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This paper provides a method of finding periodical solutions of the second-order 

neutral delay differential equations w ith  piecewise constant arguments of the form 

x"(t) + px"( t - 1) = qx(2[£+-]) + f (t), where [■] denotes the greatest integer function, p 
and q are nonzero constants, and f is a periodic function of t. This reduces the 

2n-periodic solvable problem to a system of n + 1 linear equations. Furthermore, by 

applying the well-known properties of a linear system in the algebra, all existence 

conditions are described for 2n-periodical solutions that render explicit formula for 

these solutions.
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1 Introduction

Certain functional differential equation o f neutral delay type with piecewise constant ar­

guments exists in the form of

where [■] denotes the greatest integer function, p  and q are nonzero constants, and f  (t) is 

a periodic function with positive integer period o f 2k.

In the past, many useful methods such as Hale [1], Fink [2] and [3] were developed to 

study the almost periodic differential equations. Such equations have diversified applica­

tion in the field o f biology, neural networks, physics, chemistry, engineering, and so on 

[4- 7]. Besides, these equations have combined properties of both differential and differ­

ence type. The solutions of these equations are continuous with the continuous dynamical 

systems structure. Certain biomedical and disease dynamics models exploited these equa­

tions due to their resemblance with sequential continuous models [4].

The natural occurrence o f these equations in approximating the partial differential equa­

tions via piecewise constant arguments has already been demonstrated [8]. Meanwhile, 

the uniqueness of almost periodic solutions to the second order neutral delay differential
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equations of the form (1) was studied in depth [9, 10]. Despite these studies, the uniqueness 

of the solution on such equation remains debatable.

In this view, this paper reports all conditions for the uniqueness, infiniteness and empti­

ness of 2n-periodic solutions of (1) f o r f  with 2n-periodicity. Thus, the works o f [9- 14] 

are revisited for further improvement to achieve the correct uniqueness conditions. Fur­

thermore, an explicit formula for the exact periodic solutions of the equation is provided. 

The equivalence o f equation (1) to the system of n + 1 linear equations is also demon­

strated. The existence condition for the periodic solution o f (1) is described easily using 

the properties o f a linear algebraic system. Some equations having a unique and infinite 

number o f periodic solutions are emphasized as examples to authenticate the incorrect­

ness o f uniqueness results that were provided with other studies.

Throughout this paper, we use the following notations: R as the set o f reals; Z  as the set 

of integers and C as the set o f complex numbers.

2 Definition of solution. Example

A  function x is said to be a solution of (1) if the following conditions are satisfied:

(i) x is differentiable on R;

(ii) the second order derivative of x(t) + px (t -1 ) exists on R except possibly at the 

points t = 2k + 1, k e Z, where one-sided second order derivatives of x(t) + p x (t -1 ) 

exist;

(iii) x satisfies (1) on each interval (2k - 1 ,2k +1) with integer k e Z.

Example 1 Letp = 0.5 and q = 3. One can easily check, that in (1), whenf  (t) = cos n t, the 

2-periodic continuous function

2 1 + t2 2 cos n t

T

satisfies (1) on each interval (2k - 1 ,2k +1) with integer k e Z for any number a. Note that 

this function is not differentiable at the points t = 2k -1 , k e Z for any a =0  (see Figure 1). 

To be differentiable, x should satisfy the equality x'(2k  -  1) = x'(2k + 1), k e Z, which is 

equivalent to a = 0. In this case

. . 2 2 cos n t
xo(t) = - r --------2—

n  2 n  2

is the solution o f (1).
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Example 1 shows that for the uniqueness of solution, it is natural for the solution to be 

differentiable. This condition is omitted in many works (see [10] and its references), where 

the uniqueness of solution does not hold. A  similar comment was first given in [9].

3 2 -and  4-periodic solutions

In this section we give the uniqueness conditions of periodic solutions o f equation (1) for 

the cases when f  are 2- and 4-periodic functions.

The case n = 1. L e t f  be a 2-periodic continuous function and x be a 2-periodic solution 

of (1). Then by the definition o f solution

x '(t )= x '(t  + 2) for all t e R,

x"(t) = x " (t  + 2) on each interval (2k - 1 ,2k + 1) with integer k e Z.
(2)

It follows from here and (1) that

(x(t) + p x (t -  1)) = qx|̂  2 

(x(t + 1) + p x (t )) " = qxl 2

t +1 

t + 2

+ f  (t),

+ f  (t + 1)

(3)

or

(1 -  p 2)x "(t) = qx ( 2
"t + 1 " \ In t + 2

_ 2 _
1 - pqx\ 2

_ 2 _ + f  ( t ) - p f  (t + 1). (4)

