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Abstract A dense and mesoporous ceramic from locally sourced Nigerian clay under fracture-

strength test were produced and the reliability analysis of the fractured strength was conducted

using a three-parameter Weibull probability distribution. The samples were prepared by addition

of starch (0–20wt%), pressed at 60 MPa and fired at 1300 �C. The as-received Nigerian clay, dense

and porous ceramic were characterized using XRD, XRF, TGA/DTA, PSD, multi-point BET and

FESEM. The fracture strength of the samples (33 each) was determined using a three-point bending

test. The fracture strength data were analyzed using three-parameter Weibull probability distribu-

tion. From the characterization results, a mullite ceramic formed at a sintering temperature of

1300 �C. The threshold strength for the three-parameter Weibull provides the strength below which

the dense and the porous ceramic will not fail. The Weibull moduli of the ceramics at different

starch compositions show that failure modes in these materials are not identical. The Weibull mod-

ulus increases with increase in percentage starch from 0% to 15%. However, the value decreases

with 20% starch addition. Reliability analysis provides a detailed interpretation and assessment

of the fracture strength of the porous ceramics.
� 2017 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to the rising cost of engineering ceramics and the limita-
tions of polymeric membranes with regard to mechanical,
chemical and thermal properties, researchers have resorted to
using inexpensive clay minerals in ceramic membrane produc-

tion for industrial processes such as reaction, separation and
purification applications (Mauricio et al., 2011; Bose and
Das, 2013; Emani et al., 2014). These clay minerals can be a

cheap source of mullite ceramic, which can be obtained after
sintering at the appropriate temperature (Bai, 2010). Despite
the availability of literature on the strength data of these por-

ous fired clay materials, a detailed analysis of the strength and
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reliability of these materials is important, since they operate
under pressure-based driven process. However, the strength
and reliability of these porous fired clays are not well under-

stood. As a rule-of-thumb, brittle materials have variations
in their fracture strength under the same fabrication condi-
tions; this is due to the fact that brittle materials are prone

to flaws/pores during the fabrication process, which become
pronounced after sintering. Many researchers have reported
single fracture strength at a particular sintering temperature

and compaction pressure as the actual strength of these clay-
based porous materials. For example, porous clay based mem-
branes were produced at a distributed pressure of 2 Kg and
fired at temperatures in the range of 850–1000 �C; the mem-

branes produced have fracture strength values in the range
3–8 (Nandi et al., 2008). In addition, Jana et al., 2010 reported
a fracture strength of 11.55 at a sintering temperature of

1000 �C while preparing porous microfiltration membranes
by paste casting for chromate removal from wastewater. Sev-
eral years later, Yakub et al. (2012) extended the research by

reporting the deviation of the fracture strength of porous fired
clay at a sintering temperature of 955 �C with a porosity in the
range 36–47%; the fracture strength obtained are in the range

3.89 ± 0.09–7.14 ± 2.26 MPa. Moreover, Sahnoun and
Baklouti, 2013 reported strength in the range 6.66–10.63 for
porous fired kaolin clay prepared by compaction at com-
paction pressure in the range of 15–75 at sintering temperature

in the range 800–1250 �C. Lastly, Emani et al. (2013) reported
the fracture strength of kaolin-based porous fired membrane
using compaction at a pressure range of 29–49, firing temper-

ature of 900–1000 �C and porosity in the range 35–39%; the
fracture strength obtained is in the range 7.81–11.

Conventional two-parameter Weibull assumes the strength

below which all the materials will not fail (threshold strength)
to be zero and the scale parameter to be the strength at 62.3%
of the materials. In addition, the two-parameter Weibull prob-

ability distribution is suitable for a small sample size of 20 and
below (Roos and Stawarczyk, 2012). However, in reliability
statistics, higher Weibull modulus value is an indication that
the threshold strength is larger than zero and should not be

ignored (Han et al., 2009). Therefore, three-parameter Weibull
probability distribution gives a detailed reliability of the
strength below which all the tested materials will not fail

