phenotypic 

diversity in crops has been demonstrated in a multitude of examples (see general 

introduction). After a potential future detection of mobile class I elements it would 

therefore be very interesting to address the question whether the A&Z-treatment would 

also result in striking phenotypic diversity and potentially increased stress-tolerance in 

the F1-generation of soybean or rice. After the proof of concept in the model plant 

Arabidopsis (chapter 5) the generation of retroTE-mediated phenotypic diversity in 

crops will be the next coherent step required to harness transposable elements for 

plant breeding. 
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6.5 Materials and methods 

Experiments were performed as described below and according to (Thieme et al. 

2017).  

 

 Heat-stress treatment of rice 

Rice seedlings were heat stressed after nine days of growth under control conditions 

(12 h at 28 °C (day) and 27 °C (night)) on ½ MS plates for 24h at 37°C in a Sanyo 

MLR-350 growth chamber. 

 

 IRAP-analysis to detect Houba-copy number variation 

Total DNA from the leaves of rice plants that were grown under controlled conditions 

(12 h at 28 °C (day) and 27 °C (night)) on soil in a Sanyo MLR-350 growth chamber 

was extracted with the DNeasy Plant Mini Kit (Qiagen) following the manufacturer’s 

recommendations. The IRAP-analysis in the F1 of control or treated individuals was 

performed according to (Yuzbasioglu et al. 2016). After separation of the PCR-

products, the acrylamide gel was stained with Midori Green. 

 

 Seed material and cultivation of soybean 

Seeds material of the Glycine max cultivar Williams 82 (Wm 82) (Strain: PI 518671; 

Seed source: 13U-9281; Subcollection: Modern) was obtained from the USDA 

Soybean Germplasm Collection, Urbana, Illinois 61801, United States. Prior to growth 

on soil, soybean was inoculated with the HiStick® Soybean Inoculant (Becker 

Underwood) according to manufacturer’s recommendations. Soybean was grown 

under controlled conditions (14 h at 25 °C (day) and 22 °C (night)) in a Sanyo MLR-

350 growth chamber (for the mobilome-analysis). 

 

 In vitro culture of soybean 

Prior to growth on autoclaved ½ MS-medium pH 5.8, 1% sucrose, 0.5 % Phytagel, 

soybean seeds were incubated in 30 % bleach (Javel) under stirring and rinsed twice 

in autoclaved ddH2O.  
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 Cold treatment of soybean 

After twelve days of growth under controlled conditions (14 h at 25 °C (day) and 22 °C 

(night)) in a Sanyo MLR-350 growth chamber on control or A&Z-containing ½ MS-

medium, seedlings of soybean were cold stressed for 48h at 4°C in a Sanyo MLR-350 

growth chamber.  

 

 Mobilome-analysis of soybean 

For the mobilome-analysis DNA from the first true leaves of 14 days old seedlings of 

soybean (Fig. 28), grown under control conditions or after cold stress and medium with 

or without A&Z was extracted using a DNeasy DNA extraction kit (Quiagen). For the 

mobilome-analysis DNA was processed as described in (Lanciano et al. 2017; Thieme 

et al. 2017). The obtained reads were mapped to a concatenation of all LTR-retroTEs 

of the the Wm 82 reference genome downloaded from the SoyTEdb (Du et al. 2010) 

using the “map to reference” tool of Geneious (version 8.1.9). Multiple mappings of 

reads were allowed.  
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7 Policy-related aspects of introducing a novel breeding 

technology to the market 

 

7.1 Patent 

Due to the novelty (I), the inventive step (II), and the potential industrial application (III) 

all three requirements for a patent application to protect the discovery made in my 

dissertation were met. After a positive report of a patent research at the Swiss Federal 

Institute of Intellectual Property (Bern, CH) we decided to apply together with the 

technology transfer organization of the University of Basel (Unitectra) for a patent to 

protect the process of using the two inhibitors A and Z to induce the “Mobilization of 

Transposable Elements to Enhance Genetic and Epigenetic Variability in a Population” 

(Bucher* and Thieme* 2017) (appendix II). The patent has been granted under the 

number WO2017093317 of the European Patent Office. An exclusive use license of 

this patent for the application in plants has been granted by the University of Basel to 

the start-up company epibreed AG (Basel, CH). 

 

7.2 Dissemination 

 Article for the Newsletter of the PSC 

With the aim to disseminate my scientific findings and the idea of using retroTEs for 

plant breeding to the scientific community (Zürich-Basel Plant Science Center) and to 

interested readers of the PSC-Newsletter (fall edition 2017, 500 printed copies)  I wrote 

an article with the title “Putting plants in school: on the potential of epigenetic memory 

for crop breeding” (Thieme 2017b) (english, appendix III). Related to the idea of training 

plants to transfer acquired knowledge of how to resist a certain stress to successive 

generations, I pictured retroTEs as highly informative “cheat sheets” that can be copied 

and inserted somewhere else into the “genetic book” of the plant.  
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 Article pflanzenforschung.de 

In cooperation with the PSC I further contacted the editorial office of the online platform 

“pflanzenforschung.de” which is founded by the German Federal Ministry of Education 

and Research. They thereupon published the article “Hitze lässt ONSEN hüpfen-

Retrotransposonen kontrolliert zum Springen bringen” (german, appendix IX) 

explaining the scientific backgrounds and potential applications to improve crop 

breeding in lay language to the interested public.  

 

 Open access publication  

We choose to publish our scientific paper in the open access online journal “Genome 

Biology” (appendix I). The open access publication is another important element for 

the successful dissemination but also transparency for possible clients, interested 

consumes and other stakeholders with restricted access to other scientific journals. 
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7.3 Stakeholder dialog on the acceptance of new breeding technologies 

 Identification and characterization of stakeholders 

Prior to a successful dialog on the acceptance of new breeding technologies such as 

the induced amplification of retroTEs, it was important to identify and correlate the most 

important stakeholders linked to the topic. Therefore, I created a stakeholder-map (Fig. 

31).  

 

In a next step, I attempted to characterize the identified stakeholders concerning their 

role, interests, contributions and power relative to my own position in the stakeholder 

dialog regarding the acceptance of our new breeding approach (table 3) according to 

published tools (http://wageningenportals.nl and according to the course script 

“Stakeholder Engagement”, offered by the Zürich-Basel Plant Science Center). 

 

 

Scientific 
community 

Breeders 

Government 

University 
of Basel 

Spin-off 

Consumers 

Farmers 
RetroTEs for 

plant breeding 

Unitectra 

Figure 31 Stakeholder map depicting the most important stakeholders and 

their relation in the context of the current stage of my research project 

“retroTEs for plant breeding”. Individual stakeholders were arranged according to 

their role in the stakeholder dialog to be related to economy (blue), 

government/legislation (red), science (green) or to be situated at the interface of 

science and policy (turquoise). 

Legislation 
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Table 3 Characterization of stakeholders (SHs) concerning their general role, 

interests, contributions and power in the stakeholder dialog regarding the 

acceptance of inducing retroTEs for plant breeding. 

SH Role Interests Contributions Power 

G
o

v
e
rn

m
e
n

t/
E

U
 

Funder 

Beneficiary 

Regulator 

Clear and evidence based 

regulations of new breeding 

technologies; Follow the 

public opinion to survive next 

elections; Ensure economic 

growth to keep people 

satisfied; Fund research to 

develop new breeding tech. 

Provide funding for research; 

Employ experts; Organize 

public events; Initiate a 

referendum; Decide about 

regulations of labelling; Fund 

platforms; 

 

High 

S
c
ie

n
ti

fi
c
 

C
o

m
m

u
n

it
y

 

Partner 

Beneficiary 

Knowledge 

provider 

Influencer 

Informer 

Raise funding; Stay up to date 

in latest research; Collaborate 

to get data published;  

Provide information; Increase 

pressure to generate new 

data; “Market” for new 

publications; Add a “value” to 

and review generated data; 

High 

U
n

iv
e
rs

it
y

 

o
f 

B
a
s
e
l 

Regulator 

Beneficiary 

 

Train the next generation of 

researchers; Raise 

funding;Climb up in ranking; 

Provide facilities; 

Infrastructure; Salary etc. 

High 

U
n

it
e
c
tr

a
 

 

Beneficiary Improve portfolio of University; 

Convert data of employees 

into revenue; 

Financial support and 

expertise for patent 

application; 

Medium 

B
re

e
d

in
g

 

c
o

m
p

a
n

ie
s

 

Contractor Generate innovate cultivars; 

Profit from progress in 

research; Be the first to have 

innovative product; Partially: 

search for ways to increase 

farmers/consumers 

dependency and to become 

more efficient and compatitive 

in breeding; 

 

Early adopters, decide if new 

technology will be 

implemented; Form the market 

for innovation and patents; 

Apply and develop new 

breeding technologies further; 

Push government for 

regulation to obtain level 

playing field in the international 

context; 

High 

C
o

n
s
u

m
e
rs

 Beneficiary Obtain healthy products that 

are produced devoid of ethical 

concerns; Food security;  

Push government towards 

desired regulations; Decide 

which products to buy (if 

labelled) 

Medium 

E
c
o

n
o

m
y

/ 
S

p
in

-o
ff

 Beneficiary 

Partner 

 

Convert research data into 

money; 

Enhance research by adding a 

monetary value to research 

data; 

Medium 
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The awareness of various stakeholders and their characteristics was very helpful for 

the further planning and organization of the stakeholder dialog.  

 

 Fachtagung Dialog Grün 2016  

The symposium “Fachtagung Dialog Grün 2016, Neue Verfahren in der 

Pflanzenforschung – eine Alternative zu Pflanzenschutzmitteln?” was launched to 

discuss with experts from science, economy, politics and administration whether 

current developments in plant research could contribute to a reduction in pesticide use 

in Switzerland. The aim of my presentation (20 min) was to explain our scientific 

findings in lay langue (german). This was a first attempt to disseminate and discuss 

our new breeding approach with various stakeholders from both the conventional and 

organic sectors. My presentation was further published in a publically available 

conference transcript (Thieme 2017a) (200 printed copies, appendix IV) that was 

posted on the PSC-website, on the platform “naturwissenschaften.ch” and included 

into the Research Collection of the ETH Zürich. 

 

 

 

 

 

SH Role Interests Contributions Power 
F

a
rm

e
rs

 

Beneficiary 

 

Take choice which cultivars 

they want to grow, of those 

offered by seed companies; 

Profit from progress in 

research; Have stable 

yield/income; Retain 

independence;  

Build the market for breeders, Low 

N
G

O
s

 Interest 

group 

Concerned about safety 
issues; 
 

Initiate and participate in public 

discussions, consumer 

awareness, policy 

recommendations; 

Medium 
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 Presentation and World-Café at FiBL 

7.3.3.1 Aims an planning 

The target audience was composed of different stakeholders including breeders, 

researchers, consumers and employees (FiBL) working in the organic sector (Fig. 31). 

By using the format of a World-Café at the FiBL in Frick, CH we aimed to: 

(I) Disseminate and explain the scientific background of using retroTEs in plant 

breeding to generate a proper basis for discussion; 

(II) Collect and discuss critical aspects linked to the possible application of this 

innovative breeding approach in the organic sector. 

For (I) the event was initiated with a 30 min presentation (german, appendix VIII, 

pictures were removed) in lay language easy to understand for an audience without 

specific knowledge in (epi)genetics or breeding followed by a Q&A-session (30 min).  

Subsequently, the degree of understanding of the scientific background in the 

audience was assessed in a multiple choice test (appendix V). To achieve a maximum 

learning effect, the correct answers were handed out prior to the actual discussions in 

the World-Café. Questions with multiple possible answers covering the following parts 

of the presentation were posed: 

- 1: Mechanism of retroTE movement. 

- 2: Effects of stresses on retroTEs and flanking regions. 

- 3: Effect of DNA-methylation on the activity of retroTEs. 

- 4: Properties of the two inhibitors A&Z. 

- 5: RetroTE-induced genetic diversity as the basis for breeding. 

- 6: Genetic and trait stability of high-copy lines. 

- 7: Applicability of the inhibitors A&Z in crops. 

The World-Café was planned and carried out according to the open source guidelines 

“Café to go” offered by (http://theworldcafe.com). The audience was split into three 

small groups (size three to four people) and allocated to tables where three different 

topics were discussed (Fig. 32). 
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After 15 min of discussion, groups moved to the next table. The discussions were 

facilitated by table hosts (Dr. Messmer, Dr. Bucher and me) that were leading the 

discussions according to a set of guiding questions that were prepared in advance 

(german, appendix VII). Following three rounds of discussion, a synopsis from each 

table was presented by the table hosts in the plenum (3 x 7min). 

By choosing the format of a World-Café we intended to collect various issues linked to 

the use of retroTEs in organic agriculture. In addition to the discussion on the three 

tables we also designed a questionnaire (german, appendix VI) that would reflect the 

diversity of opinions in the audience. The following questions (translated from german) 

were asked: 

- Question 1: Should varieties that were bred using retroTEs be used in the 

organic sector? (Rate 1-5; 1: not at all, 5 yes, necessarily). 

- Question 2: What are potential risks linked to the use of retroTEs in plant 

breeding? (Open field). 

- Question 3: Should natural substances that activate retroTEs be used for plant 

A 

Chances and risks of a 

stress-induced mobilization 

of retroTEs. 

B 
Acceptance of chemical 

mutagenesis vs genetic 

engineering. 

 

 

C 

Pros and cons of patents in 

plant breeding. 

 

15 min 

Figure 32 Topics (A, B and C) discussed in the World-Café. After a discussion 

for 15 min that was facilitated by a table host who remained on the table, groups of 

three to four persons moved to the next table.  
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breeding in the organic sector? (Rate 1-5; 1: not at all, 5 yes, necessarily). 

- Question 4: How high is the potential of using retroTEs in plant breeding for the 

organic sector? (Rate 1-3; 1: not any, 3: high). 

- Question 5: Process patents are the basis for innovation in agriculture (Rate 1-

5; 1 fully disagree, 5: fully agree). 

 

7.3.3.2 Results and discussion 

 Multiple choice test to assess the understanding of scientific background 

A prerequisite for a fruitful dialogue and discussion about a novel technology is a 

successful dissemination of the scientific background and a reasonable knowledge 

transfer to the audience or the public. By using a multiple choice test, we wanted to 

generally assess to which extend the audience was able to understand the scientific 

backgrounds of using the two inhibitors A&Z to induce retrotransposition for plant 

breeding (aim (I), see above). 

Overall, 78% of given answers were correct. However, we observed major differences 

between the tested subject areas. Questions addressing the influence of DNA-

methylation on transposition (question 3) and concerning a potential use of A&Z to 

induce transposition in crops (question 7) were answered mostly correct (92%) while 

difficulties were observed concerning genetic and trait stability of high-copy lines (61% 

correct answers) (Fig. 33).  