Since 2 [ ^  = 0 as t e [-1,1) and 2 [t-+2\ = 2 as t e (0,1], taking into account the periodicity 

of x, from (4) we have

x "(t) = - ^ x ( 0) + — ^  f  (t) - p f  (t + 1)). 
1 + p  1 -  p 2 v '

Integrating (5) on [-1, t), t <  1, we obtain

(5)

x(t) = x ( - 1) + x '( - 1)(t  + 1) + q x (0) (t + 1) + Fi(p; t),
1 +p  2

(6)

where

F1p  t) = I  j  ( f  (s) - p f  (s + 1)) dsdt\.1 - p 2

To find the unknown numbers x(0), x(-1) and x'(-1), from (6) we have

x (0) = x ( - 1) + x '( - 1) + ----— x(0) + Fi(p; 0),
2 1 +p

x (1) = x ( - 1) + 2x '( - 1) + 2q x (0) + Fi(p; 1),
1 +p

x '(1) = x '( - 1) + - 2̂ x ( 0) + F1 (p ; 1).
1 +p

(7)
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It follows from the periodicity o f x and the continuity of x' that x(-1) = x(1) and x '(-1 ) = 

x'(1). Then the system of equations (7) has a unique solution (x(0),x(1),x'(-1)) if and only 

if

A (p ,  q) :=

1 - 1  1 12 1+p
2q 
1+p 0 2

1+p 0 0

4q

1 +p
= 0.

Conversely, if (x1, x2, x3) is the solution of (7), then the function

x(t) = x2 + x3(t + 1) + 7- ^ x 1(t + F1 (p; t), t e [ - 1, 1],
1 +p  2

is a 2-periodic solution o f (1) with x (0) = x1, x ( - 1) = x2, x '( - 1) = x3.

Summarizing, we have the following.

Theorem 1 L e t f  be a 2-periodic continuous function and p 2 = 1. Then equation (1) has a 

unique 2-periodic solution x having the form  (6), where (x(0), x (1), x '( - 1)) is the solution of 

(7).

The case n = 2. L e t f  be a continuous 4-periodic function and x be a 4-periodic solution 

of (1). It follows from (1) and 4-periodicity of x(t) that

x" (t) + px" (t -1 ) = qx\^2 

x " (t  + 1) + p x "(t) = qx(̂  2 

x " (t  + 2) + p x " (t  + 1) = qx\  ̂2 

x " (t  -1 ) + p x " (t  + 2) = qxl 2

t +1

2 

t +2

t +3 

t +4

+ f  (t),

+ f  ( t + 1),

+f  ( t + 2), 

+ f  ( t + 3).

(8)

This system of equations with respect to x "(t -1 ), x"(t), x "(t +1), x "(t + 2) is solvable if and 

only if

A(p ) :=

p 1 0 0

0 p 1 0

0 0 p 1

1 0 0 p

= p 4 -  1 = 0.

Then

x"(t) =
A(p, q) 
A (p ) ,
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where

A(p, q) :=

p  Q4 0 0

0 Q1 1 0

0 Q2 p  1

1 Q3 0 p

Qk = qxi 2
t + k + 1'

+f  (t + k), k = 1,2,3,4.

Simple calculations give

4

A(p, q) = £ > 1 ) k+1p 4-kQk
k=1

A(p) ^ ( - D k+1p 4-k^  ̂  t-+ 2 r ^ J ) + A (p ) E ( - D k+1p 4-kf  ( t + k).

Thus, when f  is a 4-periodic function, equation (1) is equivalent to the equation

qx (t )= x (-2 ) + x '(-2 )(t  + 2) + — —- $r(p; t) +Fr(p; t),
A (p )

where

t t1
^ 2(p; t ) ^ ( - 1)k+1p 4-M  / x 2

k=1

s + k +1
ds dt1 ,

Fr(p; t) = A ^  £ ( - 1)k+ V  k f  j  f  (s + k) dsdt1.

We set

X[s] = ^ ( - 1 ) k+1p 4-k^  2
k=1

s + k +1'

Then

(9)

X[s] = X [-2 ] as -  2 <  s <-1, 

X[s] = X [-1 ] as -1  <  s <0, 

X[s] = X[0] as 0 <  s <1,

X[s] = X[1] as 1 <  s <2.

