View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by edoc

Towards the Reproduction of Selected Dynamic Loop Scheduling Experiments
Using SimGrid-SimDag

Ali Mohammed, Ahmed Eleliemy, and Florina M. Ciorba
Department of Mathematics and Computer Science
University of Basel, Switzerland
Email: {alimohammed, ahmed.eleliemy, florina.ciorba} @unibas.ch

Abstract— Modern computing architectures exhibit increasing
parallelism. Therefore, dynamic loop scheduling (DLS) plays
an increasing role in the performance optimization of parallel
applications executing on the modern computing architectures.
In the previous decades, there was a large body of research
concerning DLS techniques. Reproduction of the DLS exper-
iments is significant for ensuring the trustworthiness of the
DLS techniques implementation in modern scheduling tools or
within new scientific applications. The results of executing the
implemented DLS techniques are expected to be in agreement
with the results reported in earlier work. The present work is
a step towards the reproduction of the experiments that intro-
duced the well-known DLS technique named factoring (FAC).
Studying scheduling techniques via simulation is favorable
compared to native execution to have control over all the
factors that may affect the performance. The use of simulation
in this work is essential for the reproduction of the scheduling
experiments performed on computing systems that no longer
exist. This work shows that the self scheduling technique
with matrix multiplication kernel has a significantly poorer
performance on the modern system considered in this study
than on the past system.

1. Introduction

Scheduling is the assignment in space and over time
of parallel tasks. Dynamic loop scheduling (DLS) is the
assignment of loop iterations (as tasks) to idle and requesting
processing elements during execution. Loops are consid-
ered a rich source for parallelism in scientific applications.
Loop iterations may have variable execution times due to
problem, algorithmic, or systemic characteristics. In parallel
execution, variable iterations’ execution times causes uneven
processor finishing times and degrade the performance. DLS
can achieve a load balanced parallel execution by assigning
loop iteration(s) to available processors requesting compu-
tational work. DLS has gained an increasing importance as
modern systems exhibit increased parallelism.

One of the well-known and successful DLS techniques is
factoring, introduced by Hummel et al. [1] in 1992. Therein,
the authors compared the performance of the IBM Research
Parallel Processor Prototype (RP3) system [2] for the exe-
cution of three computational kernels: matrix multiplication,

adjoint convolution, and Gauss-Jordan elimination using
four scheduling techniques: static chunking (STATIC), self
scheduling (SS) [3], guided self scheduling [4] (GSS), and
factoring (FAC). The RP3 was considered the state-of-the-art
shared memory parallel computing machine in 1985 that was
designed to accommodate up to 512 processors. Reproduc-
ing the same experiments on a modern manycore system
would help explore the performance of the DLS techniques
on these systems and the difference in their behavior from
past systems to modern systems.

Reproducibility is a key aspect of scientific research [5].
Reproducing scientific experiments helps confirm the ex-
periments and establish that conclusions drawn from these
experiments are of a scientific relevance [6]. As such, in
the present work, selected scheduling experiments with two
computational kernels from [1] are reproduced using simu-
lation, as well as executed natively. The reproduction of the
scheduling experiments from [1] is used as a means to verify
the implementation in SimGrid [7] of the DLS techniques
presented in [1], and in particular in its SimDag interface
(SimGrid-SD).

The present work makes the following contributions:
(1) Uses reproduction to verify the implementation into
SimGrid-SD of the four scheduling algorithms from [1].
(2) Explores the impact of using modern manycore comput-
ing system on the conclusions drawn from past experiments.
(3) Validates the developed SimGrid-SD-based simulation of
two computational kernels from [1] using the four aforemen-
tioned non-adaptive dynamic loop scheduling techniques.

The remainder of the paper is structured as follows: In
Section 2, the background of the used DLS techniques and
the used simulation toolkit are reviewed. Certain studies
related to this work are discussed in Section 2. The proposed
approach for the use of reproduction as a means to verify
and validate the simulation of the DLS techniques with
SimGrid-SD is described in Section 3. The results of the
reproduction of the selected experiments natively and in
simulation are presented in Section 4. The conclusion and
insights into future work are outlined in Section 5.

