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ABSTRACT 

 

 

Antibiotics were a truly innovative option in medical therapy for the treatment of diseases 

caused by microbial agents, having largely contributed for the decrease levels of human and 

animal morbidity and mortality. Therefore, the overuse and misuse of these drugs in human 

clinical therapy and in the veterinary medicine, including animal production, contributed for 

the emergence and dissemination of antibiotic resistant microorganisms, which are a serious 

threat to human and animal health, and to the ecosystem. 

The aim of the present thesis was to search the main acquired antibiotic resistance 

mechanisms to β-lactams, fluoroquinolones and polymixins in Gram negative bacteria 

recovered from different animal species and matrices, and to investigate the most important 

mobile genetic elements involved in the dissemination. Thus, the studies concerning 

antibiotic susceptibility and molecular characterization were performed in collections of 

bacterial isolates belonging to Enterobacteriaceae family (mainly Escherichia coli and 

Salmonella enterica).  

Both bacterial species were associated to antibiotic resistant determinants of clinical 

relevance in human and veterinary medicine, namely, blaCTX-M-1, blaCTX-M-14, blaCTX-M-15, blaCTX-

M-32, blaCMY-2, qnrS1, aac(6’)-Ib-cr, mcr-1. The diversity of detected mobile genetic elements, 

e.g., IncI1, IncF and IncX4 plasmids, insertion sequences ISEcp1, as well as integrons of 

class 1 and 2, suggest their involvement in the dissemination of resistance genes 

interspecies, and movement within the bacterial cell. 

Genomic analysis of two isolates (Morganella morganii and Salmonella Enteritidis), 

highlighted the potencial of omic technologies, as an additional tool to the phenotypic and 

genotypic characterization of antibiotic resistance. 

The results obtained throughout this thesis highlight the importance of the different animal 

species as reservoirs of antibiotic resistant bacteria. In addition, it was reinforced the need of 

a permanent research and monitoring of antibiotic resistance in the different ecological 

niches, and the use of genomic approaches, which had an important role in the 

understanding of the complex problem represented by the dynamic of antibiotic resistance. 

 

 

 

Keywords: Antibiotic resistance; Enterobacteriaceae; mobile genetic elements; 

dissemination; animals; products of animal origin.  
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RESUMO 

 

 

Os antibióticos constituíram uma opção verdadeiramente inovadora na terapêutica 

medicamentosa para o tratamento de doenças provocadas por agentes microbianos, tendo 

contribuído largamente para a diminuição das taxas de morbilidade e mortalidade humana e 

animal. Porém, a utilização abusiva e inadequada destes fármacos na prática clínica 

humana e na medicina veterinária, incluindo a produção animal, contribuiu para a 

emergência e disseminação de microrganismos resistentes, os quais constituem uma grave 

ameaça à saúde humana e animal, e para o ecossistema. 

A presente dissertação teve como objetivo central investigar os principais mecanismos de 

resistência adquirida aos antibióticos β-lactâmicos, fluoroquinolonas e polimixinas em 

bactérias de Gram negativo isoladas de diferentes espécies animais e matrizes, bem como 

os principais elementos genéticos móveis responsáveis pela sua disseminação. Assim, os 

estudos de suscetibilidade aos antibióticos e caracterização molecular foram realizados em 

coleções de estirpes bacterianas pertencentes à família Enterobacteriaceae 

(maioritariamente Escherichia coli e Salmonella enterica). 

Ambas as espécies bacterianas estavam associadas a determinantes de resistência de 

relevância clínica humana e veterinária, nomeadamente blaCTX-M-1, blaCTX-M-14, blaCTX-M-15, 

blaCTX-M-32, blaCMY-2, qnrS1, aac(6’)-Ib-cr, mcr-1. A diversidade de elementos genéticos 

móveis detetados, e.g. plasmídeos IncI1, IncF e IncX4, sequências de inserção ISEcp1, bem 

como integrões de classes 1 e 2, sugere o seu envolvimento na disseminação de genes de 

resistência aos antibióticos entre espécies, tal como a sua movimentação dentro da própria 

bactéria. 

A análise do genoma de duas estirpes (Morganella morganii e Salmonella Enteritidis) 

realçou o potencial das tecnologias ómicas, como ferramenta adicional na caracterização 

fenotípica e genotípica da resistência aos antibióticos. 

Os resultados obtidos salientam a importância que as várias espécies animais representam 

como reservatórios de bactérias resistentes aos antibióticos. Foi igualmente reforçada a 

necessidade de uma permanente investigação e monitorização da resistência aos 

antibióticos nos vários nichos ecológicos, e do uso de abordagens genómicas, as quais 

tiveram um papel importante na compreensão do complexo problema que representa a 

dinâmica da resistência aos antibióticos. 

  

Palavras chave: Resistência aos antibióticos; Enterobacteraceae; elementos genéticos 

móveis; disseminação; animais; produtos de origem animal.  
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THESIS STRUCTURE 

 
 
Antibiotic resistance is a worldwide problem with serious repercussions on human health, 

animal health and the economy, and it should be integrated into a global perspective, as 

bacteria do not respect geographic and species barriers. The selective pressure exerted by 

the abusive and inadequate use of antibiotics in human and animal clinical therapy, animal 

and agricultural production, as well as the environmental impact resulting from these 

activities, are the main cause for the development of antibiotic resistance. In addition to the 

investigation through the characterization of resistance mechanisms and the mobile genetic 

elements involved in the emergence and mobilization of antibiotic resistance genes among 

the different ecosystems and monitoring through the implementation of surveillance 

programs on antibiotic resistance and consumption, are of crucial importance, in order to 

obtain the actual picture of the occurrence and trends on antibiotic resistance. 

This thesis is based on twelve papers organized in three distinct chapters (3 to 5), eleven of 

which have already been published and one submitted for publication, in international peer-

reviewed journals. Each research article consists of an introduction, materials and methods, 

results and discussion related to the scope of the study and preceded by a title page 

describing the reference of the publication and the contributions of each author. 

In addition to the articles, this thesis includes a global overview of antibiotic resistance 

(Chapter 1, General Introduction), followed by the objectives (Chapter 2, Objectives), a 

general discussion on the results (Chapter 6, General Discussion) and the main conclusions 

(Chapter 7, Conclusions).  

Considering the different types of manuscripts presented in this thesis followed the 

recommendations of each scientific journal where they were published or submitted for 

publication, chapters 3, 4 and 5 were formatted in the same style, with all references 

gathered in a single section (Chapter 8, References). 

The numbering of the figures and tables is presented according to the numbers of the 

chapter and its article. 

The specific content of each of the chapters that integrate this PhD thesis consists of:  

Chapter 1 consists of a general introduction, where it is intended to reveal the state of the art 

in the area of antibiotic resistance focused on Gram negative bacteria. Antibiotic targets and 

mechanisms of intrinsic and acquired resistance to the main groups of antibiotics, the 

diversity of antibiotic resistance reservoirs and the main routes of dissemination, are 

approached. Technological advances and the use of omics in research of antibiotic 

resistance, is also discussed.  

Chapter 2 includes the scope and description of the objectives of this thesis. 
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Chapter 3 consists of a brief review on the dynamic and complex process of antibiotic 

resistance, and the pathways between the different reservoirs, humans, animals and the 

environment.  

Chapter 4 includes nine publications (4.1 to 4.9), in which the phenotypic susceptibility and 

molecular characterization of Enterobacteriaceae strains, regarding, the mechanisms of 

acquired resistance to β-lactam antibiotics [Extended-Spectrum β-Lactamases (ESBL), 

Plasmid-Mediated AmpC β-lactamases (PMAβ), Extended-Spectrum AmpC β-lactamases 

(ESAC]), fluoroquinolones, Plasmid-Mediated Quinolone Resistance (PMQR) and to colistin 

[Plasmid-Mediated Colistin Resistance (PMCR)], and the presence of mobile genetic 

elements, were evaluated.  

Sub-Chapter 4.1, the phenotypic antibiotic susceptibility patterns of 333 strains of S. 

enterica isolated from breeding and broiler flocks, during the period 2009-2011, was 

evaluated. 

Sub-Chapter 4.2, the phenotypic antibiotic susceptibility patterns of 1120 strains of S. 

enterica isolated from poultry, swine and food products of animal origin, and the molecular 

characterization of ESBL and PMAβ producer strains, mobile genetic elements and genetic 

environment, were investigated. 

Sub-Chapter 4.3, the phenotypic antibiotic susceptibility of 562 S. enterica strains isolated 

from food-producing animals, food products and animal feed, and 598 E. coli strains isolated 

from several animal species, was evaluated. Molecular characterization of acquired 

resistance mechanisms to β-lactam antibiotics (ESBL and PMAβ) and fluoroquinolones 

(PMQR), and detection of mobile genetic elements in strains with reduced susceptibility to 3rd 

generation cephalosporins and/or cephamycins, were performed. 

Sub-Chapter 4.4, the zoonotic potential of an E. coli strain isolated from a captive dolphin 

and a set of human clinical strains with similar phenotypic and genotypic characteristics, was 

assessed. 

Sub-Chapter 4.5, the phenotypic antibiotic susceptibility results of 387 strains of E. coli 

isolated from broilers and turkeys at slaughter, and the molecular characterization of 15 

strains with reduced susceptibility to 3rd generation cephalosporins and or cephamycins, 

regarding the detection of ESBL-, ESAC-, PMAβ-, PMQR- and PMCR-encoding genes, were 

performed. In addition, sequencing of AmpC-encoding gene in three strains in which only the 

ampC gene was detected, and genetic relationship between animal and human strains 

carrying ESBL-encoding genes from the CTX-M, SHV-12 and TEM-52 family by pulsed-field 

gel electrophoresis technique (PFGE), were performed. The new CTX-M-166 enzyme-

producer strain was also analyzed through New Genome Sequencing (NGS) for further 

characterization regarding to serotype of E. coli, genetic environment of blaCTX-M-166, and 

identification and typing of the plasmid carrying this new blaCTX-M-166 gene. 
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Sub-Chapters 4.6 and 4.7, biochemical characterization of the new CTX-M-166 enzyme, 

regarding kinetic parameters, and additional characterization by NGS, concerning antibiotic 

resistance, virulence and MultiLocus Sequence Typing (MLST), were performed. 
Sub-Chapter 4.8, antibiotic susceptibility was determined on 89 strains of S. enterica and 91 

E. coli strains isolated from food-producing, companion and zoo animals. Molecular 

characterization regarding the detection of PMQR, and genomic analysis and comparison of 

four strains, two carrying qnrS1 gene and two carrying aac(6 ')-Ib-cr gene, was performed 

through NGS.  

Sub-Chapter 4.9, characterization of a multidrug resistant Morganella morganii strain 

isolated from broilers through NGS, regarding antibiotic resistance and virulence genes, and 

genomic analysis of the plasmid carrying qnrD1 gene. 

Chapter 5, includes two manuscripts (5.1 and 5.2), concerning antibiotic resistance 

mechanisms other than those included in Chapter 4. 

Sub-Chapter 5.1, genomic characterization of a S. Enteritidis strain isolated from one day-

old chicks, regarding antibiotic and heavy metals resistance determinants, virulence factors 

and mobile genetic elements was performed, through NGS.  

Sub-Chapter 5.2, phenotypic susceptibility towards colistin and 3rd generation 

cephalosporins and/or cephamycins of 1840 Enterobacteriacaeae strains (1206 E. coli and 

634 S. enterica), was evaluated. In 138 isolates resistant to colistin, mcr-1 and mcr-1.9 

genes were detected; in those strains co-resistant to 3rd generation cephalosporins and/or 

cephamycins, genotypic characterization with respect to the detection of ESBL- and/or 

PMAβ-encoding genes, was performed. In addition, genotypic characterization of a strain 

bearing the new variant of the mcr-1, mcr-1.9 gene, regarding the presence of other antibiotic 

resistance genes, virulence factors, plasmid’s identification and typing and genetic 

environment, was performed by using Whole Genome Sequencing (WGS).  

Chapter 6 includes a global discussion on the results obtained on the studies performed. 

Chapter 7, includes the main conclusions of the studies carried out. 

Chapters 3, 4 and 5, that can be read in separate, transcribe the contents of the following 

publications: 

Chapter 3 
Manuela Caniça, Vera Manageiro, Daniela Jones-Dias, Lurdes Clemente, Eduarda Gomes-

Neves, Patrícia Poeta, Elsa Dias, Eugénia Ferreira. Current perspectives on the dynamic of 

antibiotic resistance in different reservoirs. Research in Microbiology, 2015, 166(7):594-600. 

Chapter 4 

4.1. Lurdes Clemente, Ivone Correia, Patrícia Themudo, Isabel Neto, Manuela Caniça, 

Fernando Bernardo, 2014. Antimicrobial susceptibility of Salmonella enterica isolates from 

healthy breeder and broiler flocks in Portugal. The Veterinary Journal, 2014, 200(2):276-81. 
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4.2. Lurdes Clemente, Vera Manageiro, Eugénia Ferreira, Daniela Jones-Dias, Ivone 

Correia, Patrícia Themudo, Teresa Albuquerque, Manuela Caniça. Occurrence of extended-

spectrum β-lactamases among isolates of Salmonella enterica subsp. enterica from food-

producing animals and food products, in Portugal. International Journal of Food Microbiology, 

2013, 167(2):221-8.  

4.3. Lurdes Clemente, Vera Manageiro, Daniela Jones-Dias, Ivone Correia, Patrícia 

Themudo, Teresa Albuquerque, Margarida Geraldes, Filipa Matos, Cláudia Almendra, 

Eugénia Ferreira, Manuela Caniça. Antimicrobial susceptibility and oxymino-β-lactam 

resistance mechanisms in Salmonella enterica and Escherichia coli isolates from different 

animal sources. Research in Microbiology, 2015, 166(7):574-83. 

4.4. Vera Manageiro, Lurdes Clemente, Daniela Jones-Dias, Teresa Albuquerque, Eugénia 

Ferreira, Manuela Caniça. Zoonotic potential of multidrug resistant CTX-M-15-producing 

Escherichia coli isolate of a marine dolphin, in Portugal. Emerging Infectious Diseases, 2015, 

21:2249-51. 

4.5. Vera Manageiro, Lurdes Clemente, Ivone Correia, Teresa Albuquerque, Patrícia 

Themudo, Eugénia Ferreira, Manuela Caniça. New insights into resistance to colistin and 

third-generation cephalosporins of Escherichia coli in poultry, Portugal: novel blaCTX-M-166 and 

blaESAC genes. International Journal of Food Microbiology, 2017, 263:67-73. 

4.6. Vera Manageiro, Lurdes Clemente, Sílvia Duarte, Luís Vieira, Manuela Caniça. Draft 

genome sequence of an Escherichia coli isolated from a Gallus gallus producing the novel 

CTX-M-166 variant. Genome Announcement, 2016, 4(5), e0102916. 

 
4.7. Vera Manageiro, Rafael Graça, Eugénia Ferreira, Lurdes Clemente, Richard Bonnet e 

Manuela Caniça. 2017. Biochemical characterization of CTX-M-166, a new CTX-M β-

lactamase produced by a commensal Escherichia coli isolate. Journal of Antibiotics, 2017, 

70(6):809-810.  

4.8. Daniela Jones-Dias, Vera Manageiro, Rafael Graça, Daniel Sampaio, Teresa 

Albuquerque, Patrícia Themudo, Luís Vieira, Eugénia Ferreira, Lurdes Clemente, Manuela 

Caniça. QnrS1- and Aac(6’)-Ib-cr-producing Escherichia coli among isolates from animals of 

different sources: susceptibility and genomic characterization. Frontiers in Microbiology, 
2016, 7:671.  
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1. THE ANTIBIOTICS 

          "One sometimes finds what one is not looking for" 

                                                                                             Sir Alexander Fleming 

1.1. History of the antibiotics 

The discovery of penicillin by Alexander Fleming in 1929 provided treatment for infectious 

diseases, becoming an indispensable drug in the therapeutic arsenal after the beginning of its 

industrial production in 1946 (Dantas & Sommer, 2014).  

During the "golden age" of antibiotic development (1940-1960), the discovery of new natural, 

synthetic and semi-synthetic antibiotics deeply changed human medicine in the field of 

infectious and oncological chemotherapy, organ transplants, and other invasive surgeries, 

which could fail without the use of these compounds (Wright, 2010). Later on, the use of 

antibiotics has also been extended to veterinary medicine.  

With the introduction of new antibiotics in the clinical practice, the appearance of resistant 

bacteria was inevitable. However, has always been counter balanced by the development of 

new substances by the pharmaceutical industry, which since the 1970s focused mainly on the 

chemical modification of the existing compounds, instead of the development of new 

molecules (Dantas & Sommer, 2014) (Figure 1.1). 

 
 

 

Figure 1.1. The development of new antibiotics is followed by the emergence of resistance 

(Adapetd from Harbarth et al., 2015). 
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1.2. Targets of antibiotics 
Antibiotics are classified accordingly to their chemical structure, spectrum of activity and 

mechanism of action (Table 1.1). Bacterial targets may be associated with metabolic 

processes or structures essential for growth and survival. Antibiotics inducing cell death are 

bactericidal, and those inhibiting their growth are bacteriostatic (Bernatova et al., 2013). 

 

1.2.1.  Inhibition of nucleic acid synthesis 
Quinolones and fluoroquinolones are bactericidal antibiotics, which target topoisomerases II 

and IV, causing inhibition of the deoxyribonucleic acid (DNA) synthesis and consequently, 

bacterial growth (Kohanski et al., 2010). 

 

1.2.2. Inhibition of cell wall synthesis 
Peptidoglycan is an essential compound of the bacterial cell wall, responsible for maintaining 

the cellular structure. Synthesis of this compound includes three stages: in the first two 

stages the peptidoglycan percussors are synthesized and incorporated into the lipid molecule 

(lipid II); in the third stage, the molecules are integrated into the existing peptidoglycan. β-

lactam antibiotics are bactericidal and act by blocking peptidoglycan synthesis (Lovering et 

al., 2012). 

 

1.2.3. Inhibition of protein synthesis  
Several antibiotics cause inhibition of protein synthesis, by acting on bacterial ribosomes at 

different stages of translation (initiation, elongation and termination) (Wright, 2010). 

Aminoglycosides are bactericidal antibiotics, acting through binding to the 30S subunit of the 

bacterial ribosome, altering the structure of the complex formed by the aminoacyl-RNA 

transport (tRNA) and RNA messenger (mRNA) (Kohanski et al., 2010). 

Chloramphenicol and florfenicol are bacteriostatic antibiotics and act by preventing the 

elongation of the peptide chain (Schwarz et al., 2004). Tetracyclines are also bacteriostatic 

and act by inhibiting the attachment of the aminoacyl-RNA transport complex (tRNA) to the 

ribosomal receptor A (Chopra & Roberts, 2001). 

 

1.2.4. Inhibitors of folic acid synthesis  
Sulfonamides and trimethoprim are bacteriostatic antibiotics acting by competitive inhibition 

in the synthesis of folic acid. Sulfonamides inhibit the dihydropteroate synthetase enzyme 

(DHPS), which catalyzes the formation of the dihydrofolate parabenzoic acid, and 

trimethoprim acts in the next step by inhibiting the enzyme dihydrofolate reductase (DHFR), 

which catalyzes the synthesis of tetradihydrofolate from dihydrofolate (Huovinen, 2001). 

Since these two steps follow each other in the synthesis process, the use of both drugs in 

combination is advantageous (Huovinen, 2001). 
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1.2.5. Inhibitors of cell membrane synthesis 
Polymyxins are a group of cationic, bactericidal polypeptide antibiotics that act by binding to 

the phospholipids of the anionic outer bacterial cell membrane, causing a breakdown in the 

integrity and permeability of the cell wall (Landman et al., 2008). 

 

2. THE USE OF ANTIBIOTICS IN VETERINARY MEDICINE AND ANIMAL PRODUCTION 
 

Antibiotics are used in veterinary medicine for treatment and prevention of infectious 

diseases in animals. In livestock production they are also used to improve animal growth and 

feed efficiency (Marshall & Levy, 2011, Aarestrup, 2015, Economou and Gousia, 2015). 

Antibiotics can also be administered as a metaphylactic treatment, being applied to entire 

groups of animals, even if only a few show clinical symptoms of a specific disease. This type 

of treatment is administered in high doses and for a short period of time, eliminating or 

minimizing the spread of the disease. In constrast, the prophylactic treatment is administered 

in a subtherapeutic dosage for a longer period, when there is imminent risk of disease 

emergence. Prophylactic treatment is usually associated with poor facility management and 

permanent stress, predisposing animals to infection. This type of treatment shows similar 

effects to the administration of growth promoters (Aarestrup, 2015; Economou & Gousia, 

2015) (Table 1.1). Although growth promoters were abolished in the European Union (EU) in 

2006, the consumption of antibiotics did not decrease; in contrast, there was an increase in 

its use for metaphylactic and prophylactic purposes (Woolhouse et al., 2015). 

The values for administration of antibiotics at veterinary level in 29 European Community 

(EC) and non-European Community countries show that tetracyclines rank first in total sales 

(33.4%), followed by penicillins (25.5%), sulphonamides (11%) and macrolides (7.5%). 

Polymyxins, fluoroquinolones and cephalosporins, considered critical important antibiotics for 

humans and animals represented 6.6%, 1.9% and 0.2% of total sales, respectively. It should 

be noted that colistin represents more than 99% of the total sales of polymyxins 

(EMA/ESVAC, 2016). 

In Portugal, the total sales of tetracyclines also rank first (38.2%), followed by penicillins 

(17%) and macrolides (12.2%). The total sales of polymyxins, fluoroquinolones and 

cephalosporins were 8.7%, 5.6% and 0.2%, respectively (EMA/ESVAC, 2016). Considering 

the period between 2011 and 2014, there was a decrease in total sales of polymyxins and a 

marked increase in fluoroquinolones, with a peak in 2014; the sales of 3rd and 4th generation 

cephalosporins remained stable over the same period (EMA/ESVAC, 2016). 

Over the past decade, the World Organization for Animal Health (OIE) has been developing 

relevant work in the field of antibiotic resistance, through the implementation of international 

standards applicable to the various antibiotics, being its prudent and responsible use the 
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main goals. Considering the large number of animal species, it was established by OIE a 

classification based on the level of importance of antibiotics and according to the following 

criteria: i) specificity of the infection and lack of alternative therapies; ii:) opinion of the 

various member countries concerning the antimicrobials of veterinary importance (OIE, 

2015). 

Table 1.1 lists the classification of the main groups of antibiotics according to the two criteria 

mentioned above: veterinary critical important antibiotics (VCIA) follow both criteria, 

veterinary highly important antibiotics (VHIA) follow only one of the criteria, and the 

veterinary important antibiotics (VIA) are considered if none of the criteria is applicable (OIE, 

2015). 

Some antibiotics included in the VCIA category, namely 3rd and 4th generation cephalosporins 

and fluoroquinolones, are also considered by the World Health Organization (WHO) as 

critical important in humans. For this reason, i) should not be administered to animals, in food 

or drinking water, in the absence of clinical signs of disease, ii) should not be used as a first 

line treatment, unless justified, and after antibiotic susceptibility testing, and iii) should be 

reserved for use, extra label/off-label, when no alternatives are available (OIE, 201
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3. MECHANISMS OF ANTIBIOTIC RESISTANCE IN GRAM NEGATIVE BACTERIA

There are four main mechanisms of resistance to antibiotics: i) changes in cell membrane 

permeability, ii) active efflux, iii) enzymatic modification or inactivation, and iv) target 

alteration through mutation (Wright, 2010; Blair et al., 2015) (Figure 1.2). 

3.1. Decreased cell membrane permeability 
The entry of antibiotic molecules in the bacterial cell, including hydrophilic antibiotics 

(aminoglycosides, β-lactams and colistin), is achieved by diffusion through the outer 

membrane proteins (Omps), depending on its electrical charge, shape and size. Thus, the 

reduction of the permeability of the outer membrane by decreasing the number of functional 

porins, or by replacing for more selective pore channels, are limiting factors to the antibiotics 

entrance into the bacterium (Figure 1.2) (Blair et al., 2015). 

OmpF is the most important porin in Escherichia coli and a decrease on its expression 

contributes to resistance to various antibiotics, including quinolones, aminoglycosides, β-

lactams. Karczmarczyk et al. (2011) identified it as one of the main mechanisms of 

resistance to quinolones in strains of E. coli isolated from food-producing animals 

(Karczmarczyk et al., 2011). 

Figura 1.2. Main antibiotic resistance mechanisms. MGE, mobile genetic element. 
(Adapetd from Levy & Marshall, 2004). 
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3.2. Active efflux 
Efflux pumps are one of the main mechanisms of resistance to antibiotics in Gram-negative 

bacteria, being responsible for the active transport of antibiotics to the outside of the cell 

(Figure 1.2) (Blair et al., 2015). 

This mechanism occurs frequently in strains of Salmonella enterica and E. coli of animal 

origin, showing reduced susceptibility to fluoroquinolones, which is frequently associated to 

mutations in topoisomerase-encoding genes (Randall et al., 2005; Karczmarczyk et al., 2011; 

Yang et al., 2014). 

Active efflux is also the main mechanism of resistance to tetracycline; 30 genetic 

determinants associated with this resistance mechanism have been identified (Roberts & 

Schwarz, 2016), of which tetA, tetB, tetC and tetG are the most frequent in strains of S.

enterica and E. coli isolated from animals and animal products (Glenn et al., 2013, Gomes-

Neves et al., 2014, Chang et al., 2015, Jackson et al., 2015, Shin et al., 2015). 

Some efflux pumps act on a specific substrate (Tet tetracycline pumps) (Roberts & Schwarz, 

2016), while others, called multidrug resistant (MDR) pumps, act on a larger number of 

structurally unrelated substrates, such as the OqxAB pump, which is plasmid-mediated and 

act on quinolones, chloramphenicol and trimethoprim, occurring more frequently in strains of 

E. coli isolated from animals treated with olanquidox (Jacoby et al., 2014; Yang et al., 2014).

3.3. Modification by enzymatic inactivation 
The enzymatic inactivation is the most common mechanism of resistance to β-lactam 

antibiotics, through which β-lactamases cause the cleavage of β-lactam ring (Blair et al.,

2015). In Enterobacteriaceae strains of animal origin, β-lactamases belonging to different 

families and different hydrolytic profiles are described (Rubin & Pitout, 2014). 

Also in E. coli and S. enterica strains of animal origin, enzymatic inactivation is the most 

important mechanism of resistance to other classes of antibiotics, such as phenicols, through 

the action of acetyltransferases and phosphotransferases (Schwarz et al., 2004), and 

aminoglycosides, through acetyltransferases, adenyltransferases and phosphotransferases 

(Ramirez & Tomalsky, 2010; van Hoek et al., 2011; Frye & Jackson, 2013). 

The AAC(6 ')-Ib variant, AAC(6')-Ib-cr, encoded by the aac(6') - Ib-cr gene, is responsible for 

co-resistance towards aminoglycosides and fluoroquinolones (Ramirez et al.,  2013), 

occurring frequently in strains of animal origin (Veldman et al.,  2011; Jones-Dias et al.,

2013). 

3.4. Alteration of the target by mutation 
Target alteration by the acquisition of mutations at the level of gyr (A and B) and par (C and 

E) genes is the main mechanism of resistance to quinolones and fluoroquinolones, causing

protein alteration and avoiding binding of the antibiotic to its target (Figure 1.2) (Wright et al.,
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2010). This mechanism is responsible for a high level of resistance to these compounds, and 

occurs with high frequency in strains of S. enterica and E. coli of animal origin (Tamang et

al., 2012a; Jones-Dias et al., 2013, Wasyl, 2014a, Wasyl et al., 2014b). 

4. GENETIC SUPPORT OF ANTIBIOTIC RESISTANCE IN DIFFERENT CLASSES OF
ANTIBIOTICS

4.1. Intrinsic and acquired resistance 
Bacteria can be naturally resistant to some antibiotics, due to the presence of genetic, 

structural, and functional characteristics, which inactivate the antibiotic, according to the four 

resistance mechanisms referred in item 3 and Table 1.1 (Cox & Wright, 2013). Some 

examples are highlighted in Table 1.2.  

Acquired resistance includes genetic mutations in structural or regulatory housekeeping 

genes conferring resistance, and the horizontal acquisition of mobile antibiotic resistance 

genes (van Hoek et al., 2011). Some examples of acquired resistance to the antibiotics 

directly related to the present study are described. 

Table 1.2. Some examples of intrinsic resistance and mechanisms 

Organisms Antibiotic Mechanism 

Gram negative bacteria 
Vancomicin 

Daptomicin 

Decreased permeability of cell 

membrane 

Klebsiella spp Ampicilin 

Enzymatic inactivation 

(chromossome-encoded β-lactamase 

which inactivates the antibiotic) 

Escherichia coli 

Penicillin 

Cephalosporins 

Cephamicins and/ or 

Aztreonam 

Enzymatic inactivation 

(chromossome-encoded β-lactamase 

AmpC which inactivates the 

antibiotic) 

Pseudomonas 

aeruginosa 

Sulfamidas 

Trimetoprim 

Tetraciclina 

Cloranfenicol 

Decreased permeability of cell 

membrane 

Stenotrophomonas 

maltophilia 
Imipenem 

Enzymatic inactivation 

(chromossome-encoded metalo-β-

lactamase which inactivates the 

antibiotic) 
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4.2. Mechanisms of resistance (acquired or intrinsic) in different classes of antibiotics 

4.2.1. β-lactam antibiotics 
In Enterobacteriaceae, the production of β-lactamases is the most frequent and important 

mechanism of resistance, with more than 1000 β-lactamases identified (www.lahey.org) 

(Seiffert et al., 2013, Rubin & Pitout, 2014). 

These periplasmic enzymes are grouped into four molecular classes (A to D), according to 

the Ambler classification, which is based on the amino acid sequence homology (Ambler, 

1980). Ambler classes A, C and D include β-lactamases with serine at the active site, and 

class B include β-lactamases with Zn2+ ion at the active site, that is required as a cofactor in 

its catalytic activity (Table 1.3) (Ambler, 1980); these are also called metallo-β-lactamases 

MBL). According to Bush and Jacoby classification, functional groups 1, 2 and 3, and their 

subgroups, are designated according to the substrate and inhibition profiles; groups 1 and 2 

include serine-β-lactamases, and those of group 3 include the metallo-β-lactamases (Table 

1.3) (Bush & Jacoby, 2010). 

Class 
Ambler 

Functional group 
or subgroup1

Enzyme 
families 

Substrates and 
inhibition profile 

Representative 
enzymes 

A 
2b TEM 

SHV 

Penicillins 
Early cephalosporins 
(inhibited by β-
lactamase inhibitors) 

TEM-1, -2, -13 

SHV-1,-11, -89 

2be 
ESBL 

TEM 

SHV 

CTX-M 

PER 

VEB 

Broad-spectrum 
cephalosporins 
(inhibited by β-
lactamase inhibitors) 

TEM-10, -24, -52 

SHV-12 

CTX-M-1 to CTX-M-
172 
PER-1 to PER-8 

VEB-1 to VEB-16 

2br 
IRT/IRS 

TEM 

SHV 

Penicillins 
(resistant β-
lactamase inhibitors) 

TEM-30, TEM-31 

SHV-72, -84, -107 

2ber 
(CMT) TEM 

Broad-spectrum 
cephalosporins 
Monobactams 
(resistant β-
lactamase inhibitors) 

TEM-50, -158 

2f 
(Carbapenemases) 

GES 

KPC 

SME 

Carbapenems 
Broad-spectrum 
cephalosporins 
Cephamycins 
(variable resistance 
to β-lactamase 
inhibitors) 

GES-2 a GES-27 

KPC-2 a KPC-24 

SME-1 a SME-5 

Tabela 1.3. Classification of β-lactamases produced by Gram negative bacteria, with clinical relevance 
in human and veterinary practice (Bush & Jacoby, 2010) 
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1 ESBL, Extended-Spectrum β-Lactamases; IRT, Inhibitor Resistant TEM; IRS, Inibitor Resistant SHV; 
CMT, Complex Mutant TEM; MBL, Metalo-β-Lactamases; PMAβ, Plasmid-Mediated AmpC β-
lactamases; ESAC, Extended-Spectrum AmpC β-lactamases; CHDL, Carbapenem-Hydrolysing class-
D β-Lactamases.  

In a general way, β-lactamases promote the cleavage of the β-lactam ring and may act by: 1) 

using zinc ions in the case of metallo-β-lactamases, and 2) using the ester-serine pathway in 

the other classes of β-lactamases. In the latter (Figure 1.3), the hydrolysis is triggered in two 

distinct steps: i) non-covalent bonding of the enzyme (E) to the antibiotic (substrate, S), 

resulting in a non-covalent Michaelis complex (E:S), and ii) attack to the β-lactam ring, 

through the hydroxyl group of the serine residue, resulting in a covalent acyl ester (ES) bond. 

The ester hydrolysis will finally release the inactive antibiotic (P) before it reaches the PBPs, 

and the regenerated enzyme is active and available to hydrolyze other antibiotic molecules 

(Bush & Sykes, 1986).

Class 
Ambler 

Functional group 
or subgroup1 

Enzyme 
families 

Substrates and 
inhibition profile 

Representative 
enzymes 

Carbapenems 
Broad-spectrum 
cephalosporins 
(resistance to β-
lactamase inhibitors) 

B 
3a 
(MBL) 

IMP 

VIM 

NDM 

IMP-1 a IMP-53 

VIM-1 a VIM-46 

NDM-1 a NDM-16 

C 
1 (PMAβ)

CMY 

DHA 

Cephalosporins 
Cephamycins 
(resistance to β-
lactamase inhibitors) 

CMY-1 a CMY-136 

DHA-1 a DHA-23 

1e (ESAC) CMY 

Cephalosporins 
Cephamycins 
Increased resistance 
to ceftazidime 
(resistance to β-
lactamase inhibitors) 

CMY-10, -19, -37 

D 
2d OXA 

Cloxacillin 
(variable resistance 
to β-lactamase 
inhibitors) 

OXA-1, -2, -10 

2de (ESBL) OXA 

Cloxacillin 
Broad-spectrum 
cephalosporins 
(variable resistance 
to β-lactamase 
inhibitors) 

OXA-11, -14, -15 

2df (CHDL) OXA 

Cloxacillin 
Carbapenems 
(variable resistance 
to β-lactamase 
inhibitors) 

OXA-23, -24, -48, -51, -
58 
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Due to the successive identification of new variants of β-lactamases, a characterization of 

their kinetic parameters is fundamental. Thus, the catalysis coefficient, kcat, is the best 

parameter to describe the hydrolytic activity of β-lactamases and depends on the rates of 

formation and hydrolysis of the acyl-enzyme complex. This kinetic parameter allows the 

identification of any mutations affecting the activity of the free enzyme and the hydrolysis 

step. However, it is not useful to identify mutations affecting the recognition of substrates by 

the enzyme (Nordmann & Mammeri, 2007; Page, 2008).  

Michaelis constant, Km, is the affinity or semi-saturation constant, that corresponds to an 

equilibrium constant equal to the concentration of the substrate to be hydrolyzed at a rate 

equal to 0.5 of the maximum velocity (Vmax). Km includes all the rate constants describing the 

catalytic steps of β-lactams hydrolysis (Km = k3KS/k2+k3). Thus, it is the most adequate kinetic 

parameter for the identification of β-lactamases with mutations associated to extended 

spectruns.  

The kcat/Km constant does not contribute to any of the steps involved in the hydrolysis and 

depends only on the rate constants involved in the formation of the intermediate acyl-

enzyme. Although this parameter is said to measure the "catalytic efficiency," it is 

independent of the enzyme hydrolytic activity; only mutations affecting the recognition of 

enzyme substrate, will affect kcat/Km (Nordmann & Mammeri, 2007; Page, 2008).  

From the epidemiological point of view, the most important β-lactamases in 

Enterobacteriaceae are: i) extended-spectrum β-lactamases (ESBL), of which the TEM, SHV 

and CTX-M families are highlighted, ii) carbapenemases of class A (e.g. KPC), class B 

(metallo-β-lactamases, e.g. VIM, IMP and NDM), iii) plasmid-mediated AmpC β-lactamases 

(PMAβ), and iv) extended-spectrum AmpC β-lactamases (ESAC) (Table 1.3) (Kim et al.,

2006; Rubin & Pitout, 2014). 

4.2.1.1. ESBL 

These enzymes confer resistance to β-lactam antibiotics, including penicillins, 1st, 2nd, 3rd and 

4th generation cephalosporins and monobactams; generally, carbapenems and cephamycins 

are not hydrolyzed and are inhibited by β-lactamase inhibitors, such as clavulanic acid, 

sulbactam, tazobactam and avibactam (Paterson & Bonomo, 2005). There are several 

families of ESBLs, being the CTX-M family and some variants of the SHV and TEM families 

Figure 1.3. Hidrolysis of a β-lactam antibiotic by an enzyme with serine on its active site 
(Adapted from Page, 2008). 

k-1 k2 k3+H2O 
 E + S  E:S E-S  E + P 

k1 
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(Table 1.3) the most frequent in the various animal species and products of animal origin 

(EFSA, 2011a). 

Of the ESBL mentioned, it is highlighted the detection of the FEC-1 enzyme (Fujisawa E.

coli-1), a transferable ESBL, CTX-M type, identified for the first time in Japan, by Matsumoto 

et al. (1988), in a strain of E. coli isolated from a canid in captivity (Matsumoto et al., 1988). 

• CTX-M family

The CTX-M family belongs to class A of the active serine β-lactamases and are divided into 

six groups, CTX-M-1, CTX-M-2, CTX-M-8, CTX-M -9, CTX-M-25 and KLUC (Table 1.3). 

Between the different groups, the level of deviation on the amino acid sequence ranges from 

9.3 to 32%. Each group includes allelic variants differing only by one or a reduced number 

(≤5%) of amino acid substitutions (Rossolini et al., 2008; D'Andrea et al., 2013). KLUC-1 and 

-2 are two chromosomal cefotaximases of Kluyvera cryocrescens, differing from each other

in an amino acid substitution and sharing 87.6% identity with CTX-M-3. Because KLUC-2

has also been identified in a plasmid, it is suggested that it will be a new cluster or a new

member of the CTX-M family (Zhao & Hu, 2013).

CTX-M enzymes have a strong cefotaximase activity. Cefepime is also a good substrate,

unlike ceftazidime (Bush & Jacoby, 2010). However, in recent years, the emergence of

enzymes with a greater hydrolytic capacity on ceftazidime has been observed, due to the

increased use of this antibiotic in clinical practice (Bush & Jacoby, 2010).