Therefore

f t f t1 (t + 2)2 
$ 2(p; t )=  I I X[s] dsdt1= X [-2 ]--------- for - 2  <  t <-1,

J-2 J-2 2

n t1 pt p-1 pt p t1
X [s] dsdft + / I X[s] dsdt1 + / I X[s] dsdt1 

2 J - 1 J - 2  J - 1 J - 1

(t + 1)2
= $ 2(p ;-1 - 0)+  X [-2 ](t  + 1 )+ X [-1]------   for - 1  <  t <0,

q
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p0 /• t1 /•t / /•-1 /• 0\ /•t /• t1
$ 2(p; t )=  / I X[s] dsdt1 + I I I + / IX[s] dsdt1 + / I X [s] dsdt1

J-2 J-2 J^\J-2 J-1/ J0 J0

t2
= $ 2(p; 0 -  0) + (X [-2 ] + X [-1 ])t  + X [0] -  for 0 <  t <1,

p1 /■ t1 /■t / /•-1 /•0 p 1\ pt p t1 
$ 2(p; t) = y  J  X [s] dsdt1 + J  ( J + J + J  jX [s ] dsdt1 + J  J  X [s] dsdt1

(t -  1)2
= $ 2(p; 1 -  0) + (X [-2 ] + X [-1 ] + X [0 ]) (t -1 ) + X[1] for 1 <  t <2.

The value of the function X[s] depends on x (-2 ), x(0), x '(-2 ). Therefore the right-hand 

side of (9) depends on unknowns x (-2 ), x(0), x '(-2 ). To find these unknown numbers, we 

use the periodicity property o f the continuous and differentiable function x, i.e., x ( - 2) = 

x (2 + 0) and x '( - 2) = x'(2 + 0).

From (9) we get a system oflinear equations with respect to x (-2 ), x(0), x '(-2 ), i.e.,

x (0) = x ( - 2) + x '( - 2) + $ 2(p;0) + F2(p;0),
A (p)

x(2) = x (-2 ) + 4x '(-2 ) + $ 2(p; 2) + F2(p; 2), (10)
A(p)

x '(2) = x '( - 2) $ 2(p: 2) + F2(p; 2).
A (p)

The values of $ 2(p; t) at the points -1, 0,1 and 2 have the form

$ 2(p ;-1) = 2 (p3x (0) - p2x (0) + px (2) -  x ( - 2)),

3 1  
^ 2(p; 0) = -  (p3x (0) - p 2x (0) + px (2) -  x ( - 2)) + -  (p3x (0) - p2x (2) + px(2) -  x (0)),

^ 2(p;1) = 2 (p3x (0) - p 2x (0) + px(2) - x ( - 2))

3 1  
+ 2 (p3x (0) - p 2x (2) + px(2) -  x (0)) + -  (p3x (2) - p 2x (2) + px (0) -  x (0)),

^ 2(p; 2) = ^ (p3x (0) - p2x (0) + px (2) -  x ( - 2)) + ^ (p3x (0) - p 2x (2) + px (2) -  x (0))

3 1  
+ 2 (p3x (2) - p 2x (2) + px (0) - x (0)) + - (p3x (2) - p 2x (0) + px(0) - x (2)).

Hence equation (10) can be rewritten as

q /<->.„3 3 2 iV,yn\ , (  q 1 ,„2 32p ----p ----I -  1 I x (0) + I — r I 2p --------------------------p -1 + 1  x ( - 2)
A (p )\  r  2 j  J \ A ( p ) \ ^  r  2

+ 2x '( - 2) = -F 2(p;0),

q (6p 3 -  4p2 + 2p -  4 )x(0) + ——  (2p3 -  4p2 + 6p  -  4)x (-2 ) (11)
A ( p ) y A (p)

+ 4x'(-2 ) = -F r(p ; 2),

2q /-„3 „2 , „  iX-./YiN . 2q /",„3 ,„2(p3 - p2 + p  - 1  x(0) + — -  (p3 - p 2 + p  -  1  x (-2 ) = -F2(p ; 2).
A (p ) A (p )
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We denote by D 2(p, q) a determinant o f the matrix M 2(p, q), where

M r(p ,q) :=

( A p  (2p 3 - 1 p 2 -  2) - 1 A(p) (2p - 2p2 - I ) + 1 

Ap) (6p i - 4 p 2 + 2p - 4 )  A(p)(2p 3 - 4 p2 + 6p - 4 )

2\

4

\ A2§ ) (p3 - p 2 + p  -1 ) A2§ ) (p3 -  p 2 + p  -1 ) 0

One can check that

8q(2 + 2p2 + q)
Dr(p, q) =

(1+ p)(p2 + 2)

Now we are able to describe existence conditions o f the 4-periodic solutions o f (1), which 

are different from the result o f Theorem 1.

Theorem 2 L e t f  be a 4-periodic function and p 4 =  1. Then

(i) Equation (1) has a unique 4-periodic solution x i f  and only ifD 2(p, q) =  0. The

4-periodic solution x has the form  (9), where (x(0), x (-2 ), x '(-2 )) is the solution o f 

(11).

