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Abstract 

Introduction: Ultrasound (US) has an important role in musculoskeletal (MSK) 

evaluation, allowing the study of muscle morphology and function. Muscle thickness 

(MT) and muscle echo-intensity (EI) are two important parameters that may quantify 

muscle structural adaptations to a variety of stimuli. US elastography can also offer 

semi-quantitative and/or quantitative assessment of tissue stiffness providing relevant 

information about adaptations of muscle mechanical properties.  

Purpose: The general aim of the studies presented in this thesis is to explore the 

potential of quantitative US imaging for assessing the adaptations and responses of the 

muscle tissue to increased contractile activity using B-mode US and US elastography. 

The studies were centred on the quadriceps femoris muscle and addressed the study of 

the effect of strength training and of acute muscle contractile activity on MT, EI and 

muscle stiffness.   

Materials and methods: Three different studies were conducted and reported along this 

thesis. A total of 64 young adults of both genders participated in the studies. The first 

study (N = 20) evaluated the intra- and inter-session (one week apart) reproducibility of 

MT and EI parameters and the role of plane of view (transverse vs. longitudinal) and ROI 

dimension on measurements’ accuracy using the intraclass correlation coefficient 

[ICC(3,1)], the standard error of measurement (SEM), and the smallest detectable change 

(SDC). Bland-Altman analysis was used to study the level of agreement between plane 

views and ROI sizes. The second study (N = 28) investigated the effect of a 15-week 

strength program on MT and EI in several regions of the heads of the quadriceps 

femoris. This study included a control group and two training groups performing 

concentric or eccentric strength training. During this study, changes in vastus lateralis’ 

(VL) stiffness in response to strength training were evaluated using quasi-static 

elastography (QSE). In the final study (N = 16), acute changes in VL’s stiffness 

associated with passive stretching, performance of short but intense contractile 

activity, and muscle isometric contractions were investigated by means of supersonic 

shear wave imaging (SSI). 

Results: Moderate to very high reliability was found for MT (intra-session, ICCs: 0.82-

0.99; inter-session, ICCs: 0.70-0.98) and EI (intra-session, ICCs: 0.74-0.97; inter-session, 

ICCs: 0.48-0.94). In general, reliability for MT and EI measures was higher in the 

transverse plane and when using a larger ROI, respectively. Measurements of EI taken 

with a small versus a large ROI are associated with a small bias and larger limits of 
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agreement (LoA). In study 2, 15 weeks of strength training increased MT in the majority 

but not in all of the scanned regions. Strength training failed in changing EI in most of 

the quadriceps femoris, excepting in the VI and some regions of the VL. Strength 

training significantly increased VL’s stiffness. No differences were observed in our 

quantitative US parameters between concentric and eccentric training. The final study 

demonstrated an acute increase of around 10% in VL’s shear modulus as a result of 

performing maximal isometric, concentric, and eccentric contractions. The shear 

modulus of the VL also increased when the knee moved from 10º to 50º and then to 90º 

flexion. Finally, a linear relationship between the shear modulus and the level of 

isometric muscle contraction was observed.  

Conclusions: Ultrasound measures of MT and EI show moderate to very high reliability. 

The reliability and agreement of MT and EI measurements are improved in transverse 

scans and with larger ROIs. QSE could demonstrate an increase in muscle stiffness as a 

result of strength training. SSI proved to be a good method to investigate muscle 

mechanical properties changes associated with muscle function. These results 

emphasise the value of an objective and quantifiable muscle US evaluation for studying 

muscle adaptation to exercise training and muscle function, in general. 

 

Key-words: quantitative ultrasound; ultrasound elastography; strength training, muscle 

adaptation. 
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Resumo 

Introdução: A ultrassonografia tem um papel importante na avaliação músculo-

esquelética, permitindo o estudo da morfologia e função muscular. A espessura 

muscular e a eco-intensidade muscular são dois parâmetros importantes que podem 

quantificar as adaptações estruturais musculares, quando o musculo é submetido a 

determinados estímulos. A elastografia por ultrassonografia pode, também, oferecer 

uma avaliação semi-quantitativa e/ou quantitativa da rigidez do tecido, fornecendo 

informações relevantes sobre as adaptações das propriedades mecânicas musculares. 

Objetivo: O objetivo geral, dos estudos apresentados nesta tese, é explorar o potencial 

da imagem quantitativa ultrassonográfica, de forma a avaliar as adaptações e as 

respostas do tecido muscular ao aumento da atividade contrátil, usando a elastografia e 

a ultrassonografia em modo-B. Os estudos foram centrados no músculo do quadricípite 

femoral e abordaram o estudo do efeito do treino de força e da atividade contrátil 

muscular na espessura muscular, eco-intensidade e rigidez muscular. 

Materiais e métodos: Três diferentes estudos foram realizados e descritos ao longo 

desta tese. Um total de 64 jovens adultos de ambos os géneros participaram dos 

estudos. No primeiro estudo (N = 20), foi analisada a reprodutibilidade da espessura 

muscular e da eco-intensidade dos quatro músculos que compõem o quadricípite 

femoral. Para isso foram adquiridas três imagens em modo B, nos planos longitudinal e 

transversal, em dois momentos distintos. A eco-intensidade foi medida usando dois 

tamanhos diferentes de região de interesse, um representado por uma forma 

retangular, medindo 70 mm2 e um outro representando o máximo do músculo 

apresentado na imagem ultrassonográfica, evitando as fáscias superficial e profundas do 

mesmo. A precisão das medidas foi, então, analisada usando o Coeficiente de 

correlação intra-classe [ICC (3,1)], o erro padrão de medição (SEM) e a menor alteração 

detectável (SDC). A análise de Bland-Altman foi utilizada para estudar o nível de 

concordância entre os planos de imagem ultrassonográficos e os diferentes tamanhos da 

região de interesse. No segundo estudo (N = 28), analisou-se o efeito de um programa 

de treino de força, com duração de 15 semanas, sobre espessura muscular e eco-

intensidade em três diferentes regiões de cada um dos quatro músculos que 

representam o quadricípite femoral: reto femoral, vasto intermédio, vasto medial e 

vasto lateral. Este estudo incluiu um grupo de controlo e dois grupos de treino, em que 

um realizou um protocolo de treino concêntrico e o outro de treino excêntrico. Durante 

este estudo, as alterações na rigidez do vasto lateral, em resposta ao treino de força 
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foram avaliadas usando a elastografia quasi-statica, semi-quantitativa. No último estudo 

(N = 16), foram analisadas as alterações agudas na rigidez de vasto lateral associadas ao 

alongamento passivo, ao desempenho de atividade contrátil de curta duração, mas 

intensa e às contrações isométricas musculares usando a elastografia de onda 

supersónica por cisalhamento. 

Resultados: Foi encontrada uma alta ou muito alta reprodutibilidade para espessura 

muscular (intra-sessão, ICCs: 0,82-0,99; inter-sessão, ICCs: 0,70-0,98) e eco-intensidade 

(intra-sessão, ICCs: 0,74-0,97; inter-sessão, ICCs: 0,48-0,94). Em geral, a 

reprodutibilidade para os valores da espessura muscular foi maior no plano transversal e 

no que diz respeito aos valores da eco-intensidade verificou-se uma melhor 

reprodutibilidade quando foi utilizada uma região de interesse de maiores dimensões. 

Um pequeno viés e menores valores de concordância caracterizam as medidas de eco-

intensidade obtidas com uma região de interesse maior ou menor. No estudo 2, os 

participantes submetidos a 15 semanas de treino de força revelaram o aumento da sua 

espessura na maioria das regiões musculares avaliadas, mas não em todas. Não foram 

encontradas alterações significavas dos valores da eco-intensidade com a realização do 

treino de força na maioria dos músculos do quadricípite femoral, excepto para o vasto 

intermédio e para algumas regiões do vasto lateral. Por outro lado, o treino de força 

aumentou significativamente a rigidez do vasto lateral. Não foram observadas 

diferenças significativas nos parâmetros quantitativos ultrassonográficos entre o treino 

concêntrico e excêntrico. O último estudo demonstrou um aumento agudo de cerca de 

10% nos valores da rigidez do vasto lateral como resultado da realização de contrações 

máximas isométricas, concêntricas e excêntricas. Os valores da rigidez do vasto lateral 

também aumentaram durante a flexão do joelho de 10º para 50º e posteriormente para 

90º. Finalmente, observou-se uma relação linear entre os valores de rigidez do vasto 

lateral e o nível de contração muscular isométrica do quadricípite femoral. 

Conclusões: As medidas ultrassonográficas da espessura muscular e eco-intensidade 

mostram uma reprodutibilidade moderada a muito alta. A reprodutibilidade e a 

concordância das medidas de espessura muscular e eco-intensidade são maiores no 

plano transversal e quando é utilizada uma região de interesse de maior dimensão. A 

elastografia semi-quantitativa mostrou existir um aumento significativo na rigidez 

muscular como resultado do treino de força. A elastografia por onda de cisalhamento 

supersónica é um bom método para investigar as alterações das propriedades mecânicas 

musculares associadas à função muscular. Estes resultados enfatizam a importância de 

uma avaliação objetiva e quantificável dos músculos por ultrassonografia, para estudar 

a adaptação muscular ao treino e função muscular, no geral. 
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Introduction 

In the last years, the use of ultrasound (US) imaging for the study of muscle skeletal 

function has grown considerably. The reasons for such growth include the ability to 

study muscle morphology and muscle tissue mechanical properties at relatively low cost 

and accessibility (Wang et al., 2017). The continuous improvement of US imaging 

equipment, including the use of multifrequency probes, higher frequency of image 

acquisition, and the development of new US techniques, such as elastography have 

contribute to make US imaging an important method in muscle function research 

(Paluch et al., 2016; Walker et al., 2004).  

Ultrasound imaging is a major diagnostic imaging technique, including for the clinical 

assessment of muscle alterations associated with neuromuscular diseases or injury 

(Pillen et al., 2008). Numerous studies have proven the feasibility of US imaging for 

studying muscle function in non-pathological conditions (Jansen et al., 2012). The 

assessment of parameters such as muscle thickness (MT) and texture allows studying 

muscle morphological responses to a variety of stimulus, in particular to muscle disuse 

and resistance training (Teixeira, 2013).  

MT, defined as the distance between the superficial and deep fasciae of muscles, and 

echo-intensity (EI) are the two most important parameters of quantitative US for 

studying muscle adaptation due to neuromuscular diseases or demographic factors, such 

as age, gender, practice of sports, and sedentary lifestyle (Jansen et al., 2012; Trip et 

al., 2009). Exercise training can induce specific muscle adaptations depending on 

variables such as the type of training, and its intensity and duration (Nishihara et al., 

2014; Tilp et al., 2012; Zaidman, et al., 2008). However, the results can be quite 

controversial, in most of the cases due to the different methodologies used. Assuring 

the consistency of quantitative US, in particular its reproducibility, is necessary for 

using US imaging and ultrasound-derived parameters in the study of muscle adaptation 

to physical exercise. While a number of associations have been established between MT, 

EI and models of muscle use and disuse (e.g., bed rest or aging), it is not clear how 

strength training affects those parameters in complex muscles, such as the quadriceps 

femoris (Strasser et al., 2013). In the case of EI, there is no consensus about how this 

parameter changes in response to strength training in young and healthy subjects. 

A recent application of quantitative US is the evaluation of tissue stiffness. This 

evaluation is decisive in the early diagnosis and follow-up of a variety of diseases, 

including neuromuscular diseases (Pillen et al., 2008), but it is also important for the 
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non-invasive and dynamic assessment of muscle mechanical properties (Brandenburg et 

al., 2014; Yanagisawa et al., 2015). Elastography is an imaging technique that maps soft 

tissues’ stiffness using a colour grade from which a semi-quantitative or quantitative 

measure of stiffness can be derived (Toledo, 2016). Using US elastography, the 

mechanical behaviour of muscles can be studied non-invasively and in dynamic 

conditions and, unlike other techniques, it can measure stiffness in localized muscle 

regions and in specific muscles within muscle groups (Bouillard et al., 2014; Bouillard et 

al., 2011; Lacourpaille et al, 2012; Nordez, et al., 2006; Toledo, 2016). Despite the fast 

growing number of studies employing US elastography to investigate muscle function, 

the effect of strength training on local muscle stiffness has not been fully explored. 

Also, the effect of passive stretching and muscle contraction on the amount of stiffness 

in complex muscles such as the Vastus Lateralis (VL) is not fully described.   

Thesis aims  

The overall aim of this thesis is to investigate the feasibility of ultrasound imaging for 

studying skeletal muscle function and adaptation to different types of contractile 

activity.  

The specific aims of this thesis are as follow: 

- To study the reproducibility of ultrasound-derived measures of muscle thickness 

and muscle echo-intensity for each head of the quadriceps femoris. 

- To study changes in quadriceps femoris muscle thickness, muscle echo-intensity 

after different kinds of strength training (i.e., concentric or eccentric strength 

training) and different movement amplitudes. 

- To study the feasibility of quasi-static ultrasound elastography for studying 

changes in vastus lateralis stiffness after different kinds of strength training 

(i.e., concentric or eccentric strength training). 

- To study acute changes in vastus lateralis stiffness in response to contractile 

activity, passive stretching and level of isometric contraction using supersonic 

shear wave imaging.  

The structure of this thesis is outlined in Figure 1. 
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Figure 1: Thesis flowchart.  
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Thesis outline 

This thesis is divided in five Chapters. Chapter 1 presents a literature review describing 

the state of the art regarding musculoskeletal (MSK) evaluation by medical imaging with 

a special focus on US. The major applications of US imaging and the parameters that 

can be quantified using this technique will be presented and discussed. A brief 

description of the gross anatomy of the quadriceps femoris will also be presented. 

Chapter 2 reports the experimental study designed to study the intra- and inter-session 

reproducibility of US measures of MT and EI for each of the four heads of the quadriceps 

femoris in a group of healthy young adults.  

Chapter 3 is divided in two sections each one describing selected parts of an 

interventional study of 15 weeks of strength training. The first section addresses the 

effect of the 15-week strength training program on MT and EI in several regions of the 

heads of the quadriceps femoris. In the second section, the effect of the same strength 

training program on VL’s elasticity, measured by means of quasi-static elastography 

(QSE) is reported.  

Chapter 4 reports the last experimental study of this thesis. In this preliminary study, 

SSI was used to investigate acute changes in VL’s stiffness caused by passive stretching, 

intense contractile activity, and isometric contraction. 

Chapter 5 presents a general discussion addressing the main findings in the thesis, 

major limitations, and recommendations for future research.  
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Chapter 1: Background 

Medical imaging plays nowadays a central role in the diagnosis and follow-up of MSK 

diseases. Ultrasound imaging, together with magnetic resonance imaging (MRI), have 

increasing importance in this area due to their evolving ability for soft tissue evaluation. 

On the other hand, general radiography shows many limitations for evaluating soft 

tissues and exposes the patients to ionizing radiation (Tan et al., 2003). 

The latest edition of iRefer guidelines of the Royal College of Radiologists (RCR) (2012) 

has a chapter fully dedicated to MSK pathology and identifies 27 MSK clinical problems 

to support clinicians in making appropriate referral decisions (RCR, 2012). A recent RCR 

member stated that new European referral guidelines for radiological imaging must be 

promoted to support the good practice in medical imaging prescription (Remedios et 

al., 2014). For the majority of these clinical situations, US imaging is indicated for a 

medical assessment taking into account its accuracy and non-exposure to ionising 

radiation (RCR, 2012). 

Advantages and disadvantages of medical imaging examinations for MSK studies can be 

compared in Table1. 

 
Table 1: Comparison of specific imaging techniques (adapted from: Boykin et al. 2010) 

Modality Pro Contra Risk Cost 

Radiography Good evaluation of 
bone. 

Unable to 
evaluate soft 

tissue. 

Low radiation 
exposure. 

Low 
cost. 

US 

Good visualization of 
soft tissues; 

Dynamic testing 
possible; 

Low costs; 
Availability. 

Unable to 
evaluate deep 
joint structures 
(e.g. shoulder); 

Highly 
dependent on 

examiner skills. 

No 
identifiable 

risk. 

Low to 
medium 

cost. 

MRI 

Good visualization of 
soft tissues; 

Good visualization of 
concomitant injuries 
such as labrial tears; 

Good operative 
planning possible. 

Possible false 
positive 
results; 

Availability. 

Potential risk 
of 

nephrogenic 
systemic 
fibrosis in 

renal 
insufficiency. 

High 
cost. 

MR-
arthrography 

Superior to 
conventional MRI and 

US in respect of 
sensitivity and 
specificity of 

detection of soft 
tissue tears  

(also see MRI). 

Invasiveness; 
Availability. __________ High 

cost. 
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Computed 
tomography 

(CT) 

Good evaluation of 
bony defects. 

No good 
visualization of 

soft tissue;  
Availability. 

Moderate 
radiation 
exposure. 

Medium 
cost. 

CT-
arthrography 

Good evaluation of 
bones combined with 

reasonable 
evaluation of soft 

tissues. 

Invasiveness 
Availability. 

Moderate 
radiation 
exposure. 

Medium 
cost. 

 

Ultrasound diagnostic for injuries, inflammation or chronic problems is reliable and 

increasingly common. Some specific structures are more affected, but pathological 

changes are similar in the tendons, ligaments, and muscles regardless their location 

(Salh, 2015). The evaluation of tendon diseases or injuries is probably the most common 

clinical indication for US evaluation. This method has a high sensitivity (100%) for full 

thickness tears but, similar to MRI, has a much lower sensitivity for partial thickness 

tears (Lento & Primack, 2008). 

Compared to US, general radiology and MRI are useful for evaluating intra-articular and 

peri-articular alterations, however US can add some information like detecting small 

joint effusions, and helping on its location as a guide for aspiration (Lento & Primack, 

2008).  

Ultrasound examination includes the ability to perform dynamic imaging, as well with 

sono-palpation or motion. With US, tendon subluxation or dislocation can be visualized 

with dynamic manoeuvres. The same cannot be performed with MRI. Abnormalities like 

tendon clicks and snaps or impingement syndromes are easily evaluated by US (Lento & 

Primack, 2008; McNally, 2011).  

MSK ultrasound is a good method to clearly define the extent of an injury and to detect 

the cause of the underlying effusion. With Doppler US, the synovium of inflammatory or 

infectious arthritis can be evaluated. Ultrasound evaluation was introduced on the 

peripheral nervous system for the diagnostic of carpal tunnel syndrome (Lento & 

Primack, 2008). 

Due to its portability, user friendly, and superior spatial resolution US is considered an 

excellent imaging modality for detecting and classifying a large number of MSK injuries. 

This method can also identify non-traumatic or primary muscle pathologies such as 

myositis and it can diagnose more rapidly muscle sports injuries (Lento & Primack, 

2008). Ultrasound allows the distinction between different grades of muscle strain (Lee 

& Healy, 2004).  
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Ultrasound has become a well-established method in the evaluation of sports-related 

injuries of both the upper and lower extremities. Its accuracy has been confirmed for 

many types of diseases (Blankenbaker & De Smet, 2006; Lento & Primack, 2008). 

Around 10-55% of all sport injuries are muscle injuries and it is estimated that over 90% 

of sports related injuries are strains or contusions. Muscle strain injuries can result from 

a faulty contraction or from excessive stretching (Alqahtani, 2010).  

1.1 MSK ultrasound examination 

Ultrasound image has improved over the past few decades, increasing its clinical 

application (Lee & Healy, 2004). In the last years the use of MSK ultrasound had 

significantly increased with a 3-fold increase in the number of studies performed 

between 2000 and 2009 (Petscavage-Thomas, 2014). Salh (2005) argues that MSK 

ultrasound should be the first examination for most pathological conditions and it 

should be done for every patient complaining of swelling, pain and trauma before doing 

general radiology or MRI (Salh, 2015). Ultrasound is an excellent imaging modality for 

most MSK problems, allowing the evaluation of various structures including tendon, 

muscle, joints, even nerve and some osseous pathology with excellent resolution (Lento 

& Primack, 2008).  

Comparing with fluoroscopy and CT methods, US offers advantages when used for 

interventional procedures. Although fluoroscopy or CT scan can be helpful in the 

localization of the structure to be targeted, both require ionizing radiation. In addition, 

fluoroscopy does not allow soft tissue visualization, relying on bony landmarks and often 

use contrasting agents in its procedures (Lento & Primack, 2008).  

One important advantage of US imaging for MSK evaluation is that it allows patients to 

move during examinations and therefore is capable of supporting the diagnosis of 

several pathological conditions that are elicited only through patient movement (Lee & 

Healy, 2004). Ultrasound has also some advantages over MRI, which includes 

accessibility, lower cost, and more patient friendly. It allows a more direct imaging 

correlation with patient symptoms, which provides important information (Blankenbaker 

& De Smet, 2006; Lento & Primack, 2008). However, MRI allows a larger area to be 

examined but this is not always an advantage since several ‘‘abnormalities’’ may be 

detected that may be clinically unrelated to the patient’s complaints. On the other 

hand, US with the application of extended field of view imaging can also examine large 

areas while preserving the interaction with the patient. Ultrasound permits a real time 

imaging, observing pathologic movement in tendon, bursa, muscles, or joints, while in 
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MRI movement distorts image quality and introduces artefacts (Lento & Primack, 2008; 

McNally, 2011). 

The US transducers are used according to the type of structures to be visualized 

(Fulton, 2014; Lento & Primack, 2008). The choice of the transducer should be made 

based on the type of examination, the organ evaluated, and the patient's biotype. 

There are at least five types of transducer, however only the linear transducer will be 

mentioned because it is used most of the times to visualise MSK structures. The linear 

transducer performs a linear scan (it has the shape of a rectangle) and the frequency 

ranges from 7 to 18 MHz. It is used in examinations of superficial structures, such as 

breast, thyroid, MSK system and peripheral vascular exams. The field of view is directly 

proportional to the width of the transducer. The use of the appropriate transducer 

frequency for the structure to be evaluated is extremely important (Fulton, 2014). The 

higher the frequency of the transducer, the higher is the resolution of the image and 

the lower is the depth reached (Hammond et al., 2014). 

1.1.1 Advantages and disadvantages of diagnostic US in MSK 

Ultrasound imaging does not use ionizing radiation and contrasts, when used, do not 

cause known adverse reactions. It is used as a guide for interventional procedures, as 

aspirations or drainages (Lento & Primack, 2008). Portability allows examination not 

only in the workplace but also in the training room and playing field (Lento & Primack, 

2008). The real-time capability US allows dynamic evaluation of muscle and tendon 

injuries (Lee & Healy, 2004). High-frequency transducers yield images with excellent 

spatial resolution and this is particularly useful for MSK imaging (Lento & Primack, 

2008). Recent advances in tissue harmonics have improved visualization and resolution 

of deeper structures even in obese patients (Lento & Primack, 2008). 

One limitation of US imaging is its dependence on body habitus. Ultrasound wave 

penetrance into tissue is inversely proportional to the wave frequency. The anisotropy 

artefact can be another disadvantage, affecting US diagnosis ability because it can 

mimic real pathology (Lento & Primack, 2008). Another limitation of US diagnosis 

includes operator dependence, that can be overcome with training and experience 

(Blankenbaker & De Smet, 2006). MSK ultrasound should be done by skilled examiners 

with knowledge about anatomy, physiology and pathology and they should be very 

familiar with US equipment in order to produce images of high quality (Whittaker & 

Stokes, 2011). Despite these disadvantages, US imaging has been the method of choice 

for the diagnosis of muscle injuries (Lee & Healy, 2004; Lento & Primack, 2008). The 

advantages and disadvantages of US in imaging muscles are presented in Table 2.  
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Table 2: Advantages and disadvantages of applying US in MSK imaging. 

Advantages of US Disadvantages of US 

ü Non-invasive examination.  

ü No use of ionising radiation or contrast 
reagents. 

ü Good and excellent soft resolution 
contrast. 

ü High specificity and sensitivity values. 

ü Pathology treatment follow-up. 

ü Portable and less expensive procedure. 

ü Useful in the evaluation of muscle 
trauma.  

ü Operator dependent. 

ü Lower special resolution than MRI and 
CT scans. 