As the correct answers to the multiple choice test were handed out and if required also 

debated during the World-Café it can be assumed that further discussions were based 

on a very high degree of understanding of the scientific backgrounds. Despite the 

limited number of twelve participants, this result could be used to adapt future 

communication strategies about this novel breeding technology. Accompanying 

multiple choice tests could be used to further validate successful communication 

strategies.  
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Figure 33 Percentage of correct (blue) and wrong (orange) answers to 

individual questions (1-7) and on average in the multiple choice test 

(german, appendix V). The summary of answers given by twelve participants 

is shown. The total number of given answers in the multiple choice test was 

n=238. 
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7.3.3.3 Synopsis and key findings from the World-Café and open questions from the 

questionnaire  

Based on the overall successful communication of scientific results (78% of correct 

answers in the audience, Fig. 33) we were able to proceed with an open discussion 

aiming to collect a broad range of aspects and ideas linked to the use of retroTEs in 

plant breeding (aim (II), see above). In doing so, we were explicitly not aiming to agree 

on a common position concerning the use of retroTEs in organic agriculture.  

When discussing the different topics (A, B and C, Fig. 32) in the plenum, it turned out 

that many aspects discussed at the individual tables were overlapping. Hence, for the 

validation of the World-Café and the questionnaire we choose to sort the emerging 

arguments to eight subcategories. A list of discussed ideas/topics and issues can be 

summarized as follows: 

 

Risks & limits 

Crop/ Economic 

- Induction of side and off target effects (mutations and altered gene regulation, 

less resistance to other stresses); 

- Forcing plants to release retroTEs could generate a too high diversity; 

- Use of A&Z might lead to uncontrollable effects (gene-transcription, 

transpositions and in general); 

- Interference with self-regulation of the plant- plant might experience a shock; 

- Selection of new traits might be hampered due to too many mutations; 

- High-copy lines might behave differently under other/combined stresses; 

- Crossing might still be needed in very poor genetic backgrounds (no emergence 

of novel traits out of nothing); 

- Method might not be accepted by breeders and consumers in the organic sector 

(see below); 

- Too early to assess benefits and risks and thus to predict the acceptance; 

- Regulation of breeding technologies is likely to change, mutation breeding could 

also be considered to be genetic engineering (see discussion below);  
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Environment 

- Regulatory balance and self-regulation of the plant is affected; 

- Long-term effects and altered performance in the field (multiple stresses) hard 

to determine; 

- Outcrossing meaning crossing of high-copy lines with wild relatives possible; 

- Accelerated evolution of super-weeds possible; 

 

Health 

- Zebularine (synthetic nucleotide) is incorporated into the DNA and could be 

inherited to the next generation, accumulate in food chain and become active 

at very low concentrations; 

- Handling and degradation of the toxic inhibitors A&Z; 

- Induction of random gain of function mutations could lead to allergies; 

- Impairing the general “order and regulating entity of an organism” and extreme 

acceleration of evolution could affect food quality; 

 

Social and ethical 

- Patents on life are not accepted in the organic sector while high-copy lines and 

retroTEs in novel varieties might be easy to patent; 

- Process patents are partially accepted, however under discussion (Fig. 34); 

- Restriction of freedom of choice for farmers and consumers; 

- Data/knowledge generated with public resources leads to profit in the private 

sector; 
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Chances 

- Massive increase in (epi)genetic diversity within one generation without 

crossing; 

- So far “hidden phenotypes/characteristics” might become more obvious through 

the amplification of class I elements; 

- Method might be directed, evolution according to Lamarck`s theory; 

- Stimulation and amplification of inherent characteristics like “educating” a plant;  

- Gain-of-function phenotypes possible and likely; 

- Very fast evolution (already next generation has homozygous insertions); 

- No need for genetic sequence information (which is a prerequisite for e.g. 

TALEN or CRIPSR-Cas9); 

- No need for genetic engineering/transformation of the crop: 

 

Acceptance 

- Product would generally not be a GMO and should rather be regulated like 

products obtained from EMS /irradiation mutagenesis or colchicine-treatment; 

- Incorporation of zebularine into DNA could still be considered as “genetic 

engineering”; 

- Stimulation and amplification of inherent characteristics is a popular idea in the 

organic sector; 

- The organic sector would prefer to use breeding material that was not treated 

with colchicine, EMS or irradiation but there are currently few alternatives; 

- New varieties would need to perform much better to gain acceptance in organic 

sector; 

- Breeding should be done by farmers not by chemists; 

- Whether a compound used for the treatments is synthetic or natural does 

change much for the acceptance; 

- Self-regulation is generally still possible when seed/plant is treated (not in vitro) 

which could positively influence acceptance in the organic sector; 

- The concept of “back to the roots” could limit acceptance of a new breeding 

approach in the organic sector; 
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- Food as “a shelter” from global changes and a transmitter of a certain “order” 

should not be impaired; 

- “1000 years of evolution within only one year” could be frightening to consumers  

- Whenever possible to use, other new techniques such as CRISPR-Cas9 might 

be more precise and controllable; 

 

Recommendations 

- More research/safety assessment before product is grown in the field; 

- More funding for research for example to find alternatives to the use of 

zebularine; 

- The ultimate goal for using retroTEs in the organic sector would be to develop 

a method that does not use A&Z; 

 

As mentioned before, we also determined the acceptance in the audience by using an 

questionnaire (german, appendix VI) that allowed for a rating of four different positions 

or statements (see above). Although also limited by the small number of participants 

(n=12), the evaluation clearly reflected the full range of different opinions in the 

audience (Fig. 34). This was in line with the high diversity of opinions and ideas that 

came up during the discussion in the World-Café. Overall, we observed a trend towards 

a moderate rating of all four questions asked (Fig. 34).  
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Figure 34 Distribution of frequency of ratings for individual questions in the 

questionnaire (german, appendix VI). The summary of answers given by eleven 

participants is shown. 
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7.3.3.4 Summary and outlook 

In summary, the two objectives to disseminate and explain the scientific background 

and to collect and discuss critical aspects linked to the possible application of retroTEs 

in plant breeding for the organic sector were met. Although these findings are based 

on a small sample size and therefore not generally valid, they could still be used as a 

first indicator about major issues arising with the development and possible application 

of this new breeding approach in the organic sector. As a consequence, insights gained 

by using the World-Café tool with different stakeholders from the organic sectors have 

the potential to guide and shape futures discussion and developments not only in the 

organic sector. Thanks to the early stage of development of this novel breeding 

approach, important necessary adjustments both in the context of directions of 

research but also with regard to communication or marketing strategies can still be 

made. One important issue that should be addressed in futures experiments is the 

assessment of the biosafety of plants that have been bred using mobilized endogenous 

retroTEs. A potential emergence of allergens in products as well as unforeseen side 

effects including an interference with gene expression and the effects of outcrossing 

should be tracked and evaluated over several generations. These findings will in turn 

have major implications for the acceptance and regulation of this newly developed 

breeding approach. Indeed, current EU-level discussions on the regulation of breeding 

approaches including mutation breeding (EuGH 2017) could be indicative for futures 

amendments of legislation. The potential obligation for a declaration of products 

obtained from plants that were bred using induced retrotransposition will heavily 

influence the commercialization of the method developed in this work.   
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8 General discussion and outlook 

Currently, especially breeders in the organic sector are facing a challenging situation. 

They have to develop new crop varieties with the potential to build the basis for food 

security of a growing global population under rapidly changing environmental 

conditions (Fischer et al. 2014). Besides knowledge gained through recent significant 

advances in genomics (Abberton et al. 2016) especially new insights into the field of 

epigenetics and epigenetic memory has become a focus of attention of plant breeders 

(Gallusci et al. 2017). Situated at the interface of genetics and epigenetics, also the 

awareness of retroTEs as a valuable genetic resource that could be used to cope with 

future challenges in agriculture has increased significantly (Paszkowski 2015). 

However, as described above, it was so far not possible to access this “(epi)genetic 

treasure” (Mirouze and Vitte 2014) without using genetic engineering. Key to 

harnessing these elements for plant breeding is to gain further knowledge about the 

mechanisms of their regulation.  

Although it was presumed that Pol II could play a central role in repressing retroTE- 

transcription in plants (Zheng et al. 2009) the observation that inhibition of Pol II with 

α-amanitin led to an increased accumulation of extrachromosomal DNA is remarkable. 

As most class I elements depend on the host Pol II for their transcription, the detected 

accumulation of retroTE-DNA after the A-treatment and in the background of the 

hypomorphic mutation of Pol II was counterintuitive. This finding provides striking 

evidence that this highly conserved and vital enzyme also holds a mechanism to 

actively repress retrotransposition in plants. From an evolutionary point of view this 

may not come as a surprise. Although plants have evolved the two additional RNA-

polymerases IV & V to ensure genome stability (Matzke et al. 2015) other organisms 

including humans still get along without these two Pol II-related RNA-polymerases. 

RetroTEs are known to be of central importance for stress-tolerance, adaptation and 

evolution of plants (Makarevitch et al. 2015; Quadrana et al. 2016; Zhang and Gao 

2017). As sessile organisms, plants indeed have to face and tolerate a multitude of 

(a)biotic stresses. Considering this, it can be speculated whether the evolution of the 

two plant-specific RNA-polymerases Pol IV and V as “fine-tuners” and later key-

regulators of retroTE activity was a prerequisite for the optimal utilization of these 

potential hazardous genetic elements to cope with various suboptimal growth 

conditions. Indeed, the current understanding of TE-silencing in plants is likely to be 
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biased by the lethality of Pol II-knockout mutants (Cuerda-Gil and Slotkin 2016; Zheng 

et al. 2009). The approach of using the highly specific (Haag et al. 2012) inhibitor α-

amanitin and, in case of well-established model-organisms such as Arabidopsis, also 

new gene-editing techniques will certainly advance the understanding of the exact 

mechanisms underlying the dual-role of Pol II in controlling class I elements. On the 

enzymatic-level, especially the C-terminal domain (CTD) of the large subunit 1 of Pol 

II (NRPB1) is in the focus of attention as a key-player of epigenetic regulation (Eick 

and Geyer 2013; Matzke et al. 2015; Palancade and Bensaude 2003). Notably, it was 

found that the Pol II-CTD is crucial to repress transcriptional activation and mobility of 

Ty1 elements in S. cerevisiae (Aristizabal et al. 2015). Further, it is known that iterating 

GW/WG-motifs in the CTD of Pol V mediate the interaction of Pol V and AGO4 in 

RdDM (El-Shami et al. 2007; Li et al. 2006). Interestingly, Zheng and colleagues also 

found evidence for the presence of four GW/WG-motifs in the second largest subunit 

of Pol II (Zheng et al. 2009). Presumably, this forms the basis of the interaction of Pol 

II and AGO4 that was observed despite the structural differences of the CTDs of Pol II 

and V (Matzke et al. 2015; Zheng et al. 2009). Hence, this clearly indicates that further 

functional studies aiming to investigate the role of Pol II as an epigenetic regulator 

should comprise all elements of this multisubunit enzyme (Ream et al. 2009).  

A so far neglected mechanism of retroTE-regulation in plants is the Pol II-depended 

production of antisense-transcripts originating from bi-directional transcriptional start 

sites located in both LTRs of class I elements, as previously reported from Drosophila 

(Russo et al. 2016). Indeed, in a preliminary experiment we were able to detect 

antisense transcripts originating from the ONSEN-TE in Arabidopsis. The potential 

ability of Pol II to produce antisense-transcripts originating from the TSS in the 3`LTR 

of the retroTEs could be the yet unknown fundamental step for the initiation of retroTE-

silencing in plants. Given that functional copia and gypsy-elements depend on the 

complete identity of their two LTRs including their TSSs (Schulman 2013), a potential 

regulation via sense/antisense pairing of TE-transcripts would be a highly specific and 

robust mechanism to specifically control transcriptionally competent LTR-retroTEs. To 

what extend also sub-genomic (anti)sense transcription influences TE-expression and 

genome evolution currently remains elusive. Based on our findings and considering 

recent advances in the field (Cuerda-Gil and Slotkin 2016; Panda et al. 2016) we 

updated the current model of the expression-dependent retroTE-regulation by 
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substantiating the role of the RDR-independent route of siRNA production via the 

presumed dicer-dependent processing of paired sense and antisense retroTE-

transcripts (Fig. 35).  

In line with previous studies in ddm1 (Panda et al. 2016) we also conclude that the 

expressional state of a retroTE predetermines downstream silencing pathways in 

plants. According to our updated model, the Z-induced reduction of DNA-methylation 

shifts retroTEs into a “transcriptional active state” resulting in an increased Pol II-

dependent production of sense and antisense transcripts that would normally 

antagonize retroTE-activity via the DCL3-dependent production of siRNAs. Based on 

our preliminary detection of ONSEN-antisense transcripts, we conclude that the 

inhibition of Pol II with A stabilizes the “active state” by generally reducing the levels of 

antisense transcripts and consequently depleting the primary siRNAs that would 

normally be massively amplified in the RNAi-loop during PTGS (Cuerda-Gil and Slotkin 

2016). As a consequence of this concerted action of A and Z, we observed the massive 

accumulation of ecDNA and in case of ONSEN the insertion of novel retroTE-copies 

into the genome of treated plants (Fig. 35). 
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Figure 35 Updated model for the presumed mechanism of the “non-

canonical” expression-dependent RdDM leading to retroTE silencing in 

plants. The initial silencing of retroTE is presumably triggered by the Pol II-

dependent production of antisense-transcripts. As previously suggested by 

(Panda et al. 2016) paired sense-antisense transcripts can be processed in a 

RDR6-independent manner resulting in the DCL3-dependent production of 

specific siRNAs. Inhibition of DNMtases (DRM2) with Z results in a loss of DNA-

methylation of retroTE converting them into a transcriptional active (ON) state. As 

previously reported (Panda et al. 2016) this would lead to an increased (bold 

arrows) DCL3-dependent production of primary siRNAs. The additional general 

inhibition of Pol II with A reduces both sense and antisense-transcription, leading 

to less sense-antisense pairing of TE-transcripts, a reduced accumulation of 

primary siRNAs, a drop in PTGS and an increased production of retroTE-ecDNA. 

The specific targets of A and Z and resulting impacts on retroTE-silencing are 

marked with red crosses.   
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As described above, our fundamental findings from the model plant Arabidopsis that 

are supported by the activation of the Houba retroTE in rice open up new avenues to 

enhance plant breeding to face futures agronomic challenges. The planned testing of 

(heat) stress tolerance and a large-scale phenotyping of hc-lines generated in this 

study will be the next step of elucidating the evolutionary potential of class I elements 

in plants. Although the correlation of ONSEN copy number in various accessions of 

Arabidopsis was recently reported to be linked to the annual climate range of their 

natural habitat (Quadrana et al. 2016) there is to our knowledge so far no direct 

evidence showing an obvious link of copy number variations and adaptation to different 

environmental conditions in plants. Notably, also the observed gain of heat-

responsiveness of genes flanking a novel ONSEN insertion in the F1 of heat stressed 

Arabidopsis plants was so far only observed in the nrpd1-mutant background (Ito et al. 

