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Solitonic conduction of electrotonic 
signals in neuronal branchlets with 
polarized microstructure
R. R. Poznanski1, L. A. Cacha2, Y. M. S. Al-Wesabi1, J. Ali2,3, M. Bahadoran4, P. P. Yupapin5,6 &  
J. Yunus1

A model of solitonic conduction in neuronal branchlets with microstructure is presented. The 
application of cable theory to neurons with microstructure results in a nonlinear cable equation that 
is solved using a direct method to obtain analytical approximations of traveling wave solutions. It is 
shown that a linear superposition of two oppositely directed traveling waves demonstrate solitonic 
interaction: colliding waves can penetrate through each other, and continue fully intact as the exact 
pulses that entered the collision. These findings indicate that microstructure when polarized can sustain 
solitary waves that propagate at a constant velocity without attenuation or distortion in the absence 
of synaptic transmission. Solitonic conduction in a neuronal branchlet arising from polarizability of its 
microstructure is a novel signaling mode of electrotonic signals in thin processes (<0.5 μm diameter).

Motivation. The dynamic structure of electrical activity in the nervous system is information-rich1 with 
action potentials considered by most neuroscientists to form the basis of electrical signaling2. Action potentials 
are electrical spikes quantitatively described through a system of nonlinear equations developed by Alan Hodgkin 
and Andrew Huxley3 (hereafter H-H). The H-H model treats the nerve as an electrical cable upon which a prop-
agating action potential is driven by dynamics. It is inscribed in a porous medium where currents leak through 
resistors and the membrane is a dielectric represented by a classical capacitor. Remarkably, the H-H model pro-
vides a quantitatively accurate description of electrical phenomena in neurons through properties of solitary 
waves. In particular, the nerve impulse, which is a solitary wave, is localized and remains stable, but destabilizes 
after collision with other action potentials4. Indeed, this has been understood as a golden rule of cable theory for 
neurons without microstructure5.

Conferring with the H-H model, colliding action potentials will annihilate due to the in-activation of the 
sodium conductance (the refractory period). However, there are also studies with the findings that two colliding 
action potentials will not lead to their mutual annihilation right away. Instead, they reflect from one another and 
eventually they annihilate, thereby projecting solitonic properties, see refs 6, 7. Nevertheless, action potentials are 
solitary pulses and not solitons since they do not preserve their shape and velocity after collision. In other words, 
the crucial test for solitary pulses to be solitons is robustness to collision.

The early work of Aizawa and colleagues8 proved the existence of solitons in dissipative media referred to 
as ‘dissipative solitons’, which are dubbed quasi-solitons as dissipation is evident after collision. Although 
quasi-solitons (or soliton-like) behavior has been observed in many excitable systems9, the existence of solitons 
in reaction-diffusion systems was first shown by Tuckwell10, 11. A reaction-diffusion system describes the con-
centration of charged ions which is mathematically equivalent to the conduction of current as flow of electrical 
charges in an electrical cable model. For example, a hybrid model developed by Meier and colleagues12 proposed a 
voltage-dependent Nernst potential in a reaction-diffusion system where the membrane potential exhibited soli-
tonic properties on an assumption that H-H model behaved like an electrochemical, reaction-diffusion system.
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The H-H model excludes microstructure and simply assumes a homogenized resistive fluid for the interior of 
the giant axon of Loligo. Earlier cable modeling efforts treated the intracellular medium of neurons to be a homo-
geneous resistive fluid of 70 Ωcm as measured for electrolyte solution only, see ref. 13. Meier and colleagues12 
observed in neurons with radii several orders of magnitude smaller than that of the giant axon of Loligo, to have 
significant intracellular charge depletion. For these reasons, a cable model is required that specifically addresses 
electrotonic signal propagation in small neuronal processes with microstructure14, 15. Modeling efforts by Shemer 
and colleagues16 have explicitly considered endoplasmic reticulum encased within a core-conductor. However, 
such cytoplasmic inhomogeneity in the microstructure does not explicitly take into consideration intracellular 
capacitive effects due to charge flow of molecular ions as a result of protein polarization17 or include capacitive 
effects only in the extracellular space18.

A cable model with passive membrane that includes the diffusion of free charge was derived in which it was 
confirmed that the diffusion of free charge contributes through the conduction of current flow arising from 
capacitive charge-equalization and axial capacitive effects19. The model was further developed by including polar-
ization current due to dispersion of bound charge on the surface of endogenous structures in the cytoplasm20. 
This resulted in polarization current arising from electrostatic interactions between charges/dipoles in the cyto-
plasm at slow varying electric fields (e.g., quasi-electrostatic conditions) causing self-excitability with a variety of 
different electrical signaling patterns created by charges held by the microstructure.

