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ABSTRACT 

This paper reviews the current design practices of transverse slab reinforcement design in concrete bridge deck, 
which consist of concrete deck slab on wide concrete T-beams. The conventional bridge design method results in the 
provision of excessive transverse steel reinforcement in the concrete bridge deck slab due to the fact that, the slab is 
assumed to bear the applied vehicular loadings alone without considering the contribution of the wide T-beam flanges. 
Thus, the design which is based on bending and failure proved to be too conservative. Through critical review, issues 
regarding some design approaches were discussed. It has been found that, designing the deck slab in transverse direction 
would enable the vehicle wheel loads to be supported by the wide T- beam flanges and performance enhancement can be 
achieved by compressive membrane action resulted from the natural stiffness of the wide girder flanges.  The presence of 
this membrane forces provides a punching shear capacity, which is far beyond the flexural design capacity for the new 
bridge deck system. This capacity would result in substantial reduction of the transverse reinforcement within the slab. 
 
Keywords: T-beam, compressive membrane action, punching shear, transverse- reinforcement, bridge deck slab. 
 
INTRODUCTION 

There are various bridge deck types but cast-in-
place decks supported by concrete T-beam girders are 
popularly used in practice [1]. These cast-in-place 
concrete bridge decks are extensively used due to various 
factors. The factors include reasonable cost and 
availability of materials but, they have a serious problem 
of rebar corrosion. Some measures are taken to minimize 
this corrosion, like using an increased cover, application of 
sealants on the deck slab or use of galvanized/epoxy 
coated reinforcement, all of which do not provide a 
resistance to concrete cracking that usually cause the 
damage [2]. As bridge cost is by far higher than that of 
roads, it become necessary to have a proper planning for 
the best utilization of funds for transportation network [3]. 
This planning can be achieved by the use of best design 
method. Though good planning and design of bridges 
shows the innovation, imagination and exploration of 
designers [4, 5], but it is only possible when the design 
method itself is sound. 

There exist various bridge deck slab design 
methods and some developed modified approaches in 
practice. The aim of this paper is to review and discuss 
these methods in order to highlight their suitability and 
eventually, propose an alternative approach that would 
provide an additional advantages like, substantial cost 
reduction, easier application and expected wider 
acceptance. Bridge deck slabs are popularly design using 
conventional method which resulted in the use of large 
amount of steel reinforcement. Other research 
developments to be discussed in this paper like,the 
empirical design method, UK BD 81/02 and steel free 
bridges showed that the conventional method is quite 
conservative because, of the existence of some additional 
phenomenon enhancing the strength capacity of the deck 
slab. The phenomenon referred to as compressive 

membrane forces or arching action present in slab with 
some degrees of restraint have shown to have substantially 
increase the slab ultimate capacity far beyond the 
estimated value obtained by flexure. New design rules 
were then included in some bridge design specifications 
particularly the empirical design method of Ontario 
Highway Bridge Design Code and United Kingdom bridge 
design code taking in to account the effect of this arching 
action. The new rules provided more economical use of 
steel reinforcement within the deck slab. With the use of 
this reduced steel reinforcement, reinforced concrete deck 
slabs still require constant maintenance due to corrosion of 
the reinforcing steel caused by de-icing salts, 
temperature/thermal cracking of concrete and shrinkage; 
attention is then focused on the use of fiber reinforced 
polymers (FRP) in place of steel on one hand while, on the 
other hand some researches (to be discussed later in this 
paper) were engaged on the use of steel-free bridge deck 
slabs. But all the aforementioned methods have some 
peculiar disadvantages of higher costs and limited 
acceptance by designers. It is imperative therefore, to 
emphasize on possible means of improving the transverse 
slab deck design in order to limit such problems. This 
study would also consider the possible means of utilizing 
the transverse behaviour of beam and slab bridges in 
which the top slab would be designed transversely as one-
way spanning supported by the longitudinal beams, taking 
in to account the lateral stiffness of the beam and its 
confining effect on the slab, beam flange stiffness and web 
thickness contributions. The various design method are 
summarily reviewed. The first being the conventional 
design method and a comparative capacity enhancement 
from arching action. 
 
CONVENTIONAL DESIGN METHOD AND 
ARCHING ACTION 
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The conventional flexural design method of 
bridge deck slab led to the use of high level of steel 
reinforcement to withstand the assumed flexural bending 
and failure. But the realization of arching action led to new 
design specifications. 
 
Conventional design method 

Traditionally, concrete slab on girder bridges 
design is carried out with the assumption that the deck slab 
act as continuous beam spanning across a rigid girders. 
Using the assumption, moments are determined and used 
in the design of the deck slab, this method popularly 
known as “approximate strip design method” has been 
modified and adopted in AASHTO-LRFD 
specifications[6]. 

