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Kriging-based finite element method (K-FEM) is an enhancement of the FEM through
the use of Kriging interpolation in place of the conventional polynomial interpolation.
In this paper, the K-FEM is developed for static, free vibration, and buckling analy-

ses of Timoshenko beams. The discrete shear gap technique is employed to eliminate
shear locking. The numerical tests show that a Kriging-Based beam element with cubic
basis and three element-layer domain of influencing nodes is free from shear locking.
Exceptionally accurate displacements, bending moments, natural frequencies, and buck-
ling loads and reasonably accurate shear force can be achieved using a relatively course
mesh.

Keywords: Timoshenko beam; Kriging-based finite element; shear locking; discrete shear
gap.

1. Introduction

An enhancement of the finite element method, referred to as the Kriging-based
finite element method (K-FEM), was proposed by Plengkhom and Kanok-Nukulchai
[2005]. In the K-FEM, Kriging interpolation (KI) is employed as the trial and test
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functions in place of a conventional polynomial function. This KI is constructed
for each element from a set of nodal values within a domain of influencing nodes
(DOI) comprising the element itself and several layers of the surrounding elements.
The DOI is thus a polygon in the 2D domain and a polyhedron in the 3D domain.
The advantages of this novel proposed method are as follows: (1) a high degree of
polynomial function can be easily included in the trial function without adding any
side or internal nodes to the element; (2) higher accuracy and better smoothness
results for the field variables and their derivatives, in comparison to the conventional
FEM, can be obtained using even the simplest form of elements; (3) furthermore,
the computer implementation of the proposed method is very similar to that of
conventional FEM, so an existing general FEM code can be extended to include the
method without major changes.

The K-FEM [Plengkhom and Kanok-Nukulchai (2005)] was subsequently
improved through the use of adaptive correlation parameters and developed for
analysis of Reissner–Mindlin plates [Wong and Kanok-Nukulchai (2006a)]. A short-
coming of the K-FEM is that the resulting approximate function is discontinuous
across the element boundaries, or in other words, nonconforming between inter-
connected elements. The issue of the nonconformity was studied in [Wong and
Kanok-Nukulchai (2009b)] and it is concluded that the K-FEM with appropriate
Kriging parameters always yield converging results.

In the development of the K-FEM for analyses of shear deformable beams, plates,
and shells, as in the FEM, the difficulty of shear locking also occurs. In attempts
to overcome this difficulty, the field-matching technique of Kanok-Nukulchai et al.
[2001], which works well in the element-free Galerkin method [Belytschko et al.
(1994)], has been employed [Wong (2009)]. Using this technique, the shape func-
tions for the rotational fields are taken as the derivatives of the shape functions for
the deflection. It is found that the K-FEM with the field-matching strategy yields
erroneous results. Accordingly, the field-matching technique is not applicable in the
framework of the K-FEM. Another attempt is the introduction of assumed natu-
ral transverse shear strains in the K-FEM [Wong and Kanok-Nukulchai (2006b)].
This study discovers that the assumed shear strain method can relieve the locking
but cannot eliminate it completely because the locations of shear-strain sampling
points in the K-FEM cannot be determined exactly. Henceforth, a basis function of
sufficiently high degree (cubic or higher) in the K-FEM for analyses of plates and
shell structures is employed as a provisional solution to relieve the shear locking
[Wong and Kanok-Nukulchai (2006a, 2008, 2009b); Wong (2009, 2013); Wong et
al. (2015)]. The use of a high-degree polynomial basis, however, cannot completely
eliminate the locking and makes the computational cost high. Thus, it is essential
to have an effective method to eliminate shear locking in the K-FEM.

To develop a locking-free formulation for the K-FEM for analyses of plates and
shells, it is instructive to study the K-FEM in the simpler problem of the Timo-
shenko beam model in order to gain understanding and insight about a locking-free
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device. In this spirit, Wong and Syamsoeyadi [2011] developed the K-FEM for static
and free vibration analyses of Timoshenko beams. In this work, the shear locking
is eliminated using the well-known selective-reduced integration (SRI) technique.
While the SRI technique can effectively eliminate shear locking, it deteriorates
the accuracy in the case of thick beams and also worsens the shear force results
[Wong and Syamsoeyadi (2011)]. Moreover, it has been proved that the SRI tech-
nique is not applicable to a Kriging-based triangular plate bending element [Wong
(2009)]. Therefore, a new shear-locking-elimination technique that is extendable to
a Kriging-based Reissner–Mindlin plate element needs to be explored.

Bletzinger et al. [2000] presented a unified approach to eliminate shear locking in
shear deformable plates and shells, called the discrete shear gap (DSG) technique. In
this approach, the shear gap is defined as the difference between the total deflection
and the bending deflection, or in other words, it is the deflection corresponding to
the shear strain. The shear gap is calculated at the element nodes (called the discrete
shear gaps) and interpolated across the element domain. The substitute shear strain
is then obtained from the derivatives of the interpolated discrete shear gaps. With
this technique, a locking-free formulation of plate elements, either triangular or
rectangular of any polynomial degree, can be carried out in a simple way. The
technique was subsequently generalized to a more general concept applicable to
other locking problems such as membrane locking [Bischoff et al. (2003); Koschnick
et al. (2005)].

The DSG technique has been applied not only in the conventional FEM but
also in recent alternative computational methods such as the edge-based smoothed
FEM [Nguyen-Xuan et al. (2010a)] and node-based smoothed FEM [Nguyen-Xuan
et al. (2010b)]. The most recent application of the DSG approach is to combine the
DSG three-node triangular element with the cell-based smoothed FEM to produce
a three-node triangular plate element, which is claimed to have some superior prop-
erties compared to many existing plate elements of the same class [Nguyen-Thoi
et al. (2012, 2015)]. These recent and successful applications of the DSG technique
suggest that it may also be effective at eliminating shear locking in Kriging-based
shear deformable beams, plates, and shells.

The aim of this paper is to present the development and testing of the
K-FEM with the DSG technique for static, free vibration, and buckling analyses
of Timoshenko beams. The discretized equations are formulated using the stan-
dard displacement-based finite element procedure on the variational form. The
same Kriging shape functions are used for the deflection and rotation variables.
To apply the DSG technique, the discrete shear gaps at all nodes in a DOI under
consideration are evaluated from the integration of the kinematic shear strain.
The DSG shear strain is then calculated from the derivative of the Kriging-based
interpolated discrete shear gaps. The original displacement-based transverse shear
strain is replaced with the DSG shear strain to eliminate the shear locking. A
series of numerical tests in static, free vibration, and buckling problems are carried
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out to evaluate the accuracy and convergence of the Kriging-based Timoshenko
beam element. Special attention is given to numerical investigation of the shear
locking.