 

 

 

1.1.2 Parameters of B mode ultrasound evaluation 

Several parameters are taken into account when structures are assessed by US, being 

the following the most used: echo-intensity, echo-structure, contour and dimensions 

(namely thickness). Ultrasonography is used to measure morphological muscle-tendon 

alterations, including changes in thickness and EI. As such, these parameters are being 

increasingly analysed and associated with muscle function and muscle mechanics.  

Muscle thickness (Figure 2) is defined as the distance between the most superficial 

aponeurosis and the deepest aponeurosis of the muscle (Delaney et al., 2010; Teixeira, 

2013; Verhulst et al., 2011). It is a quantitative parameter obtained in both transversal 

and longitudinal images to assess muscle chronic adaptations to different strength 

training protocols and it is associated with muscle strength capacity (Radaelli et al., 

2011). Studies reveal that the accuracy of MT as a predictor of muscle strength is 

relatively low comparatively with measurements of muscles’ cross-sectional area 

(Muraki et al., 2013). Yet, some authors support the use of MT as a predictor of the 

muscles’ cross-sectional area (Muraki et al., 2013).  

 

 

 

 



Morphological ultrasound evaluation in acute and chronic muscle overloading 

 10  Rute Santos 

 

 

Figure 2: B mode ultrasound image of the vastus lateralis and of its thickness measured 
by Image J software. Muscle thickness was determined as the distance between 
superficial fascia of the muscle and the deep fascia of the same muscle.  

 

Echo-intensity, assessed by ultrasonography, is the capacity of a tissue to reflect the US 

waves and produce echo, and it may contain information about the muscle tissue status. 

The fact that US beams penetrate easily through the majority of structures leads to 

structures appearing as hypoechoic (this happens with liquids and with low density 

tissue). When the contrary occurs, i.e., when the US beams have more difficulty in 

passing through the structures, there is higher reflection of the US and the tissues 

appear as hyperechoic (connective tissue and fat)(Wilhelm et al., 2014). 

Echo-intensity thus allows to assess alterations in the quantity of the non-contractile 

intramuscular components (Nielsen et al., 2006; Wilhelm et al., 2014), caused by 

muscle pathology or simply by degenerative alterations associated with ageing (Pillen et 

al., 2009).  

In the past, and still today during clinical practice, EI is assessed in a qualitative 

manner, depending on a visual analysis done by the operator, who relies on his 

experience to reach a conclusion or a clinical decision. For this reason, this method is 

subjective and insensitive to small alterations. Currently, however, most studies 

evaluate EI quantitatively based on a grayscale analysis (Fukumoto et al., 2012; Pillen, 

2010; Pillen et al., 2009). This technique consists in assessing the distribution of gray 

levels in the image and its variation, i.e., it is based on the assessment of the intensity 

of gray levels across the image (Alqahtani, 2010). This quantitative EI analysis is more 

reliable and it is less subjective, providing information that goes beyond the mere visual 

interpretation of the image’s EI pattern (Fukumoto et al., 2012; Ríos-Díaz et al., 2010). 
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This quantitative method requires simple software for image edition but it is sensitive 

to differences in hardware and software between US machines (Pillen et al., 2009). All 

system configuration parameters cannot be changed during image collection and depth 

must be set taking into account the visualisation of the structure under study and the 

overall gains and dynamic range value. The time gain compensation must be kept 

uniform and the angle of the transducer must be perpendicular to the assessed tissue 

(Alqahtani, 2010).   

A healthy muscle is visualised in an US image as hypoechoic, i.e., with a low EI value, 

due to the small amount of non-contractile tissues (Pillen et al., 2009; Teixeira, 2013). 

In general, a diseased muscle, a muscle suffering from inactivity or a muscle from an 

aged person displays higher EI levels, i.e., it becomes more hyperechoic and more 

diffuse compared with the muscles of healthy young subjects (Pillen et al., 2009). In 

contrast to the muscle belly, tendons are hyperechoic and become hypoechoic with 

ageing (Nielsen et al., 2006). 

The B-mode US image is a combination of pixels displaying a specific intensity of gray 

(Ríos-Díaz et al., 2010). Upon editing the image, the researcher should select the area 

of interest in the muscle, and the software calculates the different levels of gray 

existing in that selected region of interest (ROI) (Pillen et al., 2009). The ROI, which is 

visually selected and should include as much of the target muscle as possible, avoiding 

the surrounding bone or fascia, may include the cross sectional area of the muscle 

(Caresio et al., 2015). Being aware of the typical pattern that is characteristic of the 

studied muscle is important, as the hyperechoic pattern of the image, such as the 

presence of internal aponeurosis (e.g., the RF muscle) or the heterogeneous distribution 

of the EI may skew the distribution of gray level values obtained for the entire muscle 

cross-section (Caresio et al., 2015). 

Quantitative measurements of EI is a relatively recent method of ultrasonography 

imaging which has raised the interest of several authors, namely for MSK studies. This 

method has been associated with the assessment of tendinous and muscle morphological 

alterations caused by pathologies or lesions, often being associated with adipose 

infiltration of connective tissue and/or interstitial oedema (Alqahtani, 2010; Radaelli et 

al., 2012; Ríos-Díaz et al., 2010). These tissue alterations increase the US beam 

reflection and result in an increase of the EI, which may display a specific spatial 

distribution within the muscle (Caresio et al., 2015; Pillen et al., 2008). The 

quantification of EI (Figure 3) may also be used in the characterisation and 

differentiation of muscle structures among athletes and sedentary individuals, as well 
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as in the analysis of alterations caused by muscle tiredness and fatigue (Alqahtani, 

2010; Caresio et al., 2015).  

 

Figure 3: Echo-intensity measurement. (A) B mode ultrasound of the vastus lateralis 
with a maximum ROI selected; (B) Histogram of the pixel graylevel values distribution 
and statistics obtained using Image J software. 

 

1.2 MSK ultrasound by elastography  

Elastography is a non-invasive technique that allows the characterisation of the 

mechanical properties of the tissues, aiming to determine the respective Young’ 

modulus or the amount of deformation that the tissue suffers when a load is applied 

(Vega, 2011). This technique has been evolving rapidly, demonstrating great potential 

not only in the diagnosis of diseases characterised by alterations of tissues’ stiffness, 

but also for the physiological and morphological study of different structures/tissues 

(Cosgrove et al., 2013).  

Elastography started off by being a qualitative and/or semi-quantitative technique, but 

evolved towards a quantitative by offering elasticity maps with the use of conventional 

ultrasonography equipment in real time, by means of software developments (Gheorghe 

et al., 2009; Zordo et al., 2009). Ultrasound elastography was described for the first 

time by Ophir et al. in 1991 (Konofagou et al., 2003; Ophir, 2005) and, later on, it 

evolved into an imaging tool in real time (Ophir et al., 1997). It may be defined as a 

dynamic technique developed to offer an estimated  value of the elasticity/rigidity of 

the tissue, measuring the degree of its distortion when subjected to an external force 

(Pedersen et al., 2012). Ultrasound elastography is a complementary technique to the 

B-mode US, offering high diagnosis sensitiveness regarding the detection and assessment 

of the nature and structure of pathologic alterations in the body (Castaneda et al., 
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2010; Smajlovic et al., 2011). Several studies show that it is a reliable technique for the 

diagnosis of hematoma, oedema, fibrosis, benign and malignant solid lesions, allowing 

the early detection of neoplasms (Abella & Zordo, 2008; Castaneda et al., 2010; 

D’Onofrio et al., 2014; Fierbinteanu-Braticevici et al., 2012; Goddi et al., 2011; Iglesias-

Garcia et al., 2009; Lee, 2009). Due to its advantages and indications, US elastography 

tends to be part of every ultrasonography exam (Castaneda et al., 2010; Smajlovic et 

al., 2011). 

This first studies employing US elastography were carried out for the diagnosis of 

breast, thyroid and prostate neoplasms (Rizzatto, 2008). Later on, advances in this 

method made possible to study deeper structures, such as the liver and pancreas 

(D’Onofrio et al., 2014; Kudo et al., 2013; Pedersen et al., 2012). 

Ultrasound elastography has also great potential for the diagnosis of MSK diseases 

(Abella & Zordo, 2008; Monetti & Minafra, 2007). Because the mechanical properties of 

tissues are usually altered after injury or disease (e.g., inflammation, ageing and 

malignancy), by using US elastography tissue abnormalities may easily be identified 

(Pedersen et al., 2012). 

Elastography, including US elastography, started being used in MSK biomechanics 

research soon after its development. Both tension and shear wave elastography may be 

used in the study of muscle-tendon structures (Figure 4). Although most authors use 

tension elastography, more and more studies appear using shear wave elastography.  

 

Figure 4: Elastography by ultrasound imaging. (A) Quasi-static elastography; (B) shear 
wave elastography.  

 

The type of elastography depends on the method of stress application and their 

objectives. It includes compression elastography, shear-wave elastography, and 
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transient elastography. Each one has advantages, artefacts, limitations and specific 

clinical applications (Klauser et al., 2014). 

However, all types of elastography operate following three steps: stress or distortion to 

the ROI; the tissue response (strain) and processing the distortion (Toledo, 2016). The 

differences between different elastography methods also reside on how the distortion is 

applied to the tissue and on the type of force that is applied.  

1.2.1 Physical principles of elastography 

Assuming that tissues are elastic (i.e., they return to their initial shape after undergoing 

deformation), isotropic (their elastic modulus does not depend on the orientation of the 

tissue), incompressible (no volumetric variations when deformed), and homogeneous, 

there exists four fundamental modulus that can be associated with each other: modulus 

of elasticity or Young's modulus, shear modulus, volumetric modulus and Poisson's ratio 

(Cavalcanti, 2012; Vega, 2011). 

The elastic modulus or Young's modulus is a mechanical parameter proportional to the 

rigidity of a solid structure when subjected to an external tension or compression 

(Cavalcanti, 2012; Gennisson et al., 2013; Rizzatto, 2008). The shear modulus is based 

on the sliding of planes parallel to each other when forces are applied in parallel 

(Cavalcanti, 2012; Gennisson et al., 2013). The volumetric module measures the 

tendency of a tissue to deform in all directions when applying a multidirectional force 

(Gennisson et al., 2013; Smajlovic et al., 2011; Vega, 2011). Poisson ratio measures 

transverse deformation of a tissue when a longitudinal force is applied (Cavalcanti, 

2012; Gennisson et al., 2013).  

The basic principle of elastography is that stress applied to tissue causes changes within 

it, which depends on its elastic properties. Elastography then evaluates tissues’ 

elasticity by taking into account their deformation when a force is applied (Cosgrove et 

al., 2013; Drakonaki et al., 2012; Smajlovic et al., 2011).  

Since its emergence, different generations of elastography have been developed, 

depending on the type of stress application and the method used to detect tissue 

displacement and obtain the image. However, all types of elastography use force and 

measure the deformation produced by this force on the tissue (Cosgrove et al., 2013; 

Drakonaki et al., 2012; Smajlovic et al., 2011).  
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1.2.2 Methods of elastogram interpretation and analysis  

The methods of elastography can be divided into three broad groups: qualitative, semi-

quantitative, and quantitative (Cosgrove et al., 2013; Franchi-Abella et al., 2013; 

Toledo, 2016). All these elastography methods produce a colour map, which is known as 

an elastogram (Toledo, 2016). These elastograms are available in most equipment, 

regardless of the type of elastography used (Franchi-Abella et al., 2013). The 

elastogram is generated by software and is usually depicted as a semi-transparent 

overlay of the grayscale US image (Toledo, 2016). They can be used as grayscale or 

colour scale depending of the US manufacturer (Franchi-Abella et al., 2013). When a 

colour-coded elastogram is used, usually the blue colour is chosen for hard tissue, red 

for soft tissue and green for intermediate stiffness (Barr et al., 2015; Toledo, 2016).   

The qualitative evaluation is obtained from visual inspection of the elastogram (Franchi-

Abella et al., 2013). The big disadvantage of this type of elastography is its reliance on 

the operator and poor reliability (Pochini et al., 2015; Toledo, 2016).   

Regarding semi-quantitative elastography, two methods are available: strain-ratio, and 

histogram of pixel distribution. The first one gives a strain index or elasticity ratio 

between two regions of interest (Franchi-Abella et al., 2013). The second method, is 

based on measuring the number of pixels of a given colour within a ROI (Toledo, 2016). 

This analysis can only be done after the acquisition of the image and by using another 

software, like Image J, Matlab, or any other comparable software (Toledo, 2016). This 

type of analysis is less operator dependent, has a higher reliability and provides an 

indirect stiffness value (Toledo, 2016). 

Quantitative US elastography is available from shear wave propagation velocity 

measurement techniques. In this case, elastography uses measurements of the wave 

speed travelling through the tissues. The elastogram now gives a quantitative 

measurement of tissue’s stiffness in the form of the modulus of elasticity, expressed in 

kilopascal (kPa) (Franchi-Abella et al., 2013; Toledo, 2016). Therefore, shear wave 

elastography provides a direct measure of tissues’ stiffness (Toledo, 2016).  

Elastography artefacts 

Despite the great improvements in elastography, there are some important artefacts 

associated with this technique (Cosgrove et al., 2013; Franchi-Abella et al., 2013). For 

example, force-strain relationship is non-linear and time dependent, the elasticity 

varies spatially and with direction, the contours and the structure of the tissues can 

alter the relationship between the shear wave velocity and the shear modulus, and 
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tissues can be discontinued mechanically by anatomical features, such as tumours or 

scars (Cosgrove et al., 2013). It is important to be familiar with the pitfalls and 

artefacts of US elastography for a correct interpretation of the elastograms.  

1.2.3 Methods for force application 

Two types of elastography can be considered regarding the method used to apply force: 

quasi-static and dynamic. 

Quasi-static elastography 

In quasi-static elastography (QSE), stress is applied upon the tissue by an external 

vibration applied with the transducer (Cosgrove et al., 2013; Gennisson et al., 2013; 

Toledo, 2016). The obtained images are semi-quantitative and do not directly describe 

the elasticity of the tissue since the amount of tension produced within the tissue is 

unknown. However, ROIs can be drawn in the area under study and in a reference 

region in order to calculate the ratio and obtain a semi-quantitative analysis (Cosgrove 

et al., 2013; Toledo, 2016). 

Together with absence of true quantification, a major limitation of QSE is still the lack 

of control over the applied force. Moreover, the use of operator-imposed pressure limits 

the study to surface structures (Gennisson et al., 2013). 

Dynamic elastography  

In dynamic elastography, the force or source of stress is generated by the US probe 

(Toledo, 2016). The force applied can be a time-varying force, a short transient 

mechanical force, or an oscillatory force with a fixed frequency (Gennisson et al., 

2013). This method of US elastography has the advantage of being quantitative and also 

of not depending on the operator or on an external actuator to produce the stress 

(Cosgrove et al., 2013). 

1.2.4 Elastography techniques  

The main elastography techniques used are strain elastography, acoustic radiation force 

impulse elastography, transient elastography, and shear wave elastography (Figure 5).  
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Figure 5: Scheme of ultrasound elastography methods. (A) Strain elastography; (B) 
acoustic radiation force impulse elastography; (C) transient elastography; (D) shear wave 
elastography. (Adapted from Bamber et al., 2013). 

Strain or compression elastography 

Strain elastography, also described as compression elastography, is based on the quasi-

static method and is a qualitative or semi-quantitative analysis (Gennisson et al., 2013; 

Klauser et al., 2014). The quantified parameter is strain, which is produced by repeated 

manual pressure of the tissue under investigation (Kim et al, 2015; Klauser et al., 2014). 

The difference in the echo produced by the pressure/strain is calculated (Modulus of 

elasticity=stress/strain), measuring the relative strain of one area compared to that of 

another and the results are represented by a colour-coded strain distribution map 

(elastogram), which is often superimposed over the conventional B-mode image or 

displayed next to it (Kim et al., 2015; Klauser et al., 2014). The elastogram is 

adjustable by the user and this technique can draw the calculation area as a relatively 

free shape (Kim et al., 2015; Klauser et al., 2014). Most compression elastography 

equipment provide visual information about the applied pressure on the screen (Kim et 

al., 2015).  

Acoustic radiation force impulse elastography  

In this type of elastography, the tissues are deformed by US pulses that are produced by 

a focused radiation force. The tissues’ displacement can be measured using several 

short-time pulse echoes and then comparing the results with the reference image (Barr 

et al., 2015; Klauser et al., 2014). This technique is based on qualitative analysis and 

the results are represented by a colour-coded or grayscale elastogram. This technique 

can evaluate deeper tissues (Cosgrove et al., 2013).  

Transient elastography 

Transient elastography, also designed by pulsed elastography, uses a controlled external 

tone burst of vibration to generate shear waves (Barr et al., 2015; Klauser et al., 2014). 

This technique can provide quantitative evaluation, measuring the average shear wave 
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velocity within a ROI converted to Young’s modulus, expressed in kPa (Barr et al., 2015; 

Drakonaki et al., 2012; Klauser et al., 2014). Transient elastography provides only 

regional elasticity measurement with limited depth and is mainly used for liver studies 

(Drakonaki et al., 2012; Klauser et al., 2014).  

Shear-wave elastography  

Shear-wave elastography is a dynamic method and it is based on measuring the 

propagation velocity distribution of the directional shear wave, produced by an US pulse 

(Drakonaki et al., 2012; Klauser et al., 2014). The velocity of the shear waves can be 

measured and used to evaluate tissue elasticity by the Young’s modulus (E) calculated 

by the formula E = 3rV2 (E = Young’s modulus; V = shear wave velocity; r = material 

density) (Klauser et al., 2014). This technique provides both qualitative elastograms and 

quantitative measurements, which are presented in quantitative maps with units in kPa 

(stiffness) or in centimetres per second (shear wave velocity) (Drakonaki et al., 2012; 

Klauser et al., 2014). Shear wave elastography has a depth limitation and only limited 

ROI shapes are available for the quantitative measurement of elasticity (Klauser et al., 

2014).  

 1.3 Muscular changes detected by ultrasound  

In an US image, the muscle tissue features different characteristics and it can be easily 

distinguished from the surrounding structures, such as adipose and subcutaneous tissue, 

bone, nerves and blood vessels (Alqahtani, 2010; Pillen, 2010). 

The healthy muscle presents low echo density (i.e. it is hypoechoic) (Pillen, 2010). The 

few echoes generated are due to the existence of minimal interfaces available for US 

reflection, caused by the muscle cells which are composed by an internal, highly 

organised cytoplasm structure, and by connections of identical structural proteins 

(Alqahtani, 2010; Walker et al., 2004). 

In the transversal plane, perpendicular to the muscle longitudinal axis, the muscle has a 

poor echogenic appearance, although somewhat heterogeneous, due to the presence of 

countless hyperechoic, curvilinear and dotted reflections of the perimysial connective 

tissue involving the muscle fascicles and also of adipose tissue (Alqahtani, 2010; Pillen, 

2010; Vlychou & Teh, 2008; Walker et al., 2004).  

In the longitudinal plane (along the muscle fascicles’ axis) the fascicular architecture of 

the muscle becomes visible. The reflections of the perimysial connective tissue are now 

visible as linear echogenic structures similar to septa (Lee & Healy, 2004; Pillen, 2010; 
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Walker et al., 2004). These tissues of the perimysium vary in thickness and intensity 

along the muscle (Alqahtani, 2010; Walker et al., 2004).  

The muscle limits are easily identified through the epimysium surrounding the whole 

muscle, which displays high EI (Verhulst et al., 2011). In other words, when the US 

beams encounter an acoustic surface, for example in the transition of the muscle and 

the epimysium, a significant portion of the US is reflected (Pillen, 2010). 

On the other hand, the acoustic impedance between the muscle and the bone is very 

different, causing a strong reflection, defining the external limit of the bone with high 

EI, accompanied by a characteristic bone shade, preventing the US from penetrating 

into the deepest structures (Pillen, 2010; Walker et al., 2004). This typical image of the 

bone is useful in comparative studies using the opposite extremity, or in longitudinal 

studies (Walker et al., 2004). 

In muscles such as the RF, the most prominent echo is generated by its peripheral 

aponeurosis (Alqahtani, 2010; Vlychou & Teh, 2008; Walker et al., 2004). This 

aponeurosis contains collagen fibres randomly distributed and has high EI so it can be 

structurally (and acoustically) distinguished from the highly-organised muscular 

architecture (Alqahtani, 2010; Walker et al., 2004).  

The subcutaneous adipose tissue has low EI. However, in its inner part it presents 

several eco-intense septa of connective tissue (Alqahtani, 2010; Pillen, 2010).  

The nerves and tendons present a relatively high EI when compared with healthy 

muscles, while blood vessels are characterised by being circles (transverse plane) or 

lines (longitudinal plane) - hypo or anechoic – and their presence may be confirmed with 

the use of US Doppler to demonstrate the presence of blood flow (Pillen, 2010). 

The superficial muscles may easily be seen through ultrasonography. The advances in 

technology also allow a better resolution, making it possible to identify small individual 

muscles even when they are overlapped by other muscle groups (for example, in the 

hand). Deeper muscles (for example major psoas or paravertebral muscles complexes) 

may be difficult to visualise with sufficient resolution with US, due to the reflection or 

absorption of the US beams by layers of superficial tissues, such as the skin, the 

subcutaneous tissue or other muscles (Pillen, 2010; Walker et al., 2004). In this case, 

convex transducers are often used. 

Each skeletal muscle has different proportions of perimysial tissue and, therefore, the 

level of EI changes with different muscles (Alqahtani, 2010; Walker et al., 2004). On the 

other hand, the muscles may show a considerable variation in the fascicular 
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arrangement regarding the tendons to which they are connected (Vlychou & Teh, 2008). 

Muscles may be unipennate (hamstring muscles), bipennate (biceps muscle), with 

peripheral aponeurosis (RF), or central aponeurosis (tibialis anterior muscle) (Alqahtani, 

2010; Vlychou & Teh, 2008; Walker et al., 2004). The layout of the fascicles is 

intimately connected to the relative strength and muscle movement amplitude. 

The structures that compose the quadriceps femoris show important differences as far 

as their visualisation in the ultrasonography is concerned that result from differences in 

shape, size, depth, morphology, and tissue composition (Kinugasa et al., 2005). The 

proximal tendons of the RF muscle present regular, smooth and homogenous 

hyperechoic contours. The RF muscle has a typical aponeurosis which has been 

previously described, shaped like a comma, hyperechoic, which stands out in the 

muscle tissue (Pasta et al., 2010). The vasti muscles possess small septa of perimysial 

tissue. The three vasti can be distinguished by the hyperechoic fascia surrounding each 

of them (Pasta et al., 2010).  

The first studies in MSK evaluation were limited to compare the normal and pathologic 

tissue using strain elastography. With the appearance of the dynamic elastography and 

quantitative evaluation, many studies were performed to characterise the normal 

muscle and its changes with contraction, stretching or ageing (Andonian et al., 2016; 

Drakonaki et al., 2012; Hirono et al., 2016; Klauser et al., 2014; Pochini et al., 2015). In 

a qualitative view, the muscle at rest is seen as an inhomogeneous mosaic of 

intermediate or increased stiffness with scattered softer and harder areas, especially at 

the periphery near boundaries (Drakonaki et al., 2012). On the other hand, with a 

quantitative evaluation some muscles were already characterized during passive 

stretching (Xu et al., 2015) or after physical exercise (Hirono et al., 2016).  

The reliability and validity of US elastography for measuring absolute muscle 

hardness/stiffness has been studied (Chino et al., 2012) and it is a potentially 

interesting technique to apply in clinical research projects that need an accurate 

assessment of muscle mechanical properties (Drakonaki et al., 2012; Klauser et al., 

2014; Lacourpaille et al., 2012).  

A study by Lacourpaille et al. (2012), where elastic modulus for several muscles was 

measured by US elastography by chiselling with ultrafast imaging, revealed that the 

elastic modulus varied between 2.99 kPa and 4.50 kPa (Lacourpaille et al., 2012). This 

variability in stiffness values among the different muscles is due to factors connected 

with the mode of acquisition and measuring and the type of muscle. The measuring of 

the chiselling elastic modulus proved to be dependent of the length of the muscle. On 
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the other hand, Toursel et al. (2002) mentions that the stiffness of the muscle is 

connected with the fibre typology (Toursel et al., 2002). 

