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ABSTRACT 

The antagonistic effect exerted by Saccharomyces cerevisiae against other microbial species 

during wine fermentations was recently ascribed to its capacity to secrete antimicrobial peptides 

(AMPs). The main goal of the present work was to purify, identify and characterize those 

AMPs. Firstly, the AMPs were purified by means of chromatographic techniques (size-

exclusion and ion-exchange) and then characterized regarding their amino acid sequence, 

codifying genes and antimicrobial/biochemical properties. Analysis of the purified AMPs by 

mass spectrometry revealed that the natural biocide is mainly composed by two peptides 

(AMP1 and AMP2/3) derived from the isoenzymes of the glycolytic protein glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). The spectrum of action of the naturally-excreted AMPs, 

which we named saccharomycin, is wide and includes several wine-related non-Saccharomyces 

yeasts, such as Hanseniaspora guilliermondii, Torulaspora delbrueckii, Kluyveromyces 

marxianus, Lachancea thermotolerans and Dekkera bruxellensis, as well as bacteria such as 

Oenococcus oeni. The antimicrobial effect of saccharomycin is significantly higher than that of 

synthetic analogues (AMP1 and AMP2/3) and depends on their complementary action and 

relative proportion. The mode of action of the AMPs was evaluated against sensitive yeast cells. 

The AMPs induce cell membrane permeabilization, loss of pH homeostasis and 

increase/decrease of H+-influx/-efflux. They also induce cell molecular markers typical of death 

by apoptosis in H. guilliermondii. Our work also revealed the accumulation of these GAPDH-

derived peptides on the surface of stationary-grown (48 h) cells of S. cerevisiae, which induce 

death of non-Saccharomyces yeasts (H. guilliermondii and L. thermotolerans) by direct cell-cell 

contact. Finally, S. cerevisiae strains over-expressing these AMPs prevented growth of D. 

bruxellensis in co-fermentations, decreasing the levels of sulphur dioxide needed to control 

wine spoilage. Thus, the potential of these AMPs to be used as biopreservative in wine seems 

promising. 

 

Keywords: Wine microbiology, Saccharomyces cerevisiae; Antimicrobial peptides; yeast-yeast 

interactions; glyceraldehyde-3-phosphate dehydrogenase 
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RESUMO 

O efeito antagónico de Saccharomyces cerevisiae contra outras espécies microbianas durante 

fermentações vínicas foi recentemente atribuído à sua capacidade de excretar péptidos 

antimicrobianos (PAMs). O principal objetivo do presente estudo foi purificar, identificar e 

caracterizar estes PAMs. Primeiramente, os PAMs foram purificados por técnicas 

cromatográficas (exclusão molecular e permuta iónica) e posteriormente caracterizados quanto 

à sua sequência de aminoácidos, aos genes que os codificam e às suas propriedades 

antimicrobianas/bioquímicas. Os PAMs purificados foram, em seguida, analisados por 

espectrometria de massa, revelando que o biocida natural é composto maioritariamente por dois 

PAMs (PAM1 e PAM2/3) originários das três isoenzimas da proteína glicolítica gliceraldeído-

3-fosfato desidrogenase. O espectro de ação dos PAMs naturais, os quais designámos por 

saccharomycin, é amplo e inclui várias leveduras vínicas, tais como Hanseniaspora 

guilliermondii, Torulaspora delbrueckii, Kluyveromyces marxianus, Lachancea thermotolerans 

e Dekkera bruxellensis, assim como a bactéria vínica Oenococcus oeni. O efeito antimicrobiano 

de saccharomycin é bastante mais acentuado do que o efeito dos análogos quimicamente 

sintetizados (PAM1 e PAM2/3) e depende da sua ação complementar, assim como da sua 

proporção relativa. O modo de ação dos PAMs foi analisado em leveduras sensíveis, 

verificando-se que estes induzem permeabilização da membrana celular, perda da homeostase 

do pH e aumento/decréscimo do influxo/efluxo de H+. Verificou-se igualmente, que os PAMs 

induzem morte por apoptose em H. guilliermondii. Descobrimos, ainda, que estes PAMs se 

acumulam na superfície de células estacionárias (48 h) de S. cerevisiae, as quais são capazes de 

induzir a morte de leveduras não-Saccharomyces (H. guilliermondii e L. thermotolerans) por 

contacto celular direto. Por fim, uma estirpe laboratorial de S. cerevisiae foi manipulada 

geneticamente de forma a sobre-expressar cada um dos PAMs, verificando-se que as estirpes 

manipuladas apresentaram um elevado efeito antimicrobiano contra D. bruxellensis, o que 

permitiu reduzir os níveis de dióxido de enxofre normalmente aplicados em vinhos. Assim, a 

utilização destes PAMs como um bioconservante alternativo no vinho parece promissora. 

 

Palavras-chave: Microbiologia enológica; péptidos antimicrobianos; interações levedura-

levedura, gliceraldeído-3-fosfato desidrogenase. 
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RESUMO ALARGADO 

Nas fermentações vínicas espontâneas, as leveduras não-Saccharomyces pertencentes à 

microflora natural dos mostos de uva, tais como Hanseniaspora guilliermondii, Lachancea 

thermotolerans (Klyuveromyces thermotolerans), Kluyveromyces marxianus e Torulaspora 

delbrueckii, são responsáveis pelo arranque da fermentação, crescendo até se atingirem 

concentrações de etanol à volta de 4-5% (v/v). Após esta primeira fase da fermentação, as 

condições do meio tornam-se gradualmente mais hostis e as leveduras não-Saccharomyces 

começam a morrer. Apesar disto, a maioria das estirpes S. cerevisiae é capaz de sobreviver e 

concluir a fermentação. 

A morte prematura das leveduras não-Saccharomyces durante as fermentações vínicas 

tem sido tradicionalmente atribuída à sua baixa capacidade para suportar as condições adversas 

do meio de crescimento. No entanto, durante a última década, vários estudos têm questionado a 

influência destes fatores na morte prematura destas leveduras e outras causas têm sido propostas 

por diferentes autores. Um estudo pioneiro demonstrou que durante fermentações vínicas S. 

cerevisiae excreta péptidos (peso molecular <10 kDa) que induzem a morte de leveduras não-

Saccharomyces. A presente tese teve como principal objetivo purificar, sequenciar e 

caracterizar esses péptidos antimicrobianos (PAMs). Para tal, realizaram-se fermentações 

alcoólicas em mosto sintético com S. cerevisiae e os sobrenadantes resultantes da fermentação 

foram ultrafiltrados e concentrados, utilizando membranas de 10 kDa e 2 kDa. A fração 

peptídica (2-10 kDa) foi, em seguida, purificada utilizando técnicas cromatográficas de 

exclusão molecular e troca iónica. As diferentes frações obtidas em cada passo do processo de 

purificação foram testadas quanto à sua atividade antimicrobiana contra leveduras sensíveis 

(e.g. H. guilliermondii). A fração purificada que apresentou um maior efeito antimicrobiano foi 

analisada por espectrometria de massa (LC-ESI-MS/MS), e revelou conter dois péptidos 

maioritários com as seguintes sequências de aminoácidos: ISWYDNEYGYSAR (PAM1) e 

VSWYDNEYGYSTR (PAM2/3). Estas sequências correspondem a fragmentos das três 

isoenzimas da proteína glicolítica gliceraldeido-3-fosfato desidrogenase (GAPDH).  

O biocida natural contendo os PAMs excretados por S. cerevisiae durante a fermentação 

alcoólica foi designado por saccharomycin e o seu espectro de ação, bem como as 

concentrações inibitórias mínimas (CIMs) e as concentrações que induzem 50 % de redução do 

crescimento (CI50), foram determinados para as leveduras vínicas: H. guilliermondii, T. 
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delbrueckii, K. marxianus, L. thermotolerans e Dekkera bruxellensis. Os resultados mostraram 

que H. guilliermondii, L. thermotolerans e K. marxianus são mais sensíveis aos PAMs, 

exibindo CIMs de 250 µg/ml e CI50 de 80, 65 e 80 µg/ml, respetivamente; enquanto T. 

delbrueckii e D. bruxellensis são mais resistentes apresentando CIMs de 500 e 1000 µg/ml e 

CI50 de 135 e 260 µg/ml, respetivamente. Posteriormente, a atividade antimicrobiana da 

saccharomycin foi comparada com aquela exibida pelos análogos químicos PAM1 (derivado da 

isoenzima GAPDH1) e PAM2/3 (derivado das isoenzimas GAPDH2/3). A ação dos péptidos 

sintéticos foi testada contra H. guilliermondii, utilizando os péptidos em separado e em misturas 

de PAM2/3+PAM1 nas proporções de 1:1, 2:1, 4:1 e 6:1. Contudo, devido à natureza aniónica 

destes PAMs (pI=4.35) não foi possível solubilizá-los em meio YEPD a pH 3.5 (condição 

utilizada nos testes da saccharomycin) mas apenas a pH 6.0. Os resultados mostraram que o 

PAM1 tem um maior efeito antimicrobiano (76% de inibição) do que o PAM2/3 (30% de 

inibição), à mesma concentração (1000 µg/ml). Além disso, verificou-se que a ação conjugada 

dos dois péptidos resulta num maior efeito fungicida (100% de inibição), que é máximo na 

proporção 4:1. Estes resultados sugerem que o biocida natural (i.e., a saccharomycin) deverá ser 

composto por agregados destes PAMs e que algum metal catiónico (e.g. Fe2+ ou Mg2+) presente 

nos mostos de uvas poderá aumentar o seu efeito antimicrobiano e promover a sua solubilização 

a pH acídico (i.e., a pH 3.5).  

O modo de ação dos PAMs foi avaliado em células de H. guilliermondii em termos de 

alterações na permeabilidade da membrana celular (analisado por marcação das células com 

iodeto de propídeo), no pH intracelular (determinado pela técnica Fluorescence Ratio Imaging 

Microscopy) e nos fluxos de protões H+ através da membrana (quantificado pela medição da 

velocidade de acidificação/alcalinização do meio externo). Os resultados mostraram que os 

PAMs induziram a perda da integridade membranar em 77,7% das células incubadas com 1000 

µg/ml de saccharomycin, reduzindo o pHi de 6,5 para 3,5 em 77% das células e o efluxo de 

protões em 75,6 %. 

Avaliou-se ainda o tipo de morte celular (apoptose/ necrose) induzido pelos PAMs. Para 

isso, incubou-se H. guilliermondii na presença dos péptidos sintéticos (PAM2/3+PAM1 numa 

proporção de 4:1) em concentrações sub-letais (i.e. 25, 50 e 100 µg/ml). Verificou-se que os 

PAMs induziram apoptose em 28% das células de H. guilliermondii, nomeadamente através de 

indução da fragmentação do ADN, uma característica típica de apoptose tardia. 
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A capacidade de internalização dos PAMs foi também avaliada em H. guilliermondii e 

D. bruxellensis, incubando estas células (pré-cultivadas e recolhidas em fase exponencial) em 

água e em meio YEPD na presença/ausência de etanol e dos péptidos sintéticos (PAM1 e 

PAM2/3), marcados com um fluorocromo (isotiocianato de fluoresceína). Os resultados 

mostraram que a percentagem de células que internalizaram os péptidos sintéticos foi 

significativamente maior em YEPD (ca 25-30%) do que em água (menos de 10%). A 

internalização dos péptidos não foi afetada pelo etanol, mas antes pelo próprio meio (i.e., água 

ou YEPD). Uma vez que está descrito que a capacidade antimicrobiana de certos PAMs 

aniónicos pode aumentar pela ação de metais catiónicos (e.g. Fe2+ e Mg2+), estes resultados 

sugerem que algum metal catiónico presente no meio YEPD possa ter contribuído para este 

efeito.  

A morte prematura de algumas leveduras não-Saccharomyces durante fermentações 

realizadas com S. cerevisiae foi atribuída por alguns autores a um mecanismo de morte mediado 

pelo contacto direto célula-a-célula com S. cerevisiae. Uma vez que o GAPDH foi encontrado 

na parede celular de S. cerevisiae, colocamos a hipótese de que estes PAMs se poderiam 

acumular na superfície celular de S. cerevisiae e assim induzir a morte das leveduras não-

Saccharomyces por contacto celular direto. Para testar esta hipótese realizaram-se ensaios onde 

se colocaram células de S. cerevisiae, recolhidas respetivamente na fase exponencial (12 h) e na 

fase estacionária (48 h) de crescimento, em contacto direto com células de H. guilliermondii e 

de L. thermotolerans num meio isento de fontes carbonadas (para evitar a produção de 

quaisquer metabolitos) e a elevadas densidades celulares (para promover o contacto celular). Os 

resultados mostraram que as leveduras não-Saccharomyces em contacto direto com células 

exponenciais de S. cerevisiae mantiveram a sua viabilidade celular inalterada durante 30 h, 

enquanto as mesmas leveduras em contacto direto com células estacionárias de S. cerevisiae 

perderam 40-80% da sua viabilidade celular após apenas 5 h. Para confirmar a presença dos 

PAMs na superfície celular de S. cerevisiae, as proteínas de membrana das células exponenciais 

e estacionárias foram extraídas e separadas por cromatografia de exclusão molecular. Uma 

fração peptídica proveniente da superfície celular de células estacionárias de S. cerevisiae 

mostrou bioatividade e foi analisada quer por espectrometria de massa, quer por ensaios 

imunológicos usando um anticorpo policlonal específico (anti-PAM1 e anti-PAM2/3). Os 

resultados mostraram a presença dos PAMs na parede de células estacionárias de S. cerevisiae, 
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mas não de células exponenciais, o que demonstra que uma das razões da morte de leveduras 

não-Saccharomyces por contacto celular direto com S. cerevisiae é induzida pela presença 

destes PAMs na parede celular de S. cerevisiae. 

Na indústria vínica ocorrem grandes perdas económicas devido a contaminações com 

microrganismos indesejáveis. Entre os vários contaminantes, D. bruxellensis é sem dúvida um 

dos mais perigosos. O dióxido de enxofre (SO2) é o conservante químico mais utilizado para 

evitar o crescimento de contaminantes microbiológicos no vinho, nomeadamente de D. 

bruxellensis. Contudo, a adição deste composto em elevadas concentrações deve ser evitada 

devido ao impacto que tem na saúde. Com o propósito de utilizar estes PAMs como 

conservantes alternativos no vinho, ou como coadjuvantes dos conservantes químicos, 

construímos estirpes S. cerevisiae geneticamente modificadas para sobre-expressarem cada um 

dos PAMs (i.e., PAM2/3 e PAM1) em concentrações mais elevadas do que as estirpes 

selvagens. Os níveis de expressão dos PAMs foram analisados por PCR em tempo-real ao longo 

de uma fermentação alcoólica e a sua concentração no meio foi determinada pelo método 

ELISA (Enzyme-linked immunosorbent assay) utilizando um anticorpo policlonal específico. 

As estirpes modificadas mostraram níveis mais elevados de expressão e de produção dos PAMs 

(PAM2/3 e PAM1) do que a estirpe selvagem. De forma a confirmar o efeito antagonístico 

exercido pelas estirpes modificadas, realizaram-se fermentações alcoólicas com culturas mistas 

de S. cerevisiae e D. bruxellensis, utilizando quer as estirpes modificadas, quer a estirpe 

selvagem de S. cerevisiae. Os resultados mostraram que na presença das estirpes S. cerevisiae 

geneticamente modificadas a D. bruxellensis perdeu a sua viabilidade celular, enquanto na 

presença da estirpe selvagem essa levedura foi capaz de crescer. Verificou-se ainda que a 

adição de 1000 µg/ml dos PAMs a vinhos simulados (13% e 14% (v/v) de etanol), 

artificialmente contaminados com D. bruxellensis, permitiu induzir a perda de viabilidade de D. 

bruxellensis em apenas 48 h, permitindo reduzir os níveis de SO2 utilizados até 14,25 mg/l 

(limite legal 150 mg/l). Estes resultados abrem interessantes perspetivas relativamente à 

possibilidade de utilização destes PAMs como bioconservantes alternativos, ou como 

coadjuvantes do SO2, no vinho. 

 

Palavras-chave: Microbiologia enológica; péptidos antimicrobianos; interações levedura-

levedura, gliceraldeido-3-fosfato desidrogenase. 
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AIMS AND ORGANIZATION OF THE THESIS 

 

Framework 

During spontaneous wine fermentations, the indigenous non-Saccharomyces yeasts 

naturally present in grape musts (e.g. Hanseniaspora guilliermondii, Hanseniaspora uvarum, 

Candida stellata, Lachancea thermotolerans, Kluyveromyces marxianus, Torulaspora 

delbrueckii) grow during the first days of fermentation, but when ethanol reaches 

concentrations of 4-5% (v/v) they begin to die-off. Although S. cerevisiae is present in the 

grape musts microflora in lower numbers than non-Saccharomyces yeasts, strains of this species 

are able to ferment grape sugars until exaustion and complete the fermentation process (Du Toit 

& Pretorius 2000).  

Until recently, the selection and use of starter yeast cultures for wine fermentations has 

been limited to strains of S. cerevisiae. However, some non-Saccharomyces yeasts (e.g. T. 

delbrueckii, L. thermotolerans, H. uvarum) produce higher amounts of metabolites that can 

enhance the wine flavour (i.e. succinic acid, esters, higher alcohols) (Jolly et al. 2003; 

Rodríguez et al. 2010; Sadoudi et al. 2012). Therefore, nowadays, there is an increasing demand 

for new wine yeast starters composed of non-Saccharomyces and S. cerevisiae strain pairs that 

can improve oenological properties of wines. With that purpose, several research groups have 

studied the microbial interactions that occur between non-Saccharomyces and S. cerevisiae 

strains during wine fermentations.  

S. cerevisiae dominance over other microbial competitors during wine fermentation has 

been always attributed to its higher capacity to withstand the increasingly adverse conditions 

occurring as the fermentation progresses: i.e. high levels of ethanol and organic acids, low pH 

values, oxygen scarcity and nutrients depletion (Bisson 1999; Hansen et al. 2001). 

Nevertheless, the weight of these factors on the microbial succession during wine fermentations 

has been lately questioned, and other yeast-yeast and yeast-bacteria interactions have been 

proposed by different authors. First, Nissen & Arneborg (2003) and Nissen et al. (2003) 

reported that direct physical contact between S. cerevisiae and non-Saccharomyces yeasts (L. 

thermotolerans and T. delbrueckii) is responsible for their early death. Then, a study carry out 

by Pérez-Nevado et al. (2006) proposed that the early death of some non-Saccharomyces yeasts 
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(i.e. H. guilliermondii and H. uvarum) during wine fermentations was due to killer toxins 

secreted by S. cerevisiae strains. Later, Albergaria et al. (2010) discovered that those toxins 

correspond to antimicrobial peptides (AMPs) (molecular weight lower than 10 kDa) secreted by 

S. cerevisiae (strain CCMI 885) which inhibit the growth of several non-Saccharomyces wine-

related yeasts (H. guilliermondii, K. marxianus, K. thermotolerans, T. delbrueckii). 

 

General and Specific Aims 

Having in mind the previous issues, the main goal of the present thesis was to purify, 

identify and characterize the AMPs previously-found, as well as to investigate their mode of 

action and death-inducing mechanisms (apoptosis/necrosis) on sensitive yeast cells. The role of 

these AMPs in microbial interactions established during wine fermentation was also evaluated, 

as well as the possibility of using these AMPs as an alternative biopreservative in wine. 

 

The specific aims were: 

 Purification of the AMPs by chromatographic techniques; 

 Identification and sequenciation of the purified AMPs by mass spectrometry; 

 Determination of the spectrum of action and of antimicrobial properties (MIC, IC50) of 

the AMPs; 

 Study the mode of action of the AMPs, namely by evaluating alterations in the 

membrane permeability, in intracellular pH (pHi) and in the culturability of sensitive 

yeasts cells; assessment of the death mechanisms (apoptosis/necrosis) involved; 

 Investigate the involvement of these AMPs in the early death of non-Saccharomyces 

yeasts mediated by cell-cell contact;  

 Construction of genetically engineered strains that over-express the AMPs and 

evaluation of their biopreservative potential against the most dangerous wine 

contaminant D. bruxellensis; 

 Evaluation of the conjugated effect of these AMPs with sulphur dioxide (SO2) against D. 

bruxellensis growth. 
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Organization of the thesis 

The present thesis includes a general introduction (Chapter I) with the state-of-art 

regarding the main subjects relevant for the thesis, followed by six chapters (Chapters II-VII) 

containing the experimental work, presented in the form of full-length manuscripts, some of 

them already published in peer-reviewed journals (Chapters II-V) and other two to be 

submitted (Chapters VI and VII), and a final chapter (Chapter VIII) with the main 

concluding remarks and future perspectives. The chapters are presented as follows: 

 

• Chapter I: General Introduction  

• Chapter II: Identification of novel GAPDH-derived antimicrobial peptides secreted by 

Saccharomyces cerevisiae and involved in wine microbial interactions; 

• Chapter III: Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae 

induce alterations in the intracellular pH, membrane permeability and culturability of 

Hanseniaspora guilliermondii cells 

• Chapter IV: Antimicrobial properties and death-inducing mechanisms of 

saccharomycin, a biocide secreted by Saccharomyces cerevisiae 

• Chapter V: Saccharomyces cerevisiae accumulates GAPDH-derived peptides on its 

cell surface that induce death of non-Saccharomyces yeasts by cell-to-cell contact 

• Chapter VI: Effect of GAPDH-derived antimicrobial peptides on sensitive yeast cells: 

plasma membrane permeability, intracellular pH and H+-influx/efflux 

• Chapter VII: Expression of the GAPDH-derived AMPs on S. cerevisiae and evaluation 

of their biopreservative potential on wine fermentations 

• Chapter VIII: Concluding remarks and future perspectives 
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GENERAL INTRODUCTION 

 

 

 

 

 

 



 

 

 

1. Winemaking process 

 

1.1. Brief history of wine production 

The production of wine dates back to the origin of civilization and therefore is one of the 

oldest world's biotechnological processes. Historical archives show that the earliest winemaking 

activities were documented in Mesopotamia and Caucasus by 6000 BC. Around 2000 BC, wine 

was produced in the ancient Greece and due to the Roman Empire expansion, the process was 

spread out through the Mediterranean. In 500 BC wine was already produced in the current 

regions of Italy, Sicily, France, Portugal, Spain, and North Africa. Later, in the sixteenth 

century, European explorers introduced vine into the New World, and in 1530 Spanish 

conquerors planted Vitis vinifera in Argentina, Chile, Mexico and Peru. Afterwards, in 1655, 

Dutch colonizers planted vineyards in South Africa and shortly after that, V. vinifera was 

introduced in California and Australia (Pretorius 2000).  

Even though the production of wine is one of the world's oldest biotechnological processes, 

the basic principles of the winemaking process have not changed considerably along history. 

The wine production process starts with grapes being harvested and then crushed. 

Subsequently, the grape juice is fermented in wood, stainless steel or concrete vats with or 

without temperature control. The alcoholic fermentation process which then occurs varies 

according to the type of wine to be produced: white, rosé or red wine. The production process 

of white wine (Fig. 1A) diverges in some steps from the production process of red wine (Fig. 

1B). In the case of white wines, the grape juice is separated from the lees before fermentation, 

while red wine fermentation occurs in the presence of grape solids. Fermentation in the 

presence of anthocyanins, which are the pigments of the red grape berries located in the skin of 

grapes, introduces a major difference in the composition and taste of white and red wines. In 

red wine, after alcoholic fermentation, other type of metabolic process called the malolactic 

fermentation (MLF), may eventually occur. MLF transforms malic acid into lactic acid, 

lowering the acidic flavour of wine and thus altering its organoleptic characteristics (Bisson 

2004). 
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Fig. 1: Main steps of the white wine (A) and red wine (B) production processes (withdrawn 

from Jolly et al. (2013)). 
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Antoine Lavoisier was one of the founders of modern chemistry and was also the first to 

identify alcoholic fermentation. In 1789, Lavoisier described the main chemical reaction of 

alcoholic fermentation as: "grape must = carbonic acid + alcohol". He characterized this process 

as being one of the most amazing phenomena of chemistry. The word alcohol derives from the 

Arabic word Al-kuhl which means spirit. Later, it was used to replace what Lavoisier originally 

designated as the spirit of wine. Alcoholic fermentation is the most important biotransformation 

that occurs during the winemaking process; this biotransformation is conducted by yeast species 

that belong or not to the natural microbiota of the grape musts (Esteve-Zarzoso & Manzanares 

1998; Romano et al. 2003). During alcoholic fermentation, yeasts metabolize carbohydrates of 

the grape juice obtaining energy that support their growth and producing ethanol and carbon 

dioxide (CO2), (Barnett 1998; Barnett & Entian 2005).  

 

1.2. Microorganisms associated with wine fermentation 

The natural microflora associated with wine fermentation is highly complex due to the 

huge variety of indigenous microbial species present in the grape musts. This includes several 

species of yeasts, bacteria, and moulds. The microbial composition of grape musts varies 

according to the stage of grape ripening, physical damage of grape berries (caused by mould, 

insects, and birds), viticultural practicesand the presence of fungicides applied to vineyards 

(Pretorius et al. 1999) Damages on the surface of grapes increase the availability of nutrients for 

microbial growth, thus promoting population and diversity of yeasts that co-exist with various 

filamentous fungi, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) (Fleet & Heard 

1993). Although grape musts are relatively complete in nutrients, their low pH values (ranging 

3.0-3.5) and high sugar contents (160-240 g/l) lead to a selective growth environment in which 

only a few yeast species can grow (Henschke 1997).  

 

1.2.1. Yeasts 

 Of the 100 yeast genera representing over 700 species, 23 are associated with winemaking:  

Aureobasidium, Auriculibuller, Brettanomyces, Bulleromyces, Candida, Cryptococcus, 

Debaryomyces, Hanseniaspora, Issatchenkia, Kluyveromyces, Lachancea, Lipomyces, 

Metschnikowia, Pichia, Rhodosporidium, Rhodotorula, Saccharomyces, Sporidiobolus, 
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Sporobolomyces, Torulaspora, Yarrowia, Zygoascus, and Zygosaccharomyces (Barnett et al. 

2000; Grangeteau 2016). 

 

1.2.1.1. S. cerevisiae 

Surprisingly, the population of S. cerevisiae, the main wine yeast species, is very low on 

the surface of healthy, undamaged grapes or even in vineyard soils (Barata et al. 2012; Frezier 

& Dubourdieu 1992; Martini et al. 1996). In fact, the origin of S. cerevisiae is quite 

controversial. While some researchers believe that damaged grapes are an important source of 

S. cerevisiae (Mortimer & Polsinelli 1999), other investigators have even argued that S. 

cerevisiae is not present in the vineyard habitat at all, and can only be found in the winery 

equipment’s such as stemmer-crushers, pumps, pipes or fermentation vessels (Martini et al. 

1996; Sabate et al. 2002). More recently in Portugal the isolation of S. cerevisiae from oak bark 

was reported (Sampaio & Gonçalves 2008). Nevertheless, due to its outstanding capacity to 

produce ethanol and CO2 from sugars with high productivity, S. cerevisiae plays a primary role 

in the winemaking process (Fleet & Heard 1993; Pretorius et al. 1999; Pretorius 2003; ). 

Therefore, S. cerevisiae is universally preferred for initiating alcoholic fermentation, and has 

earned itself the title of “the wine yeast”. Interestingly, in 2003, ribosomal DNA from S. 

cerevisiae was found in a residue inside one of the earliest known wine jars from Egypt, 

demonstrating that this yeast species was probably responsible for wine fermentation since at 

least 3150 BC (Cavalieri et al. 2003).  

Even if S. cerevisiae is referred as ''the wine yeast", grape musts naturally contain a 

mixture of yeast species and wine fermentation is not a ‘single-species’ process (Fleet & Heard 

1993). 

 

1.2.1.2. Non-Saccharomyces 

Amongst non-Saccharomyces yeasts associated with the natural microflora of grape 

musts, apiculate yeasts belonging to the genus Hanseniaspora are predominant on the surface 

of grape berries and in freshly processed grape musts, accounting for 50–75% of the total yeast 

population (Fleet & Heard 1993, Romano et al. 2003).  
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Although present in lower number, other yeasts species such as Rhodotorula, Pichia, 

Candida, Brettanomyces, Kluyveromyces, Schizosaccharomyces, Torulaspora, , 

Zygosaccharomyces, Metschnikowia and Cryptococcus are found in fresh must (Fleet 2003; 

2008). 

Non-Saccharomyces yeasts are often isolated from wines with anomalous analytical and 

sensorial profiles or from stuck fermentations. Therefore, they are frequently referred as ‘wild’ 

yeasts or ‘spoilage’ yeasts due to the production of large amounts of some detrimental 

metabolites such as ethyl acetate and acetic acid (Ciani and Picciotti 1995). Nevertheless, most 

non-Saccharomyces yeasts can also improve the organoleptic quality and complexity of wine, 

since they produce large amounts of various metabolites that can contribute to the sensorial 

profile of wine, namely: esters, terpenoids, glycerol, acetaldehyde, and succinic acid (Bisson & 

Kunkee 1991; Clemente-Jimenez et al. 2005; Fleet 2008; Jolly et al. 2013; Lonvaud-Funel 

1996; King & Dickinson 2000; Zohre & Erten 2002). For instance, some non-Saccharomyces 

yeast such as Lachancea thermotolerans and Starmerella bacillaris, produce high amounts of 

glycerol which contributes to the smoothness, fullness, sweetness and complexity of wine. 

Although these characteristics are usually considered as positive, excessive production of 

glycerol can be detrimental to the quality of wine since it is often associated with increased 

acetic acid production (Comitini et al. 2011; Henick-Kling et al. 1998, Prior et al. 2000; 

Romano et al. 1997).  

In most cases, the impact of non-Saccharomyces yeasts on the wine flavour is limited by 

the common practice of inoculating grape musts with pure S. cerevisiae cultures (wine starters), 

since this species can assure fast, complete and safe wine fermentations (Jolly et al. 2013). In 

spite of this, these yeasts can contribute to enhance several desirable organoleptic 

characteristics of wine. Consequently, wine starters composed of mixed S. cerevisiae and non-

Saccharomyces strains have been recently developed and commercialised in order to take 

advantage of the positive features of non-Saccharomyces yeasts and, at the same time, reduce 

their negative effects (Jolly et al. 2013).  

 

1.2.2. Lactic acid bacteria (LAB) 

Different species of LAB have been associated with the winemaking process (Fleet 

2001). In grapes, the main species of LAB that can be found are: Lactobacillus plantarum, 
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Lactobacillus hilgardii and Lactobacillus casei. The species Oenococcus oeni, which dominates 

the MLF, is rarely detected at the beginning of the alcoholic fermentation. Growth of LAB 

depends on the pH of the medium and on the concentration of sulphur dioxide (SO2) added to 

the grape must. After the end of alcoholic fermentation, LAB may remain in a latent phase for 

quite some time. Then, the MLF may occur, depending on the temperature, pH, as well as the 

ethanol and SO2 concentrations present in the medium. As soon as the malic acid is completely 

transformed into lactic acid (MLF), the bacterial population begins to decline. In wines without 

added sulphites after the MLF, LAB may remain in latent state during months (Renouf et al. 

2007). LAB can drive metabolic modifications which include metabolism of citrate, amino 

acids, polysaccharides, synthesis and hydrolysis of esters, and degradation of phenolic acids, 

lipolysis, proteolysis and peptidolysis. These metabolic alterations promote microbial stability 

of wine and soften its taste by decreasing its total acidity and improving the flavour (Bartowsky 

2005; Cappello et al. 2016). Therefore, the MLF is desirable in some white wines containing 

excessive total acidity and in most red wines. Yet, this process is still difficult to control as 

several factors affect LAB growth and activity such as nutritional deficiencies, low pH values, 

as well as high ethanol and SO2 levels (Comitini et al. 2005; Eglinton & Henschke 1996; 

Tracey & Britz 1989). 

 

1.2.3. Acetic acid bacteria (AAB) 

AAB are obligately aerobic bacteria within the family of Acetobacteraceae. The AAB 

are normally present in acidic and alcoholic niches such as grape must (Mamlouk & Gullo 

2013; Sievers & Swings 2005). AAB, such as Acetobacter aceti, Acetobacter pasteurianus and 

Gluconobacter oxydans are commonly isolated from grape musts (Drysdale & Fleet 1988). G. 

oxydans is present on grapes and disappears to give way to species of the genus Acetobacter, 

which subsists in wine (Joyeux et al. 1984). AAB usually do not develop during the 

winemaking process since the conditions in which the process occurs (e.g. semi-anaerobiose, 

high ethanol and SO2 levels, low pH values) are not favourable for their growth. AAB are 

classified as obligately aerobic organism. However, momentary aeration in wine (agitation or 

racking of wine from one barrel into another) is sufficient to encourage significant growth of 

resident AAB populations (Bartowsky and Henschke 2008; Joyeux et al. 1984). AAB are 

oxidative microorganisms that are able to oxidize ethanol into acetic acid (Bartowsky and 
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Henschke 2008; Du Toit & Pretorius 2002; Joyeux et al. 1984). This unique characteristic 

allows AAB to transform wine into vinegar, whenever oxygen is available. For this reason, 

AAB are considered one of the main wine spoilage agents. 

 

1.2.4. Contaminants and preservatives in the wine industry 

Wine spoilage microorganisms include LAB, AAB, and some yeasts species (Du toit and 

Pretorius 2000). Many secondary metabolites produced by bacteria are volatile compounds that 

can affect wine sensory qualities. O. oeni, the most important LAB of wine, reduces the volatile 

acidity of wines thus positively contributing to its flavour (Bartowsky 2005). However, other 

species of LAB such as Lactobacillus sp. and Pediococcus sp. can produce undesirable volatile 

compounds such as 2,3-butandione (diacetyl), 2-ethoxy-3,5-hexadiene and acrolein which gives 

a flavour of buttery, nutty, caramel and bitterness to the wine (Bartowsky 2009). The other 

main wine spoilage bacteria are AAB, which are known for their ability to transform ethanol 

into acetic acid, i.e. wine into vinegar. Besides, they also produce acetaldehyde, ethyl acetate 

and ethyl ester that are the main detrimental compounds produced by wine-associated AAB. In 

prolonged barrel maturation, if wine is not topped up and monitored regularly, there is a high 

risk of spoilage by AAB. Likewise, reduced management during bottling and storage of red 

wine can promote the proliferation of spoilage by A. pasteurianus (Bartowsky & Henschke 

2008). 

Even though yeasts are responsible for alcoholic fermentation, some species such as 

yeasts of the genera Dekkera/Brettanomyces, Candida, Hanseniaspora, Pichia, Metschnikowia, 

Saccharomycodes, Schizosaccharomyces and Zygosaccharomyces  can also contribute to wine 

spoilage (Enrique et al. 2007; Fleet 2003). Amongst those contaminants, Dekkera bruxellensis 

is considered the major cause of wine spoilage worldwide (Fugelsang 1997; Loureiro & 

Malfeito-Ferreira 2003). The metabolic products of D. bruxellensis in wines are 

tetrahydropyridines, acetic acid and volatile phenols (Heresztyn 1986; ). The most undesirable 

off-flavors and off-odours are provoked by volatile phenols, namely by the 4-ethylphenol that 

confers phenolic off-odours described as ‘‘barnyard-like’’ or ‘‘horsey’ (Fugelsang 1997; 

Loureiro & Malfeito-Ferreira 2003). 

In wines with low acidity (above pH 3.7) and ethanol concentrations lower than 16% (v/v) it 

can be challenging to stop spoilage microorganisms’ growth. The maintenance of high hygienic 
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standards during the various steps of wine production is essential to prevent the contamination 

of wine. Nowadays, control of wine spoilage is typically carried out by the filtration of wine 

and proper sanitization of barrels. Unfortunately, these procedures have limited efficiency 

against some contaminants and do not prevent subsequent recontamination (Bartowsky 2009; 

Millet & Lonvaud-Funel 2000). Thus, chemical preservatives such as SO2, benzoic acid, sorbic 

acid and dimethyl dicarbonate (DMDC) are used to control unwanted microorganisms during 

winemaking (Ribéreau-Gayon et al. 2006). SO2, the most commonly used wine preservative, 

acts as an antimicrobial agent and also as an antioxidant, and is usually added before 

fermentation to machine-harvested grapes and immediately after MLF (Romano & Suzzi 1993). 

However, the addition of SO2 in excessive doses should be avoided since it can have negative 

impacts on the wine aroma and, above all, in human health. Nowadays consumer preferences 

have changed to products that are less heavily preserved more natural and healthier. This 

tendency has led to the possible exploitation of natural antimicrobial compounds. Consequently, 

numerous chemical and naturally occurring preservatives such as, sorbic acid, fumaric acid, 

benzoic acid, lysozyme, killer toxins as well as antimicrobial peptides such as nisin were tested 

as alternatives to SO2 (du Toit & Pretorius 2000; Fugelsang & Edwards 2007). However, no 

new compound has been identified which could be a real substitute for SO2 with all its 

oenological properties including the antioxidative and antiseptic action in winemaking (García-

Ruiz et al. 2008;). 

 

2. Yeast population dynamics during wine fermentation 

Spontaneous fermentation of grape musts occurs under non-sterile conditions and 

several yeast species and strains are involved in the process. Therefore, spontaneous wine 

fermentation is a complex biochemical process characterized by the sequential growth of 

different yeasts. Yeast genera and species substitute each other along the fermentation process 

according to their optimal fitness to the changing environment (Pretorius 2000), originating a 

typical growth pattern (Fig. 2).  

In the early stages of wine fermentation non-Saccharomyces yeasts, such as species 

from the genera Hanseniaspora and Candida, are predominant. These non-Saccharomyces 

yeasts species are characterized by their low fermentative capacity, low ethanol tolerance, and a 

limited growth phase. The grape must is a selective growth medium, in which the non-
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Saccharomyces initially present at high density levels (104-105 cells/ml) grow during the first 1-

3 days of fermentations, reaching populations of about 107-108 cells/ml, while the ethanol 

concentrations are still low (30-40 g/l). Subsequently, the strongly fermentative and highly 

ethanol-tolerant strains of S. cerevisiae take over the fermentation process until completion 

(Fleet & Heard 1993; Pretorius 2000).  

 The yeast population dynamics and succession of species throughout the fermentation 

process varies according to fermentation fitness and survival ability of each yeast species that in 

turn depends on their intrinsic physiological features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: General picture of the growth profiles of the most representative yeast species during 

wine fermentations. Saccharomyces cerevisiae (); Hanseniaspora species (); Candida 

species () (withdrawn from Fleet & Heard 1993). 

 

2.1. Fermentation fitness of wine yeasts  

The ability of wine yeasts to effectively ferment grape sugars depends on their fitness to 

grow and survive under the severe environment conditions of grape must. There is a direct 

correlation between the fermentation efficiency and stress resistance which refers to the ability 

of yeasts to adapt to the harsh conditions of the environment. This adaptation is determined by 
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different regulatory mechanisms, commonly referred as a physiological stress response (Bauer 

& Pretorius 2000)  

Grape musts usually contain 140 to 260 g/l of an equimolar mixture of glucose and 

fructose. The majority of grape sugars are consumed by yeasts, producing around 10–16% (v/v) 

of ethanol and other metabolites and leaving approximately 2 g/l of residual sugars (Boulton et 

al. 1996). Several studies (Albergaria 2007; Ciani & Maccarelli 1998; Ciani & Picciotti 1995) 

have shown that most non-Saccharomyces yeasts (e.g. H. uvarum, H. guilliermondii and 

Starmerella bacillaris) under oenological conditions have low limited fermentation capacity, 

exhibiting slow fermentation rates, producing lowest ethanol levels (5–8 % v/v) and leaving 

high residual sugars (30–100 g/l). Among the non-Saccharomyces yeasts the one that shows the 

slowest growth rates (0.027 h−1) and low ethanol production (4-6% v/v) is S. bacillaris. 

Besides, most of those yeasts have also low SO2 resistance. Conversely, S. cerevisiae is highly 

fermentative, exhibiting the fastest growth rates (0.085 h−1) amongst the wine-related yeasts and 

producing the highest ethanol levels (12-16%) during wine fermentations. (Ciani & Maccarelli 

1998; Ciani & Picciotti 1995) 

Beyond its capacity to ferment sugars in a fast and complete way, yeasts's aptitude for wine 

fermentation also relies on their ability to grow and survive under the harsh wine environment 

conditions such as osmotic stress caused by high sugar concentrations, low pH values (3–3.5) 

low oxygen availability, low nitrogen concentrations (150–200 mg/l), high levels of ethanol 

(10–16% v/v) and organic acids (Pretorius 2000; Albergaria & Arnerborg 2016) 

 

2.1.1. Osmotic stress 

Osmotic stress can be defined as any situation where there is an imbalance between the 

intracellular and extracellular osmolality, sufficient to cause a harmful change in the cell 

physiology, such as loss of water and subsequently turgor (Blomberg & Adler 1992; Csonka & 

Hanson 1991; Klipp et al. 2005; Wood 1999). Grape must is a high-density substrate medium 

that contains a high concentration of osmotically active substances, specifically fructose and 

glucose. 

Osmoregulation in yeast depends on the capacity of cells to sense external stimuli and to 

respond with changes in their physiology and biochemistry. After exposure to an osmotic 
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challenge cells can react to that stress by osmotolerance and osmoadaptation. Osmotolerance is 

an inherited feature rather than the result of adaptation and may be defined as the ability to 

grow in an environment with a high osmotic pressure. Osmoadaptation is a highly refined 

sensing and response system that may also be activated as a form of severe or persistent 

response (Gibson et al. 2007). The high sugar wine environment induces a hyperosmotic shock 

on yeast cells. As a response to this stress, yeasts developed a number of mechanisms, including 

alterations of the cell wall composition and of the cytoskeleton (Slaninová et al. 2000). For 

instance, S. cerevisiae under osmotic stresss induces the expression of the genes GPD1 and 

GPP2 that encode for NADH-dependent glycerol-3-phosphate dehydrogenase and glycerol-3-

phosphatase, respectively, in order to increase the production of glycerol, a chemically inert 

osmolyte which re-establish the osmotic equilibrium (Albertyn et al. 1994; Hohmann 2002; 

Norbeck et al. 1996). Osmotolerant yeasts are usually able to synthesize glycerol as a 

compatible solute that acts as an osmoregulator (Hohmann 2002). Apparently, all yeast species 

use glycerol to compensate the increased external osmotic pressure and to prevent cellular water 

loss (Blomberg & Adler 1992). In summary, in order to survive in such hostile osmotic 

conditions, wine yeasts developed osmotic adaptation which involves the accumulation of 

glycerol.  

