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This article studies the unsteady free flow of a Casson fluid over an infinite vertical plate with constant
wall temperature. The Problem is modelled by employing equations of continuity, momentum and
energy. Exact solutions for the dimensionless velocity and temperature are established by the Laplace
transform technique. The solutions that have been obtained, uncommon in the literature, satisfy all
imposed initial and boundary conditions and can generate huge number of solutions for any motion
problem with technical relevance of this type. For illustration, some special cases are considered. The
velocity solutions are presented as a sum of convective and mechanical parts. Pertinent results are dis-
cussed and displayed graphically.

� 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Heat transfer phenomenon in non-Newtonian fluids such as
drilling muds, clay coatings and other suspensions, certain oils
and greases, polymer melts, blood and many emulsions, is an
important research area due to its relevance in the optimized pro-
cessing of chocolate, toffee, and other foodstuffs. However, it is not
as easy as in case of Newtonian fluids. Because there is not avail-
able a single constitutive relation same as for Newtonian fluids
which describes all non-Newtonian fluids. Due to this difficulty
several models or constitutive equations have been proposed [1–
5]. Amongst them, some of the non-Newtonian fluid models are
studied in a great length. But some of them are important but less
investigated. Such as the rheological model of Casson fluid. This
fluid model was originally introduced by Casson [6] to simulate
industrial inks. However, it has also significant applications in
polymer processing industries and biomechanics [7–9]. According
to Swati and Mandal [10], the Casson fluid model is sometime
more suitable compare to other viscoplastic models to fit for the
rheological data and for many materials such as blood and choco-
late. Mostly the Casson fluid problems are solved when velocity at
the boundary is specified. Yet, no problem is reported on the
unsteady free convection flow of Casson fluid when instead of
velocity, shear stress is specified at the boundary. The idea of arbi-
trary shear stress at the wall for the free convection flow of viscous
fluid was introduced by Fetecau et al. [11]. More exactly, they stud-
ied the free convection flow near a vertical plate that applies arbi-
trary shear stress to the fluid with the additional effects of thermal
radiation and porosity. Soon after, this idea is extended for other
problems as we can see [12–15]. Moreover, some interesting
numerical solutions for Casson fluids are investigated in details
in [17–19]. In all these investigations, the exact solutions were
obtained using the Laplace transform technique. However, it is
worth pointing out that all these solutions correspond to the
motion of problems for viscous fluids. For non-Newtonian fluids
such solutions are scarce, more exactly for Casson fluids.

Based on this motivation, the main objective of this work is to
study the unsteady flow of non-Newtonian Casson fluid over an
infinite plate with isothermal temperature and arbitrary wall shear
stress. Exact solutions are obtained using the Laplace transform
method, plotted graphically and discussed.
Mathematical formulation

Let us consider the unsteady free convection flow of an incom-
pressible viscous fluid over an infinite vertical plate. The physical
configuration of the problem is shown in Fig. 1.The x-axis is taken
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Fig. 1. Physical configuration of the problem.
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along the vertical plate and the y-axis is taken normal to the plate.
Initially, both the plate and fluid are at stationary condition with
the constant temperature T1. After time t ¼ 0, the plate applies a
time dependent shear stress f ðtÞ to the fluid along the x-axis.
Meanwhile, the temperature of the plate is raised to Tw. From
[10], we know that that the rheological equation of state for the
isotropic and incompressible flow of a Casson fluid is:

sij ¼
2 lB þ py=

ffiffiffiffiffiffiffi
2p

p� �
eij;p > pc

2 lB þ py=
ffiffiffiffiffiffiffiffi
2pc

p� �
eij;p < pc

8<
:

9=
; ð1Þ

where p ¼ eijeij and eij is the ði; jÞ-th component of the deformation
rate, p is the product of the component of deformation rate with
itself, pc is a critical value of this product based on the non-
Newtonian model, lB is the plastic dynamic viscosity of the non-
Newtonian fluid, py is the yield stress of the fluid. Under the usual
Boussinesq’s approximation and neglecting the viscous dissipation
the continuity equation is identically satisfied. Thus the problem
of unsteady free convection flow is governed by the following equa-
tions of momentum and energy