The rapid and successful dissemination of enzymes belonging to the CTX-M family in the

various epidemiological niches, is due to the dissemination of blaCTX-M genes through mobile

genetic elements, the clonal expansion of certain strains, and the selective pressure caused

by the massive use of broad-spectrum cephalosporins and fluoroquinolones in human and

veterinary therapy (D'Andrea et al., 2013).

There are currently 172 enzyme variants of the CTX-M family (http://www.lahey.org/Studies)

(accessed 09/09/2017). In the CTX-M family, variants -1, -9, -14, -15, -32 are the most

frequent in strains of Enterobacteriaceae isolated from food-producing animals (Cortés et al.,

2010; Geser et al., 2012; Silva et al., 2012; Olsen et al., 2014; Stefani et al., 2014; Michael et

al., 2016), companion animals (Costa et al., 2004; Dierikx et al., 2012), and wild animals

(Poeta et al., 2009; Pinto et al., 2010; Gonçalves et al., 2012; Jamborova et al., 2015).

CTX-M-15 is the most frequent and widely disseminated enzyme in humans (Nicolas-

Chanoine et al., 2014), in food-producing and companion animals, after CTX-M-1 (O'Keefe et

al., 2010, Geser et al., 2012, Valentin et al., 2014; Michael et al., 2016).

Other enzyme variants (-24, -27, -55, -98, -102, -104) less common in European countries,

occur frequently in eastern countries, in food-producing and companion animals (Tamang et

al., 2012b; Zhang et al., 2016).
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• TEM and SHV families

In the TEM family the variants -20, -52, -106, -126, and in the SHV family the variants -2, -5 

and -12 are ESBLs (Table 1.3) and they have also been identified in strains of 

Enterobacteriaceae isolated from food-producing animals (Hasman et al., 2005; Smet et al.,

2008; Rodriguez et al., 2009; Dierikx et al., 2010; Geser et al., 2012; Gonçalves et al., 2012; 

Stefani et al., 2014; Noda et al., 2015; Solà-Ginés et al., 2015; Michael et al., 2016), 

companion animals (Costa et al., 2004; Carattoli et al., 2005; O’Keefe et al., 2010) and wild 

animals (Pinto et al., 2010). 

4.2.1.2. PMAβ

Plasmid AmpC β-lactamases comprise an important group of β-lactamases with a hydrolytic 

profile identical to ESBLs, in addition to the hydrolysis of cephamycins, namely cefoxitin and 

cefotetan (Bajaj et al., 2016) (Table 1.3); they do not confer resistance to cefepime and are 

inhibited by cloxacillin, but not by β-lactamase inhibitors, namely clavulanic acid and 

tazobactan (Jacoby, 2009).  

In E. coli (wild-type), and due to the presence of a weak promoter and a repressor, the 

expression of chromosomal AmpC enzyme does not confer resistance to β-lactams. 

However, mutations in the promoter and repressor genes may lead to resistance towards 

penicillins, cephalosporins, cephamycins and/or aztreonam (Jacoby, 2009). Salmonella spp., 

Klebsiella spp. and Proteus mirabilis do not have chromosomal β-lactamases of the AmpC 

type, and resistance to cephalosporins and cephamycins is plasmid-encoded. These 

enzymes derive from chromosomal AmpC cephalosporinases and encompass families: 

CMY, DHA, ACT, FOX, MIR, ACC, LAT, CFE and MOX (Table 1.3) (Jacoby, 2009). 

There are currently 136 variants in the CMY family, 23 variants in the DHA family, 38 variants 

in the ACT family, 5 variants in the ACC family, 12 variants in the FOX family, 18 variants in 

the MIR family, 11 variants in the MOX family, and a variant in the CFE family 

(http://www.lahey.org/Studies) (accessed 9/9/2017). 

CMY-2 (CMY family) is the enzyme that is most frequently detected in Enterobacteriaceae 

strains isolated from animals of different species and products of animal origin (Ewers et al.,

2012; Tamier et al., 2012b; Dierikx et al., 2012; Liebana et al., 2013), as well as from human 

isolates recovered from nosocomial and community-acquired infections (Nicolas-Chanoine et

al., 2014, Alonso et al., 2016). Although rarely, DHA-1 (DHA family). ACC-1 (ACC family) 

variants were also identified in E. coli strains isolated from food-producing animals (Hasman 

et al., 2005; Rayamajhi et al., 2008; Dierikx et al., 2010), and in Klebsiella pneumoniae

strains isolated from canine (Hidalgo et al., 2015). 

Most ESBL and PMAβ producing strains also carry resistance determinants to other 

antibiotics, namely sulfamides, tetracyclines, fluoroquinolones, antibiotics commonly used in 
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veterinary medicine and animal production. The persistence and dissemination of these 

strains in production animals may be due, not only to the use of 3rd generation 

cephalosporins but also due to other antibiotics by co-selection (D'Andrea et al., 2013, 

Liebana et al., 2013). 

4.2.1.3. ESAC 

Genomic events such as insertions, delections and amino acid substitutions have been 

described in chromossome and plasmid-encoded AmpC β-lactamases, responsible for 

increasing the catalytic efficiency over oxymino-cephalosporins, as in ESBLs (Nordmann & 

Mammeri, 2007). Broad-spectrum AmpC β-lactamases are responsible for the hydrolysis of 

3rd generation cephalosporins, including cefepime and cefpiroma. Its hydrolytic activity on 

cefoxitin is variable; some chromosome-encoded ESACs produced by E. coli isolates have a 

hydrolytic activity on cefoxitin lower than that produced by wild-type cephalosporinases, and 

may express a susceptibility phenotype to that antibiotic (Nordmann & Mammeri, 2007). This 

resistance pattern may also be associated with ESBLs, which may lead to an incorrect 

phenotype interpretation (Nordmann & Mammeri, 2007). 

The target of these cephalosporinases comprises of two regions: R1 surrounded by the Ώ-

loop, and R2 surrounded by R2 loop, containing the H-10 and H-11 helices (Nordmann & 

Mammeri, 2007; Jacoby, 2009). These changes generally increase the catalytic efficiency for 

ceftazidime compared with the wild-type enzyme that imply the expression of high MIC 

values, whereas MIC values for cefotaxime and cefepime reflect only a reduced susceptibility 

(Jacoby, 2009). 

This resistance mechanism is emerging in human clinical isolates (Mammeri et al., 2008; 

Jørgensen et al., 2010) and may be found in animals; it has been described for the first time 

in strains of E. coli isolated from cattle in France (Haenni et al., 2014). 

4.2.1.4. Metalo-β-lactamases and other Carbapenemases 

The use of carbapenems in veterinary practice is restricted to severe multidrug resistant 

post-surgery and urinary tract infections caused by E. coli in companion animals. Due to this 

fact, the occurrence of carbapenemases in strains of animal origin is low (Abraham et al., 

2014, Woodford et al., 2014). 

In Enterobacteriaceae, resistance to carbapenems arises mainly through two mechanisms: i) 

acquisition of enzyme-encoding genes responsible for the hydrolysis of carbapenems, or ii) a 

decrease in antibiotic uptake due to deficient qualitative or quantitative porine expression 

(OmpF and OmpC), in association with an overexpression of β-lactamases with weak affinity 

for carbapenems (Nordmann et al., 2012). 

Some studies detected carbapenemases in strains of E. coli and S. enterica subsp enterica 

(e.g. both producing VIM-1, in Germany), Acinetobacter baumannii (OXA-23, in France and 
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NDM-1 in China) and Acinetobacter lwoffii (NDM-1, in China), isolated from food-producing 

animals (Fischer et al., 2012, Poirel et al., 2012a Wang et al., 2012b; Fischer et al., 2013a; 

Fischer et al., 2013b; Zhang et al., 2013). 

The detection of carbapenemase-producing bacteria is probably underestimated, since 

carbapenems are not routinely included in the antibiotic susceptibility tests in veterinary 

laboratories (Abraham et al., 2014). Existing data comes from scientific studies carried out in 

several countries, in isolates from different animal matrices, using different methodologies 

and interpretation criteria (Guerra et al., 2014). 

Since carbapenems are considered as one of the last resources to treat human infections 

caused by ESBLs and so do not have the adverse effects of colistin, preservation of its 

efficacy is essential, in order to have clinical success against severe infections caused by 

Gram negative organisms (Evans et al., 2014). 

The production of carbapenemases in strains of E. coli (NDM-1 and OXA-48, United States), 

K. pneumoniae (OXA-48) and Acinetobacter spp. (OXA-23, Belgium and Germany), isolated

from companion animals (Smet et al., 2012, Stolle et al., 2013, Sun et al., 2015, Liu et al.,

2016, Ewers et al., 2017), and Salmonella Corvallis (NDM-1, Germany) isolated from wild

birds (Fischer et al., 2013b), has been detected.

There are currently 53 variants in the IMP family, 46 in the VIM family, 24 in the KPC family,

16 in the NDM family and 27 in the GES family (http://www.lahey.org/Studies) (accessed

09/09/2017).

4.2.2. Quinolones and fluoroquinolones 

In Enterobacteriaceae, the major resistance mechanisms to fluoroquinolones are 

chromosome-encoded, and associated to nucleotide modifications in genes encoding the 

DNA subunits gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) (Jacoby et al. 

al., 2014). Mutations occur in the Quinolone Resistance Determinant Region (QRDR), 

resulting in amino acid substitutions, altering the target protein structure and subsequently 

the fluoroquinolone-binding affinity of the enzyme (Jacoby et al., 2014). The other two 

mechanisms of resistance, also chromosome-encoded, are the decrease in cell membrane 

permeability with loss of porins, and the occurrence of efflux pump (Jacoby et al., 2014).

The emergence of plasmid-mediated quinolone resistance (PMQR) emerged in 1998, 

constituting a new threat due to its rapid expansion in different reservoirs. The genes qnrA, 

qnrB, qnrC, qnrD, qnrS and qnrVC encode proteins that protect the topoisomerases II and IV 

subunits from fluoroquinolones (Jacoby et al., 2006; Poirel et al., 2012d). The second 

mechanism, aac(6')-Ib-cr, encodes an acetyltransferase responsible for co-resistance to 

fluoroquinolones and aminoglycosides (kanamycin, tobramycin and amikacin). The third 

mechanism includes efflux transporters, encoded by the qepA, and oqxAB genes, 
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responsible for the active export of fluoroquinolone molecules outside the cell (Poirel et al.,

2012d). 

Various animal species constitute the reservoirs of PMQR and their occurrence has been 

increasing (Veldman et al., 2011, Tamang et al., 2012a; Wang et al., 2012a; Jones-Dias et

al., 2013). In European countries, QnrB, QnrS, and variants, and also AAC(6 ')-Ib-cr, are the 

most frequent mechanisms in strains of E. coli and S. enterica  (Veldman et al.,  2011; et al.,

2013, Wasyl, 2014a, Wasyl et al.,  2014b, Jamborova et al.,  2015). Efflux pumps QepA and 

OqxAB occur more frequently in strains of E. coli isolated from olanquidox-treated animals, 

used as growth promoters in some Asian countries (Jacoby et al., 2014; Yang et al., 2014). 

Although the presence of PMQR does not confer high level of resistance to quinolones, it 

favours the selection of bacteria with a high level of resistance, increasing the effect of other 

chromosome-encoded resistance mechanisms even in the absence of pressure antibiotics 

(Guan et al., 2013; Redgrave et al., 2014). 

4.2.3. Polymyxins 

Intrinsic resistance to polymyxins includes adaptive and mutational mechanisms, acting on 

lipopolysaccharides of the cell membrane (LPS). In Gram negative bacteria, polymyxins act 

on two components, PhoP/Q and PmrA/B, corresponding to cationic regulation systems of 

antimicrobial response. Overall, resistance involves the modification of 4'-

phosphoethanolamine (PEA). This chemical modification results in a reduction of the 

negative charge by breaking the outer membrane covalent bonds, and a decrease in the 

antibiotic binding to the outer membrane fraction A of the LPS. Other mechanisms may also 

occur, such as active efflux, porine depletion, capsule formation and hypervesiculation 

(Olaitan et al., 2014; Gao et al., 2016; Trimble et al., 2016). 

Recently in China, Liu et al. (2016) identified, for the first time, in E. coli strains isolated from 

humans, food-producing animals and meat, a new mechanism of resistance to colistin called 

MCR-1, which belongs to the phosphoethanolamine-transferase family. This plasmid-

mediated mechanism encoded by the mcr-1 gene is thought to catalyze the modification of 

the lipid A fraction (Liu et al., 2016). This chemical modification represents a unique 

mechanism, unlike that occurring in chromosome resistance, triggered by two operons, 

pmrAB and phoPQ and a mgrB regulator (Gao et al., 2016). 

Lately, several studies from different countries including Portugal, reported the detection of 

the mcr-1 gene in strains of E. coli and S. enterica from humans, food-producing animals, 

meat and in the environment (Hasman et al., 2015; Campos et al., 2016; Figueiredo et al.,

2016; Kluytmans-van den Bergh et al., 2016; Malhotra-Kumar et al., 2016; Perrin-Guyomard 

et al., 2016; Quesada et al., 2016; Zhang et al., 2016; Zurfuh et al., 2016).  

More recently, in Belgium, a new gene, mcr-2, in E. coli pathogenic strains from cattle and 

swine (Xavier et al., 2016), and in Italy, a new variant of the mcr-1, mcr-1.2, in a human 
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strain of K. pneumoniae, were detected (DiPilato et al., 2016). The phylogenetic analysis of 

MCR-2 seems to point that this protein can be originated in Moraxella catarrhalis, evidencing 

76.75% homology with MCR-1 (Xavier et al., 2016). 

Some authors report the co-occurrence of mcr-1 gene in strains producing ESBLs and also 

resistant to tetracyclines and sulfonamides, antibiotics widely used in animal production, 

stressing the importance that the selective pressure exerted by other antibiotics can also 

contribute for the emergency and dissemination of this gene (Haenni et al., 2016). MCR 

determinants and known variants of mcr-1 gene are given in Table 1.4. 

5. DISSEMINATION OF ANTIBIOTIC RESISTANCE GENES

Antibiotic resistance can be transmitted: 

- vertically, by accumulation of genetic changes during the natural process of genome

replication, and transfer to subsequent generations;

- horizontally, by exchange of resistance determinants between bacteria, through three

mechanisms: conjugation, transformation and transduction (Figure 1.4) (Dantas &

Sommer, 2014).

Conjugation is an important mechanism involved in the horizontal gene dissemination, in 

which DNA transfer is performed through pili or adhesins. Transformation and transduction 

are less frequent mechanisms; in the transformation occurs the uptake and integration of 

extracellular DNA fragments after bacterial lysis, and in transduction the transfer of 

resistance determinants is mediated by bacteriophages (von Wintersdorff et al., 2016) 

(Figure 1.4). 

Figure 1.4. Mechanisms involved in horizontal gene transfer 
(adapetd from Levy & Marshall, 2004). 
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In Enterobacteriaceae, the spread of acquired antibiotic resistance is mainly carried out 

through mobile genetic elements, such as plasmids, insertion sequences, transposons and 

some integrons (Table 1.4). These mobile elements allow the transfer of antibiotic resistance 

genes between DNA molecules inside the cell, i.e., from the chromosome to the plasmid or 

between plasmids; the plasmids are responsible for the dissemination of resistance genes 

between bacteria of the same species, or from different species (Partridge, 2015). 

Mobile genetic element 
(MGE) 

Molecular features 

Insertion sequences 
(ISs) 

The simplest MGE, consisting of an open reading frame (orf)
codifying the enzyme transposase, flanked by a repeated and 
inverted sequence of 10-40bp in each extremity (Gyles & Boerlin, 
2015). 

Insertion sequence 
common region (ISCR) 

Insertion sequences like those of IS91 family, inserted by a 
mechanism of transposition designated by rolling circle. ISCRs have 
terminal sequences designated by origin (oriS) and ending 
sequences (terIS) (Bennett, 2008; Zhao & Hu, 2013). 

Integrative conjugative 
elements (ICEs) 

MGE sharing features inherent to transposons, bacteriophages and 
plasmids, non-replicable and capable of integration or excision from 
the chromossome, and transfer from one bacterial cell to another, 
through conjugation (Gyles & Boerlin, 2015). 

Transposons MGE capable of moving inside the same DNA molecule, from one 
plasmid to another, or from the chromosome to a plasmid and vice-
versa (Bennett, 2008).  

Plasmids MGE composed by extrachromosome linear or circular double-strand 
DNA, with autonomous replication (Leplae et al., 2004). Some 
conjugative plasmids carry genetic determinants allowing transfer 
through conjugation; non-conjugative plasmids use mechanisms from 
other transferable plasmids to be transfered (Gyles & Boerlin, 2015).  

Integrons MGE able to capture gene cassetes and integrate by recombination 
(Hall & Collis, 1995). These elements consist of three regions, being 
two regions, 5’ (5’-CS) e 3’ (3’-CS), highly conserved and flanking a 
third region, variable, and where gene cassetes are located. 5’-CS 
region includes the transposase encoding gene (intI), the 
recombination site (attI), and a promoter (Pc), ensuring expression of 
the operon (Partridge, 2015). Integrons are grouped in three classes 
(1, 2 and 3), according to the nucleotide sequence of the integrase 
(intI) (Di Gonza & Gutkind, 2010).  

Bacteriophages Viruses, obligate intracelular and able to mediate the transfer of 
resistance genes. They multiply inside the bacterial cell by using 
host biosynthetic machinery (Balcazar, 2014). 

Table 1.5. Main mobile genetic elements and molecular features 
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6. DIVERSITY OF ANTIBIOTIC RESISTANCE RESERVOIRS 

Nowadays, the globalized world favors the spread of antibiotic resistance, for example 

through trade of foodstuffs, live animals and free movement of people. This may occur 

through direct or indirect contact, the food chain, water and manure applied to agricultural 

fields, among others (Marshall & Levy, 2011; Cares et al., 2013; Aarestrup, 2015). 

Thus, antibiotic resistance emerges as a dynamic, complex, multifactorial process involving 

humans, animals and the environment. Multiple connections are established between the 

various reservoirs, through which resistance genes and mobile genetic elements exchange 

information by horizontal gene transfer. Water (water courses, urban and residual effluents) 

and sludge are primordial sites of occurrence of these genetic events (Cantas et al., 2013, 

Butaye et al., 2014, Roca et al., 2015, Woolhouse et al. 2015) (Figure 1.5). Horizontal gene 

transfer and genetic recombination among microbial communities of the various reservoirs, 

contribute to the diversity and adaptability of microorganisms to various environments 

(Woolhouse et al., 2015). 

Antibiotic resistance from human pathogenic strains is a major concern for health 

professionals and authorities, although they represent a limited number of species, 

compared with commensals and opportunistic pathogens (Djordjevic et al., 2013). Some 

pathogenic and commensal bacteria are zoonotic, which allows them to infect/colonize food-

producing animals, companion and wild animals, and the environment (Lewis et al., 2008; 

Garcia-Alvarez et al., 2012; Overdevest et al., 2011; Harrison et al., 2013; Pomba et al., 

2013; Franco et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Some transmission pathways of antibiotic resistance, between different reservoirs:  
humans, animals and the environment (adapted from Woolhouse et al., 2015). 
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6.1. Animals as reservoirs of antibiotic resistance 

6.1.1. Food-producing animals 

The use of antibiotics in animal production seem to have some impact on the emergence of 

resistant and multidrug resistant human pathogens, particularly E. coli, Campylobacter spp. 

and S. enterica, which are zoonotic agents transmitted through the food chain.  

The high level of resistance to fluoroquinolones and tetracyclines observed in strains of S.

enterica and Campylobacter jejuni isolated from humans, poultry and poultry meat in several 

European countries is consistent with the high consumption of fluoroquinolones and 

tetracyclines by humans and animals (Carreira et al., 2012; Jones-Dias et al., 2013; 

EFSA/ECDC, 2015; EMA/ESVAC, 2015; EMA/ESVAC, 2016). Food-producing animals are 

potential reservoirs of antibiotic resistant strains such as Salmonella spp. Thus, factors such 

as the environment of slaughterhouses and food processing plants, as well as operations 

along the slaughter and processing line may contribute for cross-contamination and for the 

emergence of human infections caused by strains with genotypic profiles identical to those 

detected in animal strains (Gomes-Neves et al., 2012; Gomes-Neves et al., 2014; 

Leverstein-van Hall et al., 2011). The increase in the incidence of ESBL and PMAβ-

producing Enterobacteriaceae infections in livestock suggests that animals, food and the 

environment are potential reservoirs of these microorganisms (Seiffert et al., 2013). Studies 

performed elsewhere detected a high frequency of ESBL-encoding genes in E. coli strains 

isolated from poultry (75-80%), with a genotypic profile identical to strains isolated in man 

(Leverstein-van Hall et al., 2011; Overdevest et al., 2011). Also, in Italy, Franco et al., (2015) 

detected a clone of Salmonella Infantis MDR isolated in poultry responsible for 

gastrointestinal infections in man (Franco et al., 2015). Although carbapenems are not 

registered for use in the veterinary practice of food-producing animals (Poirel et al., 2014), 

recent studies have reported the detection of carbapenemases in the following: VIM-1-

producing E. coli and S. enterica  isolated from pigs in Germany (Fischer et al., 2012; Fischer 

et al., 2013a), OXA-23-producing A. baumannii in cattle in France (Poirel et al., 2012a), 

NDM-1-producing A. baumannii and A. lwoffii isolated from pigs and poultry in China (Wang 

et al.,  2012b; Zhang et al., 2013) and more recently in poultry, OXA-48b-producing 

Shewanella xiamenensis isolated from broilers and Shewanella aneidensis isolated from 

cattle, and OXA-252-producing S. xiamenensis isolated from pigs at slaughter (Ceccarelli et

al., 2017). In recent years, severe human infections have been caused by multidrug resistant 

strains of Pseudomonas aeruginosa and A. baumannii, in which colistin is the last 

therapeutic resource (Catry et al., 2015).  
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This antibiotic has been used in the veterinary practice and animal production since the 

1950s for the treatment and prevention of infections caused by Enterobacteriaceae in 

different animal species, namely pigs, large and small ruminants, poultry, rabbits and 

aquaculture fish (EMA, 2015; Paterson & Harris, 2016). Currently, colistin is the fifth most 

commonly used antibiotic in the EU (EMA/ESVAC, 2015, EMA/ESVAC, 2016). Recently, the 

identification of mcr and variant mcr-1 genes in strains of Enterobacteriaceae isolated from 

human, animal, food and environmental samples poses a serious threat to public health due 

to the fast dissemination through plasmids and other MGE (Hasman et al., 2006; Campos et

al., 2016; Figueiredo et al., 2016; Jones-Dias et al., 2016b; Liu et al., 2016; Malhotra-Kumar 

et al., 2016; Perrin-Guyomard et al., 2016; Quesada et al., 2016; Xavier et al., 2016; Zhang 

et al., 2016; Zurfuh et al., 2016; Yin et al., 2017). Although it has not been demonstrated that 

the use of colistin in the veterinary practice has resulted in transfer of resistance to humans, 

this hypothesis should not be excluded, whereby the European Medicines Agency (EMA) 

advert for the restrict use of colistin only for the treatment of infected animals or cohabitants, 

discouraging its use as a preventive treatment (EMA, 2015). 

6.1.2. Companion animals 

Since antibiotics are essential for the treatment of infectious diseases of both humans and 

companion animals, very often an overlap between the antibiotic classes used in these two 

medical practices occurs (OIE, 2014). In companion animals, the use of critical important 

antibiotics in human clinical practice, should be strictly assessed due the emergence of 

multidrug resistant strains and the fact it may constitute the last therapeutic resource for 

humans (Table 1.1) (OIE, 2014; WHO, 2014). 

The occurrence of ESBL and PMAβ-type β-lactamase-producing bacteria in canine, feline 

and equine species is a growing concern (Ewers et al., 2012; Hordijk et al., 2013). The 

detection of ESBL-producing E. coli strains belonging to the ST131 lineage in different 

species, like companion (Pomba et al., 2009; Bogaerts et al., 2015) and food-producing 

animals (Solà-Ginés et al., 2015) suggest the occurrence of transmission from humans to 

animals, due to the higher frequency of these strains in humans (Nicolas-Chanoine et al.,

2014; Rubin & Pitout, 2014). 

Being carbepenems antibiotics of critical importance for the treatment of human infections, its 

use in companion animals is restricted to cases of severe infections caused by multidrug 

resistant strains of Enterobacteriaceae (Poirel et al., 2014). Recently, NDM-1 and OXA-48 

carbapenemases were detected in strains of E. coli and K. pneumoniae isolated from 

companion animals, (Stolle et al., 2013; Liu et al., 2016) and OXA-23 in Acinetobacter spp 

isolated from horses in Belgium (Smet et al., 2012). 
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6.1.3. Wild animals 
In their natural habitat, wild animals are rarely treated with antibiotics, so, a low level of 

resistance may be expected. However, the increasing proximity of wildlife to urban habitats, 

as well as to other animals, contributed for the transfer of antibiotic resistant bacteria. 

Contaminated surface water (wastewater, rainwater, urban and industrial effluents from 

agricultural and animal farms) is one of the main vehicles for the dissemination of resistance 

determinants and mobile genetic elements among bacteria of different origins (Baquero et al. 

2008). 

Thus, wild life constitutes a reservoir of resistant bacteria, namely ESBL, PMAβ and 

carbapenemase-producing bacteria (Fisher et al., 2013b, Radhouani et al., 2013, Veldman et

al., 2013, Guerra et al., 2014). In Portugal, ESBL and/or PMAβ producing bacteria were 

detected in the ecosystem of the Iberian lynx and red fox, and their presence is attributed to 

feeding habits based on wild rabbits, rodents and birds (Gonçalves et al., 2011; Radhouani 

et al., 2013; Radhouani et al., 2014). 

6.1.4. Aquaculture 
Aquaculture is a new sector of food production, which has been experiencing a significant 

increment over the last two decades, due to the world growing demand for a healthy protein 

source (Done & Halden, 2015). Although disease control in aquaculture is essentially based 

on the application of vaccines, antibiotherapy with fluoroquinolones, florfenicol, tetracycline, 

sulfonamides, amoxicillin and colistin is also frequently used. 

Administration of antibiotics via medicated feed or in water, may lead to contamination of the 

surrounding environment with residues of antibiotics, favoring the selection pressure and the 

dissemination of antibiotic resistance genes through mobile genetic elements (Vieira et al.,

2010; Marshall & Levy, 2011; Done & Halden, 2015). 

Although scarce, studies carried out in Portugal in strains of E. coli isolated from aquaculture 

gilt (Sparus aurata), revealed the detection of resistance genes to several groups of 

antibiotics (chloramphenicol, tetracycline, aminoglycosides, β-lactams and sulfonamides), of 

which ESBL-encoding genes (blaTEM-52 and blaSHV-12) were highlighted (Sousa et al., 2011). 

Indeed, the presence of carbapenemase-producing E. coli strains in oysters, shrimps and 

fish pond water was detected in Brazil (Vieira et al., 2010). Carbapenemases of the OXA 

family (OXA-48) were identified in strains of Stenotrophomonas spp, Myroides spp. and 

Pseudomonas spp. isolated from frozen seafood, and the variants OXA-181 and OXA-515 

detected in strains of Shewanella spp. isolated from ornamental fish imported from Asian 

countries. The detection of carbapenemases in bacterial species not usually searched in 

surveillance programs suggest that these bacteria may also act as reservoirs of transmissible 

resistance genes (Morrison & Rubin, 2015; Ceccarelli et al., 2017). 
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6.2. The role of the environment 
Environmental bacteria act as a source of antibiotic resistance genes that may be spread 

among human and animal pathogenic bacteria. This phenomenon is exacerbated by the 

influx of resistance genes from animals (including food-producing), humans (including the 

hospital environment and health care units), and from the great amounts of antibiotic waste 

disposed to the environment (pharmaceutical industry, elimination of metabolites by humans 

and animals) (Robinson et al., 2016) (Figure 1.5). 

In fact, exposure to intensive agricultural practices is also a risk factor for antibiotic 

resistance due to direct selective pressure resulting from the application of antibiotics in 

crops or indirect exposure due to use of manure and other biofertilizers (Cantas et al., 2013, 

Berendonk et al., 2015). Different agricultural practices influence the composition of the soil, 

with regard to its microbiome, presence of antibiotic resistance genes (resistome), and 

presence of mobile genetic elements (mobilome) (Jones-Dias et al., 2016b). 

7. THE IMPORTANCE OF RESEARCH AND MONITORING ANTIBIOTIC RESISTANCE

Since antibiotic resistance is a serious problem for human and animal health, some initiatives 

were taken to control it, in particular those relating to the strengthening of antibiotic 

resistance monitoring programmes. Some networks have been developed in different 

countries, for example Denmark (DANMAP), Netherlands (MARAN), Sweden (SVARM), 

Norway (NARMS), among others. 

Recently, the European Commission, through Decision 652/2013 established a surveillance 

programme to monitor antibiotic susceptibility of commensal and zoonotic agents from 

livestock and meat for a period of seven years (2014-2020), using standardized and 

validated techniques, and harmonized interpretation criteria. The implementation of this 

program allows the collection of important information on the emergence and spread of 

antibiotic resistance, warning in advance changes and future trends in antibiotic resistance 

patterns within the different animal populations (CD652/2013). 

In Portugal, a recent study by Marinho et al. (2016), included a large number of strains 

collected from several animal species and also from humans, highlighting the importance of 

monitoring antibiotic resistance due to the declining antibiotic efficacy and the lack of new 

antibiotics in the near future (Marinho et al., 2016). 

Recently, the European Food Safety Authority (EFSA), the European Center for Disease 

Prevention and Control (ECDC) and the European Medical Agency (EMA) have joined forces 

and released the first integrated report data analysis on antibiotics, and the occurrence of 

antibiotic resistance in bacteria isolated from humans, food-producing animals and food 

products (EFSA/ECDC/EMA, 2015). 
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7.1. The current threat 
The emergence and spread of multidrug resistant pathogenic bacteria in humans has been 

increasing at an alarming rate. Annually, in the European Union, about 400,000 patients 

suffer from infections caused by multidrug resistant bacteria, of which 25,000 die (WHO, 

2014). It is estimated that progressively more people worldwide will die due to multidrug 

resistant bacterial infections, reaching 10,000,000 deaths in the year 2050, associated with 

an approximate cost of $100 trillion dollars (O'Neill, 2016). 

Veterinary data concerning medical and therapeutic costs involved with the use of antibiotics, 

as well as direct consequences affecting animal welfare (decline in growth, production and 

food efficiency, increased morbidity and mortality) are limited, but nonetheless constitute a 

cause of concern, requiring immediate action (Vaarten, 2012; Weese et al., 2015). 

7.2. Technological advances in diagnosis
Conventional microbiological techniques encompassing culture and phenotypic 

characterization of antibiotic susceptibility, although important and informative, are time 

consuming and in most cases, treatment is applied before the laboratory result is obtained. 

Likewise, the clinician obtains information about the therapeutic option taken and the 

presence of multidrug resistant strains, but mechanisms of resistance and mobile genetic 

elements are not identified (Anjum, 2015). 

The genotypic characterization of the strains can be carried out using molecular biology 

techniques, namely Polymerase Chain Reaction (PCR), including conventional PCR, real-

time multiplex PCR, and microarrays (Anjum, 2015). Microbiology has undergone a 

significant transformation over the last decades. Specifically, new technologies have been 

developed, such as New Generation Sequencing (NGS) and Mass Spectrometry (MS), which 

consistitute valuable tools for the rapid and complete analysis of genomes and proteomes, 

respectively, both in research and in diagnosis (Franzosa et al., 2015). 

7.2.1. Microarrays
The microarray also known as a DNA chip or biochip, is one of the most powerful genomic 

technologies, used to characterize the genotype of multiple genome regions, or 

simultaneously measure expression levels of a large number of genes (Bumgarner, 2013; 

Silva et al., 2014).  

As far as antibiotic resistance is concerned, studies carried out by some authors (Jacobsen 

et al., 2011; Mendonça et al., 2016) emphasize the importance of using this technology in the 

detection of several resistance and virulence determinants in strains of human and animal 

origin. 
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7.2.2. “Omic" technologies 
The new "omic" technologies include the detection of genes (genomics), mRNA 

(transcriptomics), proteins (proteomics) and metabolites (metabolomics) in a biological 

sample, to fully characterize its phenotype (Franzosa et al., 2015). Genomics and 

transcriptomics progressed due to advances in the microarray technology, and mass 

spectophotometry was the most widely used method for the detection of analytes, by 

proteomics and metabolomics. The amount of data generated is enormous and its analysis is 

complex, requiring specialized statistical and bioinformatic treatment. 

7.2.2.1. Genomics 
The New Genome Sequencing (NGS) allows to determine the complete DNA sequence of 

the bacterial genome, both chromosomal and plasmid DNA. 

Regarding antibiotic resistance, and depending on the type of information intended, this 

technique allows the sequencing of nucleic acids, DNA and RNA (in the form of cDNA); when 

applied to DNA, reveals the presence of antibiotic resistance genes, and when applied to 

RNA, allows the detection of resistance genes expression (Chan, 2016). All the information 

obtained is analyzed with the support of bioinformatics tools, and the identification of genes 

may be confirmed by detection of homology with known reference databases, such as 

ResFinder and the Comprehensive Antibiotic Resistance Database (Anjum, 2015, Chan, 

2016). 

The equipments used, such as HiSeq and MiSeq series by Illumina Inc. (CA, USA), may 

allow the simultaneously sequencing of many bacterial genomes, as well as the detection of 

new resistance determinants carried by multiple plasmids. Metagenomic analysis of clinical 

or environmental samples (blood, faeces, soils, waste water) through the sequencing of the 

16SrRNA gene of bacteria allows the study of all the members of a specific bacterial 

community contained in the sample and evaluate the influence of the environmental 

conditions through the detection of specific genes, such as antibiotic resistance encoding 

genes (Franzosa et al., 2015, Chan, 2016). 

7.2.2.2. Proteomics and transcriptomics
Proteomics is defined as the global analysis of all cellular proteins that make up the 

proteome; it is more complex than the genome, since the number of encoding genes can be 

predicted in the genome, whereas the number of different proteins that an organism can 

synthesize is not deduced directly of the proteome analysis (Fouhy et al., 2015). 

Transcriptomics identifies the transcripts present in the cell, which is the mRNA transcribed 

from the DNA, while proteomics identifies the proteins resulting from the translation of the 

transcripts into protein. 
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Mass spectophotometry, based on the Matrix-Assisted Laser Desorption/Ionization-Time-Of-

Flight (MALDI-TOF) technology, can be used in the study of antibiotic resistance in both 

human and animal strains, through the analysis of the total protein content, which is 

measured after the contact of isogenic susceptible and resistant strains with previously 

selected antibiotics.  

The response is specific for each antibiotic, and the proteins secreted at high levels under 

selective pressure correspond to the expressed genes (Fouhy et al., 2015; Pérez-Llarena & 

Bou, 2016). 

 

7.2.2.3. The current and future perspectives: veterinomics 
Veterinomics represents the future vision of the veterinary science, with the use of “omic” 

technologies in the fields of research and clinical practice, with the aim of improving animal 

health, and thereafter protection of public health (Katsafadou, 2016). 

As the costs involved in the NGS techniques continue to decline, this technology is 

progressively being used alone, or in combination with conventional phenotypic methods, for 

the assessment of susceptibility to various antibiotics, whether in the field of surveillance or 

clinical diagnosis (Zankari et al., 2013). 

Studies made by some authors (Zankari et al., 2013) on bacteria of animal origin (Salmonella 

spp., E. coli and Enterococcus spp.), revealed that results obtained by the phenotypic 

methods match with those predicted through NGS. However, its use as a single technique 

should be carefully evaluated in terms of standardization, to allow comparison of results 

between different laboratories (Zankari et al., 2013, Anjum, 2015). 

Proteomics may have a broad application in the study of various diseases and pathological 

processes, detecting new target proteins. These proteins will allow the detection of the 

disease in a sub-clinical phase and may contribute for the development of new diagnostic 

methods, therapeutic approaches, and the development of vaccines (Katsafadou, 2016). 

Although promising, MALDI-TOF (MS) technique still requires validation, simplification and 

automation, namely in the analysis of results. One of the most important challenges concerns 

an in-depth study on the correlation between the results obtained in proteomics and the 

minimum inhibitory concentration (MIC) values, in order to get an adequate therapeutics and 

monitoring of infection (Pérez-Llarena & Blou, 2016). 

The food industry is another branch where proteomics is being developed and applied in 

terms of composition, quality and certification of food, safety assessment of genetically 

modified feedstuffs and identification of allergens and toxins (Piras et al., 2016). 
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8. ONE HEALTH
Antibiotic resistance is a global and transversal serious problem, involving human and

veterinary medicine, agriculture and the environment. International organizations responsible

for each sector, such as the World Health Organization (WHO), the World Organization for

Animal Health (OIE), the Food and Agriculture Organization of the United Nations (FAO) and

EFSA, have a key role to play.

Their main concern and goal is to recognize the importance of antibiotic resistance and the

impact of the use of antibiotics in animals, and to promote the necessary collaboration

between local, national and global authorities, namely from the most important sectors,

veterinary, environmental and human sectors. Strict measures must be adopted, to maximize

animal health, by minimizing the likelihood of antibiotic resistance, and safeguard the future

effectiveness of antibiotics, in the interest of human and animal health and welfare (Vaarten,

2012; Weese et al., 2015, Robinson et al., 2016).

Veterinary authorities should also promote strict compliance of the veterinary prescription,

giving priority to biosafety and vaccination. Research in infectious diseases and antibiotic

resistance should be encouraged by developing and enforcing standards and guidelines, and

promote the responsible use of antibiotics in animals.
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Escherichia coli is one of the most prevalent bacteria in the gastrointestinal tract of 

mammals, constituting one of the most frequent causes of infection in humans and animals 

(Alocatti et al., 2013). The flexibility and genetic ability of this pathogen to adapt to different 

hosts stands out as an important feature in the spread of resistance, and that is why it is one 

of the target bacteria in many research studies and antibiotic resistance surveillance 

programs (EFSA, 2017). Salmonella enterica is a zoonotic agent and the second cause of 

human food-borne infection in the European Union, mainly associated with consumption of 

foods, such as poultry meat, eggs, milk, shellfish and other fresh products (Pui et al., 2011; 

EFSA, 2017). Just like E. coli, it is also considered as a target bacterium in research studies 

and antibiotic resistance surveillance programs (EFSA, 2017). 

According to recent data, and among the 29 European countries, Portugal has one of the 

highest frequencies of antibiotic resistant E. coli, Campylobacter spp and S. enterica strains 

isolated from food-producing animals and food products. These strains are frequently 

resistant to antibiotics which are considered of critical importance for the treatment of human 

infections, namely fluoroquinolones, polymyxins and 3rd generation cephalosporins 

(EFSA/ECDC, 2017).  