 

2.1.2. Low pH  

Depending on the yeast strain and on the environment conditions (e.g. temperature and 

oxygen availability), the optimal pH for yeasts growth ranges from pH 4.0 to 6.0 (Narendranath 

& Power 2005). The low initial pH of wine (2.8 -3.5) affects the growth and fermentation rate 

of yeast and influences the production of fermentation products (Nielsen & Arneborg 2007; 

Yalcin & Ozbas 2008). During wine fermentations, specifically during alcoholic fermentation, 

several other compounds are produced besides ethanol, namely glycerol, acetic acid and 

succinic acid (Zamora 2009). The weak organic acids, such as those above-mentioned, can 

affect the cell wall structure, by changing the conformation of proteins from the plasma 

membrane and destabilize their lipid organization (Booth & Statford, 2003). Under the low pH 

values of grape musts and wine (pH=2.8-4.2) (Heard & Fleet 1988), weak organic acids occur 

predominantly in their undissociated form and thus can cross the cell membrane. Once inside 



Chapter I 

12 

the cell, these acids dissociate due to the higher intracellular pH (ca 6.5-7.0), liberating H+ 

protons and promoting intracellular acidification (Orij et al. 2011; Piper et al. 2001; Ullah et al. 

2013). Intracellular acidification leads to inhibition of essential metabolic functions (Krebs et 

al. 1983; Bracey et al. 1998) such as inhibition of glycolysis (Pearce et al. 2001) and 

consequently to a reduced ability to generate ATP. To respond to this effect, yeasts use 

mechanisms to regulate the pH homeostasis and maintain the intracellular pH. In S. cerevisiae, 

cells regulate pH homeostasis by pumping out the excess of protons generated through 

increased H+-efflux rates via H+-ATPase (Bracey et al. 1998). The plasma membrane H+-

ATPase enzyme is energy depend and pumps out H+-protons using ATP hydrolysis at a 1:1 

ratio (De Kok et al. 2012). At normal conditions, H+-ATPase activity consumes about 20% of 

ATP (Morsomme & Boutry 2000). However, under weak organic acid stress this activity is 

increased consuming up to 60% of ATP (Holyoak et al. 1996).  

A study performed by Nielsen & Arneborg (2007) to evaluate the effect of a weak acid 

(citric acid) at pH values of 3.0, 4.0, and 4.5 on growth and metabolism of S. cerevisiae and Z. 

bailii cultures showed that S. cerevisiae in the presence of citric acid at higher pH low the 

ethanol production as well as increases the glycerol production. However, Z. bailii is not so 

affected by citric acid since the production of glycerol is less enhanced and its ethanol 

production is narrowly affected as in S. cerevisiae. 

Therefore, depending on the yeast species the primary energy metabolism is differently 

affected by the weak organic acids present in wine fermentations. 

 

2.1.3. Oxygen availability 

In yeast, oxygen is a crucial factor in the regulation of the sugar metabolism. In the 

presence of oxygen, nearly all yeasts can metabolise sugars via respiration producing CO2 and 

water. Most of the yeasts species described until now are also capable of fermenting sugars to 

ethanol and CO2 (Barnett et al. 1998; van Dijken & Scheffers 1986). Yet, the ability to ferment 

sugars to ethanol does not imply the aptitude to grow under strick anaerobic conditions and 

most facultative fermentative yeasts do not grow well in the complete absence of oxygen. In 

fact, S. cerevisiae is one of the few yeasts species that can grow under strictly anaerobic 

conditions (Visser et al. 1990). Conversely, most non-Saccharomyces yeasts require molecular 

oxygen to grow (van Dijken et al. 1993).  
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During wine fermentation yeasts grow under semi-anaerobic conditions and accessibility 

to oxygen is crucial for growth and survival of many yeasts species (Hanl et al. 2005; Hansen et 

al. 2001). Wine-related yeasts of the genera Hanseniaspora, Kloeckera and Torulaspora, grow 

poorly under these conditions, while S. cerevisiae exhibits fast rates of sugar consumption and 

ethanol production. Besides, S. cerevisiae is also able to ferment sugars and produce ethanol, 

even under fully aerobic conditions (Visser et al. 1990). This metabolic behaviour is known as 

the Crabtree effect and consists in the repression of the respiratory pathway whenever sugars 

are present in high amounts (Crabtree 1928). Since aeration of grape musts before fermentation 

is a common practise in winemaking to promote yeasts growth, Crabtree-positive yeasts such as 

S. cerevisiae are more likely to perform alcoholic fermentation at any growth conditions (van 

Dijken et al. 1993). 

 

2.1.4. Nitrogen limitation 

Numerous nitrogen sources are available in grape musts, including ammonium ions, 

amino acids, and peptides which are necessary for protein synthesis and yeast growth. 

However, many factors such as environmental features (climatic conditions and soil fertility), 

grape variety, maturity and viticultural practices (grape harvesting techniques) have 

considerable effects on the quantitative and qualitative nitrogen content of musts (Bell and 

Henschke 2005). Ammonium is present in grape must and is one of the first nitrogen sources to 

disappear from the medium during yeast cellular growth, since it is the main intermediate 

between catabolic and anabolic pathways (ter Schure et al. 2000). Glutamine, glutamate, and 

asparagine, are also described as good nitrogen sources for yeasts growth, allowing high 

specific growth rates. On the contrary proline, allantoin, or urea are described as non-preferred 

nitrogen sources (Crépin et al. 2012).  

Nitrogen availability in grape musts can affect the production of many volatile 

compounds by yeasts, which contribute to the wine flavour, since some amino acids are direct 

metabolic precursors for the synthesis of higher alcohols, short to medium-chain fatty acids, and 

their ethyl ester or acetate ester derivatives (Hazelwood et al. 2008; Barbosa et al. 2012). 

Besides, nitrogen regulates the formation of yeast biomass and therefore if the concentration of 

nitrogen is limited it will be rapidly assimilated by the initial microflora (non-Saccharomyces) 

of wine fermentations (Constantí et al.1998; Henick-Kling et al. 1998). Consequently, will 
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inhibit the succeeding growth of S. cerevisiae strains which can lead to sluggish fermentation 

(Bisson 1999; Fleet 2003). Therefore, nutrient limitation is one of the factors that influence the 

yeast ecology of fermentation since one yeast species or strain produces or utilises a nutrient 

relevant to another species or strain. 

 

2.1.5. Tolerance to high levels of ethanol 

Ethanol is a highly toxic compound that inhibits the yeast metabolism and growth and 

the main environment stress of wine fermentations (Ingram & Buttke 1984; Viana et al. 2012). 

A number of factors such as media composition, plasma membrane composition, osmotic 

pressure, temperature and intracellular ethanol accumulation have been shown to influence the 

ethanol tolerance of yeast (D’amore et al. 1990). When exposed to ethanol the fluidity of yeasts 

cell membranes increases, which enhances the passive proton flux through the membrane, 

resulting in its depolarization (Leão & Van Uden 1984). All these physiological alterations can 

prevent the uptake of nutrients  such as amino acids and ammonium (Casey & Ingledew 1986; 

Jones & Greenfield 1987). Yeasts have developed diverse strategies to respond to the different 

types of injuries induced by ethanol (Ding et al. 2009; Stanley et al. 2010) such as the ability to 

maintain the fluidity of their cell membranes intact in a high-ethanol environment (Alexandre et 

al. 1994; Ding et al. 2009; Huffer et al. 2011). Ethanol tolerance can also be influenced by 

sterols (Jones & Greenfield 1987; Walker-Caprioglio et al. 1990). The loss of cell viability in 

the presence of ethanol has been related to the content decrease of a specific sterol, ergosterol, 

which increases membrane rigidity (Hossack & Rose 1976; Larue et al. 1980). Indeed, ethanol-

tolerant yeast strains, exhibit elevated ergosterol levels in their membrane, with higher ratios of 

phosphatidylinositol-to-phosphatidylcholine and larger amounts of octadecanoic fatty acids 

relative to the amounts of hexadecanoic fatty acids (Arneborg et al.1995). Aguilera et al. (2006) 

determined that oleic acid, palmitoleic acid, and ergosterol were highly correlated with H+-

ATPase activity and ethanol tolerance. Besides ergosterol, it was shown that genes involved in 

the intracellular pH homeostasis are also crucial for resistance to ethanol. Alexandre et al. 

(2001) demonstrated that genes involved in trehalose synthesis are up-regulated during ethanol 

stress and in addition, proved that a whole set of heat shock protein genes are induced as an 

ethanol stress response. In order to develop strategies for improving yeast tolerance towards 

ethanol, it is highly important to elucidate the molecular mechanisms involved in the stress 
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response (Viana 2014), since the genomic characteristics of wine yeast has been selected over 

billions of generations.  

Ethanol is considered the major factor that rules the yeast population dynamics in wine 

fermentations and it has long been accepted that non-Saccharomyces die-off earlier because 

they are more sensitive to ethanol than S. cerevisiae (Fleet & Heard 1993; Fleet 2003; Cocolin 

et al. 2000; Jolly et al. 2003). However, recent studies found that some non-Saccharomyces 

yeast such as H. uvarum, H. guilliermondii, T. delbrueckii and C. zemplinina have ethanol 

tolerances similar to those of S. cerevisiae (Pérez-Nevado et al. 2006; Pina et al. 2004). 

 

2.2. Yeast-yeast interactions 

Over the last years, many studies have contributed to a better understanding of the yeast 

ecology and population dynamics during wine fermentations (Albergaria et al. 2010, 

Kemsawasd et al. 2015a; 2015b; Nissen and Arneborg 2003; Nissen et al. 2003; Pérez-Nevado 

et al. 2006; Renault et al. 2013; Taillandier et al. 2014; Wang et al. 2015). Those studies have 

shown that S. cerevisiae is the dominant species during wine fermentations, displacing non-

Saccharomyces yeasts after the first days. The reasons underlying S. cerevisiae dominance 

during wine fermentations rely on its competitive advantage in the changing environment 

(Bauer & Pretorius 2000; Bisson 1999; Hansen et al. 2001). Beyond the classical factors 

discussed above (e.g. composition of grape juice, addition of SO2, environmental conditions 

such as temperature, pH, oxygen availability, etc., and use of starter cultures), microbial 

interactions can deeply affect the growth and metabolic activity of wine yeasts (Bisson 1999; 

Fleet 1990).  

Microbial interactions can be classified as positive (+), negative (-) and neutral (0) and 

can be subdivide into: mutualism (+/+ interaction), commensalism (+/0 interaction), 

amensalism (−/0 interaction) and competition (−/− interaction). Positive microbial interactions 

include mutualism, in which both sides benefit from the interaction, and commensalism in 

which one strain or specie has its growth enhanced by the presence of the other. Negative 

microbial interactions include amensalism and competition. Competition for nutrients (amino 

acids, nitrogen, vitamins) is a negative interaction that can occurs within a community of 

microbial species. Amensalism corresponds to a microbial interaction in which the growth of 

one organism is repressed by the secretion of other organism metabolites, but the producer 
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organisms are not adversely affected (Liu et al 2017). Microbial interactions in wine 

fermentations involve all those cases (Ciani & Comitini 2015; Liu et al 2017; Strehaiano et al. 

2010). Different types of microbial interactions have been identified in mixed culture wine 

fermentations, and can be classified as indirect and direct interactions (Ivey et al. 2013). 

 

2.2.1. Indirect interactions 

The main indirect interactions that occur during wine fermentations are those mediated 

by metabolites produced during alcoholic fermentation. The most important of those 

metabolites is ethanol which is one of the factors that confers an ecological advantage to S. 

cerevisiae over other non-Saccharomyces yeast competitors due to its higher ethanol tolerance 

(Fleet & Heard 1993; Fleet 2003). Other compounds produced by different yeast species have 

been also shown to play antagonistic roles against each other such as short fatty acids, medium-

chain fatty acids, acetic acid, hexanoic acid, octanoic acid, decanoic acids and acetaldehyde 

(Bisson 1999; Fleet 2003; Ivey et al. 2013) 

Beyond ethanol and other fermentative metabolites such as organic acids, more recent 

studies demonstrated that antagonistic interactions are mediated by other toxic compounds such 

as killer-like toxins ( Albergaria et al. 2010; Pérez-Nevado et al. 2006). The involvement of the 

killer phenomenon in wine fermentations was first reported by Bevan and Makover 1963 who 

discovered that certain S. cerevisiae strains (killer strains) produce specific extracellular 

proteins and glycoproteins that kill other sensitive strains of the same species. Since the 

classical killer toxins (K1, K2 and K28) produced by S. cerevisiae are only active against 

strains of the same species they cannot explain the early death of non-Saccharomyces during 

wine fermentations. Nevertheless, several studies have demonstrated that certain S. cerevisiae 

strains produce killer-like toxins that exert an antagonistic effect against some wine-related 

bacteria (Comitini et al. 2005; Osborne et al. 2007; Nehme et al. 2010) and yeasts (Pérez-

Nevado et al. 2006; Albergaria et al. 2010; Branco et al. 2014). First, Comitini et al. (2005) 

revealed that a proteinaceous factor produced by a certain  S. cerevisiae wine strain was able to 

inhibit O. oeni growth and MLF. Then, Pérez-Nevado et al. (2006) discovered that toxic 

compounds produced by S. cerevisiae triggered the early death of H. guilliermondii cells in 

mixed cultures with S. cerevisiae and (Albergaria et al. 2010) found that those toxins 

correspond to antimicrobial peptides (AMPs) secreted by S. cerevisiae (strain CCMI 885). 
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Finally, Branco et al. (2014) showed that those AMPs are derived from the glycolytic enzyme 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). More recently, Branco et al. (2017a) 

demonstrated that several S. cerevisiae strains secrete these AMPs and induce the death of other 

microbial competitors within the wine environment. Therefore, microbial interactions mediated 

by the secretion of AMPs have been shown to regulate the microbial population dynamics 

during wine fermentations. 

During wine fermentations, there are also other interactions that promote the growth of 

certain species, thus modulating the yeast population dynamics. During the early stages of 

alcoholic fermentation, a large amount of non-Saccharomyces yeasts die by autolyse, releasing 

amino acids and vitamins into the medium that may provide nutrients for S. cerevisiae growth 

during the later stages of alcoholic fermentation (Fleet 2001). On the other hand, S. cerevisiae 

autolysis after alcoholic fermentation may well be a significant source of micronutrients for the 

growth of spoilage species, particularly of Dekkera/Brettanomyces spp. (Guilloux-Benatier et 

al. 2001). Indeed, D. bruxellensis due to its high ethanol tolerance is the most well-adapted non-

Saccharomyces yeast species to the wine environment, what explains its persistence in wine 

(Renouf et al. 2007). 

 

2.2.2. Direct interactions  

Physical contact and quorum sensing are the direct interactions that have been 

considered for wine yeasts until now (Bisson 1999, Nissen & Arneborg 2003). 

 

Physical contact 

Cell growth inhibition in consequence of direct physical contact between wine yeast was 

firstly reported by Nissen & Arneborg (2003) and Nissen et al (2003). In those works, the 

authors showed that viable S. cerevisiae cells at high concentrations were able to induce growth 

arrest of two non-Saccharomyces yeasts, K. thermotolerans and T. delbrueckii, by a cell–cell 

contact-mediated mechanism. The authors performed mixed-culture fermentations using a 

dialysis tube set-up system in which the yeasts were physically separated in two compartments 

but sensing the same metabolites in the medium since the system allowed exchange of 

molecules between compartments. They verified that in those conditions the non-

Saccharomyces yeasts were able to grow and ferment sugars, while when in direct physical 
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contact with S. cerevisiae they stop growing. Later, Renault et al. (2013) confirmed that S. 

cerevisiae induces death of T. delbrueckii by direct cell-to-cell contact (physical contact). Those 

authors observed a much higher cell viability of T. delbrueckii when physically separated from 

S. cerevisiae than in mixed-cultures with S. cerevisiae. Afterwards, Kemsawasd et al. (2015a) 

demonstrated that the early death of L. thermotolerans during mixed-culture fermentation with 

S. cerevisiae was due to a combination of cell-to-cell contact and AMPs secreted by S. 

cerevisiae. More recently, Branco et al. (2017b) showed that the death of wine related non-

Saccharomyces by direct contact with cells of S. cerevisiae is partly mediated by the 

accumulation of AMPs on their surface. 

 

Cell-cell communication, quorum-sensing 

Communicative behavior can be found in every living system, even in unicellular 

organisms and even in the wine itself. For successful interactions, and occasionally for essential 

survival, microorganisms need to communicate. The main mechanism of microbial 

communication is quorum sensing. Quorum sensing was first identified in bacteria (Nealson & 

Hastings. 1979) and consists in a mechanism by which microbial cells communicate with each 

other through the production of low-molecular-mass signaling molecules in response to high 

cell density (Bassler & Losick 2006; Wuster & Babu 2007). These molecules, called quorum 

sensing signals, are produced during growth, but when their concentrations reach a certain 

threshold level, which is a non-toxic concentration for themselves, they activate or inhibit gene 

expression to modify the behavior of the whole population (Avbelj et al. 2016; Wuster & Babu 

2007). Recently, farnesol was identified as a quorum-sensing molecule which is excreted 

continuously during growth of Candida albicans cultures at levels that are proportional to the 

cell density (Hornby et al. 2001). Accumulation of farnesol in the medium induces the 

formation of germ tubes when cultures reach high cell density, thus controlling the yeast cell-to-

filamentous growth transition (Hogan 2006; Lindsay et al. 2012). Besides farnesol, another 

quorum-sensing molecule was detected in C. albicans, tyrosol; this molecule promotes cell 

growth and the formation of germ tubes at low cell density levels (Alem et al. 2006; Kruppa 

2009). 

The aromatic alcohols, 2-phenylethanol, tyrosol and tryptophol, also act as quorum-

sensing molecules in S. cerevisiae under low-nitrogen conditions. S. cerevisiae starts to produce 
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them at a specific cell density (Avbelj et al. 2015; Hazelwood et al. 2008; Wuster & Babu 

2010). These quorum-sensing molecules induce the formation of pseudohyphae at high 

population density levels (Wuster & Babu 2010). The release of tryptophol, 2-phenyletanol and 

tyrosol was likewise shown in Debaryomyces hansenii (Gori et al. 2011). 

These quorum-sensing molecules, 2-phenylethanol, tryptophol and tyrosol have already 

numerous biotechnological applications especially in wine quality assessment (González-Marco 

et al. 2010) but also in aroma production of food and drinks (Etschmann et al. 2003; Wang et al. 

2011), and they can likewise act as antioxidants and antimicrobials (Gañan et al. 2009). 

 

3. Antimicrobial peptides: their nature and mode of action 

AMPs are oligopeptides with a variable number (12-40) of amino acids (aa) that have a 

wide spectrum of antimicrobial activity against bacteria, fungi, viruses and eukaryotic parasites 

(Hancock & Chapple 1999; Hancock & Lehrer 1998). AMPs are produced by many cell types 

in a diversity of microorganisms, invertebrate, plant and animal species. In order to adapt to a 

changing environment, all organisms have developed defence mechanisms to respond to the 

diversity of environmental factors. One of the mechanisms is the production of AMPs which is 

the first line of antimicrobial defence for organisms in the entire eukaryotic kingdom. Therefore 

AMPs are one of the most important response elements of the innate immune system (Hirsch et 

al. 2008; Sang & Blecha 2009)  

Alexander Fleming in the late 1920s identified the first monomeric peptide, named 

lysozyme, with antimicrobial activity (Flemming 1922). Lysozyme is a relatively large (148 aa) 

protein that kills bacteria by destroing bacterial cell wall via enzymatic activity. Although, 

enzymatic mechanisms are not the main mechanism of action of most AMPs (Phoenix et al. 

2013), lysozyme is considered the first AMP to be identified. The discovery of AMPs dates 

back to 1939, when an antimicrobial substance isolated from prokaryotic cells, Bacillus brevis, 

was documented. These AMPs, gramicidins, exhibit activity both in vitro and in vivo against a 

wide range of gram-positive bacteria (Dubos 1939). Indeed, infected wounds on the guinea-pig 

skin were successfully treated with gramicidins, showing their therapeutic potential for clinical 

use (Gause & Brazhnikova 1944). Consequently, gramicidins were the first AMPs to be 

commercially manufactured as antibiotics (Van Epps 2006). 
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In general, AMPs are cationic in nature, possessing a net positive charge of +2 to +7 

owing to an excess of basic amino acids (arginine, lysine, and histidine) over acidic amino acids 

(Hancock & Chapple 1999). Still, several anionic AMPs (AAMPs) have been found in animals 

and plants and it has become clear that they play an important role in their innate immune 

system (Harris et al. 2009).  

Due to their broad-spectrum activities AMPs have been considered as potential 

therapeutic sources of future antibiotics. However, their clinical and commercial development 

still have some limitations, such as potential toxicity, susceptibility to proteases, and a high cost 

of peptide production (Seo et al. 2012). 

 

3.1. Purification and characterization methods 

 

3.1.1. Purification 

The goal for any purification process is to obtain a preparation that meets the quality 

requirements set for the compound to be purified. There is no single or simple way to purify all 

kinds of peptides. However, the process of peptides purification should be as simple as possible 

and should contain a minimum of steps, to avoid sample losses. The aim of a purification 

process is not only the removal of unwanted contaminants but also the concentration of the 

desired protein or peptide. Besides that, is also desired the transferring of the sample to an 

environment where it is stable and in a form ready for the intended application (Hedhammar et 

al. 2006). 

Depending on the properties of the peptide and the type of impurities, commonly used 

techniques for purification are chromatographic techniques, namely, gel filtration 

chromatography, ion-exchange chromatography and reverse-phase high-performance liquid 

chromatography (Andersson et al. 2000; Kiyama et al. 1984). Chromatography denotes to a 

group of separation techniques which includes a retardation of molecules with respect to the 

solvent front that progresses through the material. Chromatography means “colour drawing” 

and was originally used to describe the separation of natural pigments on filter papers by 

differential retardation (Hedhammar et al. 2006). 
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3.1.1.1 Gel filtration or size exclusion chromatography  

Gel filtration (GF) chromatography is widely used because it is easy to use, it has 

relatively high throughput and the equipment and columns are readily available (Arakawa et al. 

2010). 

Generally, GF matrices consist of porous beads composed of crosslinked 

polyacrylamide, agarose, dextran or combinations of these forming a gel with different pore 

sizes (Hedhammar et al. 2006). GF, allows separation of substances with differences in 

molecular size, under mild conditions. Sample components are eluted isocratically (single 

buffer, no gradient). Separation can be performed within a broad pH, ionic strength, and 

temperature range. GF is a non-binding method which means that no concentration of the 

sample components takes place. In fact, the sample zone is broadened during the passage 

through the column, resulting in dilution of the sample. To avoid the dilution of the peptides, 

the sample can be concentrated before GF (Hedhammar et al. 2006). One of the most important 

limitations of GF analysis is protein adsorption to the resin, particularly when using new 

columns and often column preconditioning protocols are required (Arakawa et al. 2010). 

AMPs are small compared to most proteins. Therefore, GF chromatography can be used 

as the first purification step for AMPs since they are suitable for the separation of molecules 

with a MW lower than 10 kDa and by definition, antimicrobial peptides have less than 10 kDa 

(Cole & Ganz 2000) 

 

3.1.1.2 Ion-exchange chromatography 

Ionic interactions are the basis for purification of proteins by ion-exchange 

chromatography (IEXC). The separation is based on the reversible interaction between a 

charged protein and an oppositely charged chromatographic medium. Typically, IEXC is used 

to bind the target molecule and then wash away non-bound contaminants. However, the 

technique can also be used to bind the impurities if required. In that case, the protein of interest 

should be found in the flow through. Ion exchangers are usually classified as weak or strong, 

which refers to pKa values of their charged groups, by analogy with weak and strong acids or 

bases (Hedhammar et al. 2006). The number of charges on a strong ion exchanger remains 

constant regardless of the buffer pH, conversely weak ion exchanger shows a pH-dependent 
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function and so provide optimal performance over only a small pH range (Cummins et al. 

2011). In cation exchange chromatography positively charged molecules are attracted to a 

negatively charged solid support. Conversely, in anion exchange chromatography, negatively 

charged molecules are attracted to a positively charged solid support. Since all molecules with 

ionizable groups can be titrated, their net surface charge is highly pH dependent. In the case of 

proteins, which are built up of many different amino acids containing weak acidic and basic 

groups, the net surface charge will change gradually as the pH of the environment changes 

(Hedhammar et al. 2006, Karlsson & Hirsh 2011). The elution of proteins is usually performed 

by increases in salt concentration or changes in pH. Changes are made stepwise or with a 

continuous gradient. Most commonly with salt (NaCl) (Cumminis et al. 2011). 

 

3.1.1.3 Reverse-phase high-performance liquid chromatography 

Reversed-phase high-performance liquid chromatography (RP-HPLC) involves the 

separation of molecules based on hydrophobicity. The separation of molecules hangs on the 

hydrophobic binding of the solute molecule from the mobile phase to the immobilized 

hydrophobic ligands attached to the stationary phase. RP-HPLC is able to separate small 

peptides such as those obtained by trypsin digestion and also larger proteins, even polypeptides 

that differ by a single amino acid residue can often be separated RP-HPLC (Rivier & 

McClintock 1983). RP-HPLC is a very powerful technique for the analysis of peptides and 

proteins, owed to the experimental simplicity with which chromatographic selectivity can be 

manipulated through changes in mobile phase characteristics. In addition, is possible to 

accomplish high recoveries of proteins and peptides and, therefore, high productivity. However, 

RP-HPLC can cause the irreversible denaturation of protein samples thereby reducing the 

recovery in a biologically active form (Aguilar & Hearn 1996; Aguilar 2004). RP-HPLC is used 

for the separation of peptide fragments from enzymatic digests and for purification of natural 

and synthetic peptides (Slemmon et al. 1994). RP-HPLC is also an extremely useful tool for 

final polishing and for isolation of proteins and peptides prior to mass spectrometry analysis. 
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3.1.2. Characterization 

Characterization is the next step in the process of analyzing AMPs, after purification. 

Initially, to characterize AMPs they are cleavage into small fragments by tryptic digestion 

followed by mass spectrometry (MS). 

MS is a sensitive technique used to detect, identify and quantitate molecules based on 

their mass and charge (m/z) ratio. The first step in the mass spectrometric analysis of 

compounds is the production of gas phase ions (positively or negatively charged) of the 

compound, for example by electron ionization. All mass spectrometers must function under 

high vacuum which is necessary to allow ions to reach the detector without undergoing 

collisions with other gaseous molecules (Hoffmann & Stroobant 2007). There are two main 

ionization techniques that are commonly used in MS: electrospray ionization (ESI) and matrix-

assisted laser desorption/ionization (MALDI) (El-Aneed et al. 2009; Henzel et al. 2003; Thiede 

et al. 2005). 

The success of ESI started in 1989 when Fenn and coworkers showed that multiple 

charged ions were obtained from proteins, allowing their molecular weight to be determined. At 

the beginning, ESI was considered as an ionization source dedicated only to protein analysis. 

Afterwards, its use was extended to other polymers and to the analysis of small polar molecules. 

Shortly, in ESI the sample (proteins or peptides) is nebulized when a high voltage is applied. 

ESI is ideally suited for biochemical analyses because it allows very high sensitivity to be 

reached and is easy to couple with separation techniques such as high-performance liquid 

chromatography (HPLC) (Hoffmann & Stroobant 2007). 

MALDI-MS was first introduced in 1988 by Karas and Hillenkamp and soon it has 

become a widespread analytical tool for peptides, proteins, oligonucleotides, carbohydrates and 

lipids. The effective and directed energy transfer during a matrix-assisted laser-induced 

desorption event provides high ion yields of the intact analyte. Besides, the measurement of 

compounds is achieved with high accuracy and subpicomolar sensitivity (Cotter 1992). 

Independently of the ionization source, the sensitivity of a mass spectrometer is related to 

the mass analyzer where ion separation occurs. Mass analyzers as quadrupole time-of-flight 

(QTOF) are commonly used and they can be configured together as QToF tandem mass 

spectrometric instruments. Tandem mass spectrometry (MS/MS) is a method where the gaseous 
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ions are subjected to two or more sequential stages of mass analysis, which can be separated 

according to their mass and charge ratio, m/z (El-Aneed et al. 2009). 

 

3.2. Mode of action 

AMPs can be used as antibiotics and preservatives. Therefore, it is essential to 

understand their mode of action. Most of experiments performed until now have focused 

primarily on the interaction of AMPs with model membrane systems. Nevertheless, the 

available information about the AMPs mode of action continues to increase. 

The existence of two main groups of AMPs, cationic (positively charged) and anionic 

(negatively charged), leads to the hypothesis of different mechanisms of interactions between 

the different AMPs and the target cells. 

 

3.2.1. Cationic AMPs 

The mechanisms involved in the killer action of cationic AMPs predominantly include 

interactions between their positively charged residues and the anionic components of target cell 

membranes, resulting in their permeabilization, depolarization, leakage or lysis, and 

consequently in cell death (Brogden 2005; Giuliani et al. 2007; Matsuzaki 2009). Nevertheless, 

cell membranes are only one of the cationic AMPs cellular targets; AMPs can equally 

destabilize internal anionic cell constituents such as DNA, RNA, or cell wall components 

(Brogden 2005). Cationic AMPs typically exhibit minimal inhibitory concentrations (MIC) 

ranging from 10 to 100 μM (Matsuzaki 2009). Most of the amino acids of cationic AMPs are 

hydrophobic (50%), with a low proportion of both neutral polar and negatively charged amino 

acids. The mixed cationic and hydrophobic composition of cationic AMPs is a helpful 

characteristic for interact with microbial cytoplasmic membranes and to perturb them (Strom et 

al. 2002). The most potent cationic AMPs fold into molecules that have either amphipathic 

structures or cationic double wing structures with a hydrophobic core separating two charged 

segments. Such peptides are found in bacteria and animals (Hancock & Diamond 2000). 

Cationic AMPs such as nisin showed higher activity when added to others compounds (i.e. 1-

propanol and EDTA) (Hancock & Lehrer 1998), leading one to suspect that there are other 

molecules that will act in synergy with cationic peptides. 
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Cationic AMPs can be grouped into four major classes based on their secondary 

structure. The most common are α-helical peptides and β-sheet peptides stabilized by 2–4 

disulfide bridges (and occasionally containing a short α-helical stretch) (Fig. 3). Other 

structures less common are: extended peptides with a predominance of one or two amino acids 

(e.g. proline, tryptophan or histidine) and loop peptides formed by a single disulphide bond 

(Fig. 3) (Hancock & Chapple 1999; Hancock & Lehrer 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Protein models representing the four structural classes of AMPs (withdrawn from Bahar 

& Ren 2013). 

 

3.2.2. Anionic AMPs  

The majority of known AMPs are cationic, anionic antimicrobial peptides (AAMPs) are 

very rare, it is believed that these peptides were developed in response to the bacterial 

resistance mechanisms toward cationic AMPs and therefore have a different mechanism of 

action (Lai et al. 2002; Li 2009) Some examples of AAMPs are the proenkephalin-derived 

peptides, bovine kappacin, peptide B and enkelytin, maximin H5 from the amphibian Bombina 

maxima, lysenins from the earthworm Eisenia fetida and dermcidin-derived peptide DCD-1L 
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from human skin (Bruhn et al. 2006; Harris et al. 2009; Goumon et al. 1998; Lai et al. 2002; 

Malkoski et al. 2001; Paulmann et al. 2012) 

AAMPs generally exhibit weaker antimicrobial activity than cationic AMPs with MIC 

typically higher than 600 μM such as in kappacins, the first AAMPs isolated from bovine milk 

(Malkoski et al. 2001). Even though the mode of action of most AAMPs remains unclear, it has 

been reported that they use a diverse range of antimicrobial mechanisms such as translocation 

across the membrane and membrane permeabilization via pore formation, which is the case of 

cyclotides (cyclotides are unique class of cysteine-rich macrocyclic peptides of about 30 amino 

acids in size that are defined by a head-to-tail cyclized backbone and three disulfide bonds in a 

knotted arrangement referred to as cyclic cystine-knot motif) (Craik et al. 1999; Harris et al. 

2009). A recent study (Paulmann et al. 2012) showed that dermcidin-derived peptide DCD-1L, 

an anionic AMP from human eccrine sweat, upon interaction with lipid bilayers forms 

oligomeric complexes that are stabilized by Zn2+. DCD-1L adopts a helical structure upon 

interaction with bacterial membrane phospholipids and can form ion channels in the membranes 

of the target cell. Moreover, investigation on the mode of action of the AAMPs kappacins 

showed that these peptides are strongly membranolytic at acidic pH, suggesting that divalent 

cations may facilitate its interaction with the bacterial membrane and/or its ability to aggregate 

in the membrane to form anionic pores, thus increasing its permeability to cations. Under acidic 

conditions, this action could facilitate the influx of hydrogen ions thereby lowering intracellular 

pH and contributing to the antibacterial activity of the peptide (Dashper et al. 2005). A 

disadvantage of many anionic antimicrobial peptides is that they often require cations, as 

cofactors for biocidal activity (Brogden et al. 1996). 

 

3.2.3.  Mechanism models of membrane disruptive AMPs 

Most of the peptides α-helical structural are membrane disruptive, although some α-

helical peptides don’t disrupt the membrane of the target cells, i.e. buforin (Park et al. 1998) 

and a pleurocidin analogue (Patrzykat et al. 2002). Three mechanistic models have been 

developed to explain membrane disruption, the “carpet” model, “toroidal” pore model, “barrel-

stave” model (Fig. 4) (Brogden 2005). 

In the “carpet” model the cell membrane is fully covered by a carpet-like cluster of 

peptides that remain in contact with the lipid head groups. A saturation point is reached which 
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results in an extensive wormhole formation, triggering local disturbance in membrane stability, 

disruption of the membrane potential and finally, disintegration of the membrane (Costa et al. 

2011; Powers & Hancock 2003). 

In the “toroidal” pore model the peptides are oriented parallel to the plane of the plasma 

membrane and bind to the region of the phospholipid polar heads in a functionally inactive 

state. When a critical concentration is reached, the peptide molecules are reoriented 

perpendicularly to the plane of the bilayer penetrating the hydrophobic region (active state) and 

in conjunction with several surrounding lipids they invert themselves towards the interior of the 

membranes hydrophobic region then they adopt a multipored transitional state. This results in 

the irreversible rupture of the plasma membrane and an increase in the "transmembranal 

movement" of lipids. The transition between the inactive and active state of the peptide bound 

to the membrane is dependent the phospholipid composition of the bilayer and on AMPs 

concentration (Huang 2000). 

The “barrel-stave” model proposes that a group of AMPs molecules with α-helical 

structures interact with each other on the surface of the plasma membrane to form a complex. 

Afterwards, the peptides are oriented perpendicular to the plane of the membrane which permits 

the hydrophobic region of the peptide to interact with the hydrophobic region of the bilayer, 

whereas the hydrophilic surface of the peptide is oriented inwards, forming a hydrophilic 

channel that magnifies along with the membrane. The formed protein complex behaves as a 

pore inserted into the membrane (Zhao et al. 2003). 

Independently of which model is correct, the consequence of membrane disruption 

would be the fast depolarization of the cell leading to rapid cell death (Friedrich et al. 1999).  
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Fig. 4: Membrane-active AMPs mechanism of action models: (A) carpet model; (B) toroidal 

pore model; (C) barrel-stave model. Hydrophilic regions of the peptide are shown coloured red, 

hydrophobic regions of the peptide are shown coloured blue (withdrawn from Brogden 2005). 

 

3.2.4. Other AMPs mechanisms 

Most of the AMPs interact with and influence the integrity of microbial membranes; 

however, it is not clear if membrane permeabilization is always the deadly event or if the 

membrane is the only site of action. AMPs that do not widely permeabilize microorganism’s 

cell membranes may have effects on their viability that depend on interactions with intracellular 

components. Nevertheless, these peptides induce a considerably loss of viability slower than the 

membrane-acting peptides, which exert their antimicrobial effects within minutes (Giacometti 

et al. 1999). Has been proposed and demonstrated that these non-disruptive membrane AMPs 

translocate across membranes of the target cells (Park et al. 2000; Zhang et al. 2001), for 

instance, in the case of the skin frog AMP magainin 2, induces a transitory disruption rather 

than a large membrane perturbations and permeabilization does not occur (Park et al. 2000). 

Buforin II an AMP from the stomach of the toad Bufo bufo gargarizans (Park et al. 1996) 

translocate stochastically after the formation and disintegration of a non-permeabilizing pore-

like structure (Kobayashi et al. 2004). These AMPs, once present in the microorganisms 

cytoplasm, are thought to interact with DNA, RNA and/or cellular proteins and to inhibit 

 A B C 
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synthesis of these molecules (Brogden 2005). For instance, buforin II penetrates into to the cell 

membranes, accumulates in the cytosol and bind to DNA and RNA killing the cells without cell 

lysing (Park et al. 1998). 

Additionally, specific enzymatic targets have been identified for certain AMPs. An 

insect AMP, pyrrhocoricin, has been shown to bind the heat shock protein DnaK inhibiting 

chaperone-assisted protein folding (Kragol et al. 2001). While others AMPs induce the 

inhibition of peptidoglycan biosynthesis in bacteria such as the case of lantibiotic, mersacidin 

produced by Gram-positive species namely Bacillis sp. (Brötz et al. 1998). 

Moreover, a recent study showed that the antimicrobial mechanism of lactoferrin and 

transferrin from human mucosa, inhibit the ATPase complex in Pseudomonas aeruginosa and 

Lactococcus lactis. As a result, the H+-ATPase-mediated flux of protons is compromised 

leading to disorders in intracellular pH homeostasis and consequently resulting in cell death 

(Andrés & Fierro 2010). 

Apoptosis can be triggered by AMPs that originate DNA damages. In animal cells, after 

DNA damage DNA repair and cell cycle checkpoints are activated to protect the damaged cell. 

A failure in DNA repair will cause the activation of the phosphoprotein p53, which can result in 

growth arrest or cell death in the damaged cell; this type of mechanism can also occur in yeast 

(Wang 2001).  

Yeast cells undergo apoptosis by showing characteristic apoptotic makers such as 

externalization of phosphatidylserine to the outer leaflet of the plasma membrane, DNA 

fragmentation and chromatin condensation (Madeo et al. 1997). In the early stages of yeast 

apoptosis, the phosphatidylserine exposure serves as a sensitive marker. The most part (90%) of 

phosphatidylserine in S. cerevisiae is oriented towards the cytoplasm and is translocated to the 

outer leaflet of the plasma membrane when apoptosis is induced (Madeo et al. 1997). It can be 

detected with FITC labeled annexin V, which binds to phosphatidylserine with high affinity in 

the presence of Ca2+, and then fluoresces (Madeo et al. 1997). However, the FITC-annexin V 

and propidium iodide double staining method is commonly used since phosphatidylserine 

translocation also occurs during necrosis (Cho et al. 2012). 

DNA fragmentation is a late event in yeast apoptosis (Collins et al. 1997; Madeo et al. 

1997) and is normally detected by the terminal dUTP nick-end labeling (TUNEL) method 

(Gavrieli et al. 1992; Gorczyca et al. 1993) that is a fast and sensitive way to visualize the 
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amount of DNA fragmentation in individual cells (Madeo et al. 1997). This method detected the 

3´-OH termini produced by DNA cleavage. DNA strand breaks are detected by labeling free 3´-

OH termini with FITC-labeled deoxyuridine, which is detected with alkaline phosphatase–

coupled, anti-fluorescein antibody, and the formation of a dye precipitate with a phosphatase 

substrate (Gavrieli et al. 1992; Gorczyca et al. 1993). 

Several AMPs have been reported to exert antimicrobial activity against yeast via 

different mechanism related to apoptosis, i.e: arenicin-1 (Cho & Lee 2011), coprisin (Lee et al. 

2012), papiliocin (Hwang et al. 2011), melittin (Park & Lee 2010) and osmotin (Narasimhan et 

al. 2001; 2005). These AMPs induce particular phenomena in the target cells including reactive 

oxygen species (ROS) production, mitochondrial membrane depolarization, cytochrome c 

release, caspase activation, phosphatidylserine externalization, DNA fragmentation, nuclear 

condensation, apoptotic body formation, and membrane blebbing (Fig. 5) (Bortner & Cidlowski 

2007; Cho et al. 2012; Madeo et al. 1997). 
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Fig. 5: Apoptotic phenomena induced by AMPs in yeast cells (withdrawn from Cho et al. 

2012). 

 

 

3.3. Large-scale production of AMPs 

AMPs recently have received increasing attention as potential novel pharmaceutical 

agents. As a result, large quantities of AMPs are required, as well as reliable production 

methods. AMPs can be efficiently prepared by chemical synthesis, but this is extremely 

expensive. Isolation from natural sources rarely meet the requirements for quantity and 

preparative isolation is typically complicated and time-consuming, and therefore it is not an 

efficient way for obtaining AMPs in large amounts. (Li 2009; Park et al. 1998; Pyo et al. 2004; 

Xu et al. 2007). 

The recombinant approach is relatively low cost and easy to scale up consequently is the 

more attractive methodology for large-scale production of AMPs (Li 2009). The host cells that 
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are available for production of recombinant proteins include bacteria, yeast, filamentous fungi, 

and unicellular algae. The choice of the host system depends on the protein of interest and all 

them have strengths and weaknesses (Adrio & Demain 2010). Escherichia coli and yeast are the 

two major systems used to produce recombinant antimicrobial peptides. E. coli is the most 

popular expression host due to its fast growth kinetics, its doubling time is about 20 min 

(Sezonov et al. 2007). However, the expression of a recombinant protein may cause a 

considerable decrease in generation time due to the metabolic burden on the microorganism 

(Bentley et al. 1990). E.coli is a good host cells for AMPs since post-translational modification 

is not required for the bioactivity of most AMPs (Li & Chen 2008). Nevertheless, if eukaryotic 

post-translational modifications are needed, a prokaryotic expression system may not be 

suitable (Sahdev et al., 2008). Even though, several AMPs have been produced in yeast with 

good yields (Li et al. 2005; Xu et al. 2008), several others were expressed in insignificant 

amounts (Hong et al. 2007; Zhou et al. 2005) or obtained as an inactive form (Beaulieu et al. 