2. Background and Related Work

In this section, a background on scheduling and
reproducibility, as well as a brief overview of the

https://core.ac.uk/display/154350716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SimGrid simulation toolkit is given. Certain studies related
to this work are presented afterward.

Scheduling. Four loop scheduling techniques are considered
in this work: one static (STATIC) and three dynamic (SS,
GSS, FAC). They are briefly described next. Using STATIC,
each processor is assigned exactly one chunk of size equal
to the total number of iterations divided by the number of
processing elements. STATIC has low scheduling overhead.
SS [3] can be seen as the other scheduling extreme. Using
SS, a processor obtains a new iteration whenever it becomes
available. SS is characterized by its great ability to balance
the load between the processors and by its high scheduling
overhead. Other scheduling techniques offer a good compro-
mise between the load balancing ability and the scheduling
overhead, such as GSS and FAC. GSS [4] assigns a chunk
of iterations to an available processor that is equal to the
number of the remaining unscheduled iterations divided by
the number of the processors. GSS has the characteristic of
assigning a very large chunk to the first available processor
and this may lead to load imbalance. FAC [1] is designed
to balance the execution of loop iterations with variable
execution times. It assigns chunks of iterations to available
processors in batches, therefore, reducing the scheduling
overhead. The number of the iterations in a chunk depends
on the number of remaining iterations and the coefficient of
variation of the iteration execution times.

Reproducibility. Reproduction is understood as defined
in [5]: revisiting a certain scientific problem (in the present
case: the performance of DLS techniques) without the orig-
inal artifacts or the possibility to execute artifacts on the
same computing system.

SimGrid. SimGrid [7] is a scientific simulation library,
developed to study the behavior of large-scale distributed
systems such as the Grid, the Cloud, and peer-to-peer
(P2P) systems. SimGrid provides three different interfaces:
MSG, SimDag, and SMPI, for different simulation purposes.
SimDag interface was chosen in this work as it provides
different types of tasks and the ability to specify depen-
dencies between tasks. Therefore, it facilitates a precise
representation of the scheduling context.

Related work. Two closely related studies that use re-
production to confirm the implementation of certain DLS
techniques using simulation are [8] and [9]. Therein, the
reproducibility of the use of DLS in earlier simulation-based
experiments was studied. The reproduction was performed
by implementing the DLS techniques in SimGrid-MSG.

The present work extends and complements previ-
ous work by implementing the DLS techniques using the
SimGrid-SD interface. The focus of this work is the use
of reproduction as a means of verification of the DLS
techniques’ implementation in SimGrid-SD. Moreover, the
reproduction approach taken in this work is the first to
confirm that the implementation of the DLS techniques in
simulation (SimGrid-SD) is in agreement with their native
execution performance on modern manycore architectures
(e.g., Intel’s KNL).

Native execution Native execution

Computational kernels Step 2 Computational kernels
DLS implementation < » DLS implementation
Execution on RP3 Execution on KNL
A
Step 1 Step 3
Simulation v

Representation of the RP3 Representation of the KNL
DLS implementation in SimGrid-SD

Computational kernels representation in SimGrid-SD

Legend: Artifacts in [7]

Artifacts in the present work

Figure 1. Reproduction of DLS techniques’ behavior in SimGrid-SD.

3. Proposed Methodology

In this work, selected scheduling experiments from [1]
are reproduced using SimGrid-SD simulation as the com-
puting system used in the original paper is not available.
The results of the simulation of the selected experiments
from the present are compared to the results obtained in
the original paper to verify the implementation of the DLS
techniques in the simulation. As shown in Figure 1, the same
experiments are reproduced on a modern manycore system
to explore the impact of using a modern shared memory
system on the conclusions from the original paper. The
developed simulation is modified to represent the execution
on the KNL instead of the RP3. The results of the modified
simulation are compared to the results of the scheduling
experiments from the present on the KNL to validate the
simulation of the scheduling experiments under study.