However, information on the main antibiotic resistance determinants and mobile genetic 

elements involved in the spread of the above-mentioned resistance mechanisms is still 

scarce. 

Thus, the main objectives of this thesis were: 

i) Phenotypic characterization of E. coli and S. enterica strains isolated from different animal

species and products, with regards to susceptibility to antibiotics of several classes;

ii) Genotypic characterization of strains resistant to critically important antibiotics in human

and veterinary medicine, namely, 3rd and 4th generation cephalosporins, fluoroquinolones

and polymyxins;

iii) Investigation and identification of mobile genetic elements associated with antibiotic

resistance determinants and involved in their dissemination;

iv) Genomic characterization of clinically relevant multidrug resistant isolates, with regards to

determinants associated to antibiotic and biocide resistance, virulence, mobilization, and

DNA transfer.

The studies developed in this thesis will contribute to increase the knowledge about

molecular mechanisms of acquired resistance to critically important antibiotics in human and

veterinary medicine, particularly in E. coli and S. enterica strains. It will be of added value to

discuss the results obtained in a European and worldwide context, considering the ease of

dissemination of the mechanisms involved.
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ABSTRACT  
 
Antibiotic resistance consists of a dynamic web. In this review we describe the path by which 

different antibiotic residues and antibiotic resistance genes disseminate among relevant 

reservoirs (human, animal, and environmental settings), evaluating how these events 

contribute to the current scenario of antibiotic resistance. The relationship between the spread 

of resistance and the contribution of different genetic elements and events is revisited, 

exploring examples of the processes by which successful mobile resistance genes spread 

across different niches. The importance of classic and next generation molecular approaches, 

as well as action plans and policies are also reviewed, which might aid in the fight against 

antibiotic resistance. 

 

Keywords:  
Antibiotics, Resistome, Mobilome, Reservoirs, Dissemination 

 

3.1. Introduction 

Many classes of antibiotics are not only clinically valuable for human medicine, but also in 

other fields such as, veterinary medicine and food animal production, including aquaculture 

(Marshall & Levy, 2011; Garcia-Alvarez et al., 2012). The agricultural setting also plays an 

important role in the spread of antibiotic residues in the environment, due to their use as 

additives and biocides in crops. Consequently, all the adjacent natural environments consisting 

of water, soil and plants are also environmental niches to be considered for the dynamic of 

antimicrobial resistance (Baquero et al., 2008; Heuer et al., 2011).  

The use of antibiotics might have dangerous and long-term effects that extend beyond the 

selection of specific resistance mechanisms (Gillings, 2013). The selection pressure applied 

to bacterial communities, through the widespread discharge of antibiotic residues in the 

environment, highly contributes to the exposure of several niches to antibiotic resistant bacteria 

(commensal and/or pathogenic) (Perron et al., 2008). For example, applying animal manure 

may enhance viable antibiotic resistant coliform bacteria in soil, increasing the frequency of 

detection of some antibiotic resistance genes (Heuer et al., 2011). These bacteria may reach 

the food chain considering that vegetables are grown in soil (Marti et al., 2013). Acquired 

antibiotic resistance is also frequent among isolates from wild animals, which represents a 

niche of concern. Indeed, many reports refer wild animals as reservoirs of resistant 

determinants that commonly appear in other habitats, namely in human settings (Sousa et al., 

2014).  

It should also be noted that the bacterial resistance to antibiotics is related to soil and aquatic 

native microorganisms, which may be producers of antimicrobial compounds (DeLorenzo et  



Chapter 3 

42 

al., 2014 ; Zhang et al., 2014). Several other factors contribute to antibiotic resistance. Indeed, 

the existence of major anthropogenic actions such as international travel, and global trade of 

foodstuffs highly contribute to its amplification (Barbosa & Levy, 2000; Martinez et al., 2002; 

Allen et al., 2010; Gaze et al., 2011) (Table 3.1).  

Table 3.1. Antibiotic resistance is generated by several factors 
Adapted from (Barbosa & Levy, 2000; Martinez et al., 2002; Allen et al., 2010). 

Factors depending on biological and physical influences: 

Human activities 
Animals (namely insects, birds, wildlife) 
Water 
Environmental changes 
Wind 
Changes in geographic localization of bacteria 

Factors dependent on humans and their management of antibiotics: 

Preservation of ecosystems (eventually bioremediation) 
Intensive farming 
Sanitation and hygiene measures 
Runoff and leak 
Manure 
Demographic changes (increasing number of elderly people) 
Anthropogenic contacts 
Socioeconomic factors 
Bioterrorism (biological war) 
Travel of people and foodstuffs 
Patient movement within and between medical institutions 
Infection control measures (prevention of infection) 
Appropriateness of use 

Factors related to the antibiotic itself 

Antibiotic use 
Novel antibiotics 
Dose of treatment 
Duration of treatment 
Antibiotic residues 
Food additives 
Selection of antibiotic resistant bacteria 

Factors related to microorganisms 

Wide spread of commensal bacteria 
Extensive spread of old or new pathogens 
Higher number of infections (opportunistic) 
Increased number of host-pathogen contacts 
Modification of microbial diversity 

Factors related to the genetic basis of resistance 

Cross selection 
Non-antibiotic selection 
Gene transfer 
Clonal spread 
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A classic example of a vehicle for transmission of antibiotic resistant bacteria are the human 

hands, which can became easily contaminated by environmental surfaces near patients in 

hospitals, or animals in husbandry settings (Gomes-Neves et al., 2012; Park et al., 2014). 

Consequently, World Health Organization is strongly committed to make people aware of the 

problem of antibiotic resistance, especially care takers, namely through campaigns of hand 

hygiene aiming to fight antibiotic resistance (Park et al., 2014 ; WHO, 2014). 

There is an urgent need to learn about possible connections between antibiotics, 

environmental organisms, and associated bacterial communities, as they may threaten diverse 

ecosystems, and consequently, human health (Martinez, 2009). In this review we emphasize 

that these settings are linked and may constitute reservoirs of antibiotic resistance 

determinants, playing important roles in this dynamic. 

 

3.2. Antibiotic residues versus resistome in the environment 
Before the antibiotic era, environmental antibiotic resistant bacteria already existed, carrying 

genes that became critically important in medicine (D'Costa et al., 2011). Indeed, for many 

years the environment consisted of an under-recognized reservoir of resistance genes that 

have the potential to be transferred and emerge in clinically important bacteria (D'Costa et al., 

2006; Allen et al., 2009). Groh et al. (2006) showed that homologues of multidrug resistance 

genes present in bacterial pathogens are essential for the sediment fitness in nonpathogenic 

bacteria, by conferring an ecological advantage on these microorganisms (Groh et al., 2007). 

Several reports have demonstrated the existence of antibacterial activity in extracts from 

different microorganism genera/species against distinct bacteria. A recent study showed that 

some antibiotic resistance Gram-negative strains recovered from an industrial alpine location 

highly polluted with oil hydrocarbons, had the ability to produce antimicrobial compounds active 

against Actinobacteria and Gammaproteobacteria. Thus, the selection pressure present in this 

environment could lead not only to high antibiotic resistance, but also to the capacity of this 

population to produce antimicrobial compounds (Hemala et al., 2014). LeBel et al. (2013) have 

also demonstrated that the heat-stable bacteriocin nisin (naturally produced by Lactococcus 

lactis), displayed antimicrobial activity against the emerging zoonotic agent Streptococcus suis 

(Lebel et al., 2013). 

In fact, several studies have demonstrated that freshwater/marine bacteria are also able to 

produce antibacterial compounds that exhibit antimicrobial activity similar to standard drugs, 

which is the case of cyanobacteria (Singh et al., 2011). Besides, it was also demonstrated that 

extracts from Anabaena spp. were effective against vancomycin-resistant Staphylococcus 

aureus (Bhateja et al., 2006). Some authors have considered that cyanobacteria antibacterial 

activity is more effective against Gram-positive bacteria (Kreitlow et al., 1999; Martins et al., 

2008) than Gram-negative, which was attributed to the protection conferred by the  
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lipopolysaccharides barrier of Gram-negative cell wall (Martins et al., 2008); however, some 

Gram-negative bacteria, including pathogenic species, were also affected by cyanobacterial 

compounds. The potential application of bacterial compounds to the development of new 

antimicrobials seems, therefore, a promising research area. 

The relation between bacteria and antibiotics may be approached in a variety of ways. In the 

case of cyanobacteria, considering their ubiquity and importance in the ecosystems 

(Vasconcelos et al., 2001), increasing concern has been attributed to the effects of 

environmental stressors in these bacteria. In fact, although cyanobacteria can easily adapt to 

different environmental conditions, they can also be severely affected by environmental 

changes and water contaminants (López-Rodas et al., 2006; González-Pleiter et al., 2013). 

On the other hand, and considering that cyanobacteria are exposed to antibiotics and to 

resistant bacteria in their natural habitats (Martinez, 2009), we can hypothesize that they are 

able to develop antibiotic resistance mechanisms. Their ability to produce a variety of bioactive 

antibacterial compounds with potential pharmaceutical interest (Singh et al., 2011), suggests 

that they might have developed defense mechanisms against their own toxicity (Waksman, 

1941).  

Overall, the relation of antibacterial compounds-producing bacteria might challenge the 

scientific community because these new molecules may constitute a promising future source 

of antimicrobials. Thus, further research will be needed to understand the role of those 

genera/species on the resistome. 

3.3. Mobilome associated to antibiotic resistance genes 
Genomic events constitute a central process in the mobilization of genetic elements and 

associated mobile antibiotic resistance-encoding genes between different settings (Burrus & 

Waldor, 2004). The movement of bacteria from the environment to animals and humans (and 

vice-versa) contributes to the increase of the mobilome (mobile gene pool) (Brown et al., 2012). 

These genetic exchanges are significantly reported among the human and animal gut 

(Devirgiliis et al., 2011). Indeed, lateral gene transfer and recombination of genetic material 

within bacterial populations highly contributes to the diversity and adaptability of strains to 

different environments (Fig. 3.1). 

The wide divergence within specific functional genes, the creation of mosaic-structured 

genomic regions, as well as the high prevalence of mobile genetic elements contribute to the 

success of different gene pools, producing new worldwide dispersed hotspots (Burrus & 

Waldor, 2004; Wright, 2007; Gaze et al., 2011; Gillings, 2013). For instance, the acquisition of 

a single plasmidic but pleiotropic gene that encodes resistance to two structurally and 

functionally different classes of antibiotics also highlights the remarkable adaptive nature of 

Gram negative bacteria (Robicsek et al., 2006). 
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In general, mobile genetic elements, such as plasmids, insertion sequences (IS), transposons, 

genomic islands, and phages, constitute the arsenal of bacterial genomes in what concerns 

genetic transfer, contributing to the emergence of novel genotypic and phenotypic variants 

(Leavis et al., 2007; Brown et al., 2012; Gomes-Neves et al., 2015). Frequently, these genetic 

structures may be organized in cascade-like arrangements, contributing to the amplification of 

mobilization events.  

Several reports revealed that mutations in the promoter region and acquisition of functional 

promoters can turn on a silent gene (Salyers & Shoemaker, 2006). For example, IS may disrupt 

open reading frames and activate gene expression through transposition. Functional promoter 

may be created through the -35 promoter-like sequence existing in the terminal of some IS 

elements (Salyers & Shoemaker, 2006). 

The mobilome and the resistome usually follow parallel paths. The environment is broadening 

the origin of antibiotic resistance genes. This was the case of Kluyvera spp., commensal 

bacteria of both humans and animals, which went ahead to the mobilization of their 

chromosomal CTX-M-type -lactamase-encoding genes into the plasmids of other bacteria. 

Thus, CTX-M extended-spectrum β-lactamase (ESBL) has its origin in Kluyvera spp., which 

possibly shares other genes with enteric bacteria (Bonnet, 2004). The understanding that 

genes from non-related species might be expressed in new hosts is now evident (Perron et 

al., 2008; Sousa et al., 2014; Zhang et al., 2014). Other example is OXA-type--lactamases. 

Interestingly, the genes encoding these enzymes have already been described in plasmids 

prior to the human use of antibiotics, since they have moved through horizontal gene transfer 

between bacterial phyla for millions of years (Barlow & Hall, 2002). Recently, an OXA 

carbapenemase (from Ambler class D) that supposedly had its origin in Turkey (OXA-48) has 

been described in Europe and in the United States of America (USA) among Klebsiella 

pneumoniae isolates, causing considerable morbidity and mortality (Poirel et al., 2012b; 

Manageiro et al., 2014). The first report of Shewanella xiamenensis carrying a blaOXA-48-like 

gene, suggested that the emergence of different genes from this group had their origin in 

different S. xiamenensis strains (Tacão et al., 2013). The contribution of different mobile 

genetic elements and mechanisms for the dissemination of these carbapenemase-encoding 

genes (blaOXA-48-like) from Shewanella spp. to Enterobacteriaceae, and to other Gram-negative 

bacteria has been reported (Poirel et al., 2012c). These antibiotic resistance genes constitute 

one of the greatest threats in terms of public health because of their ability to resist 

carbapenems (Nordmann et al., 2012; Poirel et al., 2012c). 

The idea that some resistance mechanisms, such as carbapenemase production, are only 

linked to infections and human healthcare facilities is no longer valid (Patel & Bonomo, 2013). 

The efficacy of blaOXA-48-like gene transfer between bacterial species in human cases 

(Manageiro et al., 2014), have also been reported in food-producing, companion and wild  
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animals, as well as in natural environments (Stolle et al., 2013; Tacão et al., 2013; Woodford 

et al., 2014), highlighting its importance in the dissemination of antibiotic resistance among 

different reservoirs.  

International travel and medical tourism have rapidly driven the resistance mechanisms into 

an alarming public health warning (Cantón et al., 2012; Leonard et al., 2013). Apart from the 

enzymes belonging to Ambler class D, this also has been happening with other 

carbapenemases, such as KPC (-lactamases from Ambler class A) and NDM (metalo--

lactamase from Ambler class B) (Cantón et al., 2012).  

 
3.4. Investigating antibiotic resistance 
Routine investigation of the most relevant antibiotic resistance mechanisms (such as ESBLs, 

carbapenemases, methicillin-resistant S. aureus/MRSA, and vancomycin-resistant 

enterococci/VRE) is becoming common in the human sector; however, it is still scarce in the 

area of food, animals, and environment. The detection of ESBL- and carbapenemase-

producing bacteria in the environment, farms, food, and companion animals is an urgent 

matter, in order to contain these resistance mechanisms. This is a matter of concern as 

carbapenems are currently one of the last resources to treat human complicated infections 

caused by multidrug resistant Gram-negative bacteria (Patel & Bonomo, 2013).  

The colonization of healthy animals can represent a silent source of these resistance 

mechanisms, being a possible transmission pathway to humans via food chain. On the other 

hand, the carriage of such resistance mechanisms by healthy humans can also represent a 

pitfall for their transmission to non-human sources. Moreover, infection and colonization is 

higher among animal owners, farmers and veterinarians. They can be carriers and transmit 

bacterial antibiotic resistance genes to animals, namely due to prior selection pressure caused 

by hospitalization, antibiotic consumption, contact with healthcare settings and/or international 

voyages (Figure 3.1) (Woodford et al., 2014). 

Data collection and analysis on antibiotic resistance will improve detection of outbreaks (in a 

micro level), and support decision-making (in a macro level), highlighting the importance of the 

One-Health approach to combat its global rise in human infectious diseases (Mills, 2014; WHO, 

2014). 
 

 

 

 

 

 

 

 

 

Figure 3.1. Crosswalk between resistome and mobiloma among different environment 
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Our capability to contain the increase and dissemination of resistance mechanisms such as 

carbapenemase-producing bacteria will eventually indicate the efficiency of the antibiotic use 

and antibiotic resistance containment policies (Woodford et al., 2014; WHO, 2014). In 2006, 

the European Union (EU) interdicted the antibiotics as growth promoters in animal feed, which 

was an important step in the use of antibiotics for non-medical purposes. However, the 

antibiotic resistance of foodborne pathogens is still a matter of concern. The notification rates 

of zoonoses in confirmed human cases in EU for the year of 2013 showed that Campylobacter, 

Salmonella, and Escherichia coli were the most frequent bacteria causing human foodborne 

zoonoses. Despite all efforts, these pathogens still present high levels of resistance to 

antibiotics used in humans (EFSA/ECDC, 2015). About 30% of human Salmonella spp. 

isolates exhibited multidrug resistance (EFSA/ECDC, 2015).  

Emerging antibiotic resistant foodborne pathogens from animal origin are appealing to food 

and veterinary microbiology laboratories to be increasingly alert due to the impact that these 

bacteria can have on public health. Next-generation sequencing technologies have greatly 

accelerated the rate and reduced the cost of genomic data acquisition.  

The whole-genome sequencing (WGS) and molecular epidemiology studies constitute 

important assets to explore the bacterial genomes (Leavis et al., 2007; Allen et al., 2009; Ho 

et al., 2011). The possibility of performing comparative genomic analysis in short periods of 

time can allow the rapid detection of resistance genes that, in turn, can be helpful to distinguish 

different bacterial subpopulations (Allen et al., 2009; Ho  et al., 2011; Harrison et al., 2013). 

These methodologies are very helpful to monitor the mobilome, as mobile antibiotic resistance 

genes are frequently clustered in complex genetic arrays. For instance, hitchhiking genes, 

such as antibiotic resistance and heavy metal or disinfectant resistance genes are commonly 

genetically associated. Moreover, there are genomic regions that allow the gathering of 

antibiotic resistance genes, such as the integrons, and those responsible for their transfer, like 

plasmids or the conjugative transposons (Salyers & Shoemaker, 2006). The plasmidome 

sequencing is also an interesting approach to evaluate antibiotic resistance genes that may 

spread among different settings (Brown et al., 2012). In the same way, a complete proteome 

might be obtained through the matrix-assisted laser desorption/ionization mass spectrometry 

(MALDI-TOF MS). Correia et al., (2014) reported the confirmation of several proteins in S. 

Typhimurium Phage Type 104 clinical strain through this method, emphasizing the presence 

of the Aac(6')-Ib-cr enzyme responsible for both plasmid-mediated aminoglycoside and 

quinolone resistance (Robicsek et al., 2006; Correia et al., 2014). 

Likewise, the high-throughput sequencing of nine genomes was used for the rapid 

identification of data in an outbreak caused by enteroaggregative verocytotoxin-producing E.

coli O104:H4 (STEC) associated with the consumption of raw vegetables (EFSA, 2011; Ho et

al., 2011). This outbreak was responsible for a hemolytic uremic syndrome in patients due to 

TEM- and CTX-M-15-producing STEC isolates. The exposure path involved in this outbreak 
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could have been more than one (EFSA, 2011; Ho et al., 2011): firstly, a primary human 

infection could have arisen from consumption of contaminated food or direct contact with an 

animal carrying STEC strains and then, a subsequent infection might have occurred by the 

fecal-oral way, through manipulation of contaminated vegetables (EFSA, 2011; Ho et al.,

2011).  

Using the WGS approach, two independent farm human cases of mecC-MRSA infection, 

directly linked to a livestock (cow and sheep) reservoir, were identified in Denmark, supporting 

zoonotic spread. In these cases, it was demonstrated that the CC130 MRSA lineage was 

transmitted between animals and humans, and that livestock may be a reservoir for MRSA 

(Harrison et al., 2013). 

Thus, new generation approaches allow a better understanding of specific resistance 

mechanisms, enabling an effective control of complex epidemiological situations. Overall, the  

use of many types of “omic” approaches is already providing more advanced hypotheses, 

mechanisms and models of antibiotic resistance evolution (Franzosa et al., 2015). 

3.5. Strengthening the combat against antibiotic resistance 
Actions should be taken to diminish the selection pressure imposed by antibiotics in the human 

communities. Other priority actions should also include risk management to minimize 

antibiotics and antibiotic resistant bacteria in animals (companion and food-producing) and in 

the environment, namely in fresh and wastewater. 

Several measures are necessary to fight antibiotic resistant bacteria, but the main concern 

involves putting them into practice in all countries, regions and settings (European Council, 

2001; Review on Antimicrobial Resistance, 2014; WHO, 2014; Mills, 2014; EFSA/ECDC, 

2015). 

The Council Recommendation/2002/77/EC on the prudent use of antimicrobials agents in 

human medicine highlights the need to the “relationship between the occurrence of 

antimicrobial resistance in certain human pathogens and their occurrence in animals and the 

environment” (European Council, 2001). In addition, we are made aware to the fact that 

“coordination between human, veterinary and environment sectors should be ensured and the 

magnitude of the relationship between the occurrence of antimicrobial resistant pathogens in 

humans, animals and the environment should be further clarified and therefore this 

Recommendation does not preclude further initiatives in other areas.” (European Council, 

2001). Recommendations from other entities also reinforce the need to fight against the rising 

threats of antibiotic resistance through the publication of detailed action plans and some ideas 

underlining important pressure points (Bronzwaer et al., 2004; WHO, 2014). We also highlight 

that the Transatlantic Taskforce on Antimicrobial Resistance of 2014 released 

recommendations for future collaboration between the USA and EU. In this document the 

strategies to improve the pipeline of new antibacterial drugs was emphasized (Livermore, 

http://www.cdc.gov/drugresistance/tatfar/report.html
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2011). The lack of new antibiotics is the major drawback in the field of antibiotic resistance 

(Livermore, 2011). 

The implementation of DC 613/2013 by the EU countries concerning antimicrobial resistance 

monitoring in zoonotic and commensal agents in 2014 in food-producing animals and meat, 

for a period of seven years (2014-2020), using standardized and validated antimicrobial 

susceptibility testing methods and harmonized interpretive criteria, will complement and 

provide early warning of changes in resistance patterns in animal populations and monitor 

future trends in the occurrence of antimicrobial resistance (Commission Implementing Decision 

613/2013). 

Many European programs have also been leading the development of policies for diminishing 

antibiotic use and antibiotic resistance genes in different sources, namely water (Fatta-

Kassinos et al., 2015). In the water reservoir should be highlighted the recent COST Action 

that takes into account the problematic of antibiotics, and their consequences, which main 

objective is to make possible the wastewater reuse [http://www.nereus-cost.eu/]. 

Meanwhile, national strategies for combating antibiotic resistant bacteria, identifying priorities 

and coordinating investments were also recently reviewed in the USA (The Whitehouse, 2014). 

The evaluation of antibacterial products used as feed additives, and the impact of antimicrobial 

resistance on the antibiotics of human and veterinary importance has also been revised (EFSA, 

2012d). 

 
3.6. Conclusions 
Antibiotic resistance constitutes a health crisis that has consequences all over the world, 

striking several settings simultaneously: humans, animals, and the natural environments. Until 

the decade of the 90’s the majority of drugs, including antibiotics, were derived from natural 

products; since then, a substantial increase in the use of synthetic and semi-synthetic 

substances as therapeutic agents, was noticed (Li et al., 2009). However, the major approach 

of the pharmaceutical industry to overcome this problem was the improvement of the pre-

existing antibiotics in detriment of the research on new molecules (Li et al., 2009). In the future, 

special attention should be paid to the potential of new natural antimicrobial products as 

effective and less toxic alternatives (Singh & Barrett, 2006). 

Overall, actions must be taken to diminish the selection pressures imposed by antibiotics, in 

order to reduce the exposure of humans to high rates of antibiotic resistant strains. Priority 

actions include risk management to access the use of antibiotics and presence of resistant 

bacteria in the different environments. In the end, a higher economic and human investment 

in the field is necessary. 
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ABSTRACT 
 
Three hundred and thirty three isolates representing 40 different serotypes of Salmonella 

enterica, recovered from environmental and faecal samples of breeder and broiler flocks from 

2009 to 2011, were studied. Antimicrobial susceptibility was determined by measuring the 

minimal inhibitory concentration of 11 antimicrobials using the agar dilution method.  

Salmonella Havana, S. Enteritidis and S. Mbandaka were the most common serotypes isolated 

from broiler flocks, while S. Enteritidis was the common isolate from breeder flocks. The 

frequency of non-wild-type Salmonella isolates (isolates with decreased susceptibility) to the 

different antimicrobials varied according to serotype. S. Mbandaka in broilers and S. Enteritidis 

in both breeders and broilers showed higher frequencies of reduced susceptibility to 

quinolones, but clinical resistance towards ciprofloxacin was not observed. Reduced 

susceptibility to sulfamethoxazole, tetracycline, ampicillin and streptomycin were common in 

Salmonella Typhimurium isolates. Two isolates of S. Havana from broilers were resistant to 

cefotaxime and phenotypically categorised as extended-spectrum β-lactamase producers 

(ESBL). Results presented in this study provide useful data on the antimicrobial susceptibility 

of different Salmonella serotypes and highlight the high diversity of multidrug resistance 

patterns present.  

 
Keywords: Salmonella enterica; Breeders; Broilers; Antimicrobial susceptibility 

 
 
4.1.1.  Introduction 
Salmonella enterica is the second most important cause of food-borne disease in the European 

Union with a total of 99020 confirmed cases in humans in 2010 (EFSA, 2012b). Raw eggs are 

still the most frequent source of outbreaks, followed by fresh poultry meat, pork, fruit and 

vegetables. The continued increase in consumption of poultry products per capita also 

increases the potential for human exposure to Salmonella via the food chain.  

Salmonella enterica infection in humans usually results in a self-limiting gastroenteritis; 

however, young children, elderly and immune-compromised people may experience enteric 

fever or an invasive form of the disease requiring antimicrobial treatment (Pui et al., 2011). In 

poultry, the clinical signs vary considerably depending on age of birds and/or infecting 

serotype. Infections caused by serotypes Enteritidis and Typhimurium are rarely responsible 

for severe illness and animals frequently become asymptomatic carriers; except in young 

chicks and poults where acute outbreaks exhibiting clinical disease accompanied by high 

mortality rates may occur (Padron, 1990; Foley et al., 2008).   
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Salmonella can be introduced at all stages of the production cycle, though breeding flocks and 

hatcheries are critical sources and responsible for the quick spread of the infection (Foley et 

al., 2008). Several factors may affect the susceptibility of poultry to colonization, such as age, 

serotype, initial dose level, environmental stress, antimicrobial or anti-inflammatory treatments 

and competition with the enteric microbiota (Foley et al., 2008). Besides causing illnesses or 

death in both humans and poultry, there is a worldwide concern that the persistence of 

Salmonella serotypes that are resistant or show decreased susceptibility to several 

antimicrobials may reduce treatment options and, more importantly, lead to treatment failure 

(Newell et al., 2010). Fluoroquinolones such as ciprofloxacin are critically important 

antimicrobials in human and veterinary medicine. In animal isolates, the highest occurrence of 

decreased susceptibility to ciprofloxacin has been recorded in Salmonella spp. recovered from 

live chickens (Gallus gallus) and broiler meat (EFSA, 2012b). It was hypothesised that the 

withdrawal of growth promoters in Europe in 2006 would lead to decreased antimicrobial 

resistance in pathogenic microorganisms, but trade has resulted in the importation of poultry 

products from regions where the use of antimicrobials and growth promoters is not as well 

regulated as it is in the EU, resulting in the introduction of resistant organisms (Barrow et al., 

2012).  

This paper reports the results of a monitoring programme examining the antimicrobial 

susceptibility patterns of Salmonella serotypes isolated from breeder and broiler flocks in 

Portugal during 2009-2011. The ultimate aim of this programme is to contribute to a better 

understanding of the zoonotic potential of the circulating strains of Salmonella in a country 

where consumption of poultry meat is significant. 

 

4.1.2.  Material and Methods 
 
Bacterial isolates 
The National Veterinary Reference Laboratory (INIAV) received Salmonella isolates from the 

Salmonella National Control Programmes in food producing animals and were serotyped and 

susceptibility tested according to the guidelines of Commission Decision (CD) 2007/407/CE, 

concerning harmonised monitoring of antimicrobial resistance in Salmonella in poultry and 

pigs. This analysis includes data from a total of 333 Salmonella isolates, from both breeders 

(n=58) and broilers (n=275). All samples were, collected in the period of 2009-2011. The 

breeder and broiler farms were sampled and selected by the official authorities and were 

distributed throughout the country. The parent stock (breeders) were imported from other 

European countries as day old chicks while broilers were born in Portugal. Birds were raised 

and managed in industrial units designed for a temperate climate. 
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Faecal and environmental samples using sterile boots/sock swabs were collected in broiler 

flocks 3 weeks prior to slaughtering and, from breeder flocks three times during the production 

cycle. 

All samples were examined according to ISO norm 6579: 2002 applied to Salmonella detection 

in food and animal feeding stuffs (Anonymous, 2002). Suspected colonies were further 

characterized by means of biochemical tests, using triple sugar iron agar slopes and API 20E 

strips (BioMérieux). 

Salmonella serotyping 
Salmonella isolates were biochemically confirmed and serotyped (Table 4.1.1), using the 

Kauffmann-White scheme (Grimond & Weill, 2007). 

Antimicrobial susceptibility testing 
Minimal inhibitory concentrations (MICs) for 11 antimicrobials were determined by the agar 

dilution method (Clinical Laboratory and Standards Institute, 2008). Antimicrobials were tested 

in two fold concentration series over a range which was specific to each antibiotic: Ampicillin 

(0.5-64mg/L); cefotaxime (0.06-8mg/L); chloramphenicol (2-256mg/L); ciprofloxacin (0.008-

8mg/L); florfenicol (1-128mg/L); gentamicin (0.25-32mg/L); nalidixic acid (2-512mg/L); 

streptomycin (2-512mg/L); sulfamethoxazole (8-1024mg/L); tetracycline (0.5-64mg/L); and 

trimethoprim (0.25-32mg/L). E. coli ATCC25922 strain was used as a control for MICs.  

In order to assess decreased susceptibility of the isolates, epidemiological cut-off values from 

the European Committee for Antimicrobial Susceptibility Testing (EUCAST) were used (Table 

4.1.1) allowing the detection of any deviation in the susceptibility of the wild type population 

(EFSA, 2012b). MIC50 and MIC90 values, as well as rates of decreased susceptibility and 

resistance to critically important antimicrobials for humans (cefotaxime and ciprofloxacin) were 

calculated according to clinical breakpoints established by EUCAST for Enterobacteriaceae 

(Table 4.1.1). Isolates were considered to be multi-drug resistant (MDR) if they presented 

reduced susceptibility to three or more structurally unrelated antimicrobials. 

Phenotypic screening of extended-spectrum β-lactamases (ESBL)  
Isolates exhibiting a non-wild-type MIC for cefotaxime (> 0.5 mg/L) were tested phenotypically 

for the presence of ESBL by testing for synergy through disk combination (Mast Laboratories) 

including cefotaxime (30μg), ceftazidime (30μg) and cefpodoxime (10μg), as single drugs and 

in combination with clavulanic acid (10μg).  
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Statistical analysis 
All statistical analyse were undertaken using SPSS v19.0 (IBM). The chi-square test was used 

to assess the association between Salmonella serotypes and antimicrobial susceptibility 

profiles. When the assumptions of the asymptotic method were not met, the exact significance 

was calculated by applying the Fisher exact test. Pairwise comparisons of different 

susceptibilities were undertaken using the Bonferroni correction.  

 
4.1.3.  Results 

Antimicrobial susceptibility 
Of the 333 Salmonella isolates selected and tested for antimicrobial susceptibility, 11 

serotypes of Salmonella enterica were identified in breeders and 29 in broilers (Table 4.1.1). 

Of the serotypes recovered from broilers, S. Enteritidis and S. Mbandaka showed a higher 

frequency of reduced susceptibility to quinolones when compared with S. Havana and S. 

Typhimurium; the same comparison with other serotypes was observed in S. Enteritidis 

isolates recovered from breeders. Although no clinically-apparent resistance against 

ciprofloxacin was detected, 53.4% and 60.5% of the isolates recovered from breeders and 

broilers, respectively, exhibited a reduced susceptibility to this antimicrobial. S. Typhimurium 

and S. Enteritidis showed higher frequencies of decreased susceptibility to sulfamethoxazole 

and tetracycline. Decreased susceptibility to ampicillin, chloramphenicol, florfenicol, 

streptomycin and gentamicin was either absent, or very low, in serovars Havana, Enteritidis 

and Mbandaka. Although few isolates of S. Virchow were tested, a high level of resistance to 

gentamicin and quinolones was detected.  

Multiple resistance patterns 
Thirty different patterns of decreased susceptibility were observed, of which half were 

classified as MDR (Table 4.1.2). In isolates recovered from broilers, MDR was most evident in 

isolates of S. Typhimurium (45.5%), followed by S. Enteritidis (31%), S. Havana (14.3%), S. 

Mbandaka (4.5%) and 13.7% in isolates in the group of other serotypes (Table 4.1.2). In 

breeders, MDR was only detected in isolates of S. Enteritidis (5.6%). Two S. Havana isolates 

recovered from broilers, with MICs for cefotaxime ≥ 8 mg/L and an ESBL phenotype, were also 

MDR.  
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4.1.4. Discussion 
This study of Salmonella serotypes in Portugal supports previous studies (Papadopoulou et 

al., 2009), that infected breeding flocks and hatcheries, contaminated feed, environment and 

rearing sites are important potential sources for broiler contamination and, subsequently, 

human food poisoning.  

S. Enteritidis, S. Havana and S. Mbandaka are all considered zoonotic or potentially 

pathogenic serovars for humans (Schiff & Saphra, 1941; Menon et al., 1994; Scheil et al.1998; 

Backer et al., 2000; Boisrame-Gastrin, et al., 2011), and were among the most prevalent 

serotypes recovered from Portuguese broiler flocks. It is likely that, at least for Serovars 

Havana and Mbandaka, poultry feed containing cereal grain imported from non-European 

countries is one of the main sources for these serotypes in live birds. 

The antimicrobial susceptibility profiles of Salmonella isolates in this study was is serotype 

dependent, as has been reported in other studies (Musgrove et al., 2006; Newell et al., 2010; 

EFSA, 2012b). In strains from broilers, important differences between MIC50 and MIC90 (3 - to 

≥ 7-fold dilutions) were observed for ampicillin, chloramphenicol, sulfamethoxazole, 

streptomycin and tetracycline in S. Typhimurium, for sulfamethoxazole and trimethoprim in S. 

Havana, for sulfamethoxazole, tetracycline and trimethoprim in S. Enteritidis and for ampicillin, 

nalidixic acid, streptomycin, sulfamethoxazole and tetracycline in other serotypes. In breeders, 

significant differences between MIC50 and MIC90 were observed for sulfamethoxazole and 

tetracycline in isolates grouped as ‘other’ serotypes (Table 4.1.1). Similarly, de Jong et. al. 

(2009) observed differences for sulfisoxazole, streptomycin and tetracycline, showing the 

heterogeneity of S. enterica isolates, as far as antimicrobial susceptibility is concerned.  

The reduced susceptibility of Salmonella isolates to fluoroquinolones, particularly in serovars 

of S. Enteritidis and S. Mbandaka, may be attributed to the widespread use of enrofloxacin in 

Portugal (EMA, 2012), particularly in the broiler and turkey sectors. In fact, Portugal is the 

European country with the highest frequency of isolates with MICs for ciprofloxacin greater 

than that seen in wild-type isolates (72%) and is the sixth highest user of fluoroquinolones in 

Europe (EFSA, 2012b); however, no clinical resistance was observed presumably due to the 

prohibitive fitness costs of the resistant organisms (O’Reagan et al., 2010). Despite the 

successes of Salmonella National Control Plans in European countries, S. Enteritidis still 

remains one of the most important serovars in poultry production and is strongly associated 

with MDR phenotypes (Barrow et al., 2012). In our study, 31% of Enteritidis isolates were MDR 

and resistant to quinolones. Although third generation cephalosporins are not authorised for 

treatment of chickens in Portugal, two isolates of S. Havana, from two different poultry farms 

(one from Northern Portugal and one from the central region), had an MIC for cefotaxime that 

was >8mg/L (the MIC for the wild-type isolate); both were characterized as ESBL producers. 

Polymerase chain reaction and sequencing of the amplicons in those isolates, confirmed the 
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presence of blaCTX-M-1 (Clemente et al., 2013). Resistance against third generation 

cephalosporins in Salmonella isolates due to ESBL has been recently identified worldwide 

(Newell et al., 2010). Factors which have been linked to the recent emergence of ESBL include: 

(1) The use of third generation cephalosporins (ceftiofur) in combination with Marek’s disease 

vaccine in young chicks in some sectors of the poultry industry; (2) the use of ceftiofur as a 

spray or by subcutaneous injection in hatcheries, particularly alongside in ovo vaccines 

(Liebana et al., 2012; MARAN, 2010); (3) importation of day-old grandparent chickens from 

UK and USA (EFSA, 2011); and (4) the rise in the use of fluoroquinolones in poultry, cattle and 

pigs, which selects for bacterial clones carrying ESBLs (Rodriguez-Bano et al. 2010; Wener et 

al. 2010; Cavaco et al. 2008). The origin of the two ESBL isolates in this study is unclear, but 

all the parent stock was imported from Europe, as day old chicks, so the resistance may have 

arisen before arrival in Portugal. In European countries, the occurrence of resistance to 

cefotaxime in Salmonella isolates was low (0.2 % to 3 %) for most countries, except for the 

Netherlands where it was moderate (12 %) (EFSA, 2012b). However, even low levels of 

resistance to critically important antimicrobials are of great concern because the spreading of 

MDR isolates producing ESBLs or AmpC, may also co-select for other resistance determinants 

through the use of other antimicrobials (Dierick et al., 2010). In our study, MDR phenotypes 

were found in both ESBL isolates, which may be linked to antimicrobials frequently used in 

poultry production (EFSA, 2012b). Indeed, the selective pressure exerted by the use of 

antimicrobials in both human and animal populations can contribute to the spreading of 

particularly resistant clones of Salmonella (Newell et al., 2010). The spread of clones of 

Salmonella can also be influenced by factors independent of antimicrobial usage, such as 

human foreign travel, the integrated structure of some animal production systems, animal 

movement and management and hygienic practices on farms (Levy, 2002; Hawkey & Jones, 

2009; EFSA, 2012b). The need for the use of antimicrobials in animal production should be 

reduced through disease prevention, supported by good animal husbandry and management 

practices, animal welfare and vaccination (Newell et al., 2010; Barrow et al., 2012).  