2005). Therefore, bacteria are used much more frequently than yeast for recombinant 

production of AMPs (Li & Chen 2008). The first yeast to be employed for the production of 

recombinant proteins was S. cerevisiae since there is a vast range of molecular tools available 

for S. cerevisiae. Besides, S. cerevisiae has a long history of use in the industrial production of 

bread and alcoholic beverages. Therefore, there is confidence that the organism is safe, and 

knowledge of industrial-scale fermentations facilitates production scale-up. However, Pichia 

pastoris is more often used for yeast expression system than S. cerevisiae since combines the 

advantages of relatively rapid expression times and low cost with eukaryotic co-translational 

and post-translational processing systems. Besides, P. pastoris is capable of utilise methanol as 

a carbon source and also provides a reliable means of accomplishing considerably amounts of 

protein from small culture volumes (Byrne 2015; Sudbery 1996) 
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ABSTRACT 

Saccharomyces cerevisiae plays a primordial role in alcoholic fermentation and has a vast 

worldwide application in the production of fuel-ethanol, food and beverages. The dominance of 

S. cerevisiae over other microbial species during alcoholic fermentations has been traditionally 

ascribed to its higher ethanol tolerance. However, recent studies suggested that other phenomena, 

such as microbial interactions mediated by killer-like toxins, might play an important role. Here 

we show that S. cerevisiae secretes antimicrobial peptides (AMPs) during alcoholic fermentation 

that are active against a wide variety of wine-related yeasts (e.g. Dekkera bruxellensis) and 

bacteria (e.g. Oenococcus oeni). Mass spectrometry analyses revealed that these AMPs 

correspond to fragments of the S. cerevisiae glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) protein. The involvement of GAPDH-derived peptides in wine microbial interactions 

was further sustained by results obtained in mixed cultures performed with S. cerevisiae single 

mutants deleted in each of the GAPDH codifying genes (TDH1-3) and also with a S. cerevisiae 

mutant deleted in the YCA1 gene, which codifies the apoptosis-involved enzyme metacaspase. 

These findings are discussed in the context of wine microbial interactions, biopreservation 

potential and the role of GAPDH in the defence system of S. cerevisiae. 

 

 

Keywords: antimicrobial peptides; wine microbial interactions; alcoholic fermentation; 

biopreservation; metacaspases; glyceraldehyde-3-phosphate dehydrogenase;  
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1. INTRODUCTION 

Alcoholic fermentation is the main biotransformation that occurs during winemaking, 

brewery and fuel-ethanol production. Since these industrial processes are conducted under non-

sterile growth conditions, a huge variety of microorganisms is present and can participate in the 

fermentative process. Although several yeast and bacteria are able to perform alcoholic 

fermentation, Saccharomyces cerevisiae is the dominant microorganism in all those processes, 

being usually called the “wine yeast”. During spontaneous wine fermentations, there is a 

consistent growth pattern in which the non-Saccharomyces species belonging to the natural 

microflora of grape musts (e.g. Hanseniaspora guilliermondii, Hanseniaspora uvarum, Candida 

stellata, Kluyveromyces thermotolerans, Kluyveromyces marxianus and Torulaspora 

delbrueckii) grow during the early stages of fermentation (up to 4–5 % v/ v of ethanol) but then 

begin to die-off giving way to S. cerevisiae strains to complete the fermentation process (Fleet 

and Heard 1993; Pretorius 2000). 

The ability of S. cerevisiae to displace other microbial species during alcoholic 

fermentation has been always attributed to its higher fermentative power and capacity to 

withstand the increasingly adverse conditions established in the medium as the fermentation 

progresses, i.e. high levels of ethanol and organic acids, low pH values, scarce oxygen 

availability and depletion of certain nutrients (Bisson 1999; Bauer and Pretorius 2000; Hansen et 

al. 2001). However, the weight of these factors on microbial succession during wine 

fermentations has been recently questioned and other microbial interactions were proposed by 

different authors, such as growth arrest mediated by a cell–cell contact mechanism (Nissen and 

Arneborg 2003; Nissen et al. 2003; Arneborg et al. 2005) and death mediated by killer-like 

toxins (Comitini et al. 2005; Pérez-Nevado et al. 2006; Osborne and Edwards 2007; Albergaria 

et al. 2010).  

The killer phenomenon has long been recognized among wine yeasts, although the 

relation between killer activity and the early disappearance of non-Saccharomyces yeasts from 

wine fermentations was never established because the killer toxins produced by S. cerevisiae that 

were identified up till now (K1, K2 and K28) are active only against strains of the same species 

(Pérez et al. 2001). Nevertheless, there are increasingly growing evidences suggesting the 

involvement of other killer-like toxins in the yeast–yeast and yeast–bacteria interactions in wine 

fermentations. Indeed, Comitini et al. (2005), as well as Osborne and Edwards (2007) and 
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Nehme et al. (2010), found that certain S. cerevisiae strains produce proteinaceous compounds 

that are active against malolactic bacteria. Likewise, in a previous work we demonstrated that S. 

cerevisiae CCMI 885 produces peptides (<10 kDa) that inhibit the growth of H. guilliermondii, 

T. delbrueckii, K. marxianus and K. thermotolerans (Albergaria et al. 2010). However, the 

identity of these antimicrobial peptides (AMPs) remained elusive.  

In the present work, we purified the previously found AMPs and characterized them 

regarding their amino acid sequence, encoding genes and antimicrobial spectrum of action. The 

role of these AMPs in wine microbial interactions was also investigated using S. cerevisiae 

mutant strains deleted in the AMPs encoding genes. 

 

2. MATERIALS AND METHODS 

2.1. Strains and inoculum cultures 

The following S. cerevisiae strains were used: CCMI 885 (Culture Collection of 

Industrial Microorganisms of ex-INETI, Lisbon, Portugal); BY4741 (MATα his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0) strain and its isogenic derivative strains Δtdh1 (YJL052w::kanMX4), Δtdh2 

(YJR009c::kanMX4) and Δtdh3 (YGR192c::kanMX4) (EUROSCARF, Frankfurt, Germany); 

BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0; ura3Δ0) strain and its isogenic derivative strain Δyca1 

(EUROSCARF, Frankfurt, Germany). The non-Saccharomyces strains used were: Dekkera 

bruxellensis ISA 1649, ISA 1700, ISA 1791, ISA 2104, ISA 2116, ISA 2211 (Instituto Superior 

de Agronomia, Lisbon, Portugal); H. guilliermondii NCYC 2380 (National Collection of Yeast 

Cultures, Norwich, United Kingdom); K. marxianus PYCC 2671 (Portuguese Yeast Culture 

Collection, New University of Lisbon, Portugal); K. thermotolerans PYCC 2908 and T. 

delbrueckii PYCC 4478. Two strains of Oenococcus oeni were used: ISA 4279 and DSM 2529 

(German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany). Inoculums 

of all yeast strains were obtained by transferring one YEPD-agar slant of each strain (pre-grown 

at 30 °C for 48–72 h) into 50 ml of YEPD medium (10 g/l yeast extract, 20 g/l peptone and 20 

g/l glucose) and incubating cultures at 30 °C with 150 rpm of agitation during 16 h (for Dekkera 

strains incubation took 48–72 h). Inoculums of O. oeni strains were prepared by transferring 1ml  

of stock culture into 9 ml of MRS broth and incubating cultures at 25 °C without agitation for 48 

h. 
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2.2. Purification of antimicrobial peptides from S. cerevisiae supernatants 

AMPs were purified from S. cerevisiae CCMI 885 supernatants of alcoholic 

fermentations performed in synthetic grape juice (SGJ), prepared as described in Pérez-Nevado 

et al. (2006), at 25°C for 7 days. Cell-free supernatants (filtration by 0.22 μm Millipore 

membranes, Merck Millipore, Algés, Portugal) were first ultrafiltrated through centrifugal filter 

units (Vivaspin 15R, Sartorius, Göttingen, Germany) equipped with 10 kDa membranes and then 

concentrated (100-fold) with 2 kDa membranes. This concentrated fraction was first fractionated 

by gel filtration chromatography, using a Superdex-Peptide column (10/300 GL, GE Healthcare, 

London, UK) coupled to a High-Performance Liquid Chromatography (HPLC) system (Merck 

Hitachi, Darmstadt, Germany) equipped with an UV detector (Merck Hitachi, Darmstadt, 

Germany). One hundred microlitres of fraction was eluted with ammonium acetate 0.1 M at a 

flow rate of 0.7 ml/min. All fractions (Fig. 1a) were collected into 2 ml Eppendorf, freeze-dried 

and stored until utilisation. They were all screened for antimicrobial activity and fraction-II was 

identified as the most active fraction. Fraction-II was then further purified using a strong anion-

exchange column (Q-Resource 6 ml, GE Healthcare, London, UK). Peptides were eluted at 

neutral pH using a gradient of ammonium acetate of 5–500 mM between 10 and 40 min at a flow 

rate of 1 ml/min. Fractions obtained were collected, vacuum-dried and screened for antimicrobial 

activity after resuspended in appropriated medium. Three anionic fractions (Fraction II-A, II-B 

and II-C in Fig. 1b) revealed antimicrobial activity against H. guilliermondii and were analysed 

by mass spectrometry. 

2.3. Screening of antimicrobial activity and determination of the spectrum of action 

Antimicrobial activity of fractions obtained in the different purification steps (gel 

filtration and anion-exchange chromatography) were tested against the sensitive strain H. 

guilliermondii using a total protein concentration of 1 mg/ml for gel filtration fractions (Fig. 1C) 

and 0.5 mg/ml for the anionic fractions (Fig. 1D). The spectrum of action of fraction-II was 

determined against H. guilliermondii, K. marxianus, K. thermotolerans, T. delbrueckii, D. 

bruxellensis and O. oeni, following the procedure described below.  

All antimicrobial tests were performed in 96-well microplates using YEPD medium for 

yeast strains and MRS broth for O. oeni strains. Lyophilised fractions were resuspended in the 

respective growth medium (YEPD or MRS with 30 g/l of ethanol and pH 3.5) to a final protein 
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concentration of 1mg/ml in total volume of 100 μl. Control assays for each strain were 

performed using the respective growth medium without addition of the AMPs. The initial cell 

density in the antimicrobial tests was 105 cells/ml for yeasts and 106 cells/ml for bacteria strains. 

The microplates were incubated in a thermo-Shaker (Infors HT, Bottmingen, Switzerland) at 30 

°C under 700 rpm of agitation for yeasts and at 25 °C without agitation for O. oeni. Growth of 

the cultures was followed by absorbance measurements at 590 nm using a microplate reader 

(Dinex Technologies Inc., Chantilly, USA) and also by the enumeration of colonies forming 

units (CFU) using the classical plating method (as described in the “Cell growth” sub-section), 

during the time-course of the experiments. All antimicrobial tests were performed in triplicates. 

2.4. Mass spectrometry (LC-ESI-MS/MS) and sequence analysis  

Peptides present in the three anionic fractions were sequenced by liquid chromatography-

electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). For LC-ESI-MS/MS 

analysis of peptide mixtures, on-line nano-flow liquid chromatography was performed using the 

Ultimate 300 RSLC (Dionex, Voisins le Bretonneux, France) with 15 cm nanocapillary columns 

of an internal diameter of 75 μm (Acclaim PepMap RSLC, Dionex). The solvent gradient from 

4% to 50% acetonitrile in 0.5% formic acid was run at a flow rate of 300 nl/min for 30 min. The 

eluate was electrosprayed into an LTQ Velos mass spectrometer (Thermo Fisher Scientific, 

Courtaboeuf, France) through a nanoelectrospray ion source. The LTQ Velos was operated in a 

CID top 10 mode (i.e. one full scan MS from which 10 major peaks are selected for MS/MS). 

Raw data files were processed with search engines installed in-house, Mascot (version 2.2, 

Matrix Science, London, UK) and PEAKS studio (version 5.3, Bioinformatics Solutions Inc., 

Waterloo, Canada). For peptide identification, the UniProt taxonomy S. cerevisiae (6,650 

sequences) protein database was used and the parameters for searching were: none enzyme and 

possible oxidation of methionine. Peptide mass tolerance and fragment mass tolerance were set 

to 1.5 and 0.8 Da, respectively. Peptides identification was validated when significant Mascot 

and PEAKS scores were obtained with false discovery rate <1%. In addition, a manual validation 

of MS/MS spectra was performed to be sure of the peptide sequence.  
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2.5. Alcoholic fermentations performed with mixed cultures of H. guilliermondii and S. 

cerevisiae 

Alcoholic fermentations were performed in 150 ml of SGJ (supplemented with 200 mg/l 

of L-leucine, 120 mg/l of L-histidine, 180 mg/l of L-methionine and 120 mg/l of uracil) using 

mixed cultures of H. guilliermondii with each of the following S. cerevisiae strains: BY4741 and 

its isogenic derivatives Δtdh1, Δtdh2, Δtdh3; and BY4742 and its isogenic derivative Δyca1. 

Fermentations were carried out at 25 °C under slow agitation (80 rpm) with an initial cell density 

of 105 cells/ml of each species. A single culture fermentation of H. guilliermondii was also 

performed under the same growth conditions to compare its cell viability under single and mixed 

culture. All fermentations were performed in duplicates and daily samples were taken to 

determine cell viability, sugars consumption and ethanol production. 

2.6. Cell growth 

Culturability was determined by the classical plating method both in the antimicrobial 

tests and alcoholic fermentations. Briefly, samples were plated onto YEPD-agar plates, after 

appropriate dilution (decimal serial dilution method) and incubated at 25 °C in a Vertical 

Incubator (Infors, Anjou, Canada) and the number of colony forming units (CFU) enumerated 

after 2–6 days. In the mixed culture fermentations, the CFU counts of H. guilliermondii were 

obtained on 0.01% cycloheximide YEPD-agar plates and CFU counts of S. cerevisiae as the 

difference between total CFU counts on YEPD-agar plates and CFU counts of H. guilliermondii. 

Enumerations of CFU counts in the antimicrobial tests were determined on YEPD-agar plates 

both for yeasts and bacteria. 

2.7. Sugars consumption and ethanol production 

Glucose, fructose and ethanol concentrations in alcoholic fermentations were analysed 

using a High-Performance Liquid Chromatography (HPLC) system (Merck Hitachi, Darmstadt, 

Germany) equipped with a refractive index detector (L-7490, Merck Hitachi, Darmstadt, 

Germany). Fermentation samples were first filtrated by 0.45 μm Millipore membranes (Merck 

Millipore, Algés, Portugal) and then injected on a Sugar-Pak column (Waters Hitachi, Milford, 

USA) and eluted with a degassed aqueous mobile phase of CaEDTA (50 mg/l) at 90 °C using a 

flow rate of 0.5 ml/min. All samples were analysed in duplicate. 
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3. RESULTS 

3.1.  Purification and identification of AMPs from S. cerevisiae fermentation supernatants 

In the previous work (Albergaria et al. 2010), we found that S. cerevisiae CCMI 885 

supernatants obtained from alcoholic fermentations performed in SGJ, contained a peptidic 

fraction (<10 kDa) active against some wine-related yeasts. This peptidic fraction was first 

fractionated by gel filtration chromatography (Fig. 1A) and all fractions were collected, 

lyophilised and then screened for antimicrobial activity. Results revealed that fraction-II 

exhibited strong antimicrobial activity (Fig. 1C) and thus this fraction was further purified by 

ion-exchange chromatography. Since most AMPs are cationic in nature fraction-II was first 

pooled into a cation-exchange column (S-Resource) but none of the fractions obtained exhibited 

antimicrobial activity against H. guilliermondii (data not shown). Thus, fraction-II was pooled 

into a strong anion-exchange column Fig. 1B and the three anionic (at neutral pH) fractions 

obtained (fractions II-A, II-B and II-C) were screened for antimicrobial activity against H. 

guilliermondii (Fig. 1D).  

Since all anionic fractions showed antimicrobial activity peptides were sequenced by 

liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESIMS/MS). 

Sequence analysis revealed that all peptides present in each anionic fraction correspond to 

fragments of the S. cerevisiae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

isoenzymes, GAPDH2/3 and GAPDH1 (Table 1), which are encoded by the TDH2, TDH3 and 

TDH1 genes, respectively.  
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Fig. 1: Chromatographic steps used in the purification process of the AMPs. First, the 

concentrated peptidic (<10 kDa) fraction obtained from S. cerevisiae CCMI 885 supernatants 

was fractionated by gel filtration chromatography (A) and fractions were collected and checked 

for antimicrobial activity (B); Since only fraction-II exhibited strong antimicrobial activity, this 

fraction was further fractionated using a strong anion-exchange column (C) and the three anionic 

fractions obtained were tested for antimicrobial activity against H. guilliermondii (D). 
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Table 1: Sequence analysis by LC-ESI-MS/MS of the peptides present in each of the anionic 

bioactive fractions obtained from the anion-exchange chromatography (Fig. 1B). 

 

 

* Protein accession number in the UniProt protein database (http://www.uniprot.org/) for 

taxonomy S. cerevisiae; P00358 corresponds to GAPDH2/3 and P00360 to GAPDH1 

Two main peptides with molecular weights of 1.638 and 1.622 kDa and the following amino acid 

residues VSWYDNEYGYSTR and ISWYDNEYGYSAR were identified in each fraction (Fig. 

2). The theoretical isoelectric point (pI) of these peptides estimated by the ExPASy software 

(http://www.expasy.ch/tools/peptide-mass.html) is 4.37. 

 

  

Fractions Sequence 
Protein 

Accessions
* 

Number of 

MS/MS 
Ion Score Exp Value Charge m/z [Da] 

MH+[Da] 

observ 

MH+[Da] 

theor 

ΔM 

[ppm] 

Fraction 

II-A 

VSWYDNEYGYSTR P00358 19 88 7.438E-06 2 820.51358 1640.0199 1639.70100 193.62 

ISWYDNEYGYSAR P00360 12 88 7.05811E-06 2 811.84664 1622.6860 1623.70700 -629.48 

VSWYDNEYGYSTRV P00358 10 87 9.46623E-06 2 869.93185 1738.8564 1738.77000 49.26 

ISWYDNEYGYSARV P00360 5 70 0.000514842 2 861.93159 1722.8559  46.46 

VSWYDNEYGYSTRVV P00358 4 61 0.003617934 2 919.51678 1838.0263  101.79 

FRVPTVDVSVVD P00360;P00358 1 53 0.026088308 2 666.92529 1332.8433  95.62 

FRVPTVDVSVVDL P00360;P00358 1 50 0.050345078 2 723.42711 1445.8470  32.52 

Fraction 

II-B 

ISWYDNEYGYSAR P00360 8 82 2.94727E-05 2 812.38477 1623.76225 1623.70700 33.76 

VSWYDNEYGYSTR P00358 5 71 0.000398533 2 820.51358 1640.01989 1639.70100 193.62 

VSWYDNEYGYSTRV P00358 5 86 1.21949E-05 2 869.93185 1738.85642 1738.77000 49.26 

LVSWYDNEYGYSTR P00358 5 76 0.000120382 2 877.01541 1753.02354 - 135.26 

ISWYDNEYGYSARV P00360 3 77 9.23986E-05 2 862.01493 1723.02257 - 143.19 

Fraction 

II-C 

ISWYDNEYGYSAR P00360 6 77 9.07985E-05 2 812.93001 1624.85274 1623.70700 704.86 

VSWYDNEYGYSTR P00358 5 74 0.000218754 2 820.93026 1640.85325 1639.70100 701.40 

ISWYDNEYGYSARV P00360 3 77 9.45517E-05 2 861.83356 1722.65984 - 67.35- 

VSWYDNEYGYSTRV P00358 2 72 0.000288878 2 870.51520 1740.02312 1738.77000 719.73 
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Fig. 2: Mass spectrometry spectra (MS/MS) of the two main peptides (double charged) found 

and validated in each of the anionic fractions obtained by anion-exchange chromatography 

(fractions II-A, II-B and IIC indicated in Fig. 1B). (A) Peptide VSWYDNEYGYSTR, m/z 

820.24, [M+2H]2+.(B) Peptide ISWYDNEYGYSAR, m/z 812.24, [M+2H]2+. 

 

3.2. Spectrum of action of the AMPs 

The spectrum of action of the antimicrobial peptides (AMPs) was determined against 

several wine-related yeasts (H. guilliermondii, K. thermotolerans, T. delbrueckii, K. marxianus 

and D. bruxellensis) and bacteria (O. oeni). Results showed that under the conditions tested 

(YEPD or MRS, at pH 3.5) the AMPs inhibited the growth of all these microbial species (Fig. 3), 

although for some yeast strains (e.g. T. delbrueckii) only a fungistatic effect was observed, while 

on others a fungicide effect was shown. H. guilliermondii showed to be the most sensitive yeast, 

with total death occurring after 14 h of incubation with the AMPs, followed by K. marxianus and 

D. bruxellensis strain ISA 2211 with total death established within 44 h and 96 h, respectively. 

The present results revealed that these AMPs are active against a wide variety of microorganisms 

A

B
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associated with wine fermentations, although the sensitivity of these microbial species towards 

the AMPs is strain-specific, as shown by the results obtained for different strains of D. 

bruxellensis and O. oeni (Fig. 4). Moreover, these AMPs also showed inhibitory activity when 

tested in a modified-SGJ (20 g/l of sugars, 30 g/l of ethanol) at pH 3.5 (data not shown). 
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Fig. 3: Viable cells (CFU) and optical density (OD) of Hanseniaspora guilliermondii (A), 

kluyveromyces marxianus (B), Torulaspora delbrueckii (C), Kluyveromyces thermotolerans (D), 

Dekkera bruxellensis strain ISA 2211 (E) and Oenoccocus oeni strain DSM 2529 (F) in the 

antimicrobial tests (AMT) performed with YEPD medium (at pH 3.5) for yeasts and MRS broth 

(at pH 3.5) for bacteria, without addition of fraction-II (Control) and with addition of 1 mg/ml of 

fraction-II (AMT). Data represented correspond to mean values of triplicate independent assays 

± SD (error bars). 
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Fig. 4: Viable cells (CFU) and optical density (OD) of Dekkera bruxellensis strains ISA 1649 

(A), ISA 1700 (B), ISA 1791 (C), ISA 2104 (D) and ISA 2116 (E), and of Oenoccocus oeni ISA 

4279 (F) in the antimicrobial tests (AMT) performed with YEPD medium for D. bruxellensis 

strains and with MRS broth for O. oeni without addition of fraction-II (Control) and with 

addition of fraction-II (AMT). Data represented correspond to mean values of triplicate 

independent assays ± SD (error bars). 
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3.3. Role of GAPDH-derived peptides in S. cerevisiae antagonism 

In order to further confirm that GAPDH-derived peptides are involved in the early death 

of non-Saccharomyces during wine fermentations, we performed alcoholic fermentations with 

mixed cultures of H. guilliermondii and S. cerevisiae mutant strains deleted in each of the TDH1-

3 genes. S. cerevisiae wild-type strain BY4741 was used in mixed culture with H. guilliermondii 

as positive control and H. guilliermondii in single culture for negative control. Growth profiles of 

both yeasts (Fig. 5A, B) showed that all strains were able to grow during the first 1–2 days of 

fermentation, but then H. guilliermondii began to die off (Fig. 5B) while S. cerevisiae kept its 

cell density at about 107 CFU/ml until the end of fermentation (Fig. 5A). However, death rate of 

H. guilliermondii significantly varied whether in single or in mixed culture and was faster in the 

mixed cultures performed with the wild-type strain of S. cerevisiae, particularly after the 3rd day 

of fermentation. Interestingly, the death rate of H. guilliermondii was much slower in the mixed 

cultures performed with the Δtdh1, Δtdh2 and Δtdh3 mutants than in the mixed culture performed 

with the wild-type strain (Fig. 5B). Although ethanol levels had varied among fermentations, 

when we compare the ethanol profile of the mixed fermentation performed with the wild-type 

strain and those of Δtdh1 mutants (Fig. 5C), it can be clearly seen that ethanol cannot explain the 

differences observed in the death rates of H. guilliermondii on those fermentations (Fig. 5B). 

Recently, Silva et al. (2011) reported that GAPDH is a specific substrate of yeast 

metacaspase and showed that the in vivo cleavage of GAPDH by metacaspase originated several 

GAPDH-derived peptide fragments, namely some equal to the ones identified in the present 

work. In view of this information, we wondered if a S. cerevisiae mutant deleted on the 

metacaspase YCA1 gene would not prevent the production of GAPDH-derived peptides and thus 

avoid death of non-Saccharomyces in fermentations with S. cerevisiae. To confirm this 

hypothesis, we performed alcoholic fermentations with H. guilliermondii in co-culture with S. 

cerevisiae wild-type strain BY4742 and its isogenic mutant Δyca1. Since cycloheximide is a 

well-known inhibitor of apoptosis, we also performed fermentation with H. guilliermondii and S. 

cerevisiae wild-type strain, adding cycloheximide after the first day of fermentation. 

Fermentation of H. guilliermondii in single culture was used as negative control. Results showed 

(Fig. 6B) that the use of both cycloheximide and Δyca1 strain in mixed cultures with H. 

guilliermondii significantly prevented death of the non-Saccharomyces strain, which was able to 

keep its culturability at relatively high levels (ca 104 CFU/ml) until the end of fermentation (7 
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days). In both cases, the culturability of H. guilliermondii after 5 days was four orders of 

magnitude higher than in the mixed culture fermentation performed with the wild type strain 

(without cycloheximide) and comparable to the one observed in the H. guilliermondii single 

culture fermentation. It is important to notice that ethanol profiles in the mixed cultures 

performed with the Δyca1 strain and with the wild-type strain (without cycloheximide) were 

quite similar (Fig. 6C), which confirmed that minor death of H. guilliermondii in the presence of 

the S. cerevisiae Δyca1 strain was not caused by ethanol.  

In order to confirm the presence/absence of the previously identified GAPDH-derived 

anionic AMPs in these mixed cultures, we analysed the chromatographic profiles of S. cerevisiae 

BY4742 and Δyca1 supernatants (5 days-old), using the same purification procedure. Results 

showed (Fig. 7) that the anion-exchange chromatographic profile of S. cerevisiae BY4742 is 

very similar to the one exhibited by S. cerevisiae CCMI 885 (Fig. 1B) but quite different from 

that of S. cerevisiae Δyca1. Moreover, antimicrobial tests performed with these anionic fractions 

showed that all BY4742 anionic fractions killed H. guilliermondii, while the Δyca1 anionic 

fraction only exerted a minor inhibitory effect over the same strain (data not shown). These 

results confirmed that the bioactive anionic peptides are absent, or at least are present at much 

lower amounts, in S. cerevisiae Δyca1 supernatants what explains that H. guilliermondii dies less 

in co-cultivation with Δyca1 than with BY4742 or CCMI 885 strains (Fig. 6B). 
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Fig. 5- Cell growth of S. cerevisiae (A) and H. guilliermondii (B) and sugar consumption and 

ethanol production (C) during alcoholic fermentations performed with H. guilliermondii in single 

and mixed cultures with each of the following S. cerevisiae strains: wild-type BY4741 (Wt), 

Δtdh1 (TDH1), Δtdh2 (TDH2) and Δtdh3 (TDH3). Data represented correspond to mean values 

of duplicate independent assays±SD (error bars)  
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Fig. 6- Cell growth of S. cerevisiae (A) and H. guilliermondii (B) and sugar consumption and 

ethanol production (C) during alcoholic fermentations performed with H. guilliermondii in single 

and mixed cultures with S. cerevisiae wild-type strain BY4742 (Wt), wild-type strain in the 

presence of cycloheximide (Wt+CH) and mutant strain Δyca1 (YCA1). Arrow indicates the point 

at which 0.001 % of cycloheximide was added to the culture. Data represented correspond to 

mean values of duplicate independent assays±SD (error bars)  
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Fig. 7- Chromatographic profiles of the anionic peptides present in S. cerevisiae BY4742 and 

Δyca1 supernatants (5 days old), obtained by pooling fraction-II of each strain (from gel 

filtration) into a strong anion exchange column (Q-Resource 6 ml, GE Healthcare, London, UK) 

 

4. DISCUSSION 

We had previously reported that S. cerevisiae CCMI 885 produces antimicrobial peptides 

(AMPs<10 kDa) that inhibit the growth of H. guilliermondii, T. delbrueckii, K. marxianus and K. 

thermotolerans during alcoholic fermentations performed with mixed cultures (Albergaria et al. 

2010). In the present work, we show that these AMPs are derived from the glycolytic enzyme 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Although surprising, this finding is 

supported by several studies showing that GAPDH, besides its glycolytic role, displays several 

other activities in different subcellular locations (membrane, cytosol and nucleus), including a 

primary role in apoptosis and in a variety of critical nuclear pathways (Sirover 2005; Nakajima et 

al. 2009; Silva et al. 2011). More importantly, in two recent publications, GAPDH-derived 

AMPs with antifungal activity were isolated, one from the human placental tissue (Wagener et 

al. 2013) and another from the skin of yellowfin tuna (Seo et al. 2012). Those AMPs correspond 

to small cationic peptides that match the N-terminal (2-32) amino acid sequence of the human 

and fish GAPDH protein, respectively, and are active against the pathogenic yeast Candida 

albicans. Conversely, the AMPs here identified are anionic (at neutral pH), match the C-terminal 

(309-321) amino acid sequence of the S. cerevisiae GAPDH protein and are active against 
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several wine-related yeasts (e.g. D. bruxellensis) and bacteria (e.g. O. oeni). Regarding the 

anionic nature of these AMPs it is important to emphasize that at the acidic pH conditions of 

wine fermentations (pH ranging 3.0–3.5), peptides with pI =4.37 are not negatively charged. In 

spite of these differences, the above-mentioned findings clearly indicate that GAPDH plays an 

important role in the defense system of different organisms.  

In the yeast S. cerevisiae, three related but not identical GAPDH isoenzymes with 

different specific activities are encoded by unlinked genes designated TDH1, TDH2 and TDH3 

(McAlister and Holland 1985a). McAlister and Holland (1985b) have also shown that none of 

these TDH genes are individually essential for cell viability, but a functional copy of either 

TDH2 or TDH3 is required for growth since Δtdh2 Δtdh3 cells are not viable. For this reason, in 

the present work, we have used single mutant strains of S. cerevisiae deleted in each of the 

TDH1-3 genes in mixed cultures with H. guilliermondii to evaluate their impact on the early 

death of the non-Saccharomyces yeast. Our results show that deletion of each of these genes in S. 

cerevisiae reduces its antagonism against H. guilliermondii, thus further demonstrating that 

GAPDH is involved in wine microbial interactions. 

Delgado et al. (2001) found that each of the three GAPDH polypeptides encoded by the 

TDH1-3 genes is associated with the cell wall of S. cerevisiae. The same authors also 

demonstrated that GAPDH accumulates in the cell wall of S. cerevisiae in response to starvation 

and temperature upshift (Delgado et al. 2003). Beyond this stress response, specifically related to 

the cell-wall-associated GAPDH, a recent work by Silva et al. (2011) identified GAPDH as a 

specific target of metacaspase in S. cerevisiae, thus proving GAPDH is associated with apoptosis 

in S. cerevisiae. In a previous work (Albergaria et al. 2010), we showed that S. cerevisiae begins 

to secrete AMPs to the extracellular medium at the end of the exponential growth phase (1–2 

days) in alcoholic fermentations. In addition, our current work also shows that a mutant strain of 

S. cerevisiae deleted in the metacaspase YCA1 gene significantly prevents death of H. 

guilliermondii during alcoholic fermentation. Taken together, these findings suggest that the 

presence of GAPDH-derived peptides in the extracellular media at the end of exponential growth 

phase might be due to apoptotic cells of S. cerevisiae inducing the cleavage of GAPDH by 

metacaspases. However, to definitively establish this connection between apoptosis and secretion 

of AMPs further investigation must be carried out.  



Chapter II 

76 

Most industrial processes involving alcoholic fermentations with Saccharomyces strains, 

such as wine, beer or fuel-ethanol production, are carried out under non-sterile growth conditions 

due to technical and economic reasons, with high risks of microbial contamination. Wine 

contamination problems can occur at multiple stages of the winemaking process, and can lead to 

stuck fermentations, low levels of ethanol and the presence of off-flavours in wine. Likewise, 

contaminations of industrial fuel-ethanol fermentations by yeasts and bacteria have a negative 

impact on ethanol yield and productivity (Liberal et al. 2007). In both fermentation processes, 

spoilage microorganisms can include a wide variety of yeasts, namely those of the species D. 

bruxellensis and Zygosaccharomyces bailii and bacteria, such as lactic acid and acetic acid 

bacteria (Loureiro and Malfeito-Ferreira 2003; Liberal et al. 2007). Chemical preservatives such 

as sulphur dioxide (SO2) are commonly used in winemaking to prevent the development of 

spoilage microorganisms. However, some wine contaminants such as Pichia spp. and Dekkera 

spp. can resist to the SO2 levels used on those processes (Barata et al. 2008; Basílio et al. 2008) 

that cannot be too high in order to allow fermentation by S. cerevisiae strains. In this context, 

proteins and peptides exhibiting antimicrobial properties might have a remarkable potential for 

food preservation and control of spoilage microorganisms, although in the winemaking process 

selectivity is required for not affecting beneficial microorganisms. The use of killer toxins 

produced by Pichia anomala and Kluyveromyces wickerhamii with fungicidal effects against D. 

bruxellensis in wine has been reported (Comitini et al. 2004; Comitini and Ciani 2011). In the 

present work, we found that S. cerevisiae secretes AMPs during alcoholic fermentation that are 

active at oenological growth conditions against a wide variety of wine-related microbial species, 

including D. bruxellensis strains. Thus, the possibility of using these AMPs as natural alternative 

biopreservatives in alcoholic fermentations, wine and/or other food products looks promising and 

will be further assessed. 
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ABSTRACT 

Saccharomyces cerevisiae produces antimicrobial peptides (AMPs) during alcoholic 

fermentation that are active against several wine-related yeasts (e.g. Hanseniaspora 

guilliermondii) and bacteria (e.g. Oenococcus oeni). In the present study, the physiological 

changes induced by those AMPs on sensitive H. guilliermondii cells were evaluated in terms of 

intracellular pH (pHi), membrane permeability and culturability. Membrane permeability was 

evaluated by staining cells with propidium iodide (PI), pHi was determined by a fluorescence 

ratio imaging microscopy (FRIM) technique and culturability by a classical plating method. 

Results showed that the average pHi of H. guilliermondii cells dropped from 6.5 (healthy cells) 

to 5.4 (damaged cells) after 20 min of exposure to inhibitory concentrations of AMPs, and after 

24 h 77.0% of the cells completely lost their pH gradient (ΔpH=pHi−pHext). After 24 h of 

exposure to AMPs, PI-stained (dead) cells increased from 0% to 77.7% and the number of viable 

cells fell from 1×105 to 10 CFU/ml. This means that virtually all cells (99.99%) became 

unculturable but that a subpopulation of 22.3% of the cells remained viable (as determined by PI 

staining). Besides, pHi results showed that after 24 h, 23% of the AMP-treated cells were sub-

lethally injured (with 0<ΔpH<3). Taken together, these results indicated that this subpopulation 

was under a viable but non-culturable (VBNC) state, which was further confirmed by 

recuperation assays. In summary, our study reveals that these AMPs compromise the plasma 

membrane integrity (and possibly also the vacuole membrane) of H. guilliermondii cells, 

disturbing the pHi homeostasis and inducing a loss of culturability. 

 

Keywords: Antimicrobial peptides; Membrane integrity; Fluorescence ratio imaging microscopy 

(FRIM); Intracellular pH (pHi); Wine yeasts 
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1 INTRODUCTION 

In the early stages of wine fermentation (4–5% of ethanol) non-Saccharomyces yeast 

species such as Hanseniaspora guilliermondii, Hanseniaspora uvarum and Candida stellata are 

predominant. However, as the fermentation progresses the highly fermentative and ethanol 

tolerant strains of S. cerevisiae take over and complete the fermentation process (Pretorius, 2000; 

Sabate et al. 2002). Several studies have shown that the early death of some non-Saccharomyces 

yeast during wine fermentation is due to microbial interactions induced by S. cerevisiae through 

different mechanisms (Arneborg et al., 2005; Nissen et al., 2003; Pérez-Nevado et al., 2006). 

Moreover, in a work carried out by Albergaria et al. (2010) it was shown that S. cerevisiae 

produces antimicrobial peptides (AMPs) that are active against several wine-related microbial 

species. However, the physiological changes that these AMPs induce in sensitive yeast cells (i.e., 

cells that are inhibited and/or killed off by the AMPs) have not, as yet, been investigated.  

AMPs are low molecular weight proteins (typically 20–40 amino acids in length) that 

constitute a diverse class of naturally occurring molecules with broad antimicrobial spectrum of 

action against bacteria, viruses, and fungi (Bradshaw, 2003; Izadpanah and Gallo, 2005). Many 

different types of organisms use AMPs for defence against infection and membrane interaction 

appears to be the key to the antimicrobial function of AMPs. AMPs generally present 

amphiphilic structures that facilitate these interactions. The peptide action may implicate 

membrane permeabilization, depolarization, leakage or lysis, resulting in cell death (Bradshaw, 

2003; Izadpanah and Gallo, 2005; Matsuzaki, 2009).  

Most AMPs are cationic in nature and kill microbes by interacting with anionic 

components of target cell membranes. Nevertheless, several anionic AMPs (AAMPs) have been 

found in animals and plants and it has become clear that they play an important role in their 

innate immune system (Harris et al., 2009). Also, the previously found S. cerevisiae AMPs 

(Albergaria et al., 2010) were recently characterized and sequenced, and they were shown to be 

anionic in nature (Branco et al., 2014). 

Although the mode of action of most AAMPs remains unclear, it has been reported that 

they use a diverse range of antimicrobial mechanisms such as translocation across the membrane 

and in other cases, such as with cyclotides, the membrane itself is the major site of action for 

AAMPs, which permeabilize membranes via pore formation (Harris et al., 2009). AAMPs 

generally exhibit weaker antimicrobial activity than cationic AMPs with minimal inhibitory 
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concentrations (MIC) usually higher than 600 μM such as in kappacins, the first AAMPs isolated 

from bovine milk (Malkoski et al., 2001), while cationic AMPs typically Exhibit MIC ranging 

from10 to 100 μM (Matsuzaki, 2009). Investigation on the mode of action of kappacins showed 

that these peptides are strongly membranolytic at acidic pH, suggesting that divalent cations may 

facilitate the interaction of kappacins with the bacterial membrane and/or its ability to aggregate 

in the membrane to form anionic pores, thus increasing its permeability to cations. Under acidic 

conditions, this action could facilitate the influx of hydrogen ions thereby lowering intracellular 

pH and contributing to the antibacterial activity of the peptide (Dashper et al., 2005).  

Fluorescence ratio imaging microscopy (FRIM) is a technique that measures intracellular 

pH (pHi) by using fluorescent pH sensitive probes (Arneborg et al., 2000; Siegumfeldt et al., 

1999). This technique, based on the linear response between the ratiometric intensity of 

fluorescence emitted by the probe and the pHi of the cells, gives information at the single-cell 

level, which allows determining the pHi of different subpopulations of cells simultaneously. 

Several authors (Hornbæk et al., 2002; Mortensen et al., 2006, 2008; Smigic et al., 2009; 

Vindelov and Arneborg, 2002) used the fluorescent probe 5(6)-carboxyfluorescein diacetate 

succinimidyl ester (CFDA-SE) to measure the pHi of bacteria and yeast cells at a pH ranging 

from 5.5 to 8. However, CFDA-SE is not adequate for pHi measurements of cells under acidic 

conditions, like in the case of wine fermentations where the pH of the medium ranges from 3 to 

3.5, since they are not sensitive to pH values lower than 5.5. As an alternative, Shabala et al. 

(2006) successfully used the fluorescent probe 5- (and-6)-carboxy-2′,7′-dichlorofluorescein 

diacetate succinimidyl ester (CDCFDA-SE) to determine the pHi changes of Listeria innocua 

and Lactobacillus delbrueckii cells, when exposed to acidic stress.  

However, in yeast CDCFDA-SE seems to stain preferentially the vacuole of cells and 

thus this probe has been used to estimate the vacuolar pH of S. cerevisiae cells (Mira et al., 

2009). Carmelo et al. (1997) proposed that the yeast vacuole plays an important role in 

maintaining the pH homeostasis within the yeast cell. In S. cerevisiae cells the vacuolar pH is 

maintained at mildly acidic values (i.e. around 6.0) and the cytoplasmic pH close to neutral 

values in non-stressed cells, while in stressed cells the vacuolar pH decreases (Carmelo et al., 

1997). To the best of our knowledge, the pHi of H. guilliermondii cells was never determined, 

neither under non-stressful nor under stressful conditions. Thus, the aim of the present work was 

to determine the physiological alterations induced by the S. cerevisiae AMPs on the membrane 
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permeability and pHi of sensitive H. guilliermondii cells at enological growth conditions. We 

also investigated if CDCFDA-SE stains the vacuole or the cytoplasm of H. guilliermondii cells, 

under stressful (in the presence of AMPs) and non-stressful (in the absence of AMPs) growth 

conditions, and which probe (CFDA-SE or CDCFDA-SE) was most adequate to measure the pHi 

of cells in the presence of the AMPs. 

 

2 MATERIALS AND METHODS 

2.1. Strains and growth conditions 

Two yeast strains were used in this study: Hanseniaspora guilliermondii, NCYC 2380 

(National Collection of Yeast Cultures, Norwich, United Kingdom) and S. cerevisiae CCMI 885 

(Culture Collection of Industrial Microorganisms, ex-INETI, Lisbon, Portugal). S. cerevisiae and 

H. guilliermondii were maintained on YEPD-agar slants (20 g/l of glucose, 20 g/l of peptone, 10 

g/l of yeast extract, 20 g/l agar, pH 6) and stored at 4 °C. Inocula of both yeasts were prepared by 

transferring biomass from one YEPD-agar slant (pre-grown at 30 °C for 48 h) into 100 ml of 

YEPD medium in 250 ml flasks that were incubated at 30 °C and 150 rpmfor 16 h. 

Allmediawere autoclaved at 120 °C for 20 min. 

2.2. AMPs production and purification 

A 7 day-old supernatant of S. cerevisiae CCMI 885 was obtained from an alcoholic 

fermentation performed at 25 °C without agitation in synthetic grape juice (SGJ). The SGJ (D-

glucose 110 g/l, D-fructose, 110 g/l, L-(1)-tartaric acid, 6.0 g/l, L-(2)-malic acid, 3.0 g/l, citric 

acid, 0.5 g/l, YNB, 1.7 g/l, CAA, 2.0 g/l, CaCl2, 0.2 g/l, arginine-HCl, 0.8 g/l, L-(2)-proline, 1.0 

g/l, L-(2)-tryptophan, 0.1 g/l, pH 3.5) was prepared as described in Pérez-Nevado et al. (2006). 

