
Pasifika C++

AIDAN DELANEY, ALLEN B. DOWNEY, NARENDRA SISODIYA,

TIRTHA P. CHATTERJEE

Pasifika C++

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 2

Contents

1 Why Study Computing? 7
1.1 Objective . 7
1.2 Background . 7
1.3 What is Programming . 8

1.3.1 Formalisation . 9
1.4 What can Computers Do? . 11
1.5 What Computers Can’t Do . 12
1.6 Why C++ . 14
1.7 What we can do now . 16

2 Hello World 17
2.1 Objective . 17
2.2 The Console . 17
2.3 First Program . 18

2.3.1 A Stylistic Note on Whitespace . 20
2.4 What we can now do . 21

3 int and Other Types 23
3.1 Objective . 23
3.2 Simple Types . 23
3.3 Type Errors . 25
3.4 Storage Boxes . 25
3.5 What we can now do . 26

4 Functions 27
4.1 Objective . 27
4.2 Simple Functions . 27
4.3 Signature before use . 28
4.4 Multiple Parameters . 29
4.5 Testing Functions . 30

4.5.1 Test Harness . 30

3

Pasifika C++

4.6 void return . 31
4.7 What we can now do . 32

5 Input and Output 33
5.1 Objective . 33
5.2 Output . 33
5.3 Input . 35
5.4 Testing Input . 36
5.5 What we can now do . 37

6 Branching Computation 39
6.1 Objective . 39
6.2 Static Structure . 39
6.3 Tracing Execution . 41
6.4 Conditional execution . 42
6.5 Alternative execution . 42
6.6 What we can now do . 44

7 Iteration 47
7.1 Objective . 47
7.2 Multiple assignment . 47
7.3 Iteration . 48

7.3.1 The while statement . 48
7.4 for loops . 52
7.5 What we can now do . 53

8 Lists 55
8.1 Objective . 55
8.2 A vector . 55
8.3 Accessing elements . 56
8.4 Better Iteration . 57
8.5 Copying vectors . 58
8.6 Vector size . 58
8.7 Vector functions . 59
8.8 What we can now do . 59
8.9 Objective . 60
8.10 Determinsm . 60
8.11 Statistics . 62

8.11.1 Vector of random numbers . 62

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 4

Pasifika C++

8.11.2 Counting . 63
8.11.3 Checking the other values . 64
8.11.4 A histogram . 65
8.11.5 A single-pass solution . 66

8.12 Random seeds . 66
8.13 What we can do now . 67

9 Provenance 69
9.1 Licence . 69
9.2 GNU GENERAL PUBLIC LICENSE . 69

9.2.1 Preamble . 70
9.2.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION ANDMODIFICATION . 70
9.2.3 NOWARRANTY . 74

10 Pacifika C++ 75
10.1 Building . 75

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 5

Pasifika C++

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 6

1 Why Study Computing?

1.1 Objective

In this chapter wemotivate why we study computer programming.

1.2 Background

There are a lot of interesting things out there in the world. You could learn about magical realism
in literature from Borges’ writings through to Del Toro’s excellent movie Pan’s Labyrinth. Or maybe
you’re interested in how Einstein’s theories of relativity led to Quantum Mechanics. Amidst all of
these interesting topics why choose to study computer programming? I have multiple, and sometimes
contradictory views, on why I like programming. It’s essentially reductionist, to do it correctly requires
great social skills and it represents about 50% of my daily universe. I’ll explain each of these claims in
turn.

Computer programming is reductionist. We study a problem and reduce the problem to it’s bare bones.
As an example, we reduce everything to numbers – we can’t represent the depth and breadth how
much youmight love a pet, but we can represent it on a scale from 0 to 100! A�er reducing the problem,
we then produce a computer program that solves the problem from very basic components. Each time
you write a program it’s like walking into a workshop containing a bunch of steel pipes and a furnace
and being told that you have to build a motorbike. We generally look a problems from the bottom-up;
how can we solve the problemwith the small number of components that are available to us.

By contrast, the people who want us to write programs – employers, family, friends and wider society
– look at things from a top-down perspective. They need to automate some systems in order to
solve a real-world problem. Your employer might want a program to calculate their annual tax bill,
and then automatically transfer the tax payment directly to the tax authorities1. The perspectives of
such stakeholders is almost the opposite of reductionist. It requires thinking about an entire system.
Moreover solving real-world problems develops excellent communication skills in order to tease out
the real issues the stakeholder wants to solve. O�en stakeholders ask for a program to do X when they
1This doesn’t apply in Vanuatu as there is no income tax or corporation tax, but they are being introduced in the near future.

7

https://en.wikipedia.org/wiki/Magic_realism
https://en.wikipedia.org/wiki/Jorge_Luis_Borges
https://en.wikipedia.org/wiki/Guillermo_del_Toro
https://en.wikipedia.org/wiki/Pan%27s_Labyrinth
https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/Quantum_mechanics

Pasifika C++

really want to solve problem Y. Programmers have their own language for describing such things. We
call it the XY Problem.

So far we’ve considered a reductionist bottom-up reason to study programming. We’ve also briefly
discussed how you also how programming can help you to develop great communication skills. My
third reason for studying programming is an argument made by Simon Peyton Jones. He argues that
in the 20th Century we introduced the natural sciences into schools – that is physics, chemistry and
biology – so that all adults would have a good understanding of the physical world in which we live. In
the 21st Century we live much of our day outside the physical world and inside the virtual world2. Many
of our relationships are mediated by social networks – I have good friends who I’ve never seen. Other
simple things in life are also digital, bank transfers can be organised through a web browser and avoid
standing in line in a physical bank. There are growing trends where we use so�ware to solve transport
issues, negating the reasons to cough up $14k on a second-hand Toyota. The virtual world has such a
huge impact on our real-world that it is useful to study programming so that we can understand the
building blocks of the virtual world.

So there are three reasons to study programming; the first because it’s a big box of lego fromwhich
you can build really interesting things, the second because it solves interesting (and not so interesting)
real-world problems that require a lot of communication and the third reason is because it give you a
good understanding of the virtual universe in which we spendmuch of our daily life.

1.3 What is Programming

If you’re still reading you’re either convinced by one of my three reasons for studying programming or
you need the course credit given by passing a programming class. Hopefully it’s the former as intrinsic
motivation is more likely to drive you to success than extrinsic motivation. In both cases you knowwhy
you’re studying programming, the question now becomes “what is programming?”.

In one view, a program is an unambiguous list of instructions. Each time you follow the list of instruc-
tions, you will achieve the same result. The comparison is o�enmade with cooking, where recipes are
o�en shared as a list of instructions. Take for example the instructions for making a chicken lovo or
umu. In the case of lovo youmight get the instructions to:

1. Dig a pit,
2. Build a fire,
3. Carefully place lava rocks over the fire,
4. Light the fire and let it burn down to embers,
5. Season the chicken,

2If you don’t believe me on this, then have a look around and see howmany students think I can’t see them texting under a
desk in your next class.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 8

https://en.wikipedia.org/wiki/XY_problem
https://en.wikipedia.org/wiki/Simon_Peyton_Jones

Pasifika C++

6. Wrap the chicken in banana leaves,
7. Put the wrapped chicken on the hot stones,
8. Cover the food with earth
9. Wait 2 hours, remove chicken and eat!

To most people, the above instructions are enough to make a great dinner. However these instructions
are ambiguous. They don’t say how deep or wide to build the pit. They don’t say how high the fire
should be within the pit. How large should the lava rocks be? Or what do we season the chicken with?
Moreover, if you’ve ever made a lovo or umu you know it’s a lot of e�ort. Too much e�ort to cook a
single chicken so maybe we should also place taro and fish alongside the chicken. The reason that the
instructions can be ambiguous is because you, dear reader, are intelligent enough to fill in the blanks.

Computers, of course, are not intelligent. They cannot fill in any blanks in an explanation. So we
need to present themwith a list of instructions written in an unambiguous language. The process of
producing unambiguous explanations is called proof bymathematicians, but we’ll call it programming.

1.3.1 Formalisation

In order to remove ambiguity from the interpretation of sentences we’re going to abandon the use
of natural language. We won’t try to write our instructions in English, French or Bislama. These are
fantastic languages in which to express love or revolution. However, the very fact that these languages
allow us to express and discuss poorly defined concepts is the very reason that they are unsuitable for
providing unambiguous instructions to amachine. To program a computer we need a formal language,
one in which each word and sentence has a well-definedmeaning.

By writing instructions in a formal language we remove ambiguity from the instructions. It’s also
important to note that we also loose something in translation. A bunch of instructions that describe
making a traditional lovo can be read and understood by any literate person. Lovo instructions written
in an unambiguous language are likely to be very di�icult to read. In order to illustrate this I need to
introduce a problem that is muchmore straightforward thanmaking a lovo. Let’s consider the kids
game hangman.

The game hangman is played by kids in schools all over the world. One student chooses a secret word
and writes a number of dashes on a piece of paper. There is one dash for each letter of the secret
word. The same person also draws a gallows3. A friend then guesses letters of the secret word. If they
correctly guess a letter of the word then the letter is written on a dash in an appropriate position. If
they do not guess correctly then a bit of a stick man is drawn hung on the gallows. The friend wins the
game if they correctly reveal all the letters of the word before the full stick man is drawn on the page.

3The name hangman and drawing a gallows are pretty awful, but then again most kids are awful!

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 9

http://en.wikipedia.org/wiki/taro

Pasifika C++

Our previous paragraph is a reasonable explanation of the game. Again, like our lovo example, you’re
probably able to fill in the bits where I’ve explained it poorly. What if we had to write the instructions of
the game in away that they couldn’t bemisinterpreted? Legal people commonlywrite such instructions:

The game of hangman, herein referred to as THE GAME, is a game for two parties referred to
as THE PLAYER and THE JUDGE.

(a) THE JUDGEwill draw on paper a gallows and below the gallows a series of dashes where
there is one dash for each letter of a secret word.
• THE JUDGE will not prima-facia reveal the secret word to THE PLAYER

(b) THE PLAYER will guess a letter of the secret word and
• if the guessed letter is one ormore letters in the secret word, then THE JUDGEwrites
the guessed letters on top of a dash that is at the same position in the series as the
guessed letter in the secret word.

• otherwise THE JUDGE will draw the next body part of a stick man on the gallows.
(c) the body parts of a stickman are drawn in progression, on per turn, starting with a head,

a body, a le� leg, a right leg, a le� arm and a right arm.
(d) THE JUDGE wins the game if the stick man is drawn before the secret word is revealed.