(ii) I fD 2(p, q) = 0 and (F2(p; 0),F2(p; 2),F2(p;2)) = (0,0,0), then equation (1) has an 

infinite number o f 4-periodic solutions having the form

xa (t) = a I x ( - 2) + x '( - 2)(t + 2) + q
A(p)

®2(p; t)

+ Fr(p; t), as t e [ - 2, 2), (12)

where (x(0),x (- 2) ,x '( - 2)) is an eigenfunction o fM 2(p, q) corresponding to 0, a is 

any number.

(iii) I fD 2(p, q) = 0 and (F2(p;0 ),F2(p;2),F2 (p;2)) =  (0,0,0), then equation (1) has no

4-periodic solution.

Proof (i) Let x be a 4-periodic solution of (1). Then x can be presented by (9), where 

(x (0 ),x (-2 ),x '(-2 )) is the solution of (11). The linear system (11) is solvable if and only 

if D 2(p,q) =  0. Hence D 2(p,q) =  0. Conversely, if D 2(p,q) =  0, equation (11) has a unique 

solution (x (0 ),x (-2 ),x '(-2 )). One can check that the function x having the form (9) is the 

solution of (1).

The uniqueness of solution of (1) is trivial.

(ii) Let F2(p;0) = F2(p;2) = F2(p;2) = 0. Then equation (11) reduces to a non-homoge- 

neous equation. This equation has a non-trivial solution if and only if D 2(p, q) = 0. This 

non-trivial solution (x (0 ),x (-2 ),x '(-2 )) is an eigenvector of M 2(p, q) = 0 corresponding to 

the number 0. Then the 4-periodic function

xa(t) = a ̂ x ( - 2) + x '( - 2)(t  + 2) + AL— ̂ ( p ;  t)j + Fr(p; t)

is a solution of (1), where a is any number.

(iii) I f  D 2(p,q) = 0 and (F2(p;0),F2(p;2),F!2(p;2)) = (0,0,0), then equation (11) has no 

solution. Therefore (1) has no 4-periodic solution.

This completes the proof. □
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4 Remarks and examples

We remark that (iii) o f Theorem 2 says only non-existence of 4-periodic solutions. For ex­

ample, it does not give non-existence for 2-periodic solutions of (1), when/ is 2-periodic. 

We give an example for (ii) o f Theorem 2.

Example 2 Let p  = 2 and q = -10. In this case

/ 22
3

M r(p , q) =

2\

_64 _16 4
3 3 4

V _ f  - f  qj20

and D 2(p,q) = 0. The eigenfunction o f M 2(p,q) corresponding to the eigenvalue 0 is 

(1,_ 1,4).

Let

/  (t) =

sin n t  for t e [ _  2, - 1),

-s in n t  for t e [ _  1, 0),

3 sin n t for t e [0,1),

5 sin n t for t e [1,2].

Then

F2(2; t) =

_ np+n+sinnt for t e [ _  2, - 1),

zi+njisM for t e [ _  1, 1),

2n-nt+sinnt for t e [1, 2].

Direct calculations show that F2(2,0) = F2(2;2) = F2(2; 2) = 0. The solution of the corre­

sponding equation (1) is 4-periodic function xa, a e C, defined on [-2,2] as

xa =

a (3 _  t2) + _n(2+t)2+sinnt 

a (1 _ 4 t  _  3t2) +

for t e [ - 2, - 1), 

for t e [ - 1, 0),

a (1 _ 4 t  + t2) + nt+3nf nt for t e [0,1),

a (3 _ 8 t  + 3t2) + n(2-t)+sinnt for t e [1,2].

The graphs o f xa (t) as a = 1 and a = _2 are shown in Figures 2 and 3, respectively.
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Note that in this example the parameters o f the equation satisfy the conditions of the 

main results of the papers [9, 11, 12]. Example 2 shows incorrectness of the results Theo­

rem 17 in [9], Theorem 3.1 in [12] and Theorem 2.2 in [11], that claim the uniqueness of 

the almost periodic solutions of (1).

Since any 2-periodic function can be considered as a 4-periodic function, a question 

arises:

Do 4-periodic solutions o f (  1) exist in the case when/ is a 2-periodic function?

The answers of this question, by Theorem 2, can be given via three cases:

(i) The case D2(p, q) = 0. For this case, by (i) of Theorem 2, equation (1) hasthe unique 

4-periodic solution x4(t). But by Theorem 1, equation (1) has the unique 2-periodic 

solution x2(t). Hence, we must have x2(t) = x4(t) (see Example 3).