The 7 day-old supernatant was first filtrated by 0.22 μ Millipore membranes (Merck Millipore, 

Algés, Portugal) and then ultrafiltrated through centrifugal filter units (Vivaspin 15R, Sartorius, 

Germany) equipped with 10 and 2 kDa cut-off membranes. A concentrated peptidic fraction (2–

10 kDa) was obtained by first passing the supernatant through the 10 kDa (10-fold) centrifugal 

unit and then concentrating this permeate (40-fold) in the 2 kDa centrifugal unit.  
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2.3. Buffers and solutions  

Citrate phosphate buffer solutions with adjusted pH values within the range of 3.5 to 8.0 

were prepared by mixing appropriate volumes of 200 mM Na2HPO4 (Merck, Darmstadt, 

Germany) and 100 mM citric acid (Merck, Darmstadt, Germany). The fluorescent probes 5(6)-

carboxy-fluorescein diacetate succinimidyl ester (CFDA-SE) (Molecular Probe Inc., OR, USA) 

and 5(6)-carboxy-2′,7′-dichlorofluorescein diacetate succinimidyl ester (CDCFDA-SE) 

(Molecular Probes Inc., OR, USA) were dissolved in water-free dimethyl sulfoxide (DMSO) 

(Merck, Darmstadt, Germany) to a final concentration of 4.48 mM and 9.16 mM, respectively. 

Propidium iodide (PI) (Molecular Probes Inc., OR, USA) was dissolved in sterile Milli-Q water 

(18.2 mΩ) to a final concentration of 1 mg/ml. 

2.4. AMP-assays to determine culturability, pHi and membrane permeability 

To determine physiological changes induced by the S. cerevisiae AMPs on H. 

guilliermondii cells, two growth assays were performed in 25 ml of YEPD medium (at pH 3.5) in 

the absence (control assay) and in the presence of the AMPs (AMP-assay). Native AMPs, 

obtained by purification of peptides from S. cerevisiae supernatants (as described in Section 2.2), 

were added to the medium to a final protein concentration of 1 mg/ml, which corresponds to the 

maximum concentration of AMPs found in S. cerevisiae fermentation supernatants after 7 days 

of fermentation (data not shown). Both cultures were inoculated at an initial cell density of 105 

cells/ml of H. guilliermondii and incubated at 30 °C, under strong agitation (150 rpm), for 24 h. 

Each culture was performed in duplicate and samples were taken at 0 h, 0.34 h, 8 h and 24 h, 

respectively, to determine the culturability (CFU/ml), intracellular pH (pHi) and cell viability 

(membrane permeability) of cells.  

Recuperation assays were performed with H. guilliermondii cells after they had been 

incubated with the AMPs for 24 h. Cells from the AMP-assay after 24 h of incubation were 

centrifuged and then resuspended in fresh YEPD medium (pH=3.5, without the AMPs) and 

incubated under the same conditions as those used for AMP assays (i.e. 105 cells/ml, 30 °C, 150 

rpm). Cells were allowed to recover for 24 h and then samples (from duplicates assays) were 

taken for culturability and pHi determination.  
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Culturability was determined by the classical plating method. Briefly, samples were 

plated onto YEPD-agar plates, after appropriate dilution, and plates were incubated at 25 °C. The 

number of colony forming units (CFU) was counted after 2–6 days. 

Intracellular pH (pHi) of H. guilliermondii cells was determined by fluorescence ratio 

imaging microscopy (FRIM) using fluorescent pH sensitive probes (CDCFDA-SE and CFDA-

SE) and membrane permeability (viability) was evaluated using the membrane impermeant 

fluorescent dye, propidium iodide (PI). Culture samples were first centrifuged at 7000 rpm for 5 

min and the respective pellets resuspended in 990 μl of YEPD medium to obtain ca 107 cells/ml. 

Cells were double staining with pH-sensitive probes (CDCFDA-SE or CFDA-SE) by adding 10 

μl of a 9.16 mM CDCFDA-SE solution or 4.48 mM CFDA-SE to 990 μl of cell suspension that 

was incubated at 25 °C for 3 h. After 2 h and 30 min of incubation with the probes, 10 μl of PI 

solution (1 mg/ml) was added and cells incubated for more 30 min at 25 °C. After 3 h of 

incubation the cells were centrifuged at 7000 rpm for 5 min at 4 °C and then resuspended in 100 

μl of YEPD. 

2.5. Fluorescence Ratio Imaging Microscopy (FRIM) and data analysis 

The pHi of single cells was determined by the FRIM method, as described in Mortensen 

et al. (2006). The set-up used consisted of a fluorescent microscope (Zeiss Axioskop 50, 

Germany) equipped with a Zeiss Neofluar 40× objective (numerical aperture 0.75) and a HBO 

50Whalogen lamp to provide excitation of the probes (CFDA-SE and CDCFDASE). Stained 

cells were excited for 3 s at 470 nm and 440 nm, respectively and fluorescence emission (above 

520 nm) was recorded on a cooled CCD-camera (CoolSNAPfx, Photometrics, Birkerød, 

Denmark). Images were analysed using RS Image software (Roper Scientific, version 1.9.2). For 

PI staining measurements, cells were excited for 3 s at 540 nm and fluorescence emission (above 

610 nm) was recorded. To minimize photo bleaching of CDCFDA-SE or CFDA-SE stained 

cells, a 2.5% neutral-density filter was used in the excitation path. Data analysis was performed 

using the Image J 1.37v software programme (http://rsb. info.nih.gov/ij). The pHi of single cells 

was determined by calculating the ratio of the fluorescence intensity emitted by cells stained with 

the pH sensitive probes excited at 470 and 440 nm (R470/440) and the respective calibration 

curves (R470/440 vs pHi). These ratio values were obtained by dividing the fluorescence 

intensity of individual pixels from an image taken at 470 nm and the corresponding image taken 

at 440 nm. The background fluorescence intensity (regions without cells) was subtracted from 

http://rsb/
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the fluorescence intensity of the stained cells. In each experiment 50 cells were analysed. Each 

experiment was repeated twice. 

 

2.6. Calibration curves 

To establish the relationship between the fluorescence emitted by cells stained with each 

probe (i.e. with CFDA-SE and CDCFDA-SE) and the respective pHi, calibration curves were 

constructed for each pH sensitive probe (Fig. 1). Briefly, after the step of fluorescence staining 

with the pH-sensitive probes, cells were harvested by centrifugation at 7000 rpm for 5 min at 4 

°C and incubated with 500 μl of ethanol (70% v/v) at 25 °C for 30 min to permeabilize the 

membrane. Those cells (dead cells) were then harvested by centrifugation (7000 rpm for 5 min at 

4 °C) and resuspended in 150 μl of supernatant. Aliquots of 10 μl of this cell suspension were 

added to500μl of several citrate phosphate buffers with pH values ranging from 3.0 up to 8.0 for 

CDCFDA-SE stained cells and from 5.0 up to 8.0 for CFDA-SE stained cells. Citrate phosphate 

buffers with adjusted pH values (3.0-8.0) were prepared through the mixture of appropriate 

volumes of 200 mM Na2HPO4 and 100 mM citric acid (Merck, Darmstadt, Germany). Those 

cells were then incubated for 10 min at 25 °C in order to equilibrate the external pH (pH of the 

buffer solution) with the internal pH of cells (pHi), and used as standards to construct the 

respective calibration curves. The fluorescence intensity emitted by the above-mentioned 

standards after excitation at 470 nm and 440 nm was measured and the ratio R470/440 calculated 

as described above and plotted against the respective pHi value. Calibration data was fitted by a 

third-degree polynomial curve.  

The PI fluorescence intensity emitted by double-stained cells (PI + CDCFDA-SE or PI + 

CFDA-SE) was measured at 610 nm. In order to determine the minimal PI fluorescence value 

emitted by dead cells, a suspension of ethanol-treated cells (i.e. cells incubated with 70% (v/v) 

ethanol for 30 min at 25 °C) was stained with 10 μl of PI solution (1 mg/ml), incubated for 30 

min at 25 °C, and then analysed by epifluorescence microscopy. 
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Fig. 1: Calibration curves of the fluorescence ratio (R470/440 nm) emitted by H. guilliermondii 

cells stained with the pH-sensitive probes CDCFDA-SE (A) and CFDA-SE (B) at different pHi 

values. Values represented correspond to the mean of 50 single cells measurements and error 

bars to standard deviation (±SD). Calibration points were fitted by a third-degree polynomial 

curve. 

 

2.7. Accumulation of CDCFDA-SE probe on the vacuole of H. guilliermondii cells 

To determine if CDCFDA-SE probe would stain preferentially the vacuole of H. 

guilliermondii cells, two growth assays were performed in the presence (AMP-assay) and in the 

absence of the AMPs (Control), as described in Section 2.4. Each culture was performed in 

duplicate and samples were taken at 0 h, 8 h and 24 h, respectively. CDCFDA-SE stained cells 
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were analysed along the incubation time (from 0 to 24 h) by epifluorescence microscopy 

(Olympus BX-60, Tokyo, Japan). The fluorescence emitted by H. guilliermondii cells stained 

with CDCFDA-SE was quantified using a U-MWB filter (excitation 450–480 nm) and total cells 

were quantified on the bright field with U-MNU filter (excitation 360–370 nm). 100 cells were 

analysed to determine the percentage of cells exhibiting fluorescence exclusively in the vacuole. 

 

3 RESULTS AND DISCUSSION 

3.1. Selection of the best probe to measure the pHi of H. guilliermondii cells 

In order to choose the most adequate probe to use in the FRIM method, we first 

constructed calibration curves with each pH-sensitive probes, i.e. with CFDA-SE and with 

CDCFDA-SE. Results (Fig. 1-A, B) clearly showed that CDCFDA-SE was the adequate probe to 

use under acidic conditions of our assays (external pH 3.5) since CFDA-SE did not show any 

fluorescence sensitivity at low pH values (<5.5–6.0).  

Since several authors have reported (Fernandes et al., 2003; Preston et al., 1997; Roberts 

et al., 1991) that CDCFDA-SE stains preferentially the vacuole of S. cerevisiae cells, we checked 

if this was also true for H. guilliermondii cells. With that purpose, we analysed H. guilliermondii 

cells stained with CDCFDA-SE along 24 h of incubation in the presence and in the absence of 

the AMPs (Fig. 2). Microscopic observation data showed that for cells incubated in the presence 

of the AMPs (stress conditions), only a small percentage of them exhibited CDCFDA-SE 

fluorescence in the vacuoles during the whole incubation period (9.8% of cells at 0 h and 0% of 

cells at 24 h), whereas all the remaining cells (90–100%) showed CDCFDA-SE fluorescence in 

the cytoplasm (Fig. 3B). These results indicate that for H. guilliermondii cells under this stress 

conditions, CDCFDA-SE does not measure the vacuolar pH (pHvac) but rather the cytoplasmatic 

pH. Given these results, we assumed that in the AMP-assay (pH 3.5) this probe measures the 

cytoplasmatic pH of H. guilliermondii cells.  

Nevertheless, when H. guilliermondii cells were incubated under non-stressful growth 

conditions (control assay) with CDCFDA-SE, fluorescent vacuoles were detected in 88% of the 

cells after 24 h (Fig. 3A). Hence, in the control assay the information obtained after 24 h by 

using the CDCFDA-SE probe refers mainly to pHvac. While, by using the CFDA-SE probe, 
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mainly the cytoplasmatic pH was determined after 24 h both in the control and AMP assay 

(Table 2) 

 

 

 

 

 

 

 

 

 

Fig. 2: Percentage of H. guilliermondii cells exhibiting CDCFDA-SE fluorescence exclusively in 

the vacuole after 0 h, 8 h and 24 h of incubation in the absence (Control assay) and in the 

presence of AMPs (AMP-assay). Percentages were calculated based on the microscopic 

observation of 100 individual cells. 
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Fig. 3: Microscope images (WB-filter) of H. guilliermondii cells stained with CDCFDA-SE after 

24 h of incubation in the absence of AMPs (control assay) (A) and in the presence of the AMPs 

(AMP-assay) (B). Objective amplification of 100×.Microscope observation of the AMP-assay 

sample showed the same cells both in the WB-filter (fluorescent cells) and in the bright-field 

(data not shown). 

 

3.2. Alterations induced by the AMPs on the membrane permeability, internal pH 

(pHi) and culturability of H. guilliermondii cells  

Since it has been reported that most AMPs disturb the membrane integrity of sensitive 

cells (Harris et al., 2009), it is expected that under acidic conditions the intracellular pH (pHi) of 

those cells will fall. These cell physiological alterations, i.e. membrane integrity and pHi, can be 

directly assessed by using the appropriate fluorescent probes, i.e. propidium iodide (PI) to detect 

membrane permeability and pH sensitive probes (CDCFDA-SE or CFDA-SE) to measure pHi. 

In order to evaluate the physiological alterations induced by the S. cerevisiae AMPs on 

sensitive yeast cells, we assessed culturability, membrane permeability and pHi of H. 

guilliermondii cells during 24 h of incubation in the absence (control assay) and in the presence 

of AMPs (AMP-assay) (Fig. 4). Culturability was determined by the classical plating method, 

while membrane permeability and pHi were assessed by epifluorescent microscopy in a single-

cell approach.  

The pHi values of 50 individual cells (as well as their mean value) were determined by 

the FRIM method both in the control (Fig. 4-A) and in the AMP-assay (Fig. 4-C). Results 
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showed that after 20 min of incubation with the AMPs the average pHi of H. guilliermondii cells 

dropped from an initial value of 6.5 to an average value of 5.4, further decreasing in the next 

hours up to a final value of 3.5 (equal to the external pH) after 24 h (Fig. 4-C). This means that 

H. guilliermondii cells were not able to maintain their pH homeostasis in the presence of the 

AMPs. Conversely, during the control assay the average pHi of H. guilliermondii cells showed 

no significant decrease within the first 8 h of growth, although a drop from 6.5 to 5.7 was 

observed after 24 h (Fig. 4-A).  

The single-cell approach of the FRIM method allowed one to detect a high heterogeneity 

within the cell population regarding pHi of individual cells, both in the control and in the AMP-

assay (Fig. 4-A, C). For this reason, we grouped the cells into three subpopulations according to 

the pH gradient (ΔpH=pHi−pHext) of cells. Since the pHi of H. guilliermondii healthy cells was 

found to be 6.5 (Fig. 4-A), close to the value reported by several authors (Cimprich et al., 1995; 

Guldfeldt and Arneborg, 1998; Imai et al., 1994; Imai and Ohno, 1995; Rowe et al., 1994) for 

healthy cells of S. cerevisiae (7.0), the following subpopulations were defined: healthy cells for 

ΔpH ≥ 3.0 (=6.5 − 3.5); sub-lethally injured cells for 0 < ΔpH < 3.0; severely injured cells for 

ΔpH = 0. The evolution of these cell subpopulations, as well as the culturability of the whole 

population, during the control and AMP assays are represented in Fig. 4-B, D. Results show that 

in the AMP-assay the percentage of healthy cells (ΔpH ≥ 3.0) and their culturability rapidly 

decreased (Fig. 4-D), with the subpopulation of severely injured cells (ΔpH = 0) reaching 77% 

after 24 h and culturability dropping from an initial value of 105 CFU/ml to a final value of 10 

CFU/ml. Conversely, in the control assay (Fig. 4-B) culturability increased from 105 CFU/ml to 

2 × 108 CFU/ml in 24 h, with the subpopulation of severely injured cells (ΔpH = 0) attaining just 

3.3% of the whole population. Membrane permeability was evaluated by staining cells with 

propidium iodide (PI) both in the control and in the AMP assay (Table 1). A sharp increase on 

the percentage of PI-stained cells (from 0% to 77.7%) was observed within 24 h in the AMP-

assay, while in the control-assay only 28.3% of cells lost their membrane permeability. These 

results show that AMPs severely affect the membrane permeability of H. guilliermondii cells. 

They also show that 77.7% of H. guilliermondii cells became dead after 24 h of incubation in the 

presence of the AMPs. Indeed, PI is commonly used to assess cell viability (Davey and Winson, 

2003), although some authors (Davey and Hexley, 2011) reported that S. cerevisiae cells can be 

reversibly permeable to PI. However, in a previous work (Branco et al., 2012) we showed that 
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cell viability of H. guilliermondii cells is reliably assessed by PI staining. After 24 h of 

incubation with the AMPs, virtually all (99.99%) cells became unculturable, but 22.3% of the 

cells were viable (Table 1) and 23% sublethally injured (with 0 < ΔpH < 3) (Fig. 4-D). Taken 

together, these data suggest that the subpopulation of viable cells (22.3%) entered into a viable 

but non-culturable (VBNC) state. To investigate if these cells were actually in a VBNC state, we 

checked whether they could recover its culturability and pHi homeostasis after transferring these 

AMP-treated cells into fresh YEPD medium (without AMPs) and incubating them for 24 h. 

Results showed that the AMP-treated cellswere able to recover their culturability and pHi (Fig. 

5), confirming that the subpopulation of viable cells were, in fact, in a VBNC state and, 

consequently, just sub-lethally injured. It should be noticed that, although there was initially 10 

CFU/ml in the recuperation assay, this residual subpopulation of cultivable cells (0,01%) could 

never have been able to grow up to 107 CFU/ml within 24 h once the specific growth rate under 

the same growth conditions (control assay) is just 0.28 h−1. 
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Table 1: Percentage of H. guilliermondii cells with compromised membrane integrity (PI-stained 

cells) during the control and AMP assays.  

 

 

 

 

 

 

 

 

 

Table 2: Subpopulations of H. guilliermondii cells present in the control assay (without AMPs) 

and in the AMP-assay (with AMPs) after 24 h of incubation and percentage of cells exhibiting 

fluorescence in the cytoplasm when stained with the CFDA-SE probe. Cells were grouped 

according to their ΔpH (=pHi−pHext) range and pHi values determined by the FRIM method 

using the CFDA-SE probe. 

 

 

 

 

 

 

  

Time (h) 

% PI-stained cells  

Control-assay AMP-assay 

0 0.0 0.0 

8 7.22 38.3 

24 28.3 77.7 

 

 
% Healthy cells 

(∆pH≥1.5) 

% Sub-lethally 

injured cells 

(0<∆pH<1.5) 

% Severely 

injured cells 

(∆pH=0) 

%cytoplasm-

stained cells  

Control-assay 2.0 96.0 2.0 100 

AMP-assay 5.9 9.8 84.3 100 

 1 
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Fig. 4: Changes in the culturability (CFU/ml) and pHi, as determined by the FRIM method with 

the CDCFDA-SE probe, of H. guilliermondii cells during the control (A, B) and AMP-assay (C, 

D). Evolution of pHi of individual cells (50 cells analysed per sample) and of the pHi average 

value (A, C), as well as of subpopulations exhibiting ΔpH ≥3 (healthy cells), 0 < ΔpH < 3 (sub-

lethally injured cells) and ΔpH=0 (severely injured cells) and of culturability (B, D). Each 

variable represented corresponds to mean values of duplicate experiments ±SD. 

 

  

 
A 

B 

D 
 

C 



Chapter III 

100 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Culturability (CFU/ml) and sub-populations of H. guilliermondii cells with ΔpH ≥ 3, 

healthy; 0 < ΔpH < 3, sub-lethally-injured; ΔpH=0, severely injured after being exposed to 

AMPs for 24 h (with the AMPs 24 h) and after being allowed to recover for 24 h in YEPD 

medium (without the AMPs 24 h). Values represented are means of duplicate experiments ±SD 

(error bars). 

Results showed that after 24 h in the control assay CDCFDA-SE stains mainly the 

vacuole of H. guilliermondii cells (Figs. 2 and 3-A), which means that pHi values measured for 

cells in the control after 24 h (Fig. 4-A) refers mainly to the vacuolar pH. This might explain 

why pHi in the control assay dropped from 6.5 to 5.7 at 24 h in the control assay (Fig. 4-A), also 

suggesting that, likewise in S. cerevisiae cells (Carmelo et al., 1997), vacuolar pH of H. 

guilliermondii cells is maintained at mildly acidic pH (at 5.7) in non-stressful conditions, while 

cytoplasm is close to neutral pH (around 6.5). Conversely, CFDA-SE stained the cytoplasm of 

all cells both in the control and in the AMP assay (Table 2). Therefore, we also determined the 

pHi of 24 h incubated cells by using CFDA-SE, thereby measuring the cytoplasmatic pH both in 

the control assay and in the AMP assay (Table 2). Considering the range at which CFDA-SE 

gave a good estimation of single cell pHi (i.e., between 5.5 and 8.0) (Fig. 1-A), the following 

subpopulations were defined: healthy cells for ΔpH ≥1.5 (=7.0−5.5); sub-lethally injured cells 

for 0 < ΔpH <1.5; severely injured cells for ΔpH=0. Results showed that the subpopulation of 

severely injured cells found in the control assay was almost irrelevant (i.e. 2%) and very similar 

to that found when using the CDCFDA-SE probe for 24 h-incubated cells (3.3%), while in the 
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AMP assay it represented 84.3% of the total population. Thus, also in the AMP-assay results 

obtainedwith the CFDASE probe were in agreement with those found with the CDCFDA-SE 

probe, namely for the percentage of severely injured cells (77%).  

The present paper also confirms that there is a good correlation between the pHi and the 

culturability exhibited by cells, as previously reported by several other authors (Fang et al., 2006; 

Gaggìa et al., 2010; Imai and Ohno, 1995; Rechinger and Siegumfeldt, 2002). Even if some 

compounds can have a pronounced antimicrobial effect without targeting membrane integrity 

(Powersand and Hancock, 2003) our results show that these S. cerevisiae AMPs actually disturb 

the membrane integrity of cells. They also demonstrate that pHi is a good physiological 

parameter to evaluate the physiological state of cells subjected to stress conditions. These 

findings, together with the observation that during the AMP-assays CDCFDA-SE stained 

indistinctly the cytoplasm and the vacuole of H. guilliermondii cells (Fig. 3-B), strongly suggest 

that the AMPs negatively affect the vacuole membrane (tonoplast). Since it has been proposed 

that vacuoles play an important role in maintaining the homeostasis of pHi in yeast (Carmelo et 

al., 1997; Mira et al., 2009), the loss of tonoplast integrity might explain why H. guilliermondii 

cells lose their ability to maintain pHi homeostasis in the presence of the AMPs.  

In conclusion, the present study demonstrates that the AMPs secreted by S. cerevisiae 

(Albergaria et al., 2010; Branco et al., 2014) compromise the plasma membrane integrity of H. 

guilliermondii cells, and possibly also that of the vacuole membrane, thereby disturbing the pHi 

homeostasis and inducing a loss of culturability. It should be noted, however, that these 

physiological alterations cannot be specifically related with the anionic nature of the AMPs 

investigated in this work, since similar alterations have also been reported for cationic AMPs 

(Harris et al., 2009). Thus, future work is needed to fully understand the mode of action of these 

AMPs. 
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ABSTRACT 

We recently found that Saccharomyces cerevisiae (strain CCMI 885) secretes peptides (AMPs) 

derived from the glycolytic enzyme glyceraldehyde 3- phosphate dehydrogenase (GAPDH) that 

are active against various wine-related yeast and bacteria. Here, we show that several other S. 

cerevisiae strains also secrete natural biocide fractions during alcoholic fermentation, although at 

different levels, which correlates with the antagonistic effect exerted against non-Saccharomyces 

yeasts. We, therefore, term this biocide saccharomycin. The native AMPs were purified by gel-

filtration chromatography and its antimicrobial activity was compared to that exhibited by 

chemically synthesized analogues (AMP1 and AMP2/3). Results show that the antimicrobial 

activity of the native AMPs is significantly higher than that of the synthetic analogues (AMP1 

andAMP2/3), but a conjugated action of the two synthetic peptides is observed. Moreover, while 

the natural AMPs are active at pH 3.5, the synthetic peptides are not, since they are anionic and 

cannot dissolve at this acidic pH. These findings suggest that the molecular structure of the 

native biocide probably involves the formation of aggregates of several peptides that render them 

soluble under acidic conditions. The death mechanisms induced by the AMPs were also 

evaluated by means of epifluorescence microscopy-based methods. Sensitive yeast cells treated 

with the synthetic AMPs show cell membrane disruption, apoptotic molecular markers, and 

internalization of the AMPs. In conclusion, our work shows that saccharomycin is a natural 

biocide secreted by S. cerevisiae whose activity depends on the conjugated action of GAPDH-

derived peptides. This study also reveals that S. cerevisiae secretes GAPDH-derived peptides as 

a strategy to combat other microbial species during alcoholic fermentations. 

 

Keywords: Antimicrobial peptides; Wine fermentation; Non-Saccharomyces yeasts; 

Glyceraldehyde 3-phosphate dehydrogenase; Apoptosis/necrosis; Cell-penetrating peptides  
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1 INTRODUCTION 

The antagonism exerted by Saccharomyces cerevisiae against wine-related yeast and 

bacteria during alcoholic fermentation has been related to the secretion of antimicrobial peptides 

(AMPs) (Albergaria et al. 2010; Branco et al. 2014; Kemsawasd et al. 2015). In a recent work, 

Branco et al. (2014) isolated a peptidic fraction from S. cerevisiae fermentation supernatants 

(strain CCMI 885) containing AMPs derived from the glycolytic enzyme glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). Two main peptides were identified in that bioactive 

fraction: the AMP2/3 and theAMP1, with the amino acid residues VSWYDNEYGYSTR and 

ISWYDNEYGYSAR, molecular masses of 1.638 and 1.622 kDa, respectively, and a theoretical 

isoelectric point (pI) of 4.37 (Branco et al. 2014). These anionic peptides correspond to 

fragments of the S. cerevisiae GAPDH2/3 (AMP2/3) and GAPDH1 (AMP1) isoenzymes.  

AMPs are evolutionarily conserved components of the innate immune system and 

constitute the first line of antimicrobial defense in organisms across the eukaryotic kingdom 

(Sang and Blecha 2009; Wong et al. 2007). In the majority of cases, AMPs are cationic in nature 

and kill microbes by interacting with the anionic components of target cell membranes (Brogden 

2005). Nevertheless, several anionic AMPs have also been found in animals and plants and, in 

recent years, it has become clear that they are also involved in the innate immune response of 

different organisms (Harris et al. 2009). The minimum inhibitory concentration (MIC) of anionic 

AMPs is usually weaker (MIC > 600 μM) than that of cationic AMPs (MIC ranging 10–100 μM) 

(Matsuzaki 2009). But the activity of anionic AMPs can be enhanced by several factors such as 

by the action of divalent metal cations (Dashper et al. 2005) or by additional peptides, as it was 

reported for lactococcin G (Nissen-Meyer et al. 1992). Anionic AMPs use a diverse range of 

antimicrobial mechanisms such as translocation across the membrane and permeabilization of 

cell membranes via pore formation (Harris et al. 2009).  

Apoptosis in yeast was first discovered by Madeo et al. (1997) and was considered to be 

an unexpected finding since unicellular organisms seem to have no advantage in committing 

suicide. Nevertheless, apoptosis in yeast is now firmly confirmed, and several intrinsic, as well 

as exogenous stresses such as H2O2, UV irradiation, and acetic acid, have been described as 

apoptosis inducers in yeast cells (Madeo et al. 1999; Laun et al. 2001; Ludovico et al. 2001). 

Moreover, AMPs have been found to induce apoptosis in different sensitive microorganisms (Jin 

et al. 2010; Reiter et al. 2005). For instance, in S. cerevisiae, the virally encoded killer toxins K1 
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and K28 induce an apoptotic cell response in sensitive yeast strains (Reiter et al. 2005).  

The aim of the present work was to characterize the antimicrobial properties and the 

death-inducing mechanisms of the GAPDH-derived AMPs, and to evaluate the role they play in 

the ability of S. cerevisiae strains to combat other microbial species during wine fermentation. 

With that purpose, several S. cerevisiae strains were screened regarding the levels of the natural 

biocide secreted during mixed-culture alcoholic fermentations and the antagonistic effect exerted 

against a sensitive non-Saccharomyces strain. Chemically synthesized analogues of the two main 

peptides (AMP2/3 and AMP1) that compose the native biocide were used to evaluate its 

antimicrobial activity and death-inducing mechanisms (e.g., cell membrane disruption, death by 

apoptosis, and internalization of AMPs). 

 

2 MATERIALS AND METHODS 

2.1. Strains and growth conditions  

In this work, we used the following S. cerevisiae strains: CCMI 885 (Culture Collection 

of Industrial Microorganisms of ex- INETI, Portugal); ISA 1000 (Culture collection of Instituto 

Superior de Agronomia, Portugal), ISA 1028, ISA 1029, ISA 1046, ISA 1063, ISA 1200; S101 

(Saint Georges S101, Bio Springer, France); and ATCC 6269 (American Type Culture 

Collection). The non-Saccharomyces yeast strains used were as follows: Dekkera bruxellensis 

ISA 2211; Hanseniaspora guilliermondii NCYC 2380 (National Collection of Yeast Cultures, 

Norwich, United Kingdom); Kluyveromyces marxianus PYCC 2671 (Portuguese Yeast Culture 

Collection, FCT/UNL, Caparica, Portugal); Lachancea thermotolerans PYCC 2908; and 

Torulaspora delbrueckii PYCC 4478. Yeast strains were maintained on yeast extract peptone 

dextrose (YEPD)-agar slants (20 g/l of glucose, 20 g/l of peptone, 10 g/l yeast extract, 20 g/l 

agar) and stored at 4 °C. Inoculums were prepared by transferring biomass from one YEPD-agar 

slant (pre-grown at 30 °C for 48 h) into in 250-ml flasks with 100 ml of YEPD and incubating 

flasks at 30 °C and 150 rpm, for 16 h. All media were autoclaved at 120 °C for 20 min. 

2.2. Mixed-culture alcoholic fermentations 

Synthetic grape juice (SGJ) (110 g/l of glucose plus 110 g/l of fructose, pH 3.5, prepared 

as described in Pérez-Nevado et al. (2006)) fermentations were performed with mixed cultures of 

H. guilliermondii and each of the following S. cerevisiae strains: CCMI 885, ISA 1000, ISA 
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1028, ISA 1029, ISA 1046, ISA 1063, ISA 1200, S101, and ATCC 6269. One SGJ-fermentation 

was performed with H. guilliermondii in single-culture and used as negative control of the 

antagonism exerted by the S. cerevisiae strains. All fermentations were carried out in 500-ml 

flasks containing 300 ml of SGJ that were inoculated with 105 cells per milliliter of each yeast 

and incubated at 25 °C, under gentle agitation (80 rpm). Fermentations were carried out in 

duplicates and daily samples were taken to determine cell growth, sugars consumption and 

ethanol production. Cell growth was assessed by colony forming units (CFU) counts. Briefly, 

100 μl of culture sample were spread onto YEPD-agar plates, after appropriate dilution, and 

incubated at 30 °C in a vertical incubator (Infors, Anjou, Canada) for 2–6 days. In the mixed-

culture fermentations, CFU counts of H. guilliermondii were obtained on YEPD agar plates with 

0.001 % of cycloheximide and the CFU counts of S. cerevisiae determined as the difference 

between the total number of CFU on YEPD-agar plates (both species grow) and the number of 

CFU on cycloheximide-YEPD-agar plates (only H. guilliermondii grows). Sugars (glucose and 

fructose) and ethanol concentrations were determined by high-performance liquid 

chromatography (HPLC) using an HPLC apparatus (Merck Hitachi, Darmstadt, Germany) 

equipped with a refractive index detector (L-7490, Merck Hitachi, Darmstadt, Germany). Cell-

free samples (filtration by 0.45 μm Millipore membranes) were injected into a Sugar-Pak column 

(Waters Hitachi, Milford, USA) and eluted with a degassed CaEDTA (50 mg/l) aqueous mobile 

phase at 90 °C and 0.5 ml/min. 

2.3. Purification of native biocide fractions by gel-filtration chromatography 

Cell-free supernatants (7-day-old) from each of the mixed culture fermentations 

performed were ultrafiltrated by centrifugal filter units (Vivaspin 15R, Sartorius, Gottingen, 

Germany) equipped with 10 and 2 kDa cutoff membranes. Peptidic fractions (2–10 kDa) were 

obtained by first passing the fermentation supernatants through 10 kDa centrifugal filter units 

and then concentrating (10-fold) those permeates in 2 kDa centrifugal filter units. These peptidic 

fractions (2– 10 kDa) were then fractionated by gel-filtration chromatography using a Superdex-

Peptide column (10/300 GL, GE Healthcare, London, UK) coupled to an HPLC system (Merck 

Hitachi, Darmstadt, Germany) equipped with a UV detector (Merck Hitachi, Darmstadt, 

Germany). The peptidic supernatant fractions (2–10 kDa) were eluted with 0.1 M ammonium 

acetate at a flow rate of 0.7 ml/min. The eluate fractions between the retention time 27–29 min 

were collected and lyophilized. 
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2.4. Spectrum of action and antimicrobial properties of the native biocide 

The minimum inhibitory concentration (MIC) and half inhibitory concentration (IC50) of 

the native biocide (i.e., GAPDH-derived AMPs) were determined against H. guilliermondii, L. 

thermotolerans, K. marxianus, T. delbrueckii and D. bruxellensis. The gel-filtration lyophilized 

fraction-II obtained from the S. cerevisiae strain CCMI 885 fermentation supernatant was 

resuspended in YEPD with 30 g/l of ethanol and pH 3.5. Growth inhibitory assays were 

performed in 96- well microplates containing 100 μl of YEPD medium, without fraction-II 

(control) and with fraction-II at final protein concentrations of 125, 250, 500, and 1000 μg/ml. 

Media were inoculated with 105 cells per milliliter of each of the above mentioned non-

Saccharomyces yeasts, and the microplates incubated in a Thermo-Shaker (Infors HT, 

Bottmingen, Switzerland) at 30 °C, under strong agitation (700 rpm). Cell growth was followed 

by optical density measurements (at 590 nm) in a Microplate Reader (Dinex Technologies Inc., 

Chantilly, USA) and by CFU counts. The MIC was defined as the minimum concentration of 

biocide that completely inhibited the growth of the sensitive yeast, and the IC50 as the 

concentration of biocide that induced a growth reduction of 50 % as compared with growth in the 

respective control assay. 

2.5. Antimicrobial activity of synthetic peptide analogues (AMP2/3 and AMP1) 

Analogues of the AMP2/3 (amino acids residues: VSWYDNEYGYSTR) and AMP1 

(amino acids residues: ISWYDNEYGYSAR) were chemically synthetized according to standard 

procedures and purchased from GenScript Inc. Company (GenScript HK Limited, Hong Kong). 

The synthetic peptides were obtained in lyophilized form; stock solutions of each peptide were 

prepared by dissolving 2 mg of lyophilized powder in 1 ml of deionized water and the pH was 

adjusted to 8.0 with a sodium hydroxide solution until total solubilization was attained. The 

antimicrobial activity of the synthetic peptides AMP2/3 and AMP1 was determined against H. 

guilliermondii in growth inhibitory assays performed as described in section 2.4. 

Briefly, a 50 µl aliquot of each AMP stock-solution was mixed with 50 µl of 2×YEPD 

(two-fold concentrated YEPD with 60 g/l ethanol) and the final pH was adjusted to 6.0. The 

AMPs solutions were used in growth assays at the following concentrations (µg/ml): 125, 250, 

500 and 1000. Media were inoculated with 105 cells/ml of H. guilliermondii and cultures were 

incubated in a Thermo-Shaker (Infors HT, Bottmingen, Switzerland) at 30 °C, under strong 
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shaking (700 rpm). The combined action of the two synthetic peptides was also tested against the 

same yeast strain, using mixtures of the synthetic AMP2/3+AMP1 at the ratios of 1:1; 2:1; 4:1 

and 6:1, to a final concentration of 1000 µg/ml.  

2.6. Internalization of AMPs fluorescently-labeled with fluorescein (FITC) 

Exponentially-grown cells of H. guilliermondii and D. bruxellensis were separately 

incubated in deionized water and in YEPD medium (pH=6.0) at room temperature (ca 20-25 ºC) 

with synthetic peptides (AMP2/3 and AMP1) fluorescently-labeled with fluorescein (FITC). The 

AMPs were chemically-synthesized and fluorescently labeled with FITC according to standard 

procedures and purchased from GenScript Inc. Company (GenScript HK Limited, Hong Kong). 

The AMPs-FITC were added to deionized water and to YEPD medium using a mixture of 

AMP2/3+AMP1 in a ratio of (4:1) to a final concentration of 1000 µg/ml. The initial cell density 

in the assays was 106 cells/ml, and four different media were used: deionized water and YEPD, 

without and with ethanol (30 g/l). Each assay was performed in duplicates. After 1 h of 

incubation with the AMPs-FITC, cells were harvested by centrifugation (7000 ×g, for 5 min), 

stained with 10 μl of propidium iodide (PI) solution (1 mg/ml) and incubated for 30 min in the 

dark. Finally, cells were visualized in an epifluorescent microscope (Zeiss Axioskop 50, 

Germany) equipped with a Zeiss Neofluor 40× objective (numerical aperture 0.75) and the 

number of cells emitting green fluorescence (internalization of the AMPs-FITC) and red 

fluorescence (PI-stained cells) was quantified to determine the percentage of cells that were able 

to internalize the AMPs-FITC and those with permeabilized membranes (PI-stained cells).  

2.7. Analyses of apoptotic and necrotic markers 

Apoptotic and/or necrotic markers induced by the synthetic AMPs in sensitive yeast cells 

were assessed in H. guilliermondii incubated (105 cells/ml) for 2 h in YEPD (with 30 g/l of 

ethanol at pH 6.0) with the synthetic AMPs. The AMPs were added to the YEPD medium using 

mixtures of the two synthetic peptides (i.e. AMP2/3+AMP1) in a ratio of 4:1, to final 

concentration of 100 µg/ml. H. guilliermondii cells incubated in YEPD without the AMPs were 

used as negative control, and H. guilliermondii cells incubated in YEPD with 5 mM of peroxide 

of hydrogen (H2O2) were used as positive control. Since cycloheximide inhibits the protein 

synthesis in yeast, this antibiotic is typically used to validate the apoptosis-inducing ability of a 

given stress (e.g. H2O2). Thus, to confirm the ability of these AMPs to induce apoptosis, H. 
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guilliermondii was incubated in YEPD with 0.01% of cycloheximide and 100 μg/ml of the 

synthetic AMPs. Apoptotic cellular markers (i.e. DNA strand breaks, phosphatidylserine 

exposure at the surface of the cytoplasmatic membrane and chromatin condensation) were 

detected in the AMPs-treated cells by the epifluorescent microscopic methods described in the 

following section. 

2.7.1. TUNEL method  

DNA strand breaks were confirmed by the incorporation of modified dUTPs at the 3’-OH 

ends of fragmented DNA using the enzyme terminal deoxynucleotidyl transferase (TdT). 

Modifications were directly detected by epifluorescent microscopy using a fluorescently-

modified nucleotide (i.e., fluorescein-dUTP) (Click-iT TUNEL Alexa Fluor imaging Assay, 

Invitrogen, USA) and the following procedure: firstly, yeast cells were fixed during 1 h with 4% 

paraformaldehyde, digested with zymolyase and β-glucuronidase during 1 h and 30 min at 37 ºC 

under agitation (150 rpm), and permeabilized with sodium citrate 0.1 M for 30 min at 70 ºC. 

Then, cells were washed with PBS buffer and incubated with 20 µl of TUNEL reaction mixture 

(60 U/ml of terminal deoxynucleotidyl transferase, 1 µl of EdUTP nucleotide mixture and 47 µl 

of reaction buffer) for 1 h at 37 ºC in the dark; finally, cells were washed with PBS and spotted 

onto a Neubauer chamber to enumerate the cells exhibiting green fluorescence by 

epifluorescence microscopy (Olympus BX-60 microscope, Tokyo, Japan). 

2.7.2. ANNEXIN V/ PI staining  

The exposure of phosphatidylserine at the surface of the cytoplasmatic membrane in 

apoptotic cells was detected by applying fluorescein conjugated with Annexin V (Alexa fluor 

488, Invitrogen, Paisley, UK) together with PI. Briefly, cells were washed in sorbitol buffer (2 M 

sorbitol, 0.5 mM MgCl2, 35 mM potassium phosphate, pH 6.8), digested with zymolyase and β-

glucuronidase during 1 h and 30 min at 37 ºC under agitation (150 rpm) and after this washed 

with biding buffer/sorbitol (10 mM HEPES/NaOH, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2). 

Then, 5 µl of Annexin V and 2 µl of PI (0.5 µg/ml) were added and cells were incubated for 20 

min at room temperature in the dark. These cells were harvested by centrifugation, resuspended 

in binding buffer/sorbitol and spotted onto a Neubauer chamber to enumerate cells stained with 

PI (necrotic cells) and cells emitting green fluorescence at the surface of the cytoplasmatic 
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membrane (apoptotic cells) by epifluorescence microscopy (Olympus BX-60 microscope, 

Tokyo, Japan). 

2.7.3. DAPI staining  

Chromatin condensation was accessed by microscopic observations of cells stained with 

the fluorescent dye 4,6 diamidino-2-phenylindole (DAPI). Briefly, AMPs-treated cells were 

incubated for 20 min with 1 mg/ml of DAPI (Invitrogen, Paisley, UK) in the dark, at room 

temperature. Cells were harvested by centrifugation and resuspended in PBS and spotted onto a 

Neubauer chamber to enumerate cells exhibiting blue fluorescence (DAPI-stained cells) by 

epifluorescence microscopy (Olympus BX-60 microscope, Tokyo, Japan). 

 

3 RESULTS 

3.1. Antagonism of S. cerevisiae strains and secretion of native biocide fractions 

The antagonism exerted by different S. cerevisiae strains against non-Saccharomyces 

yeast was assessed by performing synthetic grape juice (SGJ) fermentations with mixed-cultures 

of H. guilliermondii and several S. cerevisiae strains. SGJ fermentation performed with H. 

guilliermondii in single culture was used as negative control. Comparing the growth profiles of 

H. guilliermondii during the mixed-culture fermentations (Fig. 1A–I) with the single-culture 

fermentation (Fig. 1J), it is clear that all S. cerevisiae strains induced death of H. guilliermondii, 

although at different rates. While the cell viability of H. guilliermondii was entirely lost within 

the first 72 h in the mixed-culture fermentations performed with the S. cerevisiae strains CCMI 

885, ISA 1028, and ISA 1046, a similar effect occurred only after 96 h with the strains ISA 1000, 

ISA 1063, and S101 and only after 168 h with the strains ISA 1029, ISA 1200, and ATCC 6269. 