Gonzalez-Perez and his colleagues21 had shown experimentally how a collision between two electrical pulses 
did not result in their annihilation. This contrasts to the collective idea of annihilation due to the existence of 
a refractory period in the H-H model4, 5, implying that active conduction is not universal for all types of nerve 
fibers after all. They proposed that their results can be explained in terms of a soliton model22, 23 based on the 
assumption that changes in lateral density of the membrane are proportional to changes in voltage. And mechan-
ical signals propagate in phase with electrical pulses24, so that a thermodynamic theory of a nerve impulse could 
be seen as complementary, which is nonelectrical and consistent with an adiabatic wave (e.g. sound wave), see 
ref. 25. Mechanical changes during an action potential can produce a self-sustaining and localized density pulse 
propagating over long distances without loss of energy with minimum propagation speed of 100 m/s, see ref. 26. 
However, Gonzalez-Perez and his colleagues21 experimental result have shown electrical pulses (which they pre-
sumed to be action potentials) of less than 10 mV in axons with diameter of lateral giant (Lumbricus terrestris) 
axons between 4 to 100 μm with velocities well under 10 m/s. Therefore their results are not compatible with a 
mechanical soliton model. In this paper, we introduce an alternative signaling mechanism based on solitonic 
conduction of electrotonic potentials that is compatible with their experimental results.

Methods
Intracellular capacitive effect of microstructure. Microstructure contains a dense meshwork of 
cytoskeletal structures made up of neutrally charged macromolecules assembled from amino-acids using infor-
mation encoded in genes in a polypeptide chain linked by peptide bonds. At random orientations, the arrange-
ment of charges in some macromolecules are static when no electric field is present, but in the presence of an 
electric field, macromolecules become polarized and separate by orienting the dipole moments of polar molecules 
resulting in the formation of permanent dipoles which attract surface charge densities (so-called bound charge 
densities) causing a displacement of charge. These bounded charges produce intracellular capacitive effects that 
can contribute to ionic current flow arising from the dispersion (fluctuation) of bound charge by affecting the 
voltage created by charge flow of molecular ions in the intracellular fluid.

One way to increase the densities of electrical charges within a neuronal branchlet (i.e., thin dendrite or thin 
axon that is under half a micron in diameter) is to polarize microstructure in the presence of quasistatic electric 
field (see Fig. 1). For example, the flux generated by electrical conduction of a polarized current in the longitu-
dinal direction (along the cable length) arising from polarizability of its microstructure. In Fig. 1 the branchlet 

Figure 1. A schematic illustration of a longitudinal section of the neuronal branchlet with microstructure 
showing cytoskeletal structures (interlinking actin filaments, intermediate filaments, and microtubules) 
and closely compressed accumulated membranous organelles that extend to distal part of a branchlet. 
The cytoskeleton is a network of connected actin and intermediate filaments, and microtubules including 
mitochondria in neurons causing a gradual tapering towards one end. The microstructure constitutes a fissured 
domain of the cytosol (fluid that contains organelles, comprising the cytoplasm). The mitochondrial membrane 
is the largest organelle (∼0.2 μm) within the microstructure and dominates the constituency of the cytoskeletal 
structures since endoplasmic reticulum does not enter into branchlets below a micron.
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is shown to be tapering, while the model to be derived is intended to represent only for nontapered cylindrical 
representation.

The cytosol (fluid that contains orgenelles, comprising the cytoplasm) is a porous medium of the intracellular 
fluid assumed to be homogeneous and purely conducting, i.e., the electrical behavior of the medium is entirely 
characterized by a homogeneous electrical conductivity representing ionic homogeneity for all macromolecules. 
This is a simplification that suffices for the conduction process, focusing on homogeneous dielectric polarization20 
without exploring the physicochemical nature of excitation. Consequently in the context of conduction process, 
ionic polarizability of individual molecules is not taken into account, but instead a continuum of molecular ions 
with macroscopic charge densities are used as a phenomenological description of the electrostatic interactions 
and transfer of information due to the interactions among the molecular ions in a fluid environment within neu-
ronal branchlets.

Cable model with homogenous microstructure. A homogenous microstructure is represented 
electrically in terms of intracellular capacitive effects that contribute to dielectric absorption, and nonlinear 
(voltage-dependent) transfer of macroscopic charge densities leading to inherent waveforms of electrical depo-
larization. Phenomenological description of quasi-electrostatic interactions of macroscopic charge densities held 
by the microstructure are modeled as flux generated by electrical contribution of polarization current in a homog-
enous core- conductor representation of a neuronal branchlet, assuming extracellular isopotentiality, spatial and 
ionic homogeneity and negligence of currents due to ionic concentration gradients among molecular ions in an 
electrolytic microenvironment.

Cable models of electrical activity in neurons assume a one-dimensional description of neuron geometry for 
describing the process of conduction5. In our cable model, we consider the microstructure to be a homogeneous 
dielectric of constant conductivity and permittivity in space and time and isotropic (same in x/y directions). We 
ignore anisotropic electrical properties, compare with refs 27, 28, assume the polarization current is restricted 
longitudinally along the cable length, and extracellular isopotentiality and quasi-electrostatic conditions prevail. 
Therefore in the context of conduction process, ionic polarizability of individual macromolecules is not taken into 
account, but rather macroscopic charge densities are used as a phenomenological description of the electrostatic 
interactions between charges/dipoles held by the microstructure (i.e., charge ‘soakage’). Our model includes a 
homogenous microstructure of a cable representation of a branchlet as an approximation to an inhomogeneous 
microstructure of an electrolytic cable representation of a branchlet (see Fig. 2).