2011). These plants are defective in siRNA-production and thus also impeded in 

potential spreading of silencing to flanking regions (Sigman and Slotkin 2016). Hence, 

analogous experiments addressing the influence of novel TE-insertions on gene 

regulatory networks also considering potential alterations in chromatin marks triggered 

by the canonical RdDM (Holoch and Moazed 2015; Matzke and Mosher 2014) should 

now be repeated in the WT-background.  

Besides the detected induced environment-dependent phenotypic diversity of hc-lines, 

especially the observed high degree of their genetic stability upon heat-stress can be 

discussed in a more general context of evolution. Considering that each novel ONSEN 

copy is in principal capable to again generate additional copies of itself, it could be 

concluded that there is a stable balance between TE-copy number and TE-activity that 

restricts the uncontrolled proliferation of retroTEs in plants (Mari-Ordonez et al. 2013). 

This presumed “self-regulation” of retroTE-activity is a strong indicator that the former 

characterization of retroTEs as parasitic or selfish elements was a common 

misconception. Indeed, the inversion of argumentation coming to the conclusion that 

TE-copy numbers in eukaryotic genomes increase because of and not despite of 

epigenetic silencing has already been suggested previously (Fedoroff 2012). The 

above discussed presumed coevolution of the symmetric structure of LTR class I 

elements that could allow for the Pol II-mediated simultaneous production of sense and 

antisense transcripts further substantiates this notion. 
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In regard of using retroTEs for plant breeding it would be very interesting to test 

whether detected insertion biases of various retroTE-families (Bennetzen and Wang 

2014) can be reproduced in real time by using the inhibitors A and Z. Possible insertion 

site preferences could have relevant implications for the actual use of retroTEs in the 

breeding processes. In the context of targeted insertions of retroTEs, the approach of 

using CRISPR-Cas9 to introduce double-strand breaks that have in yeast been shown 

to attract retroTEs (Moore and Haber 1996) could prove promising. Likewise, the 

question whether previously reported potential Z-induced DNA-damages (Liu et al. 

2015) could facilitate or influence retroTE-insertions should be addressed in further 

experiments. Taking such potential side effects of the treatment itself into account, it 

could in principle also be highly interesting to screen a high number of hc-lines for 

preferential retroTE insertion sites. In doing so, it could be assessed whether the 

growth condition during or subsequent to an induced ecDNA-production in the parent 

influences the insertion site-preference of retroTEs. As discussed above, the Houba 

retroTE in rice that showed a similar induction of ecDNA production under control and 

heat-stress conditions (preliminary data) following the A&Z-treatment, could be a 

promising model.  

Assuming that the frequency of the integration of ecDNA correlates with the actual 

amount of ecDNA produced, it could, based on the observed dose-response of the 

ONSEN ecDNA-production generally be possible to control the rate of transposition by 

adjusting the concentrations of inhibitors used. From the observation that 

concentrations that have been demonstrated to be effective in rice and Arabidopsis did 

not lead to the activation of retroTEs in soybean, it can further be concluded that 

inhibitor concentrations need to be optimized case by case. In addition, the treatment 

could also limit the re-silencing of active retroTEs or attenuate so far unknown TE-

defense mechanisms downstream of the production of ecDNA. Hence, also the 

duration of the treatment following the stress application could heavily influence 

transposition rates. Besides species and stress-dependent necessary optimizations of 

the protocol, especially the potential induction of class I elements to generate 

(epi)genetic diversity in vegetatively propagated crops would also require adjustments 

in the application of the inhibitors. 
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As described above and illustrated in Fig. 35, the strong activation of retroTEs is based 

on a massive decrease of global DNA-methylation in all three sequence contexts 

following the double-treatment. Stable inheritance of changed DNA methylation 

patterns as previously observed in a population of so called epigenetic recombinant 

inbred lines (epiRILs) generated from a cross between the WT and a homozygous 

met1-mutant (Reinders et al. 2009) can contribute to phenotypic diversity (Latzel et al. 

2013). The stable inheritance of epialleles could therefore provide valuable 

contributions for plant breeding (Gallusci et al. 2017; Springer and Schmitz 2017). We 

have also observed a nearly complete loss of asymmetric DNA-methylation at the 

tested DCL3-RdDM locus following the A&Z-treatment in the parental generation of 

Arabidopsis. Hence, it would be of great interest to test whether changed methylation 

patterns could be transferred to successive generations resulting in the emergence of 

drug-induced stable epialleles in the offspring of treated plants. In the context of 

breeding it would in a next step also be exciting to test whether hybrid vigour as 

previously reported to occur in the F1 of a cross between the WT and individual lines 

from the aforementioned epiRIL population (Dapp et al. 2015) could also be induced 

by crossing drug-treated with untreated WT-plants. In this context, it should also be 

tested to what extend a potential heterosis effect in the F1 of a cross between the WT 

and an hc-line could be explained by the difference in retroTE-copy numbers in the 

genomes of the parents. Further information gained through whole genome-

sequencing of selfed or crossed high-copy lines will also provide insight into the 

influence of an induced burst of retroTEs in on the genome architecture and evolution 

of WT plants in real time. 
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In summary, the fundamental findings suggesting the Pol II-dependent production of 

retroTE-antisense transcripts that lead to the dicer-dependent formation of primary 

siRNAs significantly contribute to the solution of the “chicken and the egg problem” of 

TE-silencing (Nuthikattu et al. 2013; Thieme et al. 2017). This opens up completely 

new possibilities for basic research and to actively harness retroTEs for plant breeding 

(Fig. 36). 

Figure 36 Stress-dependent induced amplification of retroTEs for plant 

breeding. The occurrence of a stress (biotic or abiotic) leads to retroTE-mediated 

gene-activation in the original cultivar (a and b). However, due to a limited number of 

activated genes needed for stress tolerance the plant is heavily affected by the stress 

(b). The patented stress-induced activation of stress-responsive retroTEs using the 

two inhibitors α-amanitin and zebularine leads to the stable insertion of novel retroTE-

copies into the genome, resulting in increased (epi)genetic diversity and a broad 

panel of phenotypes in the offspring (c and d). The occurrence of the same stress 

can lead to the retroTE-mediated stress-dependent activation of novel genes. This 

can result in heritable stress-inducible phenotypes and/or increased stress-tolerance 

of hc-lines (d). 
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Importantly, it should be noted that due to high degree of conservation of targeted 

mechanisms, these findings from Arabidopsis also have far-reaching implications for 

other eukaryotes including human cells (DeNicola et al. 2015). Indeed, we have 

preliminary evidence (appendix II, unpublished data) suggesting that the chemical 

inhibition of Pol II and DNMtases leads to a very strong de-methylation of LINE-1 

retroTEs in human cells. DNA-methylation and activity of LINE1 elements is known to 

play a central role in various developmental processes including neuronal development 

(Erwin et al. 2014). In addition, the dysregulation and transposition of LINE1-elemets 

which can also lead the transduction of non-repetitive DNA fragments (Tubio et al. 

2014) has been linked to the emergence of cancer (Xiao-Jie et al. 2016). 

Considering the aforementioned versatile possible directions of research and 

applications entailed by this work it will be very important to continuously take 

measures at the science and policy interface. This will form the basis for an objective 

and less biased social debate on using endogenous retroTEs to cope with imminent 

challenges in agriculture.  
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Inhibition of RNA polymerase II allows
controlled mobilisation of retrotransposons
for plant breeding
Michael Thieme1, Sophie Lanciano2,3, Sandrine Balzergue4, Nicolas Daccord4, Marie Mirouze2,3

and Etienne Bucher4*

Abstract

Background: Retrotransposons play a central role in plant evolution and could be a powerful endogenous source
of genetic and epigenetic variability for crop breeding. To ensure genome integrity several silencing mechanisms
have evolved to repress retrotransposon mobility. Even though retrotransposons fully depend on transcriptional
activity of the host RNA polymerase II (Pol II) for their mobility, it was so far unclear whether Pol II is directly
involved in repressing their activity.

Results: Here we show that plants defective in Pol II activity lose DNA methylation at repeat sequences and
produce more extrachromosomal retrotransposon DNA upon stress in Arabidopsis and rice. We demonstrate that
combined inhibition of both DNA methylation and Pol II activity leads to a strong stress-dependent mobilization of
the heat responsive ONSEN retrotransposon in Arabidopsis seedlings. The progenies of these treated plants contain
up to 75 new ONSEN insertions in their genome which are stably inherited over three generations of selfing.
Repeated application of heat stress in progeny plants containing increased numbers of ONSEN copies does not
result in increased activation of this transposon compared to control lines. Progenies with additional ONSEN copies
show a broad panel of environment-dependent phenotypic diversity.

Conclusions: We demonstrate that Pol II acts at the root of transposon silencing. This is important because it
suggests that Pol II can regulate the speed of plant evolution by fine-tuning the amplitude of transposon mobility.
Our findings show that it is now possible to study induced transposon bursts in plants and unlock their use to
induce epigenetic and genetic diversity for crop breeding.
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Background
Like retroviruses, long terminal repeat (LTR) retrotran-
sposons (class I elements), which represent the most
abundant class of transposable elements (TEs) in eukary-
otes, transpose via a copy and paste mechanism. This
process requires the conversion of a full length RNA
polymerase II (Pol II) transcript into extrachromosomal
complementary DNA (ecDNA) by reverse transcription
[1]. In their life cycle LTR retrotransposons can produce
extrachromosomal circular DNA (eccDNA), which is an

indicator for their ongoing activity [2]. In plants, TEs are
increasingly seen as a source of genetic and epigenetic
variability and thus important drivers of evolution [3–6].
However, plants have evolved several regulatory pathways
to retain control over the activity of these potentially
harmful mobile genetic elements. Cytosine methylation
(mC) plays a central role in TE silencing in plants [7]. In
addition, plants have evolved two Pol II-related RNA poly-
merases, Pol IV and Pol V, that are essential to provide
specific silencing signals leading to RNA-directed DNA
methylation (RdDM) at TEs [8], thereby limiting their
mobility [9–11]. More recently, various additional non-
canonical Pol IV-independent RdDM pathways have
been described [12]. Notably it was found that Pol II
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itself also plays an important role in RdDM [13, 14] by
feeding template RNAs into downstream factors such
as RNA-DEPENDENT RNA POLYMERASE 6 (RDR6),
resulting in dicer-dependent or -independent initiation
and establishment of TE-specific DNA methylation
[15]. Beyond that, recent work suggests a new “non-ca-
nonical” branch of RdDM that specializes in targeting
transcriptionally active full-length TEs [16]. This pathway
functions independently of RDRs via Pol II transcripts that
are directly processed by DCL3 into small interfering
RNAs (siRNAs).

Results
Here, we wanted to investigate if Pol II could play a dir-
ect role in repressing TE mobility in plants. For this pur-
pose we chose the well-characterized heat-responsive
copia-like ONSEN retrotransposon [11] of Arabidopsis
and took advantage of the hypomorphic nrpb2-3 mutant
allele that causes reduced NRPB2 (the second-largest
component of Pol II) protein levels [14]. Using quantitative
real-time PCR (qPCR), we determined that challenging
nrpb2-3 seedlings by heat stress (HS) led to a mild increase

in total ONSEN copy number (sum of ecDNA, eccDNA
and new genomic insertions) relative to control stress (CS)
and compared to the wild type (WT) (Fig. 1a). This result is
supported by the observed dose-responsive increase in
ONSEN copy number after HS and pharmacological in-
activation of Pol II with α-amanitin (A), a potent Pol II
inhibitor [17] that does not affect Pol IV or Pol V [18]
(Fig. 1b). In order to test the interaction between Pol
II-mediated repression of TE activation and DNA
methylation, we grew WT and nrpb2-3 plants on media
supplemented with zebularine (Z), an inhibitor of DNA
methyltransferases active in plants [19], and subjected
them to HS. To ensure the viability of the nrpb2-3
seedlings we choose a moderate amount of Z (10 μM).
The presence of Z in the medium during HS generally
enhanced the production of ONSEN copies. Importantly,
this induced increase in ONSEN copy number was more
distinct in the nrpb2-3 background (Fig. 1a). This indi-
cated that both DNA methylation and Pol II transcrip-
tional activity contribute to the repression of ONSEN
ecDNA production. To complete their lifecycle, the re-
verse transcribed ecDNA of activated retrotransposons

a
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Fig. 1 Pol II represses the HS-dependent mobility of the ONSEN retrotransposon in Arabidopsis. ONSEN copy number in Arabidopsis seedlings
measured by qPCR directly after CS and HS treatments. a In the WT and the nrpb2-3 mutant and after HS plus treatments with α-amanitin
(A; 5 μg/ml) or zebularine (Z; 10 μM) (mean ± standard error of the mean (s.e.m.), n = 6 biological repetitions). b In the WT and after HS plus
treatment with A at different concentrations (μg/ml) as specified on the x-axis (mean ± s.e.m., n = 4 biological repetitions). c In the WT and
after HS plus treatment with Z (40 μM) or a combination of A (5 μg/ml) and Z (A&40Z) (mean ± s.e.m., n = 3 biological repetitions). d In the
WT after chemical treatment with A (5 μg/ml), Z (40 μM), a combination of A and Z (A&Z) or in the nrpb2-3 and nrpd1 backgrounds following
CS (mean ± s.e.m., n = 3 biological repetitions). All values are relative to ACTIN2. *P < 0.05, **P < 0.01
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has to integrate back into the genome [1]. Given that we
observed a strong increase in ONSEN copy number after
HS and treatment with moderate amounts of Z in the
nrpb2-3 background, we wanted to address the inheritance
of additional ONSEN copies by the offspring. For this we
compared the average ONSEN copy number of pooled S1
seedlings obtained from Z-treated and heat-stressed WT
and nrpb2-3 plants grown under controlled conditions on
soil by qPCR. We observed a distinct increase in the over-
all ONSEN copy number exclusively in the nrpb2-3 back-
ground (Additional file 1: Figure S1).
Because both DNA methylation and Pol II can be

inhibited by the addition of specific drugs, we wanted to
test if treating WT plants with both A and Z at the same

time could strongly activate and even mobilize ONSEN
after a HS treatment. We grew WT seedlings on MS
medium supplemented with Z (40 μM) [19] individually
or combined with A (5 μg/ml, A&Z). Consistent with
the strong activation of ONSEN in HS and Z-treated
nrpb2-3 seedlings, the combined treatment (A&Z) of the
WT gave rise to a very high (Fig. 1c) HS-dependent
(Fig. 1d) increase in ONSEN copy number, comparable
to that in the nrpd1 background (Fig. 2e). We noted that
the overall amplitude of HS-dependent ONSEN activation
could vary between different waves of stress applications
in terms of copy number (Fig. 1a, b). Yet, the observed en-
hancing effect of Pol II and DNA methyltransferase inhib-
ition with A and Z on ONSEN activation was consistent in