In all mixed culture fermentations, the initial sugars (220 g/l of glucose + fructose) were entirely 

consumed within 3-7 days, whereas in the single-culture fermentation H. guilliermondii 

consumed only 72 % of the initial sugars, leaving 62 g/l of residual sugars (glucose + fructose) 

after 7 days and producing 66 g/l of ethanol (Fig. 2). 
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Fig. 1 Cell density profiles (CFU/ml) of S. cerevisiae (diamonds) and H. guilliermondii (squares) 

during mixed-culture fermentations performed with S. cerevisiae strains CCMI 885 (A), ISA 

1000 (B), ISA 1028 (C), ISA1029 (D), ISA 1046 (E), ISA 1063 (F), ISA 1200 (G), S101 (H), 

ATCC 6269 (I), and during the single-culture fermentation of H. guilliermondii (J). Values 

represented are means of triplicate measurements ± SD (error bars) of two independent 

biological experiments  
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Fig. 2: Sugars consumption and ethanol production during alcoholic fermentations performed 

with mixed-cultures of H. guilliermondii with S. cerevisiae CCMI 885 (A), ISA 1000 (B), ISA 

1028 (C), ISA1029 (D), ISA 1046 (E), ISA 1063 (F), ISA 1200 (G), S101 (H), ATCC 6269 (I), 

as well as during a single-culture fermentation of H. guilliermondii (J). Data presented 

correspond to means of triplicate measurements ± SD (error bars) of two independent biological 

assays.   
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The peptidic fractions (2–10 kDa) of cell-free supernatants (7-day-old) obtained from 

every fermentation were fractionated by gel-filtration chromatography to isolate the natural 

biocide fraction in which the GAPDH-derived AMPs were previously identified by Branco et al. 

(2014) (i.e., peak-II indicated in Fig. 3). Death rates of H. guilliermondii during the mixed-

culture fermentations show a positive correlation with the relative amount of the natural biocide 

fraction present in each supernatant (Table 1). Indeed, the supernatants from the fermentations 

where H. guilliermondii died within 72 h (strains CCMI 885, ISA 1028, and ISA 1046) showed 

the largest peak II areas, while the supernatants from the fermentations where H. guilliermondii 

took 168 h to die off (strains ISA 1029, ISA 1200. and ATCC 6269) showed the smallest peak-II 

areas (Table 1). The area of peak-II in these supernatants varied by two-fold, with the 

supernatants from the S. cerevisiae strains CCMI 885 and ISA 1029 exhibiting the largest area 

and the smallest area, respectively. 

 

 

 

 

 

 

 

Fig. 3: Gel-filtration chromatographic profiles of the peptidic fractions (2–10 kDa) of 

supernatants obtained from the mixed-culture fermentations performed with H. guilliermondii 

and different S. cerevisiae strains (CCMI 885, S101, and ISA 1029), and from the single-culture 

fermentation of H. guilliermondii (Hg). Fractions indicated as peak-II correspond to the bioactive 

fraction in which the GAPDH-derived AMPs were previously identified by Branco et al. (2014). 
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Table 1: Death rates of H. guilliermondii (Hg) during the mixed-culture fermentations 

performed with different S. cerevisiae strains, and the relative amount of the native biocide 

fraction (i.e., area of peak-II indicated in Fig. 3) in the respective supernatants 

 

 

 

 

 

 

 

 

 

 

3.2. Sequence alignments of GAPDH isoenzymes for wine-related yeasts 

In S. cerevisiae, three related but not identical GAPDH isoenzymes (GAPDH1, 

GAPDH2, and GAPDH3) are encoded by unlinked genes designated TDH1, TDH2, and TDH3 

(McAlister and Holland 1985). The GAPDH-derived peptides (AMP2/3 and AMP1) identified in 

S. cerevisiae fermentation supernatants match the C-terminal (309–321) sequence of the 

isoenzymes GAPDH2/3 (amino acids residues: VSWYDNEYGYSTR) and GAPDH1 (amino 

acids residues: ISWYDNEYGYSAR), respectively. To investigate the species-specificity of the 

amino acid sequences of these AMPs, we performed the sequence alignment of GAPDH 

isoenzymes of several non-Saccharomyces yeasts, in the region containing the AMP2/3 and the 

AMP1 fragments (Fig. 4). Results show a high homology among the GAPDH sequences in the 

AMP2/3 region. However, the amino acid sequence of the AMP1 fragment seems to be quite 

 

S. cerevisiae 

strains 

Time (h) of 

initial death 

(Tid) of Hg 

[Eth] (g/l) 

at Tid 

Time (h) till 

total death 

(Ttd) of Hg 

[Eth] (g/l) 

at Ttd 

Area of Peak-

II indicated in 

Fig. 2  

CCMI 885 24 13.5 72 68.4 107646681 

ISA 1000 48 19.5 96 64.7 73742789 

ISA 1028 24 7.3 72 58.3 98014390 

ISA 1029 48 16.8 168 60.1 52280855 

ISA 1046 24 7.3 72 52.7 93746340 

ISA 1063 24 7.7 96 87.8  92708870 

ISA 1200 48 2.1 168 15.7 64881770 

S101 24 18.8 96 95.0 88723244 

ATCC 6269 24 7.3 168 56.7 58831257 
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unique, since it does not fully match any of the GAPDH sequences of the non-Saccharomyces 

yeasts analyzed (at least one amino acid is always different). It should be mentioned that we did 

not use H. guilliermondii in the sequence alignments because the genome of this species has not 

been sequenced yet. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Amino acid sequence alignments of the GAPDH isoenzymes of several wine-related 

yeasts, in the region that matches the AMPs secreted by S. cerevisiae AMP1 (A) and AMP2/3 

(B). Peptides were aligned using CLUSTAL OMEGA (McWilliam et al. 2013) with HHalign 

algorithm (Söding 2005). The peptide sequences correspond to the region matching the AMPs 

secreted by S. cerevisiae (309-321) from GAPDH1 and GAPDH2/3. All amino acid sequences 

were retrieved from the available web databases. Accession numbers of presented protein 

sequences in panel (A) are: Sc (NP_012483), Sa (EJS43172), Hu (KKA0346), Lt 

(KLTH0B01958p), Zb (CDH09398), Zr (C5E0E4), Km (BAP71733), Kl (P17819), Sch 

(ABN68431), Ca (AAC49800), Cg (KTA97609), Dh (Q6BMK0), Kp (AAC49649), Db 
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(EIF47503), Mg (A5DDG6), Ps (G8YFD4), Td (G8ZVS4). Accession numbers of presented 

protein sequences in panel (B) are: Sc (NP_011708), Sa (EJS43025), Se (KOG98603), Cg 

(KTA96251), Km (BAP70297), Sch (ABN64899). Ca: Candida albicans, Cg: Candida 

glabrata, Dh: Debaryomyces hansenii, Db: Dekkera bruxellensis, Hu: Hanseniaspora uvarum, 

Km: Kluyveromyces marxianus, Kl: Kluyveromyces lactis, Kp: Komagataella pastoris, Lt: 

Lachancea thermotolerans, Mg: Meyerozyma guilliermondii, Ps: Pichia sorbitophila, Sa: 

Saccharomyces arboricola, Sc: Saccharomyces cerevisiae, Sch: Scheffersomyces stipites; Se: 

Saccharomyces eubayanus, Sp: Saccharomyces pastorianus, Td: Torulaspora delbrueckii, Zb: 

Zygosaccharomyces bailii, Zr: Zygosaccharomyces rouxii. 

 

3.3. Antimicrobial properties of the native and syntheticAMPs 

Minimum inhibitory concentrations (MICs) of the native biocide (GAPDH-derived 

AMPs) against H. guilliermondii, K. marxianus, and L. thermotolerans were 250 μg/ml, while 

against T. delbrueckii and D. bruxellensis higher values were observed (500 and 1000 μg/ml, 

respectively) (Table 2). Half inhibitory concentrations (IC50) agree well with MICs for the same 

non-Saccharomyces yeasts (Table 2).  

Table 2: Minimum inhibitory concentration (MIC) and half inhibitory concentration (IC50) of 

the native biocide determined against several wine-related non-Saccharomyces yeasts.  

 

 

 

 

 

MIC was defined as the lowest concentration of the native biocide fraction that prevents any 

visible growth (measured by absorbance) of yeast culture; IC50 was defined as the lowest 

concentration of the native biocide fraction that induces a 50 % reduction of yeast growth as 

compared with the control assay (measured by absorbance). 

Yeast MIC (μg/ml) IC50 (μg/ml)

H. guilliermondii 250 80

L. thermotolerans 250 65

K. marxianus 250 80

T. delbrueckii 500 135

D. bruxellensis 1000 260
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The fungicidal effect of the native AMPs against these non-Saccharomyces yeasts was 

quantified as the number of LOGs of [CFU/ml] reduction (Table 3). The native AMPs show a 

strong fungicidal effect against H. guilliermondii, reducing its cell density by 4.2 and 5.2 orders 

of magnitude at 250 and 500 μg/ml, respectively (Table 3). Against T. delbrueckii and D. 

bruxellensis, the fungicidal effect of the native AMPs was lower, with the cell density of these 

yeasts being reduced by 3.6 and 2.9 orders of magnitude, respectively, at 500 and 2000 μg/ml 

(Table 3).  

To further investigate the mode of action of the GAPDH derived AMPs, synthetic 

analogues of the two main peptides that were isolated from the native biocide fraction (i.e., 

AMP1 and AMP2/3) were used to assess their antimicrobial effect against the sensitive yeast H. 

guilliermondii. However, due to the anionic nature of these synthetic peptides (pI=4.35) it was 

not possible to test their inhibitory effect at the same acidic conditions used for the native biocide 

(i.e., YEPD at pH=3.5), since they did not dissolve at this acidic pH. In fact, the synthetic AMPs 

contain a majority of acidic amino acids in their primary structure, which prevents its 

solubilization at pH = 3.5. Therefore, the antimicrobial activity of the synthetic peptides was 

assessed in YEPD at pH 6.0, using increasing concentrations (0, 125, 250, 500, and 1000 μg/ml) 

of AMP2/3 and AMP1, either alone or mixed at different ratios. Results showed (Fig. 5) that 

both AMPs inhibited the growth of H. guilliermondii, although the AMP1 exhibited a much 

stronger effect than the AMP2/3 (76 % of inhibition for the AMP1 and only 30 % for AMP2/3, 

both at 1000 μg/ml). Besides, none of the synthetic AMPs (used either alone or mixed in a 1:1 

ratio) was able to kill H. guilliermondii with the same efficiency of the natural AMPs (Table 3). 

Nevertheless, an increased antimicrobial effect was observed when the two peptides were used 

together (Fig. 5).  
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Table 3: Fungicidal effect of the native biocide at different concentrations, determined as LOG 

of [CFU/ml] reduction, against several wine-related non-Saccharomyces yeasts. 

 

 

 

 

 

 

LOG of [CFU/ml] reduction corresponds to the number of logarithms (LOGs) that cell density 

[CFU/ml] decreased in the biocide-assay, from an initial value of 105 CFU/ml to a final value 

determined when the respective control-assay reached the stationary growth phase. 

 

 

 

 

 

 

Fig. 5: Growth inhibition of H. guilliermondii (relative to control) in the assays performed in 

YEPD (pH = 6.0) with increasing concentrations of the synthetic AMP2/3 alone (triangles), of 

the synthetic AMP1 alone (circles) and of a mixture of AMP2/3 and AMP1 (squares) at a ratio of 

1:1. Values represented are means of triplicate measurements ± SD (error bars) of two 

independent biological experiments.  

Yeast 

LOG of [CFU/ml] reduction 

[native biocide fraction] 

250 μg/ml  500 μg/ml  1000 μg/ml  2000 μg/ml  

H. guilliermondii 4.2 5.2 - - 

L. thermotolerans  2.7 3.7 - - 

K. marxianus  2.6 3.2 - - 

T. delbrueckii  3.3 3.6 - - 

D. bruxellensis  - - 0.4 2.9 
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Given these observations, we evaluated the effect of mixing the AMP2/3 with the AMP1 

at different proportions, namely at the ratios of 2:1, 4:1, and 6:1 (final concentrations of 1000 μg/ 

ml), on the growth inhibition of H. guilliermondii. These ratios were chosen based on the fact 

that the GAPDH2/3 isoenzymes from which the AMP2/3 derives are produced by S. cerevisiae 

cells at much higher proportions than the GAPDH1 isoenzyme, from which the AMP1 derives. 

In fact, McAlister and Holland (1985) found that the contribution of the TDH1, TDH2, and 

TDH3 gene products to the total GAPDH activity in S. cerevisiae cells is 10–15, 25–30, and 50–

60 %, respectively. Results revealed that, under such conditions, the AMPs were able to kill H. 

guilliermondii (cell viability was reduced by about 1–2 orders of magnitude), with the strongest 

fungicidal effect being achieved at the ratio of 4:1 (Fig. 6).  

 

 

 

 

 

 

Fig. 6: Cell viability (CFU/ml) of H. guilliermondii after 18 h of incubation in YEPD (pH = 6.0) 

without AMPs (control) and with mixtures of the synthetic AMP2/3 and AMP1 (final 

concentrations of 1000 μg/ml) at ratios of 6:1, 4:1, and 2:1. The initial cell density was 105 

CFU/ml in all the assays. Values are means of triplicate measurements ± SD (error bars) of two 

biological independent assays. 

 

The conjugated action of the two synthetic peptides can also be confirmed by comparing 

the inhibitory capacity of the AMP1 used alone or mixed with the AMP2/3 at a ratio of 4:1 

(AMP2/3:AMP1), for the same concentration of AMP1 in each situation (Fig. 7). However, 

regardless of the way the synthetic AMPs were used (alone or mixed at any ratio) its 

antimicrobial activity was always lower than that of the natural biocide. Indeed, the synthetic 
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AMPs were only able to reduce the cell viability of H. guilliermondii by ca. two orders of 

magnitude (using mixtures of AMP2/3 + AMP1 in a ratio of 4:1) at 1000 μg/ml (Fig. 6), while 

the natural AMPs reduced the cell viability of the same yeast strain by ca four orders of 

magnitude (Table 3) at a much lower concentration (at 250 μg/ml). 

 

 

 

 

 

 

 

Fig. 7: Growth inhibition of H. guilliermondii (relative to control) in assays performed in YEPD 

(pH=6.0) with the synthetic AMP1 alone () and with the AMP1 mixed with the AMP2/3 () 

at a ratio of 4:1 (AMP2/3: AMP1), in function of AMP1 concentration. Values correspond to 

means of triplicate measurements ± SD (errors bars) of two independent biological experiments. 

 

3.4. Internalization of the synthetic AMPs by sensitive yeast cells 

To investigate the internalization ability of the AMPs, exponentially grown cells of H. 

guilliermondii and D. bruxellensis were separately incubated in deionized water and in YEPD 

(both media with and without ethanol) in the presence of the AMPs fluorescently labelled with 

FITC (AMPs-FITC). Results showed that the synthetic AMPs were able to enter in cells of both 

yeasts (Figs. 8 and 9). However, the percentage of cells that internalized the AMPs significantly 

increased when cells were incubated in YEPD (ca. 25–30 %) instead of water (less than 10 %) 

(Fig. 9 A, B). On the other hand, ethanol had no impact on the ability of the AMPs to penetrate 

H. guilliermondii cells (Fig. 9A), whereas an increased internalization was observed in D. 

bruxellensis cells (Fig. 9B). The membrane integrity of H. guilliermondii and D. bruxellensis 
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cells was assessed by staining cells with PI, revealing that all cells that internalized the AMPs 

(AMPs-FITC) also showed compromised cell membranes (PI-stained) (Fig. 9A, B). 

 

 

 

 

 

 

 

 

 

Fig. 8: Internalization of the synthetic AMPs fluorescently labeled with FITC by D. bruxellensis 

(A, B) and H. guilliermondii (C, D) cells. Microscopic observation in bright field (A, C) and in 

fluorescent filter (470 nm) (b, d) using a ×100 objective amplification 
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Fig. 9: Percentage of H. guilliermondii (a) and D. bruxellensis (b) cells that internalized the 

synthetic AMPs fluorescently labeled with FITC (AMPs-FITC) and that lost membrane integrity 

(PI-stained) after incubation in deionized water and in YEPD, without ethanol (AMPs-FITC/PI-

stained) and with 30 g/l of ethanol (AMPs-FITC + EthOH/ PI-stained + EthOH). Values 

correspond to means of triplicate measurements ± SD (error bars) from two biological 

independent assays. 

3.5. Apoptotic/necrotic molecular markers in AMPs-treated cells 

Apoptotic cell death induced by AMPs has been reported by several authors (Jin et al. 

2010) and (Reiter et al. 2005). This led us to investigate whether an apoptosis-like process occurs 

in sensitive yeast cells exposed to the synthetic AMPs. Cells dying by apoptosis display typical 

molecular markers such as the following: DNA strand breaks, detectable by the TUNEL assay; 

chromatin condensation, detectable by DAPI-staining; and exposure of phosphatidylserine at the 
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outer cell membrane, detectable by Annexin V-FITC staining. In the latter assay, apoptotic and 

necrotic cells can be distinguished by double staining cells with Annexin V (green fluorescence) 

and PI (red fluorescence), which is a membrane-impermeant fluorescent dye. These cellular 

markers were assessed by epifluorescent microscopy in H. guilliermondii cells incubated in 

YEPD without the AMPs (control) and with 100 μg/mlof synthetic AMPs. Cells were also 

incubated in YEPD with 5 mM of H2O2 (positive control) and in YEPD with 100 μg/ ml of 

synthetic AMPs plus cycloheximide (negative control). Results (Fig. 10) showed that H. 

guilliermondii cells treated with 100 μg/ml of AMPs exhibited 28 % of cells with DNA strand 

breaks (TUNEL-positive), 4 % of cells with phosphatidylserine exposure at the membrane 

surface (Annexin+/PI−), 1 % of necrotic cells (Annexin+/PI+), and no cells with chromatin 

condensation (DAPI-positive). Prior to these assays, H. guilliermondii cells were incubated in 

YEPD medium in the presence of 3.0, 5.0, and 180 mM of H2O2 and the above-mentioned 

apoptotic molecular markers were assessed, following the procedure described by Madeo et al. 

(1999). Results revealed that H. guilliermondii cells exposed to 5 mM of H2O2 exhibited a higher 

percentage of apoptotic cells than when exposed to 3 mM of a H2O2, while 180 mM of H2O2 

induced necrosis (PI-stained cells) in 95 % of cells (data not shown). Thus, H2O2 at 5.0 mM was 

used as positive control of death by apoptosis in H. guilliermondii cells (Fig. 10). Conversely, 

cycloheximide inhibits apoptosis in yeast since it blocks the protein synthesis machinery required 

to execute the programmed cell death mechanism. By comparing the apoptosis molecular 

markers exhibited by H. guilliermondii cells treated with the synthetic AMPs in the absence and 

in the presence of cycloheximide (Fig. 10), our results suggest that the AMPs indeed induce 

apoptosis in the sensitive yeast H. guilliermondii. 
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Fig. 10: Percentage of H. guilliermondii cells exhibiting apoptotic/necrotic molecular markers 

after incubation in YEPD medium, for 2 h, at different conditions: without AMPs (control); with 

5 mM of H2O2 (positive control); with 100 μg/ml of AMPs plus 0.01 % cycloheximide (negative 

control); with 100 μg/ml of AMPs. DAPI apoptotic cells with chromatin condensation; 

Annexin+/PI+ necrotic cells with compromised membranes; TUNEL apoptotic cells with DNA-

strand breaks; Annexin+/ PI− apoptotic cells with phosphatidylserine exposed at the surface of 

cytoplasmatic membrane. Values correspond to means of triplicate measurements ± SD (error 

bars) from two biological independent assays 

 

4. DISCUSSION 

We had previously reported that S. cerevisiae (strain CCMI 885) secretes AMPs derived 

from the glycolytic enzyme GAPDH (Albergaria et al. 2010; Branco et al. 2014), active against 

several wine-related non-Saccharomyces yeasts (e.g., D. bruxellensis, K. marxianus, L. 

thermotolerans, and T. delbrueckii) and bacteria (e.g., Oenococcus oeni). In the present work, we 

show that several other S. cerevisiae strains also secrete these AMPs during alcoholic 

fermentation and, therefore, we term the native biocide saccharomycin. In addition, we 

demonstrate that there is a positive correlation between the death rates of H. guilliermondii 

during mixed culture fermentations performed with different S. cerevisiae strains and the levels 

of saccharomycin excreted to the extracellular medium. Since saccharomycin exhibited a 

fungicidal effect against several wine-related non-Saccharomyces yeasts, our results strongly 
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suggest that secretion of GAPDH-derived peptides is a defensive strategy used by S. cerevisiae 

strains to combat other microbial species during wine fermentation.  

The involvement of GAPDH in the defense system of S. cerevisiae seems surprising, 

since this protein is mainly associated with its glycolytic role. However, recent studies have 

shown that GAPDH also displays several other activities in different subcellular locations 

(Nakajima et al. 2009; Silva et al. 2011; Sirover 2005, 2011). For example, GAPDH is a cell-

wall-associated protein with adhesion properties in bacteria (Izquierdo et al. 2009) and in the 

yeast Candida albicans where it plays a role in virulence (Gil et al. 1999). GAPDH has also been 

found on the cell surface of different yeasts such as in K. marxianus, involved in cell flocculation 

(Fernandes et al. 1992), and in S. cerevisiae, with unknown functions (Delgado et al. 2001, 

2003). In mammalian cells, GAPDH is overexpressed in neuronal apoptotic cells and involved in 

Alzheimer’s disease (Sunaga et al. 1995), while, in parasite, GAPDH is an immuno-suppressor 

(Sahoo et al. 2013). Due to its diverse activities, GAPDH has been called a “moonlighting 

protein” (Sirover 2011). Besides, two different GAPDH derived peptides with antifungal activity 

were recently isolated: one from the human placental tissue (Wagener et al. 2013) and the other 

from the skin of yellowfin tuna (Seo et al. 2012). On the other hand, GAPDH is a highly 

conserved protein, which means that its amino acid sequence should not vary significantly 

among close-related species. Indeed, our sequence alignments of the GAPDH isoenzymes for S. 

cerevisiae and some wine-related non-Saccharomyces yeasts show huge homology within the 

region that contains the AMP2/3. Nevertheless, the amino acid sequence of the AMP1 varies for, 

at least, one amino acid within the GAPDH sequences of those non-Saccharomyces yeasts. 

Interestingly, our results show that the antimicrobial activity of the AMP1 is much higher than 

that of the AMP2/3. The AMP1 originates from the GAPDH1 isoenzyme, which is only 

synthesized when S. cerevisiae cells enter the stationary growth phase (Boucherie 1995). Taken 

together, these findings could explain why the non-Saccharomyces yeasts invariable die off more 

intensely after S. cerevisiae attains the stationary growth phase during alcoholic fermentations 

(Albergaria et al. 2010; Nissen and Arneborg 2003; Pérez- Nevado et al. 2006).  

Using synthetic analogues of the main peptides that compose the natural biocide (i.e., 

AMP2/3 and AMP1) we found that the antimicrobial activity of the native AMPs depends on the 

conjugated action of these GAPDH-derived peptides. Besides, a maximal antimicrobial effect 

was found when the AMP2/3 was mixed with the AMP1 at a ratio of 4:1. It is worth noting that, 
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if the naturally secreted GAPDH-derived peptides are able to form aggregates of five molecules, 

the global molecular weight (MW) of those aggregates would be of about 8.0 kDa (MW of each 

peptide is ca. 1.6 kDa), which agrees with the apparent MW of the bioactive fractions isolated 

from the gel-filtration chromatography (data not shown). Moreover, while saccharomycin is 

active at acidic conditions (YEPD at pH = 3.5), the synthetic peptides are not. These findings 

prompt us to propose that the natural biocide may adopt a molecular structure involving the 

formation of aggregates of several peptide molecules (probably, five peptides) which render 

them soluble and bioactive at acidic conditions. In fact, different studies have shown that the 

activity of some AMPs depends on the conjugated action of several molecules (Nissen-Meyer et 

al. 1992; Straus and Hancock 2006). That is the case of lactococcin G, a bacteriocin whose 

activity depends on the complementary action of two peptides at approximately equal 

proportions (Nissen-Meyer et al. 1992). Also, daptomycin is an anionic AMP that was first 

isolated from Streptomyces roseosporus (Debono et al. 1987) and whose activity depends on the 

formation of aggregates of 14–16 daptomycin molecules that form a micelle-like structure by the 

action of calcium cations (Ca2+) (Straus and Hancock 2006). 

Most AMPs induce death of sensitive cells by interacting with cell membranes and 

permeabilizing them (Pandey et al. 2011). However, some AMPs have developed unique 

mechanisms to translocate across membranes and to act on cytoplasmic targets without 

disrupting cell membranes (Powers and Hancock 2003). Indeed, translocation across membranes 

by a micellar aggregate mechanism was first proposed for the frog-derived antimicrobial peptide 

buforin II (Park et al. 2000), which rather than causing large membrane perturbations induces a 

transient disruption without permanent permeabilization (Powers and Hancock 2003). Once 

present in the cytoplasm, AMPs are thought to interact with DNA, RNA, and/or cellular proteins 

and to inhibit synthesis of these compounds (Brown and Hancock 2006). In the present work, we 

investigated the death mechanisms induced by the S. cerevisiae AMPs, by treating sensitive 

yeast cells with synthetic AMPs fluorescently labeled with FITC (internalization of peptides) and 

by staining those cells with PI (loss of cell membrane integrity). Results showed that all sensitive 

cells that internalized the AMPs, also exhibited cell membrane permeabilization. In a previous 

work (Branco et al. 2015), we had already found that the natural S. cerevisiae AMPs induce 

membrane permeabilization of H. guilliermondii cells. Here, we show that the synthetic AMPs 

are also able to cross the cell membrane and enter in the cytoplasm of sensitive yeast cells (both 
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H. guilliermondii and D. bruxellensis), which means these AMPs are cell-penetrating peptides. 

Besides, both of these cellular effects were much more pronounced when sensitive cells were 

treated with the AMPs in YEPD (25–30 % of cells with disrupted membranes and AMPs 

internalization) than in deionized water (less than 10 % of cells with disrupted membranes and 

AMPs internalization). These results suggest that some component of the YEPD medium, 

probably a metal cation (e.g., Fe 2+, Mn2+, Mg2+, etc.), may enhance the activity of these AMPs. 

Although the effect of metal cations on the internalization of AMPs has never been reported, 

several studies (Dashper et al. 2005, 2007) have shown that the antimicrobial activity of anionic 

AMPs can be enhanced by the action of metal cations, since they promote the biding with the 

negatively charged cell wall. That is the case of kappacins, isolated from bovine milk and the 

first anionic AMPs to be investigated (Malkoski et al. 2001). In fact, Dashper et al. (2005) 

demonstrated that the antibacterial effect of Kappacins is enhanced by the presence of divalent 

metal cations (both Zn2+ and Ca2+). In addition, those authors found that under acidic conditions 

the membranolytic ability of kappacins in the presence of Zn2+ was higher, which could promote 

the influx of hydrogen ions, lower the intracellular pH, and thus increase the antibacterial activity 

(Dashper et al. 2005, 2007).  

AMPs are known to trigger cell death by inducing molecular markers typical of death by 

apoptosis (Jin et al. 2010; Reiter et al. 2005). Here, we show that sensitive yeast cells treated 

with sub-lethal concentrations (i.e., 100 μg/ml) of synthetic analogues of the GAPDH-derived 

AMPs exhibit cellular markers characteristic of death by apoptosis such as DNA fragmentation, 

a typical late apoptosis phenomenon.  

In conclusion, our work shows that saccharomycin is a natural biocide secreted by 

different S. cerevisiae strains that induces the death of several wine-related non-Saccharomyces 

yeasts, and whose activity depends on the conjugated action of GAPDH-derived peptides. The 

death mechanisms induced by these AMPs on sensitive yeasts involve cell membrane 

permeabilization, internalization of peptides and induction of apoptotic molecular markers. 
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ABSTRACT 

During wine fermentations Saccharomyces cerevisiae starts to excrete into the growth medium 

antimicrobial peptides (AMPs) that induce death of non-Saccharomyces yeasts at the end of 

exponential growth phase (24-48 h). Those AMPs were found to derive from the glycolytic 

enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). On the other hand, the early 

death of non-Saccharomyces yeasts during wine fermentations was also found to be mediated by 

a cell-to-cell contact mechanism. Since GAPDH is a cell wall-associated protein in S. cerevisiae, 

we put forward the hypothesis that the GAPDH-derived AMPs could accumulate on the cell 

surface of S. cerevisiae, thus inducing death of non-Saccharomyces yeasts by cell-to-cell contact. 

Here we show that 48 h-grown (stationary phase) cells of S. cerevisiae induce death of 

Hanseniaspora guilliermondii and Lachancea thermotolerans by direct cell-to-cell contact, while 

12 h-grown cells (mid-exponential phase) do not. Immunological tests performed with a specific 

polyclonal antibody against the GAPDH-derived AMPs revealed their presence in the cell-wall 

of S. cerevisiae cells grown for 48 h, but not for 12 h. Taken together, our data shows that 

accumulation of GAPDH-derived AMPs on the cell surface of S. cerevisiae is one of the factors 

underlying death of non-Saccharomyces yeasts by cell-to-cell contact.  

 

Keywords: antimicrobial peptides; glyceraldehyde-3-phosphate dehydrogenase; cell surface 

proteins; microbial interactions; ecological dominance; wine fermentation;  
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1 INTRODUCTION 

For a long time, the early death of non-Saccharomyces yeasts, such as Hanseniaspora uvarum, 

Hanseniaspora guilliermondii, Lachancea thermotolerans and Torulaspora delbrueckii, during 

wine fermentation was thought to be primarily due to their low ability to withstand the selective 

growth factors of wine environment (Bauer and Pretorius 2000). Throughout the last decade, 

however, several studies have demonstrated that antagonistic interactions, mediated both by a 

cell-to-cell contact mechanism (Nissen and Arneborg 2003; Nissen, Nielsen and Arneborg 2003; 

Renault, Albertin and Bely 2013) and by the excretion of antimicrobial peptides (AMPs) into the 

medium (Albergaria et al. 2010; Branco et al. 2014, 2017), play an important role in this 

phenomenon. 

Evidence that direct microbial interactions (i.e. by cell-to-cell contact) are involved in the 

early death of non-Saccharomyces yeasts was first reported by Nissen and Arneborg (2003) and 

Nissen, Nielsen and Arneborg (2003). Those authors found that the early death of L. 

thermotolerans and T. delbrueckii during mixed-culture fermentations with S. cerevisiae is 

mediated by a cell-to-cell contact mechanism, and not by any toxic compound excreted into the 

medium. Although, the mechanism/s underlying cell-to-cell contact death has remained 

unknown, further studies confirmed the involvement of this phenomenon in the early death of 

some non-Saccharomyces yeasts during wine fermentations (Renault, Albertin and Bely 2013; 

Kemsawasd et al. 2015). On the other hand, Pérez-Nevado et al. (2006) demonstrated that the 

early death of H. guilliermondii and H. uvarum during mixed-culture fermentations with S. 

cerevisiae is due to toxic compounds secreted by S. cerevisiae. Later, Albergaria et al. (2010) 

discovered that those toxic compounds correspond to small peptides (2-10 kDa) that are secreted 

by S. cerevisiae and excreted into the fermentation medium at the end of the exponential growth 

phase (24-48 h). Finally, Branco et al. (2014) identified those AMPs as being fragments of the 

glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Subsequent studies 

(Kemsawasd et al. 2015; Branco et al. 2017) have now firmly confirmed that different S. 

cerevisiae strains secrete these GAPDH-derived AMPs during wine fermentation, which induce 

death of several non-Saccharomyces yeasts. Moreover, Kemsawasd et al. (2015) showed that 

death of L. thermotolerans during mixed-culture fermentations with S. cerevisiae is induced both 

by a cell-to-cell contact-mediated mechanism and the presence of GAPDH-derived AMPs in the 
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fermentation medium. However, the mechanism/s by which S. cerevisiae induces death of non-

Saccharomyces yeasts by cell-to-cell contact has remained unknown. 

Since GAPDH is not only a glycolytic enzyme located in the cytosol, but also a cell wall-

associated protein in S. cerevisiae (Delgado et al. 2001; Delgado, Gil and Gozalbo 2003), we 

wonder if accumulation of GAPDH-derived peptides on the surface of S. cerevisiae cells could 

induce death of non-Saccharomyces yeasts by direct cell-to-cell contact. Thus, the aim of the 

present study was to investigate if death of non-Saccharomyces yeasts by cell-to-cell contact 

with S. cerevisiae is due to the presence of the GAPDH-derived AMPs on their cells surface.  

 

2 MATERIAL AND METHODS 

2.1. Strains and growth conditions 

S. cerevisiae strains used in the present work were: CCMI 885 (Culture Collection of 

Industrial Microorganisms of ex-INETI, Lisbon, Portugal); BY4741 (MATα his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0) and its isogenic derivative strain Δtdh3 (YGR192c::kanMX4); BY4742 

(MATα his3Δ1 leu2Δ0 lys2Δ0; ura3Δ0) and its isogenic derivative strain Δyca1; S101 (Saint 

Georges S101, Bio Springer, France). The non-Saccharomyces strains used were: L. 

thermotolerans CBS 2803 (Centraalbureau voor Schimmelcultures, the Netherlands) and H. 

guilliermondii NCYC 2380 (National Collection of Yeast Cultures, Norwich, United Kingdom). 

The origin and main characteristics of these yeasts are listed in the supplementary Table S1. 

Inocula of each yeast strain were obtained by transferring one YEPD-agar slant of each 

strain (pre-grown at 30 °C for 48-72 h) into 50 ml of YEPD medium (10 g/l yeast extract, 20 g/l 

peptone and 20 g/l glucose) and incubating cultures at 30 °C and 150 rpm of agitation for 16 h. 

2.2. Mixed-cell- and dialysis-tube assays 

S. cerevisiae strains were first incubated in synthetic grape juice (SGJ) medium, at 25ºC 

and 150 rpm of agitation for 72 h (see growth curves in supplementary Fig. S1). The SGJ (110 

g/l of glucose plus 110 g/l of fructose, pH 3.5) was prepared as described in Pérez-Nevado et al. 

(2006), and it was supplemented with 200 mg/l of L-leucine, 120 mg/l of L-histidine, 180 mg/l 

of L-methionine and 120 mg/l of uracil for strains BY4741, BY4742, Δtdh3 and Δyca1. Then, 

12-h grown cells and 48 h-grown cells of the strains CCMI 885, S101 BY4741, Δtdh3, BY4742, 

and Δyca1 were centrifuged, and cells washed with deionized-water and resuspended in a 
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carbohydrate-free medium with ethanol (SGJ without sugars with 30 g/l of ethanol). H. 

guilliermondii and L. thermotolerans were first incubated in YEPD (20 g/l of glucose, 20 g/l of 

peptone, 10 g/l of yeast extract), at 25ºC and 150 rpm of agitation, for 16 h. Then, cultures were 

centrifuged and cells washed with deionized-water and resuspended in the same carbohydrate-

free medium. 

Mixed-cell assays were performed in 250 ml Blue-Cap flasks (Duran®, Mainz, Germany), 

containing 245 ml of the carbohydrate-free medium with 30 g/l of ethanol to which H. 

guilliermondii and L. thermotolerans were added together with S. cerevisiae cells pre-grown for 

12 h (mid-exponential phase) and 48 h (stationary phase), respectively, at a final cell density of 

107 cells/ml of each yeast species. Each flask was fitted with a butyl stopper and a fermentation 

lock in tygon tubing containing 50% (v/v) sterile glycerol. Flasks were kept at 25ºC, with 150 

rpm of agitation, during 30 h. Mixed-cell assays were carried out in duplicates. 

Dialysis-tube assays were performed with H. guilliermondii and S. cerevisiae cells grown 

for 12 h (mid-exponential phase) and for 48 h (stationary phase), respectively, separated by a 

dialysis tube membrane in the system described by Kemsawasd et al. (2015). Briefly, the dialysis 

tube system consisted of an outer compartment, composed by a 250 ml Blue-Cap flask (Duran®, 

Mainz, Germany) and an inner compartment, composed by a 5 ml dialysis device made of 

cellulose membranes with a molecular weight cut-off of 1000 kDa (Spectra/Por® Float-A-

Lyzer®, SpectrumLabs). The outer compartment contained 245 ml of the carbohydrate-free 

medium that was inoculated with S. cerevisiae at a final cell density of 107 cells/ml. In the inner 

compartment 5 ml of the carbohydrate-free medium was inoculated with H. guilliermondii at a 

final cell density of 107 cell/ml. Each system was fitted with a butyl stopper and a fermentation 

lock in tygon tubing containing 50% (v/v) sterile glycerol. Dialysis-tube assays were performed 

in the same conditions of the mixed-cell assays, i.e. at 25ºC, with 150 rpm of agitation, during 30 

h. Dialysis-tube assays were carried out in duplicates. 

In both assays, samples were taken at 0, 5, 24 and 30 h, respectively, to determine the 

number of colony forming units (CFU) of yeast strains. In the mixed-cell assays performed with 

S. cerevisiae and H. guilliermondii, CFU counts of H. guilliermondii were obtained on 0.01% 

cycloheximide YEPD-agar plates (only H guilliermondii grows) and CFU counts of S. cerevisiae 

as the difference between total CFU counts on YEPD-agar plates and CFU counts of H. 

guilliermondii. In the mixed-cell assays performed with mixed-cultures of S. cerevisiae CCMI 
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885 and S101 together with L. thermotolerans, the CFU counts were enumerated using the 

Wallerstein laboratory nutrient (WLN) agar (Oxoid) medium. CFU counts were performed in 

triplicates. 

2.3. Analysis of the cell surface proteins of S. cerevisiae: extraction and fractionation 

by gel filtration chromatography 

Cell surface proteins of S. cerevisiae cells were extracted using the protocol described by 

Van Leeuwen et al. (1991), with some modifications. This method was applied to S. cerevisiae 

cells pre-grown for 12 h (strain CCMI 885) and for 48 h (strains CCMI 885, BY4741, BY4742 

and Δtdh3). Yeast strains were incubated in SGJ, and the same amount of cells (ca 109) was 

collected after 12 h and 48 h of cultivation. Cells were washed twice with ice-cold distilled water 

and once with buffer A (0.1 M Glycine, 0.3 M KCL, pH 7.0) and pellets were frozen with liquid 

nitrogen and kept at -80 ºC. 10-15 g (wet weight) of each yeast cell pellet was resuspended in 15 

ml of buffer A containing 0.1 mM of phenyl-methyl-sulfonyl-fluoride (PMSF). Afterwards, cell 

suspension was transferred to a French press to disrupt cells, and then the suspension was 

centrifuged once again at 4 ºC and 2100×g, for 10 min. The supernatant was filtered through a 

Sartorius glass fiber filter with a GF/C Whatman membrane and centrifuged at 4 ºC and 2100 ×g, 

for 20 min. The pH was adjusted to 4.9 by slowly addition of 10 ml of buffer A, with constant 

stirring, and 0.4 ml HCl 0.1 M in order to precipitate the mitochondrial membranes. When the 

pH of the solution reached 4.9, cells were centrifuged immediately at 4 ºC and 2100 ×g, for 10 

min. After that, the supernatant was transferred to a fresh centrifuge tube and the pH adjusted to 

7.0 with 10 ml of buffer A and 0.4 ml KOH 1 M and kept on ice. This fraction contains both the 

proteins incorporated in the plasma membrane and those bound to the cell-wall (van Leeuwen et 

al. 1991).  

The cell surface protein fractions obtained were first ultrafiltrated by centrifugal filter 

units equipped with 10 kDa membranes (Vivaspin 15R, Sartorius, Germany) and then the 

respective peptidic fractions (proteins <10 kDa) were fractionated by gel filtration 

chromatography using a High-Performance Liquid Chromatographic (HPLC) system (Merck 

Hitachi, Germany), coupled with a Superdex Peptide column (10/300 GL, GE Healthcare, 

London, UK) that was equilibrated and eluted with a 0.1 M ammonium acetate solution. Elution 

was performed at a flow rate of 0.7 ml/min and proteins detected by absorbance at 280 nm using 



Chapter V 

149 

an UV detector (Merck Hitachi, Germany). All chromatographic fractions (see Fig. 4) were 

collected, lyophilized and stored at -20 ºC.  

Cell-wall bound proteins of S. cerevisiae cells grown for 12 h and 48 h (of the strains 

CCMI 885, S101, BY4741 and Δtdh3) were extracted using the protocol described by Delgado et 

al. (2001). Briefly, intact cells were collected, centrifuged for 10 min at 2100 ×g, washed once 

with sterile distilled-water, and then resuspended in sterile distilled water containing 1% (v/v) of 

β-mercaptoethanol. The cell suspension was then incubated for 30 min at 37 °C, with shaking to 

release the cell-wall bound proteins. After this treatment, cells were sedimented, and the 

supernatant fluid was recovered, filtered by 0.22 μm Millipore membranes (Merck-Millipore, 

Algés, Portugal) and concentrated by freeze-drying. The cell-wall extracts were kept at -20 ºC to 

be further used in the enzyme-linked immunosorbent assay (ELISA). 

2.4. Antimicrobial tests of gel-filtration peptidic fractions 

All lyophilized gel-filtration fractions were resuspended in 100 µl of YEPD (with 30 g/l 

of ethanol and pH 3.5) and their antimicrobial activity tested against H. guilliermondii. 

Antimicrobial tests were performed in 96 wells-microplates, with each well filled with 100 µl of 

YEPD with the gel-filtration fractions, inoculated with 105 cells/ml of H. guilliermondii. 

Cultures were incubated in a Thermo-Shaker (Infors HT, Bottmingen, Switzerland) at 30 °C, 

under strong agitation (700 rpm). Control assays were performed in YEPD without the gel-

filtration fractions and growth was followed by absorbance measurements at 590 nm in a 

Microplate Reader (Dinex Technologies Inc., Chantilly, USA). The percentage of survival of 

yeasts in these assays was calculated as the cell viability in each assay relative to the respective 

control assay (100% of survival). Samples (10 µl) were taken at 0 h, 16 h and 24 h in all assays 

for CFU counts. Briefly, 100 µl of culture samples were spread onto YEPD-agar plates, after 

appropriate dilution, and plates incubated at 25°C. CFU counts were made after 2-6 days. All 

tests were performed in triplicate.  

2.5. Enzyme-linked immunosorbent assay (ELISA)  

The presence of the GAPDH-derived AMPs on the surface of S. cerevisiae cells was 

analysed by ELISA, using a specific polyclonal antibody against the GAPDH1 (309-321) peptide 

(i.e. anti-AMP1). Polyclonal rabbit antiserum raised against the AMP1 conjugate was obtained 
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by multiple intradermic injections into rabbits. The experiments on rabbits were carried out by 

GenScript Inc. Company (GenScript HK Limited, Hong Kong). 

The samples analysed by ELISA were: 1) the gel-filtration fractions-I (Fig. 4), containing 

the surface proteins extracted from S. cerevisiae cells pre-grown for 12 h and 48 h, of the strain 

CCMI 885); 2) the cell-wall bound proteins directly extracted from S. cerevisiae cells, pre-grown 

for 12 and 48 h, of the strains CCMI 885, S101, BY4741 and tdh3.  