It is worth mentioning here that although some researchers have employed the
DSG technique with a stabilization parameter α to improve the accuracy and sta-
bility against mesh distortion [Bischoff et al. (2003); Nguyen-Thoi et al. (2012);
Nguyen-Xuan et al. (2010a, 2010b)], we do not resort to this approach because the
parameter α is problem dependent and makes the role of the shear correction factor
obscure.

2. Kriging Interpolation in the K-FEM

Named after Danie G. Krige, a South African mining engineer, Kriging is a well-
known geostatistical technique for spatial data interpolation in geology and mining
(see, e.g., geostatistics texts [Olea (1999); Wackernagel (2003)]. Reviews of KI in
the framework of the K-FEM have been published in several previous papers [Wong
and Kanok-Nukulchai (2009a, 2009b); Wong and Syamsoeyadi (2011)]. In this paper
only the key points of KI that are necessary for the subsequent development are
addressed.

2.1. Kriging shape function

We consider a one-dimensional problem domain Ω where a continuous field variable
(a scalar function) u(x) is defined. The domain is represented by a set of properly
scattered nodes xI , I = 1, 2, . . . , N , where N is the total number of nodes in the
whole domain. Given N field values u(x1), . . . , u(xN ), the problem of interest is to
obtain an estimated value of uh at a point x ε Ω.

In the Kriging method, the unknown value uh(x) is estimated from a linear
combination of the field values at the neighboring nodes, that is,

uh(x) =
n∑

i=1

λi(x)u(xi), (1)

where the λi(x)’s are the unknown Kriging weights and n is the number of nodes
surrounding point x inside and on the boundary of a subdomain Ωx ⊆ Ω, n ≤ N .
Here, small letters i and n are used instead of I and N to signify that the numbering
is referred to the local (subdomain) numbering system.

In the context of the K-FEM [Wong and Kanok-Nukulchai (2009a, 2009b); Wong
and Syamsoeyadi (2011)], the nodes are identical to finite element nodes and the
weights are identical to shape functions. Furthermore, the subdomain Ωx in the
K-FEM is composed of the element of interest and several layers of surrounding
elements and referred to as the DOI. The number of element layers of the DOI can
be one, two, or more. In the case of one layer, the DOI is the finite element itself
and the K-FEM becomes identical to the conventional FEM. Figure 1 illustrates a
two-layer DOI encompassing local nodes 1–4.
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Fig. 1. One-dimensional domain and a two element-layer subdomain.

The Kriging weights λi(x), i = 1, . . . , n, are obtained by solving the Kriging
equation system:

Rλ(x) + Pµµµ(x) = r(x), (2a)

PTλ(x) = p(x), (2b)

in which

R =




C(h11) · · · C(h1n)

· · · · · · · · ·
C(hn1) · · · C(hnn)


; P =




p1(x1) · · · pm(x1)

· · · · · · · · ·
p1(xn) · · · pm(xn)


, (2c)

λ(x) = [λ1(x) · · ·λn(x)]T; µµµ(x) = [µ1(x) · · ·µm(x)]T, (2d)

r(x) = [C(h1x) C(h2x) · · ·C(hnx)]T; p(x) = [p1(x) · · · pm(x)]T. (2e)

Each entry in matrix R, C(hij), is the covariance between U(xi) and U(xj), which
is a function of hij = xj − xi; i = 1, . . . , n; j = 1, . . . , n. Thus, R is the n × n

matrix of the covariance of U(x) at nodes in the DOI, x1, . . . , xn. The capital ‘U(x)’
here signifies the corresponding random process of the deterministic function u(x).
Matrix P is the n × m matrix of monomial values at the nodes, where m is the
number of monomial terms. Vector λ(x) is the unknown n × 1 vector of Kriging
weights and vectorµµµ(x) is the unknown m× 1 vector of Lagrange multipliers. On the
right hand side of Eqs. (2a) and (2b), vector r(x) is the n × 1 vector of covariance
between the nodes and the point of interest, x, and p(x) is the m × 1 vector of
monomial values at x. Each entry in r(x), C(hix), is the covariance between U(xi)
and U(x), which is a function of hix = x − xi. A necessary condition to make the
Kriging equation system solvable (nonsingular) is that the number of nodes in the
DOI, n, should be equal to or greater than the number of monomial terms, m, that
is, n ≥ m.

Solving the Kriging equation system, the vector of Kriging weights is given as

λT(x) = pT(x)A + rT(x)B, (3a)

where

A = (PTR−1P)−1PTR−1, B = R−1(I − PA). (3b)

Here, A is an m×n matrix, B is an n×n matrix, and I is the n×n identity matrix.
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The expression for the estimated value uh, Eq. (1), can be restated in matrix
form as

uh(x) = λT(x)d = N(x)d, (4)

where d = [u(x1), . . . , u(xn)]T is an n× 1 vector of nodal values and N(x) = λT(x)
is the matrix of Kriging shape functions. It is obvious that the Kriging weights are
nothing but the shape functions.

2.2. Polynomial basis and correlation function

In order to construct Kriging shape functions, a polynomial basis function and a
covariance function should be chosen. In the present research, as in the previous
research on the K-FEM for analysis of Timoshenko beams [Wong and Syamsoeyadi
(2011)], polynomial bases of degree one to three are employed. The higher the
polynomial degree, the more element layers are needed in the DOI because of the
requirement that n ≥ m. The minimum number of DOI layers for different polyno-
mial bases is listed in Table 1.

The covariance C(h) is more conveniently expressed in terms of a correlation
function, which is given as

ρ(h) =
C(h)
σ2

, (5)

where h is the distance between points x and x + h, and σ2 is the variance of the
random function U(x). The variance σ2 has no effect on the resulting Kriging shape
functions and is taken to be equal to 1 in this study. There are many possibilities for
the correlation function model in the area of geostatistics [Olea (1999); Wackernagel
(2003)], such as the Nugget-effect model, exponential model, and spherical model.
In the present study, as in the previous research [Wong and Syamsoeyadi (2011)],
the Gaussian correlation function, that is,

ρ(h) = exp

(
−
(

θr
h

d

)2
)

, (6)

and the quartic spline (QS), that is,

ρ(h) =




1 − 6
(

θr
h

d

)2

+ 8
(

θr
h

d

)3

− 3
(

θr
h

d

)4

for 0 ≤ θr
h

d
≤ 1

0 for θr
h

d
> 1

, (7)

Table 1. Minimum number of layers for different polynomial bases.

Polynomial basis Monomial terms m Minimum number of layers

Linear 1 x 2 1
Quadratic 1 x x2 3 2
Cubic 1 x x2 x3 4 3

1850064-6



2nd Reading

December 12, 2017 13:42 WSPC/0219-8762 196-IJCM 1850064

Kriging-Based Timoshenko Beam Elements with the DSG Technique

are chosen. In these equations, θr > 0 is the correlation parameter and d is a scale
factor to normalize the distance h. Factor d is taken to be the largest distance
between any pair of nodes in the DOI.