a
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Fig. 2 Simultaneous inhibition of DNA methyltransferases and Pol II reduces global CHH methylation and mimics the TE silencing deficiency of
the nrpd1 background. a Genome-wide DNA methylation levels in the WT after CS and CS plus treatment with A (5 μg/ml), Z (40 μM), or a
combination of A and Z (A&Z) for three sequence contexts (brown for CG, yellow for CHG and blue for CHH). b Same as a but only depicting
the CHH context for clarity. c Methylome data of treated and untreated plants at an ONSEN locus located on Chr 1 (ONSEN is indicated in yellow, its
LTRs in red). d Northern blot of ONSEN transcripts directly after CS, HS and HS plus treatment with A, Z or a combination of A&Z in the WT and after HS
in nrpd1 plants. The black arrow indicates the ONSEN full-length transcript. Below, a Midori-stained agarose gel is shown as a loading control. e ONSEN
copy number measured by qPCR directly after CS and HS treatments in WT, rdr6, dcl2/3/4 and nrpd1 seedlings directly after CS, HS and HS plus
treatment with A, Z or a combination of A&Z (mean ± s.e.m, n = 3 biological repetitions, values relative to ACTIN2; *P < 0.05, **P < 0.01)
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independent experiments (Figs. 1a–c and 2e). To detect
activated TEs at the genome-wide level we took advantage
of the production of eccDNA by active retrotransposons.
eccDNA is a byproduct of the LTR retrotransposon life
cycle [20]. Using mobilome sequencing, which comprises
a specific amplification step of circular DNA followed by
high-throughput sequencing to identify eccDNA derived
from active LTR retrotransposons [2], we found that only
ONSEN was activated by HS in combination with A&Z
(Additional file 1: Figure S2). Confirming our qPCR data,
more ONSEN-specific reads were detected in the presence
of A and Z in the medium.
To better understand the mechanisms by which the

drugs enhanced the activation of ONSEN after HS at the
DNA level, we assessed how they influenced DNA
methylation at the genome-wide level using whole-
genome bisulfite sequencing (WGBS) after CS. Overall,
we found that all drug treatments affected global DNA
methylation levels. While the treatment with Z affected
all sequence contexts, we observed that inhibition of Pol
II primarily affected cytosine methylation in the CHG
and CHH sequence contexts (where H is an A, T or G).
The combined A&Z treatment had a slight additive de-
methylating effect in the CHG and CHH contexts com-
pared to A or Z alone (Fig. 2a, b). DNA methylation
levels at one ONSEN locus (AT1TE12295) is depicted in
Fig 2c. Treatment with A led to a slight decrease in
DNA methylation, which was more apparent in Z- and
A&Z-treated plants. We then checked by northern blot
whether the degree of reduction in DNA methylation
would coincide with increased ONSEN transcript levels
directly after HS. We found that treatment with Z alone
resulted in the highest ONSEN transcript level after HS
(Fig. 2d). Considering the data obtained on ONSEN
ecDNA (Fig. 1c), we concluded that a substantial pro-
portion of these Z-induced transcripts were not suitable
templates for ONSEN ecDNA synthesis.
In Drosophila, it has been shown that Pol II-mediated

antisense transcription results in the production of TE-
derived siRNAs in a Dicer-2-dependent manner [21]. In
support of this in Arabidopsis, a recent publication pointed
out the importance of DCL3 in regulating ONSEN in the
ddm1 background [16]. To elucidate whether the effect of
Pol II inhibition was also dicer-dependent, we grew both
rdr6 and dcl2/3/4 triple mutant plants on A, applied HS
and measured ONSEN ecDNA levels. Strikingly, we found
that A still enhanced ecDNA accumulation in rdr6 plants,
whereas inhibition of Pol II had no additional effect in the
dcl2/3/4 triple mutant (Fig. 2e).
Induced mobilization of endogenous TEs in plants has

so far been very inefficient, thus limiting their use in
basic research and plant breeding [3]. In the case of Ara-
bidopsis, transposition of ONSEN in HS-treated WT
plants has not been observed [11, 22]. Because the A&Z

drug treatment resulted in high accumulation of ONSEN
copy numbers—essentially mimicking plants defective in
NRPD1 (Fig. 2e)—we wanted to test if the combined drug
treatment could lead to efficient ONSEN mobilization in
WT plants. First, we assessed by qPCR if, and at what fre-
quencies, new ONSEN copies could be detected in the
progeny of A&Z-treated and heat stressed plants. In fact,
we found new ONSEN insertions in 29.4% of the tested S1
(selfed first generation) pools (n = 51), with pools having
up to 52 insertions (Additional file 1: Figure S3). We then
confirmed stable novel ONSEN insertions in a subset of
independent individual high copy plants by transposon
display (Fig. 3a), qPCR (Fig. 3b) and sequencing of 11
insertions in a selected high-copy line (hc line 3; Fig. 4;
Additional file 1: Figure S4). Tracking ONSEN copy
numbers over three generations of selfing indicated that
the new insertions were stably inherited (Fig. 3b). Further-
more, the re-application of heat stress and drugs in the S3
generation of two hc lines did not lead to greater accumu-
lation of ONSEN copies compared to control lines, but we
instead observed stronger silencing in lines with more
ONSEN copies (Additional file 1: Figure S5).
TE insertions can interrupt genes or alter their expres-

sion by recruiting epigenetic marks or by stress-dependent
readout transcription from the 3′ LTR into flanking re-
gions [6]. To test this, we grew the S2 generation of the se-
lected hc lines under long- and short-day conditions.
Interestingly, we observed that many hc lines showed clear
and homogenous phenotypes in response to the different
growth conditions (plant size, chlorophyll content and
flowering time; Fig. 3c, d).
To demonstrate that ONSEN insertions could directly

influence such developmental phenotypes, we closely
investigated hc line 3, which produced white seeds
(Fig. 4a). Using a candidate gene approach, we found
that an ONSEN insertion in transparent testa 6 (TT6,
AT3G51240; Fig. 4b) was responsible for the recessive
white seed phenotype [23, 24]. This was confirmed by
segregation analysis of the F2 generation of a cross be-
tween WT and hc line 3 (Fig. 4a) followed by genotyping
(Fig. 4c).
Next, we wanted to test if Pol II plays a more general

role in repressing TEs in plants. Due to its significantly
different epigenetic and TE landscape compared to Ara-
bidopsis, we wanted to test if we could mobilize TEs in
rice (Oryza sativa) [25], a genetically well-characterized
monocotyledonous crop. To capture drug-induced mo-
bilized TEs, we characterized the active mobilome in O.
sativa seedlings that were grown on MS medium supple-
mented with no drugs, A only, Z only or a combination
of A and Z, using the same approach as we used for
Arabidopsis. We identified Houba, a copia-like retro-
transposon [26], as highly activated only when plants
were treated with A&Z (Fig. 5a). Bona fide activity of
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c

Fig. 4 Transparent testa phenotype of hc line 3 co-segregates with an ONSEN insertion in TT6. Seed phenotypes (a) and corresponding genotypes
(c) of a segregating F2 population (lanes 1–22) obtained from a cross between the WT and hc line 3 (hc) are shown. b Primers used for genotyping
of the ONSEN insertion. For the WT-PCR depicted in the upper part of c the light (tt6 fw) and dark (tt6 rev) green primers flanking the TT6 locus
(AT3G51240) were used. The ONSEN insertion in TT6 was detected by a combination of the light green primer with the red primer specific to the ONSEN
LTR (Copia 78 3′ LTR, red arrow). M indicates the size marker. Primer sequences are given in Additional file 1: Table S1

a c

d

b

Fig. 3 Drug-induced mobilization of ONSEN in WT Arabidopsis plants. a Transposon display testing seedlings in the S2 generation of WT plants for
novel ONSEN insertions: lanes a to c show HS-treated plants; lanes 1 to 7 show hc lines 1–7 treated with HS and A (5 μg/ml) and Z (40 μM),
M indicates the size marker. b ONSEN copy number in the S1, S2 and S3 generations measured by qPCR (mean ± s.e.m, n = 3 technical
replicates, values relative to ACTIN2). c, d Photographs of S2 plants showing both homogeneous and environment-dependent phenotypic
variability induced by the ONSEN mobilization when grown under long (c) and short day (d) conditions. qPCR data for the S3 generation of line 6
in b as well as pictures of phenotypes in c and d are missing due to severe infertility and extinction of this line
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Houba was supported by the detection of eccDNA
containing LTR–LTR junctions (Additional file 1:
Figure S6). The activation of Houba was further con-
firmed by eccDNA-specific PCR on the Houba
circles (Fig. 5b–d).

Discussion
In this study, we show the importance of Pol II in the re-
pression of TE mobility in plants. By choosing the well-
characterized heat inducible ONSEN retrotransposon,
we were able to specifically address the role of Pol II in
silencing transcriptionally active endogenous TEs in WT
plants. Recent studies propose Pol II as the primary
source for the production of TE-silencing signals that
can then feed into the RNA silencing and DNA methyla-
tion pathways [15]. Our data strongly support these find-
ings at two levels. First, we found that inhibition of Pol
II activity reduced the degree of DNA methylation at
ONSEN, demonstrating its distinct role in this process,
and that Pol II also contributes to reinforcing silencing
at the genome-wide level, primarily in the CHH but
also in the CHG context. Second, our finding that DCL
enzymes are sufficient to process the silencing signal
produced by Pol II suggest that Pol II acts at very early
steps in the TE silencing pathway by providing substrates

to these enzymes. The observation that inhibition of Pol II
in the rdr6 background still further enhanced ONSEN ac-
cumulation after HS supports the notion that Pol II plays
a central role in the previously proposed expression-
dependent RdDM pathway [16].
Using mobilome sequencing we confirmed previous

findings [2] that this approach is a powerful diagnostic
tool to detect mobile retrotransposons: we detected high-
est levels of eccDNA of ONSEN in HS and drug-treated
Arabidopsis seedlings and found new insertions in succes-
sive generations of these plants. Using the same approach
on rice we were able to detect production of Houba
eccDNA after drug treatments, suggesting that the pro-
geny will then contain novel Houba insertions. This is still
to be confirmed and may be hampered by the already very
high Houba copy number present in the genome [27].
Our findings may indicate that Pol II is primarily in-

volved in silencing young, recently active retrotranspo-
sons and perhaps to a lesser extent other tightly silenced
TEs. Indeed, there are indications of very recent natural
transposition events for ONSEN [28] and Houba [29] in
the Arabidopsis and rice genomes, respectively. For in-
stance, the annual temperature range has and may still
contribute to contrasting ONSEN mobilization events in
different Arabidopsis accessions [28]. Houba is the most

a

b c d

Fig. 5 Drug-induced activation of the Houba retrotransposon in O. sativa. Mobilome analysis of DNA extracted from seedlings after growth under
control conditions (C), A (5 μg/ml), Z (40 μM) or the combination of A&Z. a Logarithmic ratio of the depth of coverage obtained after aligning
the sequenced reads on one Houba element. b Primer localization (black bar, Houba element; arrows, PCR primers; red box,LTR). c Circular forms
of Houba are specifically detected in plants treated with A&Z using inverse PCR with primers shown in (b). d Specific PCR on chloroplast DNA is
shown as a loading control. Total DNA subjected to a rolling circle amplification was used as a template. M indicates the size marker
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abundant TE of the copia family in rice and has been ac-
tive in the last 500,000 years [30].
Overall, our findings lead to the question of when

plants lower their guard: under what conditions could
Pol II be less effective in silencing TEs? Certain stresses
that affect the cell cycle have been reported to lead to
the inactivation of Pol II [31, 32]; this would provide a
window of opportunity for TEs to be mobilized. There-
fore, combined stresses that affect the cell cycle and acti-
vate TEs may lead to actual TE bursts under natural
growth conditions. Interestingly, it has been reported
that retrotransposon-derived short interspersed element
(SINE) transcripts can inhibit Pol II activity [33]. This
strongly suggests the presence of an ongoing arms race
between retrotransposons and Pol II. Considering that
almost all organisms analyzed so far have TEs [4] and
RNA polymerases [34] and the reliance of TEs on host
RNA polymerases, it may—from an evolutionary point
of view—not come as a surprise that Pol II also has a
function as an important regulator of retrotransposon
activity. Strikingly, it has been shown in both Saccharo-
myces cerevisiae and Drosophila melanogaster that Pol
II-dependent intra-element antisense transcription plays
an important role in TE silencing [21, 35]. In addition,
we observed a discrepancy in ONSEN transcript accu-
mulation and measured ecDNA after HS in seedlings
that were treated with zebularine only. This substanti-
ates the notion that both the quantity and quality of
transcripts affect regulation, reverse transcription and
successful integration of retrotransposons. This is well in
line with previous observations demonstrating that differ-
ent TE-derived transcripts have distinct functions in the
regulation of TE activity [36]. As a next step it will be of
great interest to investigate if Pol II-dependent antisense
transcription of TEs and subsequent dicer-dependent pro-
cessing may be the key to solve “the chicken and the egg
problem” of de novo silencing functional retrotransposons
in eukaryotes.
Finally, our findings will allow future studies on the

potential beneficial role TEs play in adaptation to
stresses. Indeed, two recent studies point out the adaptive
potential of retrotraonsposon and, more specifically,
ONSEN copy number variation in natural accessions [28]
and RdDM mutant backgrounds of Arabidopsis [37].
Upon mobilization, the heat-response elements in the
LTRs of ONSEN [38] can create new gene regulatory
networks responding to heat stress [11]. Therefore, it
will now be of great interest to test if the ONSEN hc
lines obtained in this study are better adapted to heat
stress. This will allow us to test if retrotransposon-
induced genetic and epigenetic changes more rapidly
create beneficial alleles than would occur by random
mutagenesis. Furthermore, the observation that HS did
not lead to a stronger activation of ONSEN in hc lines

compared to WT plants suggests that genome stability
is not compromised in these lines. This result can be
explained by at least two possible mechanisms: (i) the
occurrence of insertions of inverted duplications of
ONSEN, such as has been observed for the Mu killer
locus in maize [39]—such insertions will lead to the
production of double-stranded RNA feeding into gene
silencing and thereby limit the activity of that TE; and
(ii) balancing of TE activity and integrated copy number
as has been described for EVADE in Arabidopsis [40]. In
this case, when a certain TE copy number threshold is
reached robust transcriptional gene silencing takes over,
thereby limiting TE mobility and ensuring genome stabil-
ity. The stability of new TE insertions is an important as-
pect in light of the future use of TEs in crop breeding and
trait stability.

Conclusions
TEs are important contributors to genome evolution. The
ability to mobilize them in plants and possibly in other eu-
karyotes in a controlled manner with straightforward drug
application, as shown here, opens the possibility to study
their importance in inducing genetic and epigenetic
changes resulting from external stimuli. Because the in-
duced transposition of ONSEN can efficiently produce
developmental changes in Arabidopsis, it will be very
interesting to test if specific stress-induced TE activation
can be used for directed crop breeding for better stress
tolerance in the near future.