The legal code for hangman is useful when two players need to argue about the implementation of a
rule. We can still argue about the interpretation of some of the rules; should the judge draw the arm as
an upper arm and lower arm? Can the player guess two letters at a time?4 In our case we want our
rule to be interpreted by a machine that can’t argue about how to implement a rule. We know our
machines have no intelligence. They can simply replace symbols with other symbols

Hopefully you now agree that our natural languages, even when restricted to legal language, are not
precise enough to instruct a dumb computer. We need languages that are un-natural. We need formal
languages that are suited to describing how tomanipulate symbols and “move” symbols around. Such
a language is going to be di�icult to read because of its lack of expressiveness. It doesn’t have the
expressive bandwidth of a natural language.

In a more formal language designed for computation – a programming language – we have to write a
lot of instructions to describe hangman. The instructions might look something like:

1 start program
2 run instructions to construct gallows
3 run instructions to input secret word
4 repeat run instructions to take a turn until the game is over
5 end program

4A solicitor could write these rules in a di�erent way. They could first formalise the definition of a turn and then describe
the progress of the game as a series of turns. In any case the formalisation into legal language adds more complexity
than the informal explanation.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 10

Pasifika C++

6
7 instructions to take a turn
8 ask the player to input a single character
9 read in a single character
10 if the single character is in the secret word
11 then run instructions to uncover characters
12 otherwise run instructions to draw next stroke
13 end instructions to take a turn

I’ve omitted a lot of detail above in order tomake it readable. I’ve also keptmyexample formal language
as close to English as possible. In the C++ programming language the code to start program and
run instructions to construct gallowsmight look like :

1 int main() {
2 construct_gallows();
3 }

It’s a lot more compact thanmy English-like language. It is also muchmore di�icult to read. We want
to learn C++, which I’ll delve into below, but first we’ll look at what computers can do in order to better
motivate why we want to learn such a precise language5.

1.4 What can Computers Do?

It’s obvious that a computer can’t cook a lovo. So why should we bother devising instructions for them
in complicated looking formal languages? Simply put, computers are insanely quick at performing
mathematical operations. So if you can formalise the solution to your problem in termsofmathematical
operations then a computer can solve it quickly. As an example, there are around 3000 sta� at the
University of the South Pacific. To calculate the monthly pay packet for a sta� member might take
a clerical assistant about a minute or two, which is roughly a week of work in total. A computer can
perform the same functions in less than a second. Moreover, if the instructions given to the computer
are correct, then the computer will not make a mistake on any pay packet. From an organisational
point of view this allows us to free sta� from boring repetitive work. We can then use those sta� for
tasks that humans are better suited to, such as teaching or research.

Theexampleof calculatingpaypacketsdemonstrateshowcompletingmathematical operationsquickly
is of use. Some other uses of computers are less clear. Consider the last movie you watched on a
computer. The movie is stored in a file. The file is a sequence of numbers that, roughly speaking, can

5Assuming you’re not already motivated by the huge salaries that programmers command! Or in the immortal words of MC
Solaar “Du cash-money. . . Une voiture rouge. Donne-moi tout ça sinon faut qu’tu bouges”.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 11

Pasifika C++

be interpreted as 25 pictures per second. Each picture states the colour of pixels on the screen. The act
of watching themovie requires a program that interprets the data file and plays the 25 pictures per
second on your screen. Again, we’re only using mathematical operations to calculate colour values
andmoving symbols around inside the memory of the computer.

Youmight not consider the fuel injector of a boat engine to be a job best handled by a computer. It is
the case though that all modern engines use a computer, referred to as the engine control unit. The job
of the engine control unit is o�en to control the timing of firing each cylinder in the engine. In many
cases the control unit can read a stream of numbers provided to it from the engine exhaust and adjust
the engine to run within pre-determined environmental limits. One practical outcome of this approach
is a reduction in the amount of fuel used by an engine. This is something that is simply impractical to
achieve without a computer in control.

So we know that computers are useful for movie night and driving to the movies. You can find other
applications of computers inmedical devices and – obviously – inmobile phones and running the entire
Internet! We know that computers can do a lot, leading to the interesting question asking whether
there are things that computers can’t do?

1.5 What Computers Can’t Do

Computers can be used to solve many problems. Are there problems that computers can’t solve? The
short answer is “yes”, but a longer answer is more interesting. The idea of a computer was defined in
1936 by the mathematician Alan Turing. His idea has three very practical consequences:

1. If it can’t be formalised then it can’t be computed,
2. There are some formalised problems that can’t be computed,
3. There are a large number of practical problems that can be computed but take too long to
compute.

The first is a fairly obvious consequence of the previous discussion on formalisation. Humans can’t
seem to agree on a definition of love or even ofwhat goodmusic is. As these ideas can’t be formalised in
our formal language, then they can’t be computed. The second point is not obvious andwas the central
point of Turing’s definition of computing. There are problems that can be formalised but cannot be
computed on a computer. One of these is themeasure ofminimumamount of information necessary to
construct an original information source. You’ve probably used an approximation to this measurement.
The .zip file format stores information compressed by an algorithm that approximates this problem.
We can’t give you the very smallest .zip file that represents your original information but we can give
you a good guess at it.

The third consequence is again non-obvious but you use it every single day. Almost all encryption

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 12

https://en.wikipedia.org/wiki/Engine_control_unit
http://en.wikipedia.org/wiki/Alan_Turing
http://www.turingarchive.org/browse.php/B/12
https://en.wikipedia.org/wiki/Kolmogorov_complexity

Pasifika C++

on the web, that is HTTPS tra�ic, is based on a problem that can be computed but simply takes too
long to reverse. Another problem, called the travelling salesperson problem (TSP), also illustrates how
some computable problems take too long to compute. The TSP asks us to compute the quickest way
to visit all USP campuses. USP has a on campus in Suva, Lautoka and Labasa in Fiji, it takes 3 hours to
travel between Suva and Lautoka, 16 hours to travel between Suva and Labasa and 26 hours to travel
between Lautoka and Labasa, this is visualised in figure {@fig:tsp}.

Figure 1.1: The travelling salesperson problem

I’ve turned the statement of the problem into a graph. This makes it a bit easier to focus on the actual
problem, not on details such as exactly how we get from Suva to Lautoka. Given this kind of graph the
TSP asks what is the shortest path in the graph that passes through all campuses? We can start in Suva
and end in Lautoka or we can start in Lebasa and end in Suva. In this graph there are 3 combinations6

of starting and ending points:

1. Suva to Lautoka (via Lebasa),
2. Suva to Lebasa (via Lautoka), and
3. Lautoka to Lebasa (via Suva).

For 3 campuses it’s easy to work out which is the shortest route through all. You can probably do it
in your head. As we in more campuses, say Port Vila in Vanuatu and Apia in Samoa, we find that the
number of combinations is huge. Computer Scientists7 have worked out that for 5 campuses there
are 52 × 25 routes to calculate, that’s 800 routes to calculate in total. If we make an assumption that it
takes 1 micro second to calculate a route then, for 5 campuses, it takes less than a second to find the
cost of all routes. That’s great andmuch quicker than a human could do it.

Keep in mind I said that this problem takes a long time to compute. It appears that so-far I’ve not been
telling the truth. Suppose then that we add in all the USP campuses and the costs of travelling (in
6You’ll note that if this graph had a quick way of going from Suva to Lautoka but a slow way of getting from Lautoka to Suva,
then there would be 6 combinations. We’re dealing with the undirected case here.

7All Computer Scientists are awesome people. They’re also very intelligent and witty individuals.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 13

https://en.wikipedia.org/wiki/Travelling_Salesman_Problem

Pasifika C++

time) between each campus. There is one campus in each of 11 countries and then 3 campuses in Fiji, a
grand total of 14. Just for fun we can also add in the University of Auckland as I have some research
colleagues there and Université de la Nouvelle-Calédonie because that covers all the teams that play
in the Suva 7’s Rugby tournament. For 16 campuses of various universities there are a lot of routes to
calculate:

162 × 216 = 16777216.

If we make the same assumption that a route costs 1 micro second to calculate then it will take 16777
seconds, or 279 minutes or 4.65 hours to calculate the correct answer. Again, if we transpose the
problem to the EU, which (currently) contains 28 countries, we find that the TSP between each of
the capital cities in the EU produces 210453397504 combinations or 6.6 years of computation. As the
problem grows in size, the time it takes to solve the problem grows by an unmanageable amount.
This is a direct consequence of Turing’s definition of computation. Interestingly, there is an unproved
hypothesis that says that if you can think of any other way of making a physical machine that can
do computing, then your machine will only ever compute exactly what Turing described. This is the
Church-Turing Thesis.

So we now have reasons to study Computer Science and we have some insight into why we have to
learn a formal language in order to write computer programs. In this book we use C++ as our formal
language. There are other computer programming languages, so why do we learn this particular one?

1.6 Why C++

C++8 is a powerful programming language which has been used in industry for over 30 years. Many of
the so�ware applications that you use day-to-day are written in C++. These include your web-browser
9 and your word-processor 10.

The C++ language is a standard. This means that the great and the good of C++ programming get
together regularly to improve the language. They produce a document that describes the latest version
of C++. The current version of this document is C++17. It’s the version of the standard that was produced
in 2017. We expect the next version of the standard to be agreed in 2020 and it will be called C++20.
I take the view in this book that we only work with modern C++ and in the ways that modern C++
programmers should work. This means that I assume we’re working with, at least, C++14.

Like many programming languages, C++ is written in text files, normally with a .cpp file extension.
8Not to be confused with the Nerd Core rapper MC plus +.
9Each of Firefox, Chrome and Edge are largely written in C++.
10Both Libreo�ice Writer and Microso� Word are written in C++.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 14

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
http://nerdcorerisingmovie.com/mc-plus.html
https://www.mozilla.org/en-US/firefox/new/
http://libreoffice.org/

Pasifika C++

These files simply contain plain-text and you can edit themwith any editor that allows you to open
text (note: this excludes word processors – word processors don’t edit plain text, they’re muchmore
complex than that in order to look like you’re editing an A4 size page.) The C++ files are then compiled
into a program. The understandable C++ is translated into an non-understandable sequence of 1’s and
0’s i.e binary machine code. A compiler translates from C++ to machine code.