The parameter θr is an important parameter affecting the validity of Kriging
shape functions. Too small a value of θr deteriorates the partition of unity property
of the shape functions [Plengkhom and Kanok-Nukulchai (2005)], that is,∣∣∣∣∣

n∑
i=1

Ni − 1

∣∣∣∣∣ �= 1. (8)

Conversely, too large a value of θr may make the Kriging equation system singular.
Based on these facts, Plengkhom and Kanok-Nukulchai [2005] proposed a rule of
thumb for the lower and upper bounds of θr. Following this rule, the value of θr

should be selected so that it satisfies the lower bound criterion∣∣∣∣∣
n∑

i=1

Ni − 1

∣∣∣∣∣ ≤ 1 × 10−10+a, (9)

where a is the degree of the basis function, and the upper bound criterion

det(R) ≤ 1 × 10−b, (10)

where b is the dimension of the problem. For the 1D problem and quadratic basis
function, for example, a = 2 and b = 1.

The range of appropriate values of θr varies with the number of monomial
terms m, the number of the nodes in the DOI, n, and the correlation model used
[Plengkhom and Kanok-Nukulchai (2005); Wong and Kanok-Nukulchai (2006a)].
In other words, it depends on the polynomial basis, the number of element layers,
and the type of correlation function employed in the analysis. The range of θr for
1D problems satisfying the lower and upper bound criteria, Eqs. (9) and (10), has
been numerically examined [Wong and Syamsoeyadi (2011)] and the results are
presented in Table 2. It is recommended that the mid-value between the upper and
lower bounds be taken to ensure good quality of the KI.

Table 2. The lower and upper bounds of θr for 1D problems.

Gaussian ρ(h) Quartic spline ρ(h)

Polynomial basis Number of layers Lower bound Upper bound Lower bound Upper bound

Linear 1 0 0.2295 0 0.098
2 10−4 1.0 10−5 0.44
3 10−4 1.9 10−5 0.86

Quadratic 2 10−4 1.0 10−5 0.44
3 10−4 1.9 10−6 0.86

Cubic 3 10−4 1.9 10−8 0.86
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3. Formulation of Kriging-Based Timoshenko Beam Element

We consider a beam of length L with cross-sectional area and moment of inertia
A and I, respectively. The beam is made from a homogeneous and isotropic mate-
rial with modulus of elasticity E, shear modulus G, and mass density ρ (per unit
volume). A Cartesian coordinate system (x, y, z) is established, where the x-axis
coincides with the neutral axis and the y and z-axes coincide with the principal
axes of the cross-section (Fig. 2). The beam is subjected to a dynamic distributed
transversal load q = q(x, t) and a distributed moment m = m(x, t), 0 ≤ x ≤ L,
t ≥ 0. In the Timoshenko beam theory, the motion of the beam due to exter-
nal loads is described using two independent field variables, namely the transverse
displacement (deflection) of the neutral axis w = w(x, t) and the rotation of the
cross-section θ = θ(x, t). The sign convention for these variables is shown in Fig. 2.

To account for the effect of axial force on the deflection, let the beam be also
subjected to an axial force P = P (t) at the end of the beam. The sign of P is
positive when it is a tensile force. This axial force is imposed at the outset, for
example by a pre-stressed cable system. The deflection is assumed to be small
so that the axial force P remains essentially constant. In addition, the beam is
assumed to be initially, perfectly straight so that the coupling between bending
and membrane deformations can be neglected. Thus, the present Timoshenko beam
model is a linear-elastic model enhanced with a nonlinear Green strain term for
the axial strain [Cook et al. (2002), Ch. 18]. This model can be reduced to the
bifurcation buckling model by removing the transversal load q and external moment
m and assuming that the axial force P is an unknown.

The governing equation for the motion of the beam at time t, including the axial
load effect, can be expressed in a variational form as∫ L

0

δwρAẅ dx +
∫ L

0

δθρIθ̈ dx

+
∫ L

0

δθ,x EIθ,x dx +
∫ L

0

δγGAsγ dx +
∫ L

0

δw,x Pw,x dx

=
∫ L

0

δwq dx +
∫ L

0

δθm dx. (11)

In this equation,

γ = w,x − θ, (12)

x

z w

θ

Fig. 2. Coordinate system and positive directions for the deflection and rotation.
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is the transverse shear strain and AS = kA is the effective shear area, where k is
a shear correction factor that is dependent upon the cross-section geometry. The
double dots signify the second partial derivative of the corresponding variable with
respect to the time variable t, while the comma signifies the first partial derivative
of it with respect to the variable next to it (i.e., x). The operator δ signifies the
variational operation on the corresponding variable. A detailed derivation of the
variational equation, Eq. (11), using Hamilton’s principle is given in Friedman and
Kosmatka [1993] and Kosmatka [1995].

The bending moment and shear force along the beam can be calculated from
the deflection w and rotation θ as follows:

M = EIθ,x , (13)

Q = GAs(w,x − θ) + Pw,x . (14)

To obtain an approximate solution using the concept of KI with a layered-
element DOI, the beam is subdivided into Nel elements and N nodes. We then
consider an element with a DOI that contains n nodes, as illustrated in Fig. 3. The
field variables w and θ over the element are approximated using KI as follows:

w = Nw(x)d(t), (15a)

θ = Nθ(x)d(t), (15b)

where

Nw(x) = [N1(x) 0 N2(x) 0 . . . Nn(x) 0], (15c)

Nθ(x) = [0 N1(x) 0 N2(x) . . . 0 Nn(x)], (15d)

are the matrices of Kriging shape functions for the deflection and rotation, respec-
tively, and

d(t) = [w1(t) θ1(t) w2(t) θ2(t) . . . wn(t) θn(t)]T, (15e)

is the vector of nodal displacement. The variable x here refers to the local (element)
coordinate system. The number of nodes, n, depends on the number of elements

Fig. 3. A typical beam element and its domain of influencing nodes (DOI).
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used in the DOI and differs for the interior and exterior elements. For example, for
an element with a two-layer DOI, n = 3 for the exterior element and n = 4 for the
interior element.

Substituting Eqs. (15a) and (15b) into Eq. (11) and carrying out the standard
finite element formulation yield the discretized system of equations

md̈(t) + (k + Pkg)d(t) = f(t). (16)

In this equation,

m =
∫ Le

0

NT
wρANwdx +

∫ Le

0

NT
θ ρINθdx (17)

is the element consistent mass matrix,

k =
∫ Le

0

BT
θ EIBθdx +

∫ Le

0

BT
γ GAsBγdx (18)

is the element stiffness matrix,

kg =
∫ Le

0

BT
wBwdx (19)

is the element geometrical stiffness matrix, and

f(t) =
∫ Le

0

NT
wqdx +

∫ Le

0

NT
θ mdx (20)

is the element equivalent nodal force vector. The order of all square matrices and
vectors is 2n. In Eqs. (18) and (19), matrices Bθ, Bw, and Bγ are defined as follows:

Bθ =
d

dx
Nθ, Bw =

d

dx
Nw, (21a)

Bγ = Bw − Nθ. (21b)

The unknowns of Eq. (16) are the element nodal acceleration vector d̈(t) and the
nodal displacement vector d(t).