The percentages of adipose tissue and collagen infiltration should also influence the 

chiselling elastic modulus, thus causing changes in stiffness values in different age 

groups. It is important to take into account also the influence of probe orientation, due 

to muscle anisotropy (Gennisson et al., 2010; Lacourpaille et al., 2012). Gennisson et al. 

(2010) has shown that the penetration angle of muscle fascicles also contributes for the 

differences in values of the elastic modulus in the different muscles, which is why it 

should be performed along the direction of the fascicles (Gennisson et al., 2010). 

Andonian et al. (2016) concluded that using the elastography it is possible to observe a 

decrease in quadriceps femoris stiffness, after a very demanding physical offered 

(Andonian et al., 2016). 

1.4 Ultrasound image quality analysis 

1.4.1 Optimisation of ultrasound image acquisition  

The US image can be optimised changing the depth, general gains, time gain 

compensation, frequency, focus, and the dynamic range (Figure 6) (Fulton, 2014; 

Zaidman et al., 2008).  

 
 
Figure 6: Example of ultrasound image parameters that can be manipulated to image 
optimisation. On the right side the display of this settings (frequency: 12 MHz; gain: 56; 
depth: 5.0 cm; dynamic range: 93). (Picture of LOGIQe equipment, General Electric 
Healthcare, GE Ultraschall, Deutschland GmbH & Co, Germany.) 

 

These parameters influence the image quality in terms of spatial, temporal and contrast 

resolution and can also increase or decrease the artefacts appearance (Rumack et al., 

2014). 
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In US imaging, the spatial resolution must be analysed on axial and lateral directions. 

The axial resolution is the resolution along the axis of the US beam. This resolution is 

defined as the capacity to distinguish two objects parallel to the US beam and is 

determined by the length of the pulse. Therefore, the higher the frequency of the 

transducer, the better the axial resolution of the image will be and, consequently, the 

distinction of detail in the depth will be lower. The lateral resolution is the resolution 

perpendicularly to the US beam and parallel to the transducer (Neves, 2002; Rumack et 

al., 2014). In other words, lateral resolution designates the ability to differentiating 

structures that are perpendicular to the axis of the beam. Lateral resolution is inversely 

proportional to the width of the beam and it depends on the number and density of US 

waves sent on and the echoes received (Neves, 2007; Rumack et al., 2014). The higher 

the frequency of the transducer, the narrower will be the beam and the better the 

lateral resolution will be.  

During an US examination, several artefacts may occur that blunt images’ quality. 

Artefacts are related with physics imaging principles and the most frequent are 

resolution, propagation, attenuation and anisotropy artefacts (Fulton, 2014; Pasta et 

al., 2010; Walker et al., 2004). 

Anisotropy artefact is common in MSK ultrasound (Figure 7). It depends on the angle 

between the US beam and the tissues and it occurs when the US beam is not 

perpendicular to the imaged structure (Lento & Primack, 2008). A smaller number of US 

waves are reflected and, consequently, detected by the transducer leading to a 

reduction in the EI (brightness) of the tissue being examined (Lento & Primack, 2008; 

Pasta et al., 2010; Walker et al., 2004). 

Figure 7: B mode ultrasound imaging of the vastus lateralis muscle. (A) Without artefact; 
(B) with anisotropy artefact.  
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In B mode US, images are analysed mostly based on subjective opinion (operator). 

Although a few parameters can be quantified with US imaging, during daily practice 

usually only the thickness is measured (objective evaluation). The subjective image 

analysis should be performed by trained observers (Håkansson et al., 2010; Ledenius et 

al., 2010) 

When QSE is performed, the stiffness is quantified usually with the purpose of 

identifying some pathology. ROI’s of normal and abnormal tissues are draw to analyse 

the colour scale, RGB pixel values, and pixel ratio differences. In wave elastography the 

system automatically gives a colour scale and stiffness quantification (kPa) per tissue. 

However, the elastography colour scale analysis is still a subjective opinion. 

As already mentioned, US imaging might be employed for evaluation of the so-called 

muscle quality through measured of EI, MT, and stiffness, which have been used to 

diagnose muscle abnormalities and to identify muscle physiological adaptations caused 

by physical exercise (Harris-Love et al., 2014; Pillen et al., 2006; Whittaker & Stokes, 

2011). Such US parameters have demonstrated value in the assessment of 

neuromuscular diseases and may be an important source of information regarding 

muscle performance (Fukumoto et al., 2012; Harris-Love et al., 2014; Zaidman et al., 

2010).  

The thickness of the muscle is easily obtained with the inbuilt measurement system of 

the US equipment. Ultrasound elastography is required for US assessment of muscle 

stiffness, but this type of measurements are nowadays implemented in many 

commercial US machines, however making them more expensive. The EI is an US 

parameter that always requires some external software to allow a quantitative 

measurement, otherwise remains as a subjective qualification made by the operator. 

Echo-intensity can be derived from the digital backscattered radiofrequency signal, but 

it is rarely viable in clinical context due to the limitations of US equipment and the 

need for custom signal processing (Zaidman et al., 2012).  

1.4.2 Ultrasound image quantitative parameters 

The quantitative estimation of echogenicity in clinical settings is often made through 

grayscale histogram analysis. This imaging analysis technique involves the construction 

of a plot featuring the number of pixels associated with a given ROI within intervals 

determined by intensity level (Pillen et al., 2009). Post-image acquisition analysis may 

be performed using a variety of image editing programs.  
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Many image analysis platforms are available and differ based on file type constraints, 

software customization and flexibility, hardware requirements, cost limitations, and 

image visualization needs (e.g., confocal microscopy, CT imaging, US imaging, etc.). 

Options range from commercially available software such as AnalyzeDirect, Inc., and 

SliceOmatic (TomoVision, Canada), to open source software options such as OpenCV, 

GNU Image Manipulation Program, Medical Imaging Interaction Toolkit, MIPAV (Medical 

Image Processing, Analysis, and Visualization), and OsiriX (Harris-Love et al., 2014). 

Software as Matlab (MATLAB and Image Processing Toolbox 2014a, MathWorks) requires 

some script writing skill, which combined with the cost of this software, limits its use. 

Nevertheless, the open nature of Matlab package allows custom usage and further 

advancement of the quantification methods (Smith & Barton, 2014).  

To overcome the subjective nature of some of the US measures, there are many 

software packages available on the market. A commonly cited program for grayscale 

histogram analysis is Photoshop (Adobe Systems, San Jose, CA), which has been 

generally used for clinical applications ranging from the quantitative analysis of 

endothelial damage to the measurement of skeletal muscle echogenicity in older adults 

(Harris-Love et al., 2014).  

Another alternative for image analysis is Image J (National Institutes of Health, 

Bethesda, MD, version 1.45s), a public-domain Java-based image processing and analysis 

program developed by Wayne Rasband of the National Institute of Mental Health at the 

National Institutes of Health (NIH). Image J has been extensively used for image 

processing in immunohistochemistry, tissue segmentation in microscopy images, and 

muscle morphometric measurements (Fortin & Battie, 2012; Schneider et al., 2012). 

This software continues to push and drive the field by sticking to a core set of design 

principles that have allowed it to become a modern image-processing platform 

(Schneider et al., 2012). Image J’s third-party tool connections have allowed it to be 

used in image workflows and take advantage of algorithm capabilities provided by 

Matlab. This package advocates a more flexible approach that would allow users to add 

new functionalities that are then shared with others. This was accomplished through the 

use of macros (custom programming scripts that automate tasks inside a large piece of 

software) and plugins. Image J has since evolved in its scripting capabilities and now 

allows other scripting environments to be harnessed, such as JavaScript, or other 

languages to be called, such as Python, through an Image J Jython Bridge (Schneider et 

al., 2012). Photoshop and Image J have both been cited as being among the most 

frequently used image processing and analysis software (Nanes, 2015).  
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Both Photoshop and Image J have a variety of selection tools for drawing ROIs within an 

image. Two commonly used methods include the semi-automated creation of a square 

or rectangular ROI region, or tracing the ROI region using a series of line segments that 

closely align with the targeted anatomical or morphological structure (Harris-Love et 

al., 2014). 

The 32-bit OsiriX software (version 3.8.1, Pixmeo, Geneva, Switzerland) was previously 

assessed as a more user-friendly image analysis software package for the Apple Mac OS 

(Microsoft Corp, Redmond, Washington) than Image J. One of the OsiriX software’s main 

advantages is its integrated picture archiving and communication system, which allows 

patient data to be stored automatically. Both OsiriX and Image J packages are used by 

clinicians and investigators in a wide variety of studies as functional tools for image 

analysis and they reveal excellent inter-software reliability and agreement (Fortin & 

Battie, 2012). 

Image quality can be analysed in two modes: objective and subjective (Jaffe et al., 

2006; Tang et al., 2012). Objective image analysis can be determined by measuring the 

mean pixel value and corresponding standard deviation (SD), these values facilitate the 

analyses of signal (as EI in US) and noise respectively (Söderberg et al., 2010). The 

inclusion of US image quality evaluation using both subjective and objective methods is 

important to strengthen the role of MSK ultrasound examination. 

1.5 Muscle contraction exercise 

Today there is a growing focus of people on pursuing a healthy and fit lifestyle, which 

has led to a great increase in the number of people who practice fitness and athletic 

activities. Demographic data suggest a large number of persons are engaged in regular 

exercise and structured sporting activities (Alqahtani, 2010). Such increased physical 

activity among the general population improves functional strength and benefits health, 

contributes to disease prevention and is an important adjunct in rehabilitation programs 

(Norrbrand, 2010).  

Strength training or muscular endurance is important to improve health and fitness. The 

benefits of strength training include the development and maintenance of muscular 

strength and endurance, the prevention and rehabilitation of muscular injuries and the 

reduction of the risk for some chronic diseases. Muscular action or neuromuscular 

activation of muscles contributes to the movement or stabilization of the MSK system 

(Walker et al., 2004; Walker, 1968). 
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Muscular actions can be of three types: isometric, eccentric (Ecc), and concentric 

(Conc). The isometric action happens when a force of equal magnitude opposes the 

amount of force produced by a muscle so that the length of the whole muscle-tendon 

complex remains unchanged. In fact, true isometric contractions do not occur during 

natural contractions, since a small degree of muscle fascicles shortening always occur 

as a result of the stretching of the series elastic connective tissue. Therefore, MT 

increases during isometric contractions and there are visible changes in the position of 

the muscle fascicles, especially when viewed transversally (Walker et al., 2004; Walker, 

1968).  

During Conc and Ecc muscle contractions, the muscle shortens and lengthens, 

respectively. A Conc contraction occurs when the torque of the activated muscles is 

greater than the resistance torque, resulting in muscle shortening (Knudson, 2007;  

Wang, 2011). The Ecc action occurs when the muscle is forced to stretch because the 

force that generated is insufficient to overcome the external load, i.e., the torque of 

the activated muscles is less than the torque of the resistance (Knudson, 2007). Skeletal 

muscle possesses the inherent capability to produce greater force during Ecc 

contractions than during Conc ones (Knudson, 2007). However, the metabolic cost of 

Ecc contractions is lower, and thus mechanical efficiency is higher during Ecc 

contractions compared to Conc contractions. Because Ecc and Conc contractions 

potentially offer different stimulus dictating hypertrophy, neural drive and protein 

metabolism, it is generally agreed that resistance exercise should comprise both Conc 

and Ecc actions (Baptista et al., 2016). It should also be recalled that most daily 

activities and movements, e.g., walking, climbing, or lifting objects, are carried out 

using coupled Conc and Ecc muscle contractions (Norrbrand, 2010).  

When the intensity of muscle contractions, especially of Ecc contractions, reaches  

levels higher than those the individual is accustomed, active muscles suffer a number of 

alterations that often result in pain (delayed onset muscle soreness), which is 

accompanied by oedema and increased stiffness that last from several hours to days 

after exercise (Knudson, 2007). 

In addition to the type of muscular action, it is known that the duration and intensity, 

associated to the number of repetitions, sets, rest time and training frequency lead to 

visible morphological changes in the trained muscles (Cadore et al., 2012; Knudson, 

2007). These changes may be more or less perceptible and their evaluation is extremely 

important. 
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Strength training and/or regular exercise can alter the muscle appearance on US images 

by varying the EI of the muscle. Muscles submitted to exercise training generally have 

lower EI due to the volume effect caused by the increase in myocyte size relative to the 

perimisial tissue volume, as well as the increase in vascularization (Alqahtani, 2010; 

Trip et al., 2009; Vlychou & Teh, 2008; Walker et al., 2004).  

Eccentric muscle strength training seems to be very efficacious in preventing and 

recovering from MSK system injuries, in increasing muscle strength and in improving the 

mechanical resistance of muscles’ connective tissue, and in promoting neural 

adaptations (Cadore, 2012). This type of training is commonly used for faster 

rehabilitation and to increase muscle performance in athletes and non-athletes (Santos 

et al., 2014; Silva et al., 2011). The importance of Ecc muscle exercise seems to be 

related to induced muscle adaptations caused by the heightened mechanical loading 

and muscle damaged caused by Ecc muscle contractions. This type of contraction causes 

more muscle damage than other types of muscular activity and when few Ecc muscle 

contractions are performed, this has a protective effect on the muscle. On the other 

hand, it has been reported that Conc strength training does not reduce or prevent 

muscle damage and may produce a negative effect on Ecc exercise-induced muscle 

damage (Silva et al., 2011). Eccentric training induces lower Conc but greater Ecc 

strength increases, compared with Conc training (Cadore et al., 2014). 

Recently, Ecc training-induced adaptations have been widely examined due to their 

positive effects on strength performance, muscle hypertrophy, and injury rehabilitation 

in athletes as well as in healthy untrained subjects. Eccentric muscle contractions 

involve unique neuromuscular features that are partly distinct from Conc muscle 

actions. Some of these differences are greater muscle force production, lower 

metabolic cost, lower neuromuscular activity required to produce the same workload, 

lower neuromuscular activity prior to the onset of movement, and greater muscle 

damage. Thus, Ecc and Conc actions provide different stimuli to the muscles and 

therefore may induce different neural and morphological adaptations (Cadore et al., 

2014). 

Muscle quality can be assessed using US imaging. Enhanced EI is thought to represent 

changes caused by increases in intramuscular connective and adipose tissues (Cadore et 

al., 2012; Pillen et al., 2009). In addition, traditional resistance training may improve 

muscle quality, as suggested by a reduced EI observed after 6 weeks of training in 

elderly adults (Cadore et al., 2014; Radaelli et al., 2012). 
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Although the prolonged performance of resistance training provides many 

neuromuscular benefits, resistance training is usually performed to develop the strength 

and size of muscle. However, the underlying physiological mechanisms linking the 

configuration of the resistance-training program to the chronic adaptations has yet to 

be clearly defined (Branderburg & Docherty, 2006).  

Chronic resistance exercise sometimes referred to as strength training or weight 

training, promotes increases in muscle strength, power and size, and is employed to 

enhance athletic performance. Typically, resistance exercise is performed with coupled 

shortening (Conc) and lengthening (Ecc) muscle actions, while the number of sets and 

repetitions vary depending on the specific aim of the training. Thus, resistance 

exercises for athletes vary from ballistic exercises to improve explosive strength for e.g. 

track and field athletes, to the extremely heavy loading often used by power lifters. 

Resistance exercise has been practiced for centuries, and despite several studies on this 

theme, controversy still prevails regarding training load, number of sets and repetitions, 

rest periods in order to achieve an optimized training response (Norrbrand, 2010).  

1.6 Anatomical features of the quadriceps femoris  

The extensor mechanism of the knee joint has been extensively studied. This 

mechanism consists of a complex arrangement of various muscles, tendons, ligaments, 

and soft-tissue structures, which include the quadriceps femoris muscle (Andrikoula et 

al., 2006). The quadriceps femoris muscle consists of four distinct muscle heads that 

share a common insertion tendon, the quadriceps tendon. This tendon is trilaminar, 

with the anterior layer formed by the RF, the intermediate layer formed by the VM and 

VL and the deep layer by the tendon of the VI (Figure 8) (Andrikoula et al., 2006). 

 
Figure 8: Diagram showing the anatomy of the quadriceps femoris in axial plane. VL, 
vastus lateralis; VI, vastus intermedius; VM, vastus medialis; RF, rectus femoris (Pasta et 
al., 2010).  



 Morphological ultrasound evaluation in acute and chronic muscle overloading 

Rute Santos 
29 

 

The RF (Figure 9) is a long fusiform muscle and is separated from the other muscles 

along its entire course except at the patellar insertion. Proximally, the RF is 

unipennate, however distally it is blended to the form a u-shape, in which the 

superficial fibres are bipennate and the deep ones are parallel. The fibre lengths are 

similar throughout the entire RF (Farahmand et al., 1998). At the distal end, the RF 

narrows and continues by a tendon that is inserted into the superior pole of the patella 

(Andrikoula et al., 2006).  

 
Figure 9: Anatomy of the quadriceps femoris in a superficial plane. RF, rectus femoris 
(Pasta et al., 2010).  

 

The VL is generally the largest component of the quadriceps femoris. This muscle head 

has a unipennate architecture with its fibres originating from a broad superficial 

aponeurosis that covers the muscle proximally. These fibres then course distally and 

medially and join an aponeurosis on the deep aspect of the thigh distally that then 

tapers to form a flat tendon that attaches to the superior and superolateral borders of 

the patella. The vastus lateralis obliquus (VLO) can be distinguished from the main size 

of the VL by an abrupt change of fibre alignment (Farahmand et al., 1998). The VL 

extends halfway down, giving off a fibrous expansion that blends with the lateral 

patellar retinaculum, through which the VL attaches directly to the tibia (Andrikoula et 

al., 2006).  

The VM muscle head is unipennate and its muscle fibres take a helical course from their 

origin to insertion (Farahmand et al., 1998).  The attachments of the VM’s muscle 

fascicles form most of the intermediate layer of the quadriceps tendon. However, the 
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most distal muscle fibres of the VM course almost horizontally and anteriorly towards 

their insertion into the common tendon and the medial border of the patella. This part 

of the muscle is sometimes described as the vastus medialis obliquus (VMO). Like the 

VL, the VM possesses a distal fibrous expansion that mingles into the medial patellar 

retinaculum. The VMO muscle is reported to be the primary stabilizer of the patella 

during knee extension (Andrikoula et al., 2006). 

The VI is also unipennate with an extensive femoral origin. The VI’s muscle fibres end in 

an anterior aponeurosis that forms the deepest layer of the quadriceps tendon 

(Farahmand et al., 1998). The VI partly blends with the VM medially (Andrikoula et al., 

2006).  

In conclusion, the muscle fibres of the RF and VI insert both into the superior pole of 

the patella and are almost aligned with the proximal-distal direction, whereas the 

fibres of the VM and VL join the patella obliquely (Andrikoula et al., 2006) (Figure 10).  

 

Figure 10: Anatomy of the quadriceps muscle in a deep plane. VL, vastus lateralis; VI, 
vastus intermedius; VM, vastus medialis (Pasta et al., 2010).  

 

The four heads of the quadriceps converge distally to the tendon of the quadriceps, 

which is inserted in the upper edge of the patella (Pasta et al., 2010; Waligora et al., 

2009). The tendon is composed by branches that are positioned on top of each other. 

The superficial branch is continuous to the muscle fibres of the RF. The intermediate 

branch receives the fibres of the VM and VL, and the deepest branch receives the fibre 

of the VI (Pasta et al., 2010; Standring, 2008). A small quantity of fibres of the 
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superficial branch merges directly into the patellar tendon (Waligora et al., 2009). The 

description given is generally accepted, although recent studies based on anatomic 

dissections have revealed a considerable variability in the composition of the distal 

tendon of the quadriceps femoris (Pasta et al., 2010; Waligora et al., 2009). 

The forces generated by the quadriceps femoris are crucial for the knee joint 

biomechanics, due to their role in controlling tibiofemoral and patellofemoral 

kinematics, and cartilage contact forces, and the stresses applied to the knee joint 

capsule and ligaments. However, most of the time it is difficult to obtain direct, in 

vivo, measurements of these loads. The quadriceps femoris’ heads possess 

musculotendinous junctions that join quadriceps tendons from different angles, such 

that the tendon line-of-action (defined as the unit vector from tendon insertion on the 

patella to its muscular origin) varies across the width of the tendon. Therefore, six 

lines-of-action were used to characterize the action of the whole quadriceps femoris. 

The central quadriceps components, VI and RF, were each characterized by a single 

line-of-action representing the central muscle fibres. The VI and RF origins were chosen 

as the centre point of each musculotendinous junction and both lines-of-action inserted 

on the patellar apex, defined as the midpoint of the most proximal edge of the patella. 

For the VM and VL two lines-of-action were defined for each musculotendinous unit: a 

proximal portion (VM proximal and VL proximal) and the distal portion (VM distal and VL 

distal) (Wilson & Sheehan, 2011). 

The quadriceps force vector (Figure 11) includes forces that are generated by 

contraction of the VL, VI, RF, VM. The VL is composed by two force vector components, 

the vastus lateralis longus (VLL) and VLO. The VM is composed of two force vector 

components, the VM longus (VML) and VMO. In the coronal plane, the quadriceps force 

vector angles are made by the VLO at 35º and the VLL at 14º laterally, by the VI and RF 

at 0º, and medially by VMO at 47º and VML at 15º. Overall, the quadriceps force has a 

posterior pull to keep the patella in proper articulation with the trochlear groove. In 

normal patients, no timing difference between the contraction of the VMO and VL 

exists. VMO training is important to improve VL and VMO onset timing differences 

(Waryasz & McDermott, 2008). 
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Various studies have described the possible role of anatomic variations in the 

quadriceps mechanism in relation to abnormal conditions (Andrikoula et al., 2006). 

Quadriceps femoris muscle strengthening is useful for improving functional ability and 

may be particularly important for individuals who want to return to higher-demand 

activities, such as running or other sports. Previous studies have emphasized the 

importance of quadriceps strengthening in patients with patellofemoral pain (Eapen et 

al., 2011). 

 

Figure 11:  Quadriceps patellar force diagram. MR, medial retilaculum; P, patella; LR, 
lateral retilaculum; VLO, vastus lateralis obliquus; VLL, vastus lateralis longus; RF, 
rectus femoris; VI, vastus intermedius; VML, vastus medialis longus; VMO, vastus 
medialis obliquus (Waryasz et al., 2008). 

 

Eccentric training of quadriceps femoris muscle is effective in reducing pain and 

improving the functional status of patients with patellofemoral pain syndrome and can 

be suggested as part of treatment. Quadriceps femoris muscle strengthening is useful 

for improving functional ability, in athletes, aging people or in some knee pathologies 

(Andrikoula et al., 2006; Eapen et al., 2011; Farahmand et al., 1998; Waryasz & 

McDermott, 2008). 

1.7 Summary  

Ultrasound is an important image modality for MSK evaluation and to assess muscle 

adaptations to a variety of stimuli (Nishihara et al., 2014; Rech et al., 2014). 

Advantages of US imaging include non-invasiveness, low cost, absence of ionising 

radiation, and the possibility to perform dynamic assessments (Lento & Primack, 2008). 

The study of the skeletal muscle adaptations to strength training by means of US 
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imaging has grown at a very fast pace in the last years. Important reasons for this 

growth includes the use of elastography, a non-invasive technique that allows the 

characterisation of the mechanical properties of tissues (Gennisson et al., 2013) and the 

development of methods for quantifying changes in EI.  

The quadriceps muscle is one of the crucial factors for the knee joint biomechanics, 

because it contributes for the control of tibiofemoral kinematics, patellofemoral 

kinematics, and cartilage contact forces. The morphology and function of the 

quadriceps femoris are very complex and the way its various components contribute to 

the whole function of the knee extensor mechanism and how they adapt to different 

kinds of strength training are still open questions. Due to their capabilities, quantitative 

US imaging might be helpful in answering these questions.  
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Chapter 2 : Muscle characterisation by ultrasound in B mode 

The subjective nature of EI evaluation, highly dependent on the operator, calls for the 

need to develop new quantitative methods that would allow a more objective 

assessment of tissues’ EI (Alqahtani, 2010; Fukumoto et al., 2012; Pillen, 2010).  