With C++ we can choose to use a number of compilers from di�erent vendors. Because of the C++
standard document we have a high guarantee that code that compiles using one compiler will operate
in the same way it does when compiled with another compiler. The main C++ compilers are:

GCC The GNU Compiler Collection contains a very high-performance C++ compiler that runs onmany
operating systems and onmany computer architectures. The Linux kernel and LibreO�ice prefer
to use GCC as they have to run on a variety of platforms. GCC is an open-source project and is
free of cost to download and redistribute.

LLVM The LLVM Compiler Suite also contains a C++ compiler. Google’s Chrome browser prefers this
compiler and it’s the default C++ compiler on Apple systems. LLVM is also open-source and free
of cost.

Visual C++ Microso� have their own C++ compiler that only runs on their Microso�Windows operating
system.

Intel, HP and IBM also have C++ compilers for various systems. O�en these are very specialised high-
performance computing machines. High-performance engineers love C++! Games programmers,
particularly on consoles, also tend to prefer C++. But like everything in computing this is subject to
constant change.

We now know that a compiler is a program that reads a high-level program and translates it all at once,
before executing any of the commands. O�en you compile the program as a separate step, and then
execute the compiled code later. In this case, the high-level program is called the source code, and the
translated program is called the object code or the executable.

As an example, suppose you write a program in C++. Youmight use a text editor to write the program
(a text editor is a simple word processor). When the program is finished, you might save it in a file
named program.cpp, where “program” is an arbitrary name youmake up, and the su�ix .cpp is a
convention that indicates that the file contains C++ source code.

Then, depending on what your programming environment is like, you might leave the text editor
and run the compiler. The compiler would read your source code, translate it, and create a new file
named program.o to contain the object code, or program.exe to contain the executable. (Aside: on
Microso� Windows executable files have the .exe extension, on Unix (on x86) the files do not have to
have a certain extension, but contain what’s known as amagic number, the characters ., E, L’andF’
as the first four characters in the file.)

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 15

http://gcc.gnu.org/
https://llvm.org/
https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B

Pasifika C++

object
code executor

The compiler
reads the
source code...

... and generates
object code.

You execute the
program (one way
or another)...

... and the result
appears on
the screen.

source
code compiler

Figure 1.2: The compilation process

The next step is to run the program, which requires some kind of executor. The role of the executor is to
load the program (copy it from disk into memory) andmake the computer start executing the program.

Although thisprocessmayseemcomplicated, thegoodnews is that inmostprogrammingenvironments
(sometimes called development environments), these steps are automated for you. Usually you will
only have to write a program and type a single command to compile and run it. On the other hand, it is
useful to know what the steps are that are happening in the background, so that if something goes
wrong you can figure out what it is.

1.7 What we can do now

We now have an understanding of the need for computation and we understand the limits of compu-
tation. We write so�ware as a sequence of instructions in a formal language which is compiled into
executable code.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 16

2 Hello World

2.1 Objective

In this chapter we motivate why we use a poor user interface – the console. We also write our first
program.

2.2 The Console

It’s traditional to begin programming by writing a program that prints “Hello, world” on the screen.
We will do this in the most simple way that we possibly can. However, this requires us to use a pretty
ancient way of interacting with a computer. Youmight imagine that opening a window onscreen and
writing “Hello, world” in that window requires a reasonable amount of code. So we’ll avoid using
windows andmouse input. We’re going straight back to the kinds of interfaces everyone used in the
1980’s and that are primarily only used server-side in this decade. In order to use this interface, which
we’ll call the console, I’ll explain some of the features and limitations.

The console is a boring window. You can write text to it, one character at a time and one line at a time.
It is a text-only interface. On Microso� Windows a console is provided by PowerShell on Linux and
other Unix-like systems the console is provided by a terminal emulator as seen in figure {@fig:console}.
The console can trace it’s roots to around 1964, so you can’t expect it to work like the nice interface
that you find on your phone or your desktop computer. The best analogy I’ve found is to think of it like
text messaging1 your computer and the computer responding with a reply text message. The interface
feels clunky and error-prone to modern computer users. We are only using the console because of the
simplicity of writing programs that use it.

1By text messaging I mean Short Message Service (SMS)

17

https://developer.gnome.org/gtkmm-tutorial/stable/sec-helloworld.html.en
https://en.wikipedia.org/wiki/Powershell
https://en.wikipedia.org/wiki/SMS

Pasifika C++

Figure 2.1: Text-only console (image fromWikipedia)

2.3 First Program

Most of our first programwill seem to bemagic. But all of it is understandable if you take time. Just
remember that in C++ each non-whitespace character is important. Whitespace characters are tabs,
spaces and new-lines. Let’s have a look:

1 #include <iostream>
2
3 int main() {
4 std::cout << "Hello, world" << std::endl;
5 return 0;
6 }

The first line #include <iostream> is a direction to bring functionality for writing to the console
into our program. The iostream functionality defines std::cout and std::endl and the weird <<
thing (called the ostream operator). We’ll return to understanding exactly what thesemean a little later.
First I’d like to introduce main.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 18

https://commons.wikimedia.org/wiki/File:Version_7_UNIX_SIMH_PDP11_Kernels_Shell.pdf

Pasifika C++

All C++ programs start in a function called main. This is something defined by the C++ standard. It could
have been called start or begin_here, but it wasn’t. For traditional reasons the starting point of a
C++ program is called main. It’s not called Main, which is di�erent from main. Almost all programming
languages, including C++, are case-sensitive. So the function name Main is not the function named
main because the initial letters di�er in capitalisation. I’ll repeat that each non-whitespace character
in a C++ program is important.

The main function starts at the opening curly brace { and ends at the closing curly brace }. In program-
ming we o�en use brackets, so we have to refer to them correctly. Our program uses

parentheses (is a le� parenthesis and) is a right parenthesis. You might commonly call these
brackets, but programmers use the technical names for them.

braces we’ve already seen { and } referred to as braces or curly braces.
angular brackets the < and > characters are le� and right angular brackets respectively.

In addition to the various types of brackets our program contains colons, :, and semi-colons, ;. It’s
easy to confuse : and ;.

Now that we’ve gotten all that out of the way, we can examine the body of the main function (the two
lines between the curly braces). The first of these two lines is the most interesting. The line

1 std::cout << "Hello, world" << std::endl;

says a lot, it directs – using the ostream operator << – the string of text, “Hello, world”, followed by an
end of line character, std::endl to the console. The console is represented by std::cout. We may
think of std::cout being the standard console output. Keep in mind that “Hello, world” is a string.
We will look at string, int and some other types in the later section int and Other Types.

The << operator makes it easy(ish) to sendmore interesting information to std::cout:

1 std::cout << "Hello, world " << "it is today" << std::endl;

or

1 std::cout << "Ireland: " << 23 << " Fiji: " << 20 << std::endl;

we can output strings and numbers2.

There’s a strange looking character, , in the above string. This character is o�en used in programming
manuals to indicate the presence of a space. The character draws your attention to the whitespace
that wemight otherwise ignore.

2Which also reminds Fijians of the last scoreline between Ireland and Fiji.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 19

Pasifika C++

Finally, out first program contains the line return 0. All C++ programsmust return a number at the
end of their main code. If the program has had no errors, it must return 0 to the operating system. As a
computer user you never see this number. As a computer programmer this return number provides a
lot of information to me. Let’s see an example on the Unix terminal.

1 # Print out the files in this directory
2 $ ls
3 ...
4 # Print out the return code
5 $ echo $?
6 0
7 # Make a mistake with the ‘ls‘ command
8 $ ls moo
9 ls: cannot access ’moo’: No such file or directory
10 # Print out the return code again
11 $ echo $?
12 2

In the above examplewe can see thatwhenwe run thelsprogramcorrectly it returns0 to the operating
system. We can see this 0 on a Unix by asking the command interpreter to echo $?. When we run ls
and it generates an error we can see that it returns 2 to the operating system. As a programmer I can
look up this return code in a manual to further diagnose why the problem occurred.

Once we have a return 0 as the last line of mainwe canmostly ignore this detail. I’ve gone into an
explanation of these details because it demonstrates one of themany di�erences between an advanced
computer user and a programmer. As a programmer you have to have a deeper understanding of the
operating system on which you’re running. You will have to appreciate entire computer systems at a
deeper level.

2.3.1 A Stylistic Note onWhitespace

Programming style is vitally important. Our first program could also be written as follows:

1 #include<iostream>
2 int main(){std::cout<<"Hello, world"<<std::endl; return 0;}

Both programs do the same thing. However, one is readable by a human and the other is very di�icult
to read. There are some common styles for writing a program and I suggest you be consistent in your
application of a style. I tend to write C++ where I indent code using 4 spaces (no tabs). If you use spaces
to indent your code, then do not mix in tab characters!

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 20

Pasifika C++

I use newlines between statements, so thestd::cout above and thereturn statement should appear
on separate lines.

2.4 What we can now do

At the end of this chapter we can write a long main function which generates lots of output to the
console.

1 #include <iostream>
2
3 int main() {
4 std::cout << "Hello";
5 std::cout << " this is Nuku’alofa calling." << std::endl;
6 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 21

Pasifika C++

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 22

3 int and Other Types

3.1 Objective

In this chapter we introduce the ideas of types, values and variables which are fundamental to all
programming languages.

3.2 Simple Types

At a fundamental level in computers all information is represented as sequences of 1’s and 0’s. Take, for
example, the sequence 01000001. If we interpret that sequence as a whole number then it represents
the number 65. However, if we interpret the same sequence as a printable character, then it represents
the character “A”. Also, there are operations that we can perform on whole numbers, such as multipli-
cation, that don’t make sense to perform on characters. So, types will allow us to organise our data
and to ensure that we only perform operations that make sense on that data. We have seen two types,
int and string. I’ll explain these now and add in some other basic types.

In C++ we have a type that represents whole numbers. That type is int, short for integer. It represents
positive and negativewhole numbers. So−256, 0 and 1024 are examples of ints. I can create a storage
space to hold an int inside a function:

1 int main() {
2 int x = 42;
3 return 0;
4 }

In the above code, we create a new storage space called x. The storage space can only hold whole
numbers. In this case I have assigned the value 42 to the storage space called x. I can also change the
number in the storage space.

1 int main() {
2 int x = 42;
3 x = -1;

23

Pasifika C++

4 return 0;
5 }

The first statement in the main function int x = 42; does exactly what we’ve previous seen. The
second line, x = -1 overwrites the value 42 in storage space x with the value −1. When we first
mention xwe have to tell the computer that we want x to be an int. On subsequent uses we don’t
have to tell the computer the type. The C++ compiler keeps track of that kind of information for us.
Let’s use the same pattern to construct storage spaces for other types.