(ii) An interesting case is when D2(p, q) = 0 and a 2-periodic function/  satisfies the 

equality (F2(p;0 ),F2(p;2),F2 (p;2)) = (0,0,0). Forthis case, by (ii) of Theorem 2, 

equation (1) has an infinite number of 4-periodic solutions. Moreover, there exists a 

2-periodic function /  such that (1) has unique 2-periodic solutions and an infinite 

number of 4-periodic solutions (see Example 4).

(iii) In the case when the parameters of (1) satisfy the conditions in (iii) of Theorem 2, 

then equation (1), with 2-periodic function / , has no 4-periodic solutions.

Example 3 Let p  = 3, q = 1 and a 2-periodic function be given as

/  (t) =
t + 1 for t e [ - 1, 0),

1 _  t for t e [0, 1].

For this case D 2(3,1) = 21/5. By using M ATHEM ATICA, we applied both Theorems 1 and

2 and obtained x2(t) = x4(t), where the 2-periodic solution x2(t) o f (1) is

X2(t) =
24 (-12 _  3t2 _  2t3) for t e [ - 1, 0), 

24 (-12 _  3t2 + 2t3) for t e [0, 1].

Example 4 Let p  = 2 and q = -10 and/ be a 2-periodic function as

/  (t) =
sin n t + 11 sin 2n t for t e [ - 1,0), 

sin n t + sin 2n t for t e [0, 1].
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For this case, D 2(2, -10) = 0. Then

Fr(2; t) =

10n(2+t)+4 sinnt-7 sin2nt t e [ 2  1)

for t e [ - 1, 0),

for t e [ - 1, 0),

4n 2
-10nt+4 sinnt+3 sin 2nt

4n 2
10nt+4 sinnt-7 sin 2nt

4n 2
-10n(-2+t)+4sinnt+3 sin2nt f^r t e [1 2]

Direct calculations show that F2(2,0) = F2(2;2) = F2(2; 2) = 0. The solution of the corre­

sponding equation (1) is a 4-periodic function xa, a e C, defined on [-2,2] as

xa =

to +2\ , 10n (2+t)+4 sin nt-7 sin 2nt 
a (3 _  t )+  4n2

a(1 _  4t _  3t2) + _10nt+4s4n; r2t+3sin2

a (1 _  4t + t2) + 1Qn t+4 sin n t-7 sin 2n t
4n 2

for t e [ - 2, - 1), 

for t e [ - 1, 0), 

for t e [0, 1),

a (3 _  8t + 3t2) + 10n t +3sin2nt for t e [1,2].

5 The case n € N

Let/  be a 2n-periodic continuous function and x be a 2n-periodic solution o f (1). We 

describe the function x on [_n, n]. Without loss o f generality, we can assume n is a positive 

even number. Otherwise, if n is an odd number, we seek a function x on [_n + 1, n + 1]. 

Using the definition of solution from (1), we write the following system o f 2n equations:

x" (t) + px" (t _  1) = q^ 2 

x " (t  + 1) + p x "(t) = qxl 2

t + 1' 

t +2

x" (t + 2n _  2) + p ^ ' (t + 2n _  3) = q ^  2 

x " (t  _  1) + p x " (t  + 2n _  2) = qx l 2

+/ (t),

+/ (t + 1),

t+ n  

t + n + 1

(13)

+ / (t + 2n _  2), 

+/ (t  + 2n_).

Assuming the right-hand sides of (13) are known, we consider this system of equations 

with respect to

x " (t  _ 1 ),x " (t ) , . . . ,x " (t  + 2n _  1).

It is solvable if and only if A (p ) =  0, where A (p )=  det P, P is 2n x  2n matrix

p 1 0  

0 p  1

0 0 0

1 0 0

0 0

0 0

p 1

0 p

P
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Observe that

A(p ) = p 2n -1 .

Assuming p 2n =  1, we find x"(t) from (3)

x-(t) = A M ,
A (p )

where A(p; t) = det Q, Q  is 2n x  2n matrix

A

Q  =

Qk = qx\ 2

(p  Q2n 0

0 Q1 1

0 Q2n-2 0

y1 Q2n-1 0

t + k + 1

0 0

0 0

p 1 

0 p

+f  (t + k), k = 1, 2, . . . ,2n.