@u
@t

¼ m 1þ 1
c

� �
@2u
@y2

þ gbTðT � T1Þ; y; t > 0; ð2Þ

qCp
@T
@t

¼ k1
@2T
@y2

y; t > 0; ð3Þ

where u, T, m, q, g, bT , Cp, k1 and c ¼ lB

ffiffiffiffiffiffiffiffi
2pc

p
=py are the velocity of

the fluid in x-direction, its temperature, the kinematic viscosity,
the constant density, the gravitational acceleration, the heat trans-
fer coefficient, the heat capacity at constant pressure, the thermal
conductivity of fluids and the non-Newtonian Casson parameter
respectively.

The corresponding initial and boundary conditions for velocity
and temperature are:

uðy;0Þ ¼ 0; Tðy;0Þ ¼ T1; 8y P 0;
Tð0; tÞ ¼ Tw; 8t > 0;
uð1; tÞ ¼ 0; Tð1; tÞ ¼ T1:

ð4Þ

The arbitrary shear stress at the wall for Casson fluid is defined
by [16]

s 0; tð Þ ¼ lB þ py=
ffiffiffiffiffiffiffiffi
2pc

p� � @uð0; tÞ
@y

¼ f ðtÞ; ð5Þ
after simplification reduces to

1þ 1
c

� �
@uð0; tÞ

@y
¼ f ðtÞ

lB
: ð6Þ

Introducing the non-dimensional variables

u� ¼ u

ffiffiffiffi
t0
m

r
; T� ¼ T � T1

Tw � T1
; y� ¼ yffiffiffiffiffiffiffi

mt0
p ;

t� ¼ t
t0
; f � t�ð Þ ¼ t0

lB
f tð Þ; ð7Þ

into Eqs. (2) and (3), and initial and boundary conditions 4 and (6)
(‘‘⁄” notations are dropped for simplicity)
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c
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Pr
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uðy;0Þ ¼ 0; Tðy;0Þ ¼ 0; 8y P 0;
@uð0;tÞ

@y ¼ f ðtÞ
1þ1

cð Þ ; Tð0; tÞ ¼ 1;

Tð1; tÞ ¼ 0;uð1; tÞ ¼ 0;
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where

Gr ¼ gbT Tw � T1ð Þm
U3

0

; t0 ¼ m
U2

0

; Pr ¼ lBCp

k1
; ð11Þ

are the Grashof number, the characteristic time and the Prandtl
number.

Exact solution

Applying Laplace transform to Eqs. (8) and (9), we obtained the
following transformed ordinary differential equations

qu y; qð Þ ¼ 1þ 1
c

� �
@2u y; qð Þ

@y2
þ GrT y; qð Þ; ð12Þ

Pr q T y; qð Þ ¼ @2T y; qð Þ
@y2

; ð13Þ

with transformed boundary conditions

T 0; qð Þ ¼ 1
q
; T 1; qð Þ ¼ 0;

u 1; qð Þ ¼ 0;
@u 0; qð Þ

@y
¼ F qð Þ

1þ 1
c

� � : ð14Þ

Solution of Eq. (13) under boundary conditions (14) is obtained
as

T y; qð Þ ¼ 1
q
e�y

ffiffiffiffiffi
qPr

p
: ð15Þ

By taking the inverse Laplace transform of Eq. (15), we find

T y; tð Þ ¼ erf c
y
ffiffiffiffiffi
Pr

p

2
ffiffi
t

p
 !

ð16Þ

and

@T y; tð Þ
@y
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¼ � e�
Pr y2

4t
ffiffiffiffiffi
Pr

p
ffiffiffiffi
p

p ffiffi
t

p ; ð17Þ

is the corresponding heat transfer rate also known as Nusselt
number.

