
EFFECT OF DIFFERENT CONCENTRATIONS OF BONNY-LIGHT CRUDE OIL ON ALANINE
KINASE AND ALANINE TRANSAMINASE ENZYME ACTIVITIES IN HETEROBRANCHUS

B/DORSALIS JUVENILES.
Ugwu, L. L. C. \ Nwamba, H. 0.2 and Mgbenka, B. 0.3

1. Department of Animal Production and Fisheries Management, Ebonyi State University, P. M.
B. 053,Abakaliki, Nigeria. E-mail: Ilcugwu@yahoo.com

2. Department Of Applied Biology, Enugu State University Of Science And Technology, Enugu
Nigeria. E-Mail: Honwamba@Yahoo.Com .

3. Department Of Zoology, Fish Nutrition and Agriculture Unit, University Of Nigeria, Nsukka,
Nigeria. E-mail: bo-mgbenka@yahoo. co.uk

Corresponding Author: Nwamba, H. o.
Abstract
The effect of exposing juveniles of Heterobranchus bidorsalis (Geoffroy St. Hilaire, 809) (mean
. weight: 15.02±O.14g) to different concentrations of Bonny-light crude oil (BLCO) on alanine kinase
andalanine transaminase activities were studied. The exposure of the fish to 1.00, 2.00, 4.00,
8.001L-' BLCO and a control (0.OOm1L-') within 4 days toxicity and 42 days recovery periods indicated
thatthe significant increases (P<0.05; P<0.01) in the serum alanine transaminase (HCAT) activities
weredependent on the BLCO concentrations. The reduced SAK and (HCAK) activities noticed within
the first 14 days recovery period implied that the removal of the oil pollutant probably lowered the
pressure on the SAK and HCAK to participate in the metabolism of ingested carbohydrate. The
significant increases in the serum alanine transminase (SAT) and the hepatic cytosolic alanine
transrninase (HCAT) activities in the fish corresponded with the trend shown by the SAK and HCAK
activities. Generally, the increased activities of SAK, HCAK, SAT and HCAT in H. bodorsalis juveniles
inthis study might be due to a shift in the carbohydrate metabolism of the fish caused probably by the
crude oil exposure.
Keywords: Heterobranchus bidorsalis, Bonny-light crude oil, Alanine kinase, Alanine transaminase,
serum, cytosolic.



Materials and Methods
Fifteen (15) aerator-equipped, transparent, plastic aquaria (55x30x30cm3) were randomly

stocked with 300 juveniles of Heterobranchus bidorsalis (mean weight + standard error of mean
(s.e.m.), 15.02±0.14g) at 20 fish/aquarium. The experiment was designed to have 12 aquaria with
251dechlorinated tap water each and which were contaminated with 5ml of Bonny-light crude oil
(BLCO) at 1.00, 2.00, 4.00m1L'1 and 8mlL'1 concentrations. Three (3) aquaria were not
contaminated with BLCO and were left as the controls. Mosquito-mesh nets were used to cover
the aquaria to prevent fish escape.

Two experimental periods were adopted for the study. The toxicity period lasted for 4 days
(96h), while the recovery period (42 days) was monitored forthnightly. At the end of the toxicity
period, the surviving fish and aquaria were washed and replenished with fresh dechlorinated tap
water. A'38% crude protein diet (Tables 1a and 1b) was formulated and fed to the fish at 3% body
weight per day (bw.d') during the 4 toxicity period and 5% bw.d' during the 42 days recover','
period. The filtration systems of the aquaria helped in the collection of faeces and other residues.
Proximate analysis of the experimental diet (Table 1b) was carried out using Windham (1996)
method. Records of the aquarium water temperature (26+0.5°C) and pH (6.60+0.40) were taken
with the aid of a maximum and minimum mercury-in-glass thermometer and a Ph meter (model
Ph-L-2- L) respectively.