(threshold strength) and uniformity of the strength data in
the form of Weibull modulus. This is normally achieved by
testing the strength of several samples (normally around 30)

under the same fabrication condition and analyzing the data
with three-parameter Weibull probability distribution (Han
et al., 2009). Although, many studies have reported the
strength of porous fired clays, there is limited research on

the analysis of the strength data using three-parameter Weibull
distribution. Therefore, we report the fabrication of dense and
mesoporous fired Nigerian clay with starch as a pore former,

characterization of the clay and the mesoporous fired clay
and the analysis of the fracture strength using three-
parameter Weibull probability distribution. The novelty of this

work is to determine the strength below which these clay-based
membranes will not fail, determine the uniformity of the data
and the effect of porosity on the Weibull modulus. No attempt

has been made previously on characterization and flexural
strength analysis of dense and mesoporous fired Nigerian clay.
The objective of the present research was to conduct XRF,
XRD, PSD, FESEM and BET multi-point of as-received,
dense and porous ceramics. The analysis of the fracture
strength of the dense and porous ceramics was conducted by
three-parameter Weibull probability distribution.

2. Materials and methods

2.1. Clay characterization

The as-received clay obtained locally from Kankara, Nigeria

was screened through 50 lm sieve. Particle size analysis was
carried out using Malvern particle mastersizer 2000. Miner-
alogical composition of the raw and fired clay (1000 and

1300 �C) was determined with Siemens Diffractometer D5000
equipment, Cu Ka (1.54056 nm) radiation, step size angle of
0.05�, scan rate of 2� in 2h unit and scan range from 5 to

70�. The XRD data were analyzed using EVA software. The
TGA/DTA analysis of the clay was carried out using PerkinEl-
mer thermal analyzer at a heating temperature range of 50–
1100 �C, heating rate of 10 �C/minute and flow rate of 20 ml/

min under a nitrogen atmosphere.

2.2. Sample Preparation and characterization

The flexural strength samples were prepared from the raw clay
and the clay mixed with 0, 10, 15 and 20% starch (label as A,
B, C and D respectively in Table 1). The samples were com-

pacted into a die of dimensions approximately 5 � 30 � 80 mm
at a compaction pressure of 60 with an Instron 600 KNmachine
at 10 min holding time to attain perfect consolidation. Thirty

three samples each were fabricated for the dense, 10, 15 and
20%. The samples were fired in a high temperature furnace at
1300 �C for a period of two hours. The flexural strength of sam-
ples A, B, C and D fired at 1300 �C (33 samples each) was deter-

mined using three point bending test. The specimens’ width and
breadth were measured and recorded and a span of 40 mm was
used for the test. A load was applied on the specimen until frac-

ture. The test was conducted using an Instron 100-KN electro-
mechanical testing machine at a loading rate of 0.5 mm/min,
based on the following equation (ASTM, 1999):

r ¼ 3FL

bd2
ð1Þ

where r is the flexural strength variable, F is the load, L is the
span (40 mm), b is the width and d is the section thickness of
specimen.

Multi-point BET was conducted on the dense porous

ceramics at 1300 �C to determine the adsorption/desorption
isotherm, average pore size and the pore size distribution on
TriStarII 3020 surface area and pore analyzer with N2 as

adsorptive at �196 �C for 4 h in a vacuum. The morphology
of the dense ceramic was recorded using Field Emission Scan-
ning Electron Microscopy FESEM (ZEISS SUPRA35VP).

For the porous ceramics, the samples were fractured, cold
mounted, ground with 320–1200 grit of silicon carbide papers,
polished using 1 lm diamond paste and cleaned with ultra-

sonic cleaner. The morphology was recorded with FESEM.

2.3. Three-parameter Weibull analysis

The fracture strength data were analyzed using three and two-

parameter Weibull probability distribution with MINITAB 15



Table 1 Summary of flexural strength and three-parameter Weibull of A and porous sintered clay (B, C and D) based on three-

parameter Weibull probability distribution.

Sample Flexural strength (MPa) m S (MPa) r0 (MPa)

A 24.11–46.56 2.56 19.05 16.11

B 13.58–23.26 3.12 11.17 7.27

C 9.99–15.30 3.28 8.21 4.61

D 3.06–12.65 2.15 1.78 6.33
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software at 95% confidence interval (CI). The general cumula-
tive three-parameter Weibull probability distribution for least

square estimate (LS) is given by (Han et al., 2009):

P ¼ 1� exp � r� S

ro

� �m� �
ð2Þ

where P is the probability of failure and ro is the scale param-
eter, m is the Weibull modulus and S denotes the threshold

(strength below which the material will not fail) (Naito,
2014a).