Computational kernels. Two computational kernels,
matrix multiplication and adjoint convolution, have been
chosen for reproduction in this work to represent loop
iterations with different properties. Matrix multiplication
iterations are equal in the number of floating point oper-
ations. In the case of adjoint convolution, the inner loop
is triangular. Therefore, the number of floating point oper-
ations per loop iteration of the adjoint convolution kernel
is decreasing/increases as the loop execution progresses
depending on the direction of the outer loop.

The two outermost loops of the matrix multiplication
are coalesced, and the resulting loop is parallelized. For the
adjoint convolution kernel, it consists of two nested loops,
where the outer loop is parallelized. The pseudocode for
the two computational kernels and their parallelization are
available online!, along with the developed simulation codes
and results obtained from simulation and native execution.

1. https://drive.switch.ch/index.php/s/NbEuOnIR70jQqCE

TABLE 1. SELECTED DLS EXPERIMENTS FOR REPRODUCTION

Computational Matrix Scheduling | Computing
kernels size technique system
Matrix multiplication | 300 x 300 | STATIC

Adjoint convolution SS RP3
(increasing and 75 X 75 GSS KNL
decreasing task sizes) FAC

A master-worker execution model is assumed in imple-
menting the scheduling experiments reproduced from [1] as
there is no information on how the kernels were executed
or how the data is distributed in the original paper. The
master process is dedicated to the calculation of chunks and
the assignment of tasks to requesting workers. The selected
experiments for reproduction are summarized in Table 1.

Computing systems. Scheduling experiments included
in the original paper [1] were executed on the RP3 [2] sys-
tem. The RP3 was built by IBM for research purposes. The
system used in the experiments consisted of 64 processors
connected by an Omega network. Each processor has 32 KB
cache and a local memory. Nonlocal memory is accessible
over the network. The system was configured to run a
version of Mach operating system, where multiprogramming
is eliminated to reduce variability in the execution time
between runs.

The selected scheduling experiments are reproduced on
the state-of-the-art shared memory system KNL standalone
processor version 7210. The KNL processor has 64 cores
and 96 GB main memory?. The KNL runs CentOS op-
erating system version 3.10.0, and the application code
is compiled using the GNU compiler version 6.3.0 with
—03 —mavab12f —mavx512c¢d —mavzbl12pf optimiza-
tion flags for the KNL architecture.

SimGrid-SD simulation. A simulator is developed to
simulate the execution of the two computational kernels with
the four aforementioned DLS techniques using SimGrid-SD.
Each iteration of the inner loop of the two computational
kernels is represented as a sequential computational task in
SimGrid-SD. Work request and work assignment are repre-
sented as end-to-end communication tasks in SimGrid-SD.
A sequential computational task is executed on the mas-
ter upon each work request, to represent the scheduling
overhead to calculate chunks. Computational kernels do not
execute at the peak speed of the processors in the native
execution due to several factors, such as cache misses,
branches, and delays in the execution pipeline. Therefore,
applications execute at a much slower rate than the proces-
sor’s nominal speed, resulting in a longer execution time
in native execution than in simulation. To close the gap
between native execution results and simulated results, the
native execution time of each task on the KNL is measured.
The amount of floating point operations (FLOP) that would

2. Special features of the KNL, such as the multichannel DRAM
(MCDRAM) and the cluster on die modes are not used in this study, to
avoid having heterogeneity in the system or anomalies in the results. The
MCDRAM is configured in the flat mode and the processor is booted in
all-to-all cluster mode.

result in each iteration execution time is inserted in the
simulator to represent the iterations of the computational
kernels. In the case of the simulation of the execution on
the RP3, fitting parameters are used to close the gap between
simulator results and results in the original publication.