Basic equation of the model. The membrane potential distribution can be derived from conservation of 
electric charge in a volume of cylindrical cable over a differential distance Δx as shown in Fig. 3 (top); see ref. 29. 
The cable has a radius (r), cross-sectional area (πr2) and perimeter around the membrane (2πr). If the conductiv-
ity of the extracellular medium is high, leaving the extracellular medium isopotential (i.e., Ve = 0) then the effect 
of the external potential on membrane potential (i.e., V = Vi − Ve) is negligible.

If the membrane potential (V) in a neuronal branchlet is equal to the intracellular potential (Vi) together with 
passive membrane as shown in Fig. 3 then the nonlinear cable equation with polarized microstructure can be 
written as ref. 20:

+ ∂ ∂ = ∂ ∂ + γ∂ ∂ ∂ + κ∂ ∂V V/ T V/ X V/ T X {C(V)V}/ T (1)2 2 3 2

where V is the membrane potential (mV), γ = τρ/τm ≪ 1 and κ = γ (λ2/πr2) are both positive constants (dimen-
sionless), τp = 2εrεo/σ < 1msec (Maxwell’s time constant), εr = 81 is the relative permittivity of sea water (dimen-
sionless), εo = 7 × 10—12 F/cm is the fluid permittivity, τm = cmrm (passive membrane time-constant in msec), 
λ = √(rm/ri) (electrotonic space-constant in cm), dimensionless time T = t/τm and dimensionless space X = x/λ, 
ri is the core-resistance (or intracellular resistance) per unit length ri = 1/(πr2σ) (Ω/cm), rm is the membrane 
resistance across a unit length of passive membrane cylinder (Ωcm), cm is the membrane capacitance per unit 
length of cylinder (F/cm). Note the core-resistance (or intracellular resistance) per unit length differs slightly 

Figure 2. A schematic illustration of ionic inhomogeneity in a porous medium of a neuronal branchlet. The 
microstructure is indicative of macromolecules in an electrolyte solution (excluding subcellular membranes 
of mitochondria). The inset shows molecular ions in an electrolytic microenvironment within the neuronal 
branchlet.
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from the intracellular resistivity Ri = 1/(2σ) (Ωcm) or volume resistivity of the intracellular medium, also referred 
to as specific resistance (1/σ) where σ is the electrical conductivity (S/cm).

Equation (1) contains two additional terms in the classical cable equation; see refs 5, 30, 31, which reflect 
the intracellular capacitive effects due to polarization current. A physical interpretation of these new terms 
requires quantitative verification that is lacking even when γ is small and hence κ is small, yet the intracellu-
lar capacitive effects do form a significant dielectric, and not simple passive RC filter properties. The first new 
term γ ∂3V/∂T∂X2 is a linear dissipative term due to surface-charge equalization between polarized intracellular 
free charges on endogenous structures within the microstructure19. The other new term ∂{C(V)V}/∂T is the 
charge ‘soakage’ due to polarization current within the microstructure produced by the bounded charges on 
endogenous structures20. In a neuronal branchlet with microstructure, voltage created by charge ‘soakage’ pro-
duces intracellular capacitive effects. Charge ‘soakage’ is the tendency of a capacitor to recharge itself after being 
discharged and the nonlinear capacitance-voltage characteristic C(V) is approximated by a linear polarization 
capacitance-voltage characteristic of the microstructure (dimensionless):

= αC(V) 2 V (2)

where α > 0 is the ‘soakage’ parameter (mV−1) determined from the quantity of electrical charges held in the 
capacitance of the microstructure. It represents the capacity to hold more electrical charge or electrical energy 
than a linear capacitor. Inherent in the assumption of the nonlinear voltage-dependent capacitance of the micro-
structure is that charge ‘soakage’ reflects a density of electric charges in the microstructure irrespective if charge 
flow of molecular ions is from mitochondrial inactive membrane channel32 or the cytoskeleton. The ‘soakage’ 
parameter α is zero only in the absence of microstructure and so there is no voltage-independent intracellu-
lar capacitance, that is, C(V) ≠ 1 + 2αV; otherwise it is positive (α > 0). The ‘soakage’ parameter should not be 
confused with the ‘feedback’ parameter33 (β) for charge storage in the plasma membrane capacitance, which is 
negative (β < 0), that is C(V) = 1 + βV.

The nonlinear capacitor Ci(V) = Ci C(V) possesses voltage-dependence at slow varying electric fields (e.g., 
under quasi-electrostatic conditions) giving the capacity to hold more electric charge than a linear capacitor, 
which can result in non-dissipative electrical signaling. The polarized macromolecules attract bound charge den-
sities within the microstructure which are stored in the nonlinear capacitor providing a physical basis of C(V). We 
can glean a quantitative understanding of C(V) which can be extracted from experimental data34, 35. For example, 
if a quadratic capacitance-voltage characteristic C(V) = 2αV2 is used instead of (2) then a ‘kink’ shaped soliton 
solution (i.e., waveform) results upon solving (1); see ref. 20. Therefore C(V) is the main source of nonlinearity 
responsible for both shape and stability of the electrotonic signal.