The quantitative analysis of the EI has recently been shown to be very useful for the 

diagnosis of neuromuscular diseases and also to study the muscle adaptations caused by 

physical exercise. Such quantitative analysis of the ultrasound images provides 

information that could not be detected by simple visual assessment (Alqahtani, 2010; 

Fukumoto et al., 2012).  

In order to apply ultrasound imaging to the study of muscle adaptation, it is first 

necessary to study reproducibility of the measures gathered with this technique. 

Therefore, the general aim of this Chapter is to study the reproducibility of ultrasound 

measurements associated with muscle morphology and muscle tissue quality. 

 

 

 

 



Morphological ultrasound evaluation in acute and chronic muscle overloading 

 42  Rute Santos 



 Morphological ultrasound evaluation in acute and chronic muscle overloading 

Rute Santos 
43 

 

2.1 Reproducibility of ultrasound-derived muscle thickness and echo-

intensity measures for the entire quadriceps femoris muscle  

Imaging modalities are being increasingly employed to study skeletal muscles changes 

occurring due to disuse, ageing, training, or disease (Strasser et al., 2013). Compared to 

MRI, ultrasound is less expensive and more accessible (Vlychou & Teh, 2008). 

Furthermore, ultrasound equipment is portable and allows dynamic assessments to be 

performed in real time, which is useful in assessing physiological responses (Anderson & 

McDicken, 2002; Cohen et al., 1994; Pouch et al., 2010) and in diagnosing muscle injury 

and dysfunction (O’Sullivan et al., 2012; Zbojniewicz, 2014). Modern ultrasound 

technology has also greatly improved the quality of the ultrasound images and has 

widened the number of ultrasound imaging applications. The development of linear 

transducers with frequencies in the 7-15 MHz range has largely improved the scanning of 

more superficial structures and the visualization and delineation of the muscles and of 

their fascia and tendons, allowing fast and economical measurements of muscle 

architecture and composition to be made. 

Muscle strength and function correlates with muscle mass and composition (Lafortuna et 

al., 2005). Changes in muscle mass happen relatively fast in response to strength 

training (Ahtiainen et al., 2003; Häkkinen et al., 1988), immobilization (Marimuthu et 

al., 2011), malnutrition (Norman et al., 2005), aging (Frontera et al., 2000; Roubenoff & 

Hughes, 2000), and disease (Andreassen et al., 2006; Bernard et al., 1998; Swallow et 

al., 2007). MT is a simple measure gathered from B-mode ultrasound images of muscles 

that is highly correlated with muscle cross sectional area. The reproducibility of 

ultrasound MT measurements is usually reported to be high or very high. This has been 

demonstrated for trunk (McMeeken et al., 2004; Wallwork et al., 2007; Wong et al., 

2013), respiratory (Baldwin et al., 2011), and upper and lower limb muscles (Hammond 

et al., 2014; Lima et al., 2012), and for inter-session (Bunnell et al., 2015; Lima et al., 

2012; Wallwork et al., 2007) and inter-rater measures (Baldwin et al., 2011; Hammond 

et al., 2014; Konig et al., 2014). Regarding muscle size assessment, the major 

disadvantage of ultrasound is that it only scans a rather limited area of the whole 

muscle. Also, slight changes in the orientation of the ultrasound probe might seriously 

affect MT measures. These drawbacks have hitherto been solved by standardizing the 

scanning region or by fixing the probe over the body segment, when this is feasible. 

Yet, MT measures’ precision is similar in novices and experienced examiners (Wallwork 
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et al., 2007). In addition, the well-defined orientation of muscle fascicles aids in 

ultrasound probe placement when the muscle is scanned longitudinally.     

Besides muscle mass, muscle composition also affects muscle function. More recently, 

muscle EI has been explored as a potential marker of muscle tissue status. The normal 

muscle appears in the ultrasound image (brightness mode) as a relatively hypoechoic 

structure, due to the rather low reflection of the ultrasound wave beam (low EI). In a 

transverse scan, muscles have a speckled appearance, which is explained by the higher 

EI of the perimysium surrounding muscle fiber bundles compared to that of the proper 

muscle tissue. The contrast in EI between muscle fascicles and the connective tissue of 

the perimysium is clearer in longitudinal scans and is very useful for further 

characterization of the muscle architecture, as well as for defining the muscle 

boundaries, taking advantage of the hyperechoic epimysium and overlying fascia 

(Blazevich et al., 2006; Konig et al., 2014; Strasser et al., 2013; Wilhelm et al., 2014). 

The EI in an ultrasound scan can be measured simply as the average intensity of the 

pixels inside the muscle of interest, usually using a scale of levels of gray within a given 

ROI. Although a few studies confirm the good inter-session reliability of EI measures for 

muscles, there are still important questions about what would be the most desirable 

method for collecting such measures. One of the doubts regards ROI size that for some 

authors should include as much of the muscle as possible, avoiding bones and 

surrounding fascia. Imaging a whole section of the muscle would probably be important 

since internal fascia and non-homogenous distribution of EI might affect the measures. 

The orientation of the muscle bundles might also affect the reliability of EI measures, 

particularly in longitudinal scans (Caresio et al., 2014; Pasta et al., 2010; Wilhelm et 

al., 2014). 

Some studies have investigated reliability of MT and EI using the quadriceps muscle 

(Blazevich et al., 2006; Wilhelm et al., 2014), although usually only for one of its four 

heads. However, the quadriceps femoris is anatomically and functionally complex and 

its different heads may adapt differently to training (Pasta et al., 2010). Due to their 

anatomy, different ultrasound examination techniques are required to image each of 

the four heads of the quadriceps femoris, thus potentially affecting the reliability of 

ultrasound measures (Pasta et al., 2010).  

Therefore, this study assesses the intra and inter-session reliability (one week apart) of 

ultrasound measures of MT and EI in each of the four quadriceps femoris heads both in 

transverse and longitudinal scans and employing a rectangular ROI or the entire scanned 

section of the muscle.   



 Morphological ultrasound evaluation in acute and chronic muscle overloading 

Rute Santos 
45 

2.1.1 Materials and Methods 

Twenty healthy participants (10 females, mean ± standard deviation (SD); age=20.0±2.3 

years; height=1.7±0.1 m; mass=64.2±10.9 kg; right thigh perimeter=52.0±3.8 cm; left 

thigh perimeter=51.7±4.1 cm) not engaged in sports or intense physical activities were 

informed about the study’s protocol and procedures and gave written informed consent. 

Participants were excluded from the study if they sustained an injury in the lower 

extremity in the past six months, suffered from an orthopaedic condition or had surgery 

involving the lower extremities. Participants were also excluded if they have resistance 

trained their legs anytime during the past 12 months.  

Procedures 

To assess intra- and inter-session reliability of ultrasound measurements of MT and EI, 

three different ultrasound B-mode images were acquired bilaterally in transverse and 

longitudinal views from the four heads of the quadriceps muscle in two sessions, with an 

interval of 7 days between them. All participants were right-side dominant. To avoid 

possible effects related with daily routine, participants were evaluated at the same 

time of day in the two sessions and by the same examiner, a certified MSK ultrasound 

sonographer. After each scan, the transducer was moved away from the thigh and then 

placed back again over the same region of the thigh for the next scan.  

Each head of the quadriceps muscle (VM, VL, RF and VI) was imaged with participants 

lying in supine, with the legs extended and relaxed. The ultrasound probe was placed 

over the midbelly region of each head of the quadriceps femoris, away from the patella 

at the following percentage of the distance between the upper edge of the patella and 

the superior iliac spine: 22% for VM, 39% for VL, and 56% for RF and VI (Blazevich et al., 

2006).  

A portable ultrasound machine (LOGIQe, General Electric Healthcare, GE Ultraschall, 

Deutschland GmbH & Co, Germany) equipped with a linear-array transducer with band 

frequency 7-12 MHz was used for collecting the images. Gain was set at 48% of the 

range, Dynamic Range was maintained at 93 dB, and Time Gain Compensation was kept 

at the same (neutral) position for all imaged depths. The depth setting was adjusted for 

each muscle in order to visualize their superior and inferior margins. Images were 

recorded as DICOM files and stored in a personal computer for later processing. 

MT and EI were obtained using Image J (National Institutes of Health, Bethesda, MD, 

USA) by the same examiner. The three images of each muscle for the two sides and 
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from both data-collecting sessions and for transverse and longitudinal views from the 

twenty participants were analysed, in a total of 1824 images.  

MT was measured as the largest distance between the superficial and deep fasciae, 

identified by their hyperechoic appearance. Two different ROIs were selected to 

measure EI: (1) maximum ROI, draw for each scan to include as much of the muscle as 

possible, avoiding bone and surrounding fasciae (Figure 12); (2) small ROI, a 70 mm2 ROI 

positioned over the central region of the muscle image (Figure 12). EI was then defined 

as the mean level of gray within the ROI in 8-bit resolution images (gray levels from 0 to 

255, where black = 0 and white = 255). 

 
Figure 12: Ultrasound images of two different ROIs used to measure muscle echo-
intensity. (A) A maximum ROI was defined for each image to include as much of the 
muscle as possible, avoiding bone and surrounding fasciae. (B) A smaller rectangular ROI 
with a set size of 70 mm2 was positioned approximately at the centre of the muscle 
image. 
 

Statistical analysis 

Intra- and inter-session reliability for MT and EI were assessed using intra-class 

correlation coefficient (ICC) (3,1; method: alpha, two-way mixed, consistency). For inter-

session reliability, the average of the three measures obtained in each session was used. 

Standard error of measurement (SEM) and smallest detectable change (SDC) were also 

calculated. SEM indicates the precision of the measurement and was calculated based 

on the ICC and the SD of the mean of the differences between the two measurements 
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(i.e., SEM = SD√1-ICC). The SDC was based on the SEM, using the formula: SDC = 1.96*

√2*SEM. 

The level of agreement between transverse and longitudinal scans and between the two 

ROI sizes was evaluated by Bland-Altman analysis and respective 95% limits of 

agreement (LoA), using the data collected in the first session. In Bland-Altman plots, 

the difference between the mean of the three images belonging to one measure was 

plotted against the overall mean [i.e., mean of 3 x 2 images (3 images for each of 2 

measurement conditions)]. The t-test was used for pairwise comparisons. 

Data are reported as mean ± standard deviation (SD). Threshold for statistical 

significance was set at p<0.05. All analyses were performed with SPSS 20.0 (SPSS Inc., 

Chicago, IL, USA) software package. 

2.1.2 Results 

Data of MT for each of the quadriceps femoris heads are presented in Table 3. VM and 

VI showed the largest and the smallest MT, respectively, either when measured on 

transverse or longitudinal scans and for both right and left sides. The right VM, VL, and 

RF, in transverse scans, and VM and RF, in longitudinal scans, presented larger MT 

values than those on the left side (p<0.05; Table 3). MT was larger on transverse scans 

compared with longitudinal scans for all muscle heads (p<0.05; Table 3) except for right 

VM, left VM and left VI.  

Table 3: Data of muscle thickness for the four heads of the left and right quadriceps 
femoris. 
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Table 4 presents the data for EI. The lowest EI values were registered in VI, whereas the 

VL showed the highest EI values of all muscles. For right VM and VL, and left VM, VL and 

RF, EI values were significantly different between the two ROIs (p<0.05; Table 4). Also, 

significant differences in EI were found between transverse and longitudinal scans for 

the same muscles except the left VM (p<0.05; Table 4). Differences between the right 

and left sides in muscle EI were only observed in VM (p<0.05; Table 4). 

Table 4: Data of muscle echo-intensity for the four heads of the left and right 
quadriceps femoris using maximum and rectangular ROIs. 

 

 

Tables 5, 6 and 7 report reliability data for MT and EI measures. High to very high intra-

session ICCs were found for MT measures with just three ICC values under 0.80 (Table 

5). Inter-session ICCs were also high to very high with only one value below 0.70 (left VL 

in longitudinal scan; Table 5).  SEM values for MT were similar across the four heads of 

the quadriceps femoris, ranging between 0.07 cm and 0.19 cm. SDC values varied 

between 0.19 cm (VM, transverse scan; Table 5) and 0.53 cm (VI, longitudinal scan; 

Table 5). Measures from longitudinal scans tended to show higher SDC values compared 

to those obtained from transverse muscle views. Intra-session ICC values for EI were 

also high to very high with maximum ROI (Table 6).  

Reliability of EI values was also high when using a smaller rectangular ROI, although in 

this case a few values were between 0.70 and 0.80 (Table 7). Inter-session ICC values 

for EI using maximum ROI were generally above 0.70, except for right RF and VI and left 

RF (Table 6). When using the maximum ROI, SDC values for muscle EI were consistently 

smaller for VM and larger in VI (Table 6). The number of ICC values below the 0.70 
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acceptable level increased when the smaller rectangular ROI was used (Table 7). 

Likewise, larger SDC values for muscle EI were found when using the latter ROI (Table 

7).  

 

Table 5: Reliability of muscle thickness measures: ICC, SEM, and SDC values. 

 

Table 6: Reliability of muscle echo-intensity measures for maximum ROI: ICC, SEM, and 
SDC values. 

 

Table 7: Reliability of muscle echo-intensity measures for rectangular ROI: ICC, SEM, 
SDC. 
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Bland-Altman plots showed close to zero bias for MT measures both in transverse and 

longitudinal scans (range: -0.04-0.17 cm; Table 8, Figure 13) with upper 95% LoA in the 

range 0.13-1.70 cm, and lower 95% LoA in the range -0.09 to -1.22 cm (Table 8, Figure 

13).  

Table 8: Summary of differences (first session only) between transverse and longitudinal 
scans (MT and EI) and between maximum ROI and rectangular ROI (EI only). 

 

For EI measures, Bland-Altman plots showed a small bias when measures were collected 

from transverse vs. longitudinal scans (upper 95% LoA for quadriceps femoris: -3.53-

10.05 a.u.; lower 95% LoA for quadriceps femoris: -12.97 to -7.45, Table 8, Figure 14).  

Regarding agreement in EI measures taken with each ROI size, Bland-Altman analysis 

demonstrated a slight bias, with a tendency for larger EI values when using the 

rectangular ROI comparing with the maximum ROI (upper 95% LoA for quadriceps 

femoris: -4.48-5.23 a.u.; lower 95% LoA for quadriceps femoris: -44.94 to -12.85 a.u.) 

(Table 8, Figure 15). 
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Figure 13: Bland-Altman plots for muscle thickness measures (transverse and 
longitudinal scans) obtained from two different ultrasound images acquired in the first 
session and for each side. The horizontal axis represents the mean of the two 
measurement conditions (transverse and longitudinal scans) and the vertical axis 
represents the difference from each measurement to the mean. Dotted lines represent 
the mean difference and the limits of agreement (± 1.96 SD). 
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Figure 14: Bland-Altman plots for muscle echo-intensity measured in transverse and 
longitudinal scans obtained from two different ultrasound images acquired in the first 
session and for each side. The horizontal axis represents the mean of the two 
measurement conditions (transverse and longitudinal scans) and the vertical axis 
represents the difference from each measurement to the mean. Dotted lines represent 
the mean difference and the limits of agreement (± 1.96 SD). 
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Figure 15: Bland-Altman plots for muscle echo-intensity measured by two different ROIs 
(maximum ROI and rectangular ROI) in the first session and for each side. The horizontal 
axis represents the mean of the two measurement conditions (maximum and rectangular 
ROIs) and the vertical axis represents the difference from each measurement to the 
mean. Dotted lines represent the mean difference and the limits of agreement (± 1.96 
SD). 
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2.1.3 Discussion 

In this study, a high to very high intra- and inter-session reliability for MT and EI 

measures could be demonstrated. Just in few cases was inter-session ICC for muscle EI 

below the acceptable 0.70 level.  

MT values in the quadriceps femoris varied between 1.5 and 2.8 cm, respectively for VI 

and VM. This is in line with reported MT values of around 2-2.5 cm for the VL (Caresio et 

al., 2014; Boer et al., 2008), and of 2.4 cm and 1.8 cm for VM and VI, respectively 

(Blazevich et al., 2006). Other studies, using the inside edges of the RF and VI muscle 

borders as a reference, report MT values of around 3.9 cm (Agyapong-Badu et al., 2014) 

and 3.6 cm (Fukumoto et al., 2012), which are similar to the sum of RF and VI MT in our 

study. 

Muscle EI values might offer important insight into muscle changes caused by disease 

(Jenkins et al, 2015) in part because it is more objective and possibly more reliable than 

simple visual assessment of ultrasound images (Pillen, 2010). We could find considerable 

differences in EI across the quadriceps femoris heads, with VL showing the highest EI 

(mean gray level range: 51.6-56.6 a.u.) and VI the lowest ones (mean gray level range: 

27.2-31.0 a.u). Caresio, et al. (2014) reported EI values for VL (mean gray level 48.9 ± 

6.9 a.u.) and RF (48.2 ± 5.5 a.u.) close to those found in the present study (Caresio et 

al., 2015). Studies conducted in older people, report higher muscle EI values in the 

quadriceps femoris, in some cases approaching a mean gray level of 100 a.u. (Caresio et 

al., 2014; Fukumoto et al., 2012; Wilhelm et al., 2014). Such high EI probably reflects 

the effect of ageing and muscle changes, such as an increase in connective and adipose 

tissue in muscles and diminished muscle mass (i.e., thickness) (Cadore et al., 2012; 

Fukumoto et al., 2012; Nishihara et al., 2014). 

Our results show high to very high intra- and inter-session ICCs for MT. Compared to 

transverse scans, MT measured in the longitudinal scans are somewhat less reliable, 

displaying slightly larger SEM and SDC values (see Table 5). Several other studies report 

very good reliability of ultrasound MT measures. Studies by Palmer et al. (2015) and 

Mangine et al. (2014) report inter-session ICCs for RF and VL MT in transverse scans 

between 0.96 and 0.89 (Mangine, 2014; Palmer, 2015). Also, Raj et al. (2012) reported 

ICCs of 0.96 to 0.97 for measures of VL thickness in longitudinal scans taken with seven 

days interval in a group of older adults (Raj et al., 2012). Lastly, Strasser et al. (2013) 

demonstrated a high reliability of ultrasound MT measurements for the several heads of 

the quadriceps femoris in young and old participants, with ICCs between 0.85 and 0.97 

(Strasser et al., 2013). In our study, we also derived SEM and SDC values in order to 
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assess reliability. Our SEM values for MT measurements were similar across the whole 

quadriceps femoris, ranging from 0.07 cm to 0.19 cm. However, the SDC values for MT 

measures showed considerable variation across this muscle. In this case, the smallest 

SDC value was 0.19 cm, for left VM thickness obtained from transverse scans. The 

largest SDC reached 0.53 cm and was found for MT measures belonging to the right VI 

scanned longitudinally. Such SDC values correspond to around 7 and 30% of the 

respective mean MT value. Reported SEM values for MT of trunk muscles are comparable 

to those reported in the present study, although slightly lower (0.02-0.05 cm, 

transversus abdominis and lumbar multifidus) (Jhu et al., 2010; Koppenhaver et al., 

2009). As for SDC of MT measured from longitudinal and transverse ultrasound scans, 

the reported values vary between 0.07 cm and 0.08 cm (Koppenhaver et al., 2009), and 

between 0.06 cm and 0.13 cm (Jhu et al., 2010; Koppenhaver et al., 2009). The 

reliability of our ultrasound MT measures appeared to be slightly better in transverse 

scans than in longitudinal ones. Transverse scans offer a better visualization of the 

anatomical details of the several quadriceps femoris heads and based on our data 

should be used to measure MT. While longitudinal ultrasound scans are particularly 

useful when studying muscle architecture of limb muscles since the orientation of 

muscle fascicles is easily viewed in these images, they seem to be less reliable than 

transverse scans when the goal is to measure MT. Although some authors argue that 

longitudinal scans should be used for skeletal muscle analysis (Blazevich et al., 2006; 

Konig et al., 2014; Wilhelm et al., 2014), others advocate the use of transverse views 

(Agyapong-Badu et al., 2014; Boer et al., 2008; Fukumoto et al., 2012). Although both 

transverse and longitudinal views seem to be suitable for evaluating MT and muscle EI, 

differences in precision between the two planes exist and should be taken into account 

when choosing between the two views. 

One of the aims of this study was to determine the effect of ROI size on the reliability 

of ultrasound muscle EI measures. Our EI measures were highly reliable, both when 

collected in the same session or in sessions one-week apart. However, and regarding 

inter-session reliability, ICCs were higher when the whole muscle image was used to 

obtain muscle EI compared to when a smaller, constant-size rectangular ROI was 

employed. In the latter case, a number of ICCs did not reach 0.70, which is commonly 

considered a minimum level for acceptable reliability (Kottner et al., 2011). However, 

scanning orientation (i.e., transverse or longitudinal) did not affect the reliability of 

muscle EI measurements in our study. Similar findings were obtained by Caresio et al. 

(2014) for several upper and lower limb muscles in young adults (Caresio et al., 2015). 

They report intra-session muscle EI ICCs of 0.54 to 0.86 depending on ROI size, with 
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larger ROIs being associated with higher reliability (Caresio et al., 2015). Radaelli et al. 

(2012) also showed less reliability when small ROIs are adopted to determine muscle EI 

(Radaelli et al., 2012). Fukumoto et al. (2012) also found very high reliability for muscle 

EI measures for the RF (ICC: 0.91), as well as for other hip and abdominal muscles (ICCs: 

0.87–0.99) (Fukumoto et al, 2012). For biceps brachii, ICC values >0.90 were again 

reported for muscle EI (Chen et al., 2012; Radaelli et al., 2012). Our SDC values for EI 

ranged from 3.72 to 12.50 a.u. for maximum ROI and from 7.66 to 18.56 a.u. for 

rectangular ROI. SEM values for two different ROIs for EI were similar (1.34-6.34 a.u.) 

but rectangular ROI demonstrated larger SEM values. These findings are in line with 

Caresio et al. (2014) study that shows that a minimum ROI size is required for a reliable 

analysis of the muscle EI (Caresio et al., 2014). Also, Matta, et al. (2013) found that a 

small ROI (1 cm2) is associated with a larger variance of muscle EI data (Matta, 2013).  

Bland-Altman analysis was performed to evaluate the agreement between measures 

taken from transverse and longitudinal scans and between the two ROIs. The results of 

this study suggest that MT is underestimated by 0.2 cm when measured from 

longitudinal scans. Despite such bias, the LoA (-0.21 cm and 0.5 cm for the four heads 

of quadriceps femoris) are small enough to allow MT measurements to be performed in 

transverse or longitudinal muscle scans, except for VM muscle that showed larger 95% 

confidence limits of -1.22 cm and 1.70 cm. Only a few studies conducted Bland–Altman 

analysis (including mean differences) for ultrasound MT measurements (English et al., 

2012). However, Raj et al. (2012) referred similar values for VL muscle for two different 

tests (Raj et al., 2012).  

Bland-Altman plot for muscle EI measured in transverse and longitudinal scans and 

measured with the two ROI sizes demonstrated higher mean differences and higher LoA, 

when compared with MT. Pooling the data form the four quadriceps femoris muscle 

heads and from both sides, the Bland-Altman plot of muscle EI measured in transverse 

and longitudinal scans showed 95% LoA ranging between -12.97 (lowest lower limit: VL) 

to 10.05 (highest upper limit: VM) and a bias between -4.34 and 0.81 and towards higher 

EI values in transverse scans than in longitudinal ones, except for left VM muscle. 

Considering the two ROIs (maximum ROI and rectangular ROI), the mean difference 

varies between -21.60 to -3.81 a.u. These results suggest that EI is underestimated 

when measured with a smaller ROI.  

2.1.4 Limitations 

The major limitation of this study resides on the young age of the participants, which 

limits the generalizability to other age groups. Few sources of variability, such as the 
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hydration levels of the participants (Calhoun, 2015) or subtle changes in posture and 

muscle relaxation between the sessions, might have contributed to the differences in 

measurements between sessions (Lima et al., 2012). Other factors that are known to 

negatively affect reliability of ultrasound measurements include inter-session changes in 

probe location and orientation and in the degree of compression applied with the probe 

onto the skin (Jhu et al., 2010; Koppenhaver et al., 2009; Lima et al., 2012). Also, EI 

measures are sensitive to ultrasound settings and these may differ between different 

ultrasound devices, thus limiting the generalizability of our results to other equipment. 