 

4.1.5. Conclusion 
The widespread decreased susceptibility of Salmonella isolates to critically important 

antimicrobials, such as fluoroquinolones, highlighted in the present study, should raise concern 

about the prudent use of such antibiotics in poultry production. In the framework of ongoing 

Salmonella national surveillance programmes (EFSA, 2012a), monitoring should continue and 

be enlarged to cover other animal species, food products, and pharmaceutical drugs in order 

to provide early warning of changes in resistance patterns in animal populations. Monitoring 

antimicrobial susceptibility in vivo, alongside the use of epidemiological cut-off values to 

interpret final results, seems to be the most sensitive way to detect such changes. 
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ABSTRACT 
 

A total of 1120 Salmonella spp isolates, recovered from poultry, swine and food products of 

animal origin (bovine, swine and poultry) over the period of 2009-2011, were investigated in 

order to determine their serotype, susceptibility to a panel of eleven antimicrobials (A, 

ampicillin; Ct, cefotaxime; Cp, ciprofloxacin; Tm, trimethoprim; Su, sulfamethoxazole; C, 

chloramphenicol; S, streptomycine; G, gentamicine; T, tetracycline; NA, nalidixic acid; Fl, 

florfenicol) and the presence of resistance determinants of extended-spectrum cephalosporins. 

Overall, Salmonella Enteritidis was the most common serotype in all three animal species. In 

poultry of 618 isolates, 32.8% comprised S. Enteritidis, 18.3% Salmonella Havana and 16.5% 

Salmonella Mbandaka; in pigs of 101 isolates 21.8% comprised Salmonella Rissen and 

Salmonella Typhimurium, 10.9% Salmonella Derby and Salmonella London. Salmonella I 

4,[5],12:i:- was the most common serotype recovered from pork and beef food products 

comprising 32.6% and 30% of isolates respectively, followed by Salmonella Rissen (26% and 

24%) and S. Typhimurium (18.2% and 19%), respectively. In poultry products, S. Enteritidis, 

was the most frequent serotype (62.7%), followed by Salmonella Mbandaka (10.2%) and 

Salmonella Derby (8.5%). Susceptibility profiles differed according to the origin of the isolates. 

Five multidrug resistant isolates (0.45%) were further characterized as extended-spectrum β-

lactamase (ESBL) producers. Polymerase chain reaction and sequencing of the amplicons 

confirmed the presence of blaCTX-M-1 (n=2), blaCTX-M-14 (n=1), blaCTX-M-15 (n=1) and blaCTX-M-32 

(n=1); blaSHV-12 and blaTEM-1 genes were also detected in two isolates of S. I 4,[5],12:i:-. Four 

isolates, two S. Havana and two S. I 4,[5],12:i:-, carried class 1 integrons and in three, two S. 

I 4,[5],12:i:- and one S. Havana, ISEcp1 was identified associated to blaCTX-M-1, blaCTX-M-32 and 

blaCTX-M-14 genes. Additionally, in one S. I 4,[5],12:i:- isolate, orf477 was identified linked to 

blaCTX-M-32. No plasmid mediated quinolone resistance-encoding genes were detected. Here, 

we report for the first time the presence of blaCTX-M genes in Salmonella enterica subsp enterica 

isolates recovered from poultry and food products of swine origin in Portugal.  

 

Keywords: Salmonella enterica; food-producing animals; ESBL; CTX-M group; Multidrug 

resistance 

 
4.2.1. Introduction 

Infections with Salmonella enterica are one of the most important causes of food-borne 

diseases worldwide and the great majority are associated with the consumption of products 

such as meat, poultry, eggs, milk, seafood and other fresh products (Pui et al., 2011). S. 

enterica infection is the second most frequent cause of gastrointestinal infection in humans in 

the European Union (EU), with a total of 99020 confirmed cases in 2010, although fewer cases 

had been observed in the previous years (EFSA, 2012c). Salmonella Enteritidis and  
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Salmonella Typhimurium were the most frequently reported serotypes accounting for 45% and 

22.4%, of all isolates respectively (EFSA, 2012c).  

Serotype I 4,[5],12:i:- is considered a monophasic variant of S. Typhimurium and one of the 

first reports of its occurrence in Europe was in Portugal from a chicken carcass (Machado & 

Bernardo, 1990). A survey conducted in 2010 in animals and animal products showed that this 

serovar was the second most common in swine (9.3% of all isolates), and the third most 

common in pork products (7.4%), cattle (4.7%) and beef products (10%) and was also present 

in turkey (2.4%) and chicken meat (0.4%) (EFSA, 2012c). This serotype is considered to be a 

new pandemic strain of Salmonella in Europe, typically possessing resistance to four 

antimicrobials comprising ampicillin, streptomycin, sulphonamides and tetracycline, ASSuT 

(Hopkins et al., 2010).  

Salmonella Havana is a potential pathogenic serotype for humans (Bekal et al., 2012; 

Boisrame-Gastrin, et al., 2011; Backer et al., 2000; Menon et al., 1994). In animals, it was 

isolated from different species, such as: broiler flocks (Soerjadi-Liem et al., 1984), cattle 

(Bernardo et al., 1996), turkeys (Pedersen et al., 2002), wild mammals and birds (Caleja et al., 

2011; Reche et. al., 2003) and meat products from different animal species, including chicken, 

beef, veal and mutton (Mehrabian et al., 2007).  

The rapid development of resistance to extended-spectrum cephalosporins in different 

serovars of S. enterica has been observed worldwide and is predominantly linked to plasmid-

mediated production of β-lactamases (EFSA, 2011). The most frequently detected β-

lactamases in isolates from animal origin are extended-spectrum β-lactamases (ESBL) and 

plasmid-mediated AmpC β-lactamases (PMAβ); these are important causes of treatment 

failure in humans, when produced by potential zoonotic bacteria such as non-typhoid 

Salmonella (EFSA, 2011).  

The aim of the present study was to evaluate the antimicrobial susceptibility and to characterize 

the ESBL- and PMAβ-producing S. enterica isolates recovered from different parts of the 

poultry industry, pigs and food products of animal origin in Portugal.  

 

4.2.2. Materials and Methods 

Bacterial isolates 
This study included 1120 Salmonella spp isolates, representing 59 serotypes, recovered from 

breeders (n=58), broilers (n=275), layers (n=285), pigs (n=101) and food products of animal 

origin (n=401), in the period of 2009-2011. Samples were collected under the scope of the 

Salmonella National Control Programme in food-producing animals and food of animal origin, 

according to the guidelines of the Commission Decision (CD) 2007/407/CE. The isolates 

collected through the control and surveillance programmes, established in conformity with 

Regulation CE nº 2160/2003 of the European P arliament and/or Decisions 2006/662/CE and
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2006/668/CE, were submitted for antimicrobial susceptibility testing after serotype 

characterization. 

The poultry and swine farms sampled were distributed throughout Portugal and the isolates 

were recovered from faecal and environmental samples collected using sterile boots/sock 

swabs; the swabs were placed in sterile bags and transported to the laboratory. Food products 

consisted of uncooked fresh products like minced meat, hamburgers, meat cuts, sausages and 

table eggs, randomly collected at various retail stores. The isolates were recovered from 

bovine (n=100), swine (n=242) and poultry (n=59) products. All samples were examined 

according to ISO norm 6579: 2002 applied to Salmonella detection in food and animal feeding 

stuffs (Anonymous 2002). Suspected colonies were further characterized by means of 

biochemical tests, using triple sugar iron agar slopes and API 20E strips (bioMérieux, France). 

After biochemical confirmation, Salmonella isolates were sent to the Salmonella National 

Reference Laboratory (INIAV-Lisbon), in triple sugar iron slopes or SMID (Oxoid) plates, for 

serotype characterization (Table 4.2.1).   

Serotyping of Salmonella isolates 
Salmonella isolates were serotyped by the slide agglutination method for their O and H 

antigens, using the method of Kauffmann-White scheme (Grimond & Weill, 2007). 

Antimicrobial Susceptibility Testing 
Minimum inhibitory concentrations (MICs) were determined by agar dilution, following standard 

recommendations, on a panel of eleven antimicrobial compounds: ampicillin (A), cefotaxime 

(Ct), nalidixic acid (NA), ciprofloxacin (Cp), streptomycin (S), gentamicin (G), chloramphenicol 

(C), florfenicol (Fl), tetracycline (T), sulphamethoxazole (Su) and trimethoprim (Tm) (Table 

4.2.2). Antimicrobials were tested in a two-fold concentration series over the following ranges: 

ampicillin and tetracycline (0.5 - 64µg/mL), gentamicin and trimethoprim (0.25 - 32µg/mL), 

ciprofloxacin (0.008 - 8µg/mL), cefotaxime (0.06 - 8µg/mL), nalidixic acid and streptomycin (2 

- 512µg/mL), chloramphenicol (2 - 256µg/mL), florfenicol (1 - 128µg/mL) and 

sulphamethoxazole (8 - 1024µg/mL). In order to assess decreased susceptibility of the strains, 

interpretation of the results was done according to the epidemiological cut-off values 

recommended by the European Committee on Antimicrobial Susceptibilty Testing (EUCAST), 

as intended to be for surveillance purposes (http://www.srga.org/eucastwt/wt_eucast.htm). 

Important parameters like MIC50 and MIC90 values, rates of decreased susceptibility, as well 

as resistance to critically important antimicrobials for humans (cefotaxime and ciprofloxacin), 

were calculated according to breakpoints established by EUCAST for Enterobacteriaceae 

(EUCAST, 2012) (Table 4.2.2). Isolates were considered multidrug resistant (MDR) if they 

presented diminished susceptibility to three or more structurally unrelated antimicrobials. 
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Screening and identification of ESBL and PMAβ 
Isolates exhibiting MIC > 0.5µg/mL (non-wild type) to cefotaxime were tested for the presence 

of ESB, by the presence of synergy through disk combination, including cefotaxime, 

ceftazidime and cefpodoxime, as single drugs, and in combination with clavulanic acid (Mast 

Laboratories, UK). PMAβ producing isolates were phenotypically identified according to clinical 

breakpoints (EUCAST, 2012) by presenting inhibition zone diameters for cefoxitin of less than 

19mm.  

In order to detect the presence of β-lactamase-encoding genes in the isolates selected with 

decreased susceptibilities to cefotaxime and cefoxitin, different PCR reactions were performed 

according to the phenotypes found. Briefly, total DNA was prepared as previously described 

(Féria et al., 2002). The genes blaTEM, blaSHV, blaOXA, blaCTX-M and ampC were detected by PCR 

as previously described (Mendonça et al., 2007) using a thermal cycler Biorad C1000 (Bio-

Rad Laboratories, Portugal). PCR products were purified with ExoSAP IT (USB Corporation, 

Cleveland, Ohio, USA), and all amplicons from phenotype-like-ESBL producer strains were 

further sequenced directly on both strands using the automatic sequencer ABI3100 (Applied 

Biosystems, Warrington, UK). Results were compared with sequences included in the 

database found at http:\\www.lahey.org/studies/. 

Surrounding of blaCTX-M genes 
Genetic arrangement of blaCTX-M genes was investigated by PCR mapping technique, using 

primers that specifically targeted ISEcp1, IS26, IS903 and orf477 genetic elements, in 

combination with primers for blaCTX-M genes, as previously described (Mendonça et al., 2007; 

Eckert et al., 2006). Additionally, the isolates were subjected to the detection of class 1 and 2 

integrons through amplification of integrase encoding genes, as reported elsewhere 

(Leverstein-Van Hall et al., 2002).2.6. Detection of plasmid mediated quinolone resistance 

(PMQR) genes 

All CTX-M positive Salmonella spp. isolates were screened for the following PMQR-encoding 

genes: qnrA (Martinez-Martinez et al., 1998), qnrB (Jacoby et al., 2006), qnrC (Wang et al., 

2009), qnrD (Cavaco et al., 2009), qnrS (Hata et al., 2005), and aac(6´)-Ib-cr (Park et al., 2007). 

A set of primer pairs 5’-GAACCGATGACGAAGCACAG-3’ and 5’-

CGTCGTTAAAGCATTCTTGTCC-3’ were designed in this study to target and amplify qepA 

gene. The amplification conditions were: initial denaturation at 94ºC for seven minutes, 

followed by 30 cycles of denaturation at 94ºC for 30 sec, annealing at 53.2ºC for 60 sec and 

extension at 72ºC for 60 sec, and then a final extension at 72ºC for 10 minutes. Positive and 

negative controls were used in each PCR reaction. 
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Statistical analysis 
OpenEpi software, version 2.3.1 (Dean et al., 2013), was used for statistical analysis. Fisher 

exact test was used to assess differences in antibiotic resistance between different groups. 

Two-sided P values of ≤ 0.05 were considered to be statistically significant. 

 
4.2.3. Results 
 
Serotypes of Salmonella spp 
Among the 618 Salmonella spp. isolates (Table 4.2.1) recovered from live poultry (breeders, 

broilers and layers), three main serotypes were identified: S. Enteritidis (32.8%, 203/618), S. 

Havana (18.3%, 113/618) and Salmonella Mbandaka (16.5%, 102/618). Among the 101 

isolates recovered from pigs, Salmonella Rissen and S. Typhimurium (21.8%, 22/101), 

Salmonella Derby and Salmonella London (10.9%, 11/101) were the most common serotypes 

found. 

Considering food products per animal group (swine, poultry and bovine), Salmonella I 

4,[5],12:i:- was the most common serotype recovered from food products of swine and bovine 

origin (32.6% and 30%), followed by Salmonella Rissen (26% and 24%) and S. Typhimurium 

(18.2% and 19%), respectively. In poultry products, S. Enteritidis, was the most frequently 

recovered serovar (62.7%), followed by Salmonella Mbandaka (10.2%) and Salmonella Derby 

(8.5%). 

 

Antimicrobial susceptibility phenotype 
 
Susceptibility profiles are shown in Table 4.2.2 and differ according to the origin of the isolates. 

Although resistance to ciprofloxacin was absent or very low, the prevalence of decreased 

susceptibility of the poultry isolates (non-wild type) to the remaining quinolones was higher 

when compared with the isolates recovered from pigs and food products derived from bovine 

and swine. Among swine isolates, decreased susceptibility was higher for tetracycline, 

sulfamethoxazole, ampicillin and streptomycin; the same was observed in isolates recovered  

from food products from swine and bovine. In order to compare resistance phenotypes within 

the same serovar, the seven most frequent serotypes are shown in Table 4.2.3, omitting 

serotypes with n < 5. Overall, and considering MIC90 for all samples and antimicrobials tested, 

no significant differences (more than one step dilution above the lowest value) were observed 

within the same serotype. Differences considered to be statistically significant (p ≤ 0.05) are 

highlighted on Table 4.2.3. 

MDR was recorded in two isolates from breeders (3.4%), five isolates from layers (1.8%), 47 

isolates from broilers (17.1%) and 56 isolates from pigs (55.4%); from food products, it was 
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noticed in 147 isolates from swine (60.7%), 57 isolates from bovine (57%) and eight isolates 

from poultry (13.6%). 
Table 4.2.1. Serotypes of 1120 Salmonella spp. isolates. 

Serotype 
 

Poultry 
 
Pigs 
 

Food of animal origin Total 
(n=1120) Breeders 

(n=58) 
Broilers 
(n=275) 

Layers 
(n=285) 

(n=101) Bovine 
(n=100) 

Swine 
(n=242) 

Poultry 
(n=59) 

Altona - 1 - - - - - 1 
Anatum - 2 2 2 3 4 - 13 
Bovismorbificans - - - 2 1 3 - 6 
Brandenburg - 2 1 2 - 1 - 6 
Braenderup - - 9 - - - - 9 
Bredeney - - - 1 4 9 - 14 
Cerro - 1 2 - - - - 3 
Corvallis - - 1 - - - - 1 
Derby - 4 1 11 6 20 5 47 
Dublin - - - - 2 - - 2 
Enteritidis 36 71 96 - 3 3 37 246 
Give 1 - 5 5 - 4 - 15 
Gloucester - - - 2 - - - 2 
Goldcoast - - - 1 - - - 1 
Hadar - - - - 2 1 1 4 
Havana 8 77 28 - - - - 113 
Heidelberg - 3 7 - - 1 3 14 
Indiana - 2 - - - - - 2 
Infantis - 1 3 - - - - 4 
Kedougou - 1 - - - 1 - 2 
Kentucky - 1 2 - 5 - - 8 
Kottbus - 1 - - - - - 1 
Lagos - - - - - 1 - 1 
Lexington - 1 7 - - - - 8 
London - 1 - 11 - 4 - 16 
Mikawasima - - 2 - - - - 2 
Mbandaka 1 66 35 2 - - 6 110 
Menston - - - 1 - - - 1 
Molade - - - - 1 - - 1 
Montevideo - - 2 - - - - 2 
Muenchen - - - 3 - - - 3 
Newport - 4 1 - - - - 5 
Nima 1 - - - - - - 1 
Ohio - - 2 - - 1 - 3 
Ouakam - - 1 - - - - 1 
Poona - - 1 - - - - 1 
Reading - - - - - 2 - 2 
Rissen - 2 1 22 24 63 - 112 
Schwarzengrund - - 2 - - - - 2 
Senftenberg 3 2 8 1 - - 1 15 
Spartel - 1 - - - - - 1 
Taksony - 1 3 - - - - 4 
Tennessee 4 1 9 - - 1 - 15 
Typhimurium - 11 8 22 19 44 2 106 
Virchow 1 6 10 - - - 1 18 
Winslow - - 1 - - - - 1 
I 1,3,19:-:-:Rz27. 1 - 13 7 - - - 21 
I 4,[5],12:i:- - 7 3 5 30 79 3 127 
I 6,7, 14:-:1,2 - - 2 - - - - 2 
I 8, 20:r:- - - 1 - - - - 1 
I 13, 22, i:- - - 1 - - - - 1 
I 21:d:- - - 1 - - - - 1 
II 4,12:b:- 1 - 1 - - - - 2 
II 42:b:e,n,x,z15 - 2 1 - - - - 3 
II 48:z10:[1,5] - 1 2 - - - - 3 
IIIb 61:k:1,5,(7) 1 - - - - - - 1 
IIIb 61:l,v:1,5,7 - 1 - - - - - 1 
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Characterization of ESBL, PMQR, IS and integrons 
Five isolates of S. enterica (0.45%, 5/1120), two being of serotype Havana recovered from 

broilers, and three of serotype I 4,[5],12:i:-, obtained from food products of swine origin, 

presented non-wild type MICs for cefotaxime (MIC ≥ 8µg/mL) and an ESBL phenotype (Table 

4.2.4). In S. Havana isolates, (showingACtCpTm and ASuCtTm phenotypes), the blaCTX-M-1 

gene was detected and in S. I 4,[5],12:i:- (presentingASSuCtC, ASSuTCtCG and ATCtCTm 

phenotypes), the blaCTX-M-14, blaCTX-M-15 and blaCTX-M-32 genes were identified,, among which two 

isolates also contained the blaTEM-1 and blaSHV-12 genes. Although only one isolate of S. Havana 

showed a non wild-type MIC for ciprofloxacin (0.25µg/mL), no PMQR-encoding genes were 

detected in all five isolates. 
Class 1 integrons were detected in two isolates of S. Havana and two of S. I 4,[5],12:i:-, and in 

two isolates of S. I 4,[5],12:i:- and one of S. Havana, ISEcp1 was identified upstream of the 

blaCTX-M gene. In S. I 4,[5],12:i:- one isolate , orf477 was also detected and associated with 

blaCTX-M-32. 

4.2.4. Discussion 
In Portugal, little information regarding antimicrobial susceptibility in food-borne and 

commensal bacteria isolated from food-producing animals is available. Moreover, the data 

available on antimicrobial susceptibility of Salmonella spp recovered from animals is frequently 

obtained from different methods and interpretation criteria, which are not always comparable 

(Antunes et al. 2006; Caleja et al., 2011).  

This study analysed a large number of isolates recovered from a range of different matrices 

and showed a wide variety of serotypes (n=59) revealing that several sources, such as infected 

breeding flocks and hatcheries, contaminated feed, environment and rearing sites, may be 

involved in Salmonella contamination. Indeed, Salmonella spp are widely distributed in nature 

and its long survival and transmission to vectors, such as flies, rats and birds, may favour its 

dissemination to those different reservoirs from which animals can be infected orally (Pui et. 

al., 2011).  

Among 1120 Salmonella isolates, S. Enteritidis was the most common serotype particularly in 

live poultry (32.8%) and their food products (62.7%) and constitutes the primary cause of 

human salmonellosis in the EU (EFSA, 2012c).  

Our results suggest that Salmonella contamination of food products arises mainly from the live 

animals, but the slaughter line of the abattoir, the contact with meat handlers, the processing 

plants and equipments and retail stores, can contribute to further cross-contamination (Gomes-

Neves et al., 2012; Pui et. al., 2011). Some variation in the frequency. 
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Table 4.2.4. Phenotypic and genotypic features of ESBL-producing isolates (n
=5). 
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of recovery of some serotypes may occur, as observed in our study, for example with serovar 

I 4,[5],12:i:- recovered from pigs and pork products and, serotype Havana among broilers, and 

poultry food products. 

In some European countries, the prevalence of ampicillin, streptomycin, sulfonamides and 

tetracyclines resistant I 4,[5],12:i:-, has been increasing in human foodborne outbreaks and in 

pigs and pork (EFSA, 2011; Hopkins et al., 2010). In this study, 11.3% of the isolates belonging 

to this serovar were distributed among broilers, layers and pigs and food products, particularly 

from pigs and cattle, which may be important reservoirs. Within this serotype, decreased 

susceptibility to ampicillin, streptomycin, sulphonamides and tetracycline (ASSuT phenotype) 

was detected in 59.8% isolates. Additionally, 21.3% of these isolates showed co-resistance to 

gentamicin, trimethoprim, chloramphenicol, florfenicol, quinolones and cefotaxime, 

contributing to MDR.  

Important differences between MIC50 and MIC90 were noticed (3- to ≥ 8-fold dilutions) regarding 

ampicillin, chloramphenicol and streptomycin (in pigs), chloramphenicol and streptomycin in 

food products from bovine and swine, nalidixic acid in broilers, layers and food products from 

poultry, sulphamethoxazole and tetracycline in broilers and food products from poultry and 

trimethoprim in broilers, pigs and food products from swine and bovine. This has previously 

been reported in swine by de Jong et al. (2009) and Ibar et al. (2009) for  

ampicillin, chloramphenicol, sulfamethoxazole and tetracycline; indeed, this reveals variability 

of the isolates as far as antimicrobial susceptibility is concerned.  

The higher frequency of poultry-derived quinolone non-wild type isolates might be explained 

by the widespread use of enrofloxacin in poultry production (Hao-Van et al, 2012; Levy, 2002). 

In fact, Portugal has the highest frequency of non-wild type isolates towards ciprofloxacin 

(72%) and the sixth highest user of fluoroquinolones in Europe (EMA, 2012). Although no 

clinical resistant isolates were detected in our study, the population showing decreased 

susceptibility (non-wild type) might be an indicator of emerging resistance (de Jong et al., 

2009).  

In the isolates recovered from both swine and bovine food products, non-wild type resistance 

to tetracycline, sulfamethoxazole and ampicillin, was observed as in other countries, namely, 

the Netherlands, Ireland and Greece (EFSA, 2012b), suggesting that the widespread use of 

these antimicrobials in livestock production is creating resistance problems (EMA, 2012). 

Within the same serotype, the relevant differences observed in MIC90 values for some of the 

antimicrobials tested should be due to a range of factors, including animal species, type of 

production, antibiotic pressure exerted during production cycle and circulating strains (wild and 

non wild-type isolates), (EFSA, 2012a; Hao-Van et al., 2012; Levy, 2002). 
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In Portugal the use of third-generation cephalosporins, namely ceftiofur, is only allowed in 

bovine and swine production; in this study, 0.45% of S. enterica (3 S. I 4,[5],12:i:- and 2 S. 

Havana isolates, recovered from food products of swine origin and broilers, respectively) 

showed a non-wild type MIC for cefotaxime, due to the production of CTX-M β-lactamases. 

In S. Havana, recovered from broilers and isolated from two different poultry farms, the blaCTX-

M-1 gene was detected harbouring relevant mobile genetic elements, which might contribute to 

the dissemination of this resistance mechanism (Barlow et al., 2008). S. Havana has not been 

frequently isolated from food-producing animals in Europe (EFSA, 2012c). However, recently, 

the detection of blaCTX-M-15 harbouring S. Havana isolates in two African children in France was 

reported (Boisrame-Gastrin et al., 2011). In Portugal, besides poultry, S. Havana has been 

identified in wild rabbits (Vieira-Pinto et al. 2011), wild boars (Caleja et al., 2011) and exotic 

birds (Gomes et al., 2002). The blaCTX-M-1 gene has also been detected all over Europe among 

Enterobacteriaceae of animal origin (Bortolaia et al., 2011; Gándara et al., 2011; Dierikx et al., 

2010; Machado et al., 2008a; Kempf et al., 2007).  

In the three isolates of S. I 4,[5],12:i:- recovered from food products of swine origin, a diversity 

of blaCTX-M genes was detected. In fact, the presence of CTX-M-9 group enzymes in other 

serovars has been identified, such as in Salmonella Virchow isolated from broilers and a laying 

hen, and S. Enteritidis from broilers (Riãno et al., 2006), as well as the presence of CTX-M-15 

and CTX-M-14 enzymes in isolates of S. Enteritidis and Salmonella Essen, recovered from 

different poultry specimens including meat, faeces and diseased birds (Tamang et al., 2011b). 

In our study, CTX-M-15 enzyme was co-produced with the ESBL SHV-12 in an isolate which 

harboured class 1 integron. SHV-12 enzyme was also previously identified in S. enterica 

isolates from poultry and swine (Chiaretto et al., 2008; Riãno et al., 2006), which might indicate 

the dissemination of this β-lactamase throughout the food chain. Here, one isolate of S. I 

4,[5],12:i:- carried a class 1 integron, but also ISEcp1 and orf477, which were associated with 

blaCTX-M-32 gene. Although CTX-M-32 enzyme does not seem to be a common β-lactamase 

found in animals, Politi et al. (2005) in Greece reported it in isolates of S. Virchow from poultry 

products.  

In Portugal, CTX-M-14, CTX-M-15 and CTX-M-32 enzymes were detected in E. coli isolates 

recovered from faecal samples of Iberian lynx, seagulls, dog, food-producing animals and 

marine water samples (Gonçalves et al., 2011; Simões et al., 2010; Pomba et al., 2009; 

Machado et al., 2008a; Machado et al., 2008b).  

To our knowledge, this was the most comprehensive national study of Salmonella isolates 

recovered from poultry, pigs and food products of animal origin and the first report of ESBL-

encoding genes, particularly from blaCTX-M family, in Portugal in Salmonella, serotypes Havana 

and I 4,[5],12:i:-. Serotype Havana is not a common serotype in European countries, either in 

live broilers or any other animal species (EFSA, 2012c); however, it is the most common 
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serotype isolated from the Portuguese broiler population (P. Themudo, personal 

communication). 

In our study, S. I 4,[5],12:i:- was the most common serotype recovered from food products of 

swine and bovine origin. In Europe, it is responsible for 1.5% of the human cases of 

salmonellosis (EFSA, 2012c); however, if the isolates are ESBL producers and MDR as in this 

study, they may represent a serious threat to human health.  

Our results agree with other studies that animals may act as important reservoirs of Salmonella 

isolates carrying ESBL-encoding genes, which might be transmissible to humans through 

contact or the food chain and, in addition, might be a potential source for human pathogens to 

acquire these resistance genes (Caratolli, 2008; Liebana et al., 2012).  

Within Europe, the occurrence of resistance to cefotaxime in Salmonella isolates is low in most 

countries and, moderately frequently as observed in the Netherlands (EFSA, 2011). However, 

even low levels of resistance to these critically important antimicrobials are of great concern 

because the spreading of MDR isolates producing ESBLs or AmpC, may also co-select other 

resistance determinants through the use of other antimicrobials (Dierick et al., 2010). The 

inappropriate use of antimicrobials in veterinary medicine or in feed additives has been linked 

to the emergence and spread of Salmonella resistant strains with potentially serious effects in 

food safety (Hao- Van et al., 2012; Rodriguez et al., 2009).  

In conclusion, the growing concern of the emergence of bacterial strains bearing ESBL in 

food-producing animals highlights the importance of continuous monitoring (EFSA, 2011). 
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ABSTRACT 
 
The impact of extended-spectrum β-lactamases (ESBL) and plasmid-mediated AmpC β-

lactamases (PMAβ) of animal origin has been a public health concern.  In this study, 562 

Salmonella enterica and 598 Escherichia coli isolates recovered from different animal 

species and food products were tested for antimicrobial resistance. Detection of ESBL-, 

PMAβ-, plasmid-mediated quinolone resistance (PMQR)-encoding genes and integrons was 

performed in isolates showing non-wild type phenotypes.  

Susceptibility profiles of Salmonella spp. isolates differed according to serotypes and origin 

of the isolates. The occurrence of cefotaxime non-wild type isolates was higher in pets than 

in other groups.  In nine Salmonella isolates, blaCTX-M (n=4), blaSHV-12 (n=1), blaTEM-1 (n=2), 

blaCMY-2 (n=2) were identified. No PMQR-encoding genes were found. In 47 E. coli isolates, 

blaCTX-M (n=15), blaSHV-12 (n=2), blaCMY-2 (n=6), blaTEM-type (n=28) and PMQR-encoding genes, 

qnrB (n=2), qnrS (n=1) and aac(6')-Ib-cr (n=6) were detected. To the best of our knowledge, 

this study is the first to describe, the presence of blaCMY-2 (n=2) and blaSHV-12 (n=1) genes 

among S. enterica from broilers, in Portugal.  

This study highlights that animals may act as important reservoirs of isolates carrying ESBL, 

PMAβ and PMQR encoding genes, which might be transferred to humans through direct 

contact or the food chain. 

 

 

Keywords: Antimicrobial resistance; Salmonella enterica; Escherichia coli; ESBLs; PMAβ; 

PMQR 

 

4.3.1.  Introduction 
Salmonella is a widely distributed foodborne pathogen and one of the most common causes 

of bacterial foodborne illnesses, with tens of millions of human cases occurring worldwide 

every year (http://www.who.int).  In the European Union it is the second most reported 

zoonotic disease in humans, with a total of 92.916 cases; most infections are caused by 

serovars Enteritidis, Typhimurium and Typhimurium monophasic 1,4,[5], 12:i:- (EFSA, 2014). 

Escherichia coli is the most prevalent commensal of gastrointestinal tract of humans and 

animals, remaining as one of the most frequent causes of several bacterial infections in both, 

humans and animals (Allocati et al., 2013). 

Antimicrobial resistance in Enterobacteriaceae, namely in non-typhoidal Salmonella 

serotypes and E. coli, is an expanding problem (EFSA, 2014). The wide and uncontrolled 

use of antimicrobial compounds in human and veterinary practices, animal production, 

agriculture, industrial technology, the increase on the movement of people and on the 

circulation of food and raw materials for food production across the different countries are, all 

http://www.who.int/
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together, factors responsible for the emergence and dissemination of resistant and multi-

resistant bacterial strains, constituting a risk for the human and animal health, due to the 

increase of morbidity, mortality and the cost associated to the treatment of infections 

(Marshall & Levy, 2011; EFSA, 2014). 

β-lactams and fluoroquinolones are two important classes of antimicrobials used to treat 

severe infections in humans and in animals (EFSA, 2014). Resistance to third generation 

cephalosporins is generally due to the production of extended-spectrum β-lactamases 

(ESBL) and plasmid-mediated AmpC β-lactamases (PMAβ). Various β-lactamase-encoding 

genes have been detected in diverse serotypes, located in plasmids or in integrons, 

facilitating its transmission between serotypes and other bacteria (EFSA, 2011). 

Animals have the potential to act as reservoirs for a number of zoonotic infections, including 

those caused by pathogenic and commensal E. coli ESBL-producers, which might be 

transmitted to humans through direct contact or the food chain (EFSA, 2011; Marshall & 

Levy, 2011). 

In Europe, a wide range of ESBL genotypes have been reported from animals (Caratolli, 

2008; EFSA, 2011) some of them also found in humans (Leverstein-van Hall et al., 2011). 

Companion animals, like horses, dogs and cats, also constitute a potential reservoir of 

ESBL-encoding genes, as often they live in close contact with their owners, making the 

occurrence of transmission more likely (Sun et al., 2010; Dierikx et al., 2012; Hordijk et al., 

2013). Wild animals living in the wilderness or in captivity, may also represent a source of 

ESBL-producing E. coli isolates to the ecosystems (Gonçalves et al., 2011; Veldman et al., 

2013), stressing the importance of the environment on the dissemination of resistance genes 

and the potential zoonotic transmission due to the contact between zoo animals, zoo keepers 

and visitors (Wang et al., 2012a). 
In this study, we present updated data on antimicrobial resistance in Salmonella recovered 

from animals, with particular emphasis in food-producing animals, poultry feed and food of 

animal origin, as well as in E. coli isolates collected from food-producing animals, pets and 

zoo animals. Evaluation of the presence of antimicrobial resistance mechanisms in isolates 

with reduced susceptibility to third-generation cephalosporins and/or cephamycins was also 

performed.  

 

4.3.2. Materials and Methods 

Bacterial isolates 
This study included 562 Salmonella spp. isolates representing 50 different serotypes (Table 

4.3.1), recovered from breeders (n=23), broilers (n=193), layers (n=73), turkeys (n=17), 

animal feed (n=52), other animal species (n=22) and food products of animal origin (n=182), 

over the period of 2012-2013.  

In poultry farms, samples were collected from faeces and environment using sterile 
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boots/sock swabs. Food products consisted of: uncooked fresh products like minced meat, 

hamburgers, meat cuts, sausages and table eggs, randomly collected at various retail stores. 

Samples from other animal species (pigeons, partridges, ducks, pets and exotic animals) 

consisted of hemoculture and organs (lung, liver, spleen, kidneys and intestine), collected 

during post-mortem examination for bacteriological examination.  

All samples were examined according to ISO norm 6579:2002 applied to Salmonella 

detection in food and animal feeding stuffs. After biochemical confirmation, Salmonella 

isolates were sent to the Salmonella National Reference Laboratory (INIAV-Lisbon), in triple 

sugar iron slopes or SMID plates, for serotype characterization.  

Also included in this study, 598 Eschericia coli isolates (Table 4.3.1) were collected over the 

period of 2009-2013 from food-producing animals [(bovine, swine and poultry), (n=215), pets 

(dogs, cats, horses and cage birds), (n=113) and zoo animals (terrestrial and aquatic 

mammals, birds and reptiles), (n=270)]. Samples consisted of swabs from organic fluids and 

cavities, faecal samples, urine samples, hemocultures and organs collected during post-

mortem examination and submitted for bacteriological analysis. Suspected E. coli colonies 

obtained in MacConkey agar were confirmed by means of API 20E strips.  

Salmonella spp. and E. coli isolates were preserved in cryovials containing tryptose soya 

broth and glycerol at -70ºC for further antimicrobial susceptibility tests and molecular assays. 

Serotyping of Salmonella isolates 
Salmonella isolates were serotyped by the slide agglutination method for their O and H 

antigens, using the method of Kauffmann-White scheme (Grimmont & Weill, 2007).  

Antimicrobial Susceptibility Testing 
Minimum inhibitory concentrations (MICs) were determined by agar dilution, following 

standard recommendations (CLSI, 2013), with a panel of nine antimicrobial compounds: 

ampicillin (A), cefotaxime (Ct), nalidixic acid (Na), ciprofloxacin (Cp), gentamicin (G), 

chloramphenicol (C), tetracycline (T), sulphamethoxazole (Su) and trimethoprim (Tm) (Table 

4.3.2). To assess non wild-type strains, interpretation of the results was done according to 

the epidemiological cut-off values recommended by the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST, http://mic.eucast.org/Eucast2/). For 

Salmonella spp., the cut-off value used for sulfamethoxazole was that for sulfonamides from 

Clinical Standards Laboratory Institute (CLSI, 2013). E. coli ATCC 25922 was used as the 

quality control strain. 
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Anim
al feed 

9 
2 

 
0 

 
8 

7 
 

26 
52 

 
 

 
 

 
O

ther species 
2 

8 
 

4 
 

0 
0 

 
8 

22 
 

 
 

 
 

Total 
57 

21 
 

16 
 

111 
25 

 
150 

380 
 

 
 

 
Food 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Bovine 

0 
3 

 
2 

 
0 

0 
 

20 
25 

 
 

 
 

 
Sw

ine 
0 

12 
 

29 
 

0 
0 

 
33 

74 
 

 
 

 
 

Poultry 
10 

26 
 

16 
 

2 
2 

 
27 

83 
 

 
 

 
 

Total 
10 

41 
 

47 
 

2 
2 

 
80 

182 
 

Total 
598 

 

             a Serotypes: Agona, Altona, Anatum
, Bardo, Bovism

orbificans, Brandenburg, Bredeney, C
erro, C

ubana, D
erby, D

uesseldorf, G
ive, H

eidelberg, H
adar, Indiana, 

Kentucky,     Kingston, Kottbus, Javiana, Landau, Lexington, Llandoff, London, M
uenchen, N

ew
port, R

eading, R
edba, R

issen, Saintpaul, Schw
arzengrund, Seftenberg, 

Stanleyville, Taksony, Tennessee, Tom
egbe, Virchow

, I 3,19 :-:-z27, I:17:b:?,  II 48:z10:[1,5], II 6,7:z6:?, II 42:b:e,n,x,z15, I 9,46:?:?, II 4, [5],12:?, 4,12:eh:?, I 6,7,?:
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Rates of resistance to important antimicrobials to humans (ampicillin, cefotaxime, 

ciprofloxacin and gentamicin), were calculated according to clinical breakpoints established 

by EUCAST for Enterobacteriaceae (EUCAST, 2014). Isolates were considered multidrug 

resistant (MDR) if they presented diminished susceptibility or non-wild type phenotypes 

against three or more antimicrobials not structurally related (Tables 4.3.2 and 4.3.3). 

Screening and identification of ESBL and PMAβ 
Salmonella spp. and E. coli isolates exhibiting MIC > 0.5µg/mL and > 0.25µg/mL, 

respectively, were considered non-wild type to cefotaxime and tested for the production of 

ESBL, by combined disk test using cefotaxime, ceftazidime and cefpodoxime, as single 

drugs and in combination with clavulanic acid.  

In addition, a cefoxitin disk (30μg) was added to this test to detect presumptive PMAβ 

producers. All isolates classified as intermediate or resistant using CLSI criteria (≤17mm) to 

cefoxitin (CLSI, 2013), were suspected to be PMAβ producers and also included in this 

study.  

Molecular characterization of resistance 
In order to detect the presence of β-lactamase-encoding genes in the isolates showing non 

wild-type phenotypes to cefotaxime and/or cefoxitin, different PCR reactions were performed 

according to the phenotypes found. The blaESBL (blaTEM, blaSHV, blaOXA-1-type, blaCTX-M) and 

blaPMAβ (blaCMY, blaMOX, blaFOX, blaLAT, blaACT, blaMIR, blaDHA, blaMOR, blaACC) genes were 

detected by PCR, as previously described Positive and negative controls were used in all 

PCR reactions (Mendonça et al., 2007). PCR products were purified and all amplicons were 

further sequenced directly on both strands using automatic sequencer ABI3100 (Applied 

Biosystems). 