The discretized equations for static, free vibration, and buckling problems can
be obtained from Eq. (16) by simply reducing it, respectively, to

kd = f , (22)

md̈(t) + kd(t) = 0, (23)

(k + Pkg)d = 0. (24)

The corresponding global discretized equations of these equations can be
obtained using the finite element assembly procedure. It should be mentioned here
that the assembly process involves all nodes in the DOI, not just the element nodes
as in the conventional FEM.

1850064-10
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4. Application of the Discrete Shear Gap Concept

It is well known that the pure displacement-based formulation of a Timoshenko
beam (with exact integration of all integrals) leads to the shear locking phenomenon
in the FEM [Bathe (1996); Cook et al. (2002); Hughes (1987); Liu and Quek (2003);
Prathap (1993, 2001); Reddy (2006)]. The same is true for a Kriging-based Timo-
shenko beam element [Wong and Syamsoeyadi (2011)], even for an element with a
cubic polynomial basis function. The primary cause of this locking is the inability
of the approximate shear strain to vanish as the beam becomes extremely thin.
The basic idea of the DSG concept [Bischoff et al. (2003); Bletzinger et al. (2000)]
is to replace the troublesome kinematic shear strain with a substitute shear strain
field determined from the derivative of interpolated discrete shear gaps. This sec-
tion presents a review of the DSG concept and its application to Timoshenko beam
elements with KI.

To apply the DSG concept, we begin with the definition of shear gap, that is,

∆wγ(x) =
∫ x

x0

γdx, (25)

where ∆wγ(x) is the shear gap at point x, and x0 is the position of a chosen reference
point. Inserting Eq. (12) into this equation results in

∆wγ(x) = w|xx0
−
∫ x

x0

θdx, (26a)

∆wγ(x) = (w(x) − w(x0)) −
∫ x

x0

θdx = ∆w(x) − ∆wb(x). (26b)

In these equations, ∆w is the increase of the actual deflection between the positions
x and x0, and ∆wb is the increase of the deflection due to bending action. The shear
gap ∆wγ thus represents the increase of the deflection due to shearing action.

The DSG at a finite element node with position xi, ∆wγi is defined as

∆wγi = ∆wγ(xi) = w|xi
x0

−
∫ xi

x0

θdx. (27)

A modified shear gap field is defined as the interpolation of the nodal shear gaps,
that is,

∆w̄γ(x) =
n∑

i=1

Ni(x)∆wγi. (28)

In the framework of the standard FEM, n is the number of number of nodes
in the element and Ni(x), i = 1, . . . , n are the shape functions. In the present
research, however, n is the number of nodes in the DOI and Ni(x) are Kriging
shape functions. Differentiating Eq. (28) gives the substitute shear strain, that is,

γ̄(x) =
n∑

i=1

Ni,x∆wγi = B̄γ1wγ , (29a)

1850064-11
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where

B̄γ1 = [N1,x N2,x . . . Nn,x], (29b)

wγ = [∆wγ1 ∆wγ2 . . . ∆wγn]T. (29c)

To avoid the shear locking problem, the kinematic shear strain γ, Eq. (12), is
replaced with γ̄, Eq. (29a). In order to implement this technique for the Kriging-
based beam elements, we first need to express the nodal shear gaps in the DOI, wγ ,
in terms of the degrees of freedom of the Timoshenko beam. Choosing node 1 as
the reference point (see Fig. 3) and inserting Eq. (15b) into Eq. (27), the discrete
shear gaps are given as

∆wγi = wi − w1 −
(∫ xi

x1

Nθ(x)dx

)
d. (30)

Evaluating the discrete shear gaps for nodes 1 to n and writing them in matrix
form, the discrete shear gaps for all nodes in the DOI can be expressed as

wγ = B̄γ2d, (31a)

where

B̄γ2 =




0 0 0 0 0 0 · · · 0 0

−1 −
∫ x2

x1

N1dx 1 −
∫ x2

x1

N2dx 0 −
∫ x2

x1

N3dx · · · 0 −
∫ x2

x1

Nndx

−1 −
∫ x3

x1

N1dx 0 −
∫ x3

x1

N2dx 1 −
∫ x3

x1

N3dx · · · 0 −
∫ x3

x1

Nndx

...
...

...
...

...
...

...
...

...

−1 −
∫ xn

x1

N1dx 0 −
∫ xn

x1

N2dx 0 −
∫ xn

x1

N3dx · · · 1 −
∫ xn

x1

Nndx




.

(31b)

Substituting Eq. (31a) into Eq. (29a) yields

γ̄(x) = B̄γ1B̄γ2d = B̄γd. (32)

The implementation of the DSG concept is accomplished by replacing matrix Bγ in
the expression for the element stiffness matrix, Eq. (18), with matrix B̄γ as defined
in Eq. (32). The Kriging-based Timoshenko beam elements with the DSG shear
strains are hereafter referred to as the K-beam-DSG elements.

5. Numerical Results

A series of numerical tests were carried out to evaluate: (1) the effectiveness of the
DSG technique in eliminating the shear locking and (2) the accuracy and conver-
gence characteristics of the K-beam-DSG elements with different K-FEM options
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in static, free vibration, and buckling analyses. The K-FEM options used com-
prised of linear to cubic basis functions with one to three element-layer DOIs, and
the Gaussian, Eq. (6), or quartic spline (QS), Eq. (7), correlation functions with
the mid-value correlation parameters between the lower and upper bound values
(Table 2). Abbreviations of the form P*-*-G or P*-*-QS were used to denote dif-
ferent K-FEM options. The first asterisk represents the polynomial basis, while the
second represents the number of DOI element layers. The last letter or letters rep-
resent the Gaussian (G) or QS correlation function. For example, the abbreviation
P2-3-QS means the K-FEM options of a quadratic basis function, three element
layers, and a QS correlation function (with a mid-value correlation parameter).

In all tests, three Gaussian sampling points were employed to evaluate the inte-
grations in the element stiffness matrix equations, Eq. (18), while two sampling
points were used to evaluate the integration in the element consistent nodal load
vector, Eq. (20), and B̄γ2, Eq. (31b). The abovementioned numbers of sampling
points were chosen because we found by trial and error that they could provide
accurate results with the minimum computational cost. In addition, in all tests, the
shear correction factor employed was given as [Cowper (1966) as cited in Friedman
and Kosmatka (1993); Kosmatka (1995)]:

k =
10(1 + ν)
12 + 11ν

. (33)

5.1. Static analysis

5.1.1. Pure bending test

A cantilever beam of rectangular cross-section b×h modeled with meshes of regular
and irregular node distributions is shown in Fig. 4. The beam is in pure bending
state with constant bending moment, M , and zero shear force along the beam. This
problem is a simple test involving linear rotation and quadratic displacement fields.