Methods
Plant material
All Arabidopsis mutants used in this study (nrpb2-3
[14], nrpd1-3 [41], rdr6 [42], dcl2/3/4 triple mutant [43])
are in the Col-0 background. For O. sativa japonica, the
cultivar Nipponbare was used.

Growth conditions
Prior to germination, Arabidopsis seeds were stratified
for 2 days at 4 °C. Before and during stress treatments
plants were grown under controlled conditions in a Sanyo
MLR-350 growth chamber on solid ½ MS medium (1%
sucrose, 0.5% Phytagel (Sigma), pH 5.8) under long day
conditions (16 h light) at 24 °C (day) and 22 °C (night)
(Arabidopsis) and 12 h at 28 °C (day) and 27 °C (night) (O.
sativa).
To analyze successive generations, seedlings were

transferred to soil and grown under long day conditions
(16 h light) at 24 °C (day) and 22 °C (night) (Arabidopsis)
in a Sanyo MLR-350 growth chamber until seed maturity.
For phenotyping, Arabidopsis plants were grown under

long day conditions (16 h light) at 24 °C (day) and 22 °C
(night) and short day conditions (10 h light) at 21 °C (day)
and 18 °C (night).
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Stress and chemical treatments
Surface sterilized seeds of Arabidopsis and O. sativa
were germinated and grown on solid ½ MS medium that
was supplemented with sterile filtered zebularine (Sigma;
stock, 5 mg/ml in DMSO), α-amanitin (Sigma; stock,
1 mg/ml in water) or a combination of both chemicals.
Control stresses (6 °C for 24 h followed by control con-
ditions for 24 h, CS) and heat stresses (6 °C for 24 h
followed by 37 °C for 24 h, HS) of Arabidopsis seedlings
were conducted as described previously [11].

DNA analysis
For qPCR and prior to digestions, total DNA from Ara-
bidopsis plants was extracted with the DNeasy Plant
Mini Kit (Qiagen) following the manufacturer’s recom-
mendations. For the qPCRs to measure the ONSEN copy
number following HS and chemical treatments the aerial
parts of at least ten Arabidopsis plants per replicate were
pooled prior to DNA extraction. To track ONSEN copy
numbers in the S1–3 generations of controls (only HS)
and hc lines (HS + A&Z treatment) DNA from true
leaves was extracted. For the estimation of the ONSEN
transposition frequency, total DNA of pools consisting
of at least eight seedlings of the progeny of HS + A&Z-
treated plants was isolated. The DNA concentration was
measured with a Qubit Fluorometer (Thermo Fisher Sci-
entific). The copy numbers of ONSEN were determined
with qPCRs on total DNA using a TaqMan master mix
(Life Technologies) in a final volume of 10 μl in the
Light-Cycler 480 (Roche). ACTIN2 (AT3G18780) was
used to normalize DNA levels. Primer sequences are
given in Additional file 1: Table S1.
For the mobilome-seq analysis total DNA from the

pooled aerial parts of three 10-day-old O. sativa seedlings
was extracted as previously reported [44]. Genomic DNA
(5 μg) for each sample was purified using a Geneclean kit
(MPBio, USA) according to the manufacturer’s instruc-
tions. ecDNA was isolated from the GeneClean product
using PlasmidSafe DNase (Epicentre, USA) according to
the manufacturer’s instructions, except that the 37 °C in-
cubation was performed for 17 h. DNA samples were pre-
cipitated by adding 0.1 volume of 3 M sodium acetate
(pH 5.2), 2.5 volumes of ethanol and 1 μl of glycogen
(Fisher, USA) and incubating overnight at −20 °C. The
precipitated circular DNA was amplified by random roll-
ing circle amplification using the Illustra TempliPhi kit
(GE Healthcare, USA) according to the manufacturer’s in-
structions except that the incubation was performed for
65 h at 28 °C. The DNA concentration was determined
using the DNA PicoGreen kit (Invitrogen, USA) using a
LightCycler480 (Roche, USA). One nanogram of amplified
ecDNA from each sample was used to prepare the librar-
ies using the Nextera XT library kit (Illumina, USA) ac-
cording to the manufacturer’s instructions. DNA quality

and concentration were determined using a high sensitiv-
ity DNA Bioanalyzer chip (Agilent Technologies, USA).
Samples were pooled and loaded onto a MiSeq platform
(Illumina, USA) and 2 × 250-nucleotide paired-end se-
quencing was performed. Quality control of FASTQ
files was done using the FastQC tool (version 0.10.1).
To remove any read originating from organelle circular
genomes, reads were mapped against the mitochondria
and chloroplast genomes using the program Bowtie2
version 2.2.2 71 with –sensitive local mapping. Unmapped
reads were mapped against the reference genome IRGSP1.0
(http://rgp.dna.affrc.go.jp/E/IRGSP/Build5/build5.html)
using the following parameters: –sensitive local, -k 1. DNA
from both mitochondria and chloroplast genomes inte-
grated in nuclear genomes was masked (1,697,400 bp).
The TE-containing regions cover 194,224,800 bp in O.
sativa. Finally, the bam alignment files were normalized
and compared using deeptools [45] and visualized with
the Integrative Genomics Viewer (IGV) software (https://
www.broadinstitute.org/igv/). Data from the mobilome
analysis were submitted to GEO (accession number
GSE90484).
The presence of circular Houba copies was tested by

an inverse PCR on 7 ng of the rolling-circle amplified
template that was also used for sequencing. A PCR spe-
cific to chloroplast DNA served as a loading control.
PCR products were separated on a 1% agarose gel that
was stained with a Midori Green Nucleic Acid Staining
Solution (Nippon Genetics Europe). Primer sequences
are given in Additional file 1: Table S1.

Transposon display
The integration of additional copies of ONSEN into the
genome of heat stressed and treated plants was ascer-
tained by a simplified transposon display based on the
GenomeWalker Universal kit (Clontech Laboratories), as
previously described [11] with the following modifica-
tions: 300 ng of total DNA from adult plants in the S2
generation of heat stressed and A&Z-treated plants was
extracted with a DNeasy Plant Mini Kit (QIAGEN) and
digested with blunt cutter restriction enzyme DraI (NEB).
After purification with a High Pure PCR Product Purifica-
tion Kit (Roche) digested DNA was ligated to the annealed
GenWalkAdapters 1&2. The PCR was performed with the
adaptor-specific primer AP1 and the ONSEN-specific pri-
mer Copia78 3′ LTR. The PCR products were separated
on a 2% agarose gel that was stained with Midori Green.
For primer sequence information, see Additional file 1:
Table S1.

Cloning, sequencing and genotyping of new insertions
To identify the genomic region of new ONSEN inser-
tions, the PCR product of the transposon display was
purified using a High Pure PCR Product Purification Kit
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(Roche), ligated into a pGEM-T vector (Promega) and
transformed into Escherichia coli. After a blue white selec-
tion, positive clones were used for the insert amplification
and sequencing (StarSEQ). The obtained sequences were
analyzed with Geneious 8.2.1 and blasted against the Ara-
bidopsis reference genome. The standard genotyping PCRs
to prove novel ONSEN insertions were performed with
combinations of the ONSEN-specific primer Copia78 3′
LTR and primers listed in Additional file 1: Table S1.

RNA analysis and northern blotting
Total RNA from the aerial part of at least ten Arabidop-
sis seedlings was isolated using the TRI Reagent (Sigma)
according to the manufacturer’s recommendations. RNA
concentration was measured (Qubit RNA HS Assay Kit,
Thermo Fisher) and 15 μg of RNA was separated on a
denaturing 1.5% agarose gel, blotted on a Hybond-N+

(GE Healthcare) membrane and hybridized with 25 ng
of a gel-purified and P32-labelled probe (Megaprime
DNA Labelling System, GE Healthcare) specific to the
full length ONSEN transcript (see Additional file 1: Table
S1 for primer sequences). Northern blots were repeated
in three independent experiments with the same results.

Whole-genome DNA methylation analysis
Whole-genome bisulfite sequencing library preparation
and DNA conversion were performed as previously re-
ported [46]. Bisulphite read mapping and methylation
value extraction were done on the Arabidopsis TAIR10
genome sequence using BSMAP v2.89 [47]. Following
mapping of the reads the fold coverages of the genome
for CS, CS + A, CS + Z and CS + A&Z were 13.4, 13.2,
18.4 and 16.3, respectively. Data from the bisulphite se-
quencing analysis have been submitted to GEO (accession
number GSE99396).

Statistics
Statistical analyses were performed with SigmaPlot (v.
11.0). Depending on the normality of the data, either
an H-test or a one-way ANOVA was performed. The
Student-Newman-Keuls method was used for multiple
comparisons.

Additional file

Additional file 1: Table S1. Table of all primers used in this study.
Figure S1. Increase in ONSEN copy numbers in S1 pools of heat-stressed
and Z-treated nrpb2-3 plants. Figure S2. Detection of eccDNAs originating
from ONSEN loci following heat stress and chemical treatments in
Arabidopsis. Figure S3. Increase in ONSEN copy numbers in S1 pools of
heat-stressed and A&Z-treated WT plants. Figure S4. Summary of
confirmed novel ONSEN insertions in hc line 3. Figure S5. Stress-induced
activation of ONSEN in the S3 generation after initial HS treatment. Figure
S6. Houba forms LTR–LTR junction eccDNAs after combined A&Z treatment.
(PDF 1660 kb)
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Supplemental Table 1. Names purpose and sequences of primers used in this study. 

Name Sequence 5`->3` Experiment 

GenWalkAdaptator1 
GTAATACGACTCACTATAGGGCACGCGT
GGTCGACGGCCCGGGCTGGT 

Transposon 
Display 

GenWalkAdaptator2 (PHOS) ACCAGCCC (AMINO) 
AP1 GTAATACGACTCACTATAGGGC 
Copia78 3`LTR  AACACTTAAACACTTTCTCCA 
284 COPIA78-4219F_RT CCACAAGAGGAACCAACGAA qPCR 
285 COPIA78-4219R_RT  TTCGATCATGGAAGACCGG 
ONSEN probe  (FAM) AAG TCG GCA ATA GCT TTG GCG 

AAG A (BHQ1) 
ACT2_QT_F  TGCCAATCTACGAGGGTTTC 
ACT2_QT_R  TTACAATTTCCCGCTCTGCT 
ACT2_QT_probe  (JOE) TCCGTCTTGACCTTGCTGGACG 

(BHQ-1) 
OnsenFull_F AAGTGGTATCAGAGCTTGAAGATCC Northern blot 
OnsenFull_R CAACACCCCCTCTTAAACTTGATTTTGC 
M13F CGCCAGGGTTTTCCCAGTCACGAC Cloning and 

sequencing M13R TCACACAGGAAACAGCTATGAC 
houba_F2 ATCCTGGGAAGAACAAACCATTAA PCR on circular rice 

TE and the 
chloroplast control 

houba_R2 GAGTTCGAGTACCTTAGCCATGGT 
Chloroplast cyc F ACAACCACTGATGAAGGATT 
Chloroplast cyc R AGAAAGAAAAGCAACGACTG 
Prove TED 2_20 R  ACCTAGCTCTGAGTGATGAA # 1 Genotyping 

of novel 
ONSEN 
insertions 

Prove TED4_27 F TGGATATACACATTGGTTGCA # 2 
Prove TED 2_19 F GGAGAAAGCTGAAAACTTGG # 3 
Prove TED4_30_rev CTAGGTTGGTGACTGATGAG # 4 
Prove TED 2_17 F AAGAATGGGAGCAGCATTAA # 5 
Prove3_2R GCAGTACTATAACCGGGACT # 6 
prove TED3_1 Fw GAACTTTCCGTTGTTACCGG # 7 
Prove TED3 F ATGAGACAGGGAGCTTATCT # 8 
Prove TED1 R GGTGTGAACCGAACCTAAAT # 9 
Prove TED 4_25 F AAACACCAGAAATCTTTCGC # 10 
tt6 fw CACAGACCACAAGCATTTTT TT6 

gene tt6 rev TGTCGATTTTCTTGGTGCTA 
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Fig. S1. Increase in ONSEN copy numbers in S1 pools of heat-stressed and Z-
treated nrpb2-3 plants. ONSEN copy number measured by qPCR in pooled

seedlings of the S1-generation of heat stressed and zebularine-treated (10 µM) WT

(light grey bars) and nrpb2-3 plants (dark grey bars) that were grown under control

conditions on soil relative to a control stressed WT-plant (black bar) (mean ± s.e.m.,

n=3 technical repetitions, all values relative to ACTIN2).
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Fig. S2. Detection of eccDNAs originating from ONSEN loci following heat
stress and chemical treatments in Arabidopsis. Abundance of reads from the

mobilome-seq libraries of WT Arabidopsis plants mapping at TE-annotated loci from

seedlings after: a growth under long day conditions (LD), b CS plus treatment with A

(5 µg/ml) and Z (40 µM) (A&Z), c HS and d HS plus treatment with A&Z. Each dot

represents the normalized coverage per million mapped reads per all TE-containing

100bp windows obtained after aligning the sequenced reads on the five chromosomes

(black and grey circles). Red dots indicate the position of 100bp windows

corresponding to ONSEN loci.

Fig. S2.
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Fig. S3. Increase in ONSEN copy numbers in S1 pools of heat-stressed and
A&Z-treated WT plants. Parental plants were heat stressed and treated in

independent experiments (characters a-c) with a combination of A (5 µg/ml) and Z (40

µM). Pools with clearly increased ONSEN-copy numbers (>10) are marked in red.

ONSEN-copy number measured by qPCR (mean ± s.e.m., n=3 technical repetitions,

values relative to ACTIN2).



Fig. S4.

a b

Fig. S4. Summary of confirmed novel ONSEN insertions in hc-line 3. a Overview

of insertion sites shown in (b) (red bar) and the location of the ONSEN insertion in the

TT6-gene depicted in Fig. 4 (blue bar) b Close-up of regions with new ONSEN
insertions (red bar) in the S2 generation of a selected heat stressed and A (5 µg/ml)

and Z (40 µM) treated WT plant (hc-line 3). Orientation of novel ONSEN insertions is

indicated with red arrows. c A scheme to exemplify the annotation of sequences that

lead to the identification of novel ONSEN insertion sites depicted in (b) shown for

insertion # 9. Colors correspond to the pGEM-T vector (light blue) used for cloning, the

ONSEN- 3`LTR (red), the Copia 78 TE 3`LTR primer (dark green) that was used for the

preceding TE-Display PCR and the genomic region (turquoise) flanking the 3`LTR of

the new ONSEN insertion. d Summary of coordinates (base 5` of insertion) of new

ONSEN insertions shown in (a) and (b). Numbering corresponds to (b). Sequences of

primers used to confirm new ONSEN insertions are given with the numbering

corresponding to (b) in in Additional file 1: Table S1.

c

# Chr. Coordinates (5`) # Chr. Coordinates (5`)
1 1 3034907 6 4 10318144

2 1 4063994 7 4 16897453

3 1 20369771 8 5 6483939

4 2 12706720 9 5 15374990

5 3 17222174 10 5 16404249

d

TT6
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Fig. S5. Stress-induced activation of ONSEN in the S3 generation after
initial HS-treatment. ONSEN copy number measured by qPCR directly after

HS and HS plus treatments with α-amanitin (A, 5 μg/ml) and zebularine (Z, 40

μM) in seedlings of the WT, the control line a and the hc-lines 3 and 4. ONSEN
copy number is shown relative to the WT HS (mean ± s.e.m., n= 3 biological

repetitions, all values relative to ACTIN2).
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Fig. S5. 