I can store a character:

1 int main() {
2 char c = ’A’;
3 return 0;
4 }

In this code we create a storage space, called c, to store a char. Like int is a shortened form of integer,
the word char is shortened from character. I’ve also had to put the “A” character in single quotes. This
is part of the C++ language, characters are single letters and must be surrounded by single quotes.
Recall from our introduction that C++ is a formal language. One consequence of this is that we are
restricted in howwe write things.

There are two other interesting types, the first is string and the second is float. A float represents a
number containing a decimal point. There are technical limitations to what floats can represent, so
you can’t treat them as precisely equivalent to decimals that you know and love frommaths. For all
the calculations we do in this book an int or a float is su�icient.

Let’s write a more complex program that uses string and float. In this program each string of
characters is surrounded by double quote marks. Moreover, the storage places in this program have
more descriptive names than “c” or “x” used above. It is good to use descriptive names for your storage
boxes.

1 #include <iostream>
2 #include <string>
3
4 int main() {
5 std::string name = "Hiro Protagonist";
6 float height = 183.5;
7
8 std::cout << name << " is " << height << "cm tall." << std::endl;
9 return 0;
10 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 24

Pasifika C++

The cool thing about the above code is that it uses functionality to print the values stored in name and
height to the console. You’ll also notice that the type of float is just float but the type of a string is
std::string. In C++ int, char and float are part of the core language but std::string comes
from the standard library: hence the std:: prefix on the type name.

3.3 Type Errors

Types are an incredibly useful feature of programming languages. By enforcing type checking the
compiler can let the programmer know that they’vemade an error in writing their code. As an example,
it makes no sense to try and store a string in a storage box that should contain an int:

1 int main() {
2 int age = "seventeen";
3 return 0;
4 }

This error generates the rather cryptic output from a compiler:

1 type_errors.cpp: In function ’int main()’:
2 type_errors.cpp:2:13: error: invalid conversion from ’const char*’ to ’

int’ [-fpermissive]
3 int age = "seventeen";
4 ^~~~~~~~~~~

Type errors are frustrating when you’re learning to program. But they’re less frustrating than speaking
to an irate customer who just had your program fail because of a type error! It is useful to deliberately
introduce some errors into a working program so that you can get used to the way compilers report
errors.

3.4 Storage Boxes

Thus far I’ve used the term storage box to describe howwe store values of a given type. We need to
develop amore precise terminology in order to describe exactly what is going on here. The termwe
use is variable. In the following code we declare a variable of type int.

1 int main() {
2 int my_variable;
3 return 0;
4 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 25

Pasifika C++

We can, as we have seen, declare a variable and initialise it at the same time:

1 int main() {
2 int my_variable = 42;
3 return 0;
4 }

Or we can declare it in one statement and initialise it in another:

1 int main() {
2 int my_variable;
3 my_variable = 42;
4 return 0;
5 }

If we try to use a variable before we have declared it, then we are in violation of the C++ language.
When we violate the language our compiler generates an error.

3.5 What we can now do

We can now create variables of di�erent types and output them to the console:

1 #include <iostream>
2
3 int main() {
4 std::string university_name = "University of the South Pacific";
5 int founding_year = 1968;
6 int age = 2018 - founding_year;
7
8 std::cout << university_name << " was founded in " << founding_year

<< std::endl;
9 std::cout << "It is " << age << " years old." << std::endl;
10 return 0;
11 }

We can create di�erent instances of the program for other Universities or companies.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 26

4 Functions

4.1 Objective

In the last chapter we introduced types. We now showhow to pass instances of types around a program.

4.2 Simple Functions

We have seen an example of a function. The main function is the starting point of every application.
We can write other functions too. These are vitally important to help us organise the structure of our
application. I’m going to write a stupid function just to demonstate the concept. All functions have
a name, and this function is called zero. We can call our zero function from another function, say
main, and it will return the value 0.

1 int zero() {
2 return 0;
3 }
4
5 int main() {
6 int z = zero();
7 return 0;
8 }

So the above progam achieves nothing meaningful except that it demonstrates a simple function. It
doesn’t produce any visible output, but it does run. If we start the execution of the program from main

we find that it creates a variable called z of type int. The variable z is assigned a value that is returned
from the call to the function named zero.

The signature for the function called zero is given by int zero(). The signature provides a lot of
information about the function. The int part of the signature tells us that zero returns a value of type
int. The parentheses tells us that when we call the function zerowe don’t have to pass it any further
information.

27

Pasifika C++

We can write a more useful function that multiplies a value by itself. It’s normal to call this function
square! If we want square to multiply any int by itself then we have to write the function so that it
can be passed a copy of an int:

1 int square(int x) {
2 return x*x;
3 }

The signature for square is di�erent from zero. The signature int square(int x) tells us that the
function is called square and it returns an int. The interesting bit of square is within the parentheses.
The int x tells us that wemust pass a copy of an int into the function square. Inside the function
square the passed in intwill be called x. This allows us to multiply x by itself: x*x. The value of x*x
is then returned from the function.

We can call square from main in the same way that we called zero from main:

1 int main() {
2 int s = square(7);
3 return 0;
4 }

4.3 Signature before use

Recall that we have to declare a variable before we use it:

1 int main() {
2 int x = 0;
3 x = 1;
4 return 0;
5 }

as

1 int main() {
2 x = 1;
3 int x = 0;
4 return 0;
5 }

generates a compiler error. We similarly must define a function before we use it. Hence, in the above
examples I’ve defined either int zero() or int square(int x) before they are used in main().

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 28

Pasifika C++

4.4 Multiple Parameters

A function can take more than one parameter passed to it. So for example, I could write a function that
calculates the multiplication of two integers.

1 int mult(int x, int y) {
2 int r = x * y;
3 return r;
4 }
5
6 int main() {
7 mult(8, 9);
8 return 0;
9 }

Again, it’s not a very interesting exampe, but it illustrates our point clearly. Our function is called mult,
it returns an int i.e. a whole number to the calling code. The parameter list for mult states that it takes
a copy of two int values. We call the first passed value x and the second passed value ywithin the
function mult.

Functions can take any number of parameters, but it is unusual to pass in more than four values. If you
find yourself writing functions that take seven or eight parameters youmight think about restruturing
your code.

We canwrite functions that takemultiple parameters, but a function can only ever return a single value.
Consider the equation for calculating the roots of a quadratic equation, a secondary-school favourite!

x = −b±
√

b2 − 4ac

2a

We can turn this into two functions positive_root and negative_root. I’ll present the
positive_root version here;

1 #include <cmath>
2
3 float positive_root(int a, int b, int c) {
4 float x = (-b + sqrt((b * b) - (4*a*c)))/(2*a);
5 return x;
6 }

In this presentation I use the sqrt function from the cmath library. The sqrt function returns the
square root of a value. We can’t write a �unction that returns two floats (in a future chapter we can
return a list of floats).

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 29

Pasifika C++

4.5 Testing Functions

Choose three values you knowwill work in the function, and choose three values you knowwill not
work in the function. In many simple cases there won’t be values that don’t work with the function; in
these cases we use our types to help us. An int ranges from−2, 147, 483, 648 to 2, 147, 483, 647, so
it’s a good idea to check the minumum value, 0 and the maximum value.

Choosing the min andmax values to test comes from the observation that programmers make errors
in boundary cases. What happens if we call square(2147483)? The use of zero as a test value comes
from experience. Again, programmers o�enmakemistakes with zero values. In the case of strings we
might use "", a string containing no characters as an example input that is allowed but wemay not
expect.1

If your function accepts an int parameter then you’re allowing any possible integer input. If you
accept a string as a parameter, then you’re allowing every possible string. There exists a big list
of naughty strings whcih can break somemore advanced applications. The list is available at https:
//github.com/minimaxir/big-list-of-naughty-strings and youmay wish to examine it. Do note, the list
contains swear words and words of an innapropriate nature for testing purposes.

4.5.1 Test Harness

If you’re choosing three valid test values and three invalid test values it is useful to think about how to
put them into your application. Here’s a straightforward pattern to follow:

1. Given a function with name foo.
2. Write another function called test_foo

• Use assert to validate your test cases.
3. Run all test functions at the start of main.

So suppose we have our square function above wemight also have:

1 #include <cassert>
2
3 void test_square() {
4 int test_value1 = -2;
5 int test_value2 = 3;
6 int test_value3 = 100;
7
8 int minimum_int = -2147483648;
9 int maximum_int = 2147483647;

1If you’re a maths person, the set of strings in programming form a Monoid under concatenation where the empty string is
the identity value.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 30

https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings

Pasifika C++

10 int zero = 0;
11
12 assert(4 == square(test_value1));
13 assert(9 == square(test_value2));
14 assert(10000 == square(test_value3));
15
16 assert(0 == square(minimum_int));
17 assert(1 == square(maximum_int));
18 assert(0 == square(zero));
19 }
20
21 int main() {
22 // Tests
23 test_square();
24
25 // Main Code
26 int x = square(2);
27 std::cout << x << std::endl;
28 }

4.6 void return

Functions return values. This makes it possible to test them. It’s also possible to write a function
that doesn’t return a value. For example, if we wanted to write a function that only printed out some
information, there would be no need to return a value. Such a function has a void return type:

1 #include <iostream>
2
3 int i_return_seven() {
4 return 7;
5 }
6
7 void i_return_nothing() {
8 std::cout << "You called a function" << std::endl;
9 }
10
11 int main() {
12 i_return_seven();
13 i_return_nothing();
14 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 31

Pasifika C++

The example above has two simple functions, one called i_return_seven which, unsurprisingly,
returns the value 7. The function i_return_nothing has a void return type. So it does not return
any value but it has some side-e�ects such that it prints some information to the console. A function
that has a void return type, does not need a return statement at the end.

4.7 What we can now do

We can now break our program down into di�erent functions:

1 #include <iostream>
2
3 int calculate_age(int founding_year) {
4 return 2018 - founding_year;
5 }
6
7 void print_information(string university_name, int founding_year) {
8 int age = calculate_age(founding_year);
9 std::cout << university_name << " was founded in " << founding_year

<< std::endl;
10 std::cout << "It is " << age << " years old." << std::endl;
11 }
12
13 int main() {
14 int founding_year = 1968;
15 print_information("USP", founding_year);
16 return 0;
17 }

Using functions allows is to write smaller blocks of code. These are easier to test!

By breaking your code down into small functions (let’s say 10 lines maximum as a rule-of-thumb) you
willwrite higher-quality code.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 32

5 Input and Output

5.1 Objective

We look at prompting users for input and processing that input.