Majority of these concrete slab on girder bridges 
specifications are reported to have been developed in 
1940s [7]. The most popular being the AASHTO’s 
specifications resulted from some good researches that 
predicted pure flexural ultimate strength capacity of the 
slab deck [8, 9,10,11,12,13,14]. While in some other 
development, tests results for ultimate strength on some 
old bridges designed using the specification revealed that, 
they are by far stronger than the AASHTO rating [15, 16]. 
This development hints on the possibility of some other 
mechanisms providing the enhancement. In a nutshell, the 
existence of compressive membrane forces within the deck 
slab produces a substantial reserve capacity far beyond its 
flexural design capacity and rather led to a punching 
failure mode.  

Compressive membrane forces/Arching action 
originally observed by Westergard and Slater [8] after 
which some tests results on old slabs[15,16] gave a 
collapse load far beyond those obtained from yield-line 
theory [17]. Further studies have then carried out in 
developing arching action theories for both one way and 
two way slabs [18,19,20,21,22,23,24,25,26,27]. Valipouret 
al. [28] explained that the axial strain occur when the 
tensile zone crack, making the neutral axis moves towards 
the compressive fibre as a result of beam or slab 
deflection. The prevention of this strain by end restraint as 
shown in Figure-1 which produces a compressive 
membrane forces in the member enhances the capacity of 
that member, which leads to empirical method of design 
[29, 30]. It has also being fund out that, members with 
lower span to depth ratios have higher arching action 
behaviour due to their higher compressive strength and 
accompanying crushing strain [31-38]. The use of 
minimum steel percentage in restrained slabs reduces 
maintenance cost, increase durability and enhanced 
Punching shear capacity [39]. Meanwhile the Ontario 
Highway code incorporates the use of this arching action. 
Compressive membrane forces also exist in edge stiffened 
cantilever overhang of a bridge deck as failure pattern 
obtained was different from that of pure flexure when 
subjected to static loads simulating wheel loads [40]. A 
popular arching action application has also been reported 
in bridge deck assessments [35]. Arching action have long 
been found to increase the concrete slab carrying capacity 
in comparison with that obtained using only flexural 

theory [41,42]. Csagoly and Lybas [43] noticed that the 
presence of arching action within the slab of restraint 
boundary preventing deformation under the action of 
concentrated load immensely enhanced the slab ultimate 
strength far beyond that specified by flexure theory.  
Barker and Pucket [44] also stated that empirical design 
method utilizes the full action of internal arching in which 
the bottom reinforcement served as tensile tie to 
compressive strut at the top of the deck subjected to load. 
Meanwhile, the concrete also provide additional aid to the 
system which in turn enables the reduction of overall 
reinforcement to about 40-65%. With this economy from 
the use of reduced reinforcement steel, many highway 
agencies preferred to use the empirical method. However, 
immediate cracks formation have been noticed in many 
USA bridges [45, 46,47,48,49,50,51] prior to opening to 
traffic, though there is no any evidence that the system 
would resist other load combinations like thermal and 
shrinkage stresses.   
 

 
 

Figure-1. Arching action in horizontal and vertical 
restrained slab. 

 
Petrou and Perdikans [52] reported that total 

deflection of bridge deck is not really flexural but also 
highly influenced by small girder spacing and/or large 
deck thickness. Mufti et al. [53] reckoned that internal 
arching action may also be present in bridge deck 
cantilever overhangs under the action of concentrated 
load. This was then experimentally studied by Klowaket 
al.[54], where, the tests results for the ultimate load 
capacities were far greater than those for pure flexural 
mode of failure. Some other researchers also revealed that 
restrained reinforced concrete deck under the action of 
concentrated wheel loads exhibit a punching shear failure 
mode not flexure as expected by conventional design 
method [55,56]. However, Hewitt and Batchelor [55] 
further stated that for restrained slab, the wheel load would 
not be resisted by reinforcement due to the effect of 
compressive membrane action similar to that present in 
reinforced concrete beam. Park and Gamble [57], 
Graddyetal. [58], and Zheng et al. [59] deduced that this 
type of failure is commonly present in thick slab with 
restrained boundary. 
 
Empirical design method 

An empirical design method of isotropic bridge 
decks was developed in late 1970’s which is based on the 
assumption that the deck slab uses arching action between 
the girders in resisting the loads [60]. More practical 
approach is adopted in the North America following the 
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works on compressive membrane action by various 
researchers in 1970s [61, 62]. The findings from field tests 
enables the inclusion of an empirical design method in to 
the Ontario Highway Bridge Design Code in 1979 [63]. 
The method requires only a minimum isotropic 
reinforcement of 0.3% within the deck slab. 
 