Additionally, the isolates were subjected to the detection of class 1 and 2 integrons through 

amplification of integrase encoding genes, as reported elsewhere (Leverstein-van et al., 

2002). 

Salmonella spp. and E. coli isolates evidencing a non-wild phenotype to cefotaxime and 

simultaneously non-susceptible to quinolones, were screened for the following PMQR 

encoding genes: qnrA, qnrB, qnrC, qnrD, qnrS, aac(6´)-Ib-cr and qepA (Wang et al., 2003; 

Park et al., 2007; Cavaco et al., 2009; Wang et al., 2009). 

4.3.3. Results  

Serotypes of Salmonella spp.  
A great diversity of serotypes (n=50) was identified among the 562 Salmonella isolates. 

Overall, in poultry, particularly in broilers, S. Havana and S. Enteritidis were the two main 

serotypes identified; S. Mbandaka was the most common serotype in layers (Table 4.3.1). S. 

Enteritidis is one of the most common reported serotypes in Humans and it was found in  
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poultry food products (100%, 10/10), in broilers (54.4%, 31/57), in layers (22.8%, 13/57) and 

in poultry feed (15.8%, 9/57). S. I 4,[5],12:i:- and S. Typhimurium were the most common 

serotypes recovered from food products of swine and poultry origin. Being serovar I 

4,[5],12:i:- considered the emergent serotype in Humans, it was identified in 61.7% (29/47) 

isolates recovered from swine and 34% (16/47) from poultry products; in live birds, 37.5% 

(6/16) and 31.3% (5/16) were from broilers and turkeys, respectively (Table 4.3.1).  

Antimicrobial susceptibility phenotype of Salmonella spp. and E. coli isolates 
Susceptibility profiles of Salmonella spp. differed according to the origin (Table 4.3.2) and the 

serotypes of the isolates (Table 4.3.3).  

Although clinical resistance to ciprofloxacin was absent (Table 4.3.2), the frequency of non-

wild type isolates to this antimicrobial was higher in poultry and poultry food products (both 

30.1%). Therefore, isolates recovered from bovine and swine food products, showed higher 

non wild-type phenotypes for tetracycline (64% and 73%, respectively), sulfamethoxazole 

(60% and 67.6%, respectively) and ampicillin (20% and 50%, respectively) (Table 4.3.2). 

Regarding cefotaxime, nine isolates of S. enterica (1.6%, 9/562) (being four of serotype 

Havana and one of serotype Enteritidis recovered from broilers, two of serotype I 4,[5],12:i:-, 

obtained from a partridge and pork sausage, one of serotype Heidelberg from broiler neck 

skin and one of serotype London from a pork hamburger) presented non-wild type MICs for  

cefotaxime (MIC ranging from 1 to ≥ 8µg/mL) (Table 4.3.4).  

MDR was observed in five isolates from turkeys (29.4%), 26 isolates from broilers (13.5%), 

two isolates from layers (2.8%), six isolates from other animal species (27.3%), 44 isolates 

from food of swine origin (59.5%), 22 isolates from food of poultry origin (26.5%), 5 isolates 

from food of bovine origin (20.0%), and two isolates from animal feed (3.9%). No MDR 

isolates were detected in broiler breeders. The higher frequency of MDR isolates was 

observed in S. I 4,[5],12:i:- and S. Typhimurium serovars (Table 4.3.3). 

With regard to susceptibility of E. coli isolates (Table 4.3.2), the frequency of non-wild type 

isolates to all antimicrobials tested was higher when comparing with Salmonella isolates, 

particularly to ciprofloxacin, where clinical resistance is important, namely in food-producing 

animals (24.2%) and pets (21.1%) (Table 4.3.2). 

Eight isolates of E. coli from food-producing animals (3.7%, 8/215), twelve from pets (10.6%, 

12/113) and seven from zoo animals (2.6%, 7/270) showed a non-wild type to cefotaxime 

(MIC ranging 0.5 to ≥8mg/L) (Table 4.3.4).  

MDR was recorded in 115 isolates from food-producing animals (53.7%), 39 isolates from 

pets (34.5%) and 81 isolates from zoo animals (30%) (Table 4.3.2).   
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Table 4.3.2. MIC50 and MIC90 for Salmonella spp. (n=562) and Escherichia coli (n=598) isolates. 
 
 
 

Antibiotics 

Salmonella spp.  Escherichia coli 

Breeders Broilers Layers Turkeys Animal 
feed 

Other 
species 

Food Food 
animals Pets Zoo 

animals Bovine Swine Poultry  
n=23 n=193 n=73 n=17 n=52 n=22 n=25 n=74 n=83  n=215 n=113 n=270 

 
A              

MIC50 2 2 1 2 2 2 2 2 2  8 8 8 
MIC90 2 >64 2 >64 4 >64 >64 >64 >64  >64 >64 >64 
% DS a 8.7 16.1 4.2 35.3 3.8 27.3 20 50 30.1  47.4 43.9 38.9 
 
Ct              

MIC50 ≤0.06 ≤0.06 ≤0.06 0.125 ≤0.06 ≤0.06 0.125 ≤0.06 ≤0.06  ≤0.06 ≤0.06 ≤0.06 
MIC90 0.125 0.25 0.125 0.125 0.125 0.125 0.125 0.125 0.125  0.125 1 0.125 
% DS a 0 3.1 0 0 0 4.5 0 2.7 1.2  3.7 10.6 3 
% Rb 0 2.6 0 0 0 0 0 1.4 1.2  3.7 8 3 
 
Na              

MIC50 4 8 4 4 4 4 4 4 4  4 4 4 
MIC90 4 512 256 256 4 >512 4 8 >512  >512 >512 >512 
% DS a 8.7 26 11.1 17.6 0 18.2 0 4.1 28.9  38.6 23.7 14.1 
 
Cp              

MIC50 0.015 0.03 0.015 0.03 0.015 0.03 0.03 0.03 0.03  0.03 0.015 0.015 
MIC90 0.03 0.5 0.125 0.125 0.03 1 0.03 0.03 0.5  >8 >8 8 
% DS a 8.7 30.1 9.7 17.6 0 22.7 0 4.1 30.1  41.9 27.2 17.4 
% R b 0 0 0 0 0 0 0 0 1.2  24.2 21.1 11.1 
 
C              

MIC50 4 8 4 8 8 4 4 8 4  8 4 4 
MIC90 8 16 8 8 8 16 256 >256 8  128 8 8 
% DS a 0 3.1 0 5.9 0 9.1 12 20.3 3.6  21.4 7 5.5 
 
G              

MIC50 0.5 ≤0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5  0.5 0.5 0.5 
MIC90 0.5 0.5 0.5 0.5 0.5 8 1 2 1  8 1 1 
% DS a 0 1 0 0 0 13.6 0 9.5 2.4  11.6 5.3 5.2 
 
Su              

MIC50 32 64 64 64 64 32 >1024 >1024 64  128 32 32 
MIC90 64 >1024 128 >1024 64 >1024 >1024 >1024 >1024  >1024 >1024 >1024 
% DS a 4.3 27.5 19.4 47.1 5.8 13.6 60 67.6 27.7  47 25.4 24.7 
 
T              

MIC50 1 2 1 16 2 2 64 >64 2  64 2 2 
MIC90 2 64 2 >64 4 >64 >64 >64 >64  >64 >64 >64 
% DS a 0 10.4 1.4 52.9 1.9 27.3 64 73 31.3  62.3 30.7 31.7 
 
Tm              

MIC50 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25 ≤0.25  0.5 0.5 0.5 
MIC90 ≤0.25 0.5 0.5 ≤0.25 0.5 0.5 ≤0.25 >32 0.5  >32 >32 >32 
% DS a 
 
MDR c 
% DS 

0 
 
0 

9.8 
 
13.5 

1.4 
 
2.8 

0 
 
29.4 

1.9 
 
3.9 

45.5 
 
27.3 

0 
 
20 

14.9 
 
59.5 

8.4 
 
26.5 

 
36.7 
 
53.7 

22 
 
34.5 

19.6 
 
30 

 
A, Ampicillin; Ct, Cefotaxime; Na, Nalidixic acid; Cp, Ciprofloxacin; C, Chloramphenicol; G, Gentamicine; Su, 

Sulphamethoxazole; T, Tetracycline; Tm, Trimethoprim 
a Decreased susceptibility - EUCAST epidemiological breakpoints 
 b Resistance - EUCAST clinical breakpoints 
c Multidrug resistance 
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Table 4.3.3. M

IC
50 and M

IC
90  am

ong the m
ost im

portant S
a
lm

o
n

e
lla

 serotypes. 
 

 

Antim
icrobials 

S
. Enteritidis 

 
S

. 
Typhim

urium
 

 
S

. 4, [5], 12, i:- 
 

S
. H

avana 

Broilers 
(n=31) 

Layers 
(n=13) Anim

al feed 
(n=9) 

Food 
 

Food 
 

Broilers 
(n=6) 

Turkeys 
(n=5) 

Food 
 

Broilers 
(n=102) Anim

al feed 
(n=16) 

Poultry  
(n=10) 

 
Sw

ine 
(n=12) Poultry 

(n=26) 
 

Sw
ine 

(n=29) Poultry 
(n=16) 

 

A
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
M

IC
50  

2 
2 

2 
2 

 
>64 

2 
 

>64 
>64 

>64 
>64 

 
4 

2 
M

IC
90  

2 
2 

2 
4 

 
>64 

4 
 

>64 
>64 

>64 
>64 

 
>64 

2 
%

 D
S a 

6.5 
0 

0 
0 

 
66.7 

7.7 
 

83.3 
100 

79.3 
56.3 

 
18.6 

0 
%

 R
 b 

6.5 
0 

0 
0 

 
66.7 

7.7 
 

83.3 
100 

79.3 
56.3 

 
18.6 

0 
 C

t 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

M
IC

50  
0.125 

≤
0
.0

6 
≤
0
.0

6 
0.125 

 
0.125 

≤
0
.0

6 
 

≤
0
.0

6 
≤
0
.0

6 
≤
0
.0

6 
≤
0
.0

6 
 

0.25 
0.125 

M
IC

90  
0.125 

0.125 
0.125 

0.125 
 

0.125 
0.125 

 
≤
0
.0

6 
0.125 

0.125 
0.125 

 
0.25 

0.125 
%

 D
S a 

3.2 
0 

0 
0 

 
0 

0 
 

0 
0 

3.4 
0 

 
3.9 

0 
%

 R
 b 

3.2 
0 

0 
0 

 
0 

0 
 

0 
0 

0 
0 

 
3.9 

0 
 C

p 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

M
IC

50  
0.25 

0.125 
0.03 

0.25 
 

0.03 
0.03 

 
0.03 

0.03 
0.03 

0.03 
 

0.03 
0.03 

M
IC

90  
0.25 

0.25 
0.03 

0.25 
 

0.03 
0.25 

 
0.03 

0.03 
0.03 

0.03 
 

0.5 
0.03 

%
 D

S a 
80.6 

53.8 
0 

90 
 

0 
15.4 

 
16.7 

0 
34.5 

0 
 

26.5 
0 

%
 R

 b 
0 

0 
0 

0 
 

0 
0 

 
0 

0 
0 

0 
 

0 
0 

 G
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

M
IC

50  
≤
0
.2

5 
0.5 

≤
0
.2

5 
≤
0
.2

5 
 

0.5 
0.5 

 
≤
0
.2

5 
0.5 

≤
0
.2

5 
0.5 

 
≤
0
.2

5 
0.5 

M
IC

90  
0.5 

0.5 
0.5 

0.5 
 

0.5 
1 

 
0.5 

1 
1 

0.5 
 

0.5 
0.5 

%
 D

S a 
0 

0 
0 

0 
 

0 
0 

 
0 

0 
6.9 

0 
 

2 
0 

%
 R

 b 
0 

0 
0 

0 
 

0 
0 

 
0 

0 
6.9 

0 
 

2 
0 

%
 M

D
R

 c 
3.2 

0 
0 

0 
 

66.7 
3.8 

 
83.3 

80 
82.8 

50 
 

13.7 
0 

                     A, Am
picillin; C

t, C
efotaxim

e; C
p, C

iprofloxacin; G
, G

entam
icine 

                              a D
ecreased susceptibility - EU

C
AST epidem

iological breakpoints 
                              b R

esistance - EU
C

AST clinical breakpoints 
                    c M

ultidrug resistance
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Characterization of ESBL, PMAβ, PMQR and integrons

ESBL and PMAβ phenotypes were detected in five and two isolates, respectively (Table 

4.3.4). In two MDR S. Havana (ACtSuT, ACtCpSuTm), one Salmonella Heidelberg 

(ACtSuTm) and one Salmonella London (ACt) isolates, blaCTX-M-type, blaCTX-M-1, and blaCTX-M-14 

genes were detected, respectively. Additionally, blaCMY-2 gene was encountered in two S.

Havana isolates showing ACt phenotype. The blaSHV-12 gene was detected in one MDR S.

Enteritidis isolate (showing ACtNaCpCSuT) recovered from a broiler flock. Two S. I 

4,[5],12:i:- isolates (with ACtSuT and ACtNaCpGT phenotypes), recovered from a pork 

sausage and a partridge, presented blaTEM-1 gene.  

Although three isolates, being two S. Havana and one S. I 4,[5],12:i:-, showed a non wild-

type MIC for ciprofloxacin (0.25 and 1µg/mL, respectively), no PMQR-encoding genes were 

detected (Table 4.3.4). 

One isolate of each serotype Havana, Enteritidis and Heidelberg, harboured class 1 

integrons and one isolate belonging to serotype I 4,[5],12:i:- carried a class 2 integron.  

The ESBL/PMAβ-encoding genes identified in E. coli from food-producing animals were 

blaCTX-M-1 (n=4), blaSHV-12 (n=2), blaCMY-2 (n=2) and blaCTX-M-32 (n=1); in pets it were blaCMY-2 

(n=4), blaCTX-M-15 (n=2) and blaCTX-M-14 (n=1); and in zoo animals were blaCTX-M-15 (n=5), blaCTX-

M-1 (n=1), and blaCTX-M-14 (n=1) (Table 4.3.4).  

Although the frequency of non-wild type isolates to ciprofloxacine was lower in zoo animals 

than in pets and food-producing animals (Table 4.3.2), PMQR encoding genes were more 

frequently detected in isolates recovered from these animals, being aac(6')-Ib-cr prevalent 

(Table 4.3.4). 

Six out of nine ESBL/PMAβ isolates from food-producing animals (66.7%), three out of seven 

isolates from pets (42.9%) and seven out of seven isolates from zoo animals (100%) were 

MDR. No ESBL/PMAβ-encoding genes were detected in two and three isolates recovered 

from food-producing animals and pets, respectively, showing resistance to cefoxitin and none 

of these enzymes were produced by E. coli isolates with intermediate susceptibility to this 

antibiotic.  

Most of the E. coli isolates harboured class 1 integrons. Nevertheless, class 2 was also 

found in one isolate recovered from a dog and in one isolate from a turkey. 

4.3.4. Discussion 
In the last six years, besides S. Enteritidis, the serovars Havana and Mbandaka were the 

most frequently isolated from broilers, layers and poultry feed in Portugal, suggesting that 

they are well adapted to the poultry population (Clemente et al., 2013; Clemente et al.,

2014). It is likely that poultry feed containing cereal grain, imported from some countries, is 

one of the main sources for the high frequency of occurrence of these serotypes in live birds. 
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Table 4.3.4. C
haracteristics of S

a
lm

o
n
e

lla spp. and E
. c

o
li isolates displaying non w

ild-type phenotypes to cefotaxim
e and or cefoxitin. 

Sam
ple 

Isolate 
Species
identification 

Anim
al species

Antim
icrobial resistance 

phenotype 
D

ecreased susceptibility 
G

enetic profile 
Integrons 

C
t a

C
p

a
FO

X
b

b
la

c genes 
PM

Q
R

d genes 

Food-producing 
anim

als 
SA12434 

S
. Enteritidis

broiler 
A, C

t, N
a, C

p, C
, Su, T 

>8
0.25 

S 
 b

la
SH

V-12  
C

lass 1 
SA22067 

S
. H

avana
broiler 

A, C
t, Su, T 

>8
0.03 

S 
b

la
 C

TX-M
-1  

SA34303 
S

. H
avana

broiler 
A, C

t, C
p, Su, Tm

 
>8

0.25 
S 

b
la

 C
TX-M

-type  
C

lass 1 
SA6423 

S
. H

avana
broiler 

A, C
t 

8
0.03 

R
 

b
la

 C
M

Y-2  
SA6427 

S
. H

avana
broiler 

A, C
t 

8
0.06 

R
 

b
la

 C
M

Y-2  
SA18281 

S
. 4,[5],12:i:- 

partridge
A, C

t, N
a, C

p, G
, T 

1
1 

S 
b

la
 TEM

-1  
C

lass 2 
EC

32 
E

.
c
o

li
turkey 

N
a, C

p, Su, G
, T  

≤
0
.0

6
8 

I 
b

la
 TEM

-type , b
la

AM
P-C

C
lass 1; C

lass 2 
EC

230 
E

.
c
o

li
sw

ine 
A, N

a, C
p, Su, T  

≤
0
.0

6
0.125 

R
 

b
la

 TEM
-type  , b

la
AM

P-C
C

lass 1 
EC

235 
E

.
c
o

li
turkey 

A, N
a, C

p, Su, C
, T 

0.25 
>8

R
 

b
la

 TEM
-type , b

la
AM

P-C
C

lass 1 
EC

241 
E

.
c
o

li
sw

ine 
A, Su, C

, T 
0.125 

0.015 
I 

b
la

AM
P-C , b

la
 O

XA-type
C

lass 1 
EC

261 
E

.
c
o

li
broiler 

A, C
t, N

a, C
p 

4 
2 

R
 

b
la

 TEM
-type  , b

la
AM

P-C , b
la

 C
M

Y-2
q

n
rS

1
EC

269 
E

.
c
o

li
bovine 

A 
≤
0
.0

6
0.03 

I 
b

la
AM

P-C
 

EC
276 

E
.

c
o

li
sw

ine 
A, C

t, N
a, C

p, C
, Su, T, Tm

, 
>8

>8
S 

b
la

AM
P-C , b

la
 C

TX-M
-32

C
lass 1 

EC
296 

E
.

c
o

li
Broiler chicks 

A 
≤
0
.0

6
0.03 

R
 

b
la

 TEM
-type , b

la
AM

P-C , b
la

 C
M

Y-2
EC

350 
E

.
c
o

li
turkey 

A, N
a, C

p, C
, Su, T, Tm

  
0.125 

8 
I 

b
la

 TEM
-type , b

la
AM

P-C
C

lass 1 
EC

382 
E

.
c
o

li
Bovine calf 

A, N
a, C

p, G
, Su, T, Te, C

 
0.25 

>8
I 

b
la

 TEM
-type , b

la
AM

P-C
C

lass 1 
EC

383 
E

.
c
o

li
sw

ine 
A, Su, T, Tm

      
≤
0
.0

6
≤
0
.0

0
8

I 
b

la
 TEM

-type  ,  b
la

AM
P-C

C
lass 1 

EC
421 

E
.

c
o

li
bovine 

A, C
t, N

a, C
p, C

, Su, T, Tm
, 

>8
>8

S 
b

la
 TEM

-type  , b
la

AM
P-C , b

la
 C

TX-M
-1

C
lass 1 

EC
427 

E
.

c
o

li
chicks 

A, C
t, N

a, C
, Su, T, Tm

,  
>8

0.06
S 

b
la

AM
P-C , b

la
 C

TX-M
-1

C
lass 1 

EC
439 

E
.

c
o

li
sw

ine 
A, C

t, Su 
>8

0.015 
S 

b
la

 TEM
-type  , b

la
AM

P-C , b
la

 C
TX-M

-1
LC

64 
E

.
c
o

li
bovine 

A, C
t, N

a, C
p, Su, Tm

 
>8

>8
S 

b
la

AM
P-C , b

la
 C

TX-M
-1

C
lass 1 

LC
215 

E
.

c
o

li
Broiler chicks 

A, N
a, C

p, G
, T 

0.125 
8 

I 
b

la
 TEM

-type , b
la

AM
P-C

C
lass 1 

LC
217 

E
.

c
o

li
Broiler chicks 

A, C
p, T 

0.125 
0.25 

I 
b

la
 TEM

-type , b
la

AM
P-C

q
n

rB
 1

9
LC

219 
E

.
c
o

li
rabbits 

A, N
a, C

p, Su, 
0.125 

4 
I 

b
la

 TEM
-type , b

la
AM

P-C
C

lass 1 
EC

492 
E

.
c
o

li
bovine 

A, C
t, N

a, C
p, C

, Su, T  
4 

>8
S 

b
la

 TEM
-type , b

la
AM

P-C
, b

la
SH

V-12
C

lass 1 
EC

505 
E

.
c
o

li
bovine 

A, C
t, N

a, C
p, C

, Su, T 
4 

>8
S 

b
la

 TEM
-type , b

la
AM

P-C
, b

la
SH

V-12
C

lass 1 

Pets 
EC

30 
E

.
c
o

li
dog 

A, N
a, C

p, C
t, C

, Su, TE, Su, Tm
 

>8 
0.25 

I 
b

la
 TEM

-type , b
la

AM
P-C

C
lass 1 

EC
50 

E
.

c
o

li
cat 

A, C
t 

1 
0.015 

R
 

b
la

AM
P-C

 
EC

175 
E

.
c
o

li
dog 

A, C
t 

>8
0.015 

R
 

b
la

AM
P-C , b

la
 C

M
Y-2

EC
200 

E
.

c
o

li
dog 

A, Te 
≤
0
.0

6
0.015 

R
 

b
la

 TEM
-type , b

la
AM

P-C
EC

274 
E

.
c
o

li
cat 

A, C
t, N

a, C
p, G

, Su, T, Tm
 

>8
>8

R
 

b
la

AM
P-C

 
C

lass 1 
EC

315 
E

.
c
o

li
dog 

A, C
t, Su, T, Tm

 
>8

0.015 
S 

b
la

 TEM
-type ,  b

la
AM

P-C ,  b
la

 C
TX-M

-14
C

lass 1 
EC

321 
E

.
c
o

li
cat 

A, C
t 

0.5
0.015 

I 
b

la
AM

P-C
 



C
h

a
p

te
r 

4
.3

 

95
 

Sa
m

pl
e 

Is
ol

at
e 

Sp
ec

ie
s

id
en

tif
ic

at
io

n 
An

im
al

 s
pe

ci
es

An
tim

ic
ro

bi
al

 re
si

st
an

ce
 

ph
en

ot
yp

e 
D

ec
re

as
ed

 s
us

ce
pt

ib
ilit

y 
G

en
et

ic
 p

ro
fil

e 
In

te
gr

on
s 

C
ta

C
pa

FO
Xb

b
la

c  
ge

ne
s 

PM
Q

R
d  g

en
es

 

EC
35

6 
E

.
c
o

li
do

g 
A,

 C
t, 

N
a,

 C
p 

>8
>8

S 
b

la
AM

P-
C
,  

C
T

X
-M

-1
5

EC
38

5 
E

.
c
o

li
do

g 
A,

 N
a,

 C
p,

 S
u,

 T
, T

m
 

0.
25

 
8 

I 
b

la
 T

EM
-ty

pe
, b

la
AM

P-
C

C
la

ss
 1

 
EC

42
5 

E
.

c
o

li
ca

t 
A,

 C
t, 

N
a,

 C
p 

8 
>8

R
 

b
la

AM
P-

C
, b

la
 C

M
Y-

2
EC

43
3 

E
.

c
o

li
do

g 
A,

 C
t, 

An
, C

p,
 G

, S
u,

 T
m

 
>8

>8
S 

b
la

AM
P-

C
, C

T
X

-M
-1

5
;

a
a

c
(6

')
-I

b
-c

r
C

la
ss

 1
 

EC
44

3 
E

.
c
o

li
do

g 
A,

 C
t, 

N
a,

 C
p,

 T
m

 
>8

>8
R

 
b

la
 T

EM
-ty

pe
, b

la
AM

P-
C
, b

la
 C

M
Y-

2
C

la
ss

 2
 

EC
45

9 
E

.
c
o

li
m

an
da

rim
 

A,
 C

t 
8

0.
01

5 
R

 
b

la
 T

EM
-ty

pe
, b

la
AM

P-
C
, b

la
 C

M
Y-

2
EC

49
8 

E
.

c
o

li
pa

rro
t 

A,
 C

t, 
N

a,
 C

p,
 S

u 
2

>8
S 

b
la

AM
P-

C
 

Zo
o 

an
im

al
s EC

92
 

E
.

c
o

li
do

lp
hi

n 
A,

 C
t, 

An
, C

p,
 G

, T
 

>8
>8

S 
b

la
 T

EM
-ty

pe
, b

la
AM

P-
C
, b

la
 O

XA
-ty

pe
;

b
la

 C
TX

-M
-1

5 
a

a
c
(6

')
-I

b
-c

r
C

la
ss

 1
 

EC
12

6 
E

.
c
o

li
tu

rtl
ed

ov
e 

A,
 N

a,
 C

p,
 C

, S
u,

 T
, T

m
 

≤
0
.0

6
0.

25
 

I 
b

la
 T

EM
-ty

pe
, b

la
AM

P-
C

C
la

ss
 1

 
EC

12
8 

E
.

c
o

li
le

m
ur

 
A,

 N
a,

 C
p,

 C
, S

u,
 T

, T
m

 
≤
0
.0

6
0.

25
 

I 
b

la
 T

EM
-ty

pe
, b

la
AM

P-
C

C
la

ss
 1

 
EC

16
3 

E
.

c
o

li
fro

g 
A 

≤
0
.0

6
0.

01
5 

I 
b

la
AM

P-
C
 

EC
21

2 
E

.
c
o

li
do

lp
hi

n 
A,

 C
t, 

N
a,

 C
p,

 G
, T

 
>8

>8
I 

b
la

AM
P-

C
, b

la
 O

XA
-ty

pe
; 

b
la

 C
TX

-M
-1

5
a

a
c
(6

')
-I

b
-c

r
EC

24
8 

E
.

c
o

li
tig

er
 

A,
 C

t, 
S,

 T
, T

m
 

>8
0.

01
5 

S 
b

la
 T

EM
-ty

pe
, b

la
AM

P-
C
,  

b
la

 C
TX

-M
-1

C
la

ss
 1

 
EC

32
5 

E
.

c
o

li
do

lp
hi

n 
A,

 C
t, 

N
a,

 C
p,

 G
, T

 
>8

>8
S 

b
la

AM
P-

C
,  

b
la

 O
XA

-ty
pe

; 
b
la

 C
TX

-M
-1

5
a

a
c
(6

')
-I

b
-c

r
EC

33
7 

E
.

c
o

li
do

lp
hi

n 
A,

 N
a,

 C
p,

 C
, S

u,
 T

, T
m

 
0.

12
5 

>8
I 

b
la

 T
EM

-ty
pe

, b
la

AM
P-

C
C

la
ss

 1
 

EC
33

8 
E

.
c
o

li
do

lp
hi

n 
A,

 C
t, 

N
a,

 C
p,

 G
, T

 
>8

>8
S 

b
la

AM
P-

C
,  

b
la

 O
XA

-ty
pe

; 
b
la

 C
TX

-M
-1

5
a

a
c
(6

')
-I

b
-c

r
EC

36
1 

E
.

c
o

li
do

lp
hi

n 
A,

 C
t, 

N
a,

 C
p,

 G
, T

 
>8

>8
S 

b
la

AM
P-

C
,  

b
la

 O
XA

-ty
pe

; 
b
la

 C
TX

-M
-1

5
a

a
c
(6

')
-I

b
-c

r
LC

21
8 

E
.

c
o

li
be

ar
 

A,
 N

a,
 C

p,
 T

 
0.

12
5 

8 
I 

b
la

 T
EM

-ty
pe

, b
la

AM
P-

C
q

n
rB

 1
9

EC
45

6 
E

.
c
o

li
ot

te
r 

A 
0.

12
5 

0.
03

 
I 

b
la

 T
EM

-ty
pe

, b
la

AM
P-

C
EC

53
6 

E
.

c
o

li
C

ar
ia

m
a 

cr
is

ta
ta

 
A,

 C
t, 

An
, C

p,
 T

 
>8

>8
S 

b
la

AM
P-

C
,  

b
la

 C
TX

-M
-1

4
C

la
ss

 1
 

Fo
od

 
SA

48
10

 
S

. 
H

ei
de

lb
er

g 
br

oi
le

r c
ar

ca
ss

A,
 C

t, 
Su

, T
m

 
>8

0.
03

 
S 

b
la

 C
TX

-M
-1

 
C

la
ss

 1
 

SA
31

50
1 

S
. 

4,
[5

],1
2:

i:-
 

po
rk

 s
au

sa
ge

 
A,

 C
t, 

Su
, T

 
2

0.
03

 
S 

b
la

 T
EM

-1
 

SA
31

51
1 

S
. 

Lo
nd

on
 

H
am

bu
rg

er
 s

w
in

e 
A,

 C
t 

>8
0.

03
 

S 
b

la
 C

TX
-M

-1
4 

a  M
in

im
um

 In
hi

bi
to

ry
 C

on
ce

nt
ra

tio
n 

(M
IC

) 
b  

D
is

k 
di

ffu
si

on
 (K

irb
y-

Ba
ue

r m
et

ho
d)

 
A,

 A
m

pi
ci

llin
; C

t, 
C

ef
ot

ax
im

e;
 N

a,
 N

al
id

ix
ic

 a
ci

d;
 C

p,
 C

ip
ro

flo
xa

ci
n;

 F
O

X,
 C

ef
ox

iti
n;

 C
, C

hl
or

am
ph

en
ic

ol
; G

, G
en

ta
m

ic
in

; S
u,

 S
ul

fa
m

et
ho

xa
zo

le
; T

, T
et

ra
cy

cl
in

e;
 T

m
, T

rim
et

ho
pr

im
 

S,
 S

us
ce

pt
ib

le
; I

, I
nt

er
m

ed
ia

te
; R

, R
es

is
ta

nt
 

c  β
-L

ac
ta

m
e 

ge
ne

s 
d  

Pl
as

m
id

-m
ed

ia
te

d 
qu

in
ol

on
e 

re
si

st
an

ce



Chapter 4.3 

96 

S. Havana has been previously detected in Danish feather and rapeseed meals imported

from other countries (http://unsafefood.eu/notification). Although in European countries the

prevalence of serovars Mbandaka and Havana in Gallus gallus is low (5.48% and 0.21%,

respectively) (EFSA, 2014), is a matter for concern, as they are considered potentially

pathogenic for humans (Scheil et al., 1998; Boisrame-Gastrin et al., 2011). With regard to

food products, Salmonella I 4,[5],12:i:- and S. Typhimurium were the most common

serotypes recovered from food products, followed by S. Enteritidis. Food products and

animals seem to be important reservoirs for human infection. As previously reported,

monophasic S. Typhimurium was in third place in the top 10 list of the most commonly

reported serovars in human cases, in 2012, and appears to be of increasing importance in

many countries, having caused a substantial number of infections in both humans, and

animals bred for food (EFSA, 2014).

In this study, important differences (≥3-fold dilutions) between MIC50 and MIC90 were noticed

among some species, particularly in E. coli isolates for ampicillin, nalidixic acid, ciprofloxacin,

sulphamethoxazole, tetracycline, and trimethoprim, and also in Salmonella spp., for

ampicillin, nalidixic acid, sulphamethoxazole and tetracycline. For each antimicrobial, MIC50

and MIC90 distributions indicate that at least two bacterial subpopulations may exist (wild

and non-wild type) (Schwarz et al., 2010), which corroborates other findings (de Jong et al.,

2009; Clemente et al., 2014).

Regarding E. coli isolates, the frequency of non wild-type phenotypes to all antimicrobials

tested (except for cefotaxime) was higher in food-producing, followed by companion and zoo

animals, which might be due to the high consumption of veterinary antimicrobials, particularly

tetracyclines and fluoroquinolones (EMA, 2014). Nowadays, nearly 25% of the isolates from

food-producing animals are clinically resistant to ciprofloxacin, leading to the increasing

usage of third-generation cephalosporins in food animals. The usage of these antimicrobial is

reported to be an important factor for the emergence of extended-spectrum cephalosporins

resistant E. coli (Liebana et al., 2013). Although the consumption reported for these

antimicrobials is not high (0.2mg/PCU) (EMA, 2014), it might be underestimated, as in

companion animal practice, human cephalosporins are frequently prescribed.

A comparison between the results obtained in this study with a previous work (Clemente et

al., 2013) show that there was an increase in the frequency of non-wild type MICs for

cefotaxime in Salmonella spp. isolates from broilers and from food products at national level

from 0.44% to 1.6%, as reported in other studies [34].

In our study, CTX-M-1, CTX-M-14, TEM-1 and SHV-12 β-lactamases were found in

Salmonella, being in agreement with findings from other European and non-European

countries (EFSA, 2011; Doublet et al., 2014; Rao et al., 2014). The low frequency of TEM-1

and SHV-12 follows the current situation in Europe (EFSA, 2011). However, at our

knowledge, SHV-12 was here firstly described in one isolate of S. Enteritidis from broilers, in

http://unsafefood.eu/notification
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Portugal. Being blaCMY-2 the most frequently reported PMAβ-encoding gene in other countries 

and in different serovars (Dierick et al., 2010; EFSA, 2011; Li et al., 2013), we report its 

occurrence here for the first time in two isolates of S. Havana from broilers, only resistant to 

β-lactams. The spread of blaCMY-2 harboring Salmonella through the food chain has also 

important public health implications; like ESBLs, it encodes resistance to third-generation 

cephalosporins, which is an important class of antibiotics used to treat complicated human 

infections, including salmonellosis (Allocati et al., 2013).  

In all 47 E. coli isolates non wild-type to cefotaxime and/or cefoxitin, the ubiquitous ampC 

gene was detected and frequently associated with blaTEM-type. It should be noted that E. coli

possess a chromossomal ampC gene that is normally repressed or only weakly expressed.  

Alterations in ampC gene promoter regions increase the production of AmpC and confer 

variable resistance levels to penicillins and cephalosporins, including cephamycins and 

oxyimino-cephalosporins, suggesting that this resistance mechanism might have been 

triggered among our isolates (Li et al., 2007).  

Overall, CTX-M-group enzyme isolates was detected in 15 out of 28 (53.6%) isolates 

exhibiting a non-wild phenotype to cefotaxime. CTX-M-1 was the major ESBL enzyme found 

in food-producing (n=4) and also detected in zoo animals (n=1). It has been disseminated in 

several countries in food-producing animals and in wildlife (Gonçalves et al., 2011; veldman 

et al., 2013; Rao et al., 2014), although not commonly observed in humans. Therefore, it has 

been previously reported as a possible cross-contamination between humans, avian hosts 

and meat, highlighting the importance of its possible transmission to humans (Leverstein van 

Hall et al., 2011). Currently, CTX-M-15 is the most common ESBL CTX-M variant detected 

worldwide in clinically important human pathogens (EFSA, 2011). In our work, it was 

detected in two isolates from companion animals (dogs) and in five isolates from dolphins. 

Similarly, CTX-M-15 has also been reported in E. coli isolates from companion (Sun et al.,

2010; Dierick et al., 2012; Hordijk et al., 2013), wild (Veldman et al., 2013) and zoo animals 

(Wang et al., 2012a; Klimes et al., 2013). Due to the potentially frequent contact between 

pets and owners, and zoo animals, zookeepers and visitors, bacteria containing such genes 

might spread among these different reservoirs.  

PMAβ enzymes were also found in 6 E. coli isolates, from food-producing (n=2) and 

companion animals (n=4), confirming what has been found in other studies (Dierick et al.,

2010; Dierick et al., 2012).  
The presence of PMQR, which have been increasingly reported in animals (Veldman et al.,

2011; Wang et al., 2012a; Jones-Dias et al., 2013), can have an additional effect on 

chromosomal quinolone resistance mechanisms, which might explain the high MIC values of 

>512mg/l and ≥8mg/l to nalidixic acid and ciprofloxacin, respectively, observed in some of

our isolates. Indeed, resistance to quinolones in Enterobacteriaceae is mostly linked to 

chromosomal mutations in the quinolone resistance determining region (QRDR) (Jones-Dias
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 et al., 2013; Li et al., 2014).  

In Europe, qnrS and qnrB variants were the most frequently detected in different Salmonella 

serotypes from animals and food (Firoozeh, et al., 2012); however, no PMQR-encoding 

genes were detected among such isolates in our study. Contrarly, qnrS1 and qnrB19 genes 

were detected in E. coli isolates from food-producing animals, co-expressing blaCMY-2 in one 

of the isolates, which increases the threat of antimicrobial resistance, as they are plasmid-

mediated (Firoozeh, et al., 2012). In pets and zoo animals, aac(6')-Ib-cr was the most 

frequently PMQR detected, which is common in human E. coli spreading worlwide 

(Mendonça et al., 2007; Firoozeh, et al., 2012; Nicholas-Chanoine et al., 2014). The spread 

of MDR isolates producing ESBL or PMAβ is a matter of concern, especially when they carry 

other resistant traits conferring resistance to aminoglycosides, fluoroquinolones or mobile 

genetic elements like integrons (Nicholas-Chanoine et al., 2014).   

Among the nine Salmonella non-wild type isolates for cefotaxime found in our study, six were 

MDR (66.7%); additional resistance was also detected for sulphamethoxazole, tetracycline, 

trimethoprim and gentamicin. Since these drugs are used in animal production, co-selection 

may have played a role for the arising of ESBL-producing isolates, comparing with previous 

studies (Clemente et al., 2013).  

Thirty five (35/47, 74.5%) E. coli isolates were MDR, comprising a significant contribution of 

the food-producing animals group. Twenty seven (77.1%, 27/35) carried integrons. Similarly, 

among six MDR Salmonella isolates, four also carried integrons (66.7%). This supports the 

hypothesis of an association between the presence of emerging MDR isolates and integrons, 

as well as other mobile genetic elements, contributing to the spreading of antimicrobial 

resistance determinants (Clemente et al., 2013).  

In conclusion, we report for the first time the detection of blaCMY-2 gene in two isolates of S. 

Havana from broilers and blaSHV-12 in one isolate of S. Enteritidis also from broilers, in 

Portugal.  