5.2 Output

Wehave already seen how to output to the console. This was introduced in our “Hello, world!” program.
Output to the console directs strings and ints to cout. This is useful to, for example, print current
exchange rates to the screen:

1 #include <iostream>
2
3 void print_fjd() {
4 std::cout << "FJD$" << 1 << " is EUR" << 0.4076 << std::endl;
5 }
6
7 void print_vatu() {
8 std::cout << 1 << "VT is EUR" << 0.0076 << std::endl;
9 }
10
11 void print_sat() {
12 std::cout << "SAT$" << 1 << " is EUR" << 0.33143 << std::endl;
13 }
14
15 int main() {
16 print_fjd();
17 print_vatu();
18 print_sat();
19 return 0;
20 }

We could also have structured this program as:

33

Pasifika C++

1 #include <iostream>
2
3 void print_with_pre_symbol(
4 std::string symbol, float eur_value) {
5 std::cout << symbol << 1;
6 std::cout << " is EUR" << eur_value << std::endl;
7 }
8
9 void print_with_post_symbol(
10 std::string symbol , float eur_value) {
11 std::cout << 1 << symbol;
12 std::cout << " is EUR" << eur_value << std::endl;
13 }
14
15 int main() {
16 print_with_pre_symbol("FJD$", 0.4076);
17 print_with_post_symbol("VT", 0.0076);
18 print_with_pre_symbol("SAT$", 0.33143);
19 return 0;
20 }

In fact there are an infinite number of ways of writing the same program1. The first version of our
currency printing function is arguably easier to read. The second version is arguably easier to extend.
As a rule-of-thumb I prefer ease of reading over ease of extension. The logic here is that youwill have
to read your own code it’s only a possibility that you might have to extend it. In any case, if we need to
extend our functions it’s easy to rewrite them then.

We can also print howmany Euro wemight get for FJD$100:

1 #include <iostream>
2
3 int main() {
4 float fjd_value = 100;
5 float eur_value = fjd_value * 0.4076;
6
7 std::cout << "FJD$" << fjd_value << " is worth EUR" << eur_value <<

std::endl;
8 return 0;
9 }

1This is one of the reasons that grumpy professors suspect plagiarism when two students hand up code with the same
structure having only di�erent variable and function names!

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 34

Pasifika C++

But every time we want to find out howmany hard earned FJD we need to convert into holiday money
we’d have to modify the source code. This makes the program very di�icult to use. Surely there must
be some way of taking that value in from the user?

5.3 Input

We’ve done console output and you’ve seen how it’s not like the nice UIs you find on your phone.
Console input is going to be similarly clunky. The only advantage is that it is easier to write the code.
The major disadvantage is that this simply isn’t how we write programs intended for normal users
to use. It follows that you are probably not used to this mode of input and your mental model of a
computer doesn’t fit with console input. Let’s just stick with it for the moment though.

To read in an integer from the console – which is almost always connected to a keyboard – we use
the istream operator denoted >> i.e. the opposite direction of the ostream operator. Like cout, the
console input exists in the std namespace so its full name is std::cin.

1 #include <iostream>
2
3 int main() {
4 int fjd_value;
5 std::cout << "How many FJD to convert to EUR? ";
6 std::cin >> fjd_value;
7 std::cout << "You have chosen to convert FJD$" << fjd_value << std::

endl;
8 return 0;
9 }

If we wanted to read in a string rather than an int then we would >> into a string shaped hole:

1 #include <iostream>
2
3 int main() {
4 std::string currency;
5 std::cout << "What is your favourite currency? ";
6 std::cin >> currency
7 std::cout << "Your favourite currency is " << currency << std::endl;

That seems straightforward! To read in an intwe std::cin >> into an int variable. To do the same
for stringwe std::cin >> into a string variable. What happens though if you type the character
“a” as an input for an int?

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 35

Pasifika C++

It’s useful to write yourself a suite of input functions, such as:

1 int get_int() {
2 int x;
3 std::cin >> x;
4 return x;
5 }

Again, we apply the rule-of-thumb to write small functions. This will serve us very well in future
chapters.

5.4 Testing Input

Here be dragons! Any time you ask a user to do something, they will do something you have not
previously considered. Remember they’re a creative bunch out there. We can’t yet write code that
tests the get_int() function from above. But recall another rule-of-thumb about having three values
you expect to work and three values you don’t expect to work. You can document these values in a
comment!

1 /** Gets an ‘int‘ from cin.
2 *
3 * | Expected Input | Result |
4 * |-------------------|----------------|
5 * | -1 | -1 is returned |
6 * | 0 | 0 is returned |
7 * | 1 | 1 is returned |
8 * | ’x’ | unknown |
9 * | "three" | unknown |
10 * | "" (empty input) | unknown |
11 */
12 int get_int() {
13 int x;
14 std::cin >> x;
15 return x;
16 }

This is good documentation for the poor programmer who has to come along later and use your code.
This poor programmer is o�en you! Just a few weeks later a�er you’ve already forgotten the details of
how the function works. Your documentation can help yourself. I will o�en put a FIXME beside the
inputs with unknown results. This encourages me to go back later and ensure that the code only ever
returns valid ints.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 36

Pasifika C++

We’ve uncovered a huge gap in our knowledge. Though we can now take in some input, we don’t know
how to check if the input is valid or not. It turns out that checking conditions is a useful thing to be
able to do. We will study conditionals in the next chapter.

5.5 What we can now do

We can now read input values from the console.

1
2 int read_int() {
3 int val;
4 std::cin >> val;
5 std::cout << "You input the value " << val << std::endl;
6 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 37

Pasifika C++

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 38

6 Branching Computation

6.1 Objective

Wewant to introduce multiple decision points into our computations.

6.2 Static Structure

So far we have only written straight line code. This is code that starts, executes each line sequentially,
and ends. Take a cut down version of the example from our previous chapter:

1 #include <iostream>
2
3 void print_fjd(int fjd_value) {
4 std::cout << "FJD$" << fjd_value << " is EUR" << (fjd_value * 0.4076)

<< std::endl;
5 }
6
7 int main() {
8 int fjd_amount = 100;
9 print_fjd(fjd_amount);
10 return 0;
11 }

This code can be represented as two flowcharts.

39

Pasifika C++

print_fjd

return 0

main

Declare and assign
variables

end

print_fjd

Show
message

end

{@fig:straight-
line-code}

In figure@fig:straight-line-codewe see a representation of the main function. The main function starts
and then immediately calls the print_fjd function passing in the value 100. In a flowchart the fact
that print_fjd is a function call is depicted using the rectangle with double lined walls on the le�
and right side. The print_fjd function itself has only one block of executable code, represented by
the parallelogram. In my flowchart I’ve summarised the operation of the code in this block rather than
go into the detail about std::cout.

Flowcharts are an excellent tool for starting with a problem statement and breaking it down into
smaller functions. They provide a static view of the structure of so�ware. The static view tends to
ignore the values of variables and values passed to functions – it only shows the structure of the
so�ware. Sometimes we need a more dynamic view of what is happening taking account of the values
of variables. To see this we trace the execution of the so�ware.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 40

Pasifika C++

6.3 Tracing Execution

Tracing the execution of so�ware is the process of stepping through each line of code in a concrete
example. One useful way to trace the execution of code is to start with a table drawn on paper:

function line number variable name details

For our simple program above a full trace through the program starts on line 7. I’ve traced throgh the
execution of this program on paper, as seen in figure @fig:program-execution.

{@fig:program-
execution}

In figure@fig:program-execution I started on line 7 and one column is called fjd_amount as a variable
of that name appears in the main function. On the next line of chode where fjd_amount is declared
and initialised we fill in the value of the variable as 100. Interestingly, the next line, line 9, calls the
print_fjd function. In order to trace this we draw a new grid to keep track of the value of variables in
that function.

This all feels a bit overkill for such simple code. The value of flowcharts and tracing will be seen when

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 41

Pasifika C++

we introduce conditional execution.

6.4 Conditional execution

In order to write useful programs, we almost always need the ability to check certain conditions and
change the behaviour of the program accordingly. Conditional statements give us this ability. The
simplest form is the if statement:

1 if (x > 0) {
2 cout << "x is positive" << endl;
3 }

%The expression in parentheses is called the condition. If it is true, then the statements in brackets
get executed. If the condition is not true, nothing happens.

The condition can contain any of the comparison operators:

1 x == y // x equals y
2 x != y // x is not equal to y
3 x > y // x is greater than y
4 x < y // x is less than y
5 x >= y // x is greater than or equal to y
6 x <= y // x is less than or equal to y

Although these operations are probably familiar to you, the syntax C++ uses is a little di�erent from
mathematical symbols like=, 6= and≤. A common error is to use a single = instead of a double ==.
Remember that = is the assignment operator, and == is a comparison operator. Also, there is no such
thing as =< or=>‘.

The two sides of a condition operator have to be the same type. You can only compare int to int and
float to float. Unfortunately, at this point you can’t compare strings in this manner! There is a way
to compare strings, but we won’t get to it for a couple of chapters.

6.5 Alternative execution

A second form of conditional execution is alternative execution, in which there are two possibilities,
and the condition determines which one gets executed. The syntax looks like:

1 if (x%2 == 0) {
2 cout << "x is even" << endl;

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 42

Pasifika C++

3 } else {
4 cout << "x is odd" << endl;
5 }

If the remainder when x is divided by 2 is zero, then we know that x is even, and this code displays a
message to that e�ect. If the condition is false, the second set of statements is executed. Since the
condition must be true or false, exactly one of the alternatives will be executed.

As an aside, if you think youmight want to check the parity (evenness or oddness) of numbers o�en,
youmight want to “wrap” this code up in a function, as follows:

1 void printParity (int x) {
2 if (x%2 == 0) {
3 cout << "x is even" << endl;
4 } else {
5 cout << "x is odd" << endl;
6 }
7 }

Nowyouhave a function namedprintParity thatwill display an appropriatemessage for any integer
you care to provide. In main you would call this function as follows:

1 printParity (17);

Always remember thatwhen youcalla function, youdonot have todeclare the types of the arguments
you provide. C++ can figure out what type they are. You should resist the temptation to write things
like:

1 int number = 17;
2 printParity (int number); // WRONG!!!