(14)

Using the properties of determinant, we have

k=1

0 1 0 0 0

0 p 1 0 0

—Q2n

0 0 0 p 1

1 0 0 0 p

p 0 0 0

0 1 0 0

_  Q2n-2

0 0 0 1

1 0 0 0

2n

E H ) ^ 2"-
k

+ Q1

(p  0 0 

0 p  1

0 0 0 

1 0 0

0 0  ̂

0 0

p 1

0 p

p 0 0

0 1 0

+ Q2n-1

p

0 0 0 

1 0 0

0 0

0 0

1 0 

0 1

or

Since f  is a 2n-periodic function, equation (1) is equivalent to the equation

x(t) = x(_n) + x '(_ n )(t  + n) + — —  $n(p; t) + Fn(p; t),
A(p)

(15)

+
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where

$n(p; t) = E ( _ 1)k+ V
2n-k

t ph

k=1
x| 2

s + k + 1'
ds dt\,

F"(p; t) = A p  ^ ( _ 1 ) k+1p 2n k f  f  f  (s + k) dsdt1 .

We set

X[s] = ^ ( _ 1 ) k+1p 2n—kx ( 2
k=1

s + k +1

Since 2[ ̂ j1] = 2k for t e [2k, 2k + 2), k e Z,

X[s] = X[k] for k <  s < k + 1, k = -n , ..., n -1 .

Therefore $ n(p; t) can be represented as

f t f t1 (t  + n)2
$ n(p; t )=  / I X[s] dsdt1= X [ _ n ] --------- f o r -  n <  t < - n  + 1,

J _n J-n 2

/-n+1 nti pt p-n+1 pt pti
I X[s] dsdt1 + I  I  X[s] dsdt1 + I  I  X[s] dsdt1

n J -n J -n+1 J -n J -n+1 J-n

= ® n(p ;-n  + 1- 0) + X  [_n](t + n - 1) + X  [_n + 1]

for _  n +1 <  t < -n  + 2,

-n+1 J-n+1

(t + n _  1)2

/n-2 /»t1 pt pn-2 pt pti
I X[s] dsdt1 + I I X[s] dsdt1 + I I X[s] dsdt1

n J—n J n-2 J -  n J n-2 J n-2
n-2 J -n

2n_ 3 n t p _ n+k+1 p t p t1

= $ n (p;n - 2 - 0 )  + E  I I X[s] dsdt1+ I I X[s] dsdt1
1, n J n-2 J -  n+k J" -2j  n-k=0

2n_3
= $ n(p; n _  2) + E  X [_n + k](t _  n + 2) +X [n  _  2]n + k\(t _ n ■

k=0

for n _  2 <  t < n - 1,

2n_2 pt p-n+k+1

n-2 J n-2

(t _  n + 2)2 

2

t t1 ̂ pt p-n+k+1 pt pt1
$ n(p;t) = $ n(p ;n - 1 - 0 ) + E  I  I  X [s ]dsdt1+ I I X [s ]dsdt1

k=0 ” n_1 J _n+k Jn_1 Jn_1

= $ n(p; n _  1) + E  X [_n  + k](t _  n + 1) +X [n  _  1]
k=0

for n _  1 <  t < n.

(t _  n + 1)2

These equations show that the right-hand side of (15) depends on n + 1 unknowns x(_n + 

2),x(_n + 4),.. .,x(n ),x'(_n), where n is an even number. Hence equation (15) is equivalent
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to the following system of n + 1 equations with respect to x(_n  + 2), x(_n  + 4 ) , x(n), x' (_n) 

(see Lemma 1):

x(_n + 2) = x(_n) + x' (_n) + p P1k (p )x(_n  + 2k) + Fn (p; _n + 2),
A(p)

n
x(_n + 4) = x(_n) + 2x'(_n) + 1 N P2k(p)x(_n + 2/c) + Fn(p; _n  + 4),

A(p) t r

x(n) = x(_n) + 2nx'(_n) + —^  Pnk(p)x(_n + 2/c) + Fn(p;n),
A (p ) k̂=1

x'(n ) = x '(_n) + —^  Pn+1,k(p)x(_n + 2k) + Fn (p; n),
A (p ) t 1

where the polynomials P,>(p) are defined by (19).

We denote by D(p, q) the determinant o f the matrix

(16)

( A p  Ph(p) _ 1 

A p  pu (p)

a|p)P12(p) .

A p P22 (p) _  1 .

. A(p) Pl,n(p) + 1

. Aqp) P2,n-1(p) + 1

1

2

Aqp) Pni (p)

\ Aqp) Pn+i,i(p)

Aqp)Pn2(p) . 

Aqp) Pn+i,2(P) .

. Aqp) Pn,n(p)

. Aqp) Pn+1,n(p)

2n

0

(17)

The main result of this section is the following theorem.