Introduction
The degree of exposure of marine organisms to crude oil and its fractions is often assessed

by measuring their body burden of petroleum-related aromatic compounds (ACs) because ACs
are potentially harmful to animals (NRC, 1985). Fish and marine animals extensively metabolise
most ACs in their livers and predominantly excrete them into bile (Varanasi et al., 1989). The
pollution of water sources due to xenobiotics may playa major role in the decline of aquatic
animals. Increasing awareness of the adverse effects of anthropogenic activities and pollution on
aquatic environment has focused interest on health of fish populations and possibilities to utilize
these health parameters for assessment of the quality of aquatic environment (Henry et al., 2004).

The response of aquatic organisms to pollution is given by changes through expressions of
several key enzymes, especially those of biotransformation systems (Ozmen et al., 2005). The
value of tissue enzyme activities in the diagnosis of the effects of pollutants is one of the emerging
areas of interest in aquatic toxicology, monitoring and remediation programmes (Oluah et al.,
2005). The enzyme, esterases has been used as a biomarker for fish exposed to the random use
of insecticides in aquatic systems (Ozmen et a/., 1999; Das and Mukherjee, 2000; Brewer et al.,
2001). Other biochemical markers such as carboxyl esterase (CE), lactate dehydrogenase (LDH),
alanine and aspartate aminotransferase (ALT, AST) are also considered useful to determine the
pollution level of water system (Basaglia, 2000). Some of these enzymes are perceived good
bioindicators for animals chronically exposed to contaminants such as heavy metals and crudeoil
(Almeida et al., 2001 ;den Besten et al., 2001; Mazorra et aI, 2002).

Thirugnam and Forgash (,1997) studies the anti- cholinesterase effect of chloropyrifes to
fish, Fundulus heteroclistis, while Simon et al., (1985) recorded the effect of the exposure of
Cyprinus capio to paraquat on glucose -6- phosphatase and glycogen phosphorylase activities.
Research also showed that a herbicide (Basalin) in contact with fresh water fish, Nemachelinus
sp. affected the activities of lactate dehydrogenase, alkaline phosphastastase and
glutaminpyruvate transaminase in the fish (Rashawar and Lives 1983). Increased alanine
aminotransferases activities were observed in Clarias albopunctatus exposed to copper (Oluah
andAmalu, 1988). Moreover, certain pesticides were observed to inhibit alkaline phosphatase and
glucose -6- phosphatase activities inMytuius vittatus (Verma et al., 1981).

There is a dearth of information on the effect of crude oil on metabolic enzymes of fresh
water fishes in Nigeria, Omoregie et al. (1997), however, reported that the exposure of fish to
crude oil fractions caused changes in the oxygen consumption, tissue glycogen and glucose
levels of the fish. Against this background, this study was designed to investigate the effect of
exposing Heterobranchus bidorsalis juveniles to Bonny-light crude oil on the activities of alanine
kinase and alanine transaminase enzymes in the fish.



Results
Tables 1a and 1b show the gross and proximate compositions of the diet administered to H.

bidorsalis juveniles during the 4 day toxicity and the 42 days recovery periods of the study. Table 2
summarizesthe blood serum and hepatic (liver) cytosolic alanine kinase concentrations in the
experimental fish. Table 3 also summarises the blood serum and hepatic cytosolic alanine
transaminaseconcentrations. Table 4 shows the percent mortality and survival of the fish owing to
theirexposure of different concentrations of BLCO and the control. The control fish recorded lower
concentrationsof serum alanine kinase (SAK) during the toxicity and recovery periods than those
exposedto BLCO concentrations (Tables 3). The SAK concentrations in the fish blood increased
significantly (P<0.05; P<0.01) during the toxicity period as the BLCD concentrations in water
increasedfrom 1.00m1 L" (3.032±0.15m.L"') to 8.00mIL·' (83.20±0.18mIL-1) (Table 2). There were
corresponding increases in the hepatic alanine kinase (HCAK) concentrations in the fish as the
BLGaconcentrations increased from 1.00 to 8.00mIL-1(Table 2).

When the oil pollutant was removed during the 14 days recovery period, both the SAK and
HGAKconcentrations in the fish were reduced by a measure of 20% (Table 2) irrespective of the
BLGc concentrations to which the fishes were exposed. Increase in the concentrations of SAK
andHCAKwere subsequently recorded as the recovery period extended from day 14 to days 42.
Significantvariations (P<0.05; P<0.01) in the SAK and HCAK concentrations in the fish were also
recordedas the fishes recuperated from their exposures to the various BLCO concentrations and
thecontrol (Table 2).