The solution of Eq. (12) under boundary conditions (14) results
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Applying the inverse Laplace transform to Eq. (18), we get

u y; tð Þ ¼ uc y; tð Þ þ um y; tð Þ; ð19Þ
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correspond to the convective and mechanical parts of velocity.
It is noted from Eq. (16) that Tðy; tÞ is valid for all positive values

of Pr while ucðy; tÞ is not valid for Pr ¼ 1. Therefore, to get ucðy; tÞ
when the Prandtl number is equal to one, we make Pr ¼ 1 into
Eq. (9), use a similar procedure as discussed above, and obtain
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By taking the inverse Laplace transform, we find that
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Limiting cases

In this section we discuss few limiting cases of our general
solutions.
Solution in the absence of Casson fluid parameter ðc ! 1Þ

We substitute c! 1 into Eq. (12) to get the corresponding
solutions for viscous fluid, by adopting same procedure, obtained
result for velocity is
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Solutions in the absence of free convection

Let us assume that the flow is caused only due to bounding
plate and the corresponding buoyancy forces are zero equivalently
it shows the absence of free convection due to the differences in
temperature gradient i.e. the terms Gr is zero. This shows that
the convective part of velocity is zero. Hence the flow is only gov-
erned by the mechanical part of velocity given by Eq. (21).
Solutions in the absence of mechanical effects

Let us assume that the infinite plate is in static position at every
time i.e. the function f ðtÞ is zero for all values of t and the mechan-
ical part is equivalently zero. In such a situation, the motion in the
fluid is induced only due to the free convection which causes due
to the buoyancy forces. Therefore, the velocity of the fluid is only
represented by their convective part given by Eq. (20).
Special cases

As we noted that the solutions for velocity obtained in Sec-
tion ‘‘Exact solution”, are more general. Therefore, we want to dis-
cuss some special cases of the present solutions together with
some limiting solutions in order to know in details about the phys-
ical aspects of the problem. Hence, we discuss the following impor-
tant special cases.
Case-I: f ðtÞ ¼ fHðtÞ

In this first case we take the arbitrary function f ðtÞ ¼ fHðtÞ;
where f is a dimensionless constant and Hð�Þ denotes the unit step
function. After time t ¼ 0, the infinite vertical plate applies a con-
stant shear stress to the fluid. The convective part of the velocity
remains unchanged while the mechanical part takes the following
form

um y; tð Þ ¼ � fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

c
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p
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Z t
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s
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Furthermore, in the absence of Casson fluid parameter, Eq. (25)
reduce to

um y; tð Þ ¼ � fffiffiffiffi
p

p
Z t

0

e�
y2

4sffiffi
s

p ds: ð26Þ

which is identical with [11]; Eq. (23).



Fig. 3. Velocity profiles for for different values of t when the plate applies a
constant shear stress f ¼ �2.

Fig. 4. Velocity profiles different values of Pr when the plate applies a constant
shear stress f ¼ �2.
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Case-II: f ðtÞ ¼ f sinðxtÞ

In the second case, we take the arbitrary function of the form
f ðtÞ ¼ f sinðxtÞ in which the plate applies an oscillating shear
stress to the fluid. Here x denotes the dimensionless frequency
of the shear stress. As previously, the convective part of velocity
remains the same whereas the mechanical part takes the form

um y; tð Þ ¼ � fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

c

� �r ffiffiffiffi
p

p
Z t

0

sin xt �xsð Þe
� y2

4
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s
p ds: ð27Þ

It can be further written as a sum of the steady-state and tran-
sient solutions

um y; tð Þ ¼ ums y; tð Þ þ umt y; tð Þ; ð28Þ
where

ums y; tð Þ ¼ � fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

c

� �r ffiffiffiffi
p

p
Z t

0

sin xt �xsð Þe
� y2

4
ffiffiffiffiffiffiffiffiffi
1þ1

cð Þp
sffiffi

s
p ds; ð29Þ

umt y; tð Þ ¼ fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

c

� �r ffiffiffiffi
p

p
Z 1

t

sin xt �xsð Þe
� y2

4
ffiffiffiffiffiffiffiffiffi
1þ1

cð Þp
sffiffi

s
p ds: ð30Þ

In addition when c ! 1, physically it corresponds to the
absence of Casson fluid parameter, Eq. (29) results in

ums y; tð Þ ¼ � fffiffiffiffi
p

p
Z t

0

sin xt �xsð Þe�y2

4sffiffi
s

p ds; ð31Þ

equivalent to [12]; Eq. (38).