UK Bridge deck design 

New design approach proposed by Kirkpatrick, 
Rankin and Long [64] which was validated by full-scale 
bridge test in 1986 [65] prompted the initiation of new 
rules for economical design of reinforced concrete bridge 
decks in the Northern Ireland [66]. The approach was then 
included in the roads and bridges design manual, BD 
81/02 ‘Use of Compressive Membrane action in Bridge 
Decks’ by the United Kingdom Highway Agency [67]. 
 
Steel-free bridges 

At Dalhousie University, Halifax, Nova Scotia 
Canada, a study have been conducted where, a great 
breakthrough in bridge design which concluded that, 
providing a bridge deck on longitudinal girders can be 
confined in both longitudinal and transverse direction, 
steel reinforcement is totally not desirable [68]. Studies 
have been carried out on a number of this steel-free deck 
slabs consisting of five half scale and six full scale models 
under the action of static loads [69, 70, 71]. After which, 
some other precast steel-free deck panels were constructed 
and tested in the same manner [70]. The studies have been 
supported by formulating a rational model for predicting 
the strain and deflection relationships with the applied 
load and eventual load capacity of the system [72]. The 
pioneer highway steel-free bridge (Salmon River b ridge) 
have been constructed in 1995 [73] which was studied 
under the action of heavy traffic volumes and almost daily 
freeze-thaw cycles in winter, have been found to be 
performing as required. One of the drawbacks of this 
method is the attainment of confinement at the end of the 
deck because; a special and stiff edge beam has to be 
provided to attain the desired restraint. Another drawback 
is the formation of longitudinal cracks parallel to the 
girders running midway between them for the entire deck 
slab length. To solve the problem of this crack formation, 
significant studies have been carried out on the use of fiber 
reinforced polymer in the concrete deck slab [74-81]. 
 
Use of Fibre Reinforced Polymer (FRP) 

Among the serious courses for maintenance in 
bridges is the corrosion of reinforcement which leads to 
the deterioration of the concrete; use of FRP is among the 
possible solution to this problem [82]. Use of FRP in place 
of reinforcing steel is successfully practiced [83, 84]. 
Meanwhile using the fibre with some content of polymeric 
resin has also carried out by Yost and Schmeckpeper [85]. 
Good laboratory and field results for such systems have 
been obtained by Benmokrane et al. [86]. In another study, 
FRP gratings were used as reinforcement [87]. Studies on 
this FRP in slab deck and FRP girders have then 
continually carried out and a lot of contributions have been 
provided by many researchers [88-94].  

DISCUSSIONS 
After the review of previous researches, it 

becomes clear that more economical design method for 
transverse reinforcement in concrete bridge deck slab is 
needed. Summary of various design methods is presented 
in Table-1. It can be seen that, the conventional design 
method is very conservative as it assumed a flexural deck 
slab behaviour without considering any other factor that 
might enhanced its ultimate strength capacity. Subsequent 
methods incorporate arching action behaviour that 
enhanced the slab deck strength capacity and results in the 
use of reduced amount of reinforcement. The innovation 
of steel-free slab decks shows that, steel reinforcement 
could be totally removed provided a sufficient restraint to 
utilize arching action can be achieved. On the other hand, 
all these methods have some peculiar disadvantages for 
example, the conventional design method require a higher 
budget meanwhile, the provision of larger amount of 
reinforcement have a greater chance of corrosion and 
eventual deterioration of the bridge. Methods for epoxy 
coating of reinforcement for durability enhancement 
[95,96].also proved to be costly. Existence of cracks in the 
remaining methods reveals that some measures need to be 
taken. Meanwhile use of FRP as anti-cracks and external 
steel straps in steel-free bridges make them more 
expensive.  

Designs in Wisconsin for bridge deck are carried 
out using the approximate method [97] though;WisDOT 
Bridge manual stated the performance of empirically 
designed bridge decks including Ontario design deck [98]. 
These Bridges performed satisfactorily with reduced 
amount of reinforcement. Bridges constructed on the 
newly formed wide flanged beams apparently have higher 
ultimate capacity more especially those with additional 
lateral restraint that developed arching action [99]. Very 
few numbers of steel-free bridges were constructed in the 
world. Five steel free bridges were constructed in Canada 
with the first being Connestogo River bridge constructed 
in 1975. The steel-free design method is observed to have 
had a lesser practical acceptance considering the few 
number of bridges designed and constructed using the 
method. 
 