First, 100 µl of samples were used for coating each well of the 96-wells microplate 

MICROLON® high-binding (Greiner Bio-One, Germany). Then, the 96-wells microplate was 

incubated overnight at 4ºC. Afterwards, 100 µl of 6 M urea was added to samples in order to 

denature proteins and improve protein detection by ELISA, as previously described by Hnasko et 

al. (2011). The microplate was thereafter washed 4 times using a phosphate-buffered saline 

(PBS)-Tween washing solution (0.05% Tween 20 in 0.01 M PBS). Then, samples were blocked 

during 2 h at room temperature by adding 200 µl of blocking solution containing bovine serum 

albumin (BSA 1%) in PBS and washed 4 times with washing solution. Next, 100 µl of the 

primary polyclonal rabbit antibody (GenScript HK Limited, Hong Kong) specific to the AMP1 

(anti-GAPDH-1(309-321), diluted in 1% BSA to a final concentration of 10 µg/ml, was added to 

each well and incubated for 2 h at 37ºC. After removing the unbound material, by washing the 

microplate 4 times with PBS-Tween solution, the secondary antibody (anti-rabbit IgG-fab 

specific, alkaline phosphatase conjugate, Sigma-Aldrich, USA) was diluted (1.0 µg/ml in 1% 

BSA) and 100 µl were added to each well followed by 2 h of incubation at 37 ºC. Subsequently, 

the microplate was washed 4 times with PBS-Tween solution. Then, 100 µl/well of alkaline 

phosphatase substrate (100 mM Tris-HCL, 100 mM Nacl, 5 mM MgCl2, 1 mg/ml para-

Nitrophenylphosphate (PnPP) was added to the microplate and incubated for 10 to 30 min at 

room temperature in the dark. The enzyme-substrate reaction was stopped by adding 100 µl of 3 

N NaOH to each well. The optical density (OD) was measured at 405 nm using a microplate 

reader (Bio-Rad, Benchmark, USA). All samples were analysed in triplicate. 

To establish the relationship between absorbance and concentration, a standard curve was 

constructed using the synthetic AMP1. For that, 1 mg/ml of GAPDH-1 (309-321) (AMP1), 

chemically-synthetized by GenScript (GenScript HK Limited, Hong Kong), was diluted to 1:32, 

1:64, 1:128, 1:256, 1:512 in PBS at pH 7.2. Then, three replicates of 100 µl were taken from 

each diluted sample and transferred to the 96-wells microplate MICROLON® high binding. The 
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ELISA procedure above-described was applied to the microplate and a linear regression equation 

calculated using the absorbance values obtained and the respective concentration (µg/ml) of the 

AMP1.  

 

2.6. Two dimensional polyacrylamide gel electrophoresis (2D-PAGE) 

Cell surface proteins, extracted by the Van Leeuwen et al. (1991) method from S. 

cerevisiae cells pre-grown for 48 h (strain CCMI 885) were resolved by two dimensional 

polyacrylamide gel electrophoresis (2D-PAGE). Prior to 2D-PAGE, samples were cleaned from 

contaminants by a precipitation method using a 2D-Clean-Up Kit (GE, Healthcare, London, 

UK). The obtained pellet was air-dried for 5 min and the proteins resuspended in the rehydration 

solution (7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 0.5% (v/v) IPG buffer (pH 3-10), 0.002% 

(w/v) bromophenol blue and 0.28% (w/v) dithiothreitol (DTT). The protein concentration was 

determined by the Bradford method (BIO-RAD Protein assay, California, USA). 

First, gel strips with 7 cm in length and linear 4-7 pH gradient (Immobiline DryStrip, GE 

Healthcare, London, UK) were rehydrated for 16 h with 125 μl of rehydration solution, 

containing 35 μg of the above-mentioned surface proteins samples. Then, the first dimension 

electrophoresis was run in a Ettan IPGphor III system (GE Healthcare, London, UK) using the 

following conditions: 200 V for 1 h; 500 V for 30 min; voltage gradient up until 1000 V for 30 

min; voltage gradient up until 5000 V for 1 h 30 min; 5000 V for 1 h 30 min; for a total of 12825 

V/h at 20 ˚C. After isoelectric focusing, equilibration of the strips was performed in two steps. In 

the first one, strips were equilibrated in equilibration buffer (6 M urea, 50 mM tris-HCl pH 8.8, 

30% (v/v) glycerol, 2% (m/v) SDS and bromophenol blue) with 10 mg/ml of Dithiothreitol 

(DTT) for 20 min. In the second step, the procedure was repeated with 25 mg/ml of 

iodoacetamide instead of DTT. Both equilibration steps were performed in a rocking platform 

shaker (VWR International, USA).  

In the second dimension electrophoresis, the strips were placed onto gradient 4-12% Bis-

Tris SDS-PAGE gels (NuPAGE® NOVEX® Zoom® Protein Gels, 1.0 mm, IPG well, Life 

Technologies, Thermo Fisher Scientific, USA). The gels were also loaded with molecular weight 

markers (diluted 1:10) (Mark12™ Unstained Standard, Life Technologies, Thermo Fisher 

Scientific, USA). The electrophoresis was run at 150 V for 1 h 25 min in a XCell SureLock™ 

Mini-Cell Electrophoresis System (Life Technologies, Thermo Fisher Scientific, USA), using 
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MES running buffer (1 M MES, 1 M Tris Base, 69.3 mM SDS, 20.5 mM EDTA, pH 7.3 – stock 

solution). After SDS-PAGE electrophoresis, gels were silver stained according to the protocol 

described by Heukeshoven and Dernick (1985).  

 

2.7. Peptides identification by mass spectrometry (MALDI-TOF/MS) 

Spots 2 and 3 of the 2D-PAGE gel (indicated in Fig. 5) were manually excised and the 

gel pieces placed in microfuge tubes, washed, dried and digested by trypsin as described in 

Santos et al. (2007). The trypsin digested gel samples were then analyzed by Matrix-assisted 

laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) (Bruker–

Daltonics equipped with a LIFT cell and N2 laser). Peak list and spectral processing were done 

in Flex-Analysis 3.0 (Bruker, Daltonics, cidade, país). Protein identification was carried out 

using MASCOT software (Matrix Science, London, UK) and the identified proteins were then 

analyzed using the IMG system program (http://img.jgi.doe.gov). 

 

3 RESULTS 

3.1. Death of non-Saccharomyces yeasts by cell-to-cell contact with S. cerevisiae 

In order to investigate the factors underlying the death of non-Saccharomyces yeasts by 

cell-to-cell contact with S. cerevisiae, we conceived assays in which H. guilliermondii and L. 

thermotolerans were placed in direct contact with 12 h-grown and 48 h-grown cells of S. 

cerevisiae (mixed-cell assays), in a carbohydrate-free medium to avoid cells from producing 

growth metabolites, and at high cell density (107 cells/ml) to promote physical contact. Results 

(Fig. 1) show that when H. guilliermondii remained alone (Fig. 1A), or was placed in direct 

contact with 12 h-grown cells of the S. cerevisiae strains CCMI 885 (Fig. 1B), BY4741 (Fig. 

1D) and BY4742 (Fig. 1G), its cell viability remained unchanged during 30 h. Conversely, when 

H. guilliermondii was placed in direct-contact with 48 h-grown cells of the same S. cerevisiae 

strains (Fig. 1C, E and H) its cell viability decreased rapidly, exhibiting just 19%, 35% and 65%, 

respectively, of its initial cell density after just 5 h. However, when H. guilliermondii was placed 

in direct contact with 48 h-grown cells of the S. cerevisiae null mutants Δtdh3 (Fig. 1F) and 

Δyca1 (Fig. 1I), its cell viability remained unchanged after 5 h. Comparing survival rates of H. 

guilliermondii when placed in direct contact with 48 h-grown cells of the S. cerevisiae mutant 
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strains with the respective wild-type strains (i.e. comparing Fig. 1E with F and Fig. 1H with I), 

it is clear that deletion of either TDH3 or YCA1 genes, significantly prevents death of H. 

guilliermondii.  

To cross-check that death of H. guilliermondii when placed in direct contact with S. 

cerevisiae cells (mixed-cell assays) is mediated just by a cell-to-cell contact mechanism and not 

by any toxic compound present in the medium, dialysis-tube assays were performed using the 

same medium and conditions of the mixed-cell assays, but with H. guilliermondii physically 

separated from S. cerevisiae cells by a cellulose membrane. In the dialysis-tube system yeasts 

cells are physically-separated but sense the same medium metabolites since these can cross the 

membrane (Kemsawasd et al. 2015). Results (Fig. 2) show that, in this situation, H. 

guilliermondii cell viability remained unchanged throughout the entire time of the assay (30 h) 

both for 12 h- and 48 h-grown cells of S. cerevisiae cells. In fact, by comparing results obtained 

in the mixed-cell assays with those obtained in the dialysis-tube assays (i.e. comparing Fig. 1C 

with Fig. 2B and Fig. 1E with Fig. 2D) we can conclude that 48 h-grown cells of S. cerevisiae 

cells induce death of H. guilliermondii exclusively by a cell-to-cell contact-mediated mechanism. 
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Fig. 1: Percentage of survival (relative to the initial cell density) of S. cerevisiae (dark orange 

bars) and H. guilliermondii (light orange bars) during mixed-cell assays performed in a carbon-

free medium, at high cell density (107 cells/ml). Assays were performed with H. guilliermondii 

(Hg) cells alone (A), with H. guilliermondii cells mixed with 12 h-grown (B,D,G) and 48 h-

grown (C,E,H) cells of the S. cerevisiae strains CCMI 885 (B,C), BY4741 (D,E) and BY4742 

(G,H), and with H. guilliermondii cells mixed with 48 h-grown cells of the S. cerevisiae mutants 

Δtdh3 (F) and Δyca1 (I). Values represented are means of triplicate measurements ± SD (error 

bars) of two independent biological experiments. Data obtained for each strain in the different 

mixed-cell assays was analysed by ANOVA.*, statistically different values (P<0.05) between the 

assays performed with 48 h-grown and 12 h-grown cells of each S. cerevisiae strain; **, 

statistically different values (P<0.05) between assays performed with 48 h-grown cells of the S. 

cerevisiae mutant strains (Δtdh3 and Δyca1) and with 48 h-grown cells of the respective wild-

type strains (BY4741 and BY4742). 

  



Chapter V 

155 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Percentage of survival (relative to initial cell density) of S. cerevisiae (dark orange bars) 

and H. guilliermondii (light orange bars) during the dialysis-tube assays performed in a carbon-

free medium, at high cell density (107 cells/ml). Assays were performed with H. guilliermondii 

cells separated by a cellulose membrane from S. cerevisiae cells pre-grown for 12 h (A,C) and 

for 48 h (B,D) of the strains CCMI 885 (A,B) and BY4741 (C,D), respectively. Values 

represented are means of triplicate measurements ±SD (error bars) of two independent biological 

experiments. Data obtained for each strain in the dialysis-tube assays performed with 12 h-grown 

and 48 h-grown cells of each S. cerevisiae strain was analysed by ANOVA and all values were 

found to be non-statistically different (P>0.05). 

 

Kemsawasd et al. (2015), using the same dialysis-tube system but a different medium 

(SGJ with 200 g/l of sugars), had previously demonstrated that S. cerevisiae (strain S101) 

induces death of L. thermotolerans by direct cell-to-cell contact. In the present work, we wanted 

to check-out if 48 h-grown cells of S. cerevisiae would induce death of L. thermotolerans by 

direct cell-to-cell contact, while 12 h-grown cells would not, as it happened with H. 

guilliermondii. Therefore, we performed mixed-cell assays with L. thermotolerans in direct 

contact with S. cerevisiae cells (strains CCMI 885 and S101) pre-grown for 12 h and 48 h, 

respectively, in the carbohydrate-free medium. Results (Fig. 3) showed that L. thermotolerans 
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was able to keep its cell viability unchanged during 30 h when it remained alone (Fig. 3A) and 

also when it was placed in direct contact with S. cerevisiae cells pre-grown for 12 h of both 

strains (Fig. 3B and D). Quite the reverse, when placed in direct contact with S. cerevisiae cells 

pre-grown for 48 h of both strains, L. thermotolerans lost 65% and 52%, respectively, of its 

initial cell viability after 30 h (Fig. 3C and E).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Percentage of survival (relative to initial cell density) of S. cerevisiae (dark blue bars) and 

L. thermotolerans (light blue bars) during the mixed-cell assays performed in a carbon-free 

medium, at high cell density (107 cells/ml). Assays were performed with L. thermotolerans (Lt) 

cells alone (A), and with L. thermotolerans mixed 12 h-grown (B,D) and 48 h-grown (C,E) cells 

of the S. cerevisiae (Sc) strains CCMI 885 (B,C) and S101 (D,E). Values represented are means 

of triplicate measurements ±SD (error bars) of two independent biological experiments. Data 

obtained for each strain in the different mixed-cell assays was analysed by ANOVA. *, 

statistically different values (P<0.05) between the assays performed with 48 h-grown and 12 h-

grown cells of each S. cerevisiae strain. 
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3.2. Analysis of cells surface proteins of S. cerevisiae: extraction and fractionation by 

gel filtration chromatography 

In view of the results obtained in the mixed-cell and dialysis-tube assays (Figs. 1-3), 

which show that 48 h-grown cells of S. cerevisiae induce death of non-Saccharomyces yeasts by 

cell-to-cell contact while 12-h grown cells do not, we extracted the surface proteins of those cells 

and analysed them by gel-filtration chromatography. It should be mentioned here that the surface 

proteins were extracted using the protocol described by Van Leeuwen et al. (1991), which 

proved to effectively separate mitochondrial from plasma membranes. 

The surface proteins extracted (containing both the proteins incorporated in the plasma 

membranes and those bound to the cell-wall) were first ultrafiltrated and, then, fractionated by 

gel filtration chromatography (Fig. 4). All strains exhibited similar chromatographic profiles, 

showing one peak at about 25 min (fraction-I indicated in Fig. 4B) in all chromatograms. The 

retention time of this peak (25 min) is close to that of the gel-filtration fraction from where the 

GAPDH-derived AMPs were previously identified by Branco et al. (2014) in fermentation 

supernatants. Moreover, the intensity of fraction-I is much lower in S. cerevisiae (strain CCMI 

885) cells pre-grown for 12 h (Fig. 4A) than in cells pre-grown for 48 h (Fig. 4B). Also, the 

intensity of fraction-I is much lower in S. cerevisiae cells pre-grown for 48 h of the mutant 

strains Δtdh3 and Δyca1 (Fig. 4C,E) than that in the respective wild-type strains (Fig. 4D,F).  
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Fig. 4: Gel-filtration chromatography of surface proteins (fractions <10 kDa) extracted from: S. 

cerevisiae CCMI 885 cells pre-grown for 12 h (A) and for 48 h (B), respectively; S. cerevisiae 

cells pre-grown for 48 h of the BY4741 mutant Δtdh3 (C) and the respective wild-type strain 

(D); S. cerevisiae cells pre-grown for 48 h of the BY4742 mutant Δyca1 (E) and the respective 

wild-type strain (F). Fraction-I highlighted in all graphs was found to contain the GAPDH-

derived AMPs. 

 

S. cerevisiae cells that induced death of the non-Saccharomyces yeasts by cell-to-cell 

contact (i.e., 48 h-grown cells of the strains CCMI 885, BY4741 and BY4742) (Fig. 1B,E,H) 

also exhibited higher amounts of fraction-I on their surface (Fig. 4B,D,F). Thus, fraction-I was a 

good candidate to contain the bioactive peptides. Nevertheless, the antimicrobial activity of all 

gel-filtration fractions (i.e. fractions I, II, II and IV) was tested against H. guilliermondii. Results 

(supplementary Table S2) showed that only fraction-I exhibited significant antimicrobial activity 

against H. guilliermondii. Indeed, gel-filtration fractions-I obtained from S. cerevisiae cells pre-
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grown for 48 h of the strains CCMI 885, BY4741 and BY4742 inhibited the growth of H. 

guilliermondii by 68 %, 51% and 75, respectively (supplementary Table S2). Conversely, gel-

filtration fraction-I obtained from 12 h-grown cells of S. cerevisiae CCMI 885, as well as from 

48 h-grown cells of the mutant strains Δtdh3 and Δyca1 were only able to inhibit the growth of 

H. guilliermondii by 12%, 25% and 20%, respectively (supplementary Table S2).  

Antimicrobial tests confirmed that S. cerevisiae pre-grown for 48 h contains AMPs on 

their cells surface, which induce death of H. guilliermondii. Furthermore, our results also 

indicate that the TDH3 and YCA1 genes are involved in the accumulation of those AMPs on the 

surface of S. cerevisiae cells, since the gel-filtration fractions-I isolated from the surface of S. 

cerevisiae cells pre-grown for 48 h of the null mutants Δtdh3 and Δyca1 induced just a slight 

inhibition of H. guilliermondii growth (supplementary Table S2) by comparison with the 

respective wild-type strains (i.e., 25% and 20% compares with 51% and 75%, respectively). 

 

3.4. Identification of GAPDH-derived AMPs on the cell surface of S. cerevisiae 

3.4.1 Enzyme-linked immunosorbent assay (ELISA)  

The bioactive gel-filtration fraction-I obtained by fractionation of the surface proteins 

extracted from S. cerevisiae (strain CCMI 885) cells pre-grown for 12 h and for 48 h, 

respectively, were analysed by enzyme-linked immunosorbent assays (ELISA) using a specific 

polyclonal antibody raised against the GAPDH-derived AMPs. Immunological tests confirmed 

the presence of the GAPDH-derived AMPs in both gel-filtration fractions, but with higher 

concentration in 48 h-grown cells (15.7±0.4 µg/ml) than in 12 h-grown cells (6.8±0.3 µg/ml). 

These results demonstrated that S. cerevisiae cells accumulate the GAPDH-derived AMPs on 

their membranes during growth, i.e. from mid-exponential (12 h) to stationary phase (48 h).  

Given that the above-mentioned samples contained both the proteins incorporated in the 

plasma membrane and those loosely bound to the cell-wall, we also performed ELISA tests with 

samples containing just the cell-wall bound proteins of S. cerevisiae cells pre-grown for 12 h, 

and for 48 h, of the strains CCMI 885, BY4741, S101 and ∆tdh3. It should be mentioned here 

that the cell-wall proteins were solubilized from intact cells using the β-mercaptoethanol 

treatment, a method that releases yeast cell-wall molecules without significant intracellular 

contamination (Chaffin et al. 1998). Results (Table 1) showed that the GAPDH-derived AMPs 
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are present in the cell-wall of the S. cerevisiae strains CCMI 885, BY4741 and S101 pre-grown 

for 48 h, but were not detectable in the cell-wall of the same strains pre-grown for 12 h. 

Moreover, the AMPs were also not detectable in the cell-wall of the S. cerevisiae mutant ∆tdh3 

pre-grown for 48 h.  

3.4.2 Two dimensional polyacrylamide gel electrophoresis (2D-PAGE) 

To further confirm the identification of the GAPDH-derived AMPs, surface proteins of S. 

cerevisiae (strain CCMI 885) cells pre-grown for 48 h were resolved by two-dimensional 

polyacrylamide gel electrophoresis (2D-PAGE). The proteome obtained (Fig. 5) revealed an 

intense spot (spot 1 indicated in Fig. 5) at a molecular weight (MW) close to 36 kDa and an 

isoelectric point (pI) ranging from 6.5-7.0, which probably contains the GAPDH protein. In fact, 

GAPDH is a cell-wall associated protein in S. cerevisiae (Delgado et al. 2001) whose MW is 36 

kDa and the pI ranges from 6.59-6.98, depending of its isoforms. Moreover, the 2D-gel also 

exhibits two other intense spots (spots 2 and 3 indicated in Fig. 5) that fall in the range of 8-10 

kDa for the MW and of 4.0-4.5 for the pI. Since the GAPDH-derived AMPs identified by Branco 

et al. (2014) have an apparent MW of 8.0 kDa and a pI of 4.37, spots 2 and 3 were manually 

excised from the 2D-gel and further analysed by mass spectrometry. The peptides identified by 

mass spectrometry (MALDI-TOF/ MS) are listed in supplementary Table S3 and confirmed the 

presence in both spots of peptides derived from the GAPDH isoenzyme-1, namely one peptide 

exhibiting exactly the same amino acid sequence of the AMP1 (ISWYDNEYGYSAR). 

 

Table 1: Concentration (μg/ml) of the GAPDH-derived AMPs determined by ELISA in the cell-

wall extracts of different S. cerevisiae strains pre-grown for 12 h and 48 h. Values presented are 

means (±SD) of triplicates. 

 

 

 

 

 

* Non-detectable  
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Fig. 5: Proteome of the surface proteins extracted from S. cerevisiae cells pre-grown for 48 h, 

resolved by 2D-PAGE. M: Molecular weight markers (kDa); pI: isoelectric point of the strip 

(linear 4-7 pH gradient); Spots 2 and 3 were excised from the gel, and peptides identified by 

mass spectrometry. 

 

4. DISCUSSION 

We had previously reported that different S. cerevisiae strains secrete AMPs derived 

from the glycolytic enzyme GAPDH during wine fermentations that are active against several 

yeasts and bacteria (Albergaria and Arneborg 2016; Branco et al. 2017). Besides, we also 

demonstrated that death of L. thermotolerans in mixed-culture fermentations with S. cerevisiae is 

due to the combined effect of cell-to-cell contact and GAPDH-derived AMPs (Kemsawasd et al. 

2015). However, the mechanisms underlying the death of non-Saccharomyces yeasts by cell-to-

cell contact with S. cerevisiae have remained unknown.  

In the present work, we demonstrate that 48 h-grown, conversely to 12 h-grown, cells of 

S. cerevisiae induce death of L. thermotolerans and H. guilliermondii by direct cell-to-cell 

contact (Figs. 1-3). These results are in agreement with previous reports (Nissen and Arneborg 

2003; Nissen, Nielsen and Arneborg 2003; Renault, Albertin and Bely 2013; Kemsawasd et al. 
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2015) claiming that death of L. thermotolerans and T. delbrueckii during mixed-culture 

fermentations with S. cerevisiae is mediated by a cell-to-cell contact mechanism. They also agree 

with the fact that non-Saccharomyces yeasts begin to die-off during wine fermentation only after 

24-48 h, i.e. after cells attain the stationary growth phase (Nissen and Arneborg 2003; Pérez-

Nevado et al. 2006; Xufre et al. 2006).  

Furthermore, S. cerevisiae starts to excrete the GAPDH-derived AMPs into the 

extracellular medium at the end of the exponential growth phase (Albergaria et al. 2010; Branco 

et al. 2014, 2017). In S. cerevisiae, the TDH3 gene codifies the synthesis of GAPDH (McAlister 

and Holland 1985) and the YCA1 gene codifies the synthesis of metacaspase who cleaves the 

GAPDH in apoptotic cells (Silva et al. 2011). Interestingly, our results show that S. cerevisiae 

cells pre-grown for 48 h of the null mutants tdh3 and yca1 did not trigger death of the non-

Saccharomyces yeasts, conversely to the respective wild-type strains. On the other hand, 

GAPDH is a cell-wall-associated protein in S. cerevisiae (Delgado et al. 2001). Thus, surface 

proteins of several S. cerevisiae cells were extracted and analysed by ELISA, using a specific 

polyclonal antibody against the GAPDH-derived AMPs secreted by S. cerevisiae and identified 

by Branco et al. (2014). Immunological tests confirmed the presence of the GAPDH-derived 

AMPs on the cell-wall of S. cerevisiae cells pre-grown for 48 h, but not for 12 h (Table 1). 

Besides, the GAPDH-derived AMPs were also identified by mass spectrometry in the surface 

proteome of S. cerevisiae cells pre-grown for 48 h (Fig. 5 and supplementary Table S3). In 

summary, our work shows that accumulation of GAPDH-derived AMPs on the cell surface of S. 

cerevisiae is one of the factors that triggers death of non-Saccharomyces yeasts by cell-to-cell 

contact. Moreover, several S. cerevisiae strains (i.e., CCMI 885, S101, BY474 and BY4742) that 

induced death of H. guilliermondii and L. thermotolerans by cell-to-cell contact also 

accumulated the GAPDH-derived AMPs on their cells surface, what seems to indicate that this is 

a more general phenomenon of the S. cerevisiae species. 

The involvement of GAPDH-derived peptides in the antagonism exerted by S. cerevisiae 

against other microbial species highlights the multifunction feature of this protein (Sirover 

2011). Indeed, GAPDH is the prototype of a “moonlighting” protein that exhibits several other 

activities beside its glycolysis role (Sirover 2011). Those activities include a primary role in 

apoptosis and in a variety of critical nuclear pathways that occur in different subcellular 

locations, including membrane, cytosol and nucleus (Sirover 2005; Nakajima et al. 2009; Silva et 
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al. 2011). Moreover, GAPDH has been found on the cell surface of Streptococcus pyogenes 

(Pancholi and Fischetti 1992) Kluyveromyces marxianus (Fernandes et al. 1992), Candida 

albicans (Gil-Navarro et al. 1997) and S. cerevisiae (Delgado et al. 2001; Delgado, Gil and 

Gozalbo 2003). Fernandes et al. (1992) found that, in Kluyveromyces marxianus, an up-shift of 

the growth temperature from 26 to 40 ºC induces flocculation of cells and the accumulation of 

GAPDH in the cell wall. In S. cerevisiae, GAPDH was found to accumulate in the cell-wall in 

response to starvation and temperature upshift (Delgado, Gil and Gozalbo 2003), although its 

function has remained unknown. In the present work we show that the death of non-

Saccharomyces yeasts by direct contact with S. cerevisiae stationary-grown cells is related with 

the accumulation of GAPDH-derived AMPs on their surface. Therefore, our work unveiled at 

least one of the functions of the GAPDH accumulation in the cell-wall of S. cerevisiae, although 

we do not know yet how the GAPDH is transported to the cell-wall, nor what triggers the 

production of the GAPDH-derived AMPs.  

Silva et al. (2011) reported that, in yeast, GAPDH is a specific substrate of metacaspases 

and that the in vivo cleavage of GAPDH in apoptotic cells originates several GAPDH-derived 

fragments, namely some fragments equal to the AMPs identified by Branco et al. (2014). In the 

present study, we found that 48 h-grown cells of the S. cerevisiae mutant deleted in the 

metacaspase gene (yca1) did not induce the death of non-Saccharomyces yeasts, conversely to 

its wild-type strain. These results suggest that accumulation of GAPDH-derived peptides on the 

cell surface of S. cerevisiae at the end of the exponential growth phase might result from the 

cleavage of GAPDH by metacaspases in apoptotic cells. In case this hypothesis is confirmed, the 

existence of a programmed-cell death process in yeast could gain a new meaning: that of 

producing defensive weapons for the microbial population. 

In conclusion, our work shows that death of wine-related non-Saccharomyces yeasts by 

direct contact with stationary-grown cells of S. cerevisiae is mediated, at least partly, by the 

accumulation of GAPDH-derived AMPs on their surface.  
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Yeast strains Origin Type of strain/Specific mutations 
 

   
 

S. cerevisiae CCMI 885 isolated from Alentejo wines, Portugal Wild yeast 
 

S. cerevisiae S101 isolated from Beaujolais wines, France Wild yeast 
 

S. cerevisiae BY4741 
isogenic derivative strain from S. cerevisiae S288C laboratory strain (MATα his3Δ1 leu2Δ0 

 

(Winston et al., 1995) met15Δ0 ura3Δ0) 
 

 
 

 
isogenic derivative strain from S. cerevisiae BY4741 

laboratory strain deleted in the TDH3 gene that 
 

S. cerevisiae Δtdh3 codifies for the synthesis of the GAPDH3 
 

(Winzeler et al., 1999) 
 

 
isoenzyme 

 

  
 

S. cerevisiae BY4742 
isogenic derivative strain from S. cerevisiae S288C laboratory strain (MATα his3Δ1 leu2Δ0 lys2Δ0 

 

(Winston et al., 1995) ura3Δ0) 
 

 
 

 
isogenic derivative strain from S. cerevisiae BY4742 

laboratory strain deleted in the YCA1 gene, 
 

S. cerevisiae yca1 which codifies the apoptosis-involved enzyme 
 

(Winzeler et al., 1999) 
 

 
metacaspase 

 

  
 

L. thermotolerans CBS 2803 isolated from grapes, Verona, Italy Wild yeast 
 

H. guilliermondii NCYC 2380 isolated from Douro wines, Portugal Wild yeast 
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Supplementary Table S2: Percentage of H. guilliermondii growth inhibition (relative to control) by the gel-filtration fractions 

(indicated in Fig. 4) obtained by fractionation of the surface proteins extracted from S. cerevisiae strains cultivated during 12 h (strain 

CCMI 885) and 48 h (all strains). 

Values correspond to means (±SD) of triplicate growth assays. 
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Supplementary Table S3: Primary structure (amino acid sequence) of the peptides present in 

spots 2 and 3 that were excised from the 2D-PAGE gel (Fig. 5) and identified by MALDI-

TOFMS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein score is -10*Log (P), where P is the probability that the observed match is a random event. 

Protein scores greater than 52 are statistically significant (p<0.05).  

Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits 
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Fig. S1: Growth curves (CFU/ml) of S. cerevisiae strains (A-CCMI 885 and S101; B-BY4741 

and TDH3; C-BY4742 and YCA1) during synthetic grape juice (pH 3.5) fermentations, 

performed at 25ºC and 150 rpm of agitation. Values correspond to means ±SD (errors bars) of 

two independent experiments. 
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ABSTRACT 

Saccharomyces cerevisiae secretes antimicrobial peptides (AMPs) derived from glyceraldehyde-

3-phosphate dehydrogenase (GAPDH), which induce death of several non-Saccharomyces 

yeasts. Previously, we demonstrated that the naturally-secreted GAPDH-derived AMPs (i.e., 

saccharomycin) caused a loss of culturability and decreased the intracellular pH (pHi) of 

Hanseniaspora guilliermondii cells. In this study, we show that chemically-synthesized 

analogues of saccharomycin also induce a pHi drop and loss of culturability in H. guilliermondii, 

although to a lesser extent than saccharomycin. To assess the underlying causes of the pHi drop, 

we evaluated the membrane permeability to H+ cations of H. guilliermondii cells, after being 

exposed to saccharomycin or its synthetic analogues. Results showed that the H+-efflux 

decreased by 75.6% and the H+-influx increased by 66.5% in cells exposed to saccharomycin at 

pH 3.5. Since H+-efflux via H+-ATPase is energy-dependent, reduced glucose consumption 

would decrease ATP production and consequently H+-ATPase activity. Glucose uptake rates in 

cells exposed to saccharomycin or to its synthetic analogues were, however, not affected, 

suggesting that the AMPs rather than affecting glucose transporters affect plasma membrane H+-

ATPase. Thus, our study revealed that both saccharomycin and its synthetic analogues induced 

cell death of H. guilliermondii by increasing the proton influx and inhibiting the proton efflux.  

 

Keywords: pH homeostasis, proton fluxes, H+-ATPase, glucose transporters; saccharomycin; 

Saccharomyces cerevisiae 
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1. INTRODUCTION 

Saccharomyces cerevisiae secretes antimicrobial peptides (AMPs) that induce death of 

several wine-related non-Saccharomyces yeasts, as a strategy to combat those microbial species 

during alcoholic fermentations (Albergaria et al., 2010; Albergaria and Arneborg, 2016; Branco 

et al., 2014, 2017a). The natural biocide (i.e. saccharomycin) is composed by two main anionic 

(isoelectric point of 4.37) peptides (AMP1 and AMP2/3), derived from the glycolytic enzyme 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Branco et al., 2014). 

AMPs in nature are important defensive weapons that exhibit rapid and efficient toxicity 

against a wide range of microorganisms (Ganz and Lehrer, 1999). In higher eukaryotes, AMPs 

are generally located at sites exposed to microbial invasion, such as the epithelia of mammals, 

amphibians and insects (Harris et al., 2009). Interestingly, we recently found that the GAPDH-

derived AMPs secreted by S. cerevisiae accumulate on its cells surface, inducing death of other 

competitor species by direct cell-to-cell contact (Branco et al. 2017b). This means that they share 

a common characteristic with AMPs from higher eukaryotes, i.e. they accumulate in cells tissues 

that are in direct contact with external environment. The majority of natural AMPs are cationic 

(Marshall et al., 2003). Nevertheless, a significant number of anionic AMPs have been found 

which are involved in the innate immune response of eukaryotic cells (Harris et al., 2009).  

Most AMPs exert their microbicide effect via disruption of the cell membrane (Brogden, 

2005; Harris et al., 2009; Yeaman and Yount, 2003). However, membrane damage is only one of 

many mechanisms that AMPs possess to induce death of microbial cells. Several studies 

(Brogden, 2005; Straus and Hancock, 2006) reported that certain AMPs interact with 

intracellular targets such as DNA, RNA and proteins, inhibiting their synthesis. In addition, 

AMPs action can be influenced by external factors such as osmolarity, temperature, external pH 

(e.g. kappacins are strongly membranolytic under acidic pH) (Dashper et al., 2005; Yeaman and 

Yount, 2003), or the presence of divalent metal cations. For instance, the effect of dermcidin-

derived peptide DCD-1L, an anionic AMP from human eccrine sweat, is influenced by Zn2+, 

which stabilizes the interaction of oligomeric complexes of those peptides with the lipid bilayers 

of the target cell membranes (Paulmann et al., 2012). 

Even though microbial efflux pumps are energy-dependent transporters that extrude toxic 

compounds, including antibiotics (Piddock, 2006), a recent study showed that lactoferrin and 

transferrin from human blood and mucosal surface inhibit the ATPase complex in Pseudomonas 
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aeruginosa and Lactococcus lactis. As a result, the H+-ATPase-mediated flux of protons is 

compromised leading to deficiencies in intracellular pH homeostasis and consequently resulting 

in cell death (Andrés and Fierro, 2010).  

Yeast plasma membrane H+-ATPase is a membrane enzyme that plays an essential role in 

the physiology of yeast; its physiological function is to pump protons out of the cell. This 

enzyme hydrolyses much of the ATP generated by cells that originates an electrochemical 

gradient of protons (Portillo and Serrano, 1989). The activity of plasma membrane H+-ATPase 

can be correlated with the proton efflux and is implicated in the intracellular pH homeostasis 

(Opekarova and Sigler, 1982). The intracellular pH (pHi) of yeasts can be determined by the 

fluorescence ratio imaging microscopy (FRIM) method, which is a technique that measures the 

pHi of cells by using fluorescent pH sensitive probes (Arneborg et al., 2000; Siegumfeldt et al., 

1999). This technique, based on the linear response between the ratiometric intensity of 

fluorescence emitted by the probe and the pHi of cells, gives information at the single-cell level, 

which allows determining the pHi of different subpopulations of cells simultaneously. 

In a previous work (Branco et al., 2015) we showed that the natural GAPDH-derived 

AMPs secreted by S. cerevisiae (i.e., saccharomycin) kill H. guilliermondii by affecting the pHi 

and membrane permeability of cells. The aim of the present study was to evaluate if chemically-

synthesized analogues of saccharomycin (synthetic AMPs) induce similar physiological changes 

in H. guilliermondii. Additionally, we investigated if the drop of pHi to a deadly value, 

previously observed in H. guilliermondii cells exposed to saccharomycin (Branco et al., 2015), is 

exclusively due to an increase of cell membrane permeability, what in an acidic medium as in 

grape musts (pH 3.5) would increase the H+-influx, or if saccharomycin also affects the efflux of 

protons via H+-ATPase. Since H+-ATPase is an energy-dependent transporter, the putative effect 

of ATP decrease due to glucose uptake disturbance or sugars depletion was also evaluated, in the 

absence/presence of the AMPs.  
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2. MATERIALS AND METHODS 

2.1 Strains and growth conditions 

In this work, we used the following yeast strains: Saccharomyces cerevisiae CCMI 885 

(Culture Collection of Industrial Microorganisms, LNEG, Portugal) and Hanseniaspora 

guilliermondii NCYC 2380 (National Collection of Yeast Cultures, Norwich, United Kingdom). 

Strains were maintained in YEPD-agar slants (20 g/l glucose, 20 g/l peptone, 10 g/l yeast extract 

and 20 g/l agar, pH 6) and stored at 4 º C. Inoculums of S. cerevisiae and H. guilliermondii were 

obtained by transferring one YEPD-agar slant of each strain (pre-grown at 30 °C for 48–72 h) 

into 100 ml of YEPD medium (10 g/l yeast extract, 20 g/l peptone and 20 g/l glucose) and 

incubating cultures at 30 °C with 150 rpm of agitation during 16 h.  

2.2 Purification of saccharomycin by gel filtration chromatography 

The naturally-secreted GAPDH-derived AMPs (i.e. saccharomycin) were purified from 

supernatants of a synthetic grape juice (SGJ) fermentation performed with S. cerevisiae CCMI 

885, at 25 ºC, for 7 days. The SGJ (pH 3.5) contained 220 g/l of sugars (110 g/l of glucose and 

110 g/l of fructose), and was prepared as described in Pérez-Nevado et al. (2006). First, the cell-

free fermentation supernatant (filtration by 0.22 m Millipore membranes) was ultrafiltrated 

through centrifugal filter units (Vivaspin 15R, Sartorius, Germany) equipped with 10 kDa 

membranes and concentrated (10-fold) with 2 kDa membranes. Then, 100 l of this (2-10) kDa 

peptidic fraction was fractionated by gel filtration chromatography, using a Superdex-Peptide 

column (10/300 GL, GE Healthcare, UK) coupled to an HPLC system (Merck Hitachi, 

Darmstadt, Germany) equipped with an UV detector (Merck Hitachi, Darmstadt, Germany), and 

eluted with ammonium acetate 0.1 M at a flow rate of 0.7 ml/min. The gel-filtration fraction-I 

indicated in Fig. S1 (see supplementary data) was collected, lyophilized and stored frozen at -20 

ºC. The presence of the GAPDH-derived AMPs that compose saccharomycin (i.e., AMP2/3 and 

AMP1) in the gel-filtration faction-I was confirmed by performing an enzyme-linked 

immunosorbent assay (ELISA), using a specific polyclonal antibody as described in Branco et al. 

(2017b). In the assays performed with saccharomycin (section 2.5), this gel-filtration fraction 

was used after being resuspended in YEPD with 30 g/l of ethanol (at pH 3.5 and at pH 6.0) to a 

final total protein concentration of 250 µg/ml, which corresponds to the minimal inhibitory 

concentration (MIC) determined against H. guilliermondii in Branco et al. (2017a). 
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2.3. Preparation of synthetic analogues of saccharomycin (AMP2/3 and AMP1) 

Synthetic analogues of the AMPs that compose saccharomycin, i.e. AMP2/3 

(VSWYDNEYGYSTR) and AMP1 (ISWYDNEYGYSAR), were chemically synthetized 

according to standard procedures and purchased from GenScript Inc. Company (GenScript HK 

Limited, Hong Kong). The synthetic peptides (AMP2/3 and AMP1) were obtained in lyophilized 

form (purity>98%) and stock solutions of each peptide were prepared by dissolving 2 mg of 

lyophilized powder in 1 ml of deionized water, and adjusting the pH to 8.0 with a sodium 

hydroxide solution until total solubilization was attained. In previous work (Branco et al. 2017a), 

we found that the activity of these synthetic peptides is maximal when the two peptides (i.e. 

AMP2/3 and AMP1) are mixed at a ratio of 4:1 (AMP2/3:AMP1). Therefore, mixtures of 

AMP2/3+AMP1 at a ratio of 4:1 in a final concentration of 1000 µg/ml, which corresponds to 

the MIC against H. guilliermondii determined by Branco et al. (2017a), were prepared. 

2.4 Effect of the synthetic AMPs on culturability, intracellular pH and membrane 

permeability of H. guilliermondii cells 

The effect of the synthetic AMPs on culturability, intracellular pH (pHi) and membrane 

permeability of H. guilliermondii cells was determined during growth assays performed in 25 ml 

of YEPD medium (with 30 g/l of ethanol, at pH 6.0), without (Control assay) and with the 

synthetic AMPs (Synthetic AMPs assay) using the mixtures described in section 2.3 (i.e. 

AMP2/3+AMP1 at a ratio of 4:1 at a final concentration of 1000 µg/ml). Both assays (Control 

and AMPs assays) were inoculated with 105 cells/ml of H. guilliermondii and incubated at 30 ºC, 

under strong agitation (150 rpm), for 24 h. Each culture was performed in duplicates and samples 

were taken at regular intervals (0, 8 h and 24 h) to determine culturability (CFU/ml), pHi and 

membrane permeability. 
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2.4.1 Culturability determination 

Culturability was determined by the classical plating method. Briefly, 100 µl of culture 

samples were spread onto YEPD-agar plates, after appropriate dilution, and plates were 

incubated at 25 °C. The number of colony forming units (CFU) was counted after 2-6 days. 

2.4.2 Determination of intracellular pH (pHi) and membrane permeability 

The pHi of H. guilliermondii cells was determined by the FRIM technique (Mortensen et 

al. 2006) using the pH sensitive probe 5(6)-carboxy fluorescein diacetate succinimidyl ester 

(CFDA-SE) and membrane permeability was assessed by staining cells with propidium iodide 

(PI), as described in Branco et al. (2015). Briefly, cells were double stained with the pH-sensitive 

probe CFDA-SE and with the membrane-impermeant dye PI and analysed in a fluorescent 

microscope (Zeiss Axioscop 50, Germany) equipped with a Zeiss Neofluar 40× objective 

(numerical aperture 0.75) and a HBO 50 W lamp to provide excitation of the probe used. To 

determine pHi, double-stained cells were excited for 3s at 488 and at 435 nm and emission 

(above 520 nm) was recorded with a cooled CCD-camera (CoolSnapfx; Photometrics, Birkerød, 

Denmark). To minimize photo bleaching of CFDA-SE stained cells, a 2.5% neutral-density filter 

was used in the excitation path. Membrane permeability was determined by exciting the double-

stained cells for 3s at 540 nm and recording emission (above 610 nm) in the same CCD-camera. 

Afterwards, images were analyzed using RS Image software (Roper Scientific, version 1.9.2) and 

data was treated with the Image J 1.37v software program (http://rsb.info.nih.gov/ij). Both pHi 

and membrane permeability were determined by analyzing 50 cells in each sample from two 

independent assays. 

The pHi of single cells was calculated as the ratio of the fluorescence intensity emitted by 

CFDA-SE stained-cells excited at 488 and at 435 nm (R488/435). To determine the relationship 

between the fluorescence emitted by cells stained with CFDA-SE and the respective pHi value a 

calibration curve was constructed (Fig. 1), as described in Branco et al. (2015). Briefly, ethanol-

dead cells of H. guilliermondii were resuspended in buffer solutions at different pH values 

(ranging from 5.5-8) and then stained with CFDA-SE. The fluorescence intensity emitted by 

stained-cells excited at 488 and at 435 nm (R488/435) was analysed and recorded using the same 

set-up above-described. The background fluorescence intensity was subtracted from the 

fluorescence intensity of stained cells. To determine the minimum PI fluorescence intensity 
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emitted by dead cells, a cell suspension was incubated with 70% (v/v) of ethanol for 30 min at 25 

°C and then cells were stained with 10 μl of PI solution (1 mg/ml). Afterwards cells were 

analysed by epifluorescence microscopy.  