Figure 3. A segment of a neuronal branchlet as a cylindrical cable that supports the formation and propagation 
of electrical solitons reflective of the movement of macroscopic charge densities arising from polarizability of 
the microstructure, whose capacitance changes with voltage along a cable. The description of the ‘macroscopic’ 
electric parameters as a representation of a line charge in the branchlet caused by quasi-electrostatic interactions 
consists of infinitely long, infinitely thin distribution of charges uniformly distributed and denoted as 
charge per unit length of cable Q(x, t) (C/cm). The length increment Δx is shown where arrow indicates the 
convention that positive charge is in the direction of increasing x, which is the physical distance along the 
cable. It is assumed the cable is a homogeneous conductor with radial currents ignored. Below is an equivalent 
series-parallel RC circuit representing a patch of passive membrane in series with the intracellular medium 
represented by a voltage-dependent longitudinal (axial) capacitance Ci(V) = Ci C(Vi) of the cable (F/cm) in 
parallel with the intracellular resistivity (Ri) of the cable (Ωcm). Definitions of electrical terms are: Rm = 2πrrm 
is the membrane resistivity or resistance across a unit area of passive membrane (Ωcm2), Cm = cm/2πr is the 
membrane capacitance per unit area of membrane (F/cm2), Ci = ci/πr2 is the voltage-independent longitudinal 
capacitance (intracellular capacitance) per unit length of cable (F/cm), and ci is the axial capacitance across unit 
length ci = 2 εo πr2 (Fcm). See text for other definitions of electrical terms.
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The capacitance in an electrostatic system represents a way to hold electric charges. Most nonlinear capacitors 
are defined as Ci(V) = dQ/dV and upon integration yields the charge-voltage relationship:

=Q C C(V)Vi

where Q is the electrical charge of the microstructure per unit length of cable (C/cm) and Ci is the linear 
voltage-independent longitudinal capacitance (F/cm). Also ∂Q/∂t = Ci ∂{C(V)V}/∂t is the polarizing cur-
rent underlying the charge ‘soakage’. If α = 0 then no charge is stored due to the absence of microstructure. 
However, the contribution of microstructure to the generation of the voltage-dependent charge transfer excludes 
the changes in capacitance reflected through electrocompressive forces of the plasma membrane where the 
voltage-dependent charge transfer in the squid axon dQ/dV follows a quadratic relationship34. Given that the 
nonlinear capacitance derived from electrostriction is less than 1% of the total charge in squid axons35, and endog-
enous structures are active during the linear phase, therefore C(V) is linearly proportional to V; see e.g. ref. 32.  
In general, however, quadratic nonlinearity in C(V) is linked to electrocompressive forces33 and not the result of 
charge ‘soakage’ in the microstructure.

Equation (1) represents a phenomenological description of nonlinear electrostatic diffusion of charges (con-
duction of electric current) in a cable reduced from Maxwell’s equations19. When κ = 0 implies no charge ‘soakage’ 
is stored due to the absence of microstructure and (1) reduces to a generalized linear cable equation; compare with 
refs 19, 29, 36. If γ = 0 and κ = 0 then (1) reduces to electrotonic conduction of current in a “lossy” cable13. Finally 
it can be shown that the dispersion relation (see Supplementary data) is complex, and therefore the nonlinear 
cable equation without polarization current is dispersionless and dissipative as evident when T → ∞, so that the 
voltage pulse dissipates as it propagates. However, in our model, the electrotonic signals are self-generating due to 
the charge ‘soakage’ and they dissipate only in the absence of microstructure. This reflects upon the self-excitable 
nature of the model as opposed to a non-quiescent model28 where solitary waves are observed due to excess 
charge on top of plasma membrane ionic channel proteins at discrete localizations.

Given that the parameters α and κ both require quantifying, we can alleviate this problem by expressing the 
normalized membrane potential in non-dimensional terms via U → ακV and therefore (1) becomes a third-order 
non-evolutionary equation:

+ ∂ ∂ = ∂ ∂ + γ∂ ∂ ∂ + ∂ ∂ < <U U/ T U/ X U/ T X 2 U / T, 0 X L (3)2 2 3 2 2

This equation is combined with a variety of boundary conditions at X = 0 and X = L (see Table 1). The only 
parameter γ = 0.001 is known from cable theory19, 20. The non-dimensionalization of the membrane potential 
has clear advantages that allows for the electrotonic signals to be enhanced since under normal experimental 
situations they are rarely encountered due to their small amplitude, possibly buried in noise during electrophysi-
ological recordings. Equation (2) expressed in non-dimensional membrane potential leaves the dissipation term 
small, while the charge ‘soakage’ term which is the only nonlinear term that is not small. Given that both α and 
κ are small parameters, the peak amplitude of the dimensional voltage V can be found from the inverse product 
(1/ακ). Although α and κ are removed through the normalization process, experimentally observed electrotonic 
signals of around V = 5 mV; see ref. 21, can be a way to crudely estimate α for any given κ.