Both the serum alanine transaminase (SAT) concentrations and the hepatic cytosolic
alaninetransaminase (HCAT) concentrations were least in the control fish than in those exposed
to BLCO concentrations (Table 3). The SAT concentration in the fish blood also increased
significantly(P<0.05) during the toxicity period (Table 3) as the concentrations of BLCO increased
from 1.00mIL:' (SAT = 4.44±0.02mIL-') to 8.00m1 L-' (SAT 12.19±0.11 mIL-1). The corresponding
valuesof the HCAT concentrations at this period were 1.00m1 L-' BLCO (HCAT = 6.66±0.04 rn.q')
to8.00mIL-'BLCO (HCAT= 19.35±0.14mg·1) (Table 3).

Twenty percent (20%) reductions in the values of SAT and HCAT concentration in the fish
werealso recorded within the first forthnight (14 days) of the recovery period, irrespective of the
BLGc concentrations applied (Table 3). The concentration of alanine transaminase enzyme,
however,increased as the recovery period extended from day 28 to day 42. Generally, there were
significantvariations (P<0.05) in the SAT and HCAT concentrations in the fish as they recuperated
fromtheir exposures to the various concentrations of BLCO.

Theblood samples were collected by both the cardiac puncture method and the severance
thecaudal peduncle, using disposable hypodermic syringes (Oluah, 1999). The liver was

and washed in distilled water to recover traces of blood. The liver sample was macerated
homogenized as described by Devi et al. (1993). The liver homogenate was centrifuged at
rpm for 15minutes at 4C and the supernatant transferred into clean microfuge tubes. The

""rn,,,,,,,",, were stored at-8°C until enzymatic assays were carried out (Ozemen et aI., 2005). The
samples were similarly centrifuged for 15 minutes at 1000 rmp to obtain the serum. The

mwas also stored at-8°C in clean microfuge tubes.
Total protein concentrations of the liver supernatants and blood serum were determined
ingto the method described by Lowry et al. (1951), using BSA as the standard at 695mm.
Alanine Kinase (SAK), Serum Alanine Transaminase (HCAT) concentrations were

rmined through enzymatic assays. All enzymatic assays were conducted
spectrophotornetrically at appropriate wave lengths, using a microplate reader system

,molecular Devices Corp,. USA) at 25°C at the Bronilla Diagnostic Laboratory Enugu,
eria. Samples were assayed in triplicates and averaged; and the mean + s.e.m. presented.

Records of the percentage mortality (PM) and survival (PS) ofthe fish were taken during the
daystoxicity and 42 days recovery periods thus. The analysis of variance (ANOVA) were used to

analyzethe data for statistical significance (P<O.05).
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The percent mortality (PM) and percent survival (PS) of the fish (Table4) indicated that the

fishes exposedto 4.00 and 8.00mIL·1BLCOconcentrationsdied more and survived lessduringthe
toxicity and the recovery periods of the study. The control fish, however, recorded zero percent
(0.00%)mortalityanda hundred percent (100.00%)survival during both study periods.
Discussion

Fish viscera are known to be a rich source of enzymes, including alanine kinase and
alanine transaminase, many of which present high activity at low concentrations. Uys and Heunt
(1987) characterized pancreatic enzymes, including trypsin, from the sharptooth catfish, Clarias
gariepinus (Burchell, 1822). Trypesin displayed optimal activity at pH 8.20 and at temperatures
ranging from 30°Cto 40°C.The activities of the alanine kinase and alanine transminase enzymes
in H_ bidorsalis juveniles of the present studywere monitored at pH 6.60±0.40 and at temperature
26±0.50C. Fish digestive enzymes exhibit optimal activity at temperatures much higher than the
ambient temperature of fish (Freidon and Janak-Kamil, 2001). Changes in the activity of tissue
glycogen and glucose modulating enzymes have been reported in common carp exposed to
paraquot (Simonet al., 1985).Omoregie et a/. (1997) reportedthat the exposure offish to crudeoil
fractions caused changes in the oxygen consumption, tissue glycogen and glucose levels of the
fish.