Theorem 3 Let p 2n =  1 a n d f be a 2n-periodic continuous function. Then

(i) ifD (p , q) =  0, equation (1) has a unique 2n-periodic solution having the form  (15), 

where (x(_n  + 2),x(_n + 2),. ..x (n ),x '(_n )) is the unique solution o f  (17);

(ii) i fD(p,q) = 0 andFn(p;_n  + 2) = ••• = Fn(p;n) = Fn(p;n) = 0, then equation (1) has 

an infinite number o f 2n-periodic solutions having the form

xa ( t )= a ^ x (_ n )+ x '(_ n )(t  + n) + A p  ®n(p; t)^ + Fn(p; t),

where (x(_n  + 2),.. .,x (n ),x '(_n )) is an eigenfunction o f B corresponding to the 

eigenvalue 0, a is any number;

(iii) i f  D (p ,q ) = 0 and (Fn(p ;_n  + 2 ),...,Fn(p;n),Fn(p;n)) =  (0 ,...,0 ), then equation (1) 

does not have any 2n-periodic solution.

Proof The proof of the theorem is similar to the proof o f Theorem 2. 

Lemma 1 Equation (15) is equivalent to the system of equations (17).

□

Proof Since x isa2n periodic solution o f (1), it satisfies equations x(_n) =x(n) andx'(-n) = 

x'(n). From (15) we can describe the values of x(_n + 2), x(_n + 4 ),..., x(n), x '(_n ). Therefore

n

B
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we get the n + 1 linear system of equations

x(_n + 2) = x(_n) + x '(_n) + q N $ n(p; _n  + 2) + Fn(p; _n  + 2),
A(p)

x(_n + 4) = x(_n) + 2x'(_n) + q N $ n(p; _n + 4) + Fn(p; _n  + 4),
A(p)

x(n) = x(_n) + 2nx' (_n) + — $n (p; n )+  Fn (p; n),
A (p)

x '(n )= x '(_n ) + - q -  $n(p; n)+Fn (p; n).
A (p)

Note that

n n
X[r] = E  (p2n-2k+1 _  p 2n-2k )x (r + 2k) = E P ° x ( r  + 2k) for even |r|,

k=1 k=1

n_1
X  [r] = (p2̂ 1 _  1)x(r + 1) + E  (_p2n-2k + p2n—2k—1)x(r + 2k + 1)

k=1
n

= ^  pkx(r + 2k + 1) forodd|r|,
k=1

where

p0 = p 2n_2k+1_  p 2n_2k, pk = _ p 2n_2k + p2n_2k-1 and pn = p 2n—1_ 1.

The values of $ n(p; ■) at the points -n  + 2, -n  + 4 ,..., n are given by

(18)

n

$n(p;-n + 2) = 2X [_n ] + 2X [_n  + 1 = ^ E p°x(_n + 2k) + ^ E pkx(_n + 2 + 2k),
k=1 k=1

$n(p; _n + 4) = 7 X [_n ] + 5 X [_n  + 1] + 3 X [_n  + 2] + 2 X  [_n + 3]

7 n 5 n
= 7 E p°x(_n + 2k) + -  E pkx(_n + 2 + 2k)

k=1 k=1

3 n 1 n
+ 2 ^ p°x(_n + 2 + 2k) + 2 E pkx(_n + 4 + 2k),

k=1 k=1

$n(p; n )=  ( 2n _  2 ^ X[_n ] + ^2n _  X [_n  + 1] + ••• + 3X[n _  2] + 2 X[n _  1]

= ( 2n _  0 E p°x(_n + 2k) + ̂ 2n _  p̂kx(_n + 2 + 2k)

3 n n

E  p°x(n _  2 + 2k) + 1 E  pkx(n + 2k),+ • •• + , _ ____ _ .
2 rk ' 2 •,

k=1 k=1
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2n-1 n n
&n(p; n) = E  X  [_n + r ]=  ^  P°x(_n + 2k) + p1 kx ( _n + 2 + 2k)

r=0 k=1 k=1
n n n

+ J 2  p°x (-n  + 2 + 2k) + ••• + E  p°x(n _  2 + 2k) + ^  pkx(n + 2k),
k=1 k=1 k=1

or, equivalently,

$n(p; - n + 2 ) = ( 2  p0 + 2  pn) x ( - n + 2 ) + 2  p° + 2  p/_^ x ( - n + 2k)

$n(p ;-n  + 4) = 0  p0 + 5 pn + 3 pn + 2 p n ^ )x (-n  + 2)

+ ( 7  p 0 + 2 p 1 + 2  p 0 + 2 * ) « _  + 4)

( 7  0 5 1 3 0 1 1 \ ,
+ Z J  2 p° + 2pk_1 + 2P ^  + 2p/_V +

k=3 '