The beam was analyzed using the K-beam-DSG with different polynomial bases,
numbers of layers, and correlation functions. Numerical values used in the analyses
were L = 10m, b = 2 m, E = 2,000 kN/m2, ν = 0.3, and M = 1kN-m. Two dif-
ferent length-to-thickness ratios were considered. One was moderately thick, that
is, L/h =5, and the other was extremely thin, that is, L/h = 10,000. The result-
ing deflections and rotations at the free end, wL and θL, were observed and then

M

L/4 L/4 L/4 L/4

M

0.1L
0.6L

0.1L
0.2L

(a) Regular node distribution (b) Irregular node distribution

Fig. 4. Cantilever beam modeled with (a) regular and (b) irregular node distributions.
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normalized to the corresponding exact solutions, that is,

wLexact =
ML2

2EI
, θLexact =

ML

EI
. (34a,b)

The resulting bending moments and shear forces at the clamped end, calculated
using Eqs. (13) and (14), were observed as well. The bending moments were then
normalized to the exact bending moment, M . The shear forces, however, were not
normalized because of the zero exact shear force.

The results showed that the K-beam-DSG produced values of the deflection,
rotation, and bending moment with at least seven-digit accuracy (nearly exact val-
ues) for both thick and thin beams with regular node distribution. The maximum
error for the shear force, however, was of the order of 10−5 (for the case of the
thin beam analyzed using the P1-3-G option). Very accurate results for the deflec-
tion, rotation, and bending moment of the thick and thin beams were also obtained
for the case of irregular node distribution, with an accuracy of at least five dig-
its (for the thin beam analyzed using the P1-3-G option). Table 3 tabularizes the
results for the most critical case, that is, the thin beam modeled with an irregular
node distribution. It was seen that in this case, the accuracy of the shear force (the
maximum error is of the order of 10−2) was lower than that of the thin beam mod-
eled with regular node distribution. It is worth mentioning here that the standard
finite element and Kriging-based Timoshenko beam elements with selective reduced
integration are unable to produce correct values for the shear force computed using
Eq. (14) [Prathap (1993); Wong and Syamsoeyadi (2011)].

Overall, the results indicate that the K-beam-DSG with different analysis
options virtually reproduce the exact solutions. The K-beam-DSG elements with
the Gaussian correlation function generally produce less accurate results than those
with the QS. In this simple problem, there is no indication of shear locking.

Table 3. Analysis results for the extremely thin cantilever beam modeled with an
irregular node distribution using various K-beam-DSG options.

K-beam-DSG options wL/wL exact θL/θL exact M0/M0 exact V0

P1-1-QS 1.0000000 1.0000000 0.9999999 −5.36E-09
P1-2-QS 0.9999997 0.9999997 0.9999997 4.93E-05
P1-3-QS 1.0000000 1.0000000 1.0000000 −2.02E-05

P2-2-QS 1.0000000 1.0000001 1.0000000 −9.21E-07
P2-3-QS 0.9999999 0.9999999 0.9999998 3.41E-06
P3-3-QS 1.0000001 1.0000001 1.0000002 −1.12E-07

P1-1-G 1.0000000 1.0000000 0.9999999 −8.61E-09
P1-2-G 1.0000000 0.9999998 1.0000004 2.64E-03
P1-3-G 1.0000056 1.0000006 1.0000367 −6.28E-02

P2-2-G 0.9999999 0.9999999 0.9999999 2.71E-03
P2-3-G 0.9999991 0.9999994 0.9999990 −9.55E-03
P3-3-G 1.0000002 1.0000001 1.0000005 9.21E-03
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Fig. 5. Clamped–clamped beam modeled with mesh of eight elements.

5.1.2. Investigation of shear locking

To investigate the effectiveness of the DSG technique in eliminating shear locking,
we considered a clamped–clamped beam with the finite element model as shown
in Fig. 5. The height of the beam was varied from moderately thick, L/h = 5, to
extremely thin, L/h =104. The geometrical and material properties of the beam
were the same as in the previous test (Sec. 5.1.1) with a distributed load of q =
1kN/m. The beam was analyzed using K-beam-DSG elements with different K-
FEM options. The resulting deflections of the beam mid-span were observed and
normalized to the exact solution, that is,

wexact =
qL4

384EI
+

qL2

8GAs
. (35)

The results are presented in Table 4. Only the results obtained from the use of
K-beam-DSG with the QS correlation function are reported here to save space. The
corresponding results with the Gaussian correlation function have similar locking
behavior.

It can be seen from Table 4 that for moderately thick to thin beams (i.e., L/h = 5
to 100), all K-beam-DSG options could produce accurate results. However, when
the beam becomes thinner, it is apparent that only the K-beam-DSG elements with
P1-1-QS and P3-3-QS options show no locking. Further testing of the P1-1-QS and
P3-3-QS options with length-to-thickness ratios L/h greater than 104 reveals that
there is indeed no locking up to L/h = 107. For L/h over 107, the results become

Table 4. Normalized deflections of the beam mid-span using various K-beam-DSG options.

K-beam-DSG options L/h = 5 L/h = 10 L/h = 100 L/h = 1,000 L/h = 10,000

P1-1-QS 0.958 0.944 0.938 0.938 0.938
P1-2-QS 0.999 1.000 0.959 0.206 0.003
P1-3-QS 0.997 0.996 0.983 0.517 0.012

P2-2-QS 1.001 1.001 0.993 0.540 0.011
P2-3-QS 1.003 1.003 0.994 0.505 0.010

P3-3-QS 1.001 1.001 1.001 1.001 1.001
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inaccurate because of the ill-conditioned stiffness matrix. It is worth noting that
K-beam-DSG P1-1-QS is actually identical to the locking-free linear Timoshenko
beam element with DSG presented in [Bischoff et al. (2003); Bletzinger et al. (2000)].