The result of this study indicates that the increase in SAK and HCAK activities of H.
bidorsalis juveniles were dependent on the BLCO concentrations to which the fishes were
exposed (Table 2). This result is consistent with the report of Oluah et al. (2005) who obtained
increase in serum and liver lactate dehydrogenase (LDH) activity in Clarias albopunctatus
exposed to increasing concentrations of sublethal gammalin 20 and Acetellic 25EC. Although
Oluah et al. (2005) recorded increase in LDH activity with the duration of exposure of C.
a/bopunctatus to the agrochemical pollutants, this study recorded reduced SAK and HCAK
concentrationswithin 14days (Table2) as the fishes recuperated from the stress of exposing them
to 1.00-8.00mLL'1BLCOconcentrations.

The present result implies that the removal of the oil pollutant from the ambient water
chemistry must have reduced the pressure on the serum and the hepatic (Liver) alanine kinase
activity to participate in the metabolism of the ingested carbohydrate to release energy. This
energywas required by the fish to respond to the infiltratingoil pollutant into the blood stream.The
haematological effects of stress (Scott and Rogers, 1981), starvation (Norman et al., 1980) and
health condition of the fish (Munkittrick and Leatherhead, 1983) consequent upon altered water
chemistry have been studied. Oluah (2001) stated that the alterations of water quality usually
predispose the fish to stress and diseases which as a result, provoke quick responses in the
physiologyof the fish, especially the haematological parameters.

The increases in SAK and HCAK (Table2) and SATand HCAT (Table 3) concentrations in
the fish betweendays 14and42 of this study are consistent with the report of Oluah et al., (2005).
Other workers who recorded similar results include: Christensen et al. (1997) and Devi et al.
(1993) who reported increased muscular LDH activity in brook trout (Salvelinus frontinalis) and
Fiddlercrabs (Uca pugilator) exposed to cadmium respectively.Parathion was also found to elicit
increased LDH activity in rat (Gallo and Lawrky, 1991);while lindane caused a 2-fold increase in
livermyeloperxidaseactivity in rat (Junge et al.,2001).

Boththe alanine kinase and alanine transaminase enzymes must have played useful roles
in the glycolytic pathway of energy metabolism of glucose/glycogen via the blood and the liver of
the fish. Therefore, the increased activities of SAK, HCAK, SATand HCAT in both the serum and
the liver of H_ bodorsalis juveniles of this study are probably indications of a shift in the metabolism
of carbohydrate. This shift must have emanated from the catabolism of glucose and glycogen,
culminating in the release of energy needed for metabolic activities in the fish. Neff andAnderson
(1987) listed some deleterious effects of exposing fish to crude oil contamination to include:
alteration of the immune response mechanism, changes in liver metabolism, haemoragge and
even death. The present results are consistent with the report of these workers since the highest
percentage mortality andthe lowest percentage survival of H. bidorsalis juveniles were recorded
when the effect of the oil pollutant on the ambientwater chemistry was most pronounced. i.e. the
toxicity period.
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Nutrient% Composition

Crude protein 37.58

Ether extract 5.18

Ash 0.48

Dry matter 11.80

Nitrogen free extract 34.46

Total 100.00

Table 1b. Proximate Composition of Experimental Diet.

<Rr~w':::::: :::::!;J lffie:,~-·

1. Vitamin mix provided the following constituents diluted in cellulose (mg/kg of
diet): thiamin, 10, riboflaim 20. pyridoxin, 10; folacin, 5; panothenic acid, 40;
cholin . chloride, 200; niacin, 150; vitamin B12 0.06; retinyl acetate
(500,000Iu/g); 6; menadione N-bisulphate, 80; inositol, 400; biotin, 2; vitamin
C, 200; alpha tocopherol, 50; chlorecalcipherol (1,000,000Iu/g).