Taking twice the logarithm of Eq. (2) to obtain:

ln lnð1=ð1� PÞÞ½ � ¼ m lnðr� SÞ �m lnðroÞ ð3Þ
Eq. (3) is linear and when ln½lnð1=ð1� PÞÞ� is plotted

against lnðr� SÞ, a slope of m and an intercept of �m ln(ro)
is obtained. Hence, the estimates of ro, m and s are determined
from the slope and intercept in Eq. (3). There are few ways of
estimating the value of s. In this research, we employed the use
of Minitab 15 software for estimating the Weibull parameters.

For the two-parameter Weibull, s= 0 and Eq. (3) reduces to:

ln½lnð1=ð1� PÞÞ� ¼ m lnðrÞ �m lnðroÞ ð4Þ
Probability of failure estimator (P) has to be assigned to

estimate the probability of failure. The Hazen method (modi-
fied Kaplan Meier) has been used due to its least bias for

N � 20 and probably the most preferable from a material
science point of view (Naito, 2014b), given by:

Pi ¼ Ri � 0:5

N
ð5Þ

where Ri is the ranking position and N is the total number of

samples.
Pseudo-hexagonal flakes and 
platelets of kaolinite 

Figure 1 FESEMmorphology of as-received clay sieved through

50 mm.
3. Results and discussion

3.1. Raw material characterization

The morphology of the as-received clay Fig. 1 shows the pres-

ence of pseudo-hexagonal flakes of kaolinite in the form of
accordion structure and platelets of kaolinite, this is a typical
characteristic of kaolin clay. The particle size distribution of
the clay (Fig. 2) shows a bimodal distribution with an average

particle size of 22.46 lm. Other parameters obtained from the
particle size analysis results are the specific surface area and the
density, which are found to be 0.57 m2/g and 2.56 g/cm3

respectively.
The XRD analysis (Fig. 3) shows the presence of kaolinite

(PDF-00-001-0527) as the predominant phase in the clay with

trace of illite (PDF-00-058-5138) and quartz (PDF-00-058-
2015) with percentages of 82.21%, 7.20% and 10.59%
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Figure 3 XRD analysis of as-received clay and sintered samples

at 1000 and 1300 �C.

Figure 2 Particle size distribution of as received clay sieved

through 50 mm.
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Figure 5 FESEM morphology of A sintered clay at 1300 �C (a)

500� and (b) 5000�.
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respectively; these are the phases normally found in kaolin

clays (Gougazeh and Buhl, 2014). Sintering of the clay to a
temperature of 1000 and 1300 �C. Fig. 3 shows the transforma-
tion of the clay. At a temperature of 1000 �C, it shows a dis-

tinct phase of muscovite (PDF-00-058-2037), while at
sintering temperature of 1300 �C shows a well pronounced
mullite phase (PDF-00-006-0258). The transformation of clays
at various temperatures is heating rate dependent; heating rate

of 3–20 �C/min is enough to cause the transformation of meta-
kaolin to mullite without the formation of intermediate spinel
phase (Castelein et al., 2001). The XRF chemical composition

of the clay was found to be 48.86% SiO2, 37.83% Al2O3,
1.15% K2O, 0.27% Fe2O3, 0.05wt% CaO, 0.04% TiO2,
0.04% MgO, 0.01% MnO, 0.01% P2O5 and 11.81% LOI

(Abubakar et al., 2016).
Fig. 4 shows the decomposition of the clay with tempera-

ture. From the figure, the total weight loss of the clay is
approximately 11.09% due to removal of both physical and

chemical combined water, conversion of kaolin to metakaolin
as supported by the DTA curve. The DTA curve shows an
endothermic peak at a temperature of 485 �C; this is due to

the conversion of kaolin to metakaolin and removal of chem-
ically combined water. The second, an exothermic peak at a
temperature of 960 �C; this is due to conversion of metakaolin

to spinel.

3.2. Dense and porous ceramics characterization

The FESEM morphology of the dense ceramics at a sintering
temperature of 1300 �C is shown in Fig. 5. The A sample cera-
mic shows a random distribution of micro cracks. However,
the porous ceramics B and C (Fig. 6a and b) shows a partial

and relative uniform distribution of slit-shaped pores respec-
tively. However, Fig. 6c shows interconnection of pores in
the form of cracks for porous ceramic D.