Results
Approximate traveling wave solutions in free space using the tanh-function expansion 
method. Traveling wave solutions assume a constant conduction velocity that relies on a Galilean transfor-
mation of the independent variables which reduces (3) to an ordinary differential equation: ξ = X − Xp1 − νT 
where Xp is the initial location of the electrotonic signal positioned along the cable and ν is the velocity of the 
electrotonic signal moving towards ξ → ∞. The solitary wave moving in the other direction ξ → − ∞, we would 
use ξ = X − Xp2 + νT. For convenience, we use the solitary wave ansatz U*(X, T) = Ω(ξ) where U* is the free space 
version of U on an infinite interval (−∞, ∞), with the following identities:

∂ ∂ = −ν Ω ξ ∂ ∂ = Ω ξ ∂ ∂ ∂ = −ν Ω ξ

∂ ∂ = −ν Ω ξ = − νΩ Ω ξ

⁎ ⁎ ⁎

⁎
U / T d /d , U / X d /d , U / T X d /d and

[U ]/ T d[ ]/d 2 (d /d ) (4)

2 2 2 2 3 2 3 3

2 2

Substitution of (4) into (3) yields

νγ Ω ξ − Ω ξ + ν Ω − Ω ξ + Ω =d /d d /d (4 1)(d /d ) 0 (5)3 3 2 2

with the boundary conditions for electrotonic signals Ω(±∞) = 0.

Type of Boundary Condition αn βn

UX(0, T) = UX(L, T) = 0 1 1

U(0, T) = UX(L, T) = 0 (−1)n −(−1)n

UX(0, T) = U(L, T) = 0 (−1)n (−1)n

U(0, T) = U(L, T) = 0 1 −1

Table 1. Method of images solution coefficients for a finite neuronal branchlet.
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The solution of (5) can be found numerically formulated as a two-point boundary value problem. Methods 
for numerical integration, such as shooting methods, can be used or alternatively a direct method can also be 
used to analytically solve (5). This has quantitative improvements over other methods that employ traveling wave 
fronts or phase-plane methods that require some numerical computation to estimate the velocity of the wave (e.g. 
shooting method); see e.g., ref. 37. One such direct method is the so-called tanh-function expansion method; see 
e.g., ref. 38, where a new independent variable is introduced:

= ξy tanh( )

with

Ω ξ = −

Ω ξ = − − + −

Ω ξ = − − − − + −

f
f f

f f f

d /d [(1 y )d /dy]
d /d [ 2y(1 y )d /dy (1 y ) d /dy ]
d /d [2(1 y )(3y 1)d /dy 6y(1 y ) d /dy (1 y ) d /dy ]

2

2 2 2 2 2 2 2

3 3 2 2 2 2 2 2 2 3 3 3

where Ω(ξ) → ƒ(y) and ƒ(±1) → 0.
Substituting the above new variables into (5) results in the following expression:

− ν − = − − + −

−γν − − − −

+ − − ν −

f f f f
f f

f f f

(1 y )d /dy [ 2y(1 y )d /dy (1 y ) d /dy ]
[2(1 y )(3y 1)d /dy 6y(1 y ) d /dy

(1 y ) d /dy ] 4 (1 y )d /dy (7)

2 2 2 2 2 2

2 2 2 2 2 2

2 3 3 3 2

Note: For a variable width of the solitary wave, a more generalized tanh-function expansion method can be 
used with y = tanh (μξ) where μ donotes the width of the solitary wave38.

The tanh-function expansion method admits the use of a finite expansion of the form ƒ(y) = ∑anyn where n 
is a positive integer to be determined by equating the powers of y in the resultant equation upon its substitution 
into (7). To determine the parameter n, we balance the highest order linear terms with the highest order nonlinear 
terms, which gives n = 2. Therefore the solution takes the form:

= + − −f (y) a a (a 1)y a a y (8)o o 1 1 o
2

Unlike a perturbation expansion, (8) represents a finite expansion and so no higher-order terms are required. 
As a result, there is no test of convergence that is required to be undertaken as expected when using perturbation 
methods. If y →  −1 then from (8) and the boundary condition ƒ(−1) → 0 yields a1 = 1 and the solution takes the 
form:

= −f (y) a (1 y ) (9)o
2

If y → 1 then from (9) upon substituting into (7) and the boundary condition ƒ(1) → 0 yields the velocity of 
the wave:

ν = − γ(3/2)[1/(1 4 )]

Substitution of y = tanh(ξ) into (9) yields the traveling wave solution for a solitary wave of unitary width and 
moving at speed ν :

ν= − −⁎U (X, X ; T) a sech (X X T) (10)p o
2

p

where ao is the dimensionless amplitude determined to be ao ≈ 3γ + 3/(4ν) (see Supplementary data). Therefore 
the amplitude of the solitary wave decreases with distance from the initial position. Substituting the velocity ν 
into the dimensionless form of the traveling wave solution is given as

ν ν≈ − −∗ -U (X, X ; T) (3/8)[2 1/ ]sech (X X T) (11)p
2

p

The approximate traveling wave solution governed by (11) is known as a solitary-wave solution (or 
quasi-soliton) corresponding to an electrotonic signal propagating at a constant speed ν > 0.5. The solitary-wave 
solution is only an approximate solution of (3) that is shown to be stable based on local stability analysis (see 
Supplementary data).