$n(p; _ n + 6) = p0 + 9 pn+ 7 p0 + 2  pn_1+ 2  p°_1+ 2  ̂ 2)  x (_ n + 2)

(11 0 9 , 7 , 5 , 3 0 1 , \ ,
+ ( j  p0 + 2 p1 + 2 p1 + 2 pn + 2 pn + 2 H x (-n  + 4)

+ ( t  p0 + 9 p1+ 2  p0 + 2  p1+ 2  p0 + 2  pn )x (_ n + 6)

^  (11 0 9 1 7 0 5 1 3 0 1 1 \ ,
+ 2 J  t p °  + 2 p ^  + 2 p ^  + 2 p/-2 + 2 p^-r + 2 p/-3 Jx (-n  + 2k),

k=4  ̂ '

^n(p; n )^ ^ 2n _ 2 ^ p0 + ^  _ 2 )  pn+ ( 2n _ 2 )  pn+■ ■ ■

5 , 3 0 1 i\ ,
+ 2 p2 + 2 p0 + 2 p  /x (-n  + 2)

+ ( ( 2n _  0 p0 K 2"  _ 3 ) p| * ( 2b _  2 ) p0 * ( 2n _  2 ) p"

+ ( 2n _  2 )  p0 + ' ' '  + 2 p3 + 3 p0 + 2 p2)  x (-n  + 4)

+ ■ ■ ■ + ( ( 2, ,_  i ) p »  + ( 2» _  2 ) p1^ 2" _  2 ) p° + . ■ .

5 1 3 0 1 1 \
+ 2 Pn + 2 P« + 2 Pn_7x(n _  2)

+ ( ( 2n - 1  \ p0 + ( 2n -  3 \ p"_1 + ( 2n-  2 \ p0-1 +■ ■ ■

5 1 3 0 1 1
+ 2 P1 + 2 P0 + 2 Pn )x(n),

^'n(p ;n) = (p? + p" + p° + ■ ■ ■ + p2 + p0 + p1)x (-n  + 2)

+ (p° + p1 + Pi0 + p" + p° + ■ ■ ■ + p3 + p° + p2) x (-n  + 4)

+ ■ ■ ■ + (p" + p"_1 + p"-1 + ■ ■ ■ + p1 + Pi0 + pn)x(n).
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We denote

Pu (p) = 2  Pi° + 2  p" ,

3 1
P1k(p) = 2 p° + 2 Pk^  k = 2,. . . ,n,

7 0 5 1 3 0 1 1
P21(p) = 2 Pi + 2 Pn + 2 P" + 2 P"-1,

7 0 5 1 3 0 1 1
P22(p) = 2 p  ̂ + 2 P1 + 2 p° + 2 P",

7 0 5 1 3 0 1 1
P2k(p) = 2 P° + 2 Pk_1 + 2 P ^  + 2 Pk-2, k = 3, ..., ",

P31(p) = 11 P° + 9 P" + 7 P0 + 5 P"_1 + 3 P1—1 + 2 P"-2,

11 0 9 1 7 1 5 1 3 0 1 1
P32(p) = — P0 + 2 P1 + 2 P1 + 2 P" + 2 P" + 2 P " ^

11 0 9 1 7 0 5 1 3 0 1 1
P33(p) = — P0 + 99 P1 + 7 p° + 2 P1 + 2 p° + 2 P",

11 0 9 1 7 0 5 1 3 0 1
P3k(p) = 2 P0 + 2 Pk_1 + 2 P*^ + 2 Pk_2 + 2 P^r + 2 Pk-3, k = 4  ..., ", (19)

Pm(p) = ^  _  2 ^ p0 + ^  _  2 ^ p" + ^  _  2 )  p " +■ ■ ■+2 p2 + 2  p° + 2  p1, 

Pn2(p) = ( 2n _  2 )  p° ^ 2n _  0  p1 ^ 2n _  2 )  + ( 2n _  2 )  p" + ( 2n _  2 )  p0 

+ ■ ■ ■ + 2 p3 + 2 p0 + 2 p2,

pn,n—1(p) = ( 2n _  2 )  P° + ( 2n _  0  P1 + ( 2n _  2 )  P° + ■ ■ ■ + 5 p" + 3 p" + 2 P"-1, 

Pnn(p) = 2"  _  2 )  p0 ^ 2n _  p"_1 + ( 2n _  P1—l + ■ ■ ■ + 5 p1 + 3 p0 + 1 p",

P"+1,k (p) = E (p0 + P1), k = 1 ,...,".

From these notations we obtain equivalence of the system of equations (18) to the system 

of equations (17).

This completes the proof. □
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