Future studies are important to standardize ultrasound settings for different equipment, 

as well as inter-operator reliability.  

2.1.5 Summary  

In conclusion, this study showed that MT and EI measurements from the four heads of 

the quadriceps femoris are highly reproducible in healthy subjects and therefore could 

be used in the study of quadriceps femoris muscle changes caused by disease or 

training. The reliability of EI measurements is sensitive to ROI size. In addition, subtle 

differences in EI and MT could be found between different quadriceps muscle heads (EI 

of VL and thickness of VM were highest) as well as between the right and left sides. 

Bland-Altman plots demonstrated near zero values of bias and low 95% LoA for MT but 

poorer agreement values for EI. SEM and SDC values for quadriceps femoris MT and EI 

are low and similar to those found in the literature. The high reproducibility of 

ultrasound MT measurements makes this technique useful for monitoring short-term 

changes in muscle mass. The somewhat lower reliability of EI measures must be taken 

into account when planning for future studies.   

These findings can contribute for improving the use of ultrasound to study muscle 

morphology and particularly to assess small changes occurring due to disease, 

immobility or muscle overuse.  
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Chapter 3: Evaluation of muscle adaptations to strength training 

by ultrasound imaging  

From a morphological point of view, there is still no total agreement about the 

muscular changes that a particular training program may bring (Franchi, 2014; 

Blazevich, 2007). Also, the full potential of imaging to investigate the muscle 

adaptations to different types of stimuli related to different kinds of strength training is 

still unknown. So, the aim of this Chapter is to investigate the changes in muscle size 

(i.e., MT) and muscle quality (muscle stiffness/hardness and EI) in response to a 

strength training program.  

This Chapter is divided into two studies. The first one addresses the morphological 

changes affecting the four heads of the quadriceps femoris in young adults when 

submitted to 15 weeks of strength training. For this purpose, EI and MT were chosen to 

characterize the quadriceps femoris adaptations to the strength training program.   

The second study reports data from QSE (the first generation of elastography) as a 

means to evaluate changes in VL’s muscle stiffness during the same training program.  
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3.1 Muscle thickness and echo-intensity changes of the quadriceps femoris 

muscle during a strength training program 

MSK ultrasound is increasingly important both for diagnosis and research (O’Neil, 2008). 

Ultrasound imaging is a modality with numerous advantages: it is non-invasive, low cost, 

easy accessible, and does not use ionizing radiation (Pillen, 2010; Vlychou & Teh, 2008). 

Although the dependency on the operator is a disadvantage of US imaging, this is 

surpassed by the advantages of this technique so that  is regarded as an alternative or a 

complement to magnetic resonance imaging (Gabrielle et al., 2013). Ultrasound imaging 

is used for MSK examination in order to assess morphological changes, mainly changes in 

thickness and EI of skeletal muscles (Nielsen et al., 2006). Measurements of these 

parameters can then be analysed and related to muscle function (Ruas et al., 2017).  

The effect of strength training and/or regular exercise on the trained muscles can lead 

to changes in MT and muscle EI. Echo-intensity is defined as the ability of a tissue to 

reflect the US waves and produce echo, and may contain information of muscle tissue 

composition (Caresio et al., 2014; Nielsen et al., 2006). When the US beam traverses 

more easily through the structure, fewer echoes are reflected and the tissue is shown as 

a hypoechoic structure (e.g., body fluids and low density tissues) (Asakawa et al., 

2000). When the opposite occurs, i.e., the US cannot penetrate the structure, more US 

echoes are reflected, showing a hyperechoic structure (e.g., fat tissue) (Wilhelm et al., 

2014). A healthy muscle is displayed in an US image as an hypoechoic structure with its 

fascicles bounded by the perimysium (hyperechoic tissue), while an altered muscle 

tissue might show itself as a more hyperechoic and diffuse structure (Maeda et al., 

1998). 

Skeletal muscles of more active subjects show, in general, lower EI due to an increase 

in myocyte size relative to the volume of perimysium tissue, and to higher 

vascularization (Alqahtani, 2010; Trip et al., 2009; Vlychou & Teh, 2008; Walker et al., 

2004). Although neural adaptations prevail during the first weeks of strength training, 

muscle hypertrophy starts to develop after a few weeks of training and becomes a 

major reason for improvements in muscle strength and performance in the long term 

(Norrbrand, 2010). Also, few studies demonstrate, in an elderly population, that a 

relationship exists between EI values and isometric and isokinetic muscle strength 

(Cadore, 2012; Fukumoto et al., 2012). Furthermore, in middle-aged and elderly 

women, muscle EI has been positively associated with muscle strength, independently 

of age and muscle size (Cadore et al., 2012; Pillen et al., 2009). 
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Therefore, the aim of this study was to investigate the changes in MT and EI in the four 

heads of the quadriceps femoris in a group of young participants after 15 weeks of 

strength training. 

3.1.1 Materials and Methods 

Participants 

Twenty-eight healthy males (mean ± SD; age: 20 ± 3.3 years, height: 1.75 ± 0.05 m, 

weight: 69.76 ± 6.7 kg) volunteered to participate in this study. Participants were fully 

informed of the purpose and procedures of the study and signed a written informed 

consent. The study conformed to the guidelines of the Declaration of Helsinki and was 

approved by the ethics committee of the Faculty of Human Kinetics. 

Participants were separated into a control group (n = 8) and a strength training group (n 

= 20). Participants in the strength training group were further separated in two groups, 

one performing concentric training (GCon group; n = 11) and the other eccentric 

training (GEcc group; n = 9).  

Participants were excluded from the study if they sustained any injury of the lower 

limbs in the past six months, had an orthopaedic condition or had surgery involving the 

lower limbs.  

Strength training program 

Participants in the training groups undertook 15 weeks of strength training (3 weekly 

sessions), with a total of 45 training sessions. All participants attended at least 42 out of 

the 45 planned training sessions (compliance rate = 93.3%). The strength training was 

conducted on an isokinetic dynamometer (Biodex Medical Systems) and targeted both 

knee extensors and flexors.  

The training protocol consisted on performing maximal concentric (group GCon) or 

eccentric (group GEcc) contractions during knee flexion and extension. One limb was 

randomly selected for exercising along the entire knee range of motion (ROM) allowed 

by the dynamometer (from 100 to 0 degrees of knee flexion), whilst the contralateral 

limb exercised over only a restricted ROM (from 60º to 0º). Each training session began 

with a warm-up period of approximately 10 minutes, consisting of cycling on a cycle 

ergometer (Monark Ergomedic 894E), with a workload of 75-80 W, or running on a 

treadmill (h / w / Cosmos - Pulsar 3p 4.0) with self-selected velocity (8 to 12 km.h-1). 

The warm up finished with 3-5 knee extension contractions performed on the isokinetic 

dynamometer at a submaximal intensity. 
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The concentric training was performed in isokinetic (Biodex System 3 or Biodex System 

2) (Figure 16) mode by selecting a pre programmed isokinetic knee extension/flexion 

protocol. The protocol established the number of contraction sets, the angular 

velocities, the number of repetitions, and the resting duration between sets. 

Participants were asked to perform the contractions as strong and as fast as possible 

throughout the set ROM. 

The eccentric training had the same number of contraction sets, contraction 

repetitions, resting duration, and angular velocities used in the Conc training. During 

Ecc training, participants were also asked to perform Ecc contractions with their knee 

flexors, thus avoiding any Conc contractions with the knee extensor muscles, ensuring a 

purely Ecc training. 

The training program included five progression phases. During the first 3 weeks, 5 x 6 

repetitions of isokinetic knee extensions were completed at an angular velocity of 60º.s-

1. With the limb exercising with shorter ROM, the number of repetitions was increased 

to 10. During the following 12 weeks, the number of contraction sets performed at 

60º.s-1 decreased to only 2 but additional sets were performed at 90º.s-1 (weeks 4-6), 

120º.s-1 (weeks 7-9), 150º.s-1 (weeks 10-12), and 180º.s-1 (weeks 13-15). The number of 

sets performed at the higher angular velocities increased along the training weeks from 

5 up to 7. For the limb training with restricted ROM, the number of contraction sets and 

repetitions were increased in order to match the total time between the two legs spent 

contracting. 

Figure 16: Training unit, with two isokinetic dynamometers – Biodex system. (own source) 

 

Testing of knee extension strength 

The strength of the knee extensors was tested on an isokinetic dynamometer (Biodex 

System 3, Biodex Medical Systems, Shirley, NY, USA) before and after the strength 

training period. The participants sat on the dynamometer chair with fasten seat belts 
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crossed in front of the chest and across the pelvis. The tested leg was secured to the 

arm of the dynamometer by cushioned pads placed immediately above the lateral 

malleolus and hold in place with Velcro straps. The knee joint was carefully aligned 

with the rotating axis of the dynamometer arm. Maximal voluntary Isometric 

contractions (MVC) with the knee extensors were repeated in 5º steps between 100º and 

60º of knee flexion (complete knee extension: 0º) and in 10º steps between 60º and 30º 

knee flexion. Maximal isometric contraction had minimal duration of 2 seconds. All 

contractions were performed randomly and separated by 2 minutes of rest. The 

relatively short duration of the MVCs and the fact that only one repetition was 

performed for each knee angle was justified by the need to prevent muscle fatigue. 

However, a second MVC was done if the investigator or the participant himself 

considered the effort to be unsatisfactory or its duration was too short. The torque 

generated during the isometric MVCs was analog-to-digital converted at 16-bits 

resolution and at a 1 kHz sampling rate (Biopac MP100, Santa Barbara, USA). The 

maximum knee extension torque produced before and after the strength training period 

were then recorded and used for analysis.  

Ultrasound Evaluation  

All participants were submitted to an US evaluation (Figure 17) of the four heads of the 

quadriceps femoris before, after 6 weeks and at the end of the 15-weeks strength 

training period. To avoid possible effects related to the daily routine, participants were 

evaluated at the same time of day in the three sessions. 

 

Figure 17: Example of ultrasound images acquisition. (own source) 
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Scanned muscle regions  

Ultrasound images were collected from three different muscle belly sites of the VL, VM, 

VI, and RF muscles. The places for US scanning were selected according to the scanning 

map used by Blazevich et al. (2006). For the VM, this corresponded to 5%, 22% and 39% 

of the distance between the upper edge of the patella and the anterior superior iliac 

spine, having the upper edge of the patella as the starting point; for the VL the 

percentages of that distance were 22%, 39% and 56%, and for the VI and RF these 

percentages were 39%, 56%, 73% (Figure 18).  

 

Figure 18: Ultrasound scanning regions for the four heads of the quadriceps femoris 
according to the Blazevich et al. (2006) protocol. (Blazevich et al. 2006) 

 

Ultrasound protocol  

Ultrasound B-mode images of each of the four heads of the quadriceps femoris were 

acquired in the longitudinal plane with participants seated on the dynamometer chair 

and with their knees held with 10º flexion. A suitable amount of US coupling gel was 

used to ensure optimal image quality and to minimize the transducer pressure on the 

skin. The same examiner, a certified MSK US sonographer, performed the US data 

collection and analysis.  

An US machine (HITACHI EUB 7500, HITACHI Medical Corporation, Tokyo, Japan) with a 

linear-array transducer with variable frequency band (7-12 MHz) was used to collect the 

images. All system-setting parameters were optimized individually and for each scanned 

muscle and then recorded and kept constant during the session. Gain was set at 25% of 
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the range, dynamic range was maintained at 70 dB, time gain compensation was kept at 

the same (neutral) position and depth was 65 mm for all images. Compression was 

minimal and applied in the vertical direction.  

Values for EI were obtained using Image J (National Institutes of Health, Bethesda, MD, 

USA) by the same examiner. A single image for each muscle, each leg, and from each of 

the three data-collecting sessions was analysed, in a total of 672 images.  

For each US scan, a maximum rectangular ROI (Figure 19) was defined manually and 

always by the same examiner that included as much of the muscle as possible, avoiding 

bone and surrounding fasciae. The ROI histogram was obtained and the mean pixel value 

used as a measure of EI. 

 
Figure 19: Example of a ROI for determination of EI in a longitudinal scan of the VL.  
 

Statistical analysis 

In the Control group, knee muscle strength and US measures were collected only in the 

beginning and end of the study and, therefore, statistical analyses were conducted 

separately for this group and the training groups. Mixed two-way analysis of variance 

(ANOVA) was employed to study the effect of time (3 time points) and of intervention 

(Ecc vs. Conc and large ROM vs. restricted ROM). The sphericity assumption was 

assessed with Mauchly’s test and the Greenhouse-Geiser correction for the significance 

level was considered if necessary. Linear regression was used to assess the relationship 

between MT and EI. Correlations were calculated separately using the data for the mid-

portion of the belly of the individual muscles collected before and after training.  
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Data is reported as mean ± SD. Threshold for statistical significance was set at p<0.05. 

All analyses were performed with SPSS 20.0 (SPSS Inc., Chicago, IL, USA) software 

package. 

3.1.2 Results 

Table 9 shows the data for maximal knee extension torque before and after the 15-

weeks strength training program. After strength training, isometric MVC increased 

significantly in both training groups [F(1,18)=58.583; p<0.001], but was unchanged in the 

Con group (p=0.47). The increase in maximal knee extension torque was similar in the 

GCon and GEcc groups as well as in the two limbs (pre-post strength training vs. group 

interaction: F(1,18)=0.006; p=0.938;  pre-post strength training vs. left limb-right limb 

interaction: F(1,18)=0.149; p=0.704). 

 

Table 9: Data for maximal isometric torque produced by the knee extensors before and 
after strength training for right and left limbs. 

 

 

Muscle thickness  

Muscle thickness data for each head of the quadriceps femoris and corresponding to the 

mid-region of the individual muscles are presented in Table 10. Four participants in the 

Control group missed the second testing session conducted at the end of 15 weeks. For 

this reason, data from the Control group at the end of the study are from 4 participants 

only. No statistical analysis between control and training groups were performed for MT 

or EI measurements.   
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Table 10: Data of muscle thickness for each of the four heads of the quadriceps femoris. 

 
 
Table 11: Mixed two-way ANOVA results for muscle thickness data: time and group 
effects. 

 

At the middle of the muscle belly (VM: 22%; VL: 39%; RF and VI: 56%), MT was largest in 

the VM in all groups, followed by the VL and the RF. The VI showed the smallest MT of 

all studied muscles, irrespectively of the group (Table 10).  
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Table 11 summarises the results of mixed two-way ANOVA analysis. Strength training 

resulted in an increase of MT at all muscles and sites excepting the VM. No differences 

in MT were observed between GCon and GEcc for any of the four muscles and muscle 

sites. Pairwise comparisons revealed that MT increased from pre-training to after 6 

weeks and 15 weeks of strength training for all muscles and sites, excepting for the 

lower site of the VI and RF and for the upper site of the VM. For VI and RF, MT values 

increased from pre-training to week 6 (p<0.001) and week 15 (p<0.01), but decreased 

from week 6 to week 15 (p=0.049 for both muscle sites). For the VM, MT decreased 

between pre-training and week 15 (p<0.01) and between week 6 and week 15 

(p<0.001).  

For MT measurements belonging to the lower site of the VL, a significant interaction 

between time, type of training and leg was found [F(2,34)=3.723; p=0.035], which seems 

to result from differences between the two legs in the response to the Conc training. 

Echo-intensity  

Tables 12 and 13 present the data for EI. The lowest EI values were registered in the RF 

and VI, whereas the VL and VM showed higher EI values (Table 12). Changes in EI values 

with strength training differed between the muscles. Mixed two-way ANOVA results 

revealed no differences in EI values across time for the VM and RF muscles (Table 13). 

In the VL and VI muscles, EI values changed significantly with strength training, although 

in the VL this was true only for the lower and middle portions of the muscle (Table 13). 

In the lower portion of the VL, pairwise comparisons showed a significant increase in EI 

values from baseline to week 6 (p=0.028) and week 15 (p=0.007). For the middle portion 

of the VL, a significant decrease in EI value between baseline and both week 6 and 

week 15 (respectively, p=0.039 and p=0.001). For the VI muscle, EI values lowered 

significantly from baseline to week 6 (p<0.001) and week 15 (p<0.001) in the lower 

portion of the muscle. For the upper portion of the VI, EI values changes were similar to 

those found for the lower portion, with significant decreases in EI values from baseline 

to week 6 (p<0.001) and week 15 (p<0.001). In the middle region of the VI, changes in EI 

values during the strength training weeks were less clear, decreasing at the end of the 

first 6 weeks compared to baseline (p<0.001) and rising significantly afterwards when 

compared to baseline (p=0.039) and week 6 (p<0.001).   
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Table 12: Data of echo-intensity for each four heads of quadriceps. 

 

Table 13: Mixed two-way ANOVA results for muscle echo-intensity data: time and group 
effects 

 

No relationship existed between MT and EI for the VM, VL, and RF muscles both before 

and after strength training (Figure 20). A significant positive relationship between MT 

and EI was found in the VI at baseline and at week 15 (Figures 21 and 22). 



 Morphological ultrasound evaluation in acute and chronic muscle overloading 

Rute Santos 
73 
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Vastus medialis 
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Rectus femoris 
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Figure 20: Scatterplots between MT and EI data. 
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Figure 21: Data for muscle thickness for each evaluated muscle and site at the beginning and 
end of the study. Values are from the two strength-training groups pooled together. 
*Significantly different from pre-training; p<0.05. 
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Figure 22: Data for muscle echo-intensity for each evaluated muscle and site at the 
beginning and end of the study. Values are from the two strength-training groups pooled 
together.  

 

3.1.3 Discussion 

The results of this study showed that 15 weeks of strength training significantly 

increased knee extension maximal isometric torque, which was accompanied by changes 

in MT and EI in the muscles composing the quadriceps femoris. However, considerable 

variation existed in MT and EI changes in response to strength training between the 

knee extensor muscles and between different regions of the same muscle.  

Higher values for MT and EI were observed in the VM and VL muscles for both right and 

left sides, which is in line with the literature. Nishihara et al. (2014) reported mean MT 

values for the RF (~2.16 cm) and the VI (~1.61 cm) muscles that are similar to those 

found in this study. Strasser et al. (2013) also reports MT values for the knee extensors 

that are comparable to the values we found for each of the heads of the quadriceps 

femoris, although slightly lower, and that ranged between a minimum of 1.3 cm in the 

VI and a maximum of 3 cm in the VM. More recently, Herrick et al. (2017) also reported 

a total thickness for the RF and VI muscles in golf players that is similar to our data 
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(Herrick et al., 2017). Regarding EI, Nielsen et al. (2006) showed that the VL muscle has 

a higher grayscale intensity when compared to the other knee extensor muscles, caused 

by a greater number of non-contractile components (Nielsen et al., 2006). However, 

Strasser et al. (2013) report mean EI values that were higher in the RF muscle (102 

a.u.), followed by the VL (96 a.u.), the VM (94 a.u.), and VI (78 a.u.) (Strasser et al., 

2013). These EI values are slightly higher than those we have found in the present 

study, a difference, which may be explained by differences in the protocol or in the 

machine. Varanoske et al. (2017) assessed EI in  panoramic transverse images of the VL 

and concluded that EI values were relatively homegenous in different regions of the 

muscle, with mean EI of around 58 a.u. (Varanoske et al., 2017). Such mean EI value is 

lower than the one we found but the difference in this case might rely on differences 

between and transverse and longitudinal plane images. However, our data also show 

that the VL together with the VM display higher EI compared to the RF and the VI. 

Therefore, there is agreement between our EI data and the data found in previous 

studies.  

Variations in echo intensity values between muscle groups may be the result of 

differences in the amount of connective or fibrous tissue in the muscle, fiber type 

distribution, intramuscular triglyceride arrangement, and architectural features of 

fascicles and their orientation within separate muscles (Varanoske et al., 2017). On the 

other hand, the inconsistent depths of the VL captured in each portion and is 

asymmetrical form; the anteromedial portion of the muscle is thicker than the 

posterolateral portion can help explaining its higher EI (Varanoske et al., 2017). 

Strength training showed a different impact on MT depending on the muscle. Increases 

in MT with strength training were more clearly seen in the VL and VI. In the VM, 

strength training did not alter MT values. Our data also show that increases in MT 

caused by strength training occurred mainly during the first 6 weeks and then tended to 

level off or even regress. This is contrary to the well established idea that muscle 

hypertrophy is linearly related with the duration of strength training after an initial 

period of few weeks. However, the design of the strength training protocol, with the 

progression based on increasing the velocity of the isokinetic contractions, which at 

least for the Conc contractions is accompanied by decreased force production, might 

have contributed to such findings. 

 

The effect of strength training on EI values showed marked differences between the 

individual knee extensor muscles. The most consistent impact of strength training on EI 
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values was seen in the VI, where a decrease in EI was found after strength training. In 

the VL, strength training was also associated with changes in EI values but these 

changes were in opposite directions in the middle and lower portions of this muscle. In 

addition, the VI was the only muscle of the quadriceps femoris showing a relationship 

between MT and EI, in this case a negative one. The reason behind such differences 

between the quadriceps femoris’ heads is not totally understood but might be related 

to anatomical features of each muscle, in particular the complex spatial arrangement of 

the muscle fascicles as they course from the proximal to the distal fasciae and the way 

such large muscles converge distally to form the thick quadriceps tendon, which inserts 

into the superior border of the patella (Andrikoula et al., 2006; Farahmand et al., 1998; 

Pasta et al., 2010). In the VM, unchanged EI values with strength training might be 

related with the fact that changes in MT with strength training were not consistent or 

significant in this muscle. This explanation for unchanged EI values does not apply to 

the VL. In this case, the fact that EI values after strength training remained unchanged 

whereas MT increased may signify that the relative proportion of muscle tissue and 

connective tissue within the muscle belly does not change with strength training in 

young participants.  

This study showed that both Conc and Ecc strength training produced similar changes in 

EI and MT. Previously, Batista et al. (2016) had already showed that Conc and Ecc 

strength training produced similar changes in muscle architecture and strength in 

healthy elderly subjects (Baptista et al., 2016). Also, Blazevich et al. (2007) has shown 

that changes in MT produced by Conc and Ecc training were comparable (Blazevich et 

al., 2007). 

3.1.4 Limitations 

The main limitation in this study was the inability to use the data from the Control 

group due to severe drop out. The fact that the muscle sites were selected for scanning 

based on published data and not on an electromyographic evaluation of the relative 

participation of each muscle during the training program could have also affected our 

ability to determine the best muscle sites for data collection.  

3.1.5 Summary  

A 15-week strength training program produced a significant increase of MT in different 

regions of the quadriceps femoris but generally failed in changing its EI values. The 

main exception was the VI, where strength training produced a significant decrease in EI 
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values. Further studies are needed to explain the variation in EI values and their 

responsiveness to strength training across the quadriceps femoris.  
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3.2 The effect of strength training on vastus lateralis’ stiffness: an 

ultrasound quasi-static elastography study  

The skeletal muscle is a dynamic tissue with a notable capacity to adjust its 

physiological and mechanical characteristics to the patterns of stretching and 

contraction they have to perform (Chan et al., 2012; Foure et al., 2012). Muscle 

stiffness or hardness, which may be simply defined as the resistance offered by muscles 

to compression, is a mechanical property that adapts in response to muscle use 

(Mitsuyoshi et al, 2012). Unlike other tissues, skeletal muscle stiffness varies 

dynamically with muscle length changes and contraction status (Akagi & Kusama, 2015; 

Gennisson et al., 2005; Ishikawa et al., 2016; Nordez et al., 2009; Nordez et al., 2006). 

In addition to such transient changes, pathological modifications of the muscle tissue as 

a result of MSK disease, often affect its stiffness (Botar-Jid et al., 2010, 2012; Park & 

Kwon, 2012; Sikdar et al., 2009). Repeated muscle use, including resistance training is 

also known to induce significant, albeit reversible, changes in muscle stiffness 

(Murayama et al., 2000; Ocarino et al., 2008; Tieleman et al., 2012; Yanagisawa et al., 

2011).  