To provide the SimGrid simulation engine with the spec-
ifications of the simulated system, an XML file called the
platform file is needed. Each processor in the RP3 system
is represented as a host in the SimGrid platform file used
in the reproduction experiments. All hosts (processors) are
interconnected by creating a communication link between
every host and all others. The values used to represent the
RP3 system are: processor speed 1.562 MFLOP/s, network
bandwidth 50 Mbit/s, and latency 2 us. In the case of the
KNL representation, each core is represented as a host in
the platform file. The values used to describe the proces-
sor speed, network bandwidth, and network latency of the
KNL system used in these experiments are 41.6 GFLOP/s,
100 Gbit/s, and 100 ns, respectively.

4. Evaluation

The scheduling experiments reproduced on the KNL are
repeated 200 times, and the execution cost is measured and
reported. The confidence interval of the measurements is
calculated, and experiments are repeated until the sample
average lies in the interval of 5% error with the confidence
level of 95%. The performance of the adjoint convolution
kernel with the four scheduling techniques is close to the
corresponding performance in the original paper. In the
case of the matrix multiplication kernel performance results
(shown in Figure 2), the behavior of the SS technique
is different from the results in the original paper, as the
scheduling overhead dominates the performance and results
in a longer execution time than other DLS techniques.

Native and simulation results are compared to verify
the implementation of the DLS techniques and to validate

B STATIC ®mSS GSS ®mFAC

26.05

32

15.37

16

oM
o
=
1
05
025 =l
sllos

0.125

9.79
5.77
7.69
10.73

1.93

log,(Parallel cost)
~

0.27

— (.28

0.22
.23

(.28

st

0.17
== 0.17

— () 35

(.23

== (.16

Sc S

0.1!
= 0.1

4 8 16 24 32 40 48 56
Number of cores

Figure 2. Native execution performance (as parallel cost) of the matrix mul-
tiplication kernel on KNL using the four scheduling techniques considered
in this study. Parallel cost = parallel program execution time X number of
workers.

the simulation of the native performance. The relative per-
centage difference between the native and the simulated
execution time is calculated as

relative percentage difference = (% — 1) x 100%.

The average of absolute relative differences for the ver-
ification experiments is 7.44% (comparison between native
RP3 results from [1] and SimGrid-SD simulation results
from the present work). The minimum and maximum rel-
ative absolute differences are 0.49% and 30.94%, respec-
tively, in all the verification experiments. For the validation
experiments (comparison between native KNL results and
SimGrid-SD simulation results), the average of absolute rel-
ative difference is 9.99%. The minimum and the maximum
relative differences are —0.23% and —44.99%, respectively.

The developed simulator can be configured to generate
parallel execution traces to be visualized with Vampir [10].
In Figure 3, for instance, the traces of executing the adjoint
convolution kernel with GSS scheduling using 16 workers
are produced for the native execution and the simulation.
The coefficient of variation (c.0.v.) of the cores finishing
times in the native execution and simulation is calculated as
a measure of the load imbalance. The c.o.v. in the native
execution is 0.404 and in the simulation is 0.407. The
comparison shows that the traces of native and simulated
executions are visually similar and the c.o.v. of the cores
finishing times are in the same order of magnitude.

5. Conclusion and Future Work

Reproduction of the selected scheduling experiments
showed that conclusions drawn from results of the original
paper might not hold on modern parallel shared memory
architectures. For the matrix multiplication kernel, the gap
between the performance of FAC and the performance of SS
executing on the KNL architecture is much wider compared
to the performance gap on the RP3 system. Given the signifi-
cant advancement in the computation capabilities of modern
architectures, the cost of synchronization is relatively large
compared to the cost of computation. Consequently, for an
application with loop iterations with equal sizes executing
on modern computing architecture, SS may have a poorer
performance than expected. Therefore, to select the most
suitable DLS technique, the granularity of the computational
work within each loop iteration needs to be considered,
as scheduling and synchronization overheads can degrade
the application performance. The DLS techniques can be
implemented using a centralized execution model, such as
the master-worker model employed in this work. The DLS
techniques can also be implemented using a distributed
execution model; and this is part of future work.

Acknowledgment

This work is in part supported by the Swiss National Sci-
ence Foundation in the context of the Multi-level Scheduling
in Large Scale High Performance Computers (MLS) grant,
number 169123.