Sometimes you want to check for a number of related conditions and choose one of several actions.
One way to do this is by chaining a series of ifs and elses:

1 if (x > 0) {
2 cout << "x is positive" << endl;
3 } else if (x < 0) {
4 cout << "x is negative" << endl;
5 } else {
6 cout << "x is zero" << endl;
7 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 43

Pasifika C++

These chains can be as long as you want, although they can be di�icult to read if they get out of hand.
Oneway tomake themeasier to read is to use standard indentation, as demonstrated in these examples.
If you keep all the statements and squiggly-braces lined up, you are less likely to make syntax errors
and you can find themmore quickly if you do.

In addition to chaining, you can also nest one conditional within another. We could have written the
previous example as:

1 if (x == 0) {
2 cout << "x is zero" << endl;
3 } else {
4 if (x > 0) {
5 cout << "x is positive" << endl;
6 } else {
7 cout << "x is negative" << endl;
8 }
9 }

There is now an outer conditional that contains two branches. The first branch contains a simple
output statement, but the second branch contains another if statement, which has two branches of
its own. Fortunately, those two branches are both output statements, although they could have been
conditional statements as well.

Notice again that indentation helpsmake the structure apparent, but nevertheless, nested conditionals
get di�icult to read very quickly. In general, it is a good idea to avoid themwhen you can.

On the other hand, this kind of nested structure is common, and we will see it again, so you better get
used to it.

6.6 What we can now do

We can now branch our computations:

1 #include <iostream>
2
3 int read_int() {
4 int val;
5 std::cin >> val;
6 return val;
7 }
8
9 int main() {

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 44

Pasifika C++

10 int fjd_amount;
11
12 std::cout << "Please enter an amount in FJD for conversion to EUR: ";
13 fjd_amount = read_int();
14
15 if(fjd_amount < 0) {
16 std::cout << "You have entered an invalid amount" << std::endl;
17 } else {
18 std::cout << "FJD$" << fjd_amount << " is worth EUR" << (fjd_amount

* 0.4076) << std::endl;
19 }
20 return 0;
21 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 45

Pasifika C++

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 46

7 Iteration

7.1 Objective

In this chapter we introduce loops which allow the repition of blocks of instructions.

7.2 Multiple assignment

I haven’t said much about it, but it is legal in C++ to make more than one assignment to the same
variable. The e�ect of the second assignment is to replace the old value of the variable with a new
value.

1 int fred = 5;
2 cout << fred;
3 fred = 7;
4 cout << fred;

The output of this program is 57, because the first time we print fred his value is 5, and the second
time his value is 7.

This kind ofmultiple assignment is the reason I described variables as a container for values. When
you assign a value to a variable, you change the contents of the container, as shown in the figure:

fred

5

int fred = 5; fred = 7;

fred

5 7

Figure 7.1: Assigning values to a variable

When there are multiple assignments to a variable, it is especially important to distinguish between an
assignment statement and a statement of equality. Because C++ uses the = symbol for assignment, it
is tempting to interpret a statement like a = b as a statement of equality. It is not!

47

Pasifika C++

First of all, equality is commutative, and assignment is not. For example, in mathematics if a = 7 then
7 = a. But in C++ the statement a = 7; is legal, and 7 = a; is not.

Furthermore, in mathematics, a statement of equality is true for all time. If a = b now, then a will
always equal b. In C++, an assignment statement can make two variables equal, but they don’t have to
stay that way!

1 int a = 5;
2 int b = a; // a and b are now equal
3 a = 3; // a and b are no longer equal

The third line changes the value of a but it does not change the value of b, and so they are no longer
equal. In many programming languages an alternate symbol is used for assignment, such as <- or :=,
in order to avoid confusion.

Although multiple assignment is frequently useful, you should use it with caution. If the values of
variables are changing constantly in di�erent parts of the program, it canmake the code di�icult to
read and debug.

7.3 Iteration

One of the things computers are o�en used for is the automation of repetitive tasks. Repeating identical
or similar tasks without making errors is something that computers do well and people do poorly.

The two features we are going to look at are the while statement and the for statement.

7.3.1 The while statement

Using a while statement, we can write a countdown program:

1 void countdown (int n) {
2 while (n > 0) {
3 cout << n << endl;
4 n = n-1;
5 }
6 cout << "Blastoff!" << endl;
7 }

You can almost read a while statement as if it were English. What this means is, “While n is greater
than zero, continue displaying the value of n and then reducing the value of n by 1. When you get to
zero, output the word ‘Blasto�!’”

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 48

Pasifika C++

More formally, the flow of execution for a while statement is as follows:

• Evaluate the condition in parentheses, yielding true or false.
• If the condition is false, exit the while statement and continue execution at the next statement.
• If the condition is true, execute each of the statements between the squiggly-braces, and then
go back to step 1.

This type of flow is called a loop because the third step loops back around to the top. Notice that if the
condition is false the first time through the loop, the statements inside the loop are never executed.
The statements inside the loop are called the body of the loop.

condition

body

falsetrue

Figure 7.2: Structure of a loop

The body of the loop should change the value of one ormore variables so that, eventually, the condition
becomes false and the loop terminates. Otherwise the loop will repeat forever, which is called an
infinite loop. An endless source of amusement for computer scientists is the observation that the
directions on shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loopwill terminate because we know that the value of
n is finite, and we can see that the value of n gets smaller each time through the loop (each iteration),
so eventually we have to get to zero. In other cases it is not so easy to tell:

1 void sequence (int n) {
2 while (n != 1) {
3 std::cout << n << std::endl;
4 if (n%2 == 0) { // n is even
5 n = n / 2;
6 } else { // n is odd
7 n = n*3 + 1;
8 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 49

Pasifika C++

9 }
10 }

The condition for this loop isn != 1, so the loopwill continue untiln is 1, whichwillmake the condition
false.

At each iteration, the program outputs the value of n and then checks whether it is even or odd. If it is
even, the value of n is divided by two. If it is odd, the value is replaced by 3n+1. For example, if the
starting value (the argument passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8,

4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that nwill ever reach
1, or that the programwill terminate. For some particular values of n, we can prove termination. For
example, if the starting value is a power of two, then the value of nwill be even every time through the
loop, until we get to 1. The previous example ends with such a sequence, starting with 16.

Particular values aside, the interesting question is whether we can prove that this program terminates
for all values of n. So far, no one has been able to prove it or disprove it!

One of the things loops are good for is generating tabular data. For example, before computers
were readily available, people had to calculate logarithms, sines and cosines, and other common
mathematical functions by hand. To make that easier, there were books containing long tables where
you could find the values of various functions. Creating these tables was slow and boring, and the
result tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This is great! We can use the
computers to generate the tables, so there will be no errors.” That turned out to be true (mostly), but
shortsighted. Soon therea�er computers and calculators were so pervasive that the tables became
obsolete.

Well, almost. It turns out that for someoperations, computers use tables of values to get anapproximate
answer, and then perform computations to improve the approximation. In some cases, there have
been errors in the underlying tables, most famously in the table the original Intel Pentium used to
perform floating-point division.

Although a “log table” is not as useful as it once was, it still makes a good example of iteration. The
following program outputs a sequence of values in the le� column and their logarithms in the right
column:

1 double x = 1.0;
2 while (x < 10.0) {
3 std::cout << x << "\t" << log(x) << std::endl;
4 x = x + 1.0;
5 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 50

Pasifika C++

The sequence \t represents a tab character. These sequences can be included anywhere in a string,
although in these examples the sequence is the whole string.

A tab character causes the cursor to shi� to the right until it reaches one of the tab stops, which are
normally every eight characters. As we will see in a minute, tabs are useful for making columns of text
line up.

The output of this program is

1 1 0
2 2 0.693147
3 3 1.09861
4 4 1.38629
5 5 1.60944
6 6 1.79176
7 7 1.94591
8 8 2.07944
9 9 2.19722

If these values seem odd, remember that the log function uses base e. Since powers of two are so
important in computer science, we o�en want to find logarithms with respect to base 2. To do that, we
can use the following formula:

log2 x = logex

loge2

Changing the output statement to

1 std::cout << x << "\t" << log(x) / log(2.0) << std::endl;

yields

1 1 0
2 2 1
3 3 1.58496
4 4 2
5 5 2.32193
6 6 2.58496
7 7 2.80735
8 8 3
9 9 3.16993

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 51

Pasifika C++

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base 2 are round numbers. If
we wanted to find the logarithms of other powers of two, we could modify the program like this:

1 double x = 1.0;
2 while (x < 100.0) {
3 std::cout << x << "\t" << log(x) / log(2.0) << std::endl;
4 x = x * 2.0;
5 }

Now instead of adding something tox each time through the loop, which yields an arithmetic sequence,
wemultiply x by something, yielding a geometric sequence. The result is:

1 1 0
2 2 1
3 4 2
4 8 3
5 16 4
6 32 5
7 64 6

Because we are using tab characters between the columns, the position of the second column does
not depend on the number of digits in the first column.

Log tables may not be useful any more, but for computer scientists, knowing the powers of two is! As
an exercise, modify this program so that it outputs the powers of two up to 65536 (that’s 216). Print it
out andmemorize it.

7.4 for loops

The loops we have written so far have a number of elements in common. All of them start by initializing
a variable; they have a test, or condition, that depends on that variable; and inside the loop they do
something to that variable, like increment it.

This type of loop is so common that there is an alternate loop statement, called for, that expresses it
more concisely. The general syntax looks like this:

1 for (INITIALIZER; CONDITION; INCREMENTOR) {
2 BODY
3 }

This statement is exactly equivalent to

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 52

Pasifika C++

1 INITIALIZER;
2 while (CONDITION) {
3 BODY
4 INCREMENTOR
5 }

except that it is more concise and, since it puts all the loop-related statements in one place, it is easier
to read. For example:

1 for (int i = 0; i < 4; i++) {
2 std::cout << count[i] << std::endl;
3 }

is equivalent to

1 int i = 0;
2 while (i < 4) {
3 std::cout << count[i] << std::endl;
4 i++;
5 }

We prefer for loops where the bounds are known, or when we iterate over a structure (see #lists). A
while loop is preferred when we’re waiting for some kind of event to happen.

7.5 What we can now do

We can now repeat instructions.

1 #include <iostream>
2
3 int read_int() {
4 int val;
5 std::cin >> val;
6 return val;
7 }
8
9 int main() {
10 int fjd_amount;
11
12 std::cout << "Please enter an amount in FJD for conversion to EUR: ";
13 fjd_amount = read_int();

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 53

Pasifika C++

14
15 while(fjd_amount < 0) {
16 std::cout << "You have entered an amount less than zero, please

retry: " << std::endl;
17 fjd_amount = read_int();
18 }
19
20 std::cout << "FJD$" << fjd_amount << " is worth EUR" << (fjd_amount *

0.4076) << std::endl;
21 return 0;
22 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 54

8 Lists

8.1 Objective

In this chapter we introduce one type of list. The importance of lists in computer science cannot be
understated.