To further investigate why the shear locking phenomenon remains in the
K-beam-DSG elements with linear (except with one layer) and quadratic basis
functions, we considered the shear forces calculated using the ‘successful’ options,
namely P1-1-QS and P3-3-QS, and ‘unsuccessful’ options, namely P1-3-QS and
P2-3-QS, for the extremely thin beam (L/h = 104). The shear force diagrams are
plotted in Figs. 6(a) and 6(b), respectively. Figure 6(a) shows that the shear force
distribution obtained from the K-beam-DSG element with P1-1-QS is, as expected,
piecewise constant over each element. This indicates that the element is able to
give an optimal approximate solution in the shear strain function space. The shear

(a)

(b)

Fig. 6. Shear force diagram for the clamped–clamped beam with L/h = 104 obtained using
K-beam-DSG elements with options: (a) P1-1-QS and P3-3-QS; (b) P1-3-QS and P2-3-QS.
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force distribution corresponding to the P3-3-QS option oscillates about the exact
distribution. This oscillation, however, is very mild compared to the violent shear
force oscillations obtained from the K-beam-DSG elements with P1-3-QS and P2-3-
QS (Fig. 6b). The total area under the shear force curves of P1-1-QS and P3-3-QS
seems to be equal to the total area under the exact curve. Furthermore, it was found
that with P1-1-QS and P3-3-QS options, the shear force distributions for the beams
of L/h greater than 104, up to L/h = 107, remain the same as those for the beam of
L/h = 104. This is in contrast to the oscillation of shear force with the other K-beam
element options, which are much heavier as the beams become thinner. This is the
reason why the K-beam-DSG elements with P1-1-QS and P3-3-QS options are free
of locking while they suffer from shear locking with the other options.

To assess the locking behavior and accuracy of the K-beam-DSG elements in
comparison to the original K-beam elements (without any locking treatment) and
to the K-beam elements with the selective reduced integration (SRI) technique
[Wong and Syamsoeyadi (2011)], the results obtained from a series of analyses
using these K-beam elements for the beams with L/h = 5 and L/h = 10,000 are
listed in Table 5. It can be seen from Table 5 that without any locking treatment,
the K-beam elements suffer from shear locking even for the element with a cubic
polynomial basis. The SRI technique is effective at eliminating the locking for all
K-beam element options. However, this technique produces less accurate results for
the thick beam (L/h = 5). The DSG technique produces the most accurate results
for the thick beam, but it is only effective at eliminating the shear locking for the
K-beam elements with the P1-1-QS and P3-3-QS options.

In the subsequent tests, we only considered the K-beam-DSG element with the
P3-3-QS option since this element is free from shear locking and truly Kriging-based
finite elements (the element with the P1-1-QS option is essentially identical to the
conventional DSG linear beam element [Bletzinger et al. (2000)]).

5.1.3. Assessment of accuracy and convergence

To assess the accuracy and convergence characteristics of the K-beam element with
the P3-3-QS option, we considered a cantilever beam subjected to a linearly varying

Table 5. Normalized deflections obtained using the original and SRI
K-beam elements and the K-beam-DSG elements.

L/h = 5 L/h = 10,000

K-beam options Original SRI DSG Original SRI DSG

P1-1-QS 0.887 0.958 0.958 1.96E-06 0.938 0.938
P1-2-QS 0.979 1.018 0.999 5.34E-05 1.031 0.003
P1-3-QS 0.983 1.031 0.997 4.33E-04 1.049 0.012

P2-2-QS 0.994 1.001 1.001 5.28E-05 0.999 0.011
P2-3-QS 0.991 1.036 1.003 0.001 1.049 0.010

P3-3-QS 0.999 1.011 1.001 0.002 1.006 1.001
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Fig. 7. Cantilever beam subjected to linearly varying load.

distributed load, as illustrated in Fig. 7, under different beam thickness conditions,
that is, normal (L/h =8), extremely thick (L/h =1), and extremely thin (L/h =
10,000). The problem parameters were taken as L = 4m, b = 2 m, E = 1,000kN/m2,
v = 0.3, and q0 = 1kN/m. The beam was analyzed using different degrees of
mesh refinement, that is, 4, 8, 16, and 32 elements. The deflection at the free
end, the bending moment, and the shear force at the clamped end were observed

Table 6. Results obtained for the normal-thickness
beam (L/h = 8) using the K-beam P3-3-QS elements
with the DSG technique, the SRI technique, and the
original element.

Normalized free-end deflection

K-beam P3-3-QS

Number of elements DSG SRI Original

4 0.99989 1.00534 0.99989
8 0.99999 1.00069 0.99999

16 1.00000 1.00017 1.00000
32 1.00000 1.00006 1.00000

Normalized clamped-end bending moment

K-beam P3-3-QS

Number of elements DSG SRI Original

4 0.99972 1.07761 0.92760
8 1.00190 1.04268 0.99075

16 1.00074 1.02153 0.99917
32 1.00022 1.01071 0.99993

Normalized clamped-end shear force

K-beam P3-3-QS

Number of elements DSG SRI Original

4 1.03397 4.25756 1.62985
8 1.00210 1.90156 1.11862

16 1.00022 1.44091 1.01848
32 1.00003 1.34918 1.00251
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and normalized to the corresponding exact solutions, viz. [Friedman and Kosmatka
(1993)]:

wL =
q0L

4

30EI

(
1 +

5
12

φ

)
, (36a)

φ =
1
5
(12 + 11υ)

(
h

L

)2

, (36b)

M0 =
1
6
q0L

2, Q0 =
1
2
q0L. (37a,b)

The results are presented in Tables 6–8 for the normal-thickness, extremely thick,
and extremely thin beams, respectively, along with the results obtained using the
K-beam P3-3-QS element with the SRI technique and using the original K-beam
(without any shear locking treatment). Tables 6 and 7 show that the K-beam-
DSG P3-3-QS element can produce remarkably accurate deflection and bending
moment and reasonably accurate shear stress, even using relatively course mesh
(four elements), for the extremely and moderately thick beams. For the extremely
thin beam (Table 8), while the deflection remains very accurate, the accuracy of

Table 7. Results obtained for the extremely thick
beam (L/h = 1) using the K-beam P3-3-QS elements
with the DSG technique, the SRI technique, and the
original element.

Normalized free-end deflection

Number of elements DSG SRI Original

4 0.99995 1.01852 0.99995
8 1.00000 1.00864 1.00000

16 1.00000 1.00359 1.00000
32 1.00000 1.00162 1.00000

Normalized clamped-end bending moment

Number of elements DSG SRI Original

4 1.00055 1.07761 0.98400
8 1.00192 1.04268 0.99783

16 1.00074 1.02153 0.99974
32 1.00022 1.01071 0.99997

Normalized clamped-end shear force

Number of elements DSG SRI Original

4 1.00097 1.43572 1.01403
8 1.00019 1.36542 1.00234

16 1.00004 1.33960 1.00034
32 1.00001 1.32864 1.00005
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Table 8. Results obtained for the extremely thin beam
(L/h = 10,000) using the K-beam P3-3-QS elements
with the DSG technique, the SRI technique, and the
original element.

Normalized free-end deflection

Number of elements DSG SRI Original

4 0.99989 1.00486 0.99989
8 0.99999 1.00041 0.99999

16 1.00000 1.00004 1.00000
32 1.00000 1.00001 1.00000

Normalized clamped-end bending moment

Number of elements DSG SRI Original

4 0.95561 1.07761 0.69987
8 0.95087 1.04268 0.70047

16 0.98499 1.02153 0.72160
32 0.99917 1.01072 0.91343

Normalized clamped-end shear force

Number of elements DSG SRI Original

4 2.79 4.5E+06 4.7
8 2.59 8.5E+05 16.5

16 0.61 1.6E+05 28.6
32 0.98 3.3E+04 17.6

the bending moment drops a little. The resulting shear stresses, however, are not
very accurate for the extremely thin beam.