Results and discussion

Computations have been carried out by assigning values to the
embedded parameters characterizing the fluid properties. The flow
phenomenon is characterized by Grashof number Gr, dimension-
less time t, Prandtl number Pr, shear stress f and Casson fluid
parameter c. The effects of these parameters on velocity and tem-
perature profiles are shown in Figs. 2–8. The influence of thermal
Grashof number Gr on velocity profiles is shown in Fig. 2. It is clear
from this figure that in the absence of thermal effect ðGr ¼ 0Þ,
when the effect of buoyant forces is negligible and the viscous
forces are dominant, the velocity tends to steady-state faster than
Fig. 2. Velocity profiles for for different values of Gr when the plate applies a
constant shear stress f ¼ �2.

Fig. 5. Velocity profiles for different values of c when the plate applies a constant
shear stress f ¼ �2.
for the values of Gr > 0. It can be observed that velocity increases
for the increasing values of Gr. It is also true physically as the Gra-
shof number Gr describes the ratio of buoyancy forces to viscous
forces. Therefore, an increase in the values of Gr leads to increase
in buoyancy forces, consequently velocity increases. On the other
hand, it is clearly seen from Fig. 3 that velocity increases with
increasing time. In Fig. 4 the velocity profiles for different values
of Prandtl number Pr are shown. An increase in Pr leads to decrease
in the velocity which suggests that low rate of thermal diffusion



Fig. 6. Velocity profiles for different values of constant shear stress f.

Fig. 7. Temperature profile for different values of Pr.

Fig. 8. Temperature profiles for different values of t.

Table 1
Variation of Nusselt number for different parameters.

t Pr Nu

1.2 0.015 0.0076
1.2 0.71 0.065
1.2 7 1.69
1.2 0.71 0.065
1.3 0.71 0.058
1.4 0.71 0.052

Table 2
Variation of velocity for different parameters.

f Pr t Gr u

�0.75 0.35 0.9 0.7 0.68
�0.45 0.35 0.9 0.7 0.57
�0.15 0.35 0.9 0.7 0.46
�0.25 0.35 0.9 0.7 0.49
�0.25 3.50 0.9 0.7 0.43
�0.25 50 0.9 0.7 0.39
�0.25 0.35 0.2 0.7 0.11
�0.25 0.35 0.4 0.7 0.24
�0.25 0.35 0.6 0.7 0.35
�0.25 0.35 0.9 0.5 0.42
�0.25 0.35 0.9 0.8 0.47
�0.25 0.35 0.9 1 0.51
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leads to increase in the velocity boundary layer thickness. Fig. 5
illustrates the influence of Casson fluid parameter on velocity. It
is observed that velocity decreases with increasing c. The effects
of the shear stress f induced by the bounding plate on the non-
dimensional velocity profiles are shown in Fig. 6. The velocity of
fluid is found to decrease with increasing f. The temperature vari-
ations against y for various values of Prandtl number Pr are dis-
played in Fig. 7. It is observed that increasing Pr results in the
decrease of temperature distribution. It is because of the fact that
fluid has a thinner thermal boundary layer with higher values of
Pr. Fig. 8 shows that temperature increases with increasing time.
Conclusions

Exact solutions for the problem of unsteady free convection
flow of Casson fluid over an infinite plate are obtained under the
conditions of arbitrary wall shear and constant wall temperature.
These solutions are expressed in simplified forms in terms of expo-
nential and complementary error functions. We observed that they
satisfy all imposed initial and boundary conditions and reduce to
some known solutions from the literature as special cases. The fol-
lowing main conclusions are drawn from this study (see Tables 1
and 2).

� In absence of thermal effects ðGr ¼ 0Þ, the solutions purely
explain the mechanical aspects of the fluid.

� The general solutions obtained here give several other solutions
of important fluid motions as limiting cases.

� It is concluded from velocity profile that increasing Gr, t and f ,
increases fluid motion whereas fluid flow decays when Pr and
c are increased.

� Temperature increases with increasing t but decreases when Pr
increases.
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