8.2 A vector

A vector is a list of values where each value is identified by a number (called an index). The nice thing
about vectors is that they can bemade up of any type of element, including basic types like ints and
floats.

The vector type is defined in the C++ Standard Template Library (STL). In order to use it, you have to
include the header file vector:

1 #include <vector>

You can create a vector the same way you create other variable types:

1 std::vector<int> count;
2 std::vector<float> floatVector;

The type that makes up the vector appears in angle brackets < and >. The first line creates a vector
of integers named count; the second creates a vector of floats. Although these statements are legal,
they are not very useful because they create vectors that have no elements (their size is zero). It is more
common to specify the size of the vector in parentheses:

1 std::vector<int> count (4);

The syntax here is a little odd; it looks like a combination of a variable declarations and a function call.
In fact, that’s exactly what it is. The function we are invoking is an vector constructor. A constructor
is a special function that creates new objects and initializes their instance variables. In this case, the
constructor takes a single argument, which is the size of the new vector.

55

Pasifika C++

The following figure shows how vectors are represented in state diagrams:

0 0 0 0

0 1 2 3

count

Figure 8.1: Visualising a vector

The large numbers inside the boxes are the elements of the vector. The small numbers outside the
boxes are the indices used to identify each box. When you allocate a new vector, the elements are not
initialized. They could contain any values.

There is another constructor for vectors that takes two parameters; the second is a “fill value,” the
value that will be assigned to each of the elements.

1 std::vector<int> count (4, 0);

This statement creates a vector of four elements and initializes all of them to zero.

8.3 Accessing elements

The [] operator reads and writes the elements of a vector in much the same way it accesses the
characters in anstring. Aswithstrings, the indices start at zero, socount[0] refers to the “zeroeth”
element of the vector, and count[1] refers to the “oneth” element. You can use the [] operator
anywhere in an expression:

1 count[0] = 7;
2 count[1] = count[0] * 2;
3 count[2]++;
4 count[3] -= 60;

All of these are legal assignment statements. Here is the e�ect of this code fragment:

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 56

Pasifika C++

0 1 2 3

7 1 -6014

count

Figure 8.2: An example vector

Since elements of this vector are numbered from 0 to 3, there is no element with the index 4. It is
a common error to go beyond the bounds of a vector, which causes a run-time error. The program
outputs an error message like “Illegal vector index”, and then quits.

You can use any expression as an index, as long as it has type int. One of the most common ways to
index a vector is with a loop variable. For example:

1 int i = 0;
2 while (i < 4) {
3 std::cout << count[i] << std::endl;
4 i++;
5 }

This while loop counts from 0 to 4; when the loop variable i is 4, the condition fails and the loop
terminates. Thus, the body of the loop is only executed when i is 0, 1, 2 and 3.

Each time through the loop we use i as an index into the vector, outputting the ith element. This type
of vector traversal is very common.

8.4 Better Iteration

The C++11 standard added some syntax that allows more straightforward for loops to be written over
vectors. An example of a C++11 for loop is the following:

1 for(auto c: count) {
2 std::cout << c << std::endl;
3 }

Here we see that

• the syntax of a for loop has been simplified, and

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 57

Pasifika C++

• the use of the auto keyword to deduce the type of c.

The advantage of this newer notation is that we cannot overstep the boundary of the count vector.
Suppose count contains 5 elements. Using the older notation we could write

1 for (int i = 0; i < 6; i++) {
2 std::cout << count[i] << std::endl;
3 }

which is incorrect as it tries to access count[5] which is not an element count. The new notation
protects us programmers frommaking such common errors (yes really! you’d be surprised how o�en
these o�-by-one errors are made).

8.5 Copying vectors

There is one more constructor for vectors, which is called a copy constructor because it takes one
vector as an argument and creates a new vector that is the same size, with the same elements.

1 vector<int> copy (count);

Although this syntax is legal, it is almost never used for vectors because there is a better alternative:

1 vector<int> copy = count;

The = operator works on vectors in pretty much the way you would expect.

8.6 Vector size

There are a few functions you can invoke on an vector. One of them is very useful, though: size().
Not surprisingly, it returns the size of the vector (the number of elements).

It is a good idea to use this value as the upper bound of a loop, rather than a constant. That way, if the
size of the vector changes, you won’t have to go through the program changing all the loops; they will
work correctly for any size vector.

1 for (int i = 0; i < count.size(); i++) {
2 cout << count[i] << endl;
3 }

Though you should use the {#better itreration} example above to iterate over a vector.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 58

Pasifika C++

The last time the body of the loop gets executed, the value of i is count.size()- 1, which is the
index of the last element. When i is equal to count.size(), the condition fails and the body is not
executed, which is a good thing, since it would cause a run-time error.

8.7 Vector functions

The best feature of a vector is its resizeability A vector, once declared, can be resized from anywhere
within the program. Suppose we have a situation where we input numbers from the user and store
them in a vector till he inputs -1, and then display them. In such a case, we do not know the size of the
vector beforehand. So we need wish add new values to the end of a vector as the user inputs them. We
can use then vector function push_back() for that purpose.

1 #include<iostream>
2 #include<vector>
3
4 using namespace std;
5 int main()
6 {
7 vector<int> values;
8 int c,i,len;
9 cin >> c;
10
11 while(c != -1) {
12 values.push_back(c);
13 cin >> c;
14 }
15
16 for(auto i: values) {
17 cout << i << endl;
18 }
19 }

8.8 What we can now do

We can now create a list of values and perform operations on the list:

1 #include <iostream>
2 #include <vector>
3

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 59

Pasifika C++

4 int main() {
5 std::vector<int> fjd_amounts;
6 std::vector<int> eur_amounts;
7
8 fjd_amounts.push_back(0);
9 fjd_amounts.push_back(1);
10 fjd_amounts.push_back(2);
11 fjd_amounts.push_back(4);
12 fjd_amounts.push_back(8);
13
14 for(int fjd: fjd_amounts) {
15 eur_amounts.push_back(fjd * 0.4076);
16 }
17
18 std::cout << eur_amounts << std::endl;
19 return 0;
20 }

1;5002;0c# Random numbers

8.9 Objective

For many practical applications we need to use some randomness. We look at generating random
numbers in C++.

8.10 Determinsm

Most computer programs do the same thing every time they are executed, so they are said to be
deterministic. Usually, determinism is a good thing, since we expect the same calculation to yield the
same result. For some applications, though, we would like the computer to be unpredictable. Games
are an obvious example.

Making a program truly nondeterministic turns out to be not so easy, but there are ways to make
it at least seem nondeterministic. One of them is to generate {pseudorandom} numbers and use
them to determine the outcome of the program. Pseudorandom numbers are not truly random in the
mathematical sense, but for our purposes, they will do.

C++ provides a function called random that generates pseudorandom numbers. It is declared in the
header file cstdlib, which contains a variety of “standard library” functions, hence the name.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 60

Pasifika C++

The return value from random is an integer between 0 and RAND_MAX, where RAND_MAX is a large
number (about 2 billion onmy computer) also defined in the header file. Each time you call random
you get a di�erent randomly-generated number. To see a sample, run this loop:

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 int main ()
6 {
7 for (int i = 0; i < 4; i++) {
8 int x = random ();
9 cout << x << endl;
10 }
11 return 0;
12 }

Onmymachine I got the following output:

1 1804289383
2 846930886
3 1681692777
4 1714636915

You will probably get something similar, but di�erent, on yours.

Of course, we don’t alwayswant toworkwith gigantic integers. More o�enwewant to generate integers
between 0 and some upper bound. A simple way to do that is with the modulus operator. For example:

1 int x = random ();
2 int y = x % upperBound;

Since y is the remainder when x is divided by upperBound, the only possible values for y are between
0 and upperBound - 1, including both end points. Keep in mind, though, that ywill never be equal
to upperBound.

It is also frequently useful to generate random floating-point values. A commonway to do that is by
dividing by RAND_MAX. For example:

1 int x = random ();
2 double y = double(x) / RAND_MAX;

This code sets y to a random value between 0.0 and 1.0, including both end points. As an exercise, you

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 61

Pasifika C++

might want to think about how to generate a random floating-point value in a given range; for example,
between 100.0 and 200.0.

8.11 Statistics

The numbers generated by random are supposed to be distributed uniformly. That means that each
value in the range should be equally likely. If we count the number of times each value appears, it
should be roughly the same for all values, provided that we generate a large number of values.

In the next few sections, we will write programs that generate a sequence of random numbers and
check whether this property holds true.

8.11.1 Vector of random numbers

The first step is to generate a large number of random values and store them in a vector. By “large
number,” of course, I mean 20. It’s always a good idea to start with a manageable number, to help with
debugging, and then increase it later.

The following function takes a single argument, the size of the vector. It allocates a new vector of ints,
and fills it with random values between 0 and upperBound-1.

1 vector<int> randomVector (int n, int upperBound) {
2 vector<int> vec (n);
3 for (int i = 0; i<vec.size(); i++) {
4 vec[i] = random () % upperBound;
5 }
6 return vec;
7 }

The return type is vector<int>, which means that this function returns a vector of integers. To test
this function, it is convenient to have a function that outputs the contents of a vector.

1 void printVector (const vector<int>& vec) {
2 for (int i: vec) {
3 cout << i << " ";
4 }
5 }

Notice that it is legal to pass vectors by reference. In fact it is quite common, since it makes it
unnecessary to copy the vector. Since printVector does not modify the vector, we declare the
parameter const.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 62

Pasifika C++

The following code generates a vector and outputs it:

1 int numValues = 20;
2 int upperBound = 10;
3 vector<int> vector = randomVector (numValues, upperBound);
4 printVector (vector);

Onmymachine the output is

1 3 6 7 5 3 5 6 2 9 1 2 7 0 9 3 6 0 6 2 6

which is pretty random-looking. Your results may di�er.

If these numbers are really random, we expect each digit to appear the same number of times—twice
each. In fact, the number 6 appears five times, and the numbers 4 and 8 never appear at all.

Do these resultsmean the values are not really uniform? It’s hard to tell. With so few values, the chances
are slim that wewould get exactly what we expect. But as the number of values increases, the outcome
should bemore predictable.

To test this theory, we’ll write some programs that count the number of times each value appears, and
then see what happens when we increase numValues.