The results presented in Fig. 4 show a quasi-soliton as the spatiotemporal evolution of the normalized mem-
brane potential U*(X, Xp;T)/U*(Xp, Xp;0) in non-dimensional terms along an infinite cable (in free-space) imple-
mented in Matlab software package. The quasi-solitons are insensitive to the initial location of their positioning 
Xp as the hyperbolic secant function reaches a maximum value of unity when X = Xp. These solitary waves are 
not chaotic since they exhibit globally regular amplitudes and a constant velocity of propagation. The results 
are presented for a spatially homogeneous medium where the solitary waves propagate with a constant velocity 
and amplitude that is independent of their initial position. This quasi-soliton possesses no energy loss due to 
charge ‘soakage’ as charge keeps coming out of the capacitor of the polarized microstructure, which is absent 
in energy consuming action potentials. As shown in Fig. 4 (right-hand-side), the velocity of the quasi-soliton 
is inversely proportional to the slope of this graph. As can be seen the co-ordinate for the first and last points 
are (X1, T1) = (0.5, 0) and (X2, T2) = (0.6506, 0.1), respectively. Thus slope = (T2 − T1)/(X2 − X1) = (0.1 − 0)/
(0.6506 − 0.5) = 0.6641 and the dimensionless velocity is inversely proportional to this slope 1/0.6641 ≈1.506.
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Solitonic properties. The solitonic property of a solitary wave (or quasi-soliton) is that asymptotically it 
preserves its shape and velocity on collision with other quasi-solitons39. The linear superposition of electrotonic 
signals is assumed to approximate the collision:

ν ν ν+ ≈ − − + − +∗ -U (X, X X ; T) (3/8)[2 1/ ]{sech (X X T) (sech (X X T)} (12)p1 p2
2

p1
2

p2

We illustrate the collision between two quasi-solitons with identical velocities in order to test their responses 
after collision. The electrotonic signal has fixed velocity and is not amplitude-dependent. The result of the head-on 
collision of two quasi-solitons is simulated resulting in an elastic interaction with electrotonic signals remaining 
unchanged after collision. The simulated result for the two quasi-solitons (solitary waves) approaching each other 
with the one moving to the right having a normalized amplitude of U*(Xp1, Xp1 + Xp2; 0) and the other moving to 
the left having a half-normalized amplitude of 2U*(Xp2, Xp1 + Xp2; 0) is shown in Fig. 5. The elastic interaction of 
quasi-solitons stems from the absence of recovery processes known to be the major cause of collapse of colliding  
spikes4. The elastic interaction between two quasi-solitons preserves their shape, amplitudes and velocities. 
Velocities are parameter-dependent on the ratio of the Maxwell’s time-constant and the membrane time-constant. 
The dynamics of electrotonic signals are shown to interact during collision, although no annihilation of electro-
tonic signals due to conservation of energy. The time of collision occurs at T = (Xp2 − Xp1)/2ν which is 0.04 with 
Xp1 = 0.5–4ν/100 = 0.4398 and Xp2 = 0.5 + 4ν/100 = 0.5602 as shown in Fig. 5.

If the collision between two solitary waves is elastic (i.e. preserves their shape and velocities) then it can 
be described as being solitonic. This is the major property of soliton as a self-reinforcing solitary wave. In a 

Figure 4. A propagating quasi-soliton expressed in terms of spatiotemporal evolution of normalized membrane 
potential U*(X, XP; T)/U*(XP XP; 0) as a function of electronic distance (X) and dimensionless time (T) along 
an infinitely long neuronal branchlet obtained from (11). Parameters used were: ν = 1.506, γ = 0.001 and 
Xp = 0.5.

Figure 5. Two oppositely directed quasi-solitons (solitary waves) along an infinitely long neuronal branchlet 
result in a head-on collision. The collision occurred by linear superposition of the solitary waves. To differentiate 
the amplitudes of the traveling wave solutions expressed in terms of the membrane potential U*(X, Xp1 + Xp2; 
T) obtained from (12) as a function of electrotonic distance (X) and dimensionless time (T), the quasi-soliton 
moving to the right was normalized by U*(Xp1, Xp1 + Xp2; 0) and the quasi-soliton moving to the left was half-
normalized by 2U*(Xp2, Xp1 + Xp2; 0). Both quasi-solitons propagate with a dimensionless conduction velocity 
of ν = 1.506. Parameters used were: γ = 0.001, Xp1 = 4.398, Xp2 = 5.602.
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non-dispersive medium, solitons are dissipative, but only in the sense that in the presence friction, they gradu-
ally decelerate and become smaller and they will eventually decay as T → ∞, but only when dissipative energy is 
not fueled by the reservoir of electrical charges held by the intracellular capacitance and which in turn releases 
stored energy for maintenance of the electrotonic signal. In a linear dissipative medium the dynamics of soliton 
collisions appear to be absorbing one another, i.e., solitons pass through one another40. This is shown more 
clearly in Fig. 6 where two quasi-solitons undergo linear superposition at collision. The time of collision occurs at 
T = (Xp2 − Xp1)/2ν which is 0.234 (see Fig. 6). The simulation shows that the two electrotonic signals pass through 
one another and are not deformed after collision, preserving their shape, amplitude and velocity. More impor-
tantly, after the interaction they continue to propagate without dissipating, thus providing unequivocal support 
for quasi-solitons to be solitons. The defining condition for solitons is that they pass through one another and 
not merely reflect from one another. The simulation shows the existence of a point where there is only a single 
peak, suggesting that the solitons absorb one another during the collision. Also the traveling wave solution U*(X, 
T) = Ω(ξ) can be shown to satisfy the following conditions38: Ω′(ξ) = Ω″(ξ) = Ω′″(ξ) = 0 where prime denotes 
differentiation with respect to ξ, further reinforcing the electrotonic signals as solitons.