READ   1    CTTTTAAGGAGGTCCCCCTCTCCTAGAATAAGCAAGGTGGTACTAAACTCCACATGCATG  60
            ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ref    290  CTTTTAAGGAGGTCCCCCTCTCCTAGAATAAGCAAGGTGGTACTAAACTCCACATGCATG  231

READ   61   CCATCCTATGAGGTGGGCTTTTGTGATTTTCCAAAGAATTAATCTTCGAGTGGGCTAAGG  120
            |||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||
ref    230  CCATCCCATGAGGTGGGCTTTTGTGATTTTCCAAAGAATTAATCTTCGAGTGGGCTAAGG  171

READ   121  CCCATTCATTAATTCCAACAATCCCCCACATTGTTGAGATTATGGGCATATAATGATTTA  180
            ||||||||||||||||||||           |||||||||||||||||||||| ||||||
ref    170  CCCATTCATTAATTCCAACA-----------TGTTGAGATTATGGGCATATAAGGATTTA  122

READ   181  ATTTATTCCATAAATAAATCATGACATTACAGATGAAAACTAGCATGAACGCATCATTAG  240
            ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ref    121  ATTTATTCCATAAATAAATCATGACATTACAGATGAAAACTAGCATGAACGCATCATTAG  62

READ   241  ATCTACACATG  251
            |||||||||||
ref    61   ATCTACACATG  51

3’LTR 5’LTR

Fig. S6.

Fig. S6. Houba forms LTR-LTR junction eccDNAs when treated with the
combination of A&Z. Alignment between a sequencing read resulting from the

mobilome sequencing of A (5 µg/ml) and Z (40 µM) -treated plants (top) and an

artificial junction corresponding to the 3’ part of the 3’ LTR (blue box) fused to the 5’

part of the 5’ LTR (yellow box).
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11.2 Appendix II: Patent: Bucher*, E. and Thieme*, M. (2017) Mobilization of 

Transposable Elements to Enhance Genetic and Epigenetic Variability in a 

Population. Patent WO2017/093317A1 (50 pages) 
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11.3 Appendix III: Newsletter article: Thieme, M. (2017) Putting plants in shool: 

On the potential of epigentic memory in crop breeding. Plant Science News 

32: 4-5. (2 pages) 
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Next generation of cold-stressed soybeans growing in the Botanical Garden, University of Basel. © Michael Thieme

Putting plants in school: On the potential of 
epigenetic memory in crop breeding

Michael Thieme

Conventional and organic plant breeding is based on the 
presence of naturally occurring, or induced random changes 
in the DNA sequence of an organism, so called mutations. 
These mutations result in both genetic and phenotypic 
diversity, and can be used to select advantageous genotypes 
or traits during the breeding process. Figuratively, breeding 
for desired traits can be compared with a laborious search 
for new and meaningful sentences in a book where single 
letters or words were randomly erased or exchanged. 

Innovative approaches: stimulating the short term memory 
As plants are not equipped with legs or wings to escape 
life-threatening situations, they had to evolve a great diver-
sity of mechanisms to keep up with evolution. One of the 
most fascinating skills of plants is their distinct ability to 
remember situations they experienced during their life 
cycle. Surprisingly, this knowledge of the plant’s past not 
only influences the individual plant itself, but can under 
certain circumstances also be passed on to the plant’s 
progeny to prepare it for similar situations.  

This concept was already been proposed in the 19th cen-
tury by Jean-Baptiste de Lamarck. The phenomenon that 
information other than the genetic sequence of an organism 
is passed on to the next generation is nowadays described 
as «epigenetic memory». 

Metaphorically speaking, this additional, epigenetic 
information tells the plant where exactly in its large «genetic 
encyclopedia», on which page or in which sentence, it can 
read to overcome a threatening situation. Several studies 
provide proof of evidence for such a transgenerational mem-
ory in plants. For example, plants that were in contact with 
pathogens revealed an increased pathogen-resistance in the 

next generation, compared to plants that were sheltered 
from harm. 

The formation of this epigenetic memory is based on two 
biochemical mechanisms: DNA methylation and histone 
modification. In order to shape the specific epigenetic land-
scape of an organism, methyl groups are added to or 
removed from specific nucleotides of the genetic code. This 
modifies their meaning and, for example, suppresses the 
activity of nearby genes. One can compare this mechanism 
with highlighting certain words in a book with a text marker. 
During histone modification, important structural modifi-
cations are made, which makes certain regions of the genetic 
code more or less easy to read. Again, compared with a book, 
this mechanism is analogous to changing the font size of 
certain paragraphs.

However, similar to humans, plants apparently tend to 
forget without permanent training. Hence, even if the plant’s 
memory can be passed on to two or three generations, this 
is hardly enough to face future challenges in agriculture. 

The total recall: plants use «cheat sheets»
Besides using text markers to highlight certain words or 
sentences, plants have an even more powerful natural 
genetic resource that can be harnessed for breeding purposes. 
Referring to the analogy as the genome being a huge ency-
clopedia, this genetic resource, so called retrotransposons 
(retroTEs), can be pictured as «cheat sheets». Just like during 
a school exam, if placed at the correct position in the note-
book, these highly informative pages can positively influ-
ence the performance of a plant. Fascinatingly, it seems that 
these mobile genetic elements are particularly effective in 
regulating flanking genetic regions under stress conditions. 
They function as natural genetic switches and direct linkers 
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Enticing to cheat: Induced amplification of retrotransposons for an 
increased stress tolerance in plants. © Michael Thieme 

A) Stress induces the transgenerational alteration of epigenetic 
silencing of stress-resistance genes resulting in slightly increased 
stress tolerance of plants in the F1 generation. Without recurring 
stress, epigenetic stress memory is lost over successive generations 
resulting in susceptible lines.  B) Transient inhibition of retroTE-
defense in combination with a stress factor leads to controlled 
amplification of stress-responsive retroTEs in the plant genome. 
Repeated stress leads to strong retroTE-mediated and stress-
depended activation of stress-resistance genes and increased 
tolerance already in the F1 generation. Induced retroTE-amplification 
results in tolerant lines 

of the environment to the genome. They are considered 
as hot-spots of epigenetic memory.

The best part about these «cheat sheets» however is 
that they can be copied and firmly integrated somewhere 
else in the encyclopedia. The huge amount of such ret-
roTEs in plants strongly suggests that they serve as a 
genetic backup resource that can be used in various dif-
ferent situations. 

Reinforcing the memory: encouraging plants to copy 
their «cheat sheets»
So far, the major challenge in making use of retroTEs for 
crop breeding was that plants would normally avoid the 
risk of producing too many copies of their «cheat sheets». 
Hence, to avoid their uncontrolled proliferation under 
optimal growth conditions these elements are normally 
strictly repressed by the plant. During my PhD project I 
discovered a key mechanism at the origin of retroTEs 
repression that can easily be targeted with a simple tran-
sient application of drugs. I was able to show that plants 
grown on two specific compounds produce huge amounts 
of a specific «cheat sheet», called ONSEN (jap. «hot 
spring») in response to heat stress. Most importantly, I 
demonstrated that such treatments efficiently result in 
new stably inserted copies of these heat responsive 
elements in the progeny of treated and heat stressed 
plants (Thieme et al. 2017).

Its potential in crop breeding
As this transient controllable process of «enticing to 
cheat» involves only the stimulation of natural processes 
and does not include controversial genetic engineering, 
it has the potential to revolutionize breeding for the 
organic sector. Based on what is already known about the 
contribution of retroTEs to plant diversity and evolution, 
I now believe that the term «hidden treasure» (Mirouze 
and Vitte, 2014) would actually be more appropriate than 
only describing them as a collection of ordinary «cheat 
sheets». By multiplying these retroTEs in the genome, 
they can, amongst other advantageous effects, cause 
valuable «gain of function» mutations and contribute to 
the evolution of new gene regulatory networks. In case 
of future challenges related to global warming, imagine 
having a crop with a «cheat sheet» saying «how to adapt 
to heat» next to a gene important for heat-resistance. 
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Der mobile Teil des Pflanzengenoms als Ressource für den 
zukünftigen Pflanzenschutz

Michael Thieme

Sogenannte springende Gene oder Transposons (TEs) wurden bereits Mitte des 
20. Jahrhunderts erstmals von Barbara McClintock beschrieben, wofür für sie im 
Jahre 1983 mit dem Nobelpreis ausgezeichnet wurde (McClintock, 1950). Bei ihrer 
Arbeit mit Mais fiel McClintock auf, dass es oft zu Doppelstrangbrüchen im Genom 
kam. Außerdem war mit bloßem Auge festellbar, dass manche Maiskörner eine 
dunklere Färbung aufwiesen als andere. Bei genauerer Untersuchung stellte sie fest, 
dass sich mobile genetische Elemente, in diesem Fall durch einen «cut and paste» 
Mechanismus im Genom bewegen können. Je nachdem in welcher Entwicklungs-
stufe ein Farbengen, durch ein TE unterbrochen wird, entstehen eher hellere oder 
dunklere Maiskörner. Heute weiß man, dass es neben diesen sogenannten DNA-
TEs, welche sich durch einen «cut and paste» Mechanismus bewegen auch Elemente 
gibt (sog. Retrotransposons, retroTEs), die sich durch einen «copy and paste» Me-
chanismus im Genom vermehren können. Alle mobilen Elemente zusammen wer-
den als das sog. «Mobilome» bezeichnet.

Betrachtet man die Genome unserer Nutzpflanzen genauer, so stellt man fest, 
dass sie im Prinzip nichts anderes sind als riesige Sammlungen von TEs. Dabei 
machen retroTEs in den meisten Fällen den grössten Anteil aus. Zwar besitzen 
längst nicht mehr alle TEs in Pflanzengenomen die Fähigkeit sich zu bewegen oder 
sich zu vermehren, jedoch machen sie immerhin bis zu rund 85 % (Mais) des Ge-
noms aus. Aufgrund der Tatsache, dass TEs durch eine unkontrollierte Bewegung 
im Genom natürlich auch erheblichen Schaden anrichten können, werden sie von 
der Pflanze streng überwacht. Bis vor wenigen Jahren wurden TEs v.a. als parasi-
täre, eigennützige Elemente abgestempelt, die ihrem Wirt nur Schaden zufügen 
können. Dank neuer Labortechniken (z. B. Oxford Nanopore Sequencing) die es 
erlauben TEs besser zu untersuchen, ist heute zunehmend ein Meinungswechsel in 
der Fachwelt zu beobachten. So wird der grosse Anteil von TEs im Pflanzengeno-
men als eine genetische Schatztruhe bezeichnet (Mirouze und Vitte, 2014).

Es gibt inzwischen eine Reihe schöner Beispiele welche die wichtigen Funktionen 
von TEs für die Pflanze verdeutlichen. So können TEs eine Art Bindeglied zwischen 
dem Genom und der Umwelt darstellen. Am Beispiel der Blutorange soll dies ge-
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nauer erläutert werden: Klassische gelbe Orangen besitzen eine natürliche Mutation 
neben einem Gen welches für die rote Färbung des Fruchtfleischs verantwortlich ist. 
Aufgrund dieser Mutation ist das Gen für die Färbung des Fruchtfleisches inaktiv 
und das Fruchtfleisch der Orange bleibt gelb. Die sizilianische Blutorange «Tarocco» 
besitzt neben dem entsprechenden Gen eine Insertion eines retroTEs, welches selbst 
Kälte wahrnehmen kann. Interessanterweise führt die Wahrnehmung von Kälte 
durch dieses retroTE zu einer Aktivierung des benachbarten Gens für den roten 
Farbstoff der Blutorange (Butelli et al., 2012). Das bedeutet, dass TEs Umweltein-
flüsse, in diesem Fall Kälte, wahrnehmen und an benachbarte Gene vermitteln kön-
nen. Kurz gesagt: TEs können benachbarte Gene stressresponsiv machen.

Neben dieser erstaunlichen Eigenschaft, als stress-abhängiger genetischer Schal-
ter im Genom zu fungieren, können insbesondere retroTEs durch ihren «cut and 
paste» Mechansimus einen auftretenden Stress auch für ihre eigene Vermehrung 
verwenden. In der Modellpflanze Ackerschmalwand (Arabidopidis thaliana) konnte 
gezeigt werden, dass das retroTE-ONSEN (japanisch für heiße Quelle) nach einem 
Hitzestress bei 37 °C neue DNA-Kopien von sich selbst herstellen kann (Ito et al., 
2011). Normalerweise werden diese neu gebildeten freien ONSEN-Kopien wieder 
abgebaut und das retroTE-ONSEN stillgelegt. Wie bereits angedeutet, liegt der 
Grund hierfür in der strengen und ausgefeilten Regulation von TEs durch die 
Pflanze. Als Konsequenz dieser strickten Überwachung ließen sich TEs bisher nicht 
effizient für die Züchtung nutzbar machen. 

Induktion von Hitzetoleranz
Um eine gezielte Vermehrung von retroTEs ohne Gentechnik zu erreichen, ver-

folgen wir den Ansatz einer transienten Inhibierung des Regulationsmechanismus. 
Unter Verwendung zweier Inhibitoren, ist es uns gelungen die Abwehrmechanis-
men gezielt und für eine kurze, definierte Zeitspanne zu umgehen (Thieme et al., 
2017). Bei Zugabe der Inhibitoren während eines auftretenden Hitzestresses konn-
ten wir die Anzahl der neu gebildeten freien ONSEN-Kopien etwa verfünffachen. In 
den Nachkommen konnten wir durch genetische Analyse erstmals neue stabil inte-
grierte ONSEN-Kopien detektieren. Somit ist es uns gelungen, mit hoher Effizient 
und ohne Verwendung gentechnischer Methoden, das hitze-repsonsive retroTE 
ONSEN im Wildtyp zu vermehren. Durch Untersuchung der Kinder-, Enkel- und 
Urenkel-Generationen der erzeugten Linien konnten wir nachweisen, dass die Ver-
mehrung von ONSEN einmalig während der Behandlung stattfindet und die neuen 
ONSEN-Kopien über Generationen sehr stabil im Genom integriert bleiben. Erwar-
tungsgemäß konnten wir zudem einen starken Effekt dieser neuen ONSEN-Kopien 
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auf den Phänotyp nachweisen. Interessanterweise konnten wir beobachten, dass 
die Wachstumsbedignungen, ähnlich wie oben für die Blutorange beschrieben, ei-
nen starken Einfluss auf die Phänotypen der erzeugten Linien hatten. So zeigten 
manche Pflanzen abhängig von Temperatur und Tageslänge eine erhöhte Biomasse 
oder verfrühte Blühzeit im Vergleich zu den Kontrollpflanzen.