Although muscle stiffness may be assessed subjectively by palpation or quantitatively 

using hardmeter devices, it may also be evaluated using imaging techniques, namely by 

ultrasound QSE (Brandenburg et al., 2014; Cortes et al., 2015; Drakonaki et al., 2012; 

Eby et al., 2015). QSE is nowadays implemented in many commercial US imaging 

machines, allowing real-time visualization of the amount of muscle tissue strain caused 

by repetitive light compressions applied directly onto the muscles with the US probe. 

While QSE was initially developed to enable an easier identification of abnormal 

structures on the basis of their higher stiffness relatively to the surrounding healthy 

tissue, it was soon applied for measuring muscle stiffness in active muscles (Botar-Jid et 

al., 2010). With QSE, tissue strain magnitude caused by the compressive stresses is 

depicted as a colour-coded strain map (also termed “elastogram”), overlaid to the B-

mode image. Also, semi-quantitative measurements of tissue stiffness may be gathered 

from elastograms using colour pixels counting (Drakonaki et al., 2012; Ophir et al., 

2002). In relaxed skeletal muscles, elastograms typically display a sparse colour pattern, 

characterized by scattered harder (blue, bluish colours) and softer (red, reddish 

colours) regions (Drakonaki et al., 2012; Vasilescu et al., 2010). QSE has been 

successfully used to study skeletal muscle stiffness associated with MSK disorders 

(Botar-Jid et al., 2010, 2012; Drakonaki & Allen, 2010; Vasilescu et al., 2010), including 

muscle spasticity (Vasilescu et al., 2010), myofascial trigger points (Sikdar et al., 2009), 
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muscle contractures associated with joint dysfunction (Chan et al., 2012), and 

congenital muscle dystrophy (Drakonaki & Allen, 2010). 

Together with its widespread use in the clinic, US elastography has also been used 

during normal skeletal muscle contractile activity (Ishikawa et al., 2015, 2016; 

Yanagisawa et al., 2011; Yanagisawa, 2015). Compared to other techniques, US 

elastography is advantageous since muscle stiffness can be assessed dynamically and in 

real-time in separate regions of muscles (e.g. the muscle belly and the tendon), in 

superficial and deep muscles, and in complex multifunctional muscle groups, like in the 

neck (Ishikawa et al., 2016) and in the shoulder girdle (Ishikawa et al., 2015; Muraki et 

al., 2015). In the shoulder, US strain elastography allowed to monitor the state of 

contraction of single muscles within a muscle group (Ishikawa et al., 2015; Muraki et 

al., 2013; Muraki et al., 2015). 

Only few studies have employed QSE to investigate changes in skeletal muscle stiffness 

in response to strength or endurance training (Botar-Jid et al., 2012; Lalitha et al., 

2011). To our knowledge, only one study has used US elastography (shear wave 

elastography) to investigate the impact of strength training (six weeks) for the elbow 

extensors on triceps brachii’s stiffness, and could not find any effect of training on this 

property (Akagi et al., 2016). Therefore, the potential of QSE to reveal changes in 

skeletal muscle stiffness after strength training is not fully known. 

Therefore, the aim of this study is to evaluate changes in muscle stiffness caused by 

Conc and Ecc strength training on knee extensors using QSE.  

3.2.1 Materials and Methods 

The details regarding the participants, strength training protocol and muscle strength 

testing were described in the previous study. Here, we will only describe the procedures 

employed for collecting the QSE data and the statistical analysis. 
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Figure 23: Diagram showing the location for ultrasound scanning (left). Picture of one 
participant sat on the dynamometer during ultrasound scanning (right).  

Ultrasound scanning  

Ultrasound scans were collected from the VL bilaterally at a region located at 39% of 

the distance between the upper edge of the patella and the anterior superior iliac spine 

(Figure 23) at baseline and after strength training using a commercial US system 

(HITACHI EUB 7500, HITACHI Medical Corporation, Tokyo, Japan), equipped with a 7-12 

MHz linear probe. The US scans were acquired with participants seated on the isokinetic 

dynamometer, with 10º of knee flexion, and muscles fully relaxed. The probe was 

placed aligned with the muscle fascicles (longitudinal scan). An experienced certified 

MSK ultrasound sonographer was responsible for collecting and analysing US data. To 

dismiss the possibility of circadian effects, the same person attended the laboratory for 

US data collection at approximately the same time of day before and after strength 

training. 

Ultrasound settings were adjusted and optimized individually during the first session. 

The settings were then registered and implemented again during the second visit. The 

US gain was set at 25% of its range, dynamic range was maintained at 70 dB, time 

compensation was kept at neutral position, and depth was fixed at 65 mm for all scans. 

For strain elastography acquisition, light compressions were applied with the US probe 

at a frequency 3-4 Hz using the feedback provided by the manufacturer’s software and 

displayed on the screen. Elastography images were recorded in video sequences and in 

bitmap format and stored in a computer hard disk. Two images were selected from each 

video for measurement of muscle stiffness.  

Semi-quantitative elastography 

Muscle stiffness was given semi-quantitatively by the fraction of red, green, and blue 

pixels measured within a ROI using a routine written in MATLAB 20.0 software (The 

MathWorks, Inc., Natick, Massachusetts, USA) (Figure 24). For each image, a rectangular 

ROI was draw centred on the VL and with a minimum size of 5 x 7 mm. Tissue elasticity 
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was represented by colour-coding (Botar-Jid et al., 2012). Each pixel within the 

elastogram is assigned one of 256 specific colours depending on the amplitude of 

deformation, but three basic colours were used, called encoding RGB (red-green-blue). 

Colour ranged from red, corresponding to softer tissues, to blue, corresponding to 

harder tissues responding with less deformation to the applied pressure (Botar-Jid et 

al., 2012; Ge et al., 2015). The green colour indicates tissues with medium deformation 

and lying between the red and blue coded tissues (Ge et al., 2015).   

 

Figure 24: Strain elastography maps and red, green, and blue pixels counting. (A) 
Elastogram map opened with the MATLAB routine. (C-E) Red, green, and blue pixels 
from A. (B) Elastogram superimposed to the B-mode image. (F) VL’s elastogram at 
baseline. (G) VL’s elastogram after resistance training (visible the decrease in the 
amount of red pixels).  

Statistical analysis 

In the control group, measures of knee torque and of VL elastography were collected 

only from the right leg. Therefore, statistical analysis for the effect of strength training 

was performed separately for the control group and the two other groups. Pairwise 

comparisons were performed using t-test (control group). For the other two groups, 

differences in knee maximal torque and in percentage of colour pixels before and after 

strength training were tested by mixed two-way analysis of variance (ANOVA) with a 

between-subjects factor with two levels (GCon and GEcc groups) and two within-

subjects’ factors, both with two levels (pre-and-post strength training and right and left 

leg). The sphericity assumption was assessed with Mauchly’s test and if necessary the 

Greenhouse-Geiser corrected significance level was considered. Correlations between 
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elastography and muscle strength data were studied using linear regression and Pearson 

correlation coefficient.  

Intra-session (intra-observer) reliability for QSE values was assessed using ICC (3,1; 

method: two-way mixed, consistency) and its 95% interval of confidence. SEM and SDC 

were also calculated. SEM indicates the precision of the measurement and was 

calculated based on the ICC and the SD of the mean of the differences between the two 

measurements (i.e., SEM = SD√1-ICC). The SDC was based on the SEM, using the formula 

SDC = 1.96*√2*SEM. 

Data is reported as mean ± SD. Threshold for statistical significance was set at p<0.05. 

All analyses were performed with SPSS 20.0 (SPSS Inc., Chicago, IL, USA) software 

package. 

3.2.2 Results 

Table 14 shows the data for maximal knee extensor torque before and after strength 

training. 

Table 14: Data for maximal isometric torque produced by the knee extensors before and 
after strength training for right and left limbs. 

 

After strength training, maximal knee extensor torque increased significantly in both 

training groups [F(1,18)=58.583; p<0.001], but it did not change in the control group 

(p=0.47). The increase in maximal knee extensor torque was similar in the GCon and 

GEcc groups as well as in the two limbs [pre-post vs. group interaction, F(1,18)=0.006; 

p=0.938;  pre-post vs. left-right interaction, F(1,18)=0.149; p=0.704].  

Elastogram 

Table 15 presents the mean red, green and blue colour pixel fractions within VL’s 

elastograms.  
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Regardless of group, leg, or time point, VL’s elastograms showed lower fraction number 

of red pixels when compared to that of the green and blue ones. The percentage of red 

pixels, expressed relatively to the total amount of pixels within each elastogram (Figure 

24) varied between approximately 8% to around 16%. The percentage of green and blue 

pixels was similar, ranging from approximately 26% to 38.7% (Table 15). 

Table 15: Data for colour pixels in vastus lateralis’ elastograms. 

In the control group, no changes in the fraction number of red and green pixels existed 

when comparing the VL’s elastograms at baseline with those collected at the end of the 

study. However, this group showed a slight, although significant, increase in the mean 

amount of the fraction number of blue pixels at the end of the study (p<0.01). After 

strength training, significant changes in the fraction number of colour pixels could be 

detected in VL’s elastograms. Specifically, strength training diminished the fraction 

number of soft, red pixels [F(1,18)=25.490; p<0.001], and increased that of the harder 

green and blue pixels [pre vs. post strength training for green and blue pixels 

respectively: F(1,18)=17.179; p<0.01; F(1,18)=6.522; p<0.05]. These data are compatible 

with increased muscle stiffness as a result of strength training. Changes in the relative 

amounts of red, green and blue colour pixels after strength training were similar in 

GCon and GEcc groups and between the right and left legs.  

Before strength training, maximal knee extensor torque was positively correlated with 

the percentage of red pixels within the VL’s elastograms (r2=0.43; p<0.01) and 

negatively correlated with the percentage of blue pixels (r2=0.29; p<0.05). After 
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training, no correlations between maximal knee extensor torque and number of red, 

green or blue colour pixels within VL’s relative strain maps could be found.  

Table 16 reports the reliability data regarding colour-mapping measures. Moderate 

intra-session ICCs were found. For all the three colours, ICC values were around the 0.6 

acceptance level.  

Table 16: Data of colour mapping for vastus lateralis and intra-class correlation 
coefficient (n= 8). 

SEM values for each of the three colours were similar, ranging between 0.04 and 0.06. 

SDC values varied between 0.10 (green colour for left thigh) and 0.16 (blue colour for 

both thighs) (Table 16). Blue colour tended to show higher absolute SEM and SDC values 

compared to red and green colours. Contrarily, SEM and SDC values for green colour 

were consistently smaller (Table 16). 

Table 17 reports the ICCs for data recorded in the same session (intra-session 

reliability). Moderate intra-observer ICCs were found. Only the measurements of green 

pixel fractions presented ICC values under the 0.6 acceptable level.  

Table 17: Data of colour mapping for vastus lateralis and inter-class correlation 
coefficient (n= 7). 
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3.2.3 Discussion 

This QSE study demonstrated that VL hardness increases after 15 weeks of strength 

training and in a similar degree with both Ecc and Conc training and with smaller or 

larger knee ranges of motion. To the best of our knowledge, this is the first time that 

increased muscle stiffness as a result of strength training is demonstrated by means of 

US elastography.  

Recently, muscle hardness monitoring has become a relatively accessible way for 

evaluating acute stiffness tissue changes caused by repeated muscle activity (Hirono et 

al., 2016). Despite the limitations of US elastography, its feasibility as a means to assess 

passive muscle tissue stiffness has been demonstrated by several studies (Brandenburg 

et al., 2014; Hirono et al., 2016; Niitsu et al., 2011).  

Colour-coded elastograms of healthy, relaxed skeletal muscles typically display complex 

and irregular colour patterns in which green and blue colours predominate, meaning 

that the stiffness of the skeletal muscle tissue is moderate but not strictly homogeneous 

(Debernard et al., 2011; Drakonaki et al., 2012; Paluch et al., 2016). Our study seems to 

confirm that VL’s hardness is also heterogeneous, with patchy areas of red colour 

surrounded by areas of predominant green and blue colours in line with Drakonaky et al 

(2012) who defined the muscle as “an inhomogeneous mosaic of intermediated or 

increased stiffness with scattered softer and harder areas” (Drakonaki et al., 2012). 

Presently, it is not known whether there is any information that can be extracted from 

the colour or grayscale patterns visible on strain US elastography images of skeletal 

muscles and whether such information could be associated with anatomical or 

physiological features. However, when viewed longitudinally, the few patchy areas with 

the same colour observed in colour-coded elastograms of skeletal muscles resemble the 

spatial arrangement of muscle fascicles, thus suggesting that a relationship between 

transverse strain behaviour and the skeletal muscle’s architecture may indeed exist. 

Regardless the apparent stochastic character of colour-coded skeletal muscle 

elastograms, their relative amounts of softer and harder colours change in a systematic 

way and in the expected direction (i.e., increased amount of harder colour pixels) when 

skeletal muscles contract or stretch (Vasilescu et al., 2010). Also, muscle tissue changes 

associated with congenital and traumatic myopathies are discernible with US strain 

elastography, which strengthens the validity and sensitivity of this imaging technique 

for assessing skeletal muscle mechanical properties (Botar-Jid et al., 2010, 2012; 

Drakonaki et al., 2012; Kim et al., 2015; Paluch et al., 2016). 
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By using strain US elastography changes in muscle stiffness due to repeated contractile 

activity have been shown to occur (Chino et al., 2012; Hirono et al., 2016; Muraki et al., 

2014; Niitsu et al., 2011; Paluch et al., 2016; Yanagisawa et al., 2015). After a series of 

forceful Conc and Ecc contractions by the elbow flexors, strain US elastography images 

showed increased strain resistance in biceps brachii in comparison to that of a constant-

stiffness reference material placed in between the US probe and the skin (Yanagisawa 

et al., 2011). Such changes in biceps brachii’s colour-coded elastograms were relatively 

short-lasting and were accompanied by an increase in muscle hardness, as measured 

with a tissue hardness meter (Yanagisawa et al., 2011).  

The increased muscle stiffness occurring after intense muscle contractions has been 

explained on the basis of increased hydrostatic pressure, raised muscle blood flow, and 

elevated intramuscular fluid content, particularly within the extracellular space 

(Sjogaard & Saltin, 1982; Yanagisawa et al., 2004). Other possibility, which might also 

underlie the changes in muscles fluid content, is the occurrence of small structural 

changes or injuries, which might trigger an inflammatory response, alter the stiffness of 

the muscle regions affected, or even lead to increased residual muscle contraction 

(Nosaka & Newton, 2002; Toledo, 2016; Yanagisawa et al., 2015). However, it is unlikely 

that raised intramuscular pressure and exercise-induced muscle oedema could explain 

the changes in VL’s relative stiffness that were observed in the present study as a result 

of strength training. In our study, participants were tested few days after having 

performed the last training session and they were carefully instructed to keep their 

knee extensors relaxed during US scanning. Therefore, the increase in relative strain 

seen in the US elastograms of strength trained VL is likely related with lasting and 

adaptive changes in the mechanical characteristics of the muscle tissue, specifically 

with an increase in muscle tissue stiffness.  

Increased muscle stiffness as a result of strength training has been demonstrated in 

several occasions (Bensamoun et al., 2006; Chleboun et al., 1997; Foure et al., 2012; 

Ocarino et al., 2008). Muscle stiffness, defined as the relationship between the change 

in muscle length and the amount of stress applied to the muscle, is generally regarded 

as the strain resistance along the muscles’ longitudinal axis or the resistance to muscle 

elongation and is given by the steepness of the passive or active length-tension curve of 

the muscle-tendon complex. The compressive force that is applied onto the muscle 

tissue during strain US elastography strains the underlying tissues in proportion to their 

stiffness, which is then derived by contrasting the US echoes during compressed and 

uncompressed conditions (Drakonaki et al., 2012). Changes in joints’ resting position 

and tendon stiffness after intense muscle contractile activity and strength training are a 
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further indication of increased muscle hardness and stiffness associated with increased 

muscle use (Taş et al., 2017). Taş et al. (2017) showed that the quadriceps femoris 

strength was positively correlated with patellar tendon stiffness and thickness (Taş et 

al., 2017). After two months of resistance training of the elbow flexors, the resting 

elbow position significantly moved towards increased flexion, while the elbow joint’s 

stiffness, a parameter that informs about the biomechanical properties of the overall 

structures making up this joint (i.e. joint surfaces, cartilages, joint capsule and 

ligaments), including the several muscle-tendon complexes crossing the joint, 

significantly increased (Ocarino et al., 2008). Increased gastrocnemius muscles stiffness 

was also reported after plyometric training of the human ankle plantar flexor muscles, a 

kind of training in which cycles of powerful lengthening and shortening muscle 

contractions are performed, thus resembling the behaviour of ankle plantar flexors 

during running or jumping (Foure et al., 2012).  

There are several possible mechanisms underlying the increase in muscle stiffness seen 

after strength training. Changes in muscle architecture and muscle hypertrophy might 

be responsible for increased muscle passive stiffness (Chleboun et al., 1997; Murayama 

et al., 2012). A significant positive correlation between biceps brachii’s and brachial 

anterior’s volumes and elbow joint stiffness has been reported (Chleboun et al., 1997). 

Nonetheless, differences in muscle stiffness in response to axial compression and to 

elongation might exist. Muscle hardness is the term that is usually employed to name 

the palpable resistance of the muscle tissue to an applied pressure and, in this sense, is 

closer to strain elastography qualitative or semi-quantitative measures than the 

biomechanical muscle-tendon complex elongation apparent stiffness. However, muscle 

hardness and muscle elongation stiffness are correlated and, therefore, a rise in muscle 

hardness occurs when there is an increase in muscle’s tension caused by contraction 

(Leonard et al., 2004; Murayama et al., 2012) or by passive stretch (Murayama et al., 

2012). 

In the present study, we had different groups undertaking Conc and Ecc strength 

training. Also, in one limb muscle contractions were performed along a larger 

movement amplitude of the knee joint (i.e. knee extensors trained in shortened 

length). However, strength increase was similar in the two strength-training groups and 

in both limbs, showing that the efficacy of the strength training, in terms of the gain in 

maximal voluntary isometric strength, was similar irrespectively of the kind of muscle 

contraction employed (i.e., Conc vs. Ecc) and the amount of active shortening or 

lengthening (full ROM vs. limited ROM). Likewise, the percentage changes in “softer” 

and “harder” colours in US elastograms of the VL after strength training was similar 
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amongst the different training conditions. Previous studies show that the increase in 

human elbow flexors stiffness is related with the total amount of muscle work during 

training (Ocarino et al., 2008). Whether such discrepancies between our results and 

those of others reflect fundamental differences between elbow flexors and the VL or 

differences in the training and testing protocols between the two studies is unknown at 

this point.  

It is possible that the similar changes in the US elastograms between the different 

strength training conditions may be associated with the limited precision of QSE 

measures. Previously, Muraki et al. (2014), and Yanagisawa et al. (2011) showed very 

high ICC values (around 0.9) for the strain ratio in the supraspinatus and biceps brachii 

muscles (Muraki et al., 2014; Yanagisawa et al., 2011). However, large variations in ICC 

values (range 0.6-0.9) for US elastography measures collected from the gastrocnemius 

muscle evaluation have also been reported (Hirono et al., 2016). Our study showed a 

moderate (ICC: 0.6-0.7) intra-evaluation reliability for colour mapping values by QSE US, 

maybe due to the compression operator-dependence (Gennisson et al., 2013; Konofagou 

et al., 2003; Taljanovic et al., 2015, Lacourpaille et al., 2012; Park & Kwon, 2012).  

3.2.4 Limitations 

Strain US elastography offers qualitative information of tissue strain behaviour by direct 

viewing of a grayscale or colour-coded image superimposed on the B-mode image. 

However, the range of strains is dynamically adjusted depending on the difference 

between the lowest and the highest strained tissue within the scanned region, thus 

rendering the elastogram a relative image only. To make the qualitative colour-coded 

information of QSE a semi-quantitative measure, ratios of relative strains between the 

ROI and a reference can be employed. The overlying subcutaneous fat can be used as 

reference, but it is not possible to guarantee that the subcutaneous fat properties 

remain unchanged after the training. Moreover, the thickness of the subcutaneous fat 

may be too small to allow selecting a ROI. This limitation is particularly relevant when 

studying young and very active subjects, as in this study, who have a very low 

percentage of body fat. As an alternative, a material of homogeneous mechanical 

properties might be used for reference (Drakonaki et al., 2012; Yanagisawa et al., 

2011). However, our elastographic measures were not normalized to a reference. 

Therefore, we should emphasize that there is a small chance that the increase in the 

area fraction occupied by the harder green and blue colours that was noted in our study 

after strength training might not reflect heightened muscle hardness. Indeed, structural 

changes could have altered the relative hardness of the different tissues that are 
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scanned and thus modified the colour distribution within the elastogram. However, 

increased fraction of “harder” colour in the VL elastograms would have happened only 

if some tissue harder than the muscle prior training had turned softer by the end of the 

study, which is unlikely. Another limitation of this study relies on the operator-

dependence of QSE. Although this limitation cannot be completely avoided, it was 

minimised by having the same operator conducting every US scan and by carefully 

selecting images for analysis obtained when compression frequency stood in the range 

3-4 Hz.  

3.2.5 Summary  

This study offers the first demonstration that after 15 weeks of strength training, there 

is an increase in the stiffness of the relaxed VL that can be measured with strain US 

elastography. However, this technique only provides semi-quantitative measures and in 

the future, it would be important to confirm the results of our study with quantitative 

US elastography methods.  



 Morphological ultrasound evaluation in acute and chronic muscle overloading 

Rute Santos 
93 

3.2.6 References  

Akagi, R., & Kusama, S. (2015). Comparison Between Neck and Shoulder Stiffness Determined by 
Shear Wave Ultrasound Elastography and a Muscle Hardness Meter. Ultrasound in Medicine 
& Biology, 41(8), 2266–71.  

Akagi, R., Shikiba, T., Tanaka, J., & Takahashi, H. (2016). A Six-Week Resistance Training 
Program Does Not Change Shear Modulus of the Triceps Brachii. Journal of Applied 
Biomechanics, 32(4), 373–378.  

Bensamoun, S., Stevens, L., Fleury, M., Bellon, G., Goubel, F., & Ho Ba Tho, M. (2006). 
Macroscopic-microscopic characterization of the passive mechanical properties in rat soleus 
muscle. Journal of Biomechanics, 39(3), 568–578.  

Botar-Jid, C., Damian, L., Dudea, S., Vasilescu, D., Rednic, S., & Badea, R. (2010). The 
contribution of ultrasonography and sonoelastography in assessment of myositis. Medical 
Ultrasonography, 12(2), 120–126. 

Botar-Jid, C., Vasilescu, D., Damian, L., Dumitriu, D., Ciurea, A., & Dudea, S. (2012). 
Musculoskeletal sonoelastography. Pictorial essay. Medical Ultrasonography, 14(3), 239–
245. 

Brandenburg, J., Eby, S., Song, P., Zhao, H., Brault, J., Chen, S., & An, K. (2014). Ultrasound 
elastography: The new frontier in direct measurement of muscle stiffness. Archives of 
Physical Medicine and Rehabilitation, 95(11), 2207–2219.  

Chan, S., Fung, P., Ng, N., Ngan, T., Chong, M., Tang, C., … Zheng, Y. (2012). Dynamic changes 
of elasticity, cross-sectional area, and fat infiltration of multifidus at different postures in 
men with chronic low back pain. Spine Journal, 12(5), 381–388.  

Chino, K., Akagi, R., Dohi, M., Fukashiro, S., & Takahashi, H. (2012). Reliability and Validity of 
Quantifying Absolute Muscle Hardness Using Ultrasound Elastography, 7(9), 5–9.  

Chleboun, G., Howell, J., Conatser, R., & Giesey, J. (1997). The relationship between elbow 
flexor volume and angular stiffness at the elbow. Clinical Biomechanics, 12(6), 383–392.  

Cortes, D., Suydam, S., Silbernagel, K., Buchanan, T., & Elliott, D. (2015). Continuous Shear 
Wave Elastography: A New Method to Measure Viscoelastic Properties of Tendons in Vivo. 
Ultrasound in Medicine & Biology, 41(6), 1518–1529.  

Debernard, L., Robert, L., Charleux, F., & Bensamoun, S. (2011). Characterization of muscle 
architecture in children and adults using magnetic resonance elastography and ultrasound 
techniques. Journal of Biomechanics, 44(3), 397–401.  