Overall, the results shown in this study indicate that animals should be considered as 

potential reservoirs for ESBL-, PMAβ- and PMQR-producing isolates. Prudent usage of 

antimicrobials in animals should be strongly encouraged, as well as the characterization of 

antimicrobial resistance genes, to monitor future trends in the occurrence of resistance to 

oxymino-β-lactams and fluoroquinolones. 
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ABSTRACT  
 

The transboundary dissemination of ST131 CTX-M-15-producing Escherichia coli is a 

subject of concern. Here, we evaluated the zoonotic potential of an isolate recovered from a 

captive bottlenose dolphin, by comparing its genotype with the genotype of human clinical 

isolates, and by investigating the genetic relatedness between them. The relationship 

between isolates recovered from humans and animals underlines the interspecies spread of 

multidrug resistant ST131 E. coli. 

 

Keywords: Escherichia coli, dolphin, CTX-M-15, fimH3 

 

Main Text 
 

The global emergence and pandemic spread of ST131 CTX-M-15-producing E. coli in 

humans and its detection in livestock, companion animals and wildlife is a major cause for 

concern (Caratolli et al., 2008; Nicholas-Chanoine, 2014). Hence, it is imperative to identify 

and explore their dissemination traits. If they continue to spread among different 

environments, therapeutic options will be greatly narrowed in both veterinary and human 

medicine (Caratolli et al., 2008). E. coli is one of the most frequently Gram-negative bacteria 

isolated from bottlenose dolphins (Morris et al., 2011). However, few studies have been 

published regarding antibiotic resistant bacteria associated to dolphins (Greig et al., 2007; 

Schaefer et al., 2009; Stewart et al., 2014). In this study, we established a linkage of 

dissemination between a CTX-M-15-producing E. coli isolated from a marine dolphin, 

Tursiops truncatus, versus human clinical isolates collected all over the country, in the same 

period.  

In 2009, one Escherichia coli strain (LV143) isolated from a respiratory exudate collected 

through the spiracle of a female dolphin from a Zoo Park, was sent to the National Institute of 

Agrarian and Veterinary Research (INIAV, Lisbon), for bacteriological, mycological analysis 

and antimicrobial susceptibility tests; no clinical history of the animal was evidenced. 

Mycological examination was negative for the detection of fungi and yeasts. 

Determination of antimicrobial susceptibility of the dolphin E. coli strain (LV143), performed 

by the agar dilution method and interpreted according to European Committee of 

Antimicrobial Susceptibility Testing (EUCAST, http://www.eucast.org/), revealed a non-wild-

type phenotype to cefotaxime (MIC >8 µg/mL); it also showed a synergy towards the  

clavulanic acid, suggesting extended-spectrum β-lactamase (ESBL) production. LV143 was    

also non-wild-type to ampicillin (MIC >64 µg/mL), nalidixic acid (MIC >512 µg/mL), 

ciprofloxacin (MIC >8 µg/mL), gentamicin (MIC >32 µg/mL) and tetracycline (MIC >64 

µg/mL). This isolate remained wild-type to chloramphenicol (MIC=4 µg/mL), florfenicol 
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(MIC=8 µg/mL), sulfamethoxazole (MIC=32 µg/mL), trimethoprim (MIC ≤0.25 µg/mL) and 

streptomycin (MIC=4 µg/mL).  

For the analysis of its zoonotic potential, 61 clinical E. coli isolates, previously recovered from 

different specimens from 2004 to 2009 in seven geographically apart Portuguese hospitals 

(Figure 4.4.1), were selected from National Reference Laboratory of Antibiotic Resistances 

and Healthcare Associated Infections (NRL-AR/HAI) collection, and included in this study. 

Inclusion criteria for the clinical isolates were: 1) non-wild type susceptibility to cefotaxime; 2) 

presumptive phenotypic ESBL production; 3) genetic similarity by Pulsed-Field Gel 

Electrophoresis (PFGE). Genetic relatedness analysis of human and dolphin isolates 

determined by PFGE using XbaI digested DNA (7), revealed one major cluster, which 

included 22 (35%) clinical isolates from three different Portuguese regions, and the dolphin  
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Figure 4.4.1. Dendogram of PFGE profiles showing the relationship between a clonal strain of E. coli of animal 
origin (LV143, in bold), and 22 isolates of E. coli from humans. We used the method and the Dice coefficient with 
1.8% optimization and band position tolerance of 1%. Isolates with a Dice band-based similarity coefficient value 
of ≥80% were considered to belong to the same cluster. From left to right are represented: the dendrogram, 
MLST (Black squares: positive for ST131), fimH typing, the strain code, hospital code, year of isolation, detected 
β-lactamases, genetic association between insertion sequences (IS) and CTX-M-15-encoding genes, detected 
PMQR-encoding genes, and replicon typing groups results. β-lactamases and PMQR-encoding genes, and IS 
combinations are indicated by black circles. E. coli clinical isolates which were genetically unrelated to the 
dolphin isolate are not shown. 
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The genetic characterization of the 22 clinical isolates and one dolphin strain, was performed 

by PCR and sequencing targeting the most prevalent ESBL (blaTEM, blaSHV, blaOXA-G1, blaCTX-

M)- and plasmid-mediated quinolone resistance [PMQR: qnrA, qnrB, qnrC, qnrD, qnrS, qepA, 

aac(6’)Ib-cr]-encoding genes, as previously described (Manageiro et al., 2012). Specifically, 

concerning the strain recovered from dolphin, it presented blaCTX-M-15, blaTEM-1, blaOXA-30, 

associated with a PMQR gene, the aac(6’)-Ib-cr (Figure 4.4.1). All clinical isolates were also 

positive to blaCTX-M-15, and blaOXA-30 genes; 18 isolates presented the blaTEM-1 gene, 3 blaSHV-1, 

5 blaSHV-12, 8 qnrB and 16 the aac(6’)-Ib-cr gene. The presence of class 1 integron, ISEcp1, 

IS26 and IS903 elements were also investigated as previously (Jones-Dias et al., 2013). The 

LV143 strain was positive for the insertion sequence ISEcp1, associated with blaCTX-M-15, 

being negative for the class 1 integron (data not shown). In two clinical isolates we identified 

ISEcp1 and in one IS903. PCR-based replicon typing (PBRT) (Caratolli et al., 2005) revealed 

the presence of IncF plasmid group in both, animal and in nine human isolates (a selected 

sample to evaluate PBRT) (Figure 4.4.1). 

MLST was performed for a selected group (n=9 out of 23) of E. coli isolates. Referring to the 

E. coli MLST website (http://mlst.ucc.ie/mlst/dbs/Ecoli), it was demonstrated that the dolphin 

and the human clinical epidemic clone exhibited the same combination of alleles across the 

seven sequenced loci, corresponding to the epidemic ST131, associated with CTX-M-15 and 

wide-disseminated in Portuguese hospitals (Manageiro et al., 2012; Nicholas-Chanoine, 

2014). Within-ST subclones were analyzed on the basis of sequence variation of the E. coli 

fimbrial adhesin gene fimH, as previously described (Weissman et al., 2012). The fimH30-Rx 

lineage was identified in all 23 E. coli isolates (fluoroquinolone resistant and CTX-M-15 

positive) that clustered together on the dendrogram, regardless of MLST result (Figure 

4.4.1). 

It is worth noting that blaCTX-M-type gene has being described in ESBL-positive E. coli isolates 

from different healthy animals, namely in mammalian animals (Caratolli, 2008). However, at 

our knowledge, this is the first description of an E. coli ESBL-producing isolate from a 

dolphin, and namely from CTX-M family.  

In conclusion, this study illustrated the clonality among clinical isolates and a dolphin strain 

with common antibiotic resistance genes, specifically blaCTX-M-15, aac(6')-Ib-cr, as well as 

common plasmids, such as those from group IncF. They have gone through identical 

evolutionary genetic events which ultimately led to the establishment of the same allelic 

diversity pattern (ST131 fimH30-Rx). Overall, the linkage found between these two reservoirs 

highlights the importance of the isolate’s zoonotic potential. 

 

 

 

 



Chapter 4.4 
 

104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Acknowledgements 
 
The authors thank Fundação para a Ciência e a Tecnologia (FCT) for project grant PEst-
OE/AGR/UI0211/2011-2014, Strategic Project UI211-2011-2014. V. Manageiro and D. Jones-Dias 
were supported by grants SFRH/BPD/77486/2011 and SFRH/BD/80001/2011, respectively, from 
Fundação para a Ciência e Tecnologia, Lisbon, Portugal.  
 



Chapter 4.5 

 

105 

 

 

 

 

 

 

4.5. New insights into resistance to colistin and third-

generation cephalosporins of Escherichia coli in poultry, 

Portugal: novel blaCTX-M-166 and blaESAC genes 
 

 

 

 

 

 

 

 

This research paper was submitted as:  

Vera Manageiro*, Lurdes Clemente*, Rafael Graça, Ivone Correia, Teresa Albuquerque, Eugénia 
Ferreira, Manuela Caniça. New insights into resistance to colistin and third-generation cephalosporins 
of Escherichia coli in poultry, Portugal: novel blaCTX-M-166 and blaESAC genes. International Journal of 
Food Microbiology, 2017, 263, 67–73. 

 
Contributions of the authors for the manuscript: 
 
Vera Manageiro: molecular assays, bioinformatic analysis, analysis of data, critical revision and final 
approval of the manuscript;  
Lurdes Clemente: microbiological and molecular assays, analysis of data, critical revision and final 
approval of the manuscript;  
Rafael Graça: microbiological and molecular assays; 
Ivone Correia: acquisition of laboratory data; final approval of the manuscript; 
Teresa Albuquerque: acquisition of laboratory data; final approval of the manuscript; 
Eugénia Ferreira: microbiological and molecular experiments 
Manuela Caniça: Conception and design of the study; critical revision and final approval of the 
manuscript. 
 

*These two authors had equal contribution in the study. 

 



Chapter 4.5 

106 



Chapter 4.5 

 

107 

ABSTRACT 

The increasing incidence of intestinal colonization with extended-spectrum β-lactamase 

(ESBL)-producing Enterobacteriaceae and Gram negative organisms that has been 

observed in food animals such as poultry, cattle and pigs, are suggestive that animals, food 

and environment are potential sources of ESBL-producing bacteria. Hence, the aim of this 

study was to characterized commensal E. coli obtained from healthy broiler and turkey flocks 

at slaughter for the presence of penicillinases-, ESBL-, extended-spectrum AmpC (ESAC)-, 

plasmid-mediated quinolone resistance- and MCR-encoding genes. Study of clonal 

relatedness showed genetic diversity among CTX-M-type, SHV-12 and TEM-52 producing 

isolates with human isolates of the same type, was also assessed. We detected that eleven 

(5.4%, 11/202) and forty-five (2.2%, 45/185) E. coli isolates from broilers and turkeys, 

respectively, carried blaESBL or blaESAC genes and two isolates from turkeys carried mcr-1 

gene. A new variant blaCTX-M-166 was reported in a multidrug resistant isolate from a broiler 

flock. Overall, we detected a diversity of resistance mechanisms among E. coli from food-

producing animals, all of them with high importance at a public health level. 
 

Keywords: 

Food-producing animals; ESBL; MCR-1  

 

4.5.1. Introduction  

Antimicrobials have been used in animals for treatment, prevention and control of diseases, 

and also as growth promoters (Marshall and Levy, 2011). Although growth promoters were 

banned in the European Union (EU) in 2006, this had not led to a decrease in the 

consumption of antimicrobials in Europe; on the contrary, an increase of metaphylactic and 

prophylactic use was observed (Woolhouse et al., 2015).  

Commensal Escherichia coli is typically chosen as an indicator of antimicrobial resistance in 

Gram-negative bacteria, as it is commonly present in animal faeces. Monitoring of 

antimicrobial resistance in E. coli, isolated from either randomly selected healthy animals or 

carcasses and meat derived thereof, provides valuable data, not only on the resistance 

pattern occurring in that population, but also in the relationship with the selective pressure 

exerted by the use of antimicrobials on the intestinal population of bacteria in food-producing 

animals (EFSA/ECDC, 2014).   

E. coli is the most prevalent microorganism of gastrointestinal tract of humans and animals 

(food-producers, companion and wild) and one of the most frequent causes of several 

bacterial infections (Allocati et al., 2013). Hence, it might constitute a reservoir of resistance 

genes, which can spread horizontally to zoonotic and other bacteria (EFSA/ECDC, 2014; 

Marshall and Levy, 2011). The increasing incidence of colonization with extended-spectrum  
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β-lactamase (ESBL)-producing Enterobacteriaceae and Gram negative organisms has been 

observed in food animals such as poultry, cattle and pigs, suggesting that animals, food and 

environment are potential sources of ESBL-producing bacteria (Seiffert et al., 2013).  

Within Europe and in most countries, the occurrence of resistance to cefotaxime in E. coli 

isolates is low, although in some countries moderate to high levels of resistance in broilers, 

has been observed (EFSA/ECDC, 2015). In Portugal, food-producing animals has been 

described as sources of ESBL-producing E. coli mostly associated with the spread of 

epidemic plasmids, within and among different farms (Rodrigues et al., 2013; Clemente et 

al., 2015; Jones-Dias et al., 2016c).  

Moreover, even low levels of resistance to these critically important antimicrobials are of 

great concern due to the spreading of multidrug resistant (MDR) ESBL- and plasmid-

mediated AmpC β-lactamases (PMAβ)-producing isolates and to the use of different other 

antimicrobials that may co-select other resistance determinants (Dierikx et al., 2010; 

Clemente et al., 2015). This is the case of the new plasmid-mediated colistin resistance 

mechanism, encoded by the mcr-1 gene (Quesada et al., 2016; Skov and Monnet, 2016). 

Colistin has been largely used in veterinary, particularly in food-producing animals, especially 

as group treatment for pigs, veal calves and poultry, allowing to a high exposure of the 

gastrointestinal bacteria (EMA, 2016). 

The purpose of this study was to characterize the new blaCTX-M-166 variant reported in a MDR 

isolate collected from a broiler flock, using whole-genome sequencing (WGS). This technique 

is highly discriminative for typing of foodborne isolates and facilitates a rapid in silico analysis 

of the bacterial resistome, virulome and mobilome, allowing faster and deeper strain 

characterization (Moran-Gilad, 2017). CTX-M-166-producing E. coli was identified during an 

evaluation study of commensal E. coli recovered from broiler and turkey poultry flocks for 

antimicrobial susceptibility testing and identification of plasmid-mediated genes related to β-

lactam and colistin resistance. The potential clonal relatedness between poultry and human 

isolates was also determined. 
 

4.5.2. Materials and methods 

Bacterial isolates 
This study included 387 commensal E. coli isolates selected and recovered from 1016 

poultry cecum samples [broilers, (n=202 out of 680) and turkeys (n=185, out of 336)], 

collected under the scope of monitoring and reporting of antimicrobial resistance in zoonotic 

and commensal bacteria (Commission Decision 652/2013), throughout 2014. Sampling took 

place from April to December throughout the different slaughterhouses located in three 

different agrarian regions (Entre-Douro-e-Minho, Beira Litoral and Ribatejo Oeste), where the 
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national poultry production is concentrated. The main poultry farmers and poultry flocks 

raised during sampling time were covered. Each composite sample consisted of five cecum 

samples from five different birds of the same flock and submitted to the laboratory in sterile 

containers under refrigeration. Bacteriological analysis for the search of commensal E. coli 

was performed within 24 hours after collection. Each composite sample was mixed in 

physiological saline and 10 µL plated on MacConkey Agar, followed by incubation at 37ºC for 

18 to 24hrs; no enrichment broth or selective culture medium were used. Typical lactose 

fermenter colonies were confirmed by means of API 20E strips (bioMérieux, France). After 

biochemical confirmation, all E. coli isolates were cryopreserved at -70ºC.  
 

Antimicrobial susceptibility testing and phenotypic screening for β-lactamase 
production  
Antimicrobial susceptibility testing of 387 E. coli isolates from broilers (n=202) and turkeys 

(n=185) were studied. Minimum inhibitory concentrations (MICs) were determined by agar 

dilution in a two-fold concentration series. The antibiotics tested were: ampicillin, cefotaxime, 

ceftazidime, colistin, nalidixic acid, ciprofloxacin, gentamicin, meropenem, chloramphenicol, 

sulphamethoxazole, tigecycline, tetracycline and trimethoprim. In order to assess the 

antibiotic susceptibility of the strains, interpretation of the results was done according to the 

epidemiological cut-off values recommended by the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST, http://mic.eucast.org/Eucast2/). 

Isolates resistant to 3rd generation cephalosporins were tested with a second panel of 

antibiotics, which further included cefoxitin, cefepime, temocillin, meropenem, ertapenem, 

imipenem, cefotaxime/clavulanate and ceftazidime/clavulanate. Commercial standardized 

microplates (EUVSEC2, TREK, USA), and the microdilution technique (EUCAST/ESCMID, 

2003) were used accordingly to manufacturer’s instructions. Isolates were considered 

multidrug resistant (MDR) if they presented non-wild-type phenotypes against three or more 

structurally unrelated antibiotics. 

Isolates were characterized as presumptive ESBL, AmpC and/or carbapenemase producers, 

accordingly to the presence of synergy between 3rd generation cephalosporins plus 

clavulanate, cefoxitin and/or ceftazidime plus cloxacillin, and/or carbapenems and boronic 

acid or with dipicolinic acid (class A or Class B, respectively) according to previously reports 

(Jones-Dias et al., 2014; Manageiro et al., 2015d).  
 

Molecular characterization of antimicrobial resistance and integrons 
In the fifteen E. coli isolates from broilers (n=11) and turkeys (n=4) evidencing non 

susceptible phenotype to cefotaxime and ceftazidime and/or cefoxitin, blaESBL (blaTEM, blaSHV, 

blaOXA, blaCTX-M) and blaPMAβ (blaCMY, blaMOX, blaFOX, blaLAT, blaACT, blaMIR, blaDHA, blaMOR, 

blaACC) encoding genes were screened by PCR, as previously described (Clemente et al., 

2015). E. coli chromosomal ampC gene, including its promoter region, was also analysed by 
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PCR for three strains with no ESBL- and/or PMAβ-encoding gene detected by using Int-B2 

and Int-H1 primers (Mammeri et al., 2006). Chromosomal AmpC from E. coli ATCC 25922 

was used as standard. Additionally, isolates evidencing decreased susceptibility to 

quinolones and/or colistin were screened for the presence of plasmid-mediated quinolone 

resistance (PMQR: qnrA, qnrB, qnrC, qnrD, qnrS, aac(6´)-Ib-cr, oqxAB, and qepA)-encoding 

genes using primers and conditions previously described (Clemente et al., 2015), and for 

plasmid-mediated colistin resistance (mcr)-encoding genes using primers and conditions first 

described in this study (mcr-Fint: 5′-TCCGATCATGCCAATCTAC-3′ and mcr-Rint: 5′-

CAAGATACTTACGCCCAAG-3′; initial denaturation of 94ºC for 5 min; 94ºC for 30 s, 53.1ºC 

for 30 s and 72ºC for 1 min, for 30 cycles; final step of extension of 72ºC for 5 min).  

The isolates were also subjected to the detection of class 1, 2 and 3 integrase 

encoding genes, as reported elsewhere (Clemente et al., 2015). Positive and negative 

controls were used in all PCR reactions. PCR products were purified and all amplicons were 

further sequenced directly on both strands using automatic sequencer ABI3100 (Applied 

Biosystems).  
 

Pulsed-Field Gel Electrophoresis (PFGE) 

Eleven out of 15 isolates presenting a non-wild type phenotype to 3rd generation 

cephalosporins and/or cefoxitin, being ESBL producers from CTX-M (n=4), TEM (n=1) and 

SHV (n=6) families, were submitted to PFGE analysis, as previously described (Mendonça et 

al., 2007). Furthermore, CTX-M-type (n=14), and TEM-52- (n=7) producing E. coli isolates 

from the biobank of the National Reference Laboratory of Antibiotic Resistances, at National 

Institute of Health, in Lisbon, were used to determine the genetic relatedness with human 

isolates. Banding patterns were analyzed by using BioNumerics software (Applied Maths, 

Sint-Martens-Latem, Belgium). The unweighted-pair-group method was used to construct a 

dendrogram based on PFGE XbaI restriction patterns of the 32 E. coli isolates. The Dice 

band-based similarity coefficient, with a band position tolerance of 1.0% and an optimization 

of 1.0%, was used for clustering. Isolates with a Dice band-based similarity coefficient value 

of ≥ 80% were considered to belong to the same cluster. 
 

Characterization of CTX-M-166-producing E. coli  

Cloning experiments and gene location 

In order to characterize the new CTX-M-166 variant, E. coli transformants were obtained by 

cloning the blaCTX-M-166 (from LV13072) gene into the pBK-CMV phagemid vector 

(Stratagene) and transforming into E. coli TOP10 OneShot chemically competent cells 
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(Invitrogen). Simultaneously, the parental blaCTX-M-1 (from LV21400) gene was used for 

comparison. 

E. coli transformants were selected on MacConkey agar supplemented with 30 mg/L of

kanamycin and 2 mg/L of cefotaxime. The presence and orientation of the inserted genes

was confirmed by PCR; MICs of E. coli TOP10 recipient and transformants were determined

as mentioned above. The I-CeuI technique was employed to evaluate the genomic location

of blaCTX-M-166 (Liu et al., 1993).

Molecular characterization 

CTX-M-166-producing E. coli was genotypically characterized by whole-genome sequencing 

(WGS), as previously described (Manageiro et al., 2016). The assembled contigs were 

analysed and studied for the presence of antibiotic resistance and virulence genes, multi-

locus sequence (MLST) types, fim type, serotype, and plasmid replicon types using 

bioinformatics tools (https://cge.cbs.dtu.dk/services/). PHAST (http://phast.wishartlab.com/) 

and ISsaga (http://issaga.biotoul.fr/issaga_index.php) tools were applied to identify prophage 

and insertion sequences (ISs), respectively. The genetic location of blaCTX-M-166 was 

determined by extracting the contig harbouring the bla gene and compared with sequences 

deposited in the GenBank sequence database provided by NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Nucleotide sequence accession number 
The new blaCTX-M nucleotide sequence was submitted to the GenBank Database as blaCTX-M-

166 with accession number KU978909. 

4.5.3. Results and Discussion 

The rapid dissemination of CTX-M enzymes in human and veterinary settings, among 

commensal bacteria of humans and animals, and in the environment, is a major contribution 

for both the increase of resistance to 3rd generation cephalosporins among 

Enterobacteriaceae, and the use of carbapenems and colistin (Madec et al., 2017). 

In this study, from the 387 E. coli isolates, reduced susceptibility to 3rd generation 

cephalosporins (cefotaxime) was observed in 5.4% (11/202) of the isolates recovered from 

broilers and 2.2% (4/185) from turkeys (Table 4.5.1), which values were not high 

percentages comparing with other European countries (EFSA/ECDC, 2014). The frequency 

of non-wild type E. coli isolates from broilers and turkeys to the other antimicrobials was 

respectively: ciprofloxacin (90.6 and 79.5%), nalidixic acid (88.6 and 73.5%), ampicillin (75.7 

and 80%), sulfamethoxazole (69.3 and 71.9%), tetracycline (66.3 and 85.9%), trimethoprim 

(54.5 and 49.7%), chloramphenicol (34.2 and 52.4%), colistin (3 and 27%) and gentamicin 

(10 and 9.7%). MDR was observed in 81.3% of the isolates.  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 4.5.1. MIC50 and MIC90 for 387 Escherichia coli isolates: broilers (n=202) and turkeys (n=185). 
 

Antimicrobials Escherichia coli Breakpoints (mg/L) 
Broilers (n=202) Turkeys (n=185) DSa Rb 

Am   >8  
MIC50 >64 >64   
MIC90 >64 >64   
% DS a 75.7 80   
     
Ct   > 0.25 > 2 
MIC50 ≤0.25 ≤0.25   
MIC90 ≤0.25 ≤0.25   
% DS a 5.4 2.2   
% Rb 2 0.5   
     
TZ   > 0.5 > 4 
MIC50 ≤0.5 ≤0.5   
MIC90 ≤0.5 ≤0.5   
% DS a 5.4 2.7   
% Rb 3 2.7   
     
Na   >16  
MIC50 >128 >128   
MIC90 >128 >128   
% DS a 88.6 73.5   
     
Cp   > 0.06 > 1 
MIC50 2 2   
MIC90 >8 >8   
% DS a 90.6 79.5   
% Rb 51.5 50.3   
     
GM   > 2  
MIC50 ≤0.5 ≤0.5   
MIC90 2 16   
% DS a 10 9.7   
     
CL   > 2 > 2 
MIC50 ≤1 ≤1   
MIC90 ≤1 16   
% DS a 3 27   
% Rb 3 27   
     
C   >16  
MIC50 ≤8 32   
MIC90 >128 >128   
% DS a 34.2 52.4   
 
     

MP   > 0.125 > 8 
MIC50 ≤0.03 ≤0.03   
MIC90 ≤0.03 ≤0.03   
% DS a 0 0   
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Antimicrobials Escherichia coli Breakpoints (mg/L) 
Broilers (n=202) Turkeys (n=185) DSa Rb 

     
TGC   > 1  
MIC50 0.5 0.5   
MIC90 1 1   
% DS a 0 0   
     
Su   > 64  
MIC50 >1024 >1024   
MIC90 >1024 >1024   
% DS a 69.3 71.9   
     
Te   > 8  
MIC50 >64 >64   
MIC90 >64 >64   
% DS a 66.3 85.9   
     
T   > 2  
MIC50 >32 1   
MIC90 >32 >32   
% DS a 54.5 49.7   
     

 
Am, ampicillin; Ct, cefotaxime; TZ, ceftazidime; Cp, ciprofloxacin; CL, colistin; C, chloramphenicol;  
T, trimethoprim; Su, sulfamethoxazole; GM, gentamicine; Te, tetracycline; TGC, tigecycline;  
MP, meropenem; Na, nalidixic acid 
a Decreased susceptibility - EUCAST epidemiological breakpoints 
b Resistance - EUCAST clinical breakpoints 
 

 
Furthermore, we found ESBL-producing isolates presenting co-resistance to other non-β-

lactam antimicrobials: with quinolones, sulfamethoxazole, tetracycline, chloramphenicol 

(6/15, 40%); quinolones, sulfamethoxazole, tetracycline and trimethoprim (2/15, 13.33%); 

quinolones, sulfamethoxazole, tetracycline, trimethoprim, chloramphenicol and colistin (1/15, 

6.6%); and quinolones, sulfamethoxazole, tetracycline, trimethoprim, chloramphenicol, 

gentamicin and colistin (4/15, 26.7%), as observed in other studies (Schink et al., 2013). 

Certainly, the high selective pressures exerted by the massive use of antibiotics (e.g. 

colistin), particularly in the poultry sector, combined with an efficient gene capture and 

spread of resistance determinants by mobile genetic elements (e.g. third-generation 

cephalosporin resistant genes), are also factors to be considered. Indeed, all these factors 

contribute for the co-selection of CTX-M producing strains in the different settings and 

environment (Madec et al., 2017). 

Molecular characterization of the fifteen isolates non susceptible to cefotaxime and/or 

cefoxitin (Table 4.5.2) allowed the detection of a high diversity of resistance mechanisms, 

such as the penicillinases TEM-1 (n=4) and OXA-type (n=1), and ESBLs TEM [TEM-52 

(n=1)], SHV [SHV-12 (n=7)] and CTX-M [CTX-M-1 (n=1); CTX-M-32 (n=2); and CTX-M-166 

(n=1)]. CTX-M-166 differed from CTX-M-1 by the amino acid substitution Ala120Val. PMQR 
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Aac(6')-Ib-cr (n=1) and QnrB19 (n=1) were also identified, alone or in co-expression. All 

isolates presented the ubiquitous AmpC enzyme; in two isolates (LV10909 and LV19991), 

this β-lactamase was the only one produced (Table 4.5.2). Moreover, in two phenotype and 

genotype different isolates recovered from turkeys, in the same slaughterhouse agrarian 

region, but being separated by 5 months (Table 4.5.2), mcr-1 gene was detected; only one of 

them co-expressed the SHV-12, TEM-1 and OXA-type enzymes. As reported in other 

studies, mcr-1 gene has been detected in various bacterial species, from different food-

producing animals, from the environment including rivers and from various types of meat and 

vegetables (Jones-Dias et al., 2016d; Quesada et al., 2016; Skov and Monnet, 2016). 

Indeed, though underdetected, this gene has been present for a long time, having been 

detected in three E coli isolates from 1980s, when colistin first started to be used in food-

producing animals in China (Shen et al., 2016). 

The sequencing of the chromosomal ampC gene characteristic of the E. coli species was 

performed for the three E. coli isolates with reduced susceptibility to extended-spectrum 

cephalosporins, without any ESBL detected. Results revealed highly conserved mutations in 

the promoter/attenuator region of E. coli LV9211 at positions -42, -18, -1, +58 and +81, with 

respect to the ampC open reading frame, found in strong ampC promoters (Table 4.5.3) 

(Tracz et al., 2007; Guillouzouic et al., 2009). Indeed, these mutations have previously been 

described to cause hyperproduction of AmpC in French cattle and Finnish food-producing 

animal E. coli isolates (Haenni et al., 2014; Päivärinta et al., 2016).  

Full sequencing of the E. coli LV10908 ampC gene also showed that amino acid 

substitutions of the AmpC enzyme were mainly detected in positions associated with narrow-

spectrum AmpCs, with some exceptions (Q7K, S236I, L254V, and I284V). In E. coli LV19991 

the exceptions were at positions P5S, Q7K, A220T and R232C (Table 4.5.3). In fact, these 

AmpCs showed mutations within two specific locations responsible for the conformational 

modifications in ESAC β-lactamases (Nordmann & Mammeri, 2007; Mammeri et al., 2008): 

the H-9 helix (I284V, in LV10908) and the Ω-loop (A220T, in LV19991). 

This is, at our knowledge, the second description of ESACs-type in animals. Indeed, these β-

lactamases were mainly reported in human isolates, with the exception of ESAC-producing 

E. coli strains detected in cattle, in France (Haenni et al., 2014). Thus, this is, at our 

knowledge, the second description of ESACs-type in animals. 
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Table 4.5.3. a
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The genetic relatedness analysis of the ESBL (blaCTX-M, blaSHV-12 and blaTEM-52)-producing E. 

coli isolates from poultry showed a high heterogeneity of PFGE profiles, since they have < 

80% of homology between each other and with human isolates (Figure 4.5.1). E. coli 

LV14966 was not typeable by this method. The results showed that the occurrence of ESBL-

producing E. coli in the Portuguese poultry population was not due to one specific clone. This 

contrasted with the results obtained for the clinical isolates, were 76% of the isolates 

corresponded to a single epidemic strain (ST131-fimH30 E. coli-producing CTX-M-15) 

(Mendonça et al., 2007; Manageiro et al., 2015a).  

 
Figure 4.5.1. Dendrogram of PFGE profiles of 31 E. coli isolates presenting a non-wild type 
phenotype to 3rd generation cephalosporins and/or cefoxitin (11 of animal origin, and 21 isolates from 
humans). We used the method and the Dice coefficient with 0.9% optimization and band position 
tolerance of 0.8%. Isolates with a Dice band-based similarity coefficient value of ≥80% were 
considered to belong to the same cluster. From left to right are represented: the dendrogram, the 
strain code, origin, year of isolation, detected ESBL, and PFGE profiles. 
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TEM-52 

TEM-52 
TEM-52 
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The CTX-M-166 enzyme was detected in an E. coli isolated from a cecum sample recovered 

in May 2014, from a six-week broiler flock located in an industrial broiler poultry unit in 

Tomar, in the Central Region of Portugal. The horizontal transfer of the blaCTX-M-166 gene was 

attempted by bacterial conjugation and through the direct transformation of plasmid DNA, 

without success (data not shown). However, further analysis by the I-CeuI technique 

revealed that blaCTX-M-166 was not chromosomally encoded in isolate LV13072 suggesting that 

the new gene was contained in a non-transferable plasmid. Cloning experiments showed that 

E. coli transformants T13072 (CTX-M-166) and E. coli T21400 (CTX-M-1) strains were non-

wild type to amoxicillin, cefuroxime, cefotaxime, cefepime, ceftiofur and aztreonam, while the 

broiler isolates were also non-wild type to ceftazidime and ciprofloxacin (E. coli LV21400), 

and to ceftazidime, ciprofloxacin plus trimethoprim (E. coli LV13072) (Table 4.5.4). The 

addition of clavulanate drastically reduced the MIC value of cefotaxime in both transformants 

and broiler strains, confirming the presence of an ESBL enzyme (Table 4.5.4). 

 

 
Table 4.5.4 – Phenotypic and genotypic context of CTX-M-producing E. coli clinical isolates, 
transformants and the recipient straina. 
 
 

Antimicrobial drugb 
MIC (g/mL) for strains: 

E. coli TOP10 
LV13072 
(CTX-M-166, 
TEM-1) 

T13072 
(CTX-M-166) 

LV21400 
(CTX-M-1) 

T21400 
(CTX-M-1) 

 
Amoxicillin 

 
≤2 

 
>2048 

 
>2048 

 
>2048 

 
>2048 

Cefuroxime ≤0.5 512 512 >512 >512 
Cefoxitine 4 8 4 4 4 
Ceftazidime 0.25 1 0.5 1 0.5 
Ceftazidime plus clavulanate* 0.25 0.5 0.25 0.5 0.25 
Cefotaxime 0.125 32 32 >128 64 
Cefotaxime plus clavulanate* 0.125 ≤0.125 ≤0.125 ≤0.125 ≤0.125 
Aztreonam 0.06 2 0.5 8 4 
Cefepime 0.06 1 0.5 >32 4 
Ceftiofur 1 32 32 64 64 
Imipenem 0.125 0.125 0.125 0.125 0.125 
Meropenem 0.03 0.5 0.06 0.06 0.06 
Doripenem 0.06 0.125 0.06 0.06 0.06 
Ertapen 0.03 0.06 0.03 0.06 0.03 
Ciprofloxacin ≤0.03 8 ≤0.03 0.5 ≤0.03 
Gentamicin 0.5 2 1 4 1 
Trimethoprim 0.5 >32 1 1 1 
Colistin 0.25 0.5 0.25 1 0.25 
Tigecycline 0.125 0.125 0.125 0.5 0.125 
      

 
aE. coli TOP10 T13072 (harboring CTX-M-166) and E. coli TOP10 T21400 (harboring CTX-M-1) were 
transformants of E. coli LV13072 (harboring CTX-M-166 and TEM-1) and E. coli LV21400 (harboring CTX-M-1), 
respectively; E. coli TOP10 was the recipient strain.b * Clavulanate 2 µg/ml. 
 

 

 



Chapter 4.5 

 

 
119 

WGS approach has revealed a CTX-M-166-harbouring O6:H16 ST48-fimH34 E. coli. 

Directed sequence analyses showed an ISEcp1-blaCTX-M-166-orf477 region upstream an IncI 

shufflon, interrupting the segment shfB of the site-specific recombination system (Figure 

4.5.2). This interruption, due to insertion of the ISEcp1-blaCTX-M-166-orf477 element, may 

explain the non-conjugative properties of the CTX-M-166-harbouring plasmid (Komano, 

1999). The closest match (94.7% of query coverage and 100% of identity) of the blaCTX-M-166-

containing contig as identified by BLASTn analysis was the E. coli plasmid pIFM3804 

(KF787110), a CTX-M-1 IncI1 plasmid found on a UK pig farm (Freire et al., 2014). 

 
Figure 4.5.2. Schematic representation of CTX-M-166-harboring contig. 

Blue, antibiotic resistance gene; Yellow, mobile genetic elements; Green, IncI shufflon; Grey, other 
genes; Right and left inverted repeats (IRR and IRL) are indicated as red triangles 

 

 
 

4.5.4. Conclusion 
In this study, we identified a high diversity of resistance mechanisms among commensal E. 

coli obtained from healthy food-producing animals, such as broilers and turkeys flocks at 

slaughter. We highlighted an emerging resistance mechanism against colistin (the mcr-1 

gene) and a new one against 3rd generation cephalosporins (the blaCTX-M-166 variant) 

associated to mobile genetic elements, as well as an unusual gene in food-producing 

animals (the blaESAC gene). All those resistance mechanisms have high importance at a 

public health level. 
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ABSTRACT 
 

We report the draft genome sequence of the CTX-M-166-harbouring O6:H16 ST48-fimH34 

E. coli recovered from a Gallus gallus. Sequence analyses revealed the presence of an 

ST103-IncI1 ISEcp1-blaCTX-M-166-orf477 plasmid region and of diverse antibiotic and virulence 

acquired-genes. 

 

Keywords: CTX-M-166, E. coli, broiler 
 
4.6.1. Main Text 
Animals are considered potential reservoirs of antimicrobial resistant bacteria (Caniça et al., 

2015). In this study, we used whole-genome sequencing (WGS) to characterize the new 

CTX-M-166-harbouring E. coli recovered in May 2014 from a six-week Gallus gallus broiler 

flock from an industrial poultry unit in the Central Region of Portugal, carrying a new amino 

acid substitution, when compared with CTX-M-1. 

Genomic DNA of E. coli LV13072 was extracted using DNeasy Blood and Tissue Kit 

(Qiagen) and quantified using Qubit 1.0 Fluorometer (Invitrogen). The Nextera XT DNA 

Sample Preparation Kit (Illumina) was used to prepare sequencing libraries from 1ng of 

genomic DNA according to the manufacturer's instructions. WGS was performed using 250 

bp paired-end reads on a MiSeq (Illumina). Sequence reads were trimmed and filtered 

according to quality criteria, and de novo assembled into contigs by means of CLC Genomics 

Workbench 8.5.1 (QIAGEN), as previously described (Manageiro et al., 2015).  

The de novo assembled genome contains a total assembly length of 5,236,233 bp, with a 

mean coverage of about 225-fold; the GC content was 49.3%. The analysis yielded 351 

contigs, ranging from 402bp to 197,210bp, with a minimum of 12-fold coverage. Overall, the 

structural and functional annotation with NCBI Prokaryotic annotation pipeline (PGAAP, 

(http://www.ncbi.nlm.nih.gov/genome/annotation_prok/) detected 97 tRNA genes, 7 rRNA 

genes and identified 4,656 mRNA genes. 

In silico antimicrobial resistance analyses using  ResFinder v2.1 (3) with a threshold of 90% 

identity and a minimum length of 60%, revealed genes conferring resistance to β-lactams 

[blaCTX-M-166 (contig 249), and blaTEM-1 (contig 63)], aminoglycosides [strA-strB (contig 289)],  

tetracycline [tetA-type (contig 20)], sulfonamides [sul2 (contig 289)], and trimethoprim 

[dfrA14-   type (contig 257)]. Seven virulence factors were also detected using 

VirulenceFinder v1.5 (Kleinheinz et al., 2014): iss (contig 232), gad (contigs 29 and 125), 

astA (contig 123), iroN (contig 232), iha (contig 102), mchF-type (contig 57), celb-type (contig 

46), and cma-type (contig 318). 

http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
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PlasmidFinder v1.3 and pMLST v1.4 tools (Carattoli et al., 2014) revealed the presence of 

ST103-IncI1 and  Col8282 plasmids types with an identity of 100%.  