Tables 6–8 show that all the results converge very well to the corresponding
exact solutions. While the SRI technique can eliminate the shear locking, it deteri-
orates the accuracy in the cases of thick beams (compared to the original K-beam
element solutions). Overall, the results of the K-beam-DSG element are better in
comparison to those obtained from the original and SRI K-beam elements. Thus,
application of the DSG technique to the K-beam elements has improved the ele-
ments’ performance.

To further demonstrate the accuracy of the K-beam-DSG P3-3-QS element in
comparison to the original K-beam P3-3-QS element, the profiles of deflection, rota-
tion, and bending moment for the extremely thin beam case, obtained from the
analyses using eight elements, are plotted in Figs. 8(a)–8(c). The shear force pro-
files obtained from the K-beam-DSG and K-beam elements have not been plotted
because they oscillated heavily about the exact shear force. The figures confirm
that the K-beam-DSG P3-3-QS element is able to produce accurate results for the
deflection, rotation, and bending moment even in the case of the extremely thin
beam. The shear force, however, is not accurate. The performance of the element
is superior compared to the original K-beam element.
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(a) Deflection profile

(b) Rotation profile

(c) Bending moment profile

Fig. 8. Profiles of (a) deflection, (b) rotation, and (c) bending moment along the extremely thin
beam (L/h = 10,000), obtained using the K-beam P3-3-QS element with the DSG technique in
comparison to the exact profile and that obtained using the original K-beam P3-3-QS.
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5.2. Free vibration analysis

5.2.1. Thick and thin clamped–clamped beams

To assess the performance of the K-beam-DSG element with the P3-3-QS in free
vibration analyses, we first considered free vibration analysis of a clamped–clamped
beam with two different thickness conditions, that is, moderately thick (L/h = 5)
and very thin (L/h = 1,000). The parameters of the beam were L = 10m, b = 1m,
E = 2×109 N/m2, v = 0.3, and ρ = 10kg/m3. The beam was modeled using meshes
of 4, 8, 16, and 32 elements. The resulting natural frequencies were expressed in the
form of dimensionless frequency parameters [Lee and Schultz (2004)], given as

λi =

√
ωiL2

√
ρA

EI
, (38)

where ωi is the natural frequency of the ith vibration mode. The natural frequencies
obtained from the pseudo-spectral method [Lee and Schultz (2004)] were taken as
the reference solution for the moderately thick beam, while those obtained from the
exact solution based on the Euler–Bernoulli beam theory [Lee and Schultz (2004)]
were taken as the reference solution for the very thin beam.

The resulting frequency parameters for the first 15 vibration modes obtained
using the DSG and original K-beam elements, normalized with respect to the
corresponding reference solutions, are presented in Tables 9 and 10 for the moder-
ately thick and very thin beams, respectively. It is seen from Table 9 that for the
moderately thick beam, the present K-beam element can give very accurate natural

Table 9. Normalized frequency parameters for the moderately thick beam (L/h = 5).

λi/λi*

4 elements 8 elements 16 elements 32 elements

Mode shape λ∗
i DSG Original DSG Original DSG Original DSG Original

1 4.2420 1.0039 1.0370 1.0014 1.0180 1.0016 1.0180 1.0016 1.0180
2 6.4188 1.0144 1.1510 1.0021 1.0290 1.0022 1.0280 1.0023 1.0280
3 8.2853 1.1519 1.1940 1.0046 1.0400 1.0027 1.0340 1.0028 1.0340
4 9.9037 1.3579 1.4320 1.0104 1.0550 1.0029 1.0370 1.0031 1.0370
5 11.3847 1.2451 1.3240 1.0223 1.0690 1.0002 1.0370 1.0001 1.0360
6 12.6402 1.2002 1.2650 1.0475 1.0890 1.0042 1.0430 1.0034 1.0420
7 13.4567 — — 1.0104 1.0610 1.0045 1.0560 1.0044 1.0560
8 13.8101 — — 1.0461 1.0910 1.0054 1.0460 1.0035 1.0430
9 14.4806 — — 1.0385 1.0830 1.0041 1.0470 1.0037 1.0470

10 14.9383 — — 1.0512 1.0900 1.0074 1.0480 1.0036 1.0440
11 15.6996 — — 1.0753 1.1150 1.0041 1.0410 1.0031 1.0400
12 16.0040 — — 1.1284 1.1690 1.0107 1.0520 1.0038 1.0460
13 16.9621 — — 1.1340 1.1710 1.0042 1.0350 1.0025 1.0330
14 16.9999 — — 1.1963 1.2390 1.0152 1.0570 1.0041 1.0480

15 17.9357 — — — — 1.0203 1.0470 1.0044 1.0440

Note: ∗Convergent solution from the pseudo-spectral method [Lee and Schultz (2004)].
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Table 10. Normalized frequency parameters for the very thin beam (L/h = 1,000).

λi/λi*

4 elements 8 elements 16 elements 32 elements

Mode shape λ∗
i DSG Original DSG Original DSG Original DSG Original

1 4.7300 1.0044 7.5960 1.0012 1.6020 1.0000 1.0280 1.0000 1.0000
2 7.8532 4.2232 12.3080 1.1775 2.1730 1.0017 1.1480 1.0000 1.0040
3 10.9956 12.2361 12.6810 1.7695 4.1300 1.0133 1.3170 1.0000 1.0120
4 14.1372 173.2836 195.6570 2.2220 6.4780 1.0589 1.4490 1.0002 1.0300
5 17.2788 147.5479 160.0830 2.7744 7.9750 1.1689 1.5410 1.0010 1.0560
6 20.4204 129.1803 135.4550 4.0242 8.7380 1.3321 1.8260 1.0030 1.0890
7 23.5619 — — 8.9171 9.2180 1.4923 2.4440 1.0074 1.1220
8 26.7035 — — 76.5291 103.5830 1.6049 3.2090 1.0158 1.1520
9 29.8451 — — 80.4533 92.6800 1.6013 3.9900 1.0298 1.1750

10 32.9867 — — 75.6397 83.8530 1.5731 4.7140 1.0508 1.1910
11 36.1283 — — 71.2762 76.5620 1.7623 5.3280 1.0791 1.2050
12 39.2699 — — 66.7072 70.4380 2.2091 5.8200 1.1138 1.2340
13 42.4115 — — 61.9115 65.2200 2.9443 6.2270 1.1521 1.3040
14 45.5531 — — 57.6457 60.7230 4.2292 6.5440 1.1905 1.4360
15 48.6947 — — — — 6.3361 6.6620 1.2253 1.6250

Note: ∗Exact solution of Euler–Bernoulli beam theory [Lee and Schultz (2004)].

frequencies. Furthermore, the results obtained using the K-beam-DSG element are
consistently more accurate than those obtained using the original K-beam. Using
only four elements, the DSG K-beam element can predict the first two natural fre-
quencies within 5% accuracy while the original K-beam element can only predict
one natural frequency. Using 32 elements, the present element can predict the first
15 natural frequencies with an error of less than 0.5%.