 

 

 

 

 

 

 

 

 

Fig. 1: Calibration curve of the fluorescence ratio (R488/435 nm) emitted by H. guilliermondii 

cells stained with the pH-sensitive probe CFDA-SE at different pHi values. Values represented 

correspond to means of 50 single cell measurements ±SD (error bars). Calibration points were 

fitted by a third-degree polynomial curve. 

 

2.5. Effect of the synthetic analogues and of saccharomycin on the proton movements in H. 

guilliermondii cells 

Movements of protons (i.e., H+-influx and H+-efflux) in H. guilliermondii were evaluated 

after cells had been exposed to both saccharomycin and the synthetic analogues.  

First, H. guilliermondii cells were cultivated in 250 ml of YEPD medium (both at pH 3.5 

and pH 6.0), at 30 ºC under strong agitation (150 rpm), until an optical density (OD 640) of 

approximately 1.0 (ca 16 h) was attained. Then, cells from each culture (i.e. from YEPD at pH 

3.5 and YEPD at pH 6.0) were harvested (centrifuged at 12,000×g for 3 min at 4°C) and 

resuspended in 3 ml of YEPD with 30 g/l of ethanol at pH 3.5 and at pH 6.0, respectively, with 

250 µg/ml of saccharomycin (Saccharomycin-assay). H. guilliermondii cells cultivated in YEPD 

at pH 6.0 (at the same conditions) were harvested and resuspended in 3 ml of YEPD with 30 g/l 
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of ethanol at pH 6.0 with the synthetic analogues AMP2/3+AMP1 (mixed at a 4:1 ratio) in a 

final concentration of 1000 µg/ml (Synthetic AMPs assay). Control assays were performed with 

H. guilliermondii cells resuspended in 3 ml of YEPD (with 30 g/l ethanol) at pH 3.5 and at pH 

6.0, without neither saccharomycin nor the synthetic analogues. Cells in both assays (i.e. in 

accharomycin- and in Synthetic AMPs assays) were incubated at 30 ºC with shaking (150 rpm) 

for 4 h. The pH of cultures in all assays was measured immediately upon inoculation and after 4 

h of incubation, using a standard pH meter (PHM62; Radiometer Copenhagen), showing that the 

pH of cultures (external pH) didn’t change during the 4 h of incubation. All assays were 

performed in duplicates. 

H+ movements in H. guilliermondii cells were determined as described by Viana et al. 

(2012). Briefly, after incubation at the above-described conditions, cells were harvested (12,000 

×g, 3 min, 4°C) and washed twice with ice-cold water. Suspensions were kept on ice for at least 

1 h before determination of H+ movements. H+ movements were measured by recording the pH 

of unbuffered cells suspension in a 2 ml reading-cell with magnetic stirring, using a standard pH 

meter (PHM62; Radiometer, Copenhagen, Denmark) connected to a potentiometer recorder 

(BBC-Goerz Metrawatt SE460) (Madeira et al., 2010).  

For H+-efflux measurements, 100 µl of the cell suspension was mixed with 800 µl of 

water and then pH was adjusted to 5. Afterwards, 20% glucose solution (100 µl) was added to 

initiate the H+ extrusion, observed as the acidification of the unbuffered environment. The 

maximum rate of increase in the extracellular H+ concentration, calibrated with 10 mM NaOH, 

was taken as a measure of H+ extrusion activity (Madeira et al., 2010). For passive H+-influx 

determination, 100 µl of the cell suspension was mixed with 900 µl of water. H+ net influx 

corresponds to the H+ entering the cells by passive diffusion and the H+ being pumped out by the 

ATPase. To minimize ATPase activity, H+-influx assays were performed in the presence of 2-

deoxy-D-glucose (1 mM) (to decrease the level of ATP) and with antimycin (2 mg/ml) to inhibit 

the respiratory chain (Madeira et al., 2010). The rate of H+-influx was calculated as the steady 

rate (for at least 10 min) of decrease in the concentration of extracellular H+, recorded 

immediately after adjusting pH to 4.0. Calibrations were performed with 10 mM HCl. Dry 

weight biomass present in 100 µl of the cell suspensions used in each assay was determined after 

drying at 90 ºC, until constant weight, in pre-weighed aluminum foil cups. H+-fluxes were 

calculated per g of dry weight biomass. All experiments were performed in triplicate. The 
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minimum significant difference was calculated to permit comparison of means as described by 

Fry (1993) and establish the basis for the rejection of the null hypothesis that means the 

differences are statistically significant (P≤0.05). 

 

2.6. Sugar transport assays  

H. guilliermondii cell cultures were grown in YEPD medium in the presence and in the 

absence of saccharomycin and the synthetic AMPs as described in section 2.5, and each assay 

was performed in triplicate. Initial D-[14C] glucose uptake rates were measured as described 

previously by Leandro et al. (2011) with some minor modifications. Briefly, 250 ml of cell 

cultures were harvested at OD 640~1 and then cells were washed twice with ice-cold water and 

resuspended in 5 ml of water. Afterwards, 20 µl of this cell suspension was mixed with 20 µl of 

100 mM Tris/ citrate buffer at pH 5 in a 15 ml conical glass tube and incubated at 25 ºC for 5 

min. To initiate the transport assay 10 ml of D-[14C] glucose solution was added, prepared by 

mixing labelled and non-labelled sugar in a final glucose concentration of 1 mM (with specific 

activity 10107 c.p.m. nmol-1) and 25 mM (with specific activity 623 c.p.m. nmol-1). To stop the 

reaction, 5 ml of ice-cold demineralized water was added after 5 s, and the suspension was 

filtered immediately through a moist Whatman GF/C filter. 5 ml ice-cold demineralized water 

was added to wash the filter and then transferred to a scintillation vial with 5 ml scintillation 

fluid (OptiPhase ‘HiSafe’ 2, Perkin Elmer). Radioactivity was measured in a Tri-Carb 1600 CA 

liquid scintillation analyser (Packard Instruments). Controls for each sugar concentration were 

prepared by adding 5 ml ice-cold demineralized water to the cell suspension and Tris/citrate 

buffer, and after that D-[14C] glucose (reaction time 0 s) was added. Inhibition assays were 

performed with 20 ml of a glucose solution, prepared in 100 mM Tris/ citrate buffer at pH 5. 

This solution was added to 10 ml of the labelled glucose in the glass tube and the reaction was 

started by adding 20 µl of the cell suspension. Dry weight biomass of the cell suspensions used 

was determined as described in section 2.5. 
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3. RESULTS AND DISCUSSION 

3.1. Effect of synthetic analogues of the GAPDH-derived AMPs on culturability, 

intracellular pH and membrane permeability of H. guilliermondii cells 

We previously showed that saccharomycin (i.e., the naturally-secreted GAPDH-derived 

AMPs) induce a loss of culturability, membrane permeabilization and loss of pH homeostasis on 

H. guilliermondii cells (Branco et al. 2015). Besides, in Branco et al. (2017a) we showed that 

synthetic analogues of saccharomycin (i.e. AMP2/3 and AMP1) also induce loss of culturability 

of H. guilliermondii, although the MIC is significantly higher (1000 µg/ml) than that of the 

natural biocide (250 µg/ml). 

In the present work, H. guilliermondii was incubated in YEPD without (Control assay) 

and with the synthetic AMPs (Synthetic AMPs assays) and the culturability, the membrane 

permeability and the intracellular pH (pHi) of cells were assessed during the growth assays. 

Synthetic AMPs assays were performed in YEPD at pH 6.0, and not at the enological pH 

conditions (pH 3.5) previously used for Saccharomycin assays (Branco et al. 2017a), since these 

AMPs are anionic in nature (pI=4.35), and thus do not dissolve at that acidic pH.  

The pHi of H. guilliermondii (both the average pHi and the individual cell pHi) was 

evaluated by the FRIM method during the control and Synthetic AMPs assays, and the respective 

profiles are represented in Fig. 2. During the control assay, the average pHi increased from 6.8 to 

7.2 in the first 8 h, maintaining this value throughout the next 16 h (Fig. 2A). Conversely, the 

average pHi of H. guilliermondii cells during the Synthetic AMPs assay dropped from an initial 

value of 6.5 to a final value of 6.0 within the first 8 h, keeping that value for 24 h (Fig. 2B). 

These results demonstrate that the pH homeostasis of H. guilliermondii is not affected negatively 

by growth itself, since the average pHi slightly increased during the Control assay (Fig. 2A). 

Besides, these results also show that the synthetic AMPs, likewise as saccharomycin (Branco et 

al., 2015), affect negatively the pH homeostasis of H. guilliermondii (Fig. 2B). 
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Fig. 2: Average and individual pHi values of H. guilliermondii cells (50 cells analysed per 

sample) during growth assays performed in YEPD at pH 6.0, without (Control) (A) and with the 

synthetic AMPs (Synthetic AMPs) (B).  

 

Since the FRIM method allows to assess the pHi of individual cells, we grouped H. 

guilliermondii cells into three subpopulations according to their pHi, i.e.: severely injured cells 

for pHi=5.5-6; sub-lethally injured cells for pHi= 6-7; healthy cells for pHi=7-8. Results showed 

that when H. guilliermondii was cultivated in the absence of the synthetic AMPs (Fig. 3A), 

culturability increased from 105 to 108 within 24 h and the percentage of healthy cells (i.e., cells 

with pHi values ranging from 7-8) was high (ca 81%) throughout the assay. Conversely, when H. 

guilliermondii cells were incubated in the presence of the synthetic AMPs (Fig. 3B), culturability 

declined from about 105 to 103 CFU/ml and the percentage of severely-injured cells (pH=5.5-6) 

increased from 9.1% to 48.7%, in the first 8 h. However, after 24 h, the percentage of H. 

guilliermondii cells exhibiting pHi values ranging from 5.5-6 decreased to 37.7% and 
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culturability increased to 6×104 CFU/ml, indicating that cells were able to recover even in the 

presence of the synthetic AMPs (Fig. 3B). Branco et al. (2015) also reported that H. 

guilliermondii cells exposed to saccharomycin were able to recover their culturability, but only 

after they had been transferred into fresh YEPD medium and incubated for 24 h. In the present 

work, we found that H. guilliermondii cells exposed to the synthetic AMPs initially decreased 

culturability (in the first 8 h) but, after 24 h, recovered their culturability and pHi values 

increased (Fig. 3B). These results confirm that the synthetic AMPs do not exert an antimicrobial 

effect as strong as saccharomycin, as previously reported by Branco et al. (2017a). In short, our 

results show that the synthetic AMPs, at the conditions used in the present study (i.e., in YEPD 

at pH 6.0), induced a transient disturbance in the pH homeostasis of H. guilliermondii, while 

saccharomycin (in YEPD at pH 3.5) induced a permanent loss of pH homeostasis (Branco et al., 

2015). 

Membrane permeability of H. guilliermondii cells exposed to saccharomycin was 

previously evaluated by Branco et al. (2015), and the percentage of cells with compromised 

membranes (PI-stained cells) was found to increase from 0% to 77.7% within 24 h. In the present 

work, we show that the chemically synthesized analogues of saccharomycin also affect the 

membrane permeability of H. guilliermondii cells. Indeed, the percentage of H. guilliermondii 

cells exhibiting compromised membranes (PI-stained cells) increased from 6% to 35% after 8 h 

of exposure to the synthetic AMPs (Table 1). However, after 24 h, the percentage of cells 

exhibiting compromised membranes (PI-stained cells) was virtually null (Table 1). These results 

probably mean that the sub-lethally injured cells found after 8 h of incubation were able to adapt 

to the synthetic AMPs and recovered its growth (Fig. 3B), thus increasing the percentage of 

viable cells within the total cell population. 
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Fig. 3: Culturability of H. guilliermondii and percentage of cells within the subpopulations of 

severely injured (pHi=5.5-6), sub-lethally injured (pHi=6-7) and healthy cells (pHi=7-8), during 

growth assays performed in YEPD at pH 6.0, without (Control assay) (A) and with the synthetic 

AMPs (Synthetic AMPs assay) (B). Each variable represented corresponds to means ± SD (error 

bars) of duplicate experiments. 
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Table 1: Percentage of H. guilliermondii cells with compromised membrane integrity (PI-stained 

cells) during the Control and Synthetic AMPs assay. Each variable represented corresponds to 

means ± SD (error bars) of duplicate experiments.  

 

 

 

 

 

 

 

3.2. Effect of the synthetic analogues and saccharomycin on proton fluxes in H. 

guilliermondii cells 

In harsh environments such as wine fermentations, with low external pH values (3.0-3.5), 

it is expected that passive H+-influx increases due to the higher pH gradient established between 

intracellular and extracellular environment. In order to prevent acidification of the cytosol, influx 

of protons has to be balanced by proton extrusion via the plasma membrane ATPase. Cell 

membrane permeability to protons determines the rate of protons leakage inward cell, by passive 

diffusion through the membrane bilayer (Leão and van Uden, 1984).  

In order to assess the causes underlying the drop of pHi in H. guilliermondii cells 

exposed to the synthetic AMPs and to saccharomycin, we determined proton fluxes by 

measuring membrane permeability of cells to H+ cations (H+-influx) and their ability to extrude 

H+ protons via plasma membrane ATPase (H+-efflux). 

 

3.2.1. Proton influx 

H+-influx rates were measured in H. guilliermondii cells incubated in YEPD with the 

synthetic AMPs (1000 µg/ml) at pH 6.0, and also in YEPD with saccharomycin (250 µg/ml) at 

pH 6.0 and at pH 3.5. The reasons underlying the higher MIC of the synthetic AMPs (1000 

µg/ml) by comparison with the MIC of saccharomycin (250 µg/ml) probably results from the 

 1 

Time (h) 

% PI-stained cells  

Control assay Synthetic AMPs assay 

0 0.0±0.0 6.0±0.0 

8 0.0±0.0 35.9±2.6 

24 0.0±0.0 0.0±0.0 
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structure adopted by the GAPDH-derived peptides in the natural biocide which may involve the 

formation of aggregates of several molecules that probably enhances its activity, as discussed in 

Branco et al. (2017a). Control assays were performed with H. guilliermondii incubated in YEPD 

without the AMPs, either at pH 3.5 or at pH 6.0. Results (Fig. 4A) showed that the external pH 

per si has no effect on the permeability of cells to H+ protons, since no statistical differences in 

H+ influx rates were found between assays (i.e. control at pH 3.5 and control at pH 6.0). 

Conversely, H+-influx increased significantly (66.5 %), by comparison with the Control assay, 

when H. guilliermondii cells were incubated with saccharomycin at pH 3.5 (Fig. 4A). Also, in 

cells incubated with both saccharomycin and the synthetic AMPs at pH 6.0, H+-influx rates 

increased relatively to control (by 57.7% and 69.2%, respectively) (Fig. 4A). These results 

demonstrate that both saccharomycin and the synthetic AMPs significantly increase the 

permeability of H. guilliermondii cells to H+ protons.  

 

3.2.2. Proton efflux and glucose uptake 

3.2.2.1 Proton efflux 

Proton homeostasis is a key mechanism for good yeast performance. Environmental 

stress factors lead to the dissipation of the H+-gradient across the plasma membrane and to 

intracellular acidification which also induces the stimulation of plasma membrane H+-ATPase 

activity (Monteiro et al., 1994; Rosa and Sá-Correia, 1992). Plasma membrane H+-ATPase 

pumps out H+ to maintain pH homeostasis and to generate an electrochemical gradient essential 

to drive the transport of metabolites into the cell (Opekarova and Sigler, 1982). Thus, proton 

efflux rates can be correlated with the activity of plasma membrane H+-ATPase (Opekarova and 

Sigler, 1982), which is an important factor in maintaining viability during a stress challenge.  

In the present work, we found that both saccharomycin and the synthetic AMPs disturb 

the pH homeostasis of H. guilliermondii cells, what can result from destabilization of plasma 

membrane H+-ATPase activity, leading to decreased H+-efflux rates. To check this hypothesis, 

we measured H+-efflux rates in H. guilliermondii cells exposed to both the synthetic AMPs (at 

pH 6.0) and to saccharomycin (at pH 3.5 and 6.0). In the presence of saccharomycin at pH 3.5, 

the H+-efflux in H. guilliermondii cells significantly decreased relatively to Control assay (from 

0.35 to 0.10 mmol (g dry biomass)-1 h-1) (Fig. 4B). This reduction in H+-efflux (by 75.6%) can be 
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due to a reduced plasma membrane H+-ATPase activity. However, in assays performed at pH 

6.0, although a reduction of H+-efflux rates was also observed in cells exposed to both 

saccharomycin and synthetic AMPs, values were not statistically different from those in control 

assays (Fig. 4B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Rates of net H+-influx (A) and H+-efflux (B) in H. guilliermondii cells incubated (for 4 h) 

in YEPD without (Control assay) and with saccharomycin (Saccharomycin assay) at pH 6.0 and 

3.5, and with the synthetic AMPs (Synthetic AMPs assay) at pH 6.0. Values represented 

correspond to means ± SD (error bars) of triplicate experiments. *, statistically different values 

(P<0.05); ns, non-statistically different values (P>0.05). 
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3.2.2.2 Glucose uptake 

An important factor for cell survival is the existence of a viable energy source, with 

glucose being preferred over other sugars for most of the yeasts and having a profound effect on 

many cellular functions. As a response to stressful conditions, cells induce the expression of a 

plethora of genes that affect glucose metabolism, including glucose transporters (Gasch, 2003).  

In H. guilliermondii glucose is transported by facilitated diffusion through Hxt-like 

transporters and the absence of a glucose-H+ symport was firstly reported by Loureiro-Dias 

(1988). In order to confirm this result, we grew H. guilliermondii cells up to early stationary 

phase, starved cells for glucose and registered the pH variation upon a pulse of glucose. As 

expected, no alkalization was observed in all the assays, although a clear acidification was 

observed, showing that glucose entered the cells and was metabolized.  

Plasma-membrane H+-ATPase hydrolyses ATP to transport protons from the cytosol to 

the extracellular medium. H+-ATPase activity is regulated in response to growth conditions 

(Eraso and Gancedo, 1987; Rosa and Sá-correia, 1991) in which glucose has an important role, 

regulating the expression and catalytic activity of this pump. Glucose metabolism increases 

ATPase gene (PMA1) expression (Portillo et al., 1989). In addition, glucose induces a 

modification of the enzyme’s kinetic properties (Serrano, 1983), resulting in a global stimulation 

of ATPase activity.  

Our results (Fig. 4B) seem to indicate that plasma membrane H+-ATPase activity is 

significantly impaired by the presence of the GAPDH-derived AMPs. Thus, we measured the 

glucose uptake rate in the presence of both saccharomycin and the synthetic AMPs to discard a 

putative effect of AMPs on glucose transporters that could lead to a reduction of ATP, and 

consequently to a decrease in the net H+-efflux rate. With that purpose, cells were incubated in 

YEPD at pH 6.0 and 3.5, in the absence/presence of both the natural and the synthetic AMPs, 

and D-[14C] glucose uptake rates were determined with two concentrations of radio-labeled 

glucose (25 mM and 1 mM). To our surprise, glucose transport rate across the plasma membrane 

of H. guilliermondii cells exposed to both saccharomycin and the synthetic AMPs was stimulated 

in the presence of the AMPs (Fig. 5). Thus, our results showed that glucose transport is not 

negatively affected by AMPs, discarding the hypothesis of lower ATPase activity due to lack of 

glucose. 
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Fig. 5: Glucose uptake rates in H. guilliermondii cells incubated (for 4 h) in YEPD without 

(Control assay) and with saccharomycin (Saccharomycin assay) at pH 6.0 and 3.5, and with the 

synthetic AMPs (Synthetic AMPs assay) at pH 6.0. Values represented correspond to means ± 

SD (error bars) of triplicate experiments. *, statistically different values (P<0.05) 

 

In conclusion, our data show that both saccharomycin and its synthetic analogues induce 

a perturbation in the plasma membrane that increases the proton influx and inhibits the proton 

efflux, leading to a pHi drop and loss of culturability in H. guilliermondii. Thus, it may be 

speculated that saccharomycin and/or its synthetic analogues can be used  as biopreservatives in 

wine, thereby allowing a reduction of the SO2 levels usually needed to stabilize wines, in 

accordance with the most recent recommendations (Ribéreau-Gayon et al., 2006). 
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Fig. S1: Gel-filtration chromatographic profile of the concentrated (10-fold) peptidic fraction (2-

10 kDa) obtained from the supernatant of synthetic grape juice fermentation carried out by S. 

cerevisiae CCMI 885. Fraction-I indicated in figure contains the GAPDH-derived AMPs that 

compose saccharomycin. 
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ABSTRACT 

Wine spoilage is mostly caused by Dekkera bruxellensis and is generally controlled by the 

addition of sulphur dioxide (SO2). Reduction of SO2 levels in wines is a goal chased by 

producers due to its negative impact on wine aroma and to consumer’s health concerns. We 

recently found that Saccharomyces cerevisiae produces antimicrobial peptides (AMPs) derived 

from glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which have inhibitory effect on D. 

bruxellensis. Therefore, S. cerevisiae strains were constructed to over-express the corresponding 

sequences of the genes that encode these AMPs. Relative expression levels of these AMPs in 

transformed strains of S. cerevisiae showed that they could express the desired sequences during 

wine fermentation. Furthermore, modified strains secreted higher amounts of the AMPs and 

showed a higher antagonistic effect against D. bruxellensis than the respective wild type strain. 

The use of these AMPs as natural biopreservatives in winemaking, to complement the protective 

effect of SO2, could be a very interesting solution to reduce the required amount of SO2. 

Therefore, we evaluated the conjugated effect of SO2 with the AMPs on the survival rate of D. 

bruxellensis in simulated wines with different levels of ethanol (10%, 12%, 13% and 14% v/v) 

that were artificially contaminated with 5×103 CFU/ml of D. bruxellensis. Results showed that 

with 1 mg/ml of these AMPs, the concentration of SO2 required to achieve total death of D. 

bruxellensis within 48 h was only 14.25 mg/l of total SO2, a value much lower than that usually 

used in winemaking (100-150 mg/l of SO2). 

 

Keywords: Antimicrobial peptides, Spoilage wine yeasts, Wine preservatives, Genetically-

modified wine yeasts  



Chapter VII 

202 

1. INTRODUCTION 

The indigenous microbiota of grape musts includes an immense variety of yeast species 

belonging to different genera (Fleet, 1993) that are able to grow and ferment sugars. However, 

nowadays, the majority of wine fermentations are initiated by yeast starter cultures, most 

commonly composed by Saccharomyces cerevisiae strains (Barnett and Lichtenthaler, 2001; 

Steensels et al., 2014) due to their ability to produce high levels of ethanol and to survive in the 

harsh environmental conditions of wine (Pretorius, 2000; Bauer and Pretorius, 2000, Sabate et 

al., 2002). Besides, S. cerevisiae’s dominance during alcoholic fermentation is also due to 

microbial interactions, mediated both by a cell-to-cell contact mechanism (Nissen et al., 2003; 

Nissen and Arneborg 2003; Renault et al., 2013) and the secretion of antimicrobial peptides 

(AMPs) that induce death of several wine-related yeasts and bacteria (Albergaria et al., 2010; 

Branco et al., 2014; Albergaria and Arnerborg, 2016). Recently, we found that these two 

phenomena, i.e. cell-to-cell contact and secretion of AMPs, play a combined role in the early 

death of the wine yeast L. thermotolerans during mixed-culture fermentation with S. cerevisiae 

(Kemsawasd et al., 2015).  

Microbial spoilage is a serious problem for the wine industry since it renders the product 

unacceptable and can lead to large economic losses. The main wine spoilage microorganisms are 

lactic acid and acetic acid bacteria, as well as some yeasts such as those belonging to the genera 

Dekkera/Brettanomyces, Candida, Hanseniaspora, Pichia, Metschnikowia, Saccharomycodes, 

Schizosaccharomyces and Zygosaccharomyces (Fleet, 2003; Enrique et al., 2007). Among wine 

spoilage yeasts, Dekkera bruxellensis is considered a major cause of wine spoilage worldwide 

(Fugelsang, 1997; Loureiro and Malfeito-Ferreira, 2003). This species confers phenolic off-

odours to red wine described as ‘‘barnyard-like’’ or ‘‘horsey” (Fugelsang, 1997) and produces 

biogenic amines (Caruso et al., 2002). 

In the last years, several research groups focused their attention on D. bruxellensis with 

the aim of understanding their spoilage ability and to avoid their proliferation in wine (Suárez et 

al., 2007; Chandra et al., 2016). Control of D. bruxellensis contamination in the wine industry is 

typically carried on by filtration of wine and barrel sanitization. However, these control measures 

proved to have limited efficiency and are not able to prevent subsequent recontamination (Millet 

and Lonvaud-Funel, 2000; Peri et al., 1988). The use of chemical preservatives such as benzoic 
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acid, sorbic acid and dimethyl dicarbonate (DMDC) is able to inhibit D. bruxellensis in wine but 

only in concentrations above their legal limits (Benito et al., 2009). 

In wineries, the most common preservative practice is the addition of sulphur dioxide 

(Ribéreau-Gayon et al., 2006), which is highly toxic to most of the non-Saccharomyces yeasts 

but not to most of the Saccharomyces strains (Fleet 1992; Romano and Suzzi, 1993). Numerous 

finished and bottled wines that aged for long periods in oak barrels with low sulphur dioxide 

concentrations and less filtration prior to bottling are also known to host Brettanomyces/Dekkera 

populations (Herezstyn, 1986; Arvik et al., 2002). In addition, sulphur dioxide has a negative 

impact on wine aroma and can cause health problems; consequently, excessive doses must be 

avoided. Thus, the possibility of further reducing the authorized concentrations in different kinds 

of wines is sought after (Ribéreau-Gayon et al., 2006).  

Oenological research has always tried to pursuit other substances able to enhance sulphur 

dioxide antimicrobial properties or to perform a similar role without its disadvantages (Ribéreau-

Gayon et al., 2006). Our recent finding that S. cerevisiae strains produce AMPs derived from the 

glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that induce death of 

several wine yeasts (Branco et al., 2014, 2017), opens interesting prospects regarding their use as 

alternative biopreservatives in winemaking. Nevertheless, the concentration of AMPs naturally-

secreted by S. cerevisiae not only is strain-dependent (Branco et al., 2017) and also might not 

assure complete death of undesirable wine contaminants, namely of D. bruxellensis strains. 

Thus, the main goal of this work was to construct and characterize a genetically modified 

S. cerevisiae strain able to produce higher amounts of the GAPDH-derived AMPs. We also 

investigated if the addition of these AMPs to finished wines allows reducing sulphur dioxide 

levels, usually used in winemaking for preservation purposes. 

 

2. MATERIALS AND METHODS 

2.1 Strain, plasmid and growth conditions 

The following yeasts were used in the present work: Saccharomyces cerevisiae CCMI 

885 (Culture Collection of Industrial Microorganisms of ex-INETI, Lisbon, Portugal) and S. 

cerevisiae PYCC 5484 (CEN.PK113-5D, MATa ura3-52 HIS3, LEU2 TRP1 MAL2-8c SUC2) 

(Portuguese Yeast Culture Collection, FCT/UNL, Caparica, Portugal); Pichia pastoris GS115 
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(Invitrogen, California, EUA); Dekkera bruxellensis ISA 2211 (Instituto Superior de Agronomia, 

Lisbon, Portugal). All yeasts except D. bruxellensis were maintained in YEPD medium (5 g/l 

yeast extract, 10 g/l peptone, 20 g/l glucose and 20 g/l agar) and stored at 4 ºC. D. bruxellensis 

was maintained in YEPD medium with 5 g/l of calcium carbonate (Merck, Darmstadt, Germany) 

and stored at 4º C.  

Inoculums were prepared by transferring biomass from a YEPD-agar slant (pre-grown at 

30 ºC for 48 h) into 250 ml-flasks with 100 ml of YEPD and incubating flasks at 30 ºC and 150 

rpm, for 16 h. All media were autoclaved at 120ºC for 20 min.  

The centromeric plasmid p416 TEF was used for cloning, conferring TEF promoter and 

CYC1 terminator. For propagation of these plasmids, Escherichia coli DH5α strain was used as 

host (Hanahan, 1983). E. coli transformants were grown in Luria-Bertani (LB) medium 

supplemented with ampicillin (100 µg/ml), at 37 ºC. S. cerevisiae PYCC 5484 was used as host 

strain for heterologous expression of partial sequence of the TDH1 gene (located between 925 

and 963bp of TDH1 codifying region) and the TDH2 gene (located between 925 and 963bp of 

TDH2 codifying region), previously inserted in p416 TEF. These modified strains are, from now 

on, called S. cerevisiae pTDH1 and S. cerevisiae pTDH2, respectively. S. cerevisiae PYCC 5484 

transformed with empty p416 TEF, from now on called S. cerevisiae K1, was used as negative 

control. Transformed yeast strains were grown and maintained in YNB medium without amino 

acids (DIFCO) with 2% (w/v) glucose. 

 

2.2 Production and purification of the naturally-secreted GAPDH-derived AMPs 

The GAPDH-derived AMPs were partially purified from the cell-free supernatant (7 day-

old) of a synthetic grape juice (SGJ) performed by S. cerevisiae CCMI 885. The SGJ, containing 

110 g/l of glucose plus 110 g/l of fructose, and pH of 3.5, was prepared as described in Pérez-

Nevado et al. (2006). The fermentation supernatant was ultrafiltrated by centrifugal filter units 

(Vivaspin 15R, Sartorius, Germany) equipped with 10 kDa cut-off membranes and permeate 

(<10 kDa) was concentrated (10-fold) using 2 kDa centrifugal filter units. The peptidic fraction 

(2-10 kDa) was then fractionated by gel filtration chromatography using a Superdex-Peptide 

column (10/300 GL, GE Healthcare, London, UK) coupled to an HPLC system (Merck Hitachi, 

Darmstadt, Germany) equipped with an UV detector (Merck Hitachi, Darmstadt, Germany). The 

peptidic supernatant fraction (2-10 kDa) was eluted with 0.1 M ammonium acetate at a flow rate 
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of 0.7 ml/min. The bioactive fraction containing the GAPDH-derived peptides (retention time 

between 25-27 min) was collected and lyophilized, as described in Branco et al. (2014). 

 

2.3 Sensitivity of Pichia pastoris, S. cerevisiae CCMI 885 and S. cerevisiae PYCC 5484 to the 

GAPDH-derived AMPs  

To determine the sensitivity of Pichia pastoris, S. cerevisiae CCMI 885 and S. cerevisiae 

PYCC 5484 to the GAPDH-derived AMPs, yeast strains were grown in the presence of different 

concentrations of the bioactive fraction (purified as described in section 2.2) that contains the 

AMPs. Growth inhibitory assays were performed in 96 well-microplates in triplicate independent 

assays, with each well containing 100 µl of YEPD medium without the AMPs (negative control) 

and with the AMPs at final protein concentrations of: 0.125, 0.25, 0.5 and 1 mg/ml. Media were 

inoculated with 105 cells/ml of each of the above-mentioned yeast strains and the microplate was 

incubated in a Thermo-Shaker (Infors HT, Bottmingen, Switzerland) at 30 °C under strong 

shaking (700 rpm). Cell growth was followed during 48 h by absorbance measurements (at 590 

nm) in a Microplate Reader (Dinex Technologies Inc., Chantilly, USA). 

2.4 Plasmid DNA manipulations and cloning of the TDH1 and TDH2 nucleotide sequences 

that codify to the GAPDH-derived AMPs in S. cerevisiae strain K1 

Plasmid DNA from E. coli DH5α was isolated using GenEluteTM Plasmid Miniprep Kit 

(Sigma-Aldrich). The nucleotide sequence of TDH1 (925-963 pb) encoding to AMP1 

(ISWYDNEYGYSAR) and the nucleotide sequence of TDH2 (925-963 pb) encoding to AMP2/3 

(VSWYDNEYGYSTR) were used to design primers in order to obtain PCR products containing 

AMP1 and AMP2/3 sequences, resulting from primer dimerization. Forward and reverse primers 

were design with the restriction sites for XbaI and SalI, respectively (Table 1). PCR 

amplification of the primer-dimer corresponding to the DNA sequence of AMP1 and AMP2/3 

was carried out in an Eppendorff thermocycler with High-fidelity DNA polymerase Phusion F-

530 (Finnzymes, Thermo Fisher Scientific, Massachusetts, EUA). The amplified products were 

digested with XbaI and SalI, purified using the purification kit ‘‘GFX PCR DNA and Gel Band 

Purification’’ (GE Healthcare, Little Chalfont, UK) and cloned into the corresponding restriction 

sites of p416 TEF, digested by the same restriction enzymes. 
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Cloning was performed according to standard protocols described in Sambrook et al. 

(1989). The plasmids were cloned into E. coli DH5α strain, propagated, subjected to extraction 

and restriction analysis. E. coli plasmid isolation was performed by alkaline extraction as 

described in Birnboim and Doly (1979) and modified as described in Sambrook et al. (1989). 

The correct insertion of TDH1 (925-963 pb) and TDH2 (925-963 pb) in the plasmid was checked 

by restriction digestion. Transformation of S. cerevisiae PYCC 5484 strain with the plasmids 

containing the partial sequence of TDH1 (925-963 pb) (S. cerevisiae pTDH1) and TDH2 (925-

963 pb) (S. cerevisiae pTDH2) was performed by the lithium acetate method described in Geitz 

and Schiestl (1995). Transformants were selected on YNB medium without uracil. Plasmid 

isolation from yeasts was performed as described in Tillotson et al. (2013) with some 

modifications. Briefly, one S. cerevisiae colony freshly grown on an YNB plate was transferred 

into 30 µl of SDS 1% (w/v) in deionized water. Afterward, cells were vortexed for 1min and then 

frozen at -80ºC for 2 min and subsequently heated at 95ºC for 2 min; the freeze/thaw was 

repeated once more to ensure cell lyses. Cells were centrifuged at maximal speed for 1 min and 

the supernatant was used as a template for PCR reaction. PCR products were loaded in an 

agarose gel for electrophoresis, band was extracted from the gel and then purified using the 

purification kit ‘‘GFX PCR DNA and Gel Band Purification’’ (GE Healthcare, Little Chalfont, 

UK). The purified PCR products were sequenced by external services (STAB VIDA, Monte da 

Caparica, Portugal) in order to confirm the insertion of the sequences of interest. 

2.5 RNA extraction and cDNA preparation  

The modified S. cerevisiae strains, pTDH1 and pTDH2 were pre-grown for 24 h in YNB 

without uracil (approximately 107 cells/ ml). RNA extraction from cells was performed with 

Trizol Reagent (Invitrogen, California, USA). Small RNAs from the above-mentioned S. 

cerevisiae strains were separated and purified from total RNAs with mirVana™ miRNA 

Isolation Kit (Applied Biosystems, California, USA) according to the manufacturer’s protocol. 

All RNA samples were treated with RNase free DNase I (Qiagen, Hilden, Germany) and 

quantified using absorption of UV light at 260 nm. Small cDNAs from modified S. cerevisiae 

strains were synthesized from small mRNAs using TaqMan® MicroRNA Reverse Transcription 

Kit (Applied Biosystems, California, USA). RT primers designed by the manufacturer and 

specific for each small mRNA sequence were used for small cDNAs synthesis (Custom 
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TaqMan® Small RNA Assays, Applied Biosystems, California, USA). Total cDNAs were 

synthesized from total mRNA of S. cerevisiae pTDH1, S. cerevisiae pTDH2 using TaqMan® 

MicroRNA Reverse Transcription Kit and oligod(T) primer (STAB VIDA, Monte da Caparica, 

Portugal). All cDNAs synthesis were performed following manufacturer’s instructions (Applied 

Biosystems, California, USA), and were used for Real Time PCR reaction using the primers 

described in Table 1.  

 

Table 1: Primers used in this study. XbaI and SalI restriction sites are underlined.  

 

 

 

 

 

 

 

 

 

 

  

 PCR primer partial TDH1 

Forward 5´-TGCTCTAGAGCAATGATTTCCTGGTACGATAACGAATACGGTTACTCC-3´ 

Reverse 5´-ATACGCGTCGACTAATCTGGCGGAGTAACCGTATTCGTTATCGTA-3´ 

PCR primer partial TDH2 

Forward 5´-TGCTCTAGAGCAATGTTTCCTGGTACGACAACGAATACGGTTACTCTA-3´ 

Reverse 5´-ATACGCGTCGACTAATCTGGCGGAGTAACCGTATTCGTTATCGTA-3´ 

RT-PCR primer TDH1 

Forward 5´-CAAGAAGGCTGTTAAGGCTG-3´ 

Reverse 5´-CGGAGGCATCGAAGATGGAA -3´ 

RT-PCR primer TDH2 

Forward 5´-TCACTGCTCCATCTTCCACC-3´ 

Reverse 5´-TTTGGGTGGCGGTCATGGA-3´ 
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2.6 Quantitative reverse transcription PCR (RT-qPCR) 

Small and total cDNAs obtained as described in section 2.5 were used as template for 

RT-qPCR reactions. To determine the best amount of cDNA to be used as template, five 

dilutions of the cDNA sample were tested. Each dilution was analysed in triplicate. 

The specific primers to amplify the smalls cDNAs TDH1 (925-963 pb) and TDH2 (925-

963 pb) were obtained from Custom TaqMan® Small RNA Assays (Applied Biosystems, 

California, USA). The same primers were used to amplify the genomic sequence corresponding 

to the partial sequence of TDH1 (925-963 pb) and TDH2 (925-963 pb) gene of the modified S. 

cerevisiae strains. RT-qPCR amplifications were obtained by using Luminaris Probe qPCR 

Master Mix (Thermo Fisher Scientific, Massachusetts, USA). The RT-qPCR reactions for small 

cDNAs (2 min, 50ºC; 95ºC 10 min; 40 cycles: 15 s 95ºC, 30 s 60ºC, 30 s 72ºC) and for total 

cDNA (95ºC 10 min; 40 cycles: 15 s 95ºC, 30 s 60ºC, 30 s 72ºC) were performed in multiplate 

PCR 96-well clear plates (BIO-RAD, California, EUA) in an iQTM Multicolor Real-time device 

(BIO-RAD, California, EUA). RT-qCR reactions were performed in triplicate. Each run was 

completed with a melting curve analysis to confirm the specificity of amplification and the lack 

of primer dimers. Additionally, PCR products were resolved on 2% (w/v) agarose gels, run at 

4 V/cm in Tris-acetate-EDTA buffer (TAE), along with a 50-bp DNA-standard ladder 

(Invitrogen GmbH, Karlsruhe, Germany) to confirm the existence of a single product of the 

desired length. The comparative Cq method was used to quantify gene expression (Livak and 

Schmittgen, 2001). Gene expression of the inserted sequence from TDH1 (925-963 pb) gene and 

TDH2 (925-963 pb) gene was normalized with respect to the expression of the genomic sequence 

corresponding to the TDH1 (925-963 pb) and TDH2 (925-963 pb) (as the reference genes).  

2.7 AMPs identification by indirect Enzyme-Linked Immunosorbent Assay (ELISA) 

Polyclonal rabbit antiserum raised against synthetic GAPDH-1 (309-321) was obtained 

by multiple intradermic injections into rabbits. The experiments on rabbits were carried out at 

GenScript Inc. Company (GenScript HK Limited, Hong Kong). 

1 mg/ml of synthetic GAPDH-1 (309-321) synthetized by GenScript Inc. Company 

(GenScript HK Limited, Hong Kong) was used to construct a calibration curve by diluting to 

1:32, 1:64, 1:128, 1:256, 1:512 in a phosphate-buffered saline solution (PBS) at pH 7.2. Then, 

three replicates of 100 µl were taken from each diluted sample and transferred to a 96-well 
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microplate MICROLON® high binding (Greiner Bio-One, Germany). 100 µL of each sample 

was used for coating each well of the 96-well microplate. The samples used were supernatants 

from 12 h, 24 h, 48 h and 192 h collected from single fermentations of S. cerevisiae K1, pTDH1, 

S. cerevisiae pTDH2 (data not shown). Then the 96-well microplate was incubated overnight at 

4º C. Afterwards 100 µl of 6 M of urea was added to samples in order to denature the proteins 

and improve their detection by indirect ELISA as previously described by Hnasko et al. (2011). 

The plate was thereafter washed 4 times using a PBS-Tween washing solution (0.05% Tween 20 

in 0.01 M PBS). The samples were blocked during 2 h at room temperature by adding 200 µl of 

blocking solution containing bovine serum albumin (BSA 1% w/v) in PBS and washed 4 times 

with washing solution. Next, 100 µl of the primary polyclonal rabbit (GenScript HK Limited, 

Hong Kong) antibody specific to GAPDH-derived AMPs in a final concentration of 10 µg/ml 

diluted in 1% BSA was added to each well and incubated for 2 h at 37ºC. The unbound material 

was removed by washing the microplate 4 times with PBS-Tween solution, thereafter, secondary 

antibody (anti-rabbit IgG-fab specific, alkaline phosphatase conjugate, Sigma- Aldrich, USA) 

was diluted (1.0 µg/ml in 1% BSA) and 100 µl was added to each well followed by 2 h 

incubation at 37 ºC. Subsequently, the microplate was washed 4 times with PBS-Tween solution, 

followed by the addition of 100 µl/well of alkaline phosphatase substract (100 mM Tris-HCL, 

100 mM Nacl, 5 mM MgCl2, 1 mg/ml para-Nitrophenyl phosphate (PnPP) to the microplate and 

incubation for 10 to 30 min at room temperature in the dark. The enzyme–substrate reaction was 

stopped by adding 100 µl of 3N NaOH to each well. The optical density (OD) was measured at 

405 nm using a microplate reader (Bio-Rad, Benchmark, USA).  

To establish the relationship between the absorbance and concentration, a standard curve 

was constructed for AMPs. The concentration (µg/ml) of AMP1 and of AMP2/3 present in the 

supernatants of all S. cerevisiae strains was calculated according to the linear regression 

equation. All samples were analysed in triplicate.  

2.8 Single and mixed-culture alcoholic fermentations performed with S. cerevisiae wild-type 

(K1) and modified strains (pTDH1 and pTDH2) 

Alcoholic fermentations were performed in synthetic grape juice (SGJ) (110 g/l of 

glucose plus 110 g/l of fructose, pH 3.5, prepared as described in Pérez-Nevado et al. (2006) and 

supplemented with 120 mg/l of uracil in the fermentations performed with S. cerevisiae K1. 