The effect of boundaries. The method of images technique30, 31 can be employed to determine the appro-
priate spatiotemporal evolution of membrane potential on a finite domain for small values of time. On a finite 
interval, the effect of boundaries causes reflections to occur, which must be added to the original free space soli-
tary wave U*(X, Xp;T) solution. Therefore, the solitary wave in a finite cable of electrotonic length L is expressed 
by

∑→ = α − → + β + →
=−∞

∞
⁎ ⁎{ }( ) ( )U(X, T 0) U X, 2nL X ; T 0 U X, 2nL X ; T 0

(13)n
n p n p

where αn and βn depend on boundary conditions and are given in Table 1.
The boundary condition UX = 0 characterizes a reflecting boundary, where the conduction of current is 

reflected often called a “sealed-end” boundary condition. The boundary condition U = 0 represents an absorb-
ing boundary, where the conduction of current is grounded to its resting state (or voltage –clamped if not zero) 
often called “killed-end” or “short-circuit” boundary condition. Additional boundary conditions not included in 
Table 1 are a combination of the two denoted as a “leaky-end” boundary condition where conduction of current 
is transmitted through a resistance representing a gap-junction41. Another common boundary condition is the 
“natural” boundary condition where a time derivative UT is used in addition to the “leaky–end” reflecting an iso-
potential structure expressed electrically in terms of a RC circuit that is added to the cable at both ends, resulting 
in a dumbbell cable42. Both “leaky-end” and “natural” boundary conditions introduce an additional term in (13) 
upon use of the method of images technique43.

The simulations with finite cables are indistinguishable from the free space solutions. One reason is that the 
zero term dominates the expansion in (13), which governs the free space solution at small times. Therefore no 
damping of the electrotonic signals occurs due to the effects of the boundaries. The marginal differences in the 
normalized Gaussian profile can be seen if a more generalized tanh-function expansion method is employed38. 
As indicated in Fig. 7 the normalized Gaussian profile appears to have a lower variance in the curved profile 
compared to the free space solution, which is attributed to the reflection of non-zero terms from the sealed-ends 
boundary conditions.

Figure 6. An elastic interaction between two oppositely directed quasi-solitons after a head-on collision along 
an infinitely long neuronal branchlet. Traveling wave solution in terms of a normalized membrane potential 
U*(X, Xp1 + Xp2; T)/(1 + 2γ) obtained from (12) as a function of electrotonic distance (X) and dimensionless 
time (T). Both quasi-solitons propagate with a dimensionless conduction velocity of ν = 1.506. The interaction 
between quasi-solitons occurred by linear superposition of quasi-solitons. Parameters used were: γ = 0.001, 
Xp1 = 0.15, Xp2 = 0.85.
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Discussion
A model of a neuronal branchlet that included a phenomenological description of polarized microstructure in 
terms of intracellular capacitive effects was shown to be capable of influencing subcellular electrical signal prop-
agation under quasi-electrostatic conditions (slow moving electric field). The resultant intracellular capacitive 
effect of polarized microstructure gives rise to self-excitability due to charge ‘soakage’ held in voltage-dependent 
capacitance of the microstructure invoking traveling wave pulses instead of traveling wave fonts, as one would 
expect without any recovery processes inherent in the model.

These traveling wave pulses were shown to be conducted through a novel mode of conduction exclusively for 
branchlets with microstructure. The stable electrotonic signals propagated due to stored energy in the microstruc-
ture. The crucial test for solitary waves to be electrical solitons is robustness to collision. Electrical solitons do 
not undergo nonlinear amplitude modulation during collision because linear superposition of solitary waves is 
assumed in a linear dissipative medium40. Based on linear superposition simulating interaction, the tanh-function 
expansion method enabled to directly procure approximate traveling wave solutions (quasi-solitons); their colli-
sion dynamics remained unchanged as they passed through one another, providing support for solitary waves to 
be electrical solitons. To the best of our knowledge, our model provides a first attempt at describing electrotonic 
signals denoting the direct spread of current in branchlets by means of solitonic conduction based on cable theory 
as opposed to transmission line theory (electrical lattices)40 or reaction-diffusion theory10, 11.