Table 10, however, indicates that the accuracy deteriorates considerably when
the beam becomes very thin. Using a mesh of four elements, only the first natural
frequency is predicted accurately. Using the same mesh, the original K-beam element
gives erroneous results due to shear locking. For this very thin beam, the K-beam-
DSG P3-3-QS element needs a mesh of 32 elements to obtain reasonable results for
high natural frequencies. As in the case of the thick beam, in this case the perfor-
mance of the DSG element is also better than that of the original K-beam element.

5.2.2. Thick simply supported beam

To assess the performance of the K-beam-DSG P3-3-QS element in comparison
to the exact and consistent Timoshenko beam element developed by Friedman
and Kosmatka [1993] (‘exact’ within static analysis), we adopted the beam prob-
lem as described in the reference. The problem is a simply supported beam with
the parameters b = 0.2, h = 0.2, E = 1, v = 0.3, and L/h = 5. The first six
natural frequencies were calculated using three different meshes, that is, 4, 8, and
20 elements, and then normalized to the first natural frequency based upon the
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Table 11. First six normalized natural frequencies of a thick simply supported beam
(L/h = 5) obtained using the current K-beam-DSG P3-3-QS element and Friedman
and Kosmatka element (F&K) [Friedman and Kosmatka (1993)].

ω/ωT

4 elements 8 elements 20 elements

Mode shape Exact∗ Current F&K Current F&K Current F&K

1 0.9404 1.0003 1.0024 0.9999 1.0006 1.0001 1.0001
2 3.2672 1.0090 1.0281 0.9996 1.0067 0.9999 1.0010
3 6.2514 1.3180 1.0952 1.0019 1.0241 0.9998 1.0038
4 9.4970 1.8297 1.5101 1.0125 1.0550 0.9997 1.0088
5 12.8357 1.4408 1.4682 1.0446 1.0985 0.9997 1.0161
6 16.1981 1.3535 1.2714 1.0727 1.1371 1.0000 1.0258

Note: ∗Timoshenko [1922] as cited in Friedman and Kosmatka [1993].

Euler–Bernoulli beam theory, that is,

ωI =
(π

L

)2

√
EI

ρA
. (39)

The results are presented in Table 11. It can be seen from the table that when only
four elements are used, the current element can predict the first two natural fre-
quencies more accurately than the Friedman and Kosmatka element [Friedman and
Kosmatka (1993)]. When more elements are used, the current element can predict
the first six natural frequencies consistently more accurately than the Friedman and
Kosmatka element.

5.3. Buckling analysis

To study the accuracy and convergence of the K-beam-DSG P3-3-QS element in
predicting the critical buckling load of axially loaded beams, we performed analyses
of simply supported and clamped–clamped beams for a variety of beam length-to-
thickness ratios, that is, L/h = 5, 10, 100, and 1,000, using different meshes of 4,
8, 16, and 32 elements. A comparison is made with the original K-beam P3-3-QS
element. The resulting critical loads (Tables 12 and 13) were normalized to the exact
solution [Bažant and Cedolin (1991) as cited in Kosmatka (1995)], which accounts
for the effect of shear deformation, that is,

Pcr =
π2EI

L2
eff


 1

1 + π2EI
L2

effGAs


, (40)

where Leff is the effective length of the beam (L for simply supported beams, L/2
for clamped–clamped beams).

It is observed from Tables 12 and 13 that all results converged very well to the
corresponding exact solutions. While for the thick beam conditions (L/h = 5 and

1850064-24



2nd Reading

December 12, 2017 13:42 WSPC/0219-8762 196-IJCM 1850064

Kriging-Based Timoshenko Beam Elements with the DSG Technique

Table 12. Normalized critical buckling loads of a simply supported beam obtained using the
K-beam element with the DSG technique and the original K-beam element.

L/h = 5 L/h = 10 L/h = 100 L/h = 1,000
Number of
elements DSG Original DSG Original DSG Original DSG Original

4 0.9986 1.0125 0.9985 1.0417 0.9985 1.2072 0.9985 1.2158
8 0.9997 1.0001 0.9997 1.0002 0.9998 1.0094 1.0002 1.1731

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0002 1.0000 1.0169
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0003

Table 13. Normalized critical buckling loads of a clamped–clamped beam obtained using the
K-beam element with the DSG technique and the original K-beam element.

L/h = 5 L/h = 10 L/h = 100 L/h = 1,000
Number of
elements DSG Original DSG Original DSG Original DSG Original

4 1.1254 1.1157 1.1654 1.3451 1.1850 29.9669 1.1852 2891.6
8 0.9972 1.0012 0.9965 1.0029 1.0043 1.0568 1.0612 5.5373

16 0.9997 1.0000 0.9997 1.0001 0.9997 1.0024 1.0028 1.1160
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 1.0000 1.0034

L/h = 10) the accuracies of the DSG and original elements are comparable, for
the thin beams the performance of the DSG is superior to that obtained using the
original element. For the clamped–clamped beam with L/h = 100 and L/h = 1,000
modeled using four elements, the results obtained from the original K-beam element
present large errors because of the shear locking.

6. Conclusions

The DSG technique has been applied in the framework of Kriging-based Timo-
shenko beam elements in an attempt to eliminate shear locking. The essence of the
technique is to replace the original kinematic shear strain with a substitute shear
strain derived from the interpolation of discrete shear gaps at the nodes in the DOI.
The developed elements, referred to as K-beam-DSG elements, were then tested in
static, free vibration, and bucking analyses. The results showed that the DSG tech-
nique was effective at eliminating the shear locking for the element with a cubic
basis function and three element-layer DOI (P3-3-QS) but was not very effective
for the other K-FEM options. In all cases, the performance of the K-beam elements
was improved by the DSG technique. For a practical range of beam thicknesses,
the K-beam-DSG P3-3-QS element can achieve exceptionally accurate defections,
rotations, bending moments, natural frequencies, and critical buckling loads and
reasonably accurate shear forces with a relatively course mesh. For extremely thin
beams, however, the accuracy may deteriorate and the resulting shear force is not
accurate with a small number of elements. The application of the DSG technique
to the Timoshenko beam model provides understanding and insight regarding its
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effectiveness at eliminating shear locking. Future research may be directed to apply
the DSG technique to Kriging-based shear deformable plate and shell models.
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