Drakonaki, E., Allen, G., & Wilson, D. (2012). Ultrasound elastography for musculoskeletal 
applications. The British Journal of Radiology, 85(1019), 1435–45.  

Drakonaki, E., & Allen, G. (2010). Magnetic resonance imaging, ultrasound and real-time 
ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skeletal 
Radiology, 391–396.  

Eby, S., Cloud, B., Brandenburg, J., Giambini, H., Song, P., Chen, S., … An, K. (2015). Shear 
wave elastography of passive skeletal muscle stiffness: Influences of sex and age 
throughout adulthood. Clinical Biomechanics, 30(1), 22–27.  

Foure, A., Nordez, A., & Cornu, C. (2012). Effects of plyometric training on passive stiffness of 
gastrocnemii muscles and achilles tendon. European Journal of Applied Physiology, 112(8), 
2849–2857.  

Ge, L., Shi, B., Song, Y., Li, Y., Wang, S., & Wang, X. (2015). Clinical value of real-time 
elastography quantitative parameters in evaluating the stage of liver fibrosis and cirrhosis. 
Experimental and Therapeutic Medicine, 10(3), 983–990.  

Gennisson, J., Deffieux, T., Fink, M., & Tanter, M. (2013). Ultrasound elastography: principles 
and techniques. Diagnostic and Interventional Imaging, 94(5), 487–95.  

Gennisson, J., Cornu, C., Catheline, S., Fink, M., & Portero, P. (2005). Human muscle hardness 
assessment during incremental isometric contraction using transient elastography. Journal 



Morphological ultrasound evaluation in acute and chronic muscle overloading 

 94  Rute Santos 

of Biomechanics, 38(7), 1543–1550.  

Hirono, J., Mukai, N., Takayanagi, S., & Miyakawa, S. (2016). Changes in the hardness of the 
gastrocnemius muscle during a Kendo training camp as determined using ultrasound real-
time tissue elastography. The Journal of Physical Fitness and Sports Medicine, 5(3), 239–
245.  

Ishikawa, H., Muraki, T., Morise, S., Sekiguchi, Y., Yamamoto, N., Itoi, E., & Izumi, S. (2016). 
Changes in stiffness of the dorsal scapular muscles before and after computer work: a 
comparison between individuals with and without neck and shoulder complaints. European 
Journal of Applied Physiology.  

Ishikawa, H., Muraki, T., Sekiguchi, Y., Ishijima, T., Morise, S., Yamamoto, N., … Izumi, S. 
(2015). Noninvasive assessment of the activity of the shoulder girdle muscles using 
ultrasound real-time tissue elastography. Journal of Electromyography and Kinesiology, 
25(5), 723–730.  

Kim, S., Park, H., & Lee, S. (2015). Usefulness of strain elastography of the musculoskeletal 
system. Ultrasonography, 35(April), 104–109.  

Konofagou, E., Ophir, J., & Krouskop, T. (2003). Elastography: From Theory To Clinical 
Applications. In Summer Bioengineering Conference (Vol. June, pp. 367–368). Florida.  

Lacourpaille, L., Hug, F., Bouillard, K., Hogrel, J., & Nordez, A. (2012). Supersonic shear imaging 
provides a reliable measurement of resting muscle shear elastic modulus. Physiological 
Measurement, 33(3), N19-28. 

Lalitha, P., Reddy, M., & Reddy, K. (2011). Musculoskeletal Applications of Elastography : a 
Pictorial Essay of Our Initial Experience. Korean Journal of Radiology, 12(3), 365–375.  

Leonard, C., Brown, J., Price, T., Queen, S., & Mikhailenok, E. (2004). Comparison of surface 
electromyography and myotonometric measurements during voluntary isometric 
contractions. Journal of Electromyography and Kinesiology, 14(6), 709–714.  

Muraki, S., Fukumoto, K., & Fukuda, O. (2013). Prediction of the muscle strength by the muscle 
thickness and hardness using ultrasound muscle hardness meter. SpringerPlus, 2(457), 1–7.  

Muraki, T., Ishikawa, H., & Morise, S. (2014). Ultrasound elastography – based assessment of the 
elasticity of the supraspinatus muscle and tendon during muscle contraction. Journal of 
Shoulder and Elbow Surgery, 1–7.  

Muraki, T., Ishikawa, H., Morise, S., Yamamoto, N., Sano, H., Itoi, E., & Izumi, S. ichi. (2015). 
Ultrasound elastography-based assessment of the elasticity of the supraspinatus muscle and 
tendon during muscle contraction. Journal of Shoulder and Elbow Surgery, 24(1), 120–126.  

Murayama, M., Nosaka, K., Yoneda, T., & Minamitani, K. (2000). Changes in hardness of the 
human elbow flexor muscles after eccentric exercise. European Journal of Applied 
Physiology, 82(5–6), 361–367.  

Murayama, M., Watanabe, K., Kato, R., Uchiyama, T., & Yoneda, T. (2012). Association of 
muscle hardness with muscle tension dynamics: A physiological property. European Journal 
of Applied Physiology, 112(1), 105–112.  

Niitsu, M., Michizaki, A., Endo, A., Takei, H., & Yanagisawa, O. (2011). Muscle hardness 
measurement by using ultrasound elastography: a feasibility study. Acta Radiologica 
(Stockholm, Sweden : 1987), 52(1), 99–105. 

Nordez, A., Cornu, C., & McNair, P. (2006). Acute effects of static stretching on passive stiffness 
of the hamstring muscles calculated using different mathematical models. Clinical 
Biomechanics, 21(7), 755–760.  

Nordez, A., Guével, A., Casari, P., Catheline, S., & Cornu, C. (2009). Assessment of muscle 
hardness changes induced by a submaximal fatiguing isometric contraction. Journal of 
Electromyography and Kinesiology, 19(3), 484–491.  

Nosaka, K., & Newton, M. (2002). Concentric or eccentric training effect on eccentric exercise-
induced muscle damage. Medicine and Science in Sports and Exercise, 34(1), 63–69.  



 Morphological ultrasound evaluation in acute and chronic muscle overloading 

Rute Santos 
95 

Ocarino, J., Fonseca, S., Silva, P., Mancini, M., & Gonçalves, G. (2008). Alterations of stiffness 
and resting position of the elbow joint following flexors resistance training. Manual 
Therapy, 13(5), 411–418.  

Ophir, J., Alam, S., Garra, B., Kallel, F., Konofagou, E., Krouskop, T., … Varghese, T. (2002). 
Elastography : Imaging the elastic properties of soft tissues with ultrasound. Journal 
Medicine Ultrasonics, 29(Winter), 155–171. 

Paluch, Ł., Nawrocka-Laskus, E., Wieczorek, J., Mruk, B., Frel, M., & Walecki, J. (2016). Use of 
Ultrasound Elastography in the Assessment of the Musculoskeletal System. Polish Journal of 
Radiology, 81, 240–246. 

Park, G., & Kwon, D. (2012). Sonoelastographic evaluation of medial gastrocnemius muscles 
intrinsic stiffness after rehabilitation therapy with botulinum toxin A injection in spastic 
cerebral palsy. Archives of Physical Medicine and Rehabilitation.  

Park, G., & Kwon, D. (2012). Sonoelastographic evaluation of medial gastrocnemius muscles 
intrinsic stiffness after rehabilitation therapy with botulinum toxin a injection in spastic 
cerebral palsy. Archives of Physical Medicine and Rehabilitation, 93(11), 2085–2089.  

Sikdar, S., Shah, J., Gebreab, T., Yen, R., Gilliams, E., Danoff, J., & Gerber, L. (2009). Novel 
Applications of Ultrasound Technology to Visualize and Characterize Myofascial Trigger 
Points and Surrounding Soft Tissue. Archives of Physical Medicine and Rehabilitation, 
90(11), 1829–1838.  

Sjogaard, G., & Saltin, B. (1982). Extra- and intracellular water spaces in muscles of man at rest 
and with dynamic exercise. American Journal of Physiology - Regulatory, Integrative and 
Comparative Physiology, 243(3), R271 LP-R280. 

Taljanovic, M., Melville, D., Klauser, A., Latt, L., Arif-Tiwari, H., Gao, L., & Witte, R. (2015). 
Advances in Lower Extremity Ultrasound. Current Radiology Reports, 3(6), 19.  

Taş, S., Yılmaz, S., Onur, M., Soylu, A., Altuntaş, O., & Korkusuz, F. (2017). Patellar tendon 
mechanical properties change with gender, body mass index and quadriceps femoris muscle 
strength. Acta Orthopaedica et Traumatologica Turcica, 51(1), 54–59.  

Tieleman, A., Vinke, A., Alfen, N., Dijk, J., Pillen, S., & Engelen, B. (2012). Skeletal muscle 
involvement in myotonic dystrophy type 2. A comparative muscle ultrasound study. 
Neuromuscular Disorders, 22(6), 492–499.  

Toledo, M. (2016). Reliability of ultrasound imaging measures of soft tissue stiffness using 
elastography in the posterior aspect of the leg. Unitec.  

Vasilescu, D., Vasilescu, D., Dudea, S., Botar-Jid, C., Sfrângeu, S., & Cosma, D. (2010). 
Sonoelastography contribution in cerebral palsy spasticity treatment assessment, 
preliminary report: a systematic review of the literature apropos of seven patients. Medical 
Ultrasonography, 12(4), 306–310. 

Yanagisawa, O., Kudo, H., Takahashi, N., & Yoshioka, H. (2004). Magnetic resonance imaging 
evaluation of cooling on blood flow and oedema in skeletal muscles after exercise. 
European Journal of Applied Physiology, 91(5–6), 737–740.  

Yanagisawa, O., Niitsu, M., Kurihara, T., & Fukubayashi, T. (2011). Evaluation of human muscle 
hardness after dynamic exercise with ultrasound real-time tissue elastography: A feasibility 
study. Clinical Radiology, 66(9), 815–819.  

Yanagisawa, O., Sakuma, J., Kawakami, Y., Suzuki, K., & Fukubayashi, T. (2015). Effect of 
exercise-induced muscle damage on muscle hardness evaluated by ultrasound real-time 
tissue elastography. SpringerPlus, 4(1), 308.  

 



Morphological ultrasound evaluation in acute and chronic muscle overloading 

 96  Rute Santos 



 Morphological ultrasound evaluation in acute and chronic muscle overloading 

Rute Santos 
97 

Chapter 4: Vastus lateralis stiffness assessed with supersonic 

shear wave elastography  

Supersonic Shear Image (SSI) is an US elastography method that offers a direct 

quantitative measure of tissue stiffness based on the velocity of shear waves. In recent 

years, this technique has become very popular for the study of muscle mechanics in vivo 

and in human participants. The potential of this technique is enormous and has enabled 

researchers in many fields, including biomechanics and muscle physiology to probe the 

function of complex multiarticular muscle groups in passive and active conditions. 

In this chapter, we describe a preliminary study using SSI to investigate changes in the 

stiffness of the VL as a consequence of passive muscle elongation, force production, and 

repeated muscle activity. 
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4.1 Effect of knee angle, contractile activity and intensity of force 

production on vastus lateralis’ stifness: a supersonic shear wave 

elastography study 

The recent developments in US imaging modalities have enhanced our ability for 

studying muscle tissue mechanical properties in vivo, including changes in muscle 

stiffness associated with stretching and contraction (Gennisson et al., 2010; Koo et al., 

2014; Miyamoto et al., 2015). One such advances is SSI (Gennisson et al., 2013). This US 

modality allows real-time quantification of muscle tissue stiffness in dynamic and 

relatively unconstrained conditions (Pedersen et al., 2012; Ryu & Jeong, 2017; 

Smajlovic et al., 2011). The feasibility of SSI to investigate the mechanical properties of 

the muscle tissue is well documented, including in response to passive muscle 

elongation (Koo et al., 2014), as well as during isometric contractions of different 

intensities (Ateş et al., 2015). The good sensitivity of SSI measurements of tissue 

stiffness has also been explored for addressing questions related with muscle 

adaptations to resistance training and stretching (Akagi et al., 2016; Nakamura et al., 

2014; Umegaki et al., 2015), muscle co-ordination (Ishikawa et al., 2015; Raiteri et al., 

2016), and muscle tissue changes caused by ageing (Akagi et al., 2015; Eby et al., 2015) 

or injury and disease (Lacourpaille et al., 2014). Compared to other techniques, such as 

the use of hardness meters (Murayama et al., 2012) or torque-angle curves 

determination (Nordez et al., 2006), US elastography, in particular SSI, allows 

measuring muscle tissue stiffness in several places of muscles and tendons both at rest 

and during activity.  

Supersonic shear wave imaging is based on measuring the velocity of propagating 

mechanical vibrations or shear waves generated by focused US beams. This technique 

uses acoustic radiation force to generate a series of pushes inside the tissue and 

ultrafast US acquisition for detecting and measuring the propagation of the induced 

shear waves (Bercoff et al., 2004; Gennisson et al., 2013). The generated planar shear 

wave propagates with a velocity that is directly proportional to the stiffness of the 

medium. The mathematical relation describing the velocity of the traveling shear waves 

is then inverted to construct a map of the Young’s modulus (Gennisson et al., 2010). 

The anisotropic character of the muscle tissue influences the propagation velocity of 

the shear waves and the sensitivity of SSI to measure muscle stiffness. Thus, the 

velocity of the shear waves during muscle contraction bear a direct relationship with 

the intensity of the contraction only when the shear waves propagate parallel to the 
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length of the muscle fascicles, otherwise saying, when the principal axis of the US probe 

is oriented parallel to the muscle fibres (Gennisson et al., 2010; Le Sant et al., 2015).  

Measuring muscle stiffness is important for understanding muscle function and to 

monitor muscle status. Muscle stiffness can be an indicator of the length of the muscle, 

as well as of its contraction status. Good estimates of tibialis anterior elasticity can be 

obtained with SSI (Koo et al., 2014). In the hamstring muscles, stretching also causes a 

linear increase in muscle shear modulus (Le Sant et al., 2015). In upper extremity 

muscles, shear wave velocity is linearly related with the degree of isometric 

submaximal contractions (<60% MVC) (Gennisson et al., 2010; Yoshitake et al., 2014), 

which may extend to the full range of isometric torque capacity in the case of small 

hand muscles (Ateş et al., 2015).  

Repeated muscle contractions are also susceptible to increase muscle stiffness that can 

be detected by SSI (Ishikawa et al., 2016; Lacourpaille et al., 2014; Nordez et al., 

2009). Recently, it has been reported that 60 min after a series of isokinetic Ecc 

contractions (3 sets of 10 contractions at 120º.s-1) there was a significant increase in 

shear elasticity in the elbow flexors that normalised after 48 hours, except when 

measured at a more extended elbow angle (i.e., 160°) (Lacourpaille et al., 2014). This 

Ecc exercise-induced acute increase in shear elasticity was dissociated from fluid 

accumulation as indicated by comparing the measured transverse relaxation time T2 

with the shear modulus (Lacourpaille et al., 2014).  

Muscle shear modulus data has been obtained mostly from arm and calf muscles and less 

from pennate thigh muscles, like the quadriceps femoris (Dubois et al., 2015). The 

relationship between the measured shear modulus and the mechanical status of the 

muscle is more accurate when the probe’s main axis is parallel to the direction of the 

underlying muscle fascicles but can be affected by the obliquity between the probe and 

the muscle fascicles within the plane of the US scan (Miyamoto et al., 2015). Also, there 

is a lack of information regarding the immediate effect of repeated muscle contractions 

on muscle stiffness and particularly when such activity combines different modes of 

contraction. Therefore, we conducted a preliminary SSI study to assess changes in VL’s 

shear modulus with knee position and after a session of maximal isometric and 

isokinetic Conc and Ecc contractions. The relationship between VL’s shear elasticity and 

submaximal knee extension torque was also investigated.  
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4.1.1 Materials and Methods  

Participants 

Sixteen young and active subjects, ten males, (mean ± SD; height: 1.69 ± 0.07 m, 

weight: 66.7 ± 8.1 kg, age: 20.06 ± 2.02 years) participated in this study. Participants 

were fully informed of the purpose and the procedures of the study and signed a written 

informed consent.  

Protocol 

Data were collected in a single session. All contractions were performed on an isokinetic 

dynamometer (Biodex System 3, Biodex Medical Systems). Participants sat on the 

dynamometer chair with the trunk stabilized with straps crossing the chest and the 

pelvis. The right leg was fixed to the dynamometer’s arm immediately above the 

malleoli and the knee joint was aligned with the rotating center of the dynamometer 

arm. Participants remained seated on the dynamometer during the entire session.  

After a warm-up consisting on a few submaximal isometric, Conc, and Ecc contractions, 

participants performed a series of maximal contractions with the knee extensors that 

begun with 3 repetitions of isometric MVCs at 30°, 60°, and 90° of knee flexion, 

followed by 2 sets of maximal Conc and Ecc contractions at angular velocities of 120, 

90, and 60º.s-1 and performed through a ROM between 90° and 0° of knee flexion (0° - 

total knee extension). To match the time muscles were active during the different 

contraction velocities, the number of repetitions was 6, 4, and 2 for sets performed at 

angular velocity of 120°.s-1, 90°.s-1, and 60°.s-1, respectively. The order of the maximal 

isometric, Conc and Ecc contractions was randomized and counterbalanced between the 

participants. During dynamic contractions, the order of the sets run from the highest to 

the lowest angular velocity (from 120°.s-1 down to 60°.s-1), for Conc contractions, and in 

the opposite sense (from 60°.s-1 up to 60°.s-1) for Ecc contractions. A computer monitor 

facing the participants provided feedback about the torque produced during the 

contractions. Verbal encouragement was also given during the efforts. A 2 min rest 

separated each isometric MVC and each contraction set.  

After 5 min of resting, two isometric ramp contractions were performed between 0 and 

60% of isometric MVC and at 60° of knee flexion. Participants received visual feedback 

about the time and the torque generated and were requested to increase the latter 

from 0 to 60% MVC in about 10 s. 
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Shear wave elastography 

An Aixplorer US equipment (version 4.2; Supersonic Imagine, Aix-en-Provence, France) 

equipped with a 4-15 MHz linear transducer array (SuperLinear 15-4, Vermon, Tours, 

France) in shear wave elastography mode and musculoskeletal preset was used for SSI 

muscle scanning (Figure 25).  

The US probe was placed over the VL at a position corresponding to 39% of the distance 

between the upper edge of the patella and the anterior superior iliac spine (Blazevich 

et al., 2006). B-mode images were used to align the principal axis of the probe with the 

direction of the muscle fascicles. The probe orientation was considered optimal when 

the hyperechoic images corresponding to the muscle fascicles were clearly visible and 

few fascicles within the belly of the VL could be seen in their full length. Ultrasound gel 

was applied to ensure acoustic coupling. After anatomical location and probe 

orientation have been set, skin landmarks were drawn on the skin to guarantee that the 

probe was placed over the same region of the VL during repeated scans. Measurements 

of shear wave modulus were made with the knee at 10, 50, and 90° flexion. Participants 

were asked to remain as relaxed as possible during all static measurements. 

The shear wave elastography field of view was delimited by a fixed-size square ROI (1.5 

cm2) placed within the VL and away from fibrous and adipose septa.   

Data Processing 

For each measurement, the acquisition was made as a video of shear wave elastography 

maps (mp4 format) that were next transformed into a sequence of ‘jpeg’ images.  

Using a Matlab routine (R2013a, The MathWorks Inc., Natick, USA), the images were 

decomposed into the three red-green-blue matrices.	 The shear modulus (µ) is 

calculated assuming a linear elastic behavior of the tissues and using the following 

formula: µ= pVs2 (where p is the muscle mass density 1000 kg/m3). The intensity of the 

pixels was quantified and converted to kPa values, considering that the highest pixel 

values were red and the lowest blue. The saturating shear modulus was above 100 kPa. 
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Figure 25: Schematic representation of the ultrasound equipment 
with supersonic shear wave elastography capability. 

Statistical Analysis 

Two-way within-subjects’ ANOVA was used to compare the shear modulus before and 

after knee extension contractions and between the knee joint angles. The same analysis 

was also used to evaluate the effect of the type of contraction (i.e., isometric, Conc, 

and Ecc). The sphericity assumption was tested with Mauchly’s test and in cases this 

assumption was violated, the Greenhouse-Geiser correction for the significance level 

was considered. Polynomial contrasts were calculated using one-way ANOVA for shear 

modulus values during ramp contractions. The determination coefficient (R2) was 

derived using linear regression analysis. All statistical tests were conducted using SPSS 

software package, v. 22 (SPSS Inc., Chicago, IL, USA). Data are presented as mean ± SD. 

Statistical significance was accepted at p<0.05. 

4.1.2 Results 

Shear modulus values during ramp contractions could not be measured from one 

subject. 

At baseline, the values for the relaxed VL’s shear modulus were 5.06 ± 1.48, 5.68 ± 

2.08, and 9.40 ± 4.10 kPa at 10, 50 and 90° knee flexion, respectively. By the end of the 

study, these values had risen to 5.87 ± 2.83, 7.05 ± 3.65 and 10.95 ± 2.92 kPa. ANOVA	

revealed a significant pre-post [F(1,14)=8.122; p=0.013] and knee angle [F(2,28)=43.467; 

p<0.001] effects on shear wave elasticity but without any interaction effect between 

these two factors [F(1,14)=0.160; p=0.853]. Compared to baseline, the shear modulus 

increased after isometric [F(2,28)=9.354; p=0.009] and Ecc [F(2,28)=6.512; p=0.023] 

contractions, but not after Conc contractions [F(2,28)=4.358; p=0.056]. In all cases, the 
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interaction effect between the factors pre-post and knee angle was not significant. No 

differences were found between the shear modulus measured at the end of each 

contraction type (Table 18).		

Table 18: Two-way within-subjects ANOVA results for shear modulus data.	

During ramp contractions, shear wave velocity increased linearly with torque production 

(Figure 26). The mean of the individual R2 (coefficient of determination) values, 

calculated from the regression analysis for the values of muscle torque and shear 

modulus and without considering the resting values, reached 0.77 ± 0.33 (range: 0.27-

0.99) (Figure 27). The results of the polynomial contrasts show a significant linear 

effect between the VL’s shear modulus and the percentage of maximal knee extension 

torque production [F(1,14)=37.934; p<0.001]. When testing for a quadratic relationship 

between these two variables, the same analysis showed that the effect was not 

significant [F(1,14)=0.512; p<0.482], which can be interpreted as showing that, at least at 

up to 60% isometric maximal knee extension torque, there was no levelling off in the 

increase of the VL’s shear modulus.  

20% MVC 30% MVC 40% MVC 50% MVC 60% MVC 

     
Figure 26: Typical shear wave elastograms during ramp isometric contractions of increasing 
intensity. 
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Figure 27: Individual linear regressions between isometric extension torque and shear 
modulus. 

4.1.3 Discussion 

In this study, a number of observations regarding changes in VL’s shear modulus with 

muscle length and contraction were obtained, namely that: 1) in the relaxed VL, the 

shear modulus increases with knee flexion, 2) the VL’s shear modulus increases linearly 

with the degree of isometric contraction, and 3) after a session comprised by isometric, 

Conc and Ecc maximal contractions, the VL’s shear modulus increases. In general, these 

observations agree with data in the literature. 

The presence of an accurate relationship between the length of relaxed muscles and 

the shear modulus values is reported by several studies and for a number of lower limb 

muscles (Hug et al, 2013; Koo et al., 2014; Le Sant et al., 2015; Levinson et al, 1995; 

Nordez et al., 2008).  Employing transient US elastography, Nordez et al. (2008) 

successfully fitted a linear relationship between the measured stiffness of the medial 

gastrocnemius with the ankle joint angle and with passive ankle torque. In this study, a 
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mean of 2.6 times increase in medial gastrocnemius stiffness was seen when the ankle 

was passively moved along an 80º arc (40º plantar flexion to 40º dorsiflexion) (Nordez et 

al., 2008). A good relationship between the muscles’ shear modulus and the degree of 

knee and hip flexion/extension has also been reported for the hamstrings, although the 

shear moduli for the passively stretched hamstring muscles were considerably higher 

than the ones found by us for the VL, ranging between 9.7 and 13.2 kPa when the knee 

was placed at 30% of the knee ROM and the hip at 90º flexion (Le Sant et al., 2015). The 

exact relationship between relaxed muscle stiffness and joint excursion may depend on 

specific morphological parameters of the muscle and the joints (Koo et al., 2014; 

Maïsetti et al., 2012). In the case of the VL, we found that the increase in the shear 

modulus with knee flexion was not linear, being larger when the knee was bent from 50º 

to 90º than between 10º and 50º. This agrees with data from other pennate muscles and 

may be partially caused by diminished obliquity of the muscles fascicles relative to 

probe orientation (Miyamoto et al., 2015). 