Traveling waves conducted as stereotypical action potentials are energy consuming44. Therefore action poten-
tials dissipate with time and annihilate upon collision4. Electrical solitons dissipate, but because of microstructure 
and the resultant distribution of charge ‘soakage’, the dissipative energy was shown to be conserved. Furthermore, 
electrical solitons did not annihilate upon collision because unlike action potentials with the refractory period, 
the electrotonic signals are maintained by the flux associated with the polarization current flowing through the 
miscrostructure. Therefore, the model possess attributes like stability and elastic interaction upon head-on col-
lision that differ significantly from stereotypical action potentials attributed to the gating currents through the 
plasma membrane, including unstable pulses serving as threshold conditions for igniting these stereotypical 
action potentials45.

What might be the function of electrotonic signals propagating along fine distal branchlets? Electrotonic sig-
nals without recovery are suitable in transmitting information through physical interaction of electrical charges 
held by microstructure and not synaptic inputs46. The stable non-decremented electrotonic signals originating in 
branchlets could play a functional role in heterosynaptic plasticity. Also electrical solitons conserve energy and so 
they can decode local information permanently. The stable dynamics of electrotonic signals provide a mechanistic 
explanation to retrieve long-term memories47. Our view is that backpropagating action potentials48 are unencum-
bered by solitonic conduction for the reason that they become erratic and unpredictable prone to propagation 
failures at diameters smaller than 0.5 μm49. Based on the permanence of these electrical solitons, it is unlikely that 
backpropagating action potentials are involved in higher brain functions such as in conceptual tasks. While for 
those action potentials that are initiated in thin dendrites (see ref. 50 for a review) we propose two specialized 
interdependent signals in local information processing: (1) dendritic spikes for encoding/imprinting information 
and (2) solitons for decoding/retrieval information in distal most dendrites of cortical neurons.

The function of solitonic conduction in branchlets may differ in thin axons and thin dendrities. Plasma 
membrane ion channel noise causes action potential reliability to be significantly diminished in their informa-
tion carrying capacity in thin axons (<0.5 μm diameter)51. The lower limit to axon diameter is about 80 nm52. 
Experiments revealed very thin pyramidal cell axons can conduct action potentials reliably53 and simulations 
show that action potentials in very thin axons are unlikely to fail to propagate due to ion channel noise51. This 
suggests conduction of action potentials in thin axons is not localized in the axonal branchlets. If neurons are 
designed for presynaptic information processing of local information to thin dendritic branchlets and not available 
at the site of spike initiation then electrotonic potentials can be locally integrated within the branchlets and then 
integrated again at one or more main intrinsic action potential initiation zones54, 55.

Our view, however, is that in the presence of microstructure, solitons in thin distal dendrites are the agglom-
eration of electrical charge densities arising as a result of electrotonic signal interactions. If the non-stereotypical 

Figure 7. The effect of sealed-end boundary conditions on the quasi-soliton profile showing the apex with a 
variable width. A generalized tanh-function expansion method with y = tanh (μξ) where μ donotes the width 
of the profile as a normalized Gaussian curve. The spatiotemporal evolution of the normalized membrane 
potential U(XP , T)/U(XP , 0) in non-dimensional terms obtained from (13) with n = 0 (left-hand side) and 
n = ±10 (right-hand side).
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spike is a composite of soliton interactions then the propagation of non-stereotypical spikes could carry 
dynamically-rich information generated by propagation of localized soliton resonant interactions that occur and 
influence the generation of ionic flow in neuronal branchlets. The presence of localized electrotonic signals rein-
forces preferentially local integration in different parts of the neuron and can lead to meaningful electrotonic 
information processing (see for example ref. 56). To test our hypothesis of solitonic conduction in branchlets 
designed exclusively for local electrotonic information processing, the minute intracellular volumes that go 
beyond the limiting spatial resolution of confocal microscopes and two-photon laser scanning fluorescence 
microscopy57 will need to be investigated with new technology that would enable to record and image the electro-
tonic signals in fine distal branchlets of neurons at higher spatial resolutions using dielectric scanning microscopy 
on neurons58, 59.

In their experimental study, Gonzalez-Perez and colleagues21 observed pulses under 10 mV in amplitude 
that did not annihilate upon collision. Although their reference to solitons as ‘action potentials’ leads to con-
fusion they further resorted to an electromechanical explanation without a clear indication as to why a purely 
electrical phenomenon should be re-packaged in terms of electromechanical pulses. Recently, El Hady and 
Machta60 suggested that mechanical surface waves may be caused by charge separation leading to changes 
in capacitance due to compressive forces on the membrane (electrostriction), yet it is known that the non-
linear capacitance derived from electrostriction is expected to contribute less than 1% of the total capaci-
tance35. Therefore, any electromechanical traveling waves would be negligible. In accordance with the result of 
Gonzalez-Perez and colleagues21, our model supports their experimental findings without considering adiaba-
tic phenomena during a nerve pulse, but through charge reservoirs within the neuronal microstructure, thus 
reconciling the difference between electrophysiological models and thermodynamic postulates without the 
need for postulating mechanical soliton models.
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