2. Contained as g/kg of premix: FeS04.7H20.5; MgS047H20.133;K2S04,329.90;
K1.0.15;MnSo4.H20,0.7;and cellulose 380.97.

Ingredients % Composition

Yellowmaize 9 . 2 6

Soyabeanmeal 5 4.84

Fishmeal 1 . 6. 5

Bloodmeal 1 0.97

Palmoil 5 . 0 0

Salt 0.25

Vitaminmix'O 6 0

Mineralmix" 2. 40

Total 100.00

Table 1a. Gross composition of Experimental Diet
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Table 2. Serum and Hepatic cytosolic Alanine Kinase Concentrations of Bonny light crude oil for
4 days (Toxicity) and 42 days (Recovery) Periods.

BLCO IConcentration (MIL Control (MIL - 1)

Study Duration 1.00 2.00 4.00 8.00 0.00
Period Days

SAK? HCAK2 SAK BCAK SAK HCAK SAK HCAK SAK HCAl(
-

I

Toxicity 4 3.032' 45.48b 42.45b 63.69 63.68d 59.43' 83.20' 124.80g 19.5lf 29.27'
Period 0.15 0.16 0.16 0, 0.16 0.16 OJ2 32 0.14 O.OS

14 24.26' 36. 38b 33.96b 50.95' 47.54d 71J2' 66.56f 99.84g 19.62h 29.3S'
0,11 0.12 0.11 0.15 0.12 0.15 0.15 0.21 0.11 0.09

Recovery 28 25.47' 38.20b+ 3S.66b 53.50' 49.92d 74.S9" 69.89f 104.83& 19.71h 29.56'
Period 0.10 0.13 0.12 0.14 0.13 0.14 0.14 0.23 0.12 0,11

42 29.29& 43.93b 41.01b 61.53t 57.14d 86,12· 80Ji 120.S5g 19.87h 29.6S'
0.13 0.16 0.14 0.16 0.14 0.18 . 0.17 0.28 0,13 0.10

I Bonny-light Crude oil, 2 Serum alanine kinase concentration (U.L"), 3 Hepatic cytosolic alanine kinase
concentration (mg'), Numbers in the same row with similar superscripts are not significantly different
(P>O.05), Numbers in the same with different superscript differ significantly (P<O.05).
able 3. Serum and Hepatic cytosolic Alanine Transaminase Concentrations in H. bidorsalis Juveniles

Exposed to Different concentrations of Bonny-light crude oil for 4 days (Toxicity) and 42 days
(Recover) ) Periods.

BLCO IConcentration (MIL Control (Mll, - 1)

Study Duration 1.00 2.00 4.00 8.00 0,00
Period Days

SAK2 HCAK3 SAK HCAK SAK HCAK SAK HCAK SAK HCAK

Toxicity 4 4.44a 6.66b 6.22 b 933c 8 .71d 13.07" 12.19F 1935& 3 .02H 4.53'
Period 0.02 0.04 0.03 0,05 0,04 0,12 0.11 0.14 0.02 0.03

14 3 .73" 5J3b 4.98c 7 .46d 6,97 e 10.46f 9.75& 15.48h 3 .52' 4 ,62'
O. 02 0.04 0.03 0.04 0.03 0.07 0.10 0.13 0,11 0.02

Recovery 28 3.73" 5 .60b+ 5 .23b 7 .83t 7 J2d 10.24" 16.25f 104.83& 19.71h 29.56"
Period 0.03 0.03 0.02 0,03 0.04 0.06 0.14 0.23 0.12 0.11

42 29.29" 43.93b 41.0 Ib 61.S3t 57.14d 86.12e 80Ji 120.55& 19.87h 29.6S'
0.13 0.16 0.14 0.16 0.14 0.18 0.17 0.28 0,13 0,10

Recovery 3.73" 5,60b S.23b 7.83c 73t 10.24d 16.25" 3.64' 4.83
Period 0.03 0.03 0.02 0.03 0.04 0.06 0.14 0.02 0.03

4.29" 6.44b 6,01b 9.01' 8.42d 12.63" 11.7Sf IS.69g 3.S6h 4.92
0.03 0,04 0.04 0,06 0.05 0,12 0.12 0.15 0,04 0.02

l : ?: : 1:::1: , ::: ;:. ==::; :::: :::::w::t:::(jm}' .. , ,~, "
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