The pore size distribution and the adsorption/desorption
isotherm obtained from the BET multi-point data of A, B, C
and D are shown in Fig 7. The adsorption/desorption isotherm

of the dense ceramic Fig. 7a does not conform to any IUPAC
standards for the identification of porous materials, which
shows that the material is not porous or contains any apprecia-

ble amount of porosity. The adsorption/desorption isotherms
of B, C and D show an initial increase in the adsorption iso-
therm due to monolayer formation and low slope region in
the middle of the isotherm due to formation of first
multilayers, followed by a high increase in the adsorption

amount of nitrogen at a relative pressure above 0.9 due to cap-
illary condensation which further proves the presence of meso-
pores. The isotherm presents a step down in the desorption

branch, with the desorption branch of the isotherm lying
above the adsorption branch. According to IUPAC standards
for the identification of porous materials, this behavior type is

of type IV isotherm with H3 type hysteresis for all the porous
ceramics produced (Fig. 7b, c and d). Presence of hysteresis of
type H3 proved that the porous ceramics are mesoporous of
slit-shaped pores. During the desorption process of the porous

ceramics B and C, the isotherm closed at a relative pressure
close to 0.1, which indicates a relative distribution of slit-
shaped pores. The desorption isotherm of D does not close,

which shows an interconnection of pores (Fig. 6c) and nitrogen
gas retention in this pores during the desorption process, sim-
ilar observation was reported by Schmitt et al., 2013. The pore

size distribution shows all the porous ceramics contain a main
sharp peak at approximately 20.00 nm, which are highly uni-
form in structure; other peaks are termed artificial peaks/

troughs, which also contribute to the statistical thickness of
the pores (Fu et al., 2010). The average pore size of B, C
and D is found to be 39.68, 46.10 and 55.13 nm respectively,
this further proves the porous ceramics are mesoporous. The
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Figure 6 FESEM morphology of porous sintered clay with

(a and b) sample B (c and d) sample C and (e and f) sample D.
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Figure 7 Adsorption/desorption isotherm and pore size distri-

bution of (a) A, (b) B (c) C and (d) D.
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BET specific surface area for the porous ceramics B, C and D
was found to be 1.60, 2.11 and 3.63 m2/g respectively, this vari-

ation shows increase with increase in starch content, this is as a
result of increase in porosity as percentage starch increases.
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Table 2 Three-parameter Weibull of some engineering mate-

rials together with current research (Han et al., 2009).

Materials m S

PMMA-based bone cement 0.5–1.4 -

Window glass 1.21 35.8 MPa

Silicon die 2–3 48–184 MPa

Ti-6Al-4V 2.6 563 MPa

Titanium alloy 30NiCrMo16 steel 2.8 441 MPa

Cast iron ENGJS800-2 3.1 204 MPa

C20 Steel 3.2 230 MPa

Silicon nitride 3.6–4.5 389–506 MPa

Solid oxide fuel cells �5 25–28 MPa

35NiCrMo4 steel 5.4 534 MPa

22NiMoCr37 ferritic steel �7 2.4–3.2 GPa

ZuCuAl9Y) BMGs 6–6.8 1116–1677 MPa

This research (Samples A, B, C

and D)

2.15–3.28 1.7–19.05 MPa
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3.3. Reliability analysis three-parameter Weibull probability
distribution

Table 1 shows the summary of the Weibull parameters of A, B,
C and D. From the table, the Weibull modulus of C shows the

highest value (3.28), this is due to uniform distribution of the
slit shaped pores (Fig. 6b), while that of A Fig. 5 shows a value
(2.56) due to the random distribution of cracks. In addition,
the Weibull modulus of D shows the lowest value (2.15) among

the porous ceramics. This is due to the interconnection of
pores of random orientation, which reduces the uniformity
of porosity in the porous ceramic (Fig. 6c). The threshold

strength (the strength below which all the materials will not
fail) shows decrease with increase in starch content from A,
B, C and D. This is due to the increase of the pores, as the pore

former burnt out during the sintering process, many voids are
created, as a result, decreasing the strength of the ceramics.
The probability plot Fig. 8 shows almost all the probability

points lie within the upper and lower bounds of the 95% CI,
which signifies the Hazen method of estimating the probability
of failure, has fitted the fracture strength data for both dense
and the porous ceramics. In Fig. 9, all the probability density