20 ms 40 ms 60 ms 80 ms

~Master thread
Pthread thread 1
Pthread thread 2
Pthread thread 3
Pthread thread 4
Pthread thread 5
Pthread thread 6
Pthread thread 7
Pthread thread 8
Pthread thread 9
Pthread thread 10
Pthread thread 11
Pthread thread 12 I
Pthread thread 13 Pvs
Pthread thread 14 f I
Pthread thread 15
Pthread thread 16

(a) Native execution

20 ms 40 ms 60 ms
|

- o

host 0 core 0:
host 1 core 0:
host 2 core 0:
host 3 core 0:
host 4 core 0:
0:
0:
0:
0:

host 5 core
host 6 core
host 7 core
host 8 core
host 9 core 0:9

host 10 core 0:10
host 11 core 0:11
host 12 core 0:12
host 13 core 0:13
host 14 core 0:14
host 15 core 0:15
host 16 core 0:16

WNOURWNRO

ll “"

(b) Simulated execution

Function legend

Main function (fill matrices, print output)
I Adjoint convolution computation
B schedule tasks EE Enqueue

Create threads Pthread_lock
—— Communication between threads at creation and joining

Thread wait

Figure 3. Traces obtained from execution (top) (with execution time of
0.082 s) and its corresponding simulation (bottom) (with simulated ex-
ecution time of 0.079 s) of the GSS with adjoint convolution kernel of
decreasing task sizes using 16 worker threads.

References

[1] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: A method
for scheduling parallel loops,” Communications of the ACM, vol. 35,
no. 8, pp. 90-101, 1992.

[2] G. Pfister, W. Brantley, D. George, S. Harvey, W. Kleinfelder,
K. McAuliffe, E. Melton, V. Norton, and J. Weiss, “The IBM research
parallel processor prototype (RP3): Introduction and architecture,” in
International Conference on Parallel Processing, August 1985, pp.
764-772.

[3] P. Tang and P.-C. Yew, “Processor self-scheduling for multiple-nested
parallel loops,” in International Conference on Parallel Processing,
vol. 86, 1986, pp. 528-535.

[4] C. D. Polychronopoulos and D. J. Kuck, “Guided self-scheduling:
A practical scheduling scheme for parallel supercomputers,” IEEE
Transactions on Computers, vol. 100, no. 12, pp. 1425-1439, 1987.

[S] ACM. Artifact review and badging. [Online]. Available:
https://www.acm.org/publications/policies/artifact-review-badging

[6] S. Hunold and J. L. Triff, “On the state and importance
of reproducible experimental research in parallel computing,”
Computing Research Repository, vol. abs/1308.3648, 2013. [Online].
Available: http://arxiv.org/abs/1308.3648

[71 H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applica-
tions and platforms,” Journal of Parallel and Distributed Computing,
vol. 74, no. 10, pp. 2899-2917, 2014.

(8]

[91

[10]

F. Hoffeins, F. M. Ciorba, and I. Banicescu, “Examining the Repro-
ducibility of Using Dynamic Loop Scheduling Techniques in Scien-
tific Applications,” in Proceedings of the 4th International Workshop
on Reproducibility in Parallel Computing (REPPAR) of the 31st
IEEE International Parallel and Distributed Processing Symposium
Workshops and PhD Forum (IPDPSW 2017), Orlando, USA, May
2017.

F. Hoffeins, F. M. Ciorba, and I. Banicescu, “Towards the Repro-
ducibility of Using Dynamic Loop Scheduling Techniques in Scien-
tific Applications,” in Proceedings of 16th International Symposium
on Parallel and Distributed Computing (ISDPC), July 2017, p. 8.

A. Kniipfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mick-
ler, M. S. Miiller, and W. E. Nagel, “The Vampir performance
analysis tool-set,” in Proceedings of the 2nd International Workshop
on Parallel Tools for High Performance Computing, July 2008, pp.
139-155.