Durch die Amplifikation von ONSEN lässt sich eine enorme genetische und phä-
notypische Diversität erzeugen. Vorläufige Daten weisen zudem darauf hin, dass 
einige der generierten Linien mit mehr ONSEN-Kopien eine erhöhte Hitzetoleranz 
im Vergleich zum Wildtyp aufweisen. 

Da sich Ergebnisse mit der Modellpflanze Arabidopsis nur beschränkt auf unsere 
Nutzpflanzen übertragen lassen, haben wir in einer Kollaboration mit Forschenden 
in Montpellier den Effekt der Behandlung auf Reis-Keimlinge untersucht. Auch in 
dieser fern verwandten, sehr wichtigen Nutzpflanze konnten wir mit Hilfe gezielter 
DNA-Sequenzierungen aller mobilen Elemente nach Behandlung mit den beiden 
Substanzen die Aktivierung eines retroTEs nachweisen. Diese Daten sprechen da-
für, dass unsere Methode universell in praktisch allen Pflanzen anwendbar ist. 

Abb. 1: Schematische Darstellung der stressabhängigen Aktivierung von Retrotransposons (retroTEs) für 
die Pflanzenzüchtung. A) Normales Wachstum der Pflanze unter optimalen Bedingungen. B) Absterben 
der Pflanze durch Stress. C) Vorübergehende Inhibierung der Transposonabwehr in Kombination mit 
Stress führt zur gezielten stabilen Vermehrung stress-responsiver retroTEs im Pflanzengenom. D) Erneu-
tes Auftreten desselben Stresses führt, vermittelt durch neue retroTE-Insertionen, zur Aktivierung zu-
sätzlicher Gene und dadurch erhöhten Stresstoleranz der Pflanze. 



39

Retrotransposons als genetische Ressource 
Unter der Annahme, dass Pflanzen für eine breite Palette von Stressarten eine 

entsprechendes TE als genetisches Backup bereit halten, welches wir dank unserer 
Behandlung jetzt gezielt aktivieren und im Falle von retroTEs vermehren können, 
stellen TEs und insbesondere retroTEs eine sehr vielversprechende genetische Res-
source für die Pflanzenzüchtung dar. 

In gewisser Weise gleicht die stressabhängige Vermehrung von retroTEs mit dem 
Ziel eine erhöhte Stresstoleranz für genau denselben Stress zu erreichen einer ge-
richteten Evolution nach der Theorie von Jean-Baptiste de Lamarck. Die Erinnerung 
an einen erlebten Stress wird demnach indirekt durch neue retroTE-Insertionen sta-
bil an die Folgegeneration weiter gegeben. 

Auch wenn dieser Ansatz noch in der Entwicklung ist, ergibt sich daraus ein er-
hebliches Potential für die Einsparung von Pflanzenschutzmitteln. Während beim 
klassischen Ansatz versucht wird, durch Pflanzenschutzmittel einen bestimmten 
Stress, zum Beispiel Pathogene zu bekämpfen, verwendet unsere Methode genau 
diesen Stress, um natürliche Prozesse in der Pflanze zu stimulieren, die in den 
Nachkommen zu einer gesteigerten und stabilen Stresstoleranz führen. Derartig 
verbesserte Nutzpflanzen mit neuen stress-responsiven Genen sind in geringerem 
Ausmass auf die grossflächige Anwendung von Pflanzenschutzmitteln angewiesen. 
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11.5 Appendix V: Multiple choice test (World-Café) correct answers marked in 

red (2 pages) 
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Fragebogen zum Thema: 

 

“Stressinduzierte Mobilisierung von Retrotransposons 

(retroTEs) als natürliche Ressource für die 

Pflanzenzüchtung“ 

 

Frage 1/7: RetroTEs bewegen sich durch: 

 Cut & paste       Copy & paste 
 

 

Frage 2/7: Viele retroTEs können durch diverse Stresse aktiviert werden. Dies 

kann folgend(e)n Effekt(e) haben: 

 Stressabhängige Aktivierung benachbarter Regionen im Genom; 
  
 Ausschneiden von Kopien des retroTEs aus dem Genom; 
  
 Synthese neuer Kopien des retroTEs; 

 

 

Frage 3/7: DNA-Methylierung ist ein wichtiger epigenetischer Mechanismus zu 

Regulation von retroTEs. Eine erhöhte Methylierung führt in der Regel zu einer 

Verstärkung der Aktivität von retroTEs: 

 Richtig       Falsch  Weiß ich nicht 
 

 

Frage 4/7: Mit Hilfe der beiden Stoffe α-Amanitin (A) und Zebularin (Z) können 

retroTEs aktiviert werden. Zutreffende Aussagen bitte ankreuzen: 

 A und Z sind beides Naturstoffe; 
  
 A wird in die DNA eingbaut;  Z wird in die DNA eingebaut; 
  
 Gleichzeitige Behandlung mit A und Z und einem Stress kann zur 

Transposition von retroTEs führen; 
  
 Um einen Effekt zu erzielen muss die Pflanze bis zur Samenreife mit A&Z 

behandelt werden; 
  
 A und Z sind prinzipiell auch im Menschen wirksam; 

 



 

2 

Frage 5/7: Retrotransposition führt zu einer Erhöhung der genetischen 

Diversität in Nutzpflanzen. Zutreffende Aussagen bitte ankreuzen: 

 Aktivierbare retroTEs müssen nur einmal von außen als Fremd-DNA in die 
Zelle eingbracht werden; 

  
 Durch retroTE erzeugte Diversität spielte schon immer eine Rolle in der 

Züchtung; 
  
 Bedingt durch ihre Größe beruht die durch retroTE-Insertionen erzeugte 

phänotypische Diversität lediglich auf knock-out Mutationen; 
  
 RetroTEs inserieren ausschließlich in unmittelbarer Nähe ihres 

Ursprungslocus; 
  
 RetroTEs erzeugen „markierte Mutationen“;  

 

 

Frage 6/7: Genetische Stablilität spielt in der Züchtung eine entscheidende 

Rolle. Welche der folgenden Aussagen ist Aufgrund unserer Beobachtungen in 

Arabidopsis als zutreffend zu bewerten? 

 A&Z-behandelte Linien weisen über drei Generationen nur schwache 
Fluktuationen der retroTE-Kopienzahl auf, was auf heterozygote Insertionen 
zurückzuführen ist; 

  
 Werden high-copy Linien erneut einem Stress ausgesetzt kommt es zu einer 

sehr starken Aktivierung von retroTEs (sogenannter TE-burst); 
  
 retroTE-induzierte Phäntotypen lassen sich oft nur in einer Generation 

beobachten, da neue Insertionen oft instabil sind; 
 

 

Frage 7/7: In Hinblick auf DNA-Methylierung und retroTE-Verteilung im Genom 

stellt Arabidopsis im Vergleich zu anderen Nutzpflanzen eine Ausnahme dar. 

Es ist daher nicht zu erwarten, dass die beiden Stoffe A&Z in anderen 

Nutzpflanzen ebenfalls wirksam sind. 

 Richtig       Falsch  Weiß ich nicht 
 

 

 

Vielen Dank für Ihre Teilnahme! 
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11.6 Appendix VI: Questionnaire (World-Café) (1 page) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

Fragebogen zum Thema: 

Akzeptanz des Einsatzes von retroTEs in der biologischen 

Landwirtschaft 

Ich habe teilgenommen an: 
 

Vortrag von Michael Thieme       World Cafe zum Thema 
 

Mein Bezug zur Biolandwirtschaft ist: ___________________________________ 

___________________________________________________________________ 

 

 

Frage 1/5: Sollten Ihrer Meinung nach Sorten, die mit Retrotransposons gezüchtet 
wurden, in der biologischen Landwirtschaft verwendet werden dürfen?  
(Antwort 1- 5; 1: gar nicht, 5: unbedingt)      ____ 

 

Frage 2/5: Was sind Ihrer Meinung nach die potentiellen Risiken welche von der 
Nutzung von Retrotransposons ausgehen könnten? 
 
___________________________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

 
Frage 3/5: Sollten Ihrer Meinung nach in der Züchtung für die biologische 
Landwirtschaft natürliche Substanzen, welche Retrotransposons aktivieren, 
verwendet werden dürfen?  (Antwort 1- 5; 1: gar nicht, 5: unbedingt)      ___ 
 

Frage 4/5: Was ist Ihrer Meinung nach das Potential dieser Züchtungsmethode für 
die biologische Landwirtschaft? (Antwort 1- 3; 1: keines , 3: hoch)         ___ 
 
 
Frage 5/5: Verfahrenspatente sind die Grundlage für Innovation in der 

Landwirtschaft. (Antwort 1- 5; 1: auf keinen Fall , 5: absolut richtig)      ___ 

 

Kommentare und Ergänzungen: 

 

 

 

Diese Daten dienen dazu die Bandbreite der verschiedenen Meinungen abzubilden und 

werden nicht für Statistiken verwendet. 
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11.7 Appendix VII Questions for guiding the discussion of World-Café (1 page) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Guiding-Questions World Cafe-Diskussion 

 

Chancen und Risiken von stressinduzierter Mobilisierung von Retrotransposons 

 Was sind die grossen Herausfoderungen in der biologischen Züchtung? 

 Wie könnte die retroTE-Methode zur Lösung beitragen?-> Erwähnen dass Genomsequenz 

nicht unbedingt bekannt sein muss. 

 Wo sind die Grenzen der Methode 

 Welche Risiken bestehen: zufällige Insertion -> unerwünschte Nebenwirkungen? Toxizität bei 

der Anwendung? Random SNPs durch Z. 

 Auswirkung auf Lebensmittel: Auch in Menschen Wirksam-> Angst vor Transfer in Nahrung? 

 Auskreuzung? Ausbreitung „egoistischer Gene“? Gain of function führt zur Evolution von 

«Superweeds?» 

 

Akzeptanz von chemisch versus gentechnisch induzierter Mutationsauslösung 

 Wie ist die Akzeptanz von chemisch ausgelösten Punktmutationen mittels EMS  oder 

Polyploidisierung mittels Colchicin im Biolandbau? 

 Vergleich synthetisch hergestelltes Colchicin/Amanitin versus Colchicin/Amanitin aus der 

Herbstzeitlose/Fliegenpliz? 

 Ethische Aspekte-> Zu grosser Eingriff ins Genom?  

 Eingriff erfolgt an ganzer Pflanze, in vitro Kultur oder Einzelzelle oder direkter Eingriff in die 

Zelle (Gentechnik) 

 Gezielte Mutationsauslösung mittels CRISPR Cas9 (Gene-editing), weniger Nebenwirkungen, 

deswegen sogar besser? Auch in Hinblick auf random SNPs durch genotoxic Effekt von Z. 

Fliessende Übergänge von chemischer und gentechnischer Veränderung bei Infiltration von 

CRISPR-Cas9 Konstrukten Identifizierung neuer TEs mit Behandlung und Einbringen in 

andere Pflanze mittel CRISPR Cas9; 

 Kann man genotoxische Effekte, die durch Zebuarin ausgelöst werden, in Kauf nehmen wenn 

man gleichzeitig Gain of function phenotypes erzeugen kann? Cisgene Pflanzen mit TEs aus 

anderen Sorten vertretbar? 

 Allg. Verwendung von (eventuell )limitierten Naturstoffen im Bio-Sektor vertretbar?  

 

Vor- und Nachteile von Patenten in der Pflanzenzüchtung 

 Methodenpatent:  Inhibierung der freien Wissenschaft oder Förderung von Innovationen? 

  Auch TEs sind potentiell patentierbar -> Konflikt mit kein Patent auf Leben?  

 Produktpatent: Die entstandenen Pflanzen werden ebenfalls leicht zu schützen sein.. 

 Welchen Einfluss hat das auf die Verfügbarkeit von Sorten für den Landwirt?  

 Welchen Einfluss hat es für die Züchter?  

 Welchen Einfluss hat es konkret für den Biolandbau?  
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11.8 Appendix VIII: Presentation given prior to the discussion in the World-Café 

at FiBL (pictures were removed) (5 pages)  
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Michael Thieme

Zürich‐Basel Plant Science Center
Botanisches Institut, Universität Basel

Bucher Lab

FiBL, 7. September 2017

Stressinduzierte Mobilisierung von 
Retrotransposons als natürliche Resource für 

die Pflanzenzüchtung 

Twitter: @gene_hop

Entdeckung springender Gene: „Transposons“

Barbara McClintock
Nobelpreis 1983 

1. Cut and paste: DNA‐TEs

2. Copy and paste:
retroTEs

Das „Mobilom“

2

Vitte et al., 2014

Pflanzengenome: Sammlungen von TEs

Bis zu 85% des 
Pflanzengenoms ist TE‐

DNA!

‐> strenge epigenetische 
Regulation!

3

TEs: nur parasitäre, eigennützige DNA?

4

retroTEs: Bindeglied von Genom und Umwelt

Butelli et al., 2012
Kälteresponsives 

retroTE

‐> retroTEs können benachbarte Gene stress‐responsiv machen!

Helle Orange

Blutorage “Tarocco”

5

(Lisch, 2013)

Weindiversität durch retroTEs 

6



2

Kanazawa et al., 2009

retroTE

Photoperiod sensitive G.max

Photoperiod insensitive G.max

‐ Blüte im Langtag

‐ Schnellere Fruchtreife

GmphyA2

GmphyA1

GmphyA2

GmphyA1

Adaptive Evolution durch retroTEs

Adaptive Evolution!
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retroTEs für die Pflanzenzüchtung?

Markierte Mutationen
Gain of function 
phenotypes

Alternative 
splicing

Neue regulatorische
Netzwerke

Transport von 
Genfragmenten

Erzeugung
epigenetischer

Diversität (Epiallele)
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Der Lebenszyklus von retroTEs
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retroTEs können durch Stress aktiviert werden

37°C

ONSEN‐retroTE
Arabidopsis Keimling

Normalerweise werden neue Kopien wieder 
abgebaut und ONSEN stillgelegt.. 
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TEs werden streng überwacht

‐> Bisher konnten retroTEs nicht gezielt für die Züchtung nutzbar 
gemacht werden..