8.11.2 Counting

A good approach to problems like this is to think of simple functions that are easy to write, and that
might turn out to be useful. Then you can combine them into a solution. This approach is sometimes
called bottom-up design. Of course, it is not easy to know ahead of time which functions are likely to
be useful, but as you gain experience you will have a better idea.

Also, it is not always obvious what sort of things are easy to write, but a good approach is to look for
subproblems that fit a pattern you have seen before.

Back in Section {#loopcount} we looked at a loop that traversed a string and counted the number of
times a given letter appeared. You can think of this program as an example of a pattern called “traverse
and count.” The elements of this pattern are:

• A set or container that can be traversed, like a string or a vector.
• A test that you can apply to each element in the container.
• A counter that keeps track of howmany elements pass the test.

In this case, I have a function in mind called howMany that counts the number of elements in a vector
that equal a given value. The parameters are the vector and the integer value we are looking for. The
return value is the number of times the value appears.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 63

Pasifika C++

1 int howMany (const vector<int>& vec, int value) {
2 int count = 0;
3 for (int i: vec) {
4 if (i == value) {
5 count++;
6 }
7 }
8 return count;
9 }

8.11.3 Checking the other values

howMany only counts the occurrences of a particular value, and we are interested in seeing howmany
times each value appears. We can solve that problemwith a loop:

1 int numValues = 20;
2 int upperBound = 10;
3 vector<int> vector = randomVector (numValues, upperBound);
4
5 cout << "value\thowMany";
6
7 for (int i = 0; i<upperBound; i++) {
8 cout << i << ’\t’ << howMany (vector, i) << endl;
9 }

Notice that it is legal to declare a variable inside a for statement. This syntax is sometimes convenient,
but you should be aware that a variable declared inside a loop only exists inside the loop. If you try to
refer to i later, you will get a compiler error.

This code uses the loop variable as an argument to howMany, in order to check each value between 0
and 9, in order. The result is:

1 value howMany
2 0 2
3 1 1
4 2 3
5 3 3
6 4 0
7 5 2
8 6 5
9 7 2

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 64

Pasifika C++

10 8 0
11 9 2

Again, it is hard to tell if the digits are really appearing equally o�en. If we increase numValues to
100,000 we get the following:

1 value howMany
2 0 10130
3 1 10072
4 2 9990
5 3 9842
6 4 10174
7 5 9930
8 6 10059
9 7 9954
10 8 9891
11 9 9958

In each case, the number of appearances is within about 1% of the expected value (10,000), so we
conclude that the random numbers are probably uniform.

8.11.4 A histogram

It is o�en useful to take the data from the previous tables and store them for later access, rather than
just print them. What we need is a way to store 10 integers. We could create 10 integer variables with
names like howManyOnes, howManyTwos, etc. But that would require a lot of typing, and it would be a
real pain later if we decided to change the range of values.

A better solution is to use a vector with size 10. That way we can create all ten storage locations at once
and we can access them using indices, rather than ten di�erent names. Here’s how:

1 int numValues = 100000;
2 int upperBound = 10;
3 vector<int> vector = randomVector (numValues, upperBound);
4 vector<int> histogram (upperBound);
5
6 for (int i = 0; i<upperBound; i++) {
7 int count = howMany (vector, i);
8 histogram[i] = count;
9 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 65

Pasifika C++

I called the vector histogram because that’s a statistical term for a vector of numbers that counts the
number of appearances of a range of values.

The tricky thing here is that I am using the loop variable in two di�erent ways. First, it is an argument to
howMany, specifyingwhich value I am interested in. Second, it is an index into the histogram, specifying
which location I should store the result in.

8.11.5 A single-pass solution

Although this code works, it is not as e�icient as it could be. Every time it calls howMany, it traverses
the entire vector. In this example we have to traverse the vector ten times!

It would be better to make a single pass through the vector. For each value in the vector we could find
the corresponding counter and increment it. In other words, we can use the value from the vector as
an index into the histogram. Here’s what that looks like:

1 vector<int> histogram (upperBound, 0);
2
3 for (int i = 0; i<numValues; i++) {
4 int index = vector[i];
5 histogram[index]++;
6 }

The first line initializes the elements of the histogram to zeroes. That way, when we use the increment
operator (++) inside the loop, we knowwe are starting from zero. Forgetting to initialize counters is a
common error.

As an exercise, encapsulate this code in a function called histogram that takes a vector and the range
of values in the vector (in this case 0 through 10), and that returns a histogram of the values in the
vector.

8.12 Random seeds

If you have run the code in this chapter a few times, youmight have noticed that you are getting the
same random values every time. That’s not very random!

One of the properties of pseudorandom number generators is that if they start from the same place
they will generate the same sequence of values. The starting place is called a seed; by default, C++
uses the same seed every time you run the program.

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 66

Pasifika C++

While you are debugging, it is o�en helpful to see the same sequence over and over. That way, when
youmake a change to the program you can compare the output before and a�er the change.

If you want to choose a di�erent seed for the random number generator, you can use the srand
function. It takes a single argument, which is an integer between 0 and RAND_MAX.

8.13 What we can do now

We can now create random numbers:

1 #include <iostream>
2 #include <cstdlib>
3
4 int dice_roll() {
5 int number = (random() % 6) + 1;
6 return number;
7 }
8
9 int main() {
10 std::cout << "You roll a " << dice_roll() << std::endl;
11 return 0;
12 }

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 67

Pasifika C++

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 68

9 Provenance

This book is based on “How to think like a computer scientist” which was originally developed in 1999
by Allen B. Downey. Allen is one of those amazingly productive people who shares under free-content
licences. Because of his generosity, others contributed to the book over many years. These include
Narendra Sisodiya, Tirtha P. Chatterjee and Aidan Delaney. This book is a derivative work of “How to
think. . .” and was written to focus on motivation and examples that were of significance to students in
South Pacific countries.

9.1 Licence

As this book is a derivative work of Doweny’s original, it must retain the same licencing terms. The
terms of this licence, the GNU General Public Licence, were developed to ensure that you – the reader –
have the same distribution rights as me – the author. With this book youmay

• make copies and share themwith your friends,
• change the format of the book – if you received it as a web page you’re allowed to transform it
into an ebook,

• make changes to the book once you provide those changes, under the same rights, to anyone
who receives the book from you,

• you are allowed to profit from selling copies of the book, but again, you have to pass on the same
rights to your customers.

The text of the licence is quoted below

9.2 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free So�ware Foundation, Inc.
51 Franklin Street, Fi�h Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

69

Pasifika C++

9.2.1 Preamble

The licenses for most so�ware are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free so�ware–to make sure the so�ware is free for all its users. This General Public License applies to
most of the Free So�ware Foundation’s so�ware and to any other programwhose authors commit to
using it. (Some other Free So�ware Foundation so�ware is covered by the GNU Lesser General Public
License instead.) You can apply it to your programs, too.

When we speak of free so�ware, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free so�ware (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change
the so�ware or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the so�ware, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, youmust give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And youmust show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the so�ware, and (2) o�er you this license which
gives you legal permission to copy, distribute and/or modify the so�ware.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free so�ware. If the so�ware is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by so�ware patents. Wewish to avoid the danger that
redistributors of a free programwill individually obtain patent licenses, in e�ect making the program
proprietary. To prevent this, we havemade it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution andmodification follow.

9.2.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION ANDMODIFICATION

0. This License applies to anyprogramor otherworkwhich contains a notice placedby the copyright
holder saying itmay be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program”means either

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 70

Pasifika C++

the Program or any derivative work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereina�er, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution andmodification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option o�er
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute suchmodifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to
all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in themost ordinaryway, to print or display
an announcement including an appropriate copyright notice and a notice that there is no
warranty (or else, saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print such an announce-
ment, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 71

Pasifika C++

it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Programwith the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of
the following:

a) Accompany it with the complete correspondingmachine-readable source code, whichmust
be distributed under the terms of Sections 1 and 2 above on amedium customarily used for
so�ware interchange; or,

b) Accompany it with a written o�er, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on amedium customarily used for so�ware interchange;
or,

c) Accompany it with the information you received as to the o�er to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable formwith such an o�er, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for makingmodifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from a designated place,
then o�ering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

4. Youmay not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 72

Pasifika C++

is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, fromyouunder this Licensewill not have their licenses terminated
so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free so�ware distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of so�ware distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute so�ware through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 73

Pasifika C++

License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free So�ware Foundationmay publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free So�ware Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free So�ware Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution con-
ditions are di�erent, write to the author to ask for permission. For so�ware which is copyrighted
by the Free So�ware Foundation, write to the Free So�ware Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserving the free status of
all derivatives of our free so�ware and of promoting the sharing and reuse of so�ware generally.

9.2.3 NOWARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPTWHENOTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUTOF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Aidan Delaney, Allen B. Downey, Narendra Sisodiya, Tirtha P. Chatterjee 74

10 Pacifika C++

This book is based on “How to think like a computer scientist” which was originally developed in 1999
by Allen B. Downey. It has beenmodified to include extra background information and examples that
have a Pacific context.

10.1 Building

The Makefile will build pdf, html, and epub targets, provided you have pandoc installed. To get
book-quality output you will also need https://github.com/Wandmalfarbe/pandoc-latex-template.

75

http://pandoc.org/
https://github.com/Wandmalfarbe/pandoc-latex-template

	Why Study Computing?
	Objective
	Background
	What is Programming
	Formalisation

	What can Computers Do?
	What Computers Can't Do
	Why C++
	What we can do now

	Hello World
	Objective
	The Console
	First Program
	A Stylistic Note on Whitespace

	What we can now do

	int and Other Types
	Objective
	Simple Types
	Type Errors
	Storage Boxes
	What we can now do

	Functions
	Objective
	Simple Functions
	Signature before use
	Multiple Parameters
	Testing Functions
	Test Harness

	void return
	What we can now do

	Input and Output
	Objective
	Output
	Input
	Testing Input
	What we can now do

	Branching Computation
	Objective
	Static Structure
	Tracing Execution
	Conditional execution
	Alternative execution
	What we can now do

	Iteration
	Objective
	Multiple assignment
	Iteration
	The while statement

	for loops
	What we can now do

	Lists
	Objective
	A vector
	Accessing elements
	Better Iteration
	Copying vectors
	Vector size
	Vector functions
	What we can now do
	Objective
	Determinsm
	Statistics
	Vector of random numbers
	Counting
	Checking the other values
	A histogram
	A single-pass solution

	Random seeds
	What we can do now

	Provenance
	Licence
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	NO WARRANTY

	Pacifika C++
	Building