Mixed-cultures alcoholic fermentations were performed with two different initial cell densities of 
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D. bruxellensis ISA 2211 (i.e. 5×103 and 1×105 cells/ml) together with 1×105 cells/ml of each of 

the S. cerevisiae modified strains (S. cerevisiae pTDH1 and S. cerevisiae pTDH2) and with the 

wild type strain S. cerevisiae K1. Two single-culture alcoholic fermentations of D. bruxellensis 

(with initial cell density of 5×103 cells/ml and 1×105 cells/ml) were performed and used as 

negative control for the antagonism exerted by the S. cerevisiae strains (data not shown). Single-

culture alcoholic fermentation of S. cerevisiae pTDH1, S. cerevisiae pTDH2 and S. cerevisiae K1 

(data not shown) were performed. Cells collected from fermentation samples at 12 h, 24 h, 48 h 

and 196 h, were used for analyses of the partial TDH1 and TDH2 gene expression by RT-qPCR. 

Supernatants from those samples were ultrafiltrated by centrifugal filter units (Vivaspin 15R, 

Sartorius, Germany) equipped with 10 kDa cut-off membranes and the peptidic fraction was 

analysed by indirect ELISA to identified the GAPDH-derived AMPs. All alcoholic fermentations 

were carried out in 500 ml flasks containing 250 ml of SGJ and incubated at 25 ºC, under gentle 

agitation (80 rpm). Alcoholic fermentations were carried out in duplicates and samples were 

taken daily to determine culturability, sugars consumption and ethanol production. Culturability 

(CFU/ml) of S. cerevisiae and D. bruxellensis during the fermentations was determined by the 

classical plating method. Briefly, to specifically differentiate CFU counts of D. bruxellensis and 

S. cerevisiae, we used YEPD agar medium supplemented with 0.01% of cycloheximide, as 

described in Branco et al. (2014) for H. guilliermondii. Sugars and ethanol concentrations in 

alcoholic fermentations were analysed using a High-Performance Liquid Chromatography 

(HPLC) system (Merck Hitachi, Darmstadt, Germany) equipped with a refractive index detector 

(L-7490, Merck Hitachi, Darmstadt, Germany). Fermentation samples were first filtrated by 0.45 

μm Millipore membranes (Merck Millipore, Algés, Portugal) and then injected on a Sugar-Pak 

column (Waters Hitachi, Milford, USA) and eluted with a degassed aqueous mobile phase of 

CaEDTA (50 mg/l) at 90 °C using a flow rate of 0.5 ml/min. All samples were analysed in 

duplicate 

2.9 Biopreservative potential of the AMPs in conjugation with sulphur dioxide and ethanol 

To determine the biopreservative potential of the AMPs, simulated wines were prepared 

using a modified SGJ (pH 3.5), containing 4.5 g/l of residual sugars (glucose plus fructose) and 

ethanol at 10%, 12%, 13% and 14 % (v/v). Each simulated wine was artificially contaminated 

with D. bruxellensis at an initial cell density of 5×103 cell/ml. First, we evaluated the inhibitory 

effect of sulphur dioxide against D. bruxellensis by adding 25, 50, 100 and 150 mg/l of 
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potassium metabisulphite (PMB) (Sigma-Aldrich, Missouri, EUA) to a final volume of 300 µl of 

each simulated wine (i.e. modified SGJ with 10%, 12%, 13% and 14% (v/v) of ethanol). 

The assay to define the inhibitory effect of ethanol in D. bruxellensis was performed in 

the same conditions above-described, using 10 %, 12 %, 13 % and 14 % (v/v) of ethanol without 

PMB. Control assays were performed using SGJ at pH 3.5 without the inhibitory factor (PMB or 

ethanol). The conjugated effect of PMB and ethanol was also assessed by testing the 

combinations of 10 %, 12 % 13 % or 14 % (v/v) of ethanol with 25, 50, 100 and 150 mg/l of 

PMB in a final volume of 300 µl of SGJ at pH 3.5. D. bruxellensis was inoculated at an initial 

cell density of 5×103 cell/ml in each assay. 

The synergistic effect of AMPs (obtained as described in section 2.2), PMB and ethanol 

was evaluated by performing inhibitory-assays using mixtures of different concentrations of 

ethanol (10 %, 12 %, 13 % and 14 % (v/v)), AMPs (0.25, 0.5 and 1 mg/ml) and PMB (50 and 25 

mg/l), under the conditions described before. Control-assays were performed in 300 µl of SGJ at 

pH 3.5, containing each of the above-mentioned ethanol concentrations but without AMPs and 

PMB. All inhibitory-assays were performed in triplicates in 96 well-microplates and incubated in 

a Thermo-Shaker (Infors HT, Bottmingen, Switzerland) at 30 °C, under strong agitation (700 

rpm). Cell growth was followed by optical density measurements (at 590 nm) in a Microplate 

Reader (Dinex Technologies Inc., Chantilly, USA), and by CFU counts. Briefly, 100 μl of 

culture sample were spread onto YEPD-agar plates, after appropriate dilution, and incubated at 

30 °C in a vertical incubator (Infors, Anjou, Canada) for 2–6 days. 

 

3. RESULTS AND DISCUSSION 

3.1 Sensitivity of P. pastoris and S. cerevisiae strains to the GAPDH-derived AMPs  

Recently, AMPs have received increasing attention as potential novel pharmaceutical 

agents. As a result, production of large quantities of AMPs in an economically viable process is 

required (Ingham and Moore, 2007; Li, 2009).  

AMPs can be reliable prepared by chemical synthesis, but this is extremely expensive. 

Isolation from natural sources rarely meets the requirements for quantity and cost-efficiency and 

is typically a complex and time-consuming process; therefore, it is not an efficient way for 

obtaining AMPs in large amounts (Park, 1998; Pyo et al., 2004; Xu et al., 2007; Li, 2009). The 
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recombinant approach is relatively low cost and easy to scale up, being a more attractive 

methodology for large-scale production of AMPs (Li, 2009). E. coli and yeast are the two major 

systems used to produce recombinant AMPs. The first yeast employed to produce recombinant 

proteins was S. cerevisiae, since vast genetic techniques are available for this species (Li et al., 

2005; Xu et al., 2007).  

In order to select the most adequate host for cloning and expressing the GAPDH-derived 

AMPs, S. cerevisiae CCMI 885, P. pastoris GS115 and S. cerevisiae PYCC 5484 were 

previously tested for their sensitivity to these AMPs. S. cerevisiae strains CCMI 885 and S. 

cerevisiae PYCC 5484 were tested, since they both are wine yeasts and are able to produce high 

amounts of AMPs (CCMI 885) (Branco et al., 2017). As for P. pastoris GS115, it is a commonly 

used strain for high expression levels of recombinant proteins. We tested sensitivity to four 

concentrations of the purified AMPs (0.125, 0.25, 0.5 and 1 mg/ml) by following growth during 

48 h in the presence and in the absence of the AMPs (control assay). Results presented in Table 

2 show that S. cerevisiae PYCC 5484 was the most resistant strain to the AMPs, with no growth 

inhibition observed as compared to the control assay. All the other yeasts showed sensitivity to 

the different concentrations of the AMPs tested (Table 2). Given these results, S. cerevisiae 

PYCC 5484 was chosen as the host strain for heterologous expression of partial sequence of 

TDH1 (925-963 pb) gene (corresponding to AMP1) and TDH2 (925-963 pb) gene 

(corresponding to AMP2/3).  

 

Table 2: Sensitivity of P. pastoris GS115, S. cerevisiae CCMI 885 and S. cerevisiae PYCC 5484 

to different concentrations of the AMPs. Values are represented in percentage of growth 

inhibition (measured by absorbance, 590 nm) relative to the control assay (without AMPs). 

 

 

 

 

 

 

 

Yeast strains 

Growth inhibition (%)  

AMPs (mg/ml) 

1 0.5 0.25 0.125 

P. pastoris GS115 32.4 13.0 11.1 9.0 

S. cerevisiae CCMI 885 42.8 33.0 13.9 12.0 

S. cerevisiae PYCC 5484 0 0 0 0 
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3.2 Expression levels of the nucleotide sequences inserted in S. cerevisiae strain K1 and 

concentration of the AMPs secreted during fermentation  

 

Evaluation of the expression levels of the inserted nucleotide sequences in the transformed 

S. cerevisiae strains, pTDH1 and pTDH2, by RT-qPCR 

Single alcoholic fermentations of S. cerevisiae K1 (empty plasmid), S. cerevisiae pTDH1 

and S. cerevisiae pTDH2 were performed (data not shown). The relative expression levels of the 

partial TDH1 (925-963 pb) gene and of the partial TDH2 (925-963 pb) gene were evaluated by 

RT-q PCR. Relative expression levels of the nucleotide sequences inserted in S. cerevisiae 

strains, which codify for the AMP1 and AMP2/3, were normalized with the expression levels of 

the corresponding genomic sequences. Changes in levels of AMPs mRNAs of interest were 

detected in both strains. S. cerevisiae pTDH1 and S. cerevisiae pTDH2 strains express higher 

levels of the partial TDH1 (1.5 fold) and partial TDH2 (0.8 fold), relative to the genomic 

expression of partial TDH1 and partial TDH2, respectively (Fig. 1). As expected, the 

quantification cycle (Cq) of both plasmidic partial sequences of TDH1 and TDH2 did not change 

significantly along the fermentation time (data not shown). Consequently, changes in relative 

expression of these peptides reflect the different levels of expression of both genomic partial 

sequences of TDH1 and TDH2 along the fermentation (Fig. 1). At 24 h, when Tdh1 is mostly 

synthesised (beginning of stationary phase), the relative expression level of the plasmidic partial 

sequence TDH1 in S. cerevisiae pTDH1 is lower than the expression level at 12 h, when TDH1 

gene is less expressed (Boucherie et al., 1995). As for partial sequence TDH2, the relative 

expression levels increased along the fermentation time (Fig. 1), reflecting the decrease of 

genomic expression of TDH2. These results are in agreement with the study of Varela et al. 

(2005) under winemaking conditions, showing that the expression levels of TDH1 in S. 

cerevisiae during the exponential phase was lower than the expression levels detected in the 

early-stationary and late-stationary phase, the opposite being observed for TDH2 expression 

levels. 

Determination of AMPs levels secreted by S. cerevisiae strains by indirect ELISA 

The total production of AMPs by each modified S. cerevisiae strain was quantified by 

indirect ELISA. Samples used were the < 10 kDa peptidic fraction obtained from supernatants 
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collected after 12 h, 24 h, 48 h and 196 h of single fermentations. Comparatively with the wild 

type strain S. cerevisiae K1, both modified yeasts produced higher concentrations of the AMPs 

(Fig. 2). At 12 h, S. cerevisiae pTDH1 produced 44% more and S. cerevisiae pTDH2 18% more 

AMPs than S. cerevisiae K1 strain (Fig. 2). As expected from the above results, at the beginning 

of the stationary phase (24 h-48 h) S. cerevisiae pTDH1 and S. cerevisiae pTDH2 reached the 

maximum production of AMPs. S. cerevisiae pTDH1 produced 64% (24 h) and 65% (48 h) more 

AMPs and S. cerevisiae pTDH2 produced 24% (24 h) and 26% (48 h) more AMPs than S. 

cerevisiae K1, respectively (Fig. 2). These results are in agreement with higher extracellular 

accumulation of AMPs observed at the beginning of the stationary phase of growth (24 h-48 h) 

in alcoholic fermentations (Albergaria et al., 2010).  
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Fig. 1: Analyses by RT-qPCR of inserted nucleotide sequence TDH1 (925-963 pb) and TDH2 

(925-963 pb) in S. cerevisiae pTDH1 S. cerevisiae pTDH2 at 12 h, 24 h, 48 h and 192 h of 

fermentation in SGJ medium. The relative expression of the inserted partial sequence of TDH1 

and TDH2 was normalized against the respective genomic partial sequence of TDH1 and TDH2. 

Values represented are means ± SD (error bars) of the Log2 expression values of two 

independent biological experiments analysed in triplicate by RT-qPCR. The cut-off value was set 

to 1.5. 
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Fig. 2- Total AMPs production by S. cerevisiae pTDH1 and by S. cerevisiae pTDH2 relative to 

the production by S. cerevisiae K1 analysed by indirect ELISA. The bioactive peptidic fraction 

(< 10kDa) containing the AMPs was obtained from time 12 h, 24h, 48 h, and 192 h of S. 

cerevisiae strains alcoholic fermentations. Values represented are means ± SD (error bars) of two 

independent biological experiments analysed in triplicate by indirect ELISA. 

 

3.4 Mixed-cultures alcoholic fermentations performed with S. cerevisiae K1, and with the 

modified strains S. cerevisiae pTDH1 and S. cerevisiae pTDH2 with D. bruxellensis 

In guided fermentations, the actively growing starter culture dominates the native yeast 

species present in grape must and dominate the fermentation process (Pretorius, 2000). The 

initial viable population of yeasts in the grape musts, usually ranging 104-106 CFU/ml, is often 

decreased by the use of pesticides in the vineyards and antiseptics in the musts (Henick-Kling et 

al., 1998; Guerra et al., 1999). To simulate wine fermentations with addition of S. cerevisiae 

starter cultures, mixed fermentations of S. cerevisiae strains with D. bruxellensis were performed 

in SGJ medium using an initial higher cell density of S. cerevisiae strains (105 cells/ml) than of 

D. bruxellensis cells (5×103 cells/ml) (Fig.3). Mixed fermentations with 105 cells/ml of both 

species were performed as control for initial cell viability dependent behaviour (Fig.4). Single 

fermentation of D. bruxellensis inoculated with 5×103 cells/ml and 1×105 cells/ml, were 

performed as control for the antagonistic effect of S. cerevisiae (data not shown).  
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In both single fermentations (control for the antagonistic effect of S. cerevisiae), the cell 

density of D. bruxellensis reached approximately 5×107 CFU/mL in 48 h, and this viability was 

maintained until the end of fermentation (data not shown). Cell growth profiles in all mixed-

culture alcoholic fermentations showed that both yeasts grew together in the first day of 

fermentation, then D. bruxellensis viability began to decrease, independently of the initial cell 

density (Fig. 3-A, B, C and Fig. 4-A, B, C). Comparing the profiles of D. bruxellensis with both 

initial cell densities, during the mixed-culture alcoholic fermentations with S. cerevisiae K1 (Fig. 

3-A and Fig. 4-A) and with the modified S. cerevisiae strains pTDH1 and pTDH2 (Fig. 3-B, C, 

Fig. 4-B, C), it is clear that both modified S. cerevisiae strains have a stronger negative effect on 

D. bruxellensis than the wild type strain S. cerevisiae K1. The cell viability of D. bruxellensis 

was entirely lost within the first 96 h (for both initial cell densities) in mixed fermentation with S. 

cerevisiae pTDH1 (Fig. 3-B and Fig. 4-B) and within 144 h and 192 h for mixed-culture 

fermentations performed with S. cerevisiae pTDH2 with 5×103 and 1×105 initial cell densities, 

respectively (Fig. 3-C and Fig. 4-C). In contrast, in mixed-culture fermentations of S. cerevisiae 

K1 with D. bruxellensis, the viability of D. bruxellensis was never completely lost within 192 h, 

even when the initial cell density of D. bruxellensis was lower than the initial cell density of S. 

cerevisiae K1, decreasing approximately four orders of magnitude in both cases (Fig. 3-A and 

Fig. 4-A). These results show that the modified S. cerevisiae strains exert higher antagonist 

effect than the wild type strain. Additionally, we also observed that the viability of D. 

bruxellensis in mixed-cultures fermentations with S. cerevisiae strains was equally affected 

independently of its initial cell density (Fig. 3 and 4). 

Several harsh conditions are imposed to yeasts in wine environment such as osmotic 

stress caused by high sugar concentrations, low pH values, low oxygen availability, low nitrogen 

concentrations and high levels of organic acids and ethanol accumulation, with deleterious 

effects on yeast metabolism and growth (Ingram and Buttke, 1984; Bauer and Pretorius, 2000; 

Pretorius, 2000). S. cerevisiae dominance over other microbial competitors has always been 

attributed to their higher capacity to withstand the increasingly adverse conditions occurring as 

the fermentation proceeds, namely the high levels of ethanol present in the medium.  

Regarding ethanol effect, we also evaluated the relationship between ethanol 

concentration and D. bruxellensis viability along mixed fermentations. In mixed-cultures 

fermentation, viability of D. bruxellensis decreased independently of ethanol accumulation in the 
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medium. In the presence of S. cerevisiae K1, when ethanol concentration reached 57 g/l (96 h) 

(Fig. 3-D), D. bruxellensis viability was 1.8×105 CFU/ml (Fig. 3-A). Conversely, in the presence 

of S. cerevisiae pTDH1 for a similar level of ethanol (58 g/l at 48 h) (Fig. 3-E), D. bruxellensis 

viability was merely 4×103 CFU/ml (Fig. 3-B). This effect was also observed in mixed-culture 

fermentation of S. cerevisiae pTDH2/D. bruxellensis (Fig. 3-C), although less severe than for S. 

cerevisiae pTDH1. In this condition, the ethanol concentration was 48 g/l at 48 h (Fig. 3-F), and 

the viability of D. bruxellensis (Fig. 3-C) was one order of magnitude lower (1.5×104 CFU/ml) 

than its viability in the presence of S. cerevisiae K1 (1.77×105 CFU/ml) (Fig. 3-A), even at 

higher concentration of ethanol (58 g/l) (Fig. 3-D). A similar result was observed in the mixed-

culture fermentations performed with higher cell density of D. bruxellensis (Fig. 4).  

These results clearly showed that ethanol concentration is not responsible for the 

differences detected in the loss of viability of D. bruxellensis on those fermentations (Fig. 3 and 

Fig.4). S. cerevisiae pTDH1 produces greater amounts of AMPs (Fig. 2) and higher amounts of 

AMP1 and show a higher antagonistic effect in mixed-culture alcoholic fermentation on D. 

bruxellensis cell health than the S. cerevisiae K1 strain or the S. cerevisiae pTDH2 (Fig. 3 and 

4). The effect of S. cerevisiae pTDH1 on D. bruxellensis could be enhanced by the fact that 

AMP1 exhibited a much stronger antimicrobial effect than the AMP2/3 (Branco et al., 2017). 
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Fig. 3: Cell growth profiles of S. cerevisiae (initial cell density 105 cell/ml) and D. bruxellensis 

(initial cell density 5×103 cell/ml) (A,B,C), sugar consumption and ethanol production (D,E,F) 

during alcoholic fermentations performed with mixed cultures of D. bruxellensis with S. 

cerevisiae wild type strain K1 (A), S. cerevisiae pTDH1 (B) and S. cerevisiae pTDH2 (C). Data 

represented correspond to means ± SD (error bars) of duplicate independent assays. 
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Fig. 4: Cell growth profiles of S. cerevisiae (initial cell density 105 cell/ml) and D. bruxellensis 

(initial cell density 105 cell/ml) (A, B, C), and sugar consumption and ethanol production (D, E, 

F) during alcoholic fermentations performed with mixed cultures of D. bruxellensis with the S. 

cerevisiae wild-type strain K1 (A), S. cerevisiae pTDH1 (B) and S. cerevisiae pTDH2 (C). Data 

represented correspond to means ± SD (error bars) of duplicate independent assays. 
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3.5. Biopreservative potential of the AMPs in conjugation with potassium metabisulphite  

The metabolic products of D. bruxellensis in wines are tetrahydropyridines, acetic acid, 

and volatile phenols, such as 4-ethylphenol (Loureiro and Malfeito, 2003). D. bruxellensis is the 

only responsible for the presence of 4-ethylphenol in wine that confer phenolic off-odours 

described as ‘‘barnyard-like’’ or ‘‘horsey’ (Fugelsang 1997; Dias et al., 2003). In order to avoid 

the development of undesirable microorganisms during winemaking, such as D. bruxellensis, the 

most conventional preservative is sulphur dioxide (Ribéreau-Gayon et al., 2006). In winery 

practice, sulphur dioxide may be added directly or as potassium metabisulphite (PMB) 

(Ribéreau-Gayon et al., 2006). 

The use of adjuvants, complementing the preservative effect of sulphur dioxide, could be 

a solution to reduce the amount of this substance added to the wine. Therefore, the effect of these 

AMPs in conjugation with the major preservative in wine, sulphur dioxide, in the growth of D. 

bruxellensis ISA 2211 (a strain isolated from Douro red wines) was evaluated. 

First, we tested the capacity of our D. bruxellensis strain to withstand different 

concentrations of PMB and/or ethanol. Results showed that D. bruxellensis was able to reach a 

cell density of approximately 3×108 CFU/ml, after 72 h, in the presence of all the ethanol 

concentrations tested, 10%, 12 %, 13 %, and 14 %, (Table 3). Likewise, when exposed to 

different concentrations of PMB (25, 50, 100 and 150 mg/l), D. bruxellensis reached the same 

cell density in 72 h (Table 3). 
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Table 3: Culturability (CFU/ml) of D. bruxellensis inoculated in a modified SGJ, without ethanol and without potassium 

metabisulphite (PMB) (control), with 10%, 12%, 13% and 14% (v/v) of ethanol (without PMB), and with 25, 50, 100 and 150 mg/l of 

PMB (without ethanol). Values presented correspond to means (± SD) of duplicate measurements of three independent biological 

experiments. 
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Combination of ethanol with PMB was also tested for 10 %, 12 %, 13 %, and 14 % of 

ethanol conjugated with 25, 50, 100 and 150 mg/l of PMB. Results showed that 10% and 12% 

ethanol were only lethal when conjugated with PMB above 100 mg/l (Fig. 5-A, B) while for 

13% and 14% ethanol the maximum PMB concentration that allowed growth was 25 mg/l (Fig. 

5-C, D). 

In our previous work (Branco et al., 2017), we showed that the MIC of GAPDH-derived 

AMPs for D. bruxellensis is 1 mg/ml. The biopreservative potential of AMPs in conjugation with 

PMB was tested for AMPs at 0.25, 0.5 and 1.0 mg/ml combined with the PMB and ethanol 

concentrations that allowed D. bruxellensis growth (Fig. 6). All assays were performed in 

modified SGJ medium with 4.5 g/l of total sugars (glucose + fructose) at pH 3.5 in order to 

simulate the conditions at the end of wine fermentation. Conjugated effect of the lower 

concentrations of ethanol tested (10% and 12%) with non-lethal PMB concentrations and 0.5 or 

0.25 mg/ml of AMPs allowed similar growth of D. bruxellensis as compared to control without 

AMPs (Fig. 6-A, B). On the contrary, 1 mg/ml of AMPs combined with 10% or 12% of ethanol 

plus 50 mg/l or 25 mg/l PMB inhibited the growth of D. bruxellensis for 72 h (Fig. 6-A, B). A 

much stronger effect was observed for the same AMPs concentration, in the presence of 13 % or 

14% ethanol in which 25 mg/l of PMB completely abolish the culturability after 48 h (Fig. 6-C, 

D). Even though we cannot discard the presence of viable but non-culturable (VBNC) cells, from 

the work of Chandra et al. (2016), we can predict that D. bruxellensis VBNC cells won’t be able 

to produce considerable levels of 4-ethylphenol.  

Barata et al. (2008) tested PMB in a range of 40 to 210 mg/l against 17 strains of D. 

bruxellensis in red wine, showing that most of D. bruxellensis strains tested, including the strain 

tested in the present study, were not able to grow in the range of 100-150 mg/l of PMB. 

Interestingly, our results showed that the required PMB concentration to induce total death of D. 

bruxellensis in wines at typical ethanol concentrations (13 to 14%) was reduced to 25 mg/l, when 

combined with 1 mg/ml of GAPDH-derived AMPs (Fig. 6 C, D). Nevertheless, more studies 

using other D. bruxellensis wine strains should be performed to accurately estimate the adequate 

sulphur dioxide concentration to be used. 

According to the European regulation (EC) nº 606/2009, a maximum sulphur dioxide of 

150 mg/l and of 200 mg/l can be added to red and white wines, respectively, with residual sugar 

lower than 5 g/l (glucose+fructose) and with 10%-14% of ethanol. Addition of PMB to wines 
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corresponds to about 57% of total sulphur dioxide (Ribéreau-Gayon et al., 2006), which means 

that 25 mg/l of PMB correspond to 14.25 mg/l of sulphur dioxide. Our results show that the 

addition of 25 mg/ml of PMB is enough to prevent spoilage by D. bruxellensis in wines with 

13% or 14% of ethanol if 1 mg/ml of AMPs were added, which is a significant decrease in 

comparison to the maximum legal amount.  
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Fig. 5: Effect of potassium metabisulphite (PMB) at 25, 50, 100 and 150 mg/l on the cell viability (CFU/ml) of D. bruxellensis in 

simulated wines (SGJ with 4.5 g/l of residual sugars) with ethanol at 10% (v/v) (A), 12% (v/v) (B), 13% (v/v) (C) and 14% (v/v) (D). 

Simulated wines were artificially contaminated with D. bruxellensis at an initial cell density of 5×103 CFU/ml. Control assays were 

performed in the same conditions without PMB. Data represented are means ± SD (error bars) of duplicate measurements of three 

independent biological experiments.  
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Fig. 6: Synergistic effect of the AMPs (at 0.25, 0.5 and 1.0 mg/ml) with potassium metabisulphite (PMB) at 50 mg/l (A,B) and 25 

mg/l (A,B,C,D) on the cell viability (CFU/ml) of D. bruxellensis in simulated wines (SGJ with 4.5 g/l of residual sugars) containing 

10% (A), 12% (B), 13% (C) and 14% (v/v) (D) of ethanol. Simulated wines were artificially contaminated with D. bruxellensis at an 

initial cell density of 5x103 CFU/ml. Control assays were performed in the same conditions without the AMPs. Data represented are 

means ± SD (error bars) of duplicate measurements of three independent biological experiments. 
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The main goal of this study was to produce modified S. cerevisiae strains able to produce 

higher amounts of the GAPDH-derived peptides than the wild type strains. The modified S. 

cerevisiae strains were able to express higher levels of the sequences TDH1 and TDH2 coding 

AMP1 and AMP2/3, resulting in enhanced production of these AMPs than the respective wild 

type strain. Additionally, the modified S. cerevisiae strains exhibited a higher antagonistic effect 

on D. bruxellensis than the respective wild type strain. Our results also showed that addition of 

these AMPs significantly reduced the required concentration of PMB to inhibit the growth of D. 

bruxellensis, the major contaminant of wine industry. Further work in order to scale up the 

production of these AMPs is required. However, the possibility of using these AMPs as natural 

alternative biopreservative in alcoholic fermentations, wine and/or other food products looks 

promising to prevent economic losses due to microbial contaminations both wine industry and 

industrial fuel-ethanol production. 
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Concluding remarks and future perspectives 

Saccharomyces cerevisiae is, unquestionably, the most well-adapted yeast species to the 

wine environment, and consequently this species dominates wine fermentation (Bauer & 

Pretorius 2000; Bisson 1999; Hansen et al. 2001). Until recently, the studies on the yeasts 

population dynamics during wine fermentations ascribed the early death of non-Saccharomyces 

species (1-2 days of fermentation, 4-5 % v/v of ethanol) to their low fermentation capacity, as 

well as to their inhnability to survive under the harsh wine growth conditions, such as low: 

oxygen availability, depletion of nitrogen, low pH values, high levels of ethanol and organic 

acids (Bauer & Pretorius 2000; Bisson 1999). However, these factors do not entirely explain the 

succession of yeasts species throughout the fermentation process. Indeed, throughout the last 

decade, several authors (Albergaria et al. 2010; Comitini et al. 2005; Nehme et al. 2010; Nissen 

et al. 2003; Nissen & Arneborg 2003; Osborne and Edwards 2007; Renault et al. 2013) have 

raised other hypothesis to explain the early death of non-Saccharomyces yeasts during wine 

fermentations. Those hypotheses include the production of killer-like toxins such as 

antimicrobial peptides (AMPs) (Albergaria et al. 2010; Comitini et al. 2005; Nehme et al. 2010; 

Osborne & Edwards 2007) and death mediated by a cell-to-cell contact mechanism (Nissen et al. 

2003; Nissen & Arneborg 2003; Renault et al. 2013). Specifically, Albergaria et al. (2010) 

discovered that the S. cerevisiae wine strain CCMI 885 excretes AMPs during alcoholic 

fermentations that are active against Hanseniaspora uvarum, Hanseniaspora guilliermondii, 

Kluyveromyces marxianus, Lachancea thermotolerans and Torulaspora delbrueckii.  

In the present thesis we purified, sequenced and characterized those AMPs (Branco et al. 

2014). We found that the naturally-secreted biocide, which we named saccharomycin, is 

composed of peptides derived from the glycolytic enzyme glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (Branco et al. 2014). In order to investigate if secretion of 

saccharomycin was strain specific (strain CCMI 885), or a more general phenomenon of this 

species, we screened several S. cerevisiae strains for the production of these AMPs. Our study 

revealed that the GAPDH-derived AMPs are secreted by several S. cerevisiae strains (9 strains 

were screened), although at different levels. Thus, our results strongly suggest that this is a 

species-specific phenomenon of S. cerevisiae (Branco et al. 2017a). Besides, our work also 
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showed that saccharomycin has a large spectrum of action, being active against several non-

Saccharomyces wine-related yeasts, such as H. guilliermondii, Lachancea thermotolerans, 

Klyuveromyces marxianus, Torulaspora delbrueckii and Dekkera bruxellensis, and bacteria such 

as Oenococcus oeni (Branco et al. 2014, 2017a). Taken together, our data demonstrates that 

secretion of GAPDH-derived AMPs by S. cerevisiae strains plays a decisive role in the yeasts 

population dynamics during wine fermentations. In summary, our work contributed to a better 

understanding of the factors underlying the yeasts growth pattern during wine fermentations, 

demonstrating for the first time that the competitive advantage of S. cerevisiae within the wine 

environment is not only due to its exceptional aptitude for alcoholic fermentation, but also due to 

a defensive strategy mediated by the secretion/excretion of GAPDH-derived AMPs.  

Most AMPs are cationic in nature and interact with the anionic components of target cell 

membranes (Brogden 2005). Consequently, anionic antimicrobial peptides (AAMPs) are less 

common and exhibit a different mechanism of action and a weaker antimicrobial activity than 

cationic AMPs (Lai et al. 2002; Li 2009; Malkoski et al. 2001). Our work revealed that the 

natural biocide (saccharomycin) excreted by S. cerevisiae during wine fermentation is composed 

by two main anionic peptides (pI=4.35): AMP2/3 (peptide derived from the isoenzyme 

GAPDH2/3) and AMP1 (peptide from isoenzyme GAPDH 1) (Branco et al. 2014). Besides, we 

also found that the activity of the natural biocide is much higher than that of synthetic analogues, 

and seems to depend on the conjugated action of those two GAPDH-derived AMPs (i.e. AMP1 

and AMP2/3) and of their relative proportion (Branco et al. 2017a, 2017c). In addition, it was not 

possible to test the antimicrobial activity of the synthetic AMPs at the acidic conditions used for 

saccharomycin (i.e. YEPD at pH 3.5), since the synthetic peptides were not able to dissolve 

(Branco et al. 2017a). These findings led us to suggest that the solubility and bioactivity of the 

natural biocide at the acidic conditions of wine (pH ranging 3.0-3.5) may result from its 

molecular structure that might involve some cationic metal and/or aggregates of several peptides. 

In fact, the activity of anionic AMPs can be enhanced by several factors, namely by the action of 

divalent metal cations (Dashper et al. 2005) or by additional peptides, as it was reported for 

Lactococcin G (Nissen-Meyer et al. 1992). Moreover, Dashper et al. (2005) showed that the 

antibacterial effect of an anionic AMP (kappacin) increases in the presence of the divalent metal 

cations Zn2+ and Ca2+. In fact, when we investigated the internalization ability of the AMPs in 

non-Saccharomyces wine yeasts (H. guilliermondii and D. bruxellensis) we found that the 
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percentage of cells that internalised the AMPs was significantly higher when cells were 

incubated in YEPD (ca. 30%) instead of water (less than 10%) (Branco et al. 2017a). These 

results suggest that some component of the YEPD medium, possibly a metal cation, may 

enhance the activity of these AMPs However, to definitively confirm the involvement of divalent 

metal cations on the molecular structure of the native biocide it will be necessary to performed 

additional assays such as a structural analysis of the AMPs by nuclear magnetic resonance 

(NMR) after being incubated and bonded to divalent metal cations (Dashper et al. 2005). 

The mode of action of AMPs on target cells has been extensly studied and includes a 

diverse range of antimicrobial mechanisms such as membrane permeabilization, which was first 

observed by Zasloff (1987) on protozoa exposed to magainin. Inhibition of ATPase activity and 

H+ translocation was also described as a mechanism of action of lactoferrin on Lactococcus 

lactis which leads to a lethal perturbation of the intracellular pH and proton gradient (Andrés & 

Fierro 2010). Induction of apoptosis was also described as a mechanism of action of cecropin, an 

AMP of Musca domesticain on human hepatocellular carcinoma cell line BEL-7402 (Jin et al. 

2010). This phenomenon was equally described for the killer toxins K1, K28 and zygocin 

produced by certain strains if S. cerevisiae that induce apoptosis in sensitive strains (Reiter et al. 

2005). Therefore, to study the mechanisms involved in death induced by the GAPDH-derived 

AMPs identified in the present work, we evaluated membrane permeabilization, intracellular pH 

(pHi), proton influx/efflux rates and molecular markers typical of death by apoptosis on sensitive 

cells exposed to the AMPs. Results showed that the main target of our AMPs is the cell 

membrane since its permeabilization was observed in all the sensitive yeasts evaluated (Branco 

et al. 2015, 2017a). The drop of pHi was also detected in sensitive cells exposed to the GAPDH-

derived AMPs (Branco et al. 2015), which could be a consequence of cell membrane 

permeabilization and/or due to destabilization of the plasma membrane H+-ATPase activity. 

Indeed, a decrease of H+-efflux rate was detected (Branco et al. 2017c), which can be correlated 

with the activity of plasma membrane H+-ATPase (Opekarova & Sigler 1982). Besides, we also 

checked the effect of these AMPs on the glucose transport of sensitive yeasts since the activity of 

the plasma membrane enzyme H+-ATPase is energy-dependent, thus depending on the 

availability of ATP (Rosa & Sá-correia, 1991; Serrano 1983). To check if the GAPDH-derived 

AMPs would affect glucose transporters and, in this way, compromise ATP availability, we 

determined the glucose uptake rates of H. guilliermondii in the presence/absence of the AMPs. 
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Our results showed that the AMPs do not negatively affect glucose transporters, thus, discarding 

the hypothesis of lower ATPase activity due to lack of ATP. However, to definitely confirm that 

the activity of plasma membrane H+-ATPase is directly affected by these AMPs, it would be 

necessary to extract the plasma membrane of non-Saccharomyces yeasts after being exposed to 

the AMPs and then to determine the H+-ATPase activity through colorimetric ATPase assays 

such as inorganic phosphate concentration measurements (ATP hydrolysis yields inorganic 

phosphate) (Andrés & Fierro, 2010). Apoptotic cell death induced by AMPs has been reported 

before by several authors (Jin et al. 2010, Reiter et al. 2005). Thus, we investigated molecular 

markers typical of death by apoptosis in sensitive yeast cells (H. guilliermondii) after being 

exposed to the AMPs. Typical molecular markers such as DNA strand breaks (detectable by the 

TUNEL assay), chromatin condensation (detectable by DAPI-staining), and exposure of 

phosphatidylserine at the outer cell membrane (detectable by Annexin V-FITC staining), were 

analysed in H. guilliermondii cells after being exposed to AMPs. Results showed that H. 

guilliermondii cells exhibited cellular markers characteristic of death by apoptosis such as DNA 

fragmentation, a typical late apoptosis phenomenon. This part of the work leads us to conclude 

that the physiological alterations induced by the GAPDH-derived AMPs on sensitive cells 

implicates membrane permeabilization, drop of intracellular pH (pHi), decrease of proton efflux, 

increase of proton influx and induction of apoptosis on target cells (Branco et al. 2015, 2017a, 

2017c).  

A pioneer study undertaken by Nils Arnerborg group suggested that direct microbial 

interactions mediated by a cell-to-cell contact mechanism could be involved in the early death of 

non-Saccharomyces yeasts during wine fermentations (Nissen et al. 2003; Nissen & Arneborg 

2003). Since GAPDH is not only a glycolytic enzyme located in the cytosol, but also a cell wall-

associated protein in S. cerevisiae (Delgado et al. 2001, 2003), we wonder if the GAPDH-

derived AMPs secreted by S. cerevisiae strains could be involved in death mediated by cell-cell 

contact. Therefore, we investigated the reasons underlying cell-to-cell contact mechanism. Our 

results showed that 48 h-grown cells, conversely to 12 h-grown cells, of S. cerevisiae induce 

death of two non-Saccharomyces species (L. thermotolerans and H. guilliermondii) by direct 

cell-to-cell contact (Branco et al. 2017b). These results confirmed the previous results of Nissen 

et al. (2003) and Nissen & Arneborg (2003), showing that, indeed, death of L. thermotolerans 

during mixed-culture fermentations with S. cerevisiae is mediated by a cell-to-cell contact 
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mechanism. To confirm that the GAPDH-derived AMPs were were present in the cell wall of S. 

cerevisiae cells, we extracted membranes from 12 h-grown and 48 h-grown cells of different S. 

cerevisiae strains. Indeed, immunological assays and proteomic analysis revealed the presence of 

the GAPDH-derived AMPs on the surface of 48 h-grown cells of S. cerevisiae in higher amounts 

than on the surface of 12 h-grown cells of S. cerevisiae. Additionally, two spots from the 

membrane proteome (2D-gels) of 48 h-grown cells of S. cerevisiae were analysed by mass 

spectrometry (MALDI-TOF/MS) and results confirmed the presence of peptides derived from 

the GAPDH isoenzyme 1 in both spots, namely one peptide matching the exact sequence of the 

AMP1 (i.e. ISWYDNEYGYSAR) (Branco et al. 2017b). These results seem to clarify why non-

Saccharomyces yeasts begin to die-off during wine fermentation only after cells attain the 

stationary growth phase (24-48 h), as previously found by Nissen and Arneborg (2003) and 

Pérez-Nevado et al. (2006). Besides, our study revealed that GAPDH accumulation in the cell-

wall of S. cerevisiae seems to have a defensive function, although we still do not know how 

GAPDH is transported to the cell wall of S. cerevisiae, neither what triggers the formation of 

these GAPDH-derived peptides. 

Experimental evidence indicates that mechanisms of secretion other than the endoplasmic 

reticulum-Golgi pathway can drive proteins outside the plasma membrane, which is the case of 

different glycolytic enzymes such as GAPDH and enolase that have been found on the surface of 

yeasts cell (Delgado et al. 2001; Nombela et al. 2006). The relevance of these secretion signals-

less proteins in virulence and in the cell-wall dynamics of yeasts has remained unknown 

(Nombela et al. 2006). Work presented in chapter V (Branco et al. 2017b) raised, for the first 

time, experimental evidence that the presence of GAPDH on the surface of S. cerevisiae cells 

seems to be related with its antagonist effect against non-Saccharomyces wine yeasts. Besides, a 

study by Silva et al. (2011) reported that GAPDH is a specific substrate of yeast metacaspases, 

which play an important role in regulating apoptosis, and showed that the in vivo cleavage of 

GAPDH by metacaspases originates several GAPDH-derived fragments, namely some equal to 

the ones identified in the present work. Thus, we tested the antagonistic effect of a S. cerevisiae 

mutant strain deleted in the metacaspases gene YCA1 (S. cerevisiae yca1) against a sensitive 

non-Saccharomyces yeast (Branco et al. 2014). Our results showed that the antagonistic effect of 

that mutant strain (yca1) against H. guilliermondii during mixed-culture fermentations was less 

pronounced than the effect exerted by the respective wild type strain. Moreover, the cell surface 
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peptidic fraction of the yca1 strain that corresponds to the fraction where the GAPDH-derived 

AMPs were identified did not show antimicrobial effect against H. guilliermondii (Branco et al. 

2017b) Nevertheless, further work is required in order to discover how and why S. cerevisiae 

produces these peptides. Since the GAPDH-derived AMPs are produced in higher amounts only 

after S. cerevisiae cells attains the stationary growth phase (i.e. after 24 h) (data not shown) 

maybe this stress response results from scarcity of substrates and/or from apoptotic cells in 

which the GAPDH protein accumulated in the cell-wall is cleaved by metacaspases originating 

the GAPDH-derived AMPs. 

In the last years, a growing number of studies have been carried out in order to 

understand the spoilage ability of D. bruxellensis and to establish the required control measures 

(Chandra et al. 2016; Loureiro & Malfeito-Ferreira 2003; Suárez et al. 2007). The 

microorganisms present in wine fermentations can be controlled using sulphur dioxide, which is 

the main preservative used in the wine industry. However, the addition of sulphur dioxide in 

excessive doses must be avoided due to its impact on human health (Ribéreau-Gayon et al. 

2006). Thus, the last task of the present work, consisted in constructing a genetically-modified S. 

cerevisiae strains able to over-express the GAPDH-derived AMPs that could be used to prevent 

the growth of wine contaminants, particularly of D. bruxellensis (Branco et al. 2017d). With that 

purpose, a laboratory S. cerevisiae wine strain (strain k1) was genetically-manipulated and the 

partial genes codifying AMP1 and AMP2/3 were inserted in a plasmid. In addition, we also 

evaluated the antimicrobial activity of sulphur dioxide in combination with the GAPDH-derived 

peptides to verify the possibility of reducing the concentrations of this wine preservative. Results 

were promising since genetically-manipulated S. cerevisiae strains exhibited a higher 

antagonistic effect against one D. bruxellensis strain during mixed-culture wine fermentations 

and we were able to obtain recombinant S. cerevisiae strains that over-express and over-produce 

saccharomycin by comparison to the respective wild type strain (Branco et al. 2017d). Thus, 

these results give us the expectation that the implementation of a large-scale production of these 

AMPs is possible, since the recombinant approach is relatively low cost and easy to scale up. 

Furthermore, our results demonstrate that the concentration of sulphur dioxide that effectively 

induce death of the major contaminate of wine industry, D. bruxellensis, can be reduced if the 

GAPDH-derived AMPs are added. Nevertheless, more studies, using other D. bruxellensis wine 

strains, should be performed to accurately estimate the adequate sulphur dioxide concentration to 
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be used. Hence, the possibility of using these AMPs as natural alternative biopreservative in 

alcoholic fermentations, wine and/or other food products looks promising to help the reduction 

of economic losses in wine industry due to microbial contaminations, while reducing the 

concentration on non-healthy preservatives. 
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