The bioinformatics analysis of the genetic relatedness SerotypeFinder v1.1 (Joensen et al., 

2015), MLST v1.8 (Larsen et al., 2012) and FimTyper v1.0 assigned this isolate to O6:H16 

ST48-fimH34. The total number of pathogenicity determinants present in the LV13072 

genome, matching 564 pathogenic families, showed a 93.2% certainty of the isolate being a 

human pathogen (Cosentino et al., 2013).  

The blaCTX-M-166 gene differed from blaCTX-M-1 by one point mutation that leads to the amino 

acid substitution Ala120Val. It was found in a 4,218bp contig, which was manually 

assembled overlapping contigs 249, 329 and 334, with a mean coverage was of 36.4-fold 

and GC content 41.2%. An ISEcp1-blaCTX-M-166-orf477 region was found upstream an IncI 

shufflon, interrupting the segment shfB of the site-specific recombination system (Brouwer et 

al., 2015). The closest match (94.7% of query coverage and 100% of identity) of the CTX-M-

166-containing contig as identified by BLASTn analysis was the E. coli plasmid pIFM3804 

(KF787110), a CTX-M-1 IncI1 plasmid found on a UK pig farm (Freire et al., 2014). 

The information presented herein will enable further studies about the genetic background of 

blaCTX-M-166 and functional characterization of CTX-M-166 β-lactamase aiming to assess the 

potential impact of this new variant in veterinary settings, particularly under pressure caused 

by antibiotic exposure. 

 
4.6.2. Nucleotide sequence accession numbers  
This Whole Genome Sequencing Shotgun project has been deposited at 

DDBJ/EMBL/GenBank under the accession LGYB00000000. The version described in this 

paper is version LGYB01000000. 
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4.7.1. Main Text 
 

Animals are potential reservoirs of antimicrobial resistant bacteria (EFSA/ECDC, 2014; 

Caniça et al., 2015). Studies have shown that different bacterial species of animal origin 

carry oxyimino-β-lactam resistance determinants, including CTX-M-type β-lactamases (Trott, 

2013; Nicholas-Chanoine et al., 2014). Following the alarming emergence of these enzymes 

in veterinary isolates, the use of ceftiofur and cefquinome to treat animal infections has 

become compromised. 

Ceftiofur is a 3rd generation cephalosporin, a critically important class of antibiotics to human 

health. Nevertheless, in cattle, ceftiofur is the most widely used antibiotic for the treatment of 

common diseases (Hornish & Kotarski, 2002). Consequently, several studies demonstrated 

that ceftiofur treatment resulted in increases in resistance to β-lactams and multidrug 

resistance (Donaldson et al., 2006; Jiang et al., 2006; Chambers et al., 2015). 

In this study, we biochemically characterized the new CTX-M-166 β-lactamase detected in a 

ceftiofur-resistant Escherichia coli recovered in May 2014 from a six-week-old Gallus gallus 

broiler flock in an industrial poultry unit in the central region of Portugal. 

E. coli INSLV13072 was non-susceptible to ampicillin (MIC>64mg/L) and oxyimino 

cephalosporins (>32 mg/L for ceftiofur, 8 mg/L for cefotaxime, 4 mg/L for cefepime, and 1 

mg/L for ceftazidime) but susceptible to carbapenems and colistin. The MICs of ceftazidime 

and cefotaxime were reduced by clavulanic acid (≤0.125mg/L and ≤0.06mg/L, respectively).  

The blaCTX-M-166 gene differed from blaCTX-M-1 by one-point mutation, which led to the amino 

acid substitution Ala120Val. To our knowledge, this is the first recorded observation of this 

mutation.  

The kinetic parameters of the purified CTX-M enzymes (purity rate ≥ 95%) (data not shown) 

and the concentrations of inhibitors required to inhibit enzyme activity by 50% (IC50s) are 

shown in Table 4.7.1. CTX-M-166 had strong affinity to penicillin (Km, 14 to 8 µM), piperacillin 

(Km, 6 to 3 µM), cefotaxime (Km, 127 to 69 µM) and ceftiofur (Km, 46 to 15 µM). However, 

catalytic efficiency against these antibiotics was lower for CTX-M-166 than for CTX-M-1. 

Notably, CTX-M-166 had the least decrease in catalytic efficiency against ceftiofur (30.2%) 

compared to that of CTX-M-1, whose value was set at 100% (Table 4.7.1). In contrast, the 

new enzyme had only 2.7% of catalytic efficiency for amoxicillin in comparison with the 

parental enzyme. No hydrolysis was detected against ceftazidime or imipenem. Inhibition 

studies, as measured by determination of the IC50s, showed that CTX-M-1 and CTX-M-166 

were both inhibited by clavulanic acid (0.031 and 0.030 µM, respectively) and tazobactam 

(0.007 and 0.005 µM, respectively).  
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The Ala120Val amino acid substitution, although at distance of the catalytic site, it is located 

in an alpha helix involved in the positioning of the loop harbouring the conserved element 

SDN,  

which plays a major role in proton transfer during the catalytic pocket in class A enzymes 

(Matagne et al., 1998). The Ala120 residue is highly conserved in all CTX-M groups except 

for CTX-M-25-group, were it is replaced by a glycine (D’Andrea et al., 2013). The alanine-to-

valine substitution represents an alteration to a non-reactive amino acid that is often 

associated with binding/recognition of hydrophobic ligands such as lipids, and thus involved 

in increasing the flexibility of protein (Betts & Russel, 2007). The impact of this alteration 

could become more relevant with the accumulation of mutations affecting enzyme activity 

and resistance phenotype which might arise due to antibiotic selection pressure.  

 
Table 4.7.1. Kinetic parameters of CTX-M-166 and CTX-M-1 β-Lactamases. 

 
     
   CTX-M-1a 

 
 

CTX-M-166a 

Substrate kcat (s-1) Km (µM) 
kcat/Km 
(µM-1.s-1) 

 kcat (s-1) Km (µM) 
kcat/Km 
(µM-1.s-1) 

Efficiencyb 
(%) 

 

Penicillin G 

 

87.7 ± 1.8 

 

14 ± 0.5 

 

6.453 
 
 

8.2 ± 0.2 

 

8 ±0.03 

 

0.996 

 

15.4 

Amoxicillin 31.4 ± 0.6 10 ± 0.3 3.097  3.1 ± 0.1 37 ± 0.6 0.084 2.7 

Ticarcillin 7.3 ± 0.4 21 ± 0.1 0.354  0.5 ± 0.002 21 ± 0.03 0.024 6.8 

Piperacillin 32.7 ± 1.2 6 ± 0.5 5.512  2.4 ± 0.01 3 ± 0.2 0.685 12.4 

Cephalothin 598.4 ± 95.1 57 ± 3.0 10.683  81.1 ± 1.4 85 ± 2.3 0.954 8.9 

Cefuroxime 77.6 ± 2.7 17 ± 0.5 4.543  8.0 ± 0.7 36 ± 0.5 0.225 5.0 

Cefotaxime 129.9 ± 0.6 127 ± 1.9 1.021  8.3 ± 0.3 69 ± 1.8 0.124 12.2 

Ceftazidime <0.01 170 ± 2.5 0.000  <0.01 ND ND ND 

Ceftiofur 5.5 ± 0.4 46 ± 1.1 0.120  0.6 ± 0.004 15 ± 0.3 0.036 30.2 

Cefepime 2.3 ± 0.6 26 ± 0.6 0.089  1.6 ± 0.2 102 ± 3.0 0.015 17.3 

Aztreonam 2.1 ± 0.006 29 ± 0.7 0.073  0.2 ± 0.005 41 ± 0.1 0.005 7.0 

Imipenem <0.01 107 ± 8.7 <0.001  <0.01 ND ND ND 
 

  a Values are means ± standard deviations.  
  b Efficiency of CTX-M-166 compared to that of CTX-M-1, which was set at 100%. 
    ND, not determinable because the hydrolysis rates were too low. 
 
4.7.2. Experimental Procedure 

Antibiotic Susceptibility and Molecular Characterization  
Minimum inhibitory concentrations (MICs) of the clinical E. coli I INSLV13072 isolate were 

determined by both agar dilution and microdilution methods to: ampicillin, cefotaxime, 

ceftazidime, cefotaxime/clavulanate, ceftazidime/clavulanate, cefepime, imipenem, 
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meropenem, ertapenem, ciprofloxacin, gentamicin, chloramphenicol, trimethoprim, colistin 

and tigecycline. The interpretation of nonsusceptibility results was performed according to 

the epidemiological cut-off values (ECOFFs) of the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST) (http://mic.eucast.org/Eucast2/). β-lactamase-encoding 

genes were identified by PCR and confirmed by sequencing, as previously described 

(Clemente et al., 2013).  

Cloning experiments 
For comparison, CTX-M-166 (from LV13072) and CTX-M-1 (from LV21400) were expressed 

in an isogenic background. The Zero Blunt® PCR Cloning Kit (Invitrogen) was used to clone 

CTX-M-type PCR fragments into plasmid pCR®-Blunt. Recombinant pCR-CTX-M-type 

plasmids were transformed by heat-shock transformation of chemically competent E. coli 

One Shot®TOP10 cells. E. coli transformants were selected on MacConkey agar 

supplemented with 30 mg/L of kanamycin and 2 mg/L of cefotaxime. The presence and 

orientation of the inserted genes was confirmed by PCR as above described. 

Purification of β-lactamases 
CTX-M-166 and CTX-M-1 β-lactamases were produced overnight, at 37ºC, from E. coli One 

Shot®TOP10 in LB broth, supplemented with 2 mg/L cefotaxime. Both enzymes were 

extracted by ultrasonic treatment, and the clarified supernatant was purified by ion exchange 

and gel filtration chromatography as described elsewhere (Manageiro et al., 2012). 

Determination of β-lactamase kinetic constants 
The Michaelis constant (Km) and catalytic activity (kcat) of CTX-M-1 and CTX-M-166 and the 

concentrations of the inhibitors (clavulanate and tazobactam) required to inhibit enzyme 

activity by 50% (IC50) were determined by a computerized microacidimetric method, as 

described elsewhere (Manageiro et al., 2012). Specific activity and IC50 were monitored with 

penicillin G (200 µM) as the reporter substrate. 

Nucleotide sequence accession number 
The blaCTX-M-166 nucleotide sequence was submitted to DDBJ/EMBL/GenBank with accession 

number NG_048951. 
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ABSTRACT 

Salmonella enterica and Escherichia coli can inhabit humans and animals from multiple 

origins. These bacteria are often associated with gastroenteritis in animals, being a frequent 

cause of resistant zoonotic infections. In fact, bacteria from animals can be transmitted to 

humans through the food chain and direct contact. In this study, we aimed to assess the 

antibiotic susceptibility of a collection of S. enterica and E. coli recovered from animals of 

different sources, performing a genomic comparison of the plasmid-mediated quinolone 

resistance (PMQR)-producing isolates detected. 

Antibiotic susceptibility testing revealed a high number of non wild-type isolates for 

fluoroquinolones among S. enterica recovered from poultry isolates. In turn, the frequency of 

non-wild-type E. coli to nalidixic acid and ciprofloxacin was higher in food-producing animals 

than in companion or zoo animals.  

Globally, we detected two qnrS1 and two aac(6’)-Ib-cr in E. coli isolates recovered from 

animals of different origins. The genomic characterization of QnrS1-producing E. coli showed 

high genomic similarity (O86:H12 and ST2297), although they have been recovered from a 

healthy turtle dove from a Zoo Park, and from a dog showing symptoms of infection. The 

qnrS1 gene was encoded in a IncN plasmid, also carrying blaTEM-1-containing Tn3. Isolates 

harboring aac(6’)-Ib-cr were detected in two captive bottlenose dolphins, within a time span 

of two years. The additional antibiotic resistance genes of the two aac(6’)-Ib-cr-positive 

isolates (blaOXA-1, blaTEM-1, blaCTX-M-15, catB3, aac(3)-IIa and tetA) were enclosed in IncFIA 

plasmids that differed in a single transposase and 60 single nucleotide variants. The isolates 

could be assigned to the same genetic sublineage – ST131 fimH30-Rx (O25:H4), confirming 

clonal spread.  

PMQR-producing isolates were associated with symptomatic and asymptomatic hosts, which 

highlight the aptitude of E. coli to act as silent vehicles, allowing the accumulation of 

antibiotic resistance genes, mobile genetic elements and other relevant pathogenicity 

determinants. Continuous monitoring of health and sick animals towards the presence of 

PMQR should be strongly encouraged in order to restrain the clonal spread of these 

antibiotic resistant strains. 

Keywords: pathogenicity, E. coli, clone, PMQR, multidrug resistance, veterinary 

4.8.1. Introduction 
Antibiotic resistance has been critically increasing over time and now constitutes one of the 

major health concerns worldwide. The uncontrolled use of antibiotics in human and 

veterinary practices, animal production and agriculture and the increasingly easiness in  
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global transportation contributed to the dissemination of multidrug resistant pathogens that 

constitute a risk for humans, animals and the environment (Marshall and Levy, 2011; EFSA, 

2015). Nowadays, antibiotic resistant Salmonella enterica and Escherichia coli are among 

the most problematic zoonotic bacteria, causing severe gastroenteritis in animals and 

humans (EFSA, 2015).  

Fluoroquinolones constitute a group of broad spectrum antibiotics of critical importance, 

presenting applications in both human and veterinary medicines (Poirel et al., 2012b). 

Therefore, resistance might easily emerge in animals and get transferred to humans through 

the food chain and direct or indirect contact. Several examples of such transmission have 

already been documented (Gomes-Neves et al., 2014; Damborg et al., 2015; Schmithausen 

et al., 2015). Fluoroquinolone resistance has emerged rapidly due to two main types of 

mechanisms: mutation of the chromosomal quinolone targets DNA gyrase and 

topoisomerase IV, and acquisition of the transferable plasmid-mediated quinolone resistance 

(PMQR) determinants qnr, qepA, aac(6’)-Ib-cr, and oqxAB (Veldman et al., 2011; Poirel et 

al., 2012b). The alteration of chromosomal quinolone targets can lead to higher levels of 

resistance than PMQRs that are only able to guarantee low-level quinolone resistance. 

However, the ability of the latter to be spread by horizontal gene transfer constitutes a 

serious concern that should be addressed (Poirel et al., 2012b). In fact, antibiotic resistance 

genes are frequently associated to mobile genetic elements such as insertion sequences 

(ISs), phages, transposons and plasmids, which enhance their ability to efficiently spread 

among different bacterial species (Stokes and Gillings, 2011). The most worrying 

mechanisms of resistance, which also show a transboundary spread between animals, 

humans and the environment, are, in fact, encoded by mobile antibiotic resistance genes. 

The occurrence of mobile genetic elements harboring multiple antibiotic resistance genes is 

also frequent, and enables the development of bacterial multidrug resistance, which may be 

responsible for therapeutic failures in animals or humans (Poirel et al., 2012b). 

In animals, as well as in humans, several factors can affect the progression and severity of 

an acute infection. The synchronized presence of antibiotic resistance genes, virulence 

factors, mobile genetic elements and other pathogenicity determinants, is ideal to the 

successful spread of these microorganisms in any environment (Cosentino et al., 2013). 

In this study, PMQR-producing E. coli isolates were gathered from a collection of S. enterica 

and E. coli recovered from food-producing, companion and zoo animals, in the scope of their 

phenotypic and genotypic characterization. To further explore the genetic diversity of these 

isolates, as well as to understand the molecular features contributing to their spread and 

ability to cause infection, complete genomic sequencing was performed. 
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4.8.2. Materials and Methods  
 
Collection of bacterial isolates 
This study included 89 Salmonella enterica isolates recovered from breeders (n=12), broilers 

(n=33), layers (n=33), swine (n=6) and food products of animal origin (n=5) (Table 4.8.1). In 

poultry farms, samples were collected from feces and environment using sterile boots/sock 

swabs. Food products included uncooked fresh products such as minced meat, hamburgers, 

meat cuts, sausages and table eggs, randomly recovered at a variety of retail stores. 

Samples from other animal species (pigeons, partridges, ducks, pets and exotic animals) 

consisted of blood cultures and organs (lung, liver, spleen, kidneys and intestine) collected 

during post-mortem examination. All samples were examined according to ISO norm 

6579:2002 applied to Salmonella detection in food and animal feeding stuffs. After 

biochemical confirmation, Salmonella spp. isolates were sent to the Salmonella National 

Reference Laboratory (INIAV, Lisbon) in triple sugar iron slopes or SMID plates.  

This study also included 91 E. coli isolates (Table 4.8.1) collected from food-producing 

animals [(bovine, swine and poultry), (n=32)], pets [(dogs, cats, horses and cage birds), 

(n=37)] and zoo animals [(terrestrial and aquatic mammals, birds and reptiles), (n=22)]. 

Samples consisted of swabs from organic fluids and cavities, fecal samples, urine samples, 

blood cultures and organs collected during post-mortem examination and submitted for 

bacteriological analysis. Suspected E. coli colonies obtained in MacConkey agar plates were 

confirmed by API 20E strips (bioMérieux, Marcy-l'Étoile, France). 

Serotypes of S. enterica 

S. enterica isolates were serotyped by the slide agglutination method, using the method of 

Kauffmann-White scheme (Grimont and Weill, 2007).  
 

Table 4.8.1. Distribution of the S. enterica (n = 89) and E. coli (n =91) isolates. 
 

 
aSalmonella 4,5:i:- (n=1), Salmonella 6,7,14:-:1,2 (n=1), Salmonella Bradenburg (n=1), 
Salmonella Gallinarum (n=1), Salmonella Give (n=1), Salmonella Hadar (n=1), Salmonella Heidelberg (n=1), 
Salmonella IIIa 48:z10:- (n=1), Salmonella Mbandaka (n=1), Salmonella Rissen (n=2), 
Salmonella Typhimurium (n=3), Salmonella Virchow (n=4). 

 

Source 
S. enterica 

Source E. coli Enteritidis Other serotypesa Total 

      
Breeders 12 0 12 Food  32 
Layers 24 9 33 Companion 36 
Broilers 32 1 33 Zoo  23 
Swine 0 6 6   
Food of animal origin 3 2 5   
Total 71 18 89 Total 91 
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Antibiotic susceptibility testing 

Minimum inhibitory concentrations (MICs) were determined by agar dilution following 

standard recommendations, using a panel of ten antimicrobial compounds: ampicillin, 

cefotaxime, nalidixic acid, ciprofloxacin, gentamicin, streptomycin, chloramphenicol, 

tetracycline, sulfamethoxazole and trimethoprim (Table 4.8.2). Isolates harboring PMQR 

determinants were further studied by determination of the MICs to a larger panel of 

fluoroquinolones, which included moxifloxacin, gatifloxacin, levofloxacin, ofloxacin, 

enrofloxacin and norfloxacin. To assess non-wild-type isolates, interpretation of results was 

performed according to the epidemiological cut-off values suggested by the European 

Committee on Antimicrobial Susceptibility Testing (EUCAST, http://mic.eucast.org/Eucast2/). 

For Salmonella spp., the cut-off value used for sulfamethoxazole was that for sulfonamides 

from Clinical Standards Laboratory Institute (http://clsi.org). MIC50 and MIC90 were calculated 

as reported elsewhere (Schwarz et al., 2010). E. coli ATCC 25922 was used as the quality 

control strain. Isolates were considered multidrug resistant (MDR) if they presented non-wild-

type phenotypes against three or more structurally unrelated antibiotics (Magiorakos et al., 

2011). 

Molecular characterization of resistance 
All isolates were evaluated regarding the presence of qnrA, qnrB, qnrC, qnrD, qnrS, aac(6’)-

Ib-cr, and qepA genes, using primers and conditions previously described  (Jones-Dias et al., 

2013), and oqxAB genes using primers and conditions first described in this study (oqxA-F, 

5’-AGAGTTCAAAGCCACGCTG-3’ and oqxb-R, 5’-CTCCTGCATCGCCGTCACCA-3’; initial 

denaturation of 94ºC for 5 minutes; 94ºC for 30 seconds, 64ºC for 30 seconds and 72ºC for 1 

minute, for 30 cycles; final step of extension of 72ºC for 5 minutes). PMQR-producing 

isolates were also characterized regarding the production of β-lactamase-encoding genes 

and conventional Multilocus sequence typing (MLST), as described elsewhere (Jones-Dias 

et al., 2015). 

Genomic characterization of PMQR-producing E. coli 

The genomes of the four PMQR-producing E. coli (LV46221, LV46743, LV36464 and 

LV27950) were characterized. Genomic DNA was extracted using DNeasy Blood and Tissue 

Kit (Qiagen, Aarhus) and quantified using Qubit 1.0 Fluorometer (Invitrogen, Waltham). The 

Nextera XT DNA Sample Preparation Kit (Illumina, San Diego, CA) was used to prepare 

sequencing libraries from 1ng of genomic DNA, according to the manufacturer's instructions.  

Paired-end sequencing of 150 bp reads was performed on a MiSeq (Illumina). Sequence 

reads were then trimmed and filtered according to quality criteria, and assembled de novo 

using CLC genomics workbench version 8.5.1 (QIAGEN, Aarhus). 

RAST (Rapid Annotation using Subsystem Technology) was used for subsystem annotation 

of the genomes (Aziz et al., 2012; Overbeek et al., 2014).  

https://en.wikipedia.org/wiki/Waltham,_Massachusetts


Chapter 4.8 

 

137 

Identification of pathogenicity-related genes 
Pathogenicity-related genes were detected using a variety of online web tools. 

PathogenFinder 1.1, ResFinder 2.1, VirulenceFinder 1.4, SerotypeFinder 1.1, MLST 1.8, 

pMLST 1.4 and PHAST were used to estimate the pathogenicity determinants, acquired 

antibiotic resistance genes, virulence factors, serotypes, MLST, plasmid MLST and phage 

regions, respectively in the genomes of PMQR-producing E. coli (Zhou et al., 2011; Larsen et 

al., 2012; Zankari et al., 2012; Cosentino et al., 2013; Carattoli et al., 2014; Joensen et al., 

2014; Joensen et al., 2015). ISsaga was also used to detect and annotate insertion 

sequences in the draft genomes of the E. coli isolates (Varani et al., 2011). Specific analysis 

of antibiotic resistance genes and respective flanking regions was carried out with CLC 

genomics workbench version 8.5.1 (Qiagen, Aarhus). Contigs carrying antibiotic resistance 

genes were manually assembled whenever necessary and blasted against GenBank to 

identify their genetic location. 

 
Nucleotide Sequence GenBank Accession Numbers 
The draft genomes of isolates LV46221, LV46743, LV36464 and LV27950 have been 

deposited at DDBJ/EMBL/GenBank under the accessions LRXG00000000, LRXH00000000, 

LRXI00000000 and LRXJ00000000, respectively. The versions described in this paper are 

version LRXG01000000, LRXH01000000, LRXI01000000 and LRXJ01000000, respectively. 

 
4.8.3. Results 
Serotypes of Salmonella spp. 

S. enterica serotype Enteritidis is one of the most common serotype in humans (EFSA, 2015) 

and it was the most frequently detected among the 89 S. enterica isolates (71/89, 79.8%), 

being present in all food animals except swine. The remaining Salmonella serotypes were 

detected in a less extent and were comprised of Salmonella 4,5:i:- (n=1), Salmonella 6,7,14:-

:1,2 (n=1), Salmonella Bradenburg (n=1), Salmonella Gallinarum (n=1), Salmonella Give 

(n=1), Salmonella Hadar (n=1), Salmonella Heidelberg (n=1), Salmonella IIIa 48:z10:- (n=1), 

Salmonella Mbandaka (n=1), Salmonella Rissen (n=2), Salmonella Typhimurium (n=3) and 

Salmonella Virchow (n=4). 

Antimicrobial susceptibility of S. enterica and E. coli isolates 
Susceptibility profiles of S. enterica and E. coli isolates differed with the animal group (Table 

4.8.2). Although high rates of non wild-type S. enterica were detected for nalidixic acid (from 

82% to 100%) and ciprofloxacin (from 64% to 100%) in all groups, they were particularly 

evident in poultry, and predominant in breeders. S. enterica isolates recovered from other 

sources (swine and food products, n=11), showed higher non-wild-type phenotypes for 

ampicillin (36%), streptomycin (64%), tetracycline (45%), sulfamethoxazole (36%) and 
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trimethoprim (27%) (Table 4.8.2). The poultry groups of breeders and broilers were mainly 

susceptible to ampicillin (100%), cefotaxime (100%), gentamicin (100%) and streptomycin 

(100%).    
Table 4.8.2. MIC50 and MIC90 for S. enterica (n =89) and E. coli (n=91) isolates 

 

Antibiotic 

S. enterica 

 

E. coli 

Food animals Food 
animals 
(n=32) 

Zoo  
Animals 
(n=23) 

Companion  
Animals 
(n=36) 

Breeders 
(n=12) 

Broilers 
(n=33) 

Layers 
(n=33) 

Othersa 
(n=11) 

Na        
MIC50 128 128 128 128  8 4 4 
MIC90 128 128 128 128  128 128 128 
% Wt 0 12 6 18  59 77 78 
%N-Wt 100 88 94 82  41 23 22 
Cp        
MIC50 0.25 0.25 0.25 0.25  0.03 0.015 0.015 
MIC90 0.25 0.25 0.25 0.5  8 8 8 
% Wt 0 3 18 36  59 77 72 
%N-Wt 100 97 82 64  41 23 28 
A         
MIC50 2 4 0.5 8  8 8 8 
MIC90 4 4 8 64  64 64 64 
% Wt 100 100 94 64  53 50 53 
%N-Wt 0 0 6 36  47 50 47 
Ct         
MIC50 0.125 0.06 0.125 0.125  ≤0.06 0.06 ≤0.06 
MIC90 0.125 0.125 0.125 2  0.125 0.125 0.125 
% Wt 100 100 94 82  100 95 94 
%N-Wt 0 0 6 18  0 5 6 
G         
MIC50 0.25 0.25 0.25 0.5  0.5 0.5 0.5 
MIC90 0.5 0.5 0.5 1  2 1 1 
% Wt 100 100 100 100  91 91 100 
%N-Wt 0 0 0 0  9 9 0 
St         
MIC50 2 2 4 32  4 4 4 
MIC90 8 4 128 64  256 256 128 
% Wt 100 100 82 36  69 64 86 
%N-Wt 0 0 18 64  31 36 14 
T         
MIC50 2 2 2 4  32 2 2 
MIC90 4 4 4 64  64 64 64 
% Wt 92 100 91 55  47 59 75 
%N-Wt 8 0 9 45  53 41 25 
 
C 

        

MIC50 8 4 8 8  4 8 8 
MIC90 8 8 8 16  64 8 16 
% Wt 100 97 100 91  84 100 92 
%N-Wt 0 3 0 9  16 0 8 
Su         
MIC50 128 128 128 128  16 32 16 
MIC90 128 128 128 >512  >512 >512 >512 
% Wt 92 100 100 64  63 59 78 
%N-Wt 8 0 0 36  38 41 22 
Tp         
MIC50 0.5 0.5 0.5 0.25  0.5 0.5 0.5 
MIC90 0.5 0.5 0.5 32  32 32 32 
% Wt 92 100 100 73  81 68 81 

 

a Others, pigs (n=6) and food products of animal origin (n=5). 
Na, Nalidixic acid; Cp, Ciprofloxacin; A, Ampicillin; Ct, cefotaxime; G, Gentamicin; St, Streptomycin; 
T, Tetracycline; C, Chloramphenicol; Su, sulfamethoxazole; Tp, trimethoprim 
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The frequency of non wild-type isolates was globally higher for E. coli than for S. enterica 

against ampicillin (minimum value of 47% versus 0%, respectively), tetracycline (minimum 

value of 25% versus 0%, respectively), sulfamethoxazole (minimum value of 22% versus 0%, 

respectively) and trimethoprim (minimum value of 19% versus 0%, respectively). Although no 

major discrepancies were noticed for E. coli in rates of non-wild-type isolates for the different 

animal groups, isolates recovered from food animals still presented more non-wild-type 

phenotypes than zoo or companion animals against nalidixic acid (41%), ciprofloxacin (41%), 

tetracycline (53%) and chloramphenicol (16%).  

In S. enterica isolates from poultry, similar MIC50 and MIC90 values were observed for the 

majority of the antibiotics tested; major differences (≥3 fold dilutions) were observed for the 

group “others” for ampicillin (8 and 64mg/L), tetracycline (4 and 64mg/L), sulfamethoxazole 

(128 and >512mg/L) and trimethoprim (0.25 and 32mg/L). For E. coli, the most significant 

differences in MIC50 and MIC90 values were observed for nalidixic acid (4 and 128mg/L), 

ampicillin (8 and 64 mg/L), streptomycin (4 and 128mg/L), tetracycline (2 and 64mg /L), 

sulfamethoxazole (16 and >512mg/L) and trimethoprim (0.5 to 32 mg/L). 

While for S. enterica only 9.0% (8/89) MDR isolates were detected, for E. coli, MDR was 

registered in 38.9% (35/90) of the isolates, which were distributed among 16/90 isolates from 

food-producing animals, 9/90 isolates from companion animals, and 10/90 isolates from zoo 

animals.  

Molecular characterization of S. enterica and E. coli isolates 

Overall, among the 180 isolates studied, we have detected and identified four PMQR 

determinants in E. coli isolates: two qnrS1 were detected in isolates recovered from a captive 

turtle dove (LV46221) and a pet dog (LV46743), and two aac(6´)-Ib-cr  were isolated from E. 

coli recovered from captive bottlenose dolphins (LV36464 and LV27950). The detection of β-

lactamase-encoding genes showed the presence of blaTEM-1 in isolates LV46221 and 

LV46743, and blaTEM-1, blaOXA-1 and blaCTX-M-15 in LV36464 and LV27950. No other PMQR- or 

β-lactamase-encoding genes were identified in the collection of E. coli and S. enterica 

isolates. 

Genomic characterization of QnrS1-producing E. coli 

The assembly of the genome sequences of the two qnrS1-harboring E. coli, LV46221 and 

LV46743, yielded 200 and 199 contigs (each >200 bp long), which together comprised 

4,799,985 bp and 4,801,518 bp, respectively. The average coverage of LV46221 was 135.9, 

while LV46743 displayed 114.1 fold. The maximum contig length obtained for these 

genomes was 398,205 bp and 333,601 bp, respectively (Table 4.8.3). 

The automated annotation of the draft genomes showed that LV46221 (63%, 2,879/4,618) 

and LV46743 (63%, 2,873/ 4,609) presented a similar number of sequences attributed to 

specific subsystems. General annotation of both genomes showed 109 coding sequences 
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associated with virulence, disease and defence, as well as 143 sequences coding for 

functions related with mobile genetic elements, such as phages, prophages, transposable 

elements and plasmids. Globally, the proportion of each subsystem was equally represented 

in the genomes of the two isolates.  

 
Table 4.8.3. Genome analysis of E. coli LV46221, LV46743, LV36464 and LV27950. 

 

 
Isolates 
 

LV46221 LV46743 LV36464 LV27950 

 
Genome size (bp) 
 

4,799,985 4,801,518 5,180,399 5,156,819 

Number of contigs 
 200 199 136 209 

Average coverage 
 135.9 114.1 178.7 150.1 

N50 (bp)a 

 119,356 119,356 158,975 158,977 

Maximum contig 
(bp) 
 

398,205 333,601 399,998 369,918 

Minimum contig 
(bp) 
 

208 201 486 218 

Protein-coding 
genes 
 

4618 4609 5107 5069 

 
RNAs 77 86 77 76 

                                     
a Minimum contig length of at least 50% of the contigs. 

 

 

According to RAST annotation system, LV46221 and LV46743 isolates carried 77 and 86 

RNAs, respectively. The bioinformatics analysis of the genetic relatedness was carried out 

with regard to serotype and MLST: the serotypes of both isolates were defined as O86:H12, 

and they also shared the assigned MLST - ST2297 (Table 4.8.4).  

In silico analysis of the antibiotic resistance genes (90% identity and 40% minimum length) 

confirmed the presence of a qnrS1, and identified blaTEM-1 gene in both isolates (Table 4.8.4).  

qnrS1 was detected in a contig with an approximate length of 11,000 bp in both cases, 

showing 99% of homology with a resistance region from S. enterica subsp. enterica serovar 

Infantis pINF5 plasmid. 

By mapping all contigs against this plasmid, we detected blaTEM-1- containing Tn3, and a 

disrupted IS2-like element upstream of qnrS1, as well as IS26 transposase downstream of 

the gene. Other contigs showed complementary regions, revealing the presence of a 

fragment encoding conjugation transfer genes upstream of Tn3 that showed homology with 

S. Virchow plasmid pVQS1 (99%).  
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LV46221 and LV46743 showed no additional PMQR or other acquired antibiotic resistance 

genes. Moreover, no mutations were detected in the quinolone resistance determining region 

(QRDR) of genes gyrA, gyrB, parC and parE, which are known to confer high level 

resistance to fluoroquinolones (Veldman et al., 2011). The isolates were also characterized 

with regard to specific mobile genetic elements of different classes. The screening of typable 

plasmids (>98% homology) enabled the identification of IncN plasmids, which were further 

typed as ST1 by pMLST (Table 4.8.4). ISsaga allowed the specialized annotation of insertion 

sequences and revealed a different distribution of the same elements for LV46221 and 

LV46743: IS1 (3.23% and 1.96%, respectively), IS200_IS605 (3.23% and 3.92%, 

respectively), IS21 (3.23% and 3.92%, respectively), IS3 (24.19% and 21.57%, respectively), 

IS4 (3.23%  and 3.92%, respectively), IS481 (1.61% and 1.96%, respectively), IS5 (1.61% 

and 1.96%, respectively), IS6 (1.61% and 1.96%, respectively), ISAs1(27.42% and 27.45%, 

respectively), ISKra4 (6.45% and 5.88%, respectively), ISL3 (12.9% and 9.8%, respectively), 

ISNCY (9.68% and 11.76%, respectively) and finally Tn3 (1.61% and 1.96%, respectively). 

ISAs1 was the most frequent element detected in both isolates, and IS66 was exclusively 

detected in LV46743 (1.96%). Moreover, in LV46221 we identified ten prophage regions 

among which three were questionable but seven were intact. The latter included prophage 

regions reaching up to 90.6Kb, containing 133 coding sequences (Table 4.8.5). In turn, in 

LV46743, 14 different prophages were detected that included one questionable, four 

incomplete and nine intact phage regions; intact zones ranged between regions of 10.4Kb 

carrying 12 coding sequences, and 70.3Kb with 88 protein coding DNA fragments. Overall, 

among the prophages showing higher scores for both genomes were serotype-converting 

Shigella flexnerri bacteriophage and Enterobacteria lambda phages (Table 4.8.5).   

The total number of pathogenicity determinants, which according with PathogenFinder 

includes, for instance, virulence factors, antibiotic resistance genes and mobile genetic 

elements, detected a similar number of sequences in the genomes of E. coli LV46221 and 

LV46743: 607 and 611 different pathogenic families showed a 93.5% certainty of the isolates 

being human pathogens. Finally, the virulence factor glutamate decarboxylase (gad) was 

detected in both isolates, while the increased serum survival factor iss was exclusively 

identified in LV46221 (Table 4.8.4). 
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Table 4.8.4. G
eneral features of PM

Q
R

-harboring E
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o
li isolates recovered from
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als of different sources. 
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p, ciprofloxacin; G

a, gatifloxacin; Le, levofloxacin; O
f, ofloxacin; Ef, enrofloxacin; N

a, nalidixic acid; Nx, norfloxacin. 
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M
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      Table 4.8.5. Representation of intact phage regions detected in the draft genome of 
LV46221, LV46743, LV36464 and LV27950. 

 

Genomic characterization of Aac(6’)-Ib-cr-producing E. coli 

The genome sequences of isolates LV36464 and LV27950, which were known to produce 

Aac(6’)-Ib-cr and CTX-M-15, were also compared. Their de novo assembly yielded 

5,180,399 bp for LV36464 and 5,156,819 bp for LV27950 and displayed a mean coverage of 

178.6 and 150.1 fold, respectively. Approximately, 136 and 209 contigs (each >200 bp long) 

Phage 
regions 

Region length 
(Kb) Score 

Number of coding 
sequences 

Accession 
number 

LV46221 
1 30.4 100 36 NC_003315 
2 19.4 100 23 NC_016158 
3 14.7 100 17 NC_001416 
4 58.9 150 67 NC_021857 
5 54.1 150 50 NC_010463 
6 37.9 150 39 NC_001416 
7 90.6 150 133 NC_001416 
LV46743 
1 10.4 96 12 NC_001609 
2 19 100 21 NC_001416 
3 24.7 100 35 NC_010463 
4 18.6 110 28 NC_028943 
5 54.5 100 37 NC_022747 
6 48.4 150 56 NC_021857 
7 21.9 130 29 NC_016158 
8 43 150 44 NC_001416 
9 70.3 150 88 NC_001416 
LV36464 
1 33.9 150 46 NC_001895 
2 46.8 120 34 NC_026014 
3 36.8 93 54 NC_009237 
4 31.8 150 36 NC_001416 
5 49.4 150 61 NC_019522 
6 17.4 140 24 NC_004813 
7 44.7 150 38 NC_004813 
8 51.1 150 88 NC_019716 
LV27950 
1 68.5 150 80 NC_019522 
2 34.7 150 26 NC_019716 
3 33.9 150 44 NC_022750 
4 40.6 120 32 NC_026014 
5 34.7 150 46 NC_005882 
6 25.3 150 29 NC_004813 
7 25.2 110 38 NC_001416 
8 20.6 150 30 NC_001416 
9 58.3 150 90 NC_019716 
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were recovered for LV36464 and LV27950 with a maximum contig length of 399,998 bp and 

369,918 bp, respectively (Table 4.8.3). 

The automated annotation of the genomes showed a total number of coding sequences of 

5,107 for LV36464 and 5,069 for LV27950, excluding 77 and 76 annotated RNA molecules. 

The distribution of the annotated coding sequences by subsystem showed an identical 

representation of functions in both isolates (LV36464: 368%, 3,062/5,107; LV27950: 61%, 

3,081/5,069).  

The serotypes of the LV36464 and LV27950 isolates obtained upon the analysis of fliC, wzy 

and wzx genes, were defined as O25:H4. The epidemiology and diversity of E. coli isolates 

was also explored, assigning both of them to ST131 and to sublineage fimH30-Rx. 