plots skewed to the left i.e., toward the threshold strength.
Also, from the probability density plot, it shows that C has
the highest probability density, which shows that predicting

failure is high compared with other compositions. High value
of the Weibull modulus shows low spread of the fracture
strength data, high uniformity/low variability and greater reli-

ability. In engineering its more desirable to use materials with
low strength but with higher reliability (Weibull modulus
value) than materials with low high strength but lower reliabil-
ity; since materials with higher Weibull modulus values are

predictable and less likely to break at a stress value much lower
than the mean value (Quinn and Quinn, 2010). The Weibull
modulus value decreases as the percentage starch increases;

this is due to the formation of interconnected pores (Fig. 5d),
which resulted in non-uniform distribution of porosity. Sample
A shows the smallest probability density; this can be attributed

to the wider spread of the fracture strength data as shown in
Fig. 8. In general, blunt flaws such as pores are less likely to
cause failure than a sharp flaw such as microcracks; this sup-

ports the low Weibull modulus of the dense ceramic due to
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Figure 8 Probability plot of A and porous sintered clay (B, C,

and D).
presence of microcracks as shown in Fig. 5. The Weibull mod-
ulus obtained from A, B, C and D are higher than other engi-

neering materials (Table 2) as reported by Han et al., 2009.

3.3.1. Two-parameter Weibull probability distribution

Table 3 shows the summary of two-parameter Weibull distri-

bution of A, B, C and D. From the Table, the Weibull modu-
lus of B and C (9.52 and 10.10) is higher than that of A (6.58);
D has the least value of the Weibull modulus. However, the

scale parameter of A (35.75 MPa) is higher than B, C and D
(18.62, 12.95 and 8.24 MPa respectively). In addition, the Wei-
bull modulus C is higher than that of B. Conversely, the scale

parameter of B is higher than that of C. This behavior of
increase in Weibull modulus and decrease in scale parameter
with increase in percentage starch in the porous ceramics is

due to the fact that increase in starch from 10% to 15% results
in more uniform distribution of porosity in C. While the
decrease in scale parameter is due the high porosity content
of C compared with B as shown in Fig. 6b. The two-



Table 3 Summary of two-parameter Weibull of dense and

porous sintered clay (10, 15 and 20 wt% starch) based on three-

parameter Weibull probability distribution.

Sample m r0 (MPa)

A 6.59 35.75

B 9.52 18.62

C 11.10 12.95

D 5.08 8.24
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Figure 10 Two-parameter probability plot of A and porous

sintered clay (B, C, and D).
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parameter Weibull probability distribution using least square
estimate at 95% confidence interval using Minitab software

is shown in Fig. 10. The least square estimate of the two-
parameter Weibull distribution does not fit well the data
because in all the probability estimates, some points, which

are more than 95% CI, lie outside the upper and lower bounds
of the 95% confidence interval. The 95% confidence interval
assumes that only 5% of the data point will lie outside the
upper and lower bounds of the confidence interval.

For all the compositions, three-parameter Weibull thresh-
old strength is less than the scale parameter of the two-
parameter Weibull. This is due to the fact that the two-

parameter Weibull considers failure at 63.2% of the tested
specimens while the threshold strength in the case of the
three-parameter Weibull considers the strength below which

all the materials will not fail. The three-parameter Weibull pro-
vides the safety limit of the strength that should not be
exceeded to avoid failure.

4. Conclusions

Porous mullite ceramic was obtained from low-cost clay from

Nigeria. The Porous ceramics produced are mesoporous suit-
able for filtration applications. The porous membranes pro-
duced show an increase in Weibull modulus with an increase
in uniform distribution of porosity. The produced membranes

are mesoporous, which will find application in micro and ultra-
filtration processes. The threshold strength obtained indicated
the strength below which the materials will not fail under an

applied pressure of micro and ultrafiltration applications. This
strength is very important since it provides the safe engineering
limit which the porous ceramics will be subjected to without
failure. It was also found that the Weibull modulus shows an

increase in value with increased starch content from 10% to
15%, which signifies an increase in the distribution of porosity
as shown in the micrographs. However, as percentage starch

reaches 20wt%, the Weibull modulus decreases due to non-
uniformity of porosity. The three-parameter Weibull provides
the detailed safe limits of the ceramics produced.
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