ON-GOING RESEARCH 

Considering the un-resolved issues discussed 
above, and to base the argument on a more scientific basis 
a study of bridge deck slab on wide concrete T-beams is 
underway. The study is intended to include the girder web 
stiffness and the T-beam wide flange area in enhancing the 
carrying capacity of the slab deck. Considering the fact 
that Bougerraet al. [100] obtained a good punching shear 
strength on some tested samples, the values obtained are 
much greater than the current ACI 440.1R-06 [101] 
punching shear model and also 1.74-3.52 times the 
Canadian Highway Bridge Design Code factored load; 
More recently, Beatrice et al [102]. Obtained load values 
of at least 333kN on some tested slab specimens which is 
by far greater than the maximum load of 112.5kN of the 
BD 81/02. Other researches like Moradi et al. [103] 
proved the same argument; it become clear that an 
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improvement on the empirical design philosophy and the 
likes is needed. New design method that would 
incorporate the effect of additional carrying capacity of 
bridge deck from the stiffness of T-beam elements should 
be explored. Investigation in to the restraining ability of 
the slab deck and beam web producing a substantive 
arching action should be carried out too. The current 
research study would use minimum anti-cracks steel in the 
slab. The slab of which is supported by a closely spaced 
wide T-beam prestressd concrete girders as shown in 
Figure-2 in accordance with some existing designed and 
constructed case-study bridges. Vehicular load model 1 

Tandem system of Eurocode [104] would be adopted in 
the study. As the clear space between adjacent girder 
flanges is short (50,200 and 500mm), the vehicle wheel 
load would be directly supported by the prestressed 
concrete girders considering the fact that the vehicular 
wheel contact area is 460×460mm [105]. The surface of 
the T-beam would be rough and wet prior to the 
application of the top slab so as to obtain a better 
performance [106]. The ultimate goal is to achieve a more 
economical design approach for slab-on-concrete girder 
bridges. 

 

 
 

Figure-2. Slab on wide-flanged and closely spaced girders. 
 

Table-1. Summary of concrete slab-on Girder Bridge design methods. 
 

S. 
No. 

Method 
Application 

example 
Techniques Results Other factors Remark 

1 Conventional General 

Approximate strip 
design method of 

deck slab supported 
by center points of 

girders 

Use large amount 
of steel 

reinforcement 

Possible use of 
diaphragm beams 

Highly conservative 

2 Empirical 

North America- 
Ontario Highway 

Bridge Design 
Code 

Utilizes the presence 
of compressive 

membrane forces 

Use 0.3% 
minimum isotropic 

reinforcement 

Diaphragm beams 
might be used 

Substantive amount of 
reinforcement use; 

formation of immediate 
cracks in some bridges 

prior to opening 

3 

UK approach 
Compressive 

membraneActio
n 

UK Design 
manual for Roads 

and Bridges, 
BD81/02 

Utilizes the presence 
of compressive 

membrane forces 

Substantive 
reduction of steel 
reinforcement use 

Diaphragm beams 
might be used 

Use of steel 
reinforcement in the 

slab liable to corrode. 

4 
Steel-free deck 

slab 
Canada, USA 

Full arching action 
achieved from 

additional external 
restraint 

Bridge deck slab 
without any 
internal steel 
reinforcement 

Use of external 
horizontal steel 

rods/straps. 
Use of FRP as anti-

cracks within the slab 
deck 

Formation of 
longitudinal cracks 

between girders which 
necessitates the use of 
FRP as antic racks in 

the deck slab 

5 
Alternative 

method 
On-going research 

Use of wide flanged 
closely spaced 

concrete T-beam 
girders 

Use of anti-cracks 
steel reinforcement 

Use of smaller clear 
space between girder 

beam flanges less 
than the vehicle 

wheel contact area 

Use of anti-cracks 
reinforcement in the 

slab. Full utilization of 
concrete T-beam 

flanges 
 
CONCLUSIONS 

Paper reviewed the existing design approaches of 
transverse steel reinforcement in concrete slab-on girder 

bridges from which the following conclusions can be 
drawn: 
 

01 - T16 
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 Conventional design method resulted in the provision 
of high amount of reinforcement which increases the 
chances of corrosion occurrence and eventual 
deterioration of the deck slab. 

 Formation of cracks in empirical design methods 
hinder its applicability. 

 Use of FRP as anti-cracks and provision of external 
steel straps in steel-free deck slab increase the total 
cost of the bridge. 

 Use of T-beam geometries like, wide beam flange and 
web thickness might greatly enhance the carrying 
capacity of the top slab and possible reduction in the 
bridge overall cost. 
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