Aus Matzke und Mosher, 2014

11

Inhibitoren von TE‐silencing: α‐Amanitin

Bushnell et al., 2001
Amanita phalloides
(Knollenblätterpilz)

‐ Naturstoff (Peptid) gewonnen aus Knollenblätterpilz

‐ Inhibiert RNA‐Polymerase II in Eukaryonten

‐ Hoch spezifisch und wirksam: 0,1 mg·kg−1 (LD50, Maus)

‐> vgl. Colchicin 5,89 mg·kg−1

α‐Amanitin Inhibierung von 
RNA‐Polymerase II

12
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Inhibitoren von TE‐silencing: Zebularin

Zebularin

‐ Nukleosidanalogon, in Krebstherapie eingesetzt

‐ Wird in DNA eingebaut

‐ Inhibiert DNA‐Methyltransferasen in Eukaryonten

‐ Kann genotoxischen Effekt haben (Liu et al., 2015)

Cytidin
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ON retroTE

Inhibitoren von 
TE‐silencing

(Nährmedium)

C   C C

OFF retroTEC    C C C    C C

C  C C

Induzierte retroTE‐Aktivierung durch Inhibitoren

DNA Methylierung

Auslöser
(Stress)

Thieme et al., Genome Biology 2017
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retroTE‐Aktivierung kann verstärkt werden 

37°C

ONSEN‐TE Thieme et al., Genome Biology 2017

Arabidopsis Keimling
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Innovation: ONSEN‐Kopien integrieren!

ONSEN‐TE

‐> Eine riesige natürliche Ressource ist erschlossen!

ONSEN‐TE

ONSEN‐TE

ONSEN‐TE

16

Neue ONSEN‐Insertionen im Wildtyp

HS Kontrolle HS + Kombinierte Behandlung

TE‐display: S2 Generation nach HS

Thieme et al., Genome Biology 2017
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ONSEN integriert in der Nähe von Genen

TT6

Thieme et al., Genome Biology 2017

(Zufällige) globale Insertionen!

‐> Neue Phänotypen?

18
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ONSEN erzeugt Diversität I

HS HS HS+A&ZHS+A&Z

S2 Generation von “high‐copy” Linien

Kurztag Langtag

‐> Umweltabhängige Phänotypen!
Thieme et al., Genome Biology 2017
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0.25 kB

3.5 kB

At3g51240 (TT6)

ONSEN3`LTR 5`LTR

Flavanone 3‐hydroxylase 
(key factor in flavonoid biosynthesis)

Thieme et al., Genome Biology 2017

‐> ONSEN verursacht “markierte” Mutationen!

ONSEN erzeugt Diversität II
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Wie stabil sind neue Insertionen? 

DNA‐TE: Cut and paste

‐> Instabile Phäntoypen

RetroTEs: Copy and paste

‐> Unkontrollierbare Amplifikation von ONSEN? 

21

qPCR on total 
DNA from 
individual plants 
in sucessive 
generations

Stabililtät der Linien: Kontrolle

Kontrollen High copy Linien

‐> ONSEN stabil, Fluktuationen wegen heterozygoten Kopien

Thieme et al., Genome Biology 2017
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Hitzestress 24h 37°C (S3 Generation)

WT Kontolle High copy 1 High copy 2

Thieme et al., Genome Biology 2017

Stabililtät der Linien: Kontrolle
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n=3 biolog. relicates

 Keine unkontrollierte Amplifikation von ONSEN nach HS

~8 inserted copies ~43 inserted copies

Thieme et al., Genome Biology 2017

Stabililtät der Linien: Unter Stress
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Funktioniert es auch in Nutzpflanzen?

Kollaboration: Marie Mirouze, IRD Montpellier

Reis
(Oryza sativa)

Houba‐retroTE Thieme et al., Genome Biology 2017
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Für (jeden) Stress gibt es ein
entsprechendes retroTE

retroTEs können durch diesen Stress 
aktiviert und vermehrt werden

Neue retroTEs generieren
regulatorische Netzwerke und 
(epi)genetische Diversität

Gerichtete Evolution für den Pflanzenschutz 
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Ausblick: TEs als Toolbox für die Pflanzenzucht

Stress

St
re
ss

Stress

Stress‐resp. Gen
Neues Stress‐resp. Gen

Inaktives Gen
retroTE‐Insertion

Stress: 
Pathogene,
Trockenheit,
Hitze, Salz,

N/P‐Mangel etc..
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Vielen Dank!

Etienne Bucher
&

Bucher Lab

..für die Aufmerksamkeit!
Zürich‐Basel Plant Science 

Center

Thomas Boller
&

Botanical Institute Basel

Marie Mirouze
Sophie Lanciano

Monika Messmer

Peter Eckard

Twitter: @gene_hop28

World café: drei Themen

Chancen und Risiken 
von stressinduzierter 
Mobilisierung von 
Retrotransposons

(Michael) 

Akzeptanz von chemisch 
versus gentechnisch 

induzierter
Mutationsauslösung 

Vor‐ und Nachteile 
von Patenten in der 
Pflanzenzüchtung 

15 min
(Monika) 

(Etienne) 
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Pflanzenforschung.de

Hitze lässt ONSEN hüpfen
Retrotransposonen kontrolliert zum Springen bringen

15.08.2017 | von Redaktion Pflanzenforschung.de

Es ist noch nicht lange her, da waren Retrotransposonen „für die Tonne“. Wie alle transposablen
Elemente wurden sie als DNA-Schrott oder Junk-DNA bezeichnet. Heute weiß man es besser. Die
Möglichkeit, diese kontrolliert zur Transposition zu bewegen, könnte helfen, mehr über die
virenähnlichen DNA-Abschnitte zu erfahren und sie in der Pflanzenzucht einzusetzen.

Der Grüne Knollenblätterpilz (Amanita phalloides) ist der Serienmörder unter den Pilzen. 90 % aller
Pilzvergiftungen mit Todesfolge in Europa gehen auf sein Konto. Für viele von uns müssen daher schon gute
Gründe vorliegen, um aus freien Stücken ausgerechnet mit dem Hauptgift des Wulstlings, ?-Amanitin, zu
hantieren.

Was passiert bei einer Vergiftung?

Stellt man sich eine eukaryotische Zelle als Schweizer Uhrwerk vor, dann ist es so, als würde plötzlich ein
wichtiges Zahnrad fehlen, was dazu führt, dass die Uhr stehen bleibt. Die verheerende Wirkung von
?-Amanitin ist vergleichbar. Es hindert durch Anlagerung an die RNA-Polymerase II diese an ihrer Aktivität, die
Transkription. Der Prozess, bei dem die Information der DNA in RNA übersetzt wird. Ohne diese
Übersetzungsleistung ist eine Zelle funktionsuntüchtig, da keine Informationen mehr vom Zellkern aus
übertragen werden. Diese aber werden von den Ribosomen zur Produktion von Proteinen benötigt. Die Folge:
der Stoffwechsel bricht zusammen, die Zelle kollabiert. In der Onkologie wird dieser Effekt bereits genutzt, um
Tumorzellen zu bekämpfen.

Mykotoxin im Nährmedium

Nun wurde genau dieses Prinzip bei jungen Arabidopsiskeimlingen (Arabidopsis thaliana) angewandt. Man
ließ sie auf Nährmedien wachsen, die neben den üblichen Nährstoffen ?-Amanitin enthielten. Der Grund ergibt
sich im Zusammenhang mit den eingangs erwähnten Retrotransposonen. Diese zählen als eigene Klasse zu
den Transposonen. Jenen genetischen Elementen, die ihre Position im Genom verändern können
(Transposition).

Wie das Virus so das Retrotransposon

Das Besondere an Retrotransposonen ist, dass der Informationsfluss für die Transposition wie bei Retroviren
durch eine reverse Transkription der RNA erfolgt. Die Folge ist, dass das Original an seiner ursprünglichen
Stelle verbleibt und eine Kopie an anderer Stelle im Genom integriert wird – „copy and paste“ statt „cut and
paste. Retrotransposonen sind somit auf fremde Hilfe angewiesen.

Seit einigen Jahren vermutet man, dass die RNA-Polymerase II die Rolle des Dienstleisters übernimmt. Sie ist
zugleich aber auch darin involviert, die Aktivität bzw. Transposition zu unterdrücken. Letzteres ist deshalb
wichtig, weil die Insertion eines Retrotransposons durchaus Folgen haben kann, wenn z. B. eine Kopie
inmitten eines codierenden Gens landet. Um die genetische Integrität und Stabilität zu bewahren, haben
Pflanzen daher Mechanismen entwickelt, um die Aktivität der sonderbaren DNA-Elemente einzuschränken.
Die Hemmung der Transkription mithilfe unsere Polymerase ist das beste Beispiel.

ONSEN heißt auf Japanisch „heiße Quelle“

Dann ist noch zu wissen, dass viele Retrotransposonen vor allem unter Stress aktiv werden. Dies gilt auch für
ONSEN, einem hitzeempfindlichen Retrotransposon, das bei Hitze bzw. Hitzestress aktiv wird. Dass dieses
hier namentlich erwähnt wird, kann als Beweis gewertet werden, dass seine Aktivität erstens durch die

https://de.wikipedia.org/wiki/Gr%C3%BCner_Knollenbl%C3%A4tterpilz
https://de.wikipedia.org/wiki/%CE%91-Amanitin
http://www.pflanzenforschung.de/de/themen/lexikon/eukaryoten-621
http://www.pflanzenforschung.de/de/themen/lexikon/pflanzenzelle-211
https://de.wikipedia.org/wiki/RNA-Polymerase_II
http://www.pflanzenforschung.de/de/themen/lexikon/transkription-203
http://www.pflanzenforschung.de/de/themen/lexikon/dna-sequenz-10174
http://www.pflanzenforschung.de/de/themen/lexikon/rna-626
http://www.pflanzenforschung.de/de/themen/lexikon/ribosomen-215
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http://www.pflanzenforschung.de/de/themen/lexikon/gen-aufbau-197


RNA-Polymerase II reguliert wird und zweitens von außen regulierbar ist. Schließlich stand das
Retrotransposon mit dem fernöstlichen Namen im Zentrum der Machbarkeitsstudie (Proof of Concept).

Um es auf den Punkt zu bringen: Wird die Enzymaktivität der RNA-Polymerase II mithilfe des Pilzgifts
?-Amanitin unterbunden, wird ONSEN aktiv und breitet sich im Genom aus, sobald man den Thermoregler auf
37 °C hochdreht und die Pflanze unter Hitzestress gerät.

Von A wie ?-Amanitin bis Z wie Zebularin

Wen die Vorstellung, Nährmedien zu experimentellen Zwecken mit einem Mykotoxin zu versetzen, schlucken
lässt, wird kaum erraten, womit man Nährmedien noch befüllen kann: Zebularin zum Beispiel. Ein
außergewöhnlicher Wirkstoff, der in der Humanmedizin u. a. eingesetzt wird, um traumatische Ereignisse aus
dem menschlichen Gedächtnis zu löschen. Erhalten Arabidopsispflanzen über das Nährmedium eine
Extraportion Zebularin, dann hat dies einen ähnlichen Effekt wie das Pilzgift. Auch hier wird ONSEN bei
Hitzestress aktiv und vervielfältigt sich. Kombiniert man ?-Amanitin mit Zebularin, erhöht sich sogar der Effekt.
Jedoch steckt bei Zebularin ein anderer Mechanismus dahinter.

Auch die Epigenetik spielt mit

Die Wirkung basiert auf der Hemmung der Aktivität von Methyltransferasen. Enzyme, die Methylgruppen
(-CH3) an DNA-Abschnitte heften. Dies hat zur Folge, dass die Transkription dieser Abschnitte gehemmt wird.
Damit verfügen Pflanzen mit diesem epigenetischen Mechanismus über eine weitere Schutzmaßnahme, um
Retrotransposonen wie ONSEN zu bändigen. Wird ihnen nun auch diese Fähigkeit genommen, läuft dies im
Endeffekt auf das gleiche Ergebnis hinaus wie im Versuch mit ?-Amanitin. Wie es aussieht, sichern sich
Pflanzen lieber doppelt ab, um die sprunghaften Retrotransposonen in die Schranken zu weisen.

Neue Möglichkeiten für die Pflanzenforschung

Mit der Entdeckung der externen Steuerungsmöglichkeiten der Retrotransposonenaktivität öffnen sich neue
Möglichkeiten und Perspektiven, sich zukünftig mit dem Einfluss von Retrotransposonen genauer und
systematisch zu beschäftigen. Auch steht der Weg prinzipiell offen für den Einsatz in der Pflanzenzucht. Nicht
nur weil die zusätzlichen ONSEN-Kopien über mehrere Generationen stabil erhalten bleiben, sondern auch
weil die Mechanismen zur Kontrolle der Retrotransposonenaktivität – mittels RNA-Polymerase II und
Methylierung – bei Nachfolgegenerationen wieder greifen.

Mitnahmeeffekte nutzen

So könnte man sich z. B. einen weiteren Nebeneffekt zunutze machen, der bei Transpositionen auftritt. Es ist
nicht ungewöhnlich, dass bei der Transkription eines Retrotransposons nicht nur das Retrotransposon selbst,
sondern auch Gene in direkter Nachbarschaft abgelesen und aktiviert werden. Da Retrotransposonen vor
allem bei Stress aktiv werden, könnte man sich diesen Mitnahmeeffekt zunutze machen, wenn sich in direkter
Nachbarschaft Gene befinden, die die Stressresistenz erhöhen.

Quelle:
Thieme, M. et al. (2017): Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for
plant breeding. In: Genome Biology, Vol. 18, (7. Juli 2017), doi.org/10.1186/s13059-017-1265-4.

Zum Weiterlesen auf Pflanzenforschung.de:

Neues Apple-Produkt vorgestellt
Ganz ohne Zellkultur
Sprunghafte Entwicklungen

Titelbild: Bei 37 °C beginnt das Retrotransposon ONSEN im Genom von Arabidopsiskeimlingen, aktiv zu
werden und sich zu vermehren. (Bildquelle: © CSIRO/ CC BY 3.0)

Powered by TCPDF (www.tcpdf.org)

http://www.pflanzenforschung.de/de/themen/lexikon/mykotoxine-879
https://de.wikipedia.org/wiki/Methyltransferase
http://www.pflanzenforschung.de/de/themen/lexikon/enzyme-554
http://www.pflanzenforschung.de/de/themen/lexikon/methylierung-1469
https://doi.org/10.1186/s13059-017-1265-4
http://www.pflanzenforschung.de/de/journal/journalbeitrage/neues-apple-produkt-vorgestellt-forscher-praesentieren-10821
http://www.pflanzenforschung.de/de/journal/journalbeitrage/ganz-ohne-zellkultur-transposons-helfen-beim-verstaendn-10801
http://www.pflanzenforschung.de/de/journal/journalbeitrage/sprunghafte-entwicklungen-eine-neue-studie-zeigt-den-ei-10369
http://www.tcpdf.org

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Discussion
	Conclusions
	Methods
	Plant material
	Growth conditions
	Stress and chemical treatments
	DNA analysis
	Transposon display
	Cloning, sequencing and genotyping of new insertions
	RNA analysis and northern blotting
	Whole-genome DNA methylation analysis
	Statistics

	Additional file
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Biblio page:1
	Description page:2
	Claims page:24
	Drawings page:27
	ISR page:48