The main purpose of this study was to evaluate the acute effect of intense muscle 

activity on relaxed muscle stiffness using SSI. Our results clearly demonstrated an acute 

increase in muscle stiffness caused by previous muscle intense contractile activity, 

which is in line with previous studies (Akag et al., 2015; Lacourpaille et al., 2014) but 

not with others (Nordez et al., 2009). In a recent study, three sets of ten maximal 

isokinetic Ecc contractions increased passive stiffness of the biceps brachii one hour 

after the end of the contractions (Lacourpaille et al., 2014). Similar findings are 

reported by Akagi et al. (2015), who have shown increased passive stiffness of the 

triceps brachii immediately after five sets of eight repetitions of a dumbbell extension 

exercise performed at 80% of one repetition maximum (Akagi et al., 2015). In both of 

these two studies the increase in passive stiffness occurring acutely after resistance 

exercise was unrelated with the severity of the accompanying muscle swelling. These 

results contrast with the effect of fatiguing submaximal muscle activity on passive 

muscle stiffness (Andonian et al., 2016; Nordez et al., 2009). After a fatiguing isometric 

contraction of the plantar flexors, performed at 40% MVC, muscle stiffness of the 

medial gastrocnemius decreased immediately after the termination of the submaximal 

exertion (Nordez et al., 2009). In a recent and well-controlled study, passive stiffness of 

the superficial heads of the quadriceps femoris (i.e., the VL, VM, and RF) was shown to 

significantly decrease after completing a mountain ultra-marathon (Andonian et al., 

2016). Therefore, the impact of muscle activity on muscle stiffness looks as to depend 

on the relative intensity, the duration, and possible the type of the contractions.  In our 

study, the acute increase in the relaxed VL stiffness was more evident after isometric 
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and Ecc maximal contractions than after maximal Conc contractions. However, this 

observation should be interpreted with caution since all types of contractions were 

performed within the same session. 

Another important application of SSI is determining the level of contraction of a single 

muscle by establishing the relationship between the amount of force (or torque) it 

produces and its stiffness (Ateş et al., 2015; Gennisson et al., 2005; Yoshitake et al., 

2014). This use of SSI is particularly important for studying force sharing between 

synergistic muscles in many different contexts (Bouillard et al., 2014; Bouillard et al., 

2011). In our study, we could also found a rather precise relationship between the 

amount of isometric knee extension torque and the VL’s stiffness. For hand muscles, the 

precision of the relationship between muscle stiffness and generated torque surpasses 

that between the surface EMG and torque (Bouillard et al., 2011). In our study, the 

mean coefficient of determination between VL’s stiffness and knee extension torque 

was 0.77, which is lower than 0.98 the value reported for hand muscles (Bouillard et 

al., 2011). Indeed, we found a considerable variation in the values of the coefficient of 

determination amongst our participants. The reasons behind such large variation cannot 

be totally disclosed but may be related with a higher difficulty in constraining the 

action of the knee extensors compared to the first dorsal interosseous or the abductor 

digiti minimi (Bouillard et al., 2011). Also, the ramp contractions in our study were 

performed at the end of the session and after the maximal contractions, so muscle 

fatigue could have affected the results (Bouillard et al., 2014). 

4.1.4 Limitations 

Due to its preliminary nature, this study has a few limitations. The major limitation 

being that the study was conducted in a single session that included maximal isometric, 

Conc, and Ecc isokinetic contractions plus ramp contractions. This prevents us from 

getting strong conclusions from our findings. Also, we just collected data immediately 

after the session and did not monitor recovery. Another limitation relies on the fact 

that the probe was manually held by the operator.  

4.1.5 Summary  

By employing SSI, this study demonstrated that passive stiffness of the VL increases non-

linearly with knee flexion as well as after maximal isometric and Ecc contractions, with 

the acute effect of Conc contractions on VL’s passive stiffness being less clear. A rather 

accurate relationship between the amount of isometric torque and VL’s stiffness was 
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also demonstrated. This study adds to several other studies in revealing the high 

potential of SSI for studying muscle function in humans.   
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Chapter 5: General discussion 

This general discussion is organised in three main points: 1) discussion of main findings, 

2) methodological issues and limitations, and 3) implications for future research. 

5.1 Discussion of the main findings 

In this thesis, we aimed to investigate the reproducibility of ultrasound imaging for 

studying MT, EI and muscle stiffness and provided data regarding the response of these 

parameters to strength training. In addition, we conducted a preliminary study using SSI 

for investigating acute changes in VL’ stiffness in response to the level of muscle 

contraction, passive stretching, and high-intensity muscle activity. 

5.1.1 The reproducibility of MT and EI measurements of the quadriceps femoris 

Previous studies show that both MT and EI measures are highly reliable. The results of 

our study, reported in Chapter 2, also reveal a high level of reproducibility for MT and 

EI measured from the different heads of the quadriceps femoris. We evaluated 

reproducibility by calculating the ICC. Although the ICC is often used as a measure of 

reliability, its value depends on the population in which measurements are made and 

not just on the measurement error of the method itself. The ICC is a measure of the 

correlation between any two measurements made on the same subject (values: 0-1) and 

therefore is not a measure of accuracy. To improve the assessment of reproducibility, 

we also calculated the SEM and SDC, which give us more direct information regarding 

the precision of the measure, since these parameters are in the same units as the 

measure itself. In addition, we have also conducted agreement analysis. The agreement 

analysis quantifies how close two measurements in the same scale and collected from 

the same subject are (Bartlett & Frost, 2008). Overall, the level of reproducibility gives 

the expected minimum amount of variation in measurements collected from a single 

subject or from a sample under changing conditions (different measurement methods or 

instruments, measurements by different observers, or over a period of time) that can be 

considered ‘error-free’ and an indication of a non-negligible change. In general, the ICC 

and agreement values are inversely proportional (Bartlett & Frost, 2008).  

In this study, a high to very high intra- and inter-session reliability for MT and EI 

measures could be demonstrated. This is in line with the literature (Agyapong-Badu et 

al., 2014; Blazevich et al., 2006; Caresio et al., 2014; Boer et al., 2008; Fukumoto et 

al., 2012). For MT, the results showed high to very high intra- and inter-session ICCs. 
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Comparing to transverse scans, MT measured in the longitudinal scans are somewhat 

less reliable, displaying slightly larger SEM and SDC values, several other studies report 

similar results (Mangine, 2014; Palmer, 2015; Raj et al., 2012; Strasser et al., 2013). In 

this study, EM values for MT measurements were similar across the whole quadriceps 

femoris, however, the SDC values for MT measures showed considerable variation across 

this muscle, which is corroborate by the literature (Jhu et al., 2010; Koppenhaver et 

al., 2009). 

The reliability of our ultrasound MT measures appeared to be slightly better in 

transverse scans than in longitudinal ones. Transverse scans offer a better visualization 

of the anatomical details of the several quadriceps femoris heads and based in our data 

should be used to measure MT. Some authors defend that longitudinal scans are better 

for studying the skeletal muscle (Blazevich et al., 2006; Konig et al., 2014; Wilhelm et 

al., 2014), but others use transverse views (Agyapong-Badu et al., 2014; Boer et al., 

2008; Fukumoto et al., 2012). Our results also show that MT is underestimated by 0.2 

cm when measured from longitudinal scans, compared with measurements made on 

transverse scans. Only a few studies conducted Bland–Altman analysis (including mean 

differences) for ultrasound MT measurements (English et al., 2012).  

The results for EI measures were also found to be highly reliable, both when collected 

in the same session or in sessions one-week apart. However, for inter-session reliability, 

ICCs were higher using the whole muscle image as a ROI. Similar findings were obtained 

by some authors (Caresio et al., 2015; Fukumoto et al., 2012; Radaelli et al., 2012).  

The study reported in Chapter 2 was conducted in young adults not engaged in sports or 

intense physical activities and the results showed higher MT values for VM and RF and 

lower MT values for VL and VI. Comparing with the literature, our data is similar with 

the values obtained by Strasser et al. (2013) but lower than the values reported by Ruas 

et al. (2017) (Ruas et al., 2017; Strasser et al., 2013). The lack of physical activity or 

sedentary lifestyle can influence these results, which together with an unhealthy diet 

can be associated with low MT values and high echo-intensities, revealing poor muscle 

conditioning. The differences found between authors may be due to the use of different 

equipment settings, which is still a strong limitation in the evaluation of muscle EI. 

However, in our study as well as in other studies, it is concluded that the VM muscle is 

the head of the quadriceps femoris with the highest MT, whereas the VI is the one 

presenting the lowest one. As for the EI, the VL muscle showed the highest value, 

presenting more connective and fat tissue and suggesting less recruitment of this 

muscle during daily activities (Ruas et al., 2017; Strasser et al., 2013).  
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5.1.2 The effect of strength training on quadriceps femoris’ MT, EI, and stiffness  

One important application of ultrasound imaging is assessing muscle adaptation to 

different kinds of stimuli, in particular to strength training (Branderburg & Docherty, 

2006; Herrick et al., 2017). This includes the ability to evaluate changes in muscle size, 

through MT measurements, and of muscle quality, through measures of EI (Jansen et 

al., 2012).  

Quantitative assessment of EI is a relatively easy method for studying muscle quality 

and its changes have been related with ageing, neuromuscular disorders, and muscle 

conditioning (Cadore et al., 2014; Fukumoto et al., 2012; Jenkins et al., 2015). In the 

past, EI has been graded visually, but this approach is subjective and depends on the 

experience of the observer, and therefore is now considered unacceptable (Pillen et al., 

2006). To overcome this limitation, computer-aided grayscale analysis has been 

implemented for quantitative measurement of skeletal muscle EI (Fukumoto et al., 

2012; Pillen et al., 2006; Pillen et al., 2009). Quantitative evaluation of US images is 

preferable over visual evaluation, because it is more sensitive and objective and offers 

the possibility to perform statistical analysis. A prerequisite for the diagnostic use of 

quantitative muscle US is the availability of normal reference values. Reference values 

for EI are available for various muscles (Cruz-Montecinos et al., 2016; Ruas et al., 2017; 

Verhulst et al., 2011). Echo-intensity is quantified by averaging the grayscale value of 

each individual pixel in a defined ROI from an ultrasound image (Varanoske et al., 

2017). Consequently, the quantitative estimation of EI in clinical settings is often 

through grayscale histogram analysis. This imaging analysis technique involves the 

construction of a plot featuring the number of pixels associated with a given ROI within 

intervals determined by intensity level. Post-image acquisition analysis may be 

performed using a variety of image editing programs (Harris-Love et al., 2016; Pillen et 

al., 2009). 

In Chapter 3, participants were submitted to a strength training program and performed 

either Conc or Ecc training over 15 weeks. The results showed significant changes in MT 

and EI measures in response to training, but with notable differences between the 

different heads of the quadriceps femoris. However, no differences in MT and EI 

responses were found as a result of the two types of training. Particularly surprising was 

the fact that no changes in MT were seen after strength training in the lower and 

middle regions of the VM. This observation cannot be justified by poor reliability, since 

we have shown in Chapter 2 that the MT measures collected from the VM possess ICC, 

SEM and SDC values that in general are better than in the remaining regions of the 
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quadriceps femoris (see Chapter 2, Table 5). The characteristics of the strength training 

program might explain the lack of MT increase in the VM. The fact that loading 

progression was largely based on increasing contractions’ velocity and not the amount 

of produced torque might have affected the hypertrophic response, at least in some of 

the knee extensor muscles. Similar findings were also seen for EI measures. In fact, no 

changes in EI as a result of strength training could be found in the VM, but in this case EI 

was also unchanged in the RF and in the upper region of the VL. The VI showed the most 

consistent changes in EI in response to strength training, with a decrease in EI values 

over the 15 weeks of training. Once again, poor reliability does not explain these 

findings, since the VI is the head of the quadriceps femoris with highest SDC values for 

EI measurements (see Chapter 2, Tables 6 and 7).  

Muscle EI is believed to mirror the relative amount of fat and connective tissue 

composing the scanned structure and, for instance with aging, increases in EI are 

interpreted as mirroring the loss of the muscle tissue. Therefore, we could expect a 

decrease in muscle EI following strength training as a result of muscle hypertrophy. 

However, such increase could not be found, except for the VI, even when a significant 

increase in MT existed. The likely explanation is that muscle hypertrophy is 

accompanied by a matched increase in the amount of connective tissue so that the 

relative amount of connective and muscle tissue does not change with strength training.     

Muscle depth is also a factor that may influence muscle’s EI values. During data 

collection, a single frequency was used that allowed to visualize the entire quadriceps 

femoris. However, with increasing depth the ultrasound beam loses its capacity of 

penetration and image resolution diminishes. Therefore, deep seated muscles, such as 

the VI, may show lower EI simply because they are located in deeper regions of the 

limb. 

In Chapter 3, study 2, we report data of VL’s stiffness obtained by QSE and the results 

show increased stiffness as a result of strength training, although without differences 

between Conc and Ecc training. Also, we could corroborate observations made by 

Drakonaki et al. (2012) that characterise the VL as an heterogeneous tissue in terms of 

stiffness, with patchy areas of red colour surrounded by areas of predominant green and 

blue colours in line with (Drakonaki et al., 2012). Several studies already showed the 

viability of the QSE to assess the muscle stiffness (Brandenburg et al., 2014; Hirono et 

al., 2016; Niitsu et al., 2011) but this study is the first to demonstrate an increase in 

muscle stiffness as a result of strength training by means of ultrasound elastography. 
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However, our observations should be interpreted with caution. In this study, we have 

found only moderate intra-evaluation reliability for colour mapping values by QSE 

ultrasound. In addition, SEM and SDC values were relatively large. Furthermore, this 

technique only offers semi-quantitative measures of muscle stiffness and the values 

should be compared to a reference structure and reported as a ratio measure, which 

was not done in this thesis. While QSE has many limitations, it is still employed to assess 

muscle function in several contexts also because it is one of the first ultrasound 

elastography methods implemented in commercial machines (Brandenburg et al., 2014; 

Chino et al., 2012; Hirono et al., 2016; Muraki et al., 2014; Niitsu et al., 2011; 

Yanagisawa et al., 2011). 

5.1.3 The use of ultrasound elastography for measuring vastus lateralis’ stiffness  

In this thesis, two different types of elastography were used to assess stiffness of the 

VL. In Chapter 4 changes in VL’s stiffness resulting from passive stretching, isometric 

contraction, and strong contractile activity were investigated using SSI elastography. 

This method measures shear wave velocity and derives the shear wave modulus, which 

gives a quantitative measure of tissue stiffness. Our results clearly showed an acute 

increase in stiffness of the relaxed VL after a few sets of maximal isometric, Conc, and 

Ecc contractions and in response to muscle stretching caused by changing knee flexion 

angle. Finally, a reasonably good linear relationship was found between the level of 

isometric contraction and VL’s stiffness. These results are in line with those reported in 

other studies and confirm the great potential of SSI for studying muscle function in a 

variety of conditions (Hug et al, 2013; Koo et al., 2014; Le Sant et al., 2015; Levinson et 

al, 1995; Nordez et al., 2008).  

Unfortunately, the preliminary character of the SSI study prevented the study design to 

comply with a number of methodological requisites for a well-controlled study.  

5.2 Methodological issues and limitations 

Many of the limitations in this thesis were discussed in the respective chapters and will 

not be mentioned again here. However, there are a few issues and study limitations 

that must be considered at this point. 

5.2.1 Participants’ characteristics 

In all our studies, only young, healthy participants were recruited. While this is 

advantageous because it eases recruitment, it limits the generalizability of the findings 

to other age groups.  
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5.2.2 Confounding variables 

Efforts were made to minimise any biasing effects caused by potential confounding 

variables and these included the use of a control group in the strength training study 

and implementing a counterbalanced design in the SSI study. Increased reliability was 

also achieved by having an experienced operator performing every ultrasound data 

collection. However, during ultrasound scans the probe was held manually. Although 

manual operation is often required for fine adjustments of probe orientation and for 

more precise probe placement, it can also be a source of enhanced variation or may 

even introduce bias caused, for instance, by operator’s fatigue.  

5.2.3 Equipment and validation 

Three ultrasound machines were used to collect the data, which constrains the ability 

to compare our results. Nevertheless, MT and EI data reported in Chapter 2 and 3 were 

comparable, both in qualitative and quantitative terms, although they were collected 

with two different ultrasound machines. A further limitation regards the validation of 

our data using a “gold standard” reference. For ultrasound imaging, magnetic resonance 

imaging could have been use to validate MT measures, whereas hardmeter devices or 

passive muscle-torque curves could have been used to validate the ultrasound elastography-

derived measures of muscle stiffness. 

5.2.4 Implications for future research 

Regarding reproducibility of quantitative ultrasound, future research should focus on 

quality control of the ultrasound acquisition in order to improve reproducibility across 

different scanners. The interpretation of error magnitudes of the ultrasound measures 

must take into account the use of different equipment and also the operator 

experience. Questions like the probe type, its orientation, level of compression caused 

by the probe, size of the measurement region, and ROI size and location are issues that 

must be considered to maximising the quality and accuracy of ultrasound imaging. New 

image processing tools must be developed to inform the operator that the conditions 

are maintained in different examinations. 

In this thesis, we obtained a detailed morphologic characterisation of the four heads of 

the quadriceps muscle, using always the same ultrasound parameters, contributing for 

the understanding of muscle adaptations. However, it will be important to clarify if it is 

necessary to stablish different ultrasound settings for each muscle, namely the depth 

and probe frequency, to ensure that the “true” texture or EI of each muscle is 
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registered. Also, guidelines regarding anatomic landmarks should be developed as a 

means to enhance comparability between studies.  

The interpretation of US imaging data requires further information. In strength training 

studies, the use of electromyography could be important in assessing or controlling the 

level of activity of the different muscles during the training sessions and the data could 

be compared with the ultrasound-derived parameters of muscle adaptation. The use of 

methods for assessing neuromuscular activity is needed to confirm the validity and 

feasibility of quantitative ultrasound for studying muscle function.  
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página web do CEFMH. 
 

O projeto reformulado ou informações adicionais devem ser enviados 

para o email etica@fmh.ulisboa.pt, dirigidos ao Presidente do CEFMH, 

no prazo de quatro semanas desde a data desta carta . 
 
 

 

O Presidente do Conselho de Ética da FMH 
 

 

 

 

 

 

Pedro J. Teixeira, Ph.D. 

 
 

Para:  
 

Dra. Rute Santos 
 
 

Faculdade de Motricidade Humana 

MEMBROS 
Pedro Teixeira (Presidente) 

Paulo Armada (V ice-presidente) 

Analiza S ilva 

Ana Rodrigues  

Augusto Gil Pascoal 

Margarida M atos 

Paula M arta Bruno 

Celeste S imões (suplente) 

Hermínio Barreto (suplente) 
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Attachements II – Ethical approval II 
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Attachements III – Informed Consent I 

!

!

!Consentimento!Informado,!Livre!e!Esclarecido!

Tomei! conhecimento! de! toda! a! informação! referente! a! este! estudo,! nomeadamente! os!
objectivos,!os!procedimentos!e!benefícios!e!riscos!inerentes!aos!mesmos.!Fui!ainda!informado!
que!este!meu!contributo!não!envolve!quaisquer!encargos!para!mim,!exceto!eventualmente!os!
decorrentes!do! transporte! até! ao! local! do!estudo.!Além!disso,! foiGme!afirmado!que! tenho!o!
direito!a!recusar!a!todo!o!tempo!a!participação!no!estudo,!sem!que!isso!possa!ter!como!efeito!
qualquer! prejuízo! pessoal! ou! profissional.! FoiGme! dada! oportunidade! de! fazer! as! perguntas!
que! julguei! necessárias,! e! de! todas! obtive! resposta! satisfatória.! Os! registos! dos! resultados!
poderão! ser! consultados! pelos! responsáveis! científicos! e! ser! objecto! de! publicação,!mas! os!
elementos!da!identidade!pessoal!serão!sempre!tratados!de!modo!estritamente!confidencial.!!

Declaro! que! li! o! presente! documento! e! estou! consciente! do! que! esperar! quanto! à! minha!
participação! no! estudo! Reprodutibilidade- dos- parâmetros- morfológicos- (eco6intensidade- e-
espessura)-dos-músculos-do-quadricípite,-por-ultrassonografia.!Assim,!aceito!voluntariamente!
participar!neste!estudo.!SerGmeGá!fornecida!uma!cópia!deste!documento.!

! ! !

Nome!do!participante! ! !!!!!!!!!!!!!!Assinatura!do!participante!

!

! ! Data! !

! ! ! !

Nome!do!representante!legal!do!participante!!
(se!aplicável)!

! !

! ! !

!

!

!

Grau!de!relação!com!o!participante! ! !!!!!!!!!

!
Investigador/Equipa!de!Investigação!

Os!aspetos!mais! importantes!deste!estudo! foram!explicados!ao!participante!ou!ao!seu!representante,!
antes!de!solicitar!a!sua!assinatura.!Uma!cópia!deste!documento!serGlheGá!fornecida.!!

! ! !

Nome!da!pessoa!que!obtém!o!consentimento! ! !Assinatura!da!pessoa!que!obtém!o!consentimento!

! ! ! !

!

! ! Data! !

!
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Attachements IV – Informed Consent II 

	

	

	Consentimento	Informado,	Livre	e	Esclarecido	

Tomei	 conhecimento	 de	 toda	 a	 informação	 referente	 a	 este	 estudo,	 nomeadamente	 os	
objectivos,	os	procedimentos	e	benefícios	e	riscos	inerentes	aos	mesmos.	Fui	ainda	informado	
que	este	meu	contributo	não	envolve	quaisquer	encargos	para	mim,	exceto	eventualmente	os	
decorrentes	do	 transporte	 até	 ao	 local	 do	estudo.	Além	disso,	 foi-me	afirmado	que	 tenho	o	
direito	a	recusar	a	todo	o	tempo	a	participação	no	estudo,	sem	que	isso	possa	ter	como	efeito	
qualquer	 prejuízo	 pessoal	 ou	 profissional.	 Foi-me	 dada	 oportunidade	 de	 fazer	 as	 perguntas	
que	 julguei	 necessárias,	 e	 de	 todas	 obtive	 resposta	 satisfatória.	 Os	 registos	 dos	 resultados	
poderão	 ser	 consultados	 pelos	 responsáveis	 científicos	 e	 ser	 objecto	 de	 publicação,	mas	 os	
elementos	da	identidade	pessoal	serão	sempre	tratados	de	modo	estritamente	confidencial.		

Declaro	 que	 li	 o	 presente	 documento	 e	 estou	 consciente	 do	 que	 esperar	 quanto	 à	 minha	
participação	no	estudo	Avaliação	da	rigidez	muscular	por	elastografia	de	cisalhamento.	Assim,	
aceito	 voluntariamente	 participar	 neste	 estudo.	 Ser-me-á	 fornecida	 uma	 cópia	 deste	
documento.	

	 	 	

Nome	do	participante	 	 														Assinatura	do	participante	

	

	 	 Data	 	

	 	 	 	

Nome	do	representante	legal	do	participante		
(se	aplicável)	

	 	

	 	 	

	

	

	

Grau	de	relação	com	o	participante	 	 									

	
Investigador/Equipa	de	Investigação	

Os	aspetos	mais	 importantes	deste	estudo	 foram	explicados	ao	participante	ou	ao	seu	representante,	
antes	de	solicitar	a	sua	assinatura.	Uma	cópia	deste	documento	ser-lhe-á	fornecida.		

	 	 	

Nome	da	pessoa	que	obtém	o	consentimento	 	 	Assinatura	da	pessoa	que	obtém	o	consentimento	

	 	 	 	

	

	 	 Data	 	

	

 

 

 

 