Globally, in isolates LV36464 and LV27950 seven different acquired antibiotic resistance 

genes were detected: aac(6')Ib-cr, blaOXA-1, blaTEM-1, blaCTX-M-15, catB3, aac(3)-IIa and tetA. By 

mapping, the main difference between the plasmids carried by these isolates was the 

deletion of a 2,400 bp sequence that displayed 99.7% homology with the transposase of 

Tn5403. Moreover, 60 single nucleotide variants have been detected between them. Both 

plasmids displayed an IncF plasmid from a ST131 E. coli isolate (JJ2434, unpublished) as its 

best blast hit. The comparative analysis with JJ2434 showed the absence of two regions of 

9,329 bp and 1,740 bp that corresponded to deletions of genes coding for unknown 

functions, replication proteins, endonucleases, transcriptional regulators, and conjugation 

transfer proteins in LV36464 and LV27950 plasmids. The analysis of the QRDR of genes 

gyrA (from 67 to 106 aminoacids), gyrB (from 415 to 470 aminoacids), parC (from 47 to 133 

aminoacids) and parE (from 450 to 528 aminoacids) revealed the presence of amino acid 

substitutions in gyrA (S83L and D87N) and parC (S80I and E84V) in both isolates. 

A high number of mobile genetic elements was detected in the draft genomes of these 

isolates. Both harboured a plasmid (>98% homology) from incompatibility group IncFIA, 

which according to PlasmidFinder was classified as an IncFIA type 1. LV36464 

accommodated an additional IncX plasmid. The distribution of insertion sequences present in 

LV36464 and LV27950 genomes was also globally similar: IS1 (5.77% and 5.66%, 

respectively), IS110 (3.85% and 1.89%, respectively), IS1380 (1.92% and 1.89%, 

respectively), IS200_IS605 (5.77% and 3.77%, respectively), IS21 (3.85% and 3.77%, 

respectively), IS3 (23.08% and 26.42%, respectively), IS30 (1.92% and 3.77%, respectively), 

IS4 (5.77% and 3.77%, respectively), IS481 (3.85% and 3.77%, respectively), IS6 (1.92% 

and 1.89%, respectively), IS66 (11.54% and 11.32%, respectively), ISAs1 (1.92% and 

1.89%, respectively), ISL3 (19.23% and 18.87%, respectively) and ISNCY (9.62% and 

9.43%, respectively). It is worth mentioning that the worldwide disseminated Tn3 was only 

represented in the genome of LV36464 (3.39%), and IS92 (1.89%) in LV27950. The 

specialized annotation of phage and prophages revealed that LV36464 harboured 17 

regions: 8 intact, 6 incomplete and 4 questionable. These intact prophage regions ranged 
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between 17.4Kb and 51.5Kb, showing different numbers of coding sequences that varied 

between 24 and 88. In turn, LV27950 harboured 13 prophage regions: it displayed ten intact 

regions spanning between 20.6 to 86.1Kb. Globally, regions from five phages were present 

in the genomes of both and two were exclusive of each isolate (Table 4.8.5).  

The detection of virulence factors in the genome of LV27950 revealed the presence of an 

increased serum survival factor provided by an ISS-encoding gene and a secreted 

autotransporter toxin denominated sat (Table 4.8.4). LV36464 shared the same virulence 

factors and, in addition, harboured a glutamate descarboxilase-encoding gene (gad). The 

overall estimation of pathogenicity factors present in the genome of the isolates, using known 

proteins with recognized involvement in pathogenicity as reference, enabled us to determine 

that the assembled contigs of LV36464 and LV27950 matched 553 and 544 pathogenic 

families, which resulted in the estimation of both isolates being human pathogens (93.1% 

and 93.3%), confirming their zoonotic potential. 

 

4.8.4. Discussion 
The prevalence of antibiotic resistance genes in isolates from animal origin has been fairly 

assessed (Szmolka et al., 2011; Tamang et al., 2011a; Tamang et al., 2011b; Bardoň et al., 

2013; Clemente et al., 2015). However, taking in account the current availability of genomic 

characterization tools, we are now able to proceed with more detailed characterizations of 

these genes, in a broader context. In this study, we characterized the genome of PMQR-

producing E. coli. To understand the antibiotic susceptibility background of these specific 

isolates we have also evaluated the antibiotic susceptibility phenotypes of a collection of S. 

enterica and E. coli recovered from animals of different origins, in which the isolates were 

originally included. 
The levels of non-wild type phenotypes revealed to be very distinct among S. enterica and E. 

coli. Non wild-type isolates for fluoroquinolones were particularly evident among poultry 

isolates recovered from S. enterica. Regarding E. coli isolates, the frequency of non-wild-

type phenotypes to nalidixic acid and ciprofloxacin was higher in food-producing animals 

than in companion and zoo animals, which might be due to the high consumption of 

veterinary antibiotics in animal industrial units, particularly tetracyclines, sulphonamides and 

fluoroquinolones (EFSA, 2015). Portugal still represents a European country with high 

antibiotic use in animals. This fact raises concerns regarding antibiotic resistance in 

veterinary settings (EMA, 2014). Different MIC50 and MIC90 (3-fold dilutions) were noted for 

some groups of each species: E. coli isolates for nalidixic acid, ciprofloxacin, ampicillin, 

streptomycin, tetracycline, sulfamethoxazole and trimethoprim, and S. enterica for ampicillin, 

cefotaxime, tetracycline and trimethoprim.  

Although PMQR determinants are typically responsible by low level resistance, their 

presence has been increasingly reported in animals, resulting in an additional effect on the 
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nonsusceptibility of fluoroquinolones (Ahmed and Shimamoto, 2013; Donati et al., 2014; 

Jamborova et al., 2015). The high MIC values of 128mg/L against nalidixic acid and 8 mg/L 

against ciprofloxacin observed in some of the isolates of our collection may be associated 

with amino acid alterations in the quinolone resistance-determining region (QRDR). Indeed, 

although the fluoroquinolone nonsusceptibility is frequently compromised by target 

modification, the PMQR-encoding genes have the potential to spread and promote co-

selection of other antibiotic resistance genes (EMA, 2014). Late reports even suggest that 

the spread of PMQR may not be triggered by selection pressure, which justifies the low rates 

of these determinants in animals, despite the high use of fluoroquinolones (Veldman et al.,

2011).  

Considering the high level MICs, most likely caused by QRDR chromosomal mutations that 

might mask the presence of PMQR, we decided in this study to retrospectively search for 

these determinants in all isolates of the collection, regardless of the MIC value. We have 

detected four PMQR-encoding genes (4/180) (two qnrS1 and two aac(6’)-Ib-cr) in E. coli 

LV46221, LV46743, LV36464 and LV27950 recovered from animals of different origins: a 

healthy turtle dove from a Zoo Park (2008), a diseased pet dog (2008), a bottlenose dolphin 

from a Zoo Park showing signs of respiratory infection (2009), and a second but healthy 

bottlenose dolphin from the same Zoo Park (2011) (Table 4.8.4).  

The comparison of the genomes of QnrS1-producing E. coli revealed that isolates LV46221 

and LV46743 were very similar in terms of their global pathogenicity potential, although they 

were recovered from animals of different classes and completely different backgrounds 

(Table 4.8.4). The absence of chromosomal mutations in the QRDR of isolates LV46221 and 

LV46743 corroborated the low fluoroquinolone MIC values obtained, which spanned between 

0.38g/L for ciprofloxacin and 8g/L for nalidixic acid, highlighting the low level resistance 

conferred by QnrS1 determinants (Cavaco and Aarestrup, 2009). The plasmid region in 

which the qnrS1 was enclosed in both isolates, that included the association with Tn3, has 

already been described in association with qnrS1 genes in plasmids from Shigella flexneri

recovered from food products, Salmonella Infantis from avian origin, and human clinical 

Klebsiella pneumoniae isolates, respectively (Hata et al., 2005; Chen et al., 2006; 

Kehrenberg et al., 2006). Moreover, we have previously detected other qnrS1 from animals 

in Portugal, associated with a similar genetic environment, exclusively in food-producing 

animals (Jones-Dias et al., 2013). IncN plasmids harbored by LV46221 and LV46743 were 

assigned to ST1 by pMLST, which have also been associated with chickens and wild bird 

water in Czech Republic and the Netherlands, respectively (Ben Sallem et al., 2014).  

Few genomic differences were noticed between the two aac(6’)-Ib-cr- and blaCTX-M-15-

harboring E. coli. In fact, the isolates could be assigned to the same genetic sublineage – 

ST131 fimH30-Rx, confirming clonal spread. Although samples have been recovered within a 

reasonable time span of 2 years, their origin refers to two bottlenose dolphins of the same 
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species held captive in the same Zoo Park. The presence of four chromosomal alterations in 

the QRDR region of isolates LV36464 and LV27950 was reflected in the high levels of 

fluoroquinolone MICs, which ranged between 8mg/L and >256mg/L. All antibiotic resistance 

genes detected in LV36464 and LV27950 (aac(6')Ib-cr, blaOXA-1, blaTEM-1, blaCTX-M-15, catB3, 

aac(3)-IIa and tetA) could be traced back to a single multidrug resistance IncFIA plasmid that 

showed 99.9% of homology with a plasmid submitted this year to Genbank in U.S.A (JJ2434, 

unpublished). Although 60 single nucleotide variants have been detected between the 

LV36464 and LV27950 plasmids, the main difference consisted of a single deletion that 

involved part of a transposase-encoding gene. The absence of a set of conjugation transfer 

proteins (tra genes), among other genes, highlighted the preponderance of clonal spread 

over horizontal gene transfer in ST131 E. coli (Nicolas-Chanoine et al., 2014). Although 

several isoforms of identical plasmids have been detected worldwide, the simultaneous 

resistance to β-lactams, fluoroquinolones, aminoglycosides, chloramphenicol and 

tetracyclines has been a permanent feature, which reinforces the advantage that it confers 

(Boyd et al., 2004; Zhou et al., 2015). The detection of a ST131 fimH30-Rx E. coli in two 

dolphins, which are continuously in contact with a live audience, constitutes a public health 

concern. These clinically relevant multidrug resistant E. coli isolates have been on the rise for 

years (Nicolas-Chanoine et al., 2014). Initially restricted to clinical contexts, recent findings 

suggest that their prevalence in non-clinical settings is maintained by the constant exchange 

of isolates throughout the time, as verified in this study (Mathers et al., 2015).  

Although E. coli is a common inhabitant of the gastrointestinal tract of humans and animals, 

the detected transposons, plasmids and bacteriophages are essential to the acquisition of 

pathogenicity factors that enlarge their ability to adapt to new niches, allowing bacteria to 

increase the capacity to cause a broad spectrum of diseases (Bien et al., 2012). All isolates 

displayed genomic factors that may be critical to cause a zoonotic infection and that were 

reflected in high probabilities for the isolates to be human pathogens (>93%). Concerning 

virulence factors, we detected the presence of glutamate decarboxylase, increased serum 

survival gene and a secreted autotransporter toxin, irregularly distributed across the four 

isolates (Table 4.8.3), which did not denote any relation with the conditions of their respective 

hosts. These virulence factors confer resistance to extreme acid conditions of the intestines, 

enable the isolate to survive complement system and cause defined damage to kidney 

epithelium, being indicative of their ability to cause disease (Johnson et al., 2008; Becker 

Saidenberg et al., 2012). Indeed, E. coli isolates can frequently encode a number of 

virulence factors, which enable the bacteria to colonize the urinary tract and face highly 

effective host defenses (Bien et al., 2012). 

Although fluoroquinolones are consistently used in veterinary medicine, results presented in 

this study indicate that PMQR determinants occurred at a low frequency in these isolates 

(2.2%), as previously reported (Donati et al., 2014; Jamborova et al., 2015). However, the 

http://www.thesaurus.com/browse/irregularly
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studied groups of animals should still be considered potential reservoirs for PMQR-producing 

isolates, especially because there is the inherent potential for transboundary dissemination. 

These isolates presented a set of genetic features essential to promote their own successful 

spread: multiple antibiotic resistance genes carried by well-known mobile genetic elements, 

virulence factors adequate to zoonotic transmission and numerous other pathogenicity 

factors.  

The analysis of many bacterial genomic features showed us great genetic relatedness 

between the two qnrS1- and aac(6’)-Ib-cr-harboring isolates. The data gathered throughout 

this study illustrates two scenarios: the presence of the same strain in different hosts 

inhabiting remote locations and the persistence of a unique strain in a single niche during a 

long period of time. The strains were each associated with a case of symptomatic infection 

(LV46743 and LV36464) and with a report of microbiological control of an asymptomatic host 

(LV46221 and LV27950), which reinforces the ability of E. coli isolates to act as silent 

vehicles, allowing the accumulation of antibiotic resistance determinants, mobile genetic 

elements and other relevant pathogenicity determinants (Mathers et al., 2015). It is not 

certain whether these bacteria spread from humans to animals, between different animals or 

from the environment to animals. However, in the case of companion animals, but 

particularly zoo animals, surveillance is essential to prevent continuous dissemination. The 

contact between animals and owners, zookeepers, visitors and handlers raises concerns, 

considering that these bacteria might easily spread to humans and to other animals 

(Veldman et al., 2011; Ewers et al., 2012). 

Overall, permanent surveillance of health and sick animals should be strongly encouraged, 

regardless of their origin, in order to monitor future trends in the dissemination of resistance 

to fluoroquinolones and other antibiotics. 
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ABSTRACT 

 

Morganella morganii is a commensal bacterium and opportunistic pathogen often present in 

the gut of humans and animals. We report the 4.3Mbp draft genome sequence of a M. 

morganii isolated in association with an Escherichia coli from broilers in Portugal that showed 

macroscopic lesions consistent with coliseptisemia. The analysis of the genome matched the 

multidrug resistance phenotype and enabled the identification of several clinically important 

and potentially mobile acquired antibiotic resistance genes, including the plasmid-mediated 

quinolone resistance determinant qnrD1. Mobile genetic elements, prophages and 

pathogenicity factors were also detected, improving our understanding towards this human 

and animal opportunistic pathogen.  

 
Keywords:  qnrD1, plasmid, multidrug resistance, Morganella morganii, WGS 

 
4.9.1. Introduction 
The Gram negative Morganella morganii belongs to the tribe Proteeae of the family 

Enterobacteriaceae (O’Hara et al., 2000). This species, along with other elements of Proteus 

and Providencia genera can be found in the normal flora of humans, reptiles and in the wider 

environment (O’Hara et al., 2000; Lee et al., 2006; Dipineto et al., 2014). However, M. 

morganii isolates also constitute clinically relevant opportunistic pathogens, which can cause 

a variety of infections. Nosocomial outbreaks have been reported, suggesting that infections 

caused by M. morganii can lead to major clinical problems, such as wounds, urinary tract 

infections and septicemia (Nicolle, 2001; Tsanaktsidis et al., 2003; Falagas et al., 2006; Lee 

et al., 2006; Lin et al., 2015). 

This bacterium has also been associated with infections in animals and with human animal 

bite wound infections, which suggests that M. morganii may also cause zoonotic infectious 

diseases (Ono et al., 2001; Choi et al., 2002; Abrahamian and Goldstein et al., 2011; Zhao et 

al., 2012; Di Ianni et al., 2015). 

Several factors can affect the progression and severity of an infection. The presence of 

pathogenicity determinants is essential to the success of M. morganii in any environment, 

particularly in food animal farms, where the pressure caused by antibiotic treatments and the 

lack of prophylactic measures to avoid the spread of infectious diseases are usually 

noteworthy (Chen et al., 2012; Lin et al., 2015). It is globally accepted that horizontal gene 

transfer plays an important role in the dissemination of antibiotic resistance genes and 

pathogenicity factors (Huddleston, 2014). Considering that M. morganii may share the habitat 

with other clinically relevant pathogens, the investigation of any multidrug resistant isolate 

recovered from poultry is an important assignment.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Huddleston%20JR%5Bauth%5D
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Resistance to quinolones and fluoroquinolones has been increasingly reported among 

human and veterinary isolates, very likely as a consequence of the great usage of those 

antibiotics (Tamang et al., 2011a). The qnrD gene, now denominated qnrD1 due to the report 

of a second variant of the gene (Abgottspon et al., 2014), is a relatively uncommon antibiotic 

resistance gene, which has been described in members of the Proteeae family from different 

origins (Mazzariol et al., 2012; Zhang et al., 2013; Nasri Yaiche et al., 2014). This plasmid-

mediated quinolone resistance (PMQR) determinant encodes a protein that protects DNA 

gyrases and topoisomerases from quinolone inhibition (Cavaco et al., 2009; Jacoby et al., 

2014). Carriage of PMQR-encoding genes frequently confers modest increases to the 

minimum inhibitory concentrations (MIC) of fluoroquinolones (Poirel et al., 2012b). Current 

studies have identified the environment, particularly animals and aquatic habitats, as a 

reservoir of PMQR genes (Poirel et al., 2012b). 

The aim of this study was to investigate the molecular background sustaining the multidrug 

resistance and pathogenicity of a M. morganii isolate. In this study, we report the antibiotic 

susceptibility and the draft genome sequence of a qnrD1-harboring avian isolate. The data 

gathered from bioinformatics analysis may improve our understanding towards this 

opportunistic pathogen. 

 

4.9.2.  Material and Methods 
 

Bacterial isolation, antibiotic susceptibility and molecular characterization 
M. morganii INSRALV892a was recovered in association with E. coli INSRALV892b in 2012 

from a 13-days old broiler, recovered from a poultry industrial unit in Portugal. Samples 

consisted of organs (macerates of liver and spleen) collected during post-mortem 

examination that were submitted for bacteriological analysis. During post-mortem 

examination, the birds showed macroscopic lesions consistent with coliseptisemia: 

aerosaculitis, acute enteritis, perihepatitis and fibrinous peritonitis. Suspected 

Enterobactericeae colonies obtained in MacConkey agar plates were isolated in non 

selective media and identification was performed using API 20E strips (BioMérieux, Marcy-

l'Étoile). 

MICs were determined for both isolates by agar dilution method to ten antibiotics: ampicillin, 

cefotaxime, ceftazidime, meropenem, ciprofloxacin, gentamicin, chloramphenicol, 

trimethoprim, colistin and tigecycline. To assess nonsusceptibility, interpretation of results 

was performed according to the clinical breakpoints of the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) (http://www.eucast.org). 

PMQR [QnrA, QnrB, QnrC, QnrD, QnrS, QepA, OqxAB and Aac(6’)-Ib-cr]-, β-lactamase 

(TEM, SHV, OXA-G1 and CTX-M)-, and integrase (class 1, 2 and 3)-encoding genes 

wereidentified by PCR and confirmed by sequencing using DNA of both isolates, as 

previously described (Clemente et al., 2013).  
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The transference ability of specific antibiotic resistance genes from M. morganii 

INSRALV892a and E. coli INSRALV892b was assessed by broth mating out assays using E. 

coli J53 NaN3R as recipient strain, as described elsewhere (Jones-Dias et al., 2016). 

Resistant J53 E. coli transconjugants were then selected on MacConkey agar plates 

containing amoxicillin (100 mg/l) or ciprofloxacin (0.06 mg/l) together with sodium azide (200 

mg/l), according with the antibiotic susceptibility profile of the donor isolates. To confirm the 

acquisition of the antibiotic resistance genes, we detected and identified the determinants in 

the transconjugants, following the methodology described above in this section. 

 

Genome sequencing and analysis  
Genomic DNA of M. morganii INSRALV892a was extracted using DNeasy Blood and Tissue 

Kit (Qiagen, Aarhus), and DNA quantification was performed by Qubit Fluorometric 

Quantitation (Thermo Fisher Scientific, Carlsbad), according to the manufacturer's 

instructions. Libraries were prepared from 1 ng of genomic DNA using the Nextera XT DNA 

Sample Preparation Kit (Illumina, San Diego), also following manufacturer's instructions. 

Whole Genome Sequencing (WGS) was performed using 150 bp paired-end reads on a 

MiSeq (Illumina, San Diego).  

Sequence reads were then trimmed and filtered according to quality criteria. Briefly, reads 

were assembled de novo using CLC genomics workbench version 8.5 (Qiagen, Aarhus), 

which is based on Smith and Waterman algorithm. The raw FASTQ reads were first 

processed by quality score trimming (quality score limit = 0.05), removing all reads containing 

more than 2 ambiguous nucleotides or shorter than 50 bp. Trimmed reads were then de novo 

assembled with automatic bubble, word size and paired distance detection, using mapping 

mode “map reads back to contigs” (including scaffolding, and minimum contig length of 400 

nucleotides). The NCBI prokaryotic genome automatic annotation pipeline (PGAAP) was 

used for annotation (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/). All de novo 

contigs were BLAST searched against the GenBank’s non-redundant nucleotide collection 

(nr/nt). PathogenFinder 1.1, ResFinder 2.1 and PlasmidFinder 1.3 were used to estimate the 

number and type of pathogenicity determinants, antibiotic resistance genes and plasmids, 

respectively, within the genome (Zankari et al., 2012; Cosentino et al., 2013; Carattoli et al., 

2014). PHAST search web tool was used to identify and annotate any prophage sequence 

present in the draft genome (Zhou et al., 2011). ISsaga semi-automatic annotation system 

was also applied to detect the presence of insertion sequences (IS) (Varani et al., 2011). 

Contigs containing antibiotic resistance genes were searched for identity through blastn 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) against the nr/nt NCBI database, and further mapped 

against the closest bacterial plasmids or genomes using CLC Genomics Workbench version 

8.5.  
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Nucleotide Sequence GenBank Accession Numbers 
This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under 

the accession LGYC00000000. The version described in this paper is the LGYC01000000 

(http://www.ncbi.nlm.nih.gov/nuccore/LGYC00000000.1). 

 

4.9.3. Results and Discussion 
M. morganii INSRALV892a was found to be nonsusceptible to ampicillin (>64mg/L), 

cefotaxime (>4mg/L), ceftazidime (2mg/L), ciprofloxacin (>8mg/L), chloramphenicol 

(16mg/L), gentamicin (>32mg/L), trimethoprim (>32mg/L), colistin (>16 mg/L) and tigecycline 

(0.5 mg/L). However, it is important to highlight that M. morganii is intrinsically resistant to 

colistin, while tigecycline has also been shown to have poor activity against this species 

(http://www.eucast.org). Among the antibiotics tested, the isolate was susceptible only to 

meropenem (0.125mg/L). The E. coli INSRALV892b was also characterized with regard to 

antibiotic susceptibility and found to be nonsusceptible to ampicillin (>64mg/L), cefotaxime 

(>4mg/L), ceftazidime (2mg/L) and trimethoprim (>32mg/L), and susceptible to meropenem 

(≤0.03mg/L), ciprofloxacin (0.125mg/L), chloramphenicol (≤8mg/L), gentamicin (≤0.5mg/L), 

colistin (≤1 mg/L) and tigecycline (0.5mg/L). The molecular characterization of the isolates 

showed the presence of qnrD1 and a class 2 integron in M. morganii INSRALV892a, and 

blaCTX-M-1 gene flanked by an ISEcp1 and orf477, as well as a class 1 integron in E. coli 

INSRALV892b. Conjugation experiments only revealed the transference of blaCTX-M-1 from E. 

coli INSRALV892b to isogenic J53 E. coli strain. 
The WGS assembly of M. morganii INSRALV892a yielded 74 contigs (each >200 bp long 

and >100-fold coverage), which together comprised 4,267,817bp, showing a GC content of 

50.6%. The largest contig was 523,676bp long and the N50 statistic, which stands for the 

minimum contig length of at least 50% of the contigs, was 342,352bp. The average length of 

the obtained contigs was 34,190bp. Among the obtained data, six contigs, ranging from 802 

to 8,575 in length and showing a minimum coverage of 117.7 fold, matched plasmid 

sequences of different species. Overall, the genome sequence comprised 4,116 putative 

genes, among which 3,950 consisted of protein encoding sequences. 

In silico analysis of the antibiotic resistance genes (90% identity and 40% minimum length) 

revealed the presence of loci for acquired resistance to aminoglycosides (aadA1y, aph(3')-Ic, 

and strA-strB), β-lactam (blaOXA-1), fluoroquinolones (qnrD1, aac(6’)-Ib-cr), phenicols (catA2 

and catB3), rifampicin (Δarr), sulphonamides (sul2), trimethoprim (dfrA1), tetracycline (tetY) 

and streptothricin (sat2). Nonsusceptibility to third generation cephalosporins such as 

cefotaxime and ceftazidime was not associated to any extended-spectrum β-lactamase, 

suggesting the involvement of inducible or stably derepressed M. morganii chromosomal 

ampC gene, the blaDHA-type gene (Harris & Ferguson, 2012). 

http://www.ncbi.nlm.nih.gov/nuccore/LGYC00000000.1
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The dfrA1, catB2, sat2, and aadA1y genes were enclosed in an In2-17 class 2 integron that 

has already been described, for instance, in Proteus vulgaris isolates from China 

(HQ386830) (Figure 4.9.1A). Genes encoding resistance to tetracycline (tetY) and 

streptomycin (strA-strB) were detected in association with each other, and with proteins 

linked to DNA transfer processes, such as ISAba14 and an incomplete Tn5393 (Figure 

4.9.1B). The sulphonamide resistance gene sul2 was flanked upstream by a glmM-

containing region and ISCR2, while the downstream region consisted of a chromosomal 

region typical of M. morganii (Figure 4.9.1C); the glmM gene (formerly called ureC) encodes 

a phosphoglucosamide mutase that is considered a housekeeping gene essential for the cell 

wall synthesis (Tavares et al., 2003). 

The aminoglycoside resistance gene aph(3’)-Ic was associated to an IS26 IR and a unknown 

orf (Figure 4.9.1D), and the genes Δarr, catB3, blaOXA-1 and aac(6´)-Ib-cr were enclosed 

together, as gene cassettes of an integron variable region that has been previously found, for 

instance, in S. enterica from livestock (Figure 4.9.1E). However, in the latter, the array was 

flanked up and downstream by truncated inverted repeats of IS26 while no conserved 

integron regions were found. The genetic regions where antibiotic resistance genes were 

incorporated were highly similar to other plasmid-borne structures, previously described in 

different Gram-negative bacteria, suggesting acquisition of resistance determinants through 

horizontal gene transfer (Figure 4.9.1).  

The qnrD1 gene was enclosed in an 8,449bp length contig (LGYC01000051: mean coverage 

of 183.9-fold and a total read count of 13,382), matching a Col3M plasmid. Indeed, the qnrD1 

gene is frequently located on small nonconjugative plasmids harbored by Proteeae, which 

was corroborated by our conjugation assay (Zhang et al., 2013). Furthermore, the qnrD1 

gene has been located in plasmids showing similarities with a specific Providencia vermicola 

plasmid, suggesting that these small nonconjugative plasmids might be the product of 

recombination between an unknown qnrD-bearing region and a native plasmid from 

Proteeae. 

This contig accommodated a 2,683bp sequence showing 99% identity with previously 

described qnrD1-harboring plasmids, such as pGHS09-09a (HQ834473) and pCGS49 

(JQ776507), reported in France and China, respectively. The three qnrD1-encoding 

sequences shared a rep gene (also reported as orf4) and two additional orfs (Figure 4.9.1F) 

(Guillard et al., 2012; Zhang et al., 2013). Six single nucleotide variants (SNVs) were 

detected between qnrD1- INSRALV892a and the pGHS09-09a plasmid, two within the rep 

gene. Only one SNP was found with relation to pCGS49 in a non-coding region. The qnrD1 

gene was located within a mobile insertion cassette (mic) element bracketed by two inverted 

repeats, as previously described (Guillard et al., 2014) (Figure 4.9.1F). 
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Figure 4.9.1. Examples of contigs containing antibiotic resistance genes in M. morganii 

INSRALV892a. (A) selection of contig 9 shows a complete In2-17 class 2 integron encoding dfrA1, 
catB2, sat2, and aadA1y ; (B) selection of contig 43 encodes tetY and strA-strB, in addition to mobile 
genetic element and hypothetical proteins; (C) selection of contig 20 encodes sul2 flanked by M. 

morganii genes; (D) Contig 61 consists of a small sequence accommodating aph(3’)-Ic; (D) Contig 69 
displays an integron variable region encoding arr-2, catB3, blaOXA-1 and aac(6’)-Ib-cr. Blue, 
antibiotic resistance genes; Yellow, mobile genetic elements; Grey, other genes. 
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Comparative bioinformatics analyses revealed the disruption of orf2 caused by the insertion 

of IS26 left and right inverted repeats flanking a region containing orf3 and rep, within a mic, 

followed by qnrD1. In fact, this shows that is possible that LGYC01000051 contig could be 

either a Col3M plasmid missing an IS26-flanked region or a qnrD1-containing region that has 

become incorporated into a larger plasmid.  

In addition, this region (Figure 4.9.1F) included three additional open reading frames: 

besides an ABC transporter-encoding gene perfectly matching a protein from Aeromonas 

hydrophila, this region harbored Tn3-like resolvases- and transposase-encoding genes, 

displaying E. coli plasmid pH226B (KX129784) as its best blast hit.  

Mobile genetic elements are crucial tools for the acquisition of genetic diversity (Huddleston, 

2014). Thus, we decided to search for and characterize the elements detected in the M. 

morganii’s genome. We identified 10 prophage regions, among which six were incomplete 

and four were intact, comprising 381 prophage-related genes. Intact prophage regions 

presented between 24.2Kb and 41.7Kb and harbored 13 to 56 coding DNA sequences. The 

intact phages showing highest scores were assigned to Enterobacteria phage SfV, which is 

associated with O-antigen modification and serotype conversion in Shigella flexneri, and 

Enterobacteria phage mEp235 that consists of an unclassified Lambda-like virus (Sun et al., 

2013). The bioinformatics detection of IS resulted in the identification of seven transposable 

elements: IS3, Tn3, ISL3, IS256, IS6, IS91 and ISAs1. Besides the already mentioned Col3M 

no other typable plasmids were detected within the M. morganii genome, according with the 

PlasmidFinder tool. 
Based on the probability scores assigned by PathogenFinder web-server (Consentino et al., 

2013), the isolate has a probability of acting as a human pathogen of 68.9%, which is in line 

with the opportunistic nature of this species. M. morganii’s genome matched 22 pathogenic 

families and 5 non-pathogenic families. Pathogenic factors showed diversity of functions and 

hosts, and included, for instance, transposase insA from IS91 of Salmonella enterica, 

transposition protein tnsE of the Tn7 transposon of Shigella flexneri, and transcriptional 

regulator LysR family protein from S. enterica. 

Multidrug resistant M. morganii isolates are rare and normally associated with non invasive 

nosocomial opportunistic infections in humans (Nicolle, 2001; Falagas et al., 2006). The 

detection of an avian M. morganii isolate harboring multiple and mobile antibiotic resistance 

genes and pathogenicity factors raises concerns regarding the dissemination of infection in 

birds and potential risk of zoonotic transmission. Several factors may affect the susceptibility 

of poultry to bacterial diseases, namely environmental stressors and previous antibiotic 

treatments, which are crucial to the development of infections involving different 

Enterobacteriaceae (Burkholder et al., 2008). The detection of an avian M. morganii isolate 

harboring multiple and mobile antibiotic resistance genes and pathogenicity factors raises  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Huddleston%20JR%5Bauth%5D
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concerns regarding the dissemination of infection in birds and potential risk of zoonotic 

transmission.  

M. morganii is a well characterized opportunistic pathogen (Lee et al., 2006). However, its

detection in poultry flocks, co-habiting the same hosts as other clinically important

pathogens, makes it susceptible to the acquisition and donation of pathogenicity factors by

horizontal gene transfer (Huddleston, 2014). To the best of our knowledge this report

represents the first genome analysis of an isolate from animal origin carrying qnrD1. This

genome sequence represents a valuable resource for studies on the epidemiology of

zoonotic M. morganii isolates, and its features may be used as markers for the study of

antibiotic resistance.
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BACKGROUND 

Salmonella enterica is one of the most important causes of gastrointestinal infection in humans, 

being the great majority of infections related to the consumption of poultry meat and eggs 

(EFSA/ECDC, 2015; Foley & Lynne, 2008).  

In animals, infections caused by serotype Enteritidis are rarely responsible for severe disease 

with animals frequently becoming asymptomatic carriers, except in the case of young chicks 

and poults, where outbreaks exhibiting clinical disease are often accompanied by high 

mortality rates (Foley et al., 2008; Foley et al., 2013). Indeed, S. enterica subsp. enterica 

serovar Enteritidis (S. Enteritidis) has been responsible for severe disease in industrial poultry 

farming facilities worldwide, posing a potential hazard for public health (Lutful Kabir, 2010).  

In order to be infectious, Salmonella needs to adapt to different niches and conditions, where 

virulence and heavy-metal-tolerance factors play an important role, through co-selection 

events and the formation of pathogenicity islands, respectively (Hensel, 2004; Medardus et al.,

2014).  Furthermore, antibiotic resistance determinants can also facilitate their survival, with 

ubiquitous chromosomally encoded efflux mechanisms, playing an important role in both 

intrinsic and acquired multidrug resistance. Other resistance mechanisms, such as changes in 

the membrane permeability, enzymatic modification and target alterations may increase the 

levels of bacterial resistance, contributing to the success of the infection (Poole, 2004; Delmar 

et al., 2014; Li et al.,   2015). 

Both antibiotic susceptibility determination and serotyping constitute very useful tools for the 

epidemiologic classification of Salmonella enterica isolates. Indeed, in S. enterica, the 

resistance rates fluctuate according to the serotype and with the antibiotic (Clemente et al.,

2015). Classically, serotyping is based on the antigenic reactivity of lipolysaccharide (O 

antigen) and flagellar proteins (H antigen), followed by a designation using names or formulas 

(Grimont & Weill, 2007). In this study, we aimed to analyze the genome of a S. Enteritidis 

isolate responsible for omphalitis in chicks, exploring the molecular features associated with 

antibiotic resistance and pathogenicity, as well as the ability to spread the respective 

determinants.  

Keywords: Salmonella Enteritidis, omphalitis, wzy deletion, epidemiology, pathogenicity 

factors, MGE, Metal tolerance 

http://www.cve.saude.sp.gov.br/htm/hidrica/salmonella_pergresp.htm
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5.1.1. Methods 

Bacterial isolate, antibiotic susceptibility testing and serotyping  

The isolate (LV60) was recovered from a sample collected from the yolk sac of a chick with 

omphalitis, under the scope of the "Salmonella National Control Programme in food-producing 

animals and food of animal origin for bacteriological diagnosis, serotype identification and 

antibiotic susceptibility testing". The guidelines of the Commission Decision (CD), 

2007/407/EC were followed. LV60 was tested for its antimicrobial resistance through the 

determination of minimum inhibitory concentrations (MICs) using the agar dilution method, as 

previously described (Clemente et al., 2013) and according to the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) guidelines (http://www.eucast.org/). Briefly, a 

panel of eleven antibiotic compounds was tested in a two-fold concentration series over the 

following ranges: ampicillin and tetracycline (0.5 - 64µg/mL), gentamicin and trimethoprim 

(0.25 - 32µg/mL), ciprofloxacin (0.008 - 8µg/mL), cefotaxime (0.06 - 8µg/mL), nalidixic acid and 

streptomycin (2 - 512µg/mL), chloramphenicol (2 - 256µg/mL), florfenicol (1 - 128µg/mL) and 

sulphamethoxazole (8 - 1024µg/mL). The epidemiological cut-off values recommended by 

EUCAST to Salmonella spp. were used for the interpretation of susceptibility testing results. 

Quality control was performed using the Escherichia coli ATCC 25922 strain. LV60 isolate was 

then serotyped by the slide agglutination method for its O and H antigens using the method of 

Kauffman-White scheme (Grimont & Weill, 2007).  

 
Whole Genome Sequencing (WGS), assembly and annotation 

Genomic DNA was extracted using DNeasy Blood and Tissue Kit (Qiagen), and DNA 

quantification was performed by Qubit Fluorometric Quantitation (Life Technologies), 

according to with the manufacturer's instructions. The genome was sequenced using a double 

strategy of 454 (Roche) and MiSeq (Illumina) sequencing.  

Five hundred nanograms of bacterial DNA were fragmented by nebulization, followed by 

adaptor ligation to create double stranded DNA libraries and sequenced on a 454 GS FLX 

Titanium according to the standard manufacturer’s instructions (Roche-454 Life Sciences, 

Brandford, CT, USA). The second genome library was prepared from 1ng of genomic DNA 

using the Nextera XT DNA Sample Preparation Kit (Illumina, CA) and sequenced on the 

Illumina MiSeq sequencer (Illumina) using paired-end 2x150 bp reads. 

First quality evaluation of raw read sequences and their corresponding quality values were 

assigned by the FastQC software. Reads were then trimmed and filtered according to quality  

criteria, and de novo assembled with Ray, version 2.3.1 (Boisvert et al., 2010). Contigs were 

searched for identity through blastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi) against the nr/nt 

NCBI database to identify the closest bacterial genome and/or plasmid. Therefore, LV60 

genome was mapped against the bacterial genome of S. Enteritidis strain p125109 and its  
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plasmid (NC_011294 and HG970000, respectively) using GS Mapper version 2.9 (Roche). 

Additionally SNV (single nucleotide variants) and structural variants were also detected with 

the GS Mapper (Roche, version 2.9). 

Structural and functional annotation was performed using PGP (Prokaryotic Genome 

Prediction) (Egas et al., 2014), an in-house developed pipeline. Taxonomy identification was 

performed by BLASTP search against the NCBI GenBank non-redundant (nr) database of the 

16s rRNA sequence gene, identified in the previous step and confirmed using RNAmmer v1.2 

(Lagesen et al., 2007). 

The final data was submitted in the DDBJ/EMBL/GenBank databases, using the Sequin 

software tool (http://www.ncbi.nlm.nih.gov/Sequin/). This dataset, which includes files in 

Genbank (LIHI01.1.gbff.gz), Fasta (LIHI01.1.fsa_nt.gz) and ASN.1 (LIHI01.1.bbs.gz) formats, 

can be accessed and/or reused at http://www.ncbi.nlm.nih.gov/nuccore/LIHI00000000. 

In silico analyses 

CLC genomics workbench 8.0 (QIAGEN, Aarhus), PathogenFinder 1.1, ResFinder 2.1, 

PlasmidFinder 1.3 and MLST 1.8 (MultiLocus Sequence Typing) were used to estimate the 

number of pathogenicity determinants, acquired antibiotic resistance genes, plasmids and the 

MLST using the S. Enteritidis genome (Larsen et al., 2012; Zankari et al., 2012; Cosentino et

al., 2013; Carattoli et al.,   2014). SeqSero tool was used for Salmonella serotyping by whole 

genome sequencing (Zhang et al., 2015). 

PHAST search web tool was applied to detect, identify and annotate prophage sequences 

(Zhou et al., 2011). ISsaga was used for the high throughput identification and semiautomatic 

annotation of insertion sequences in the genome (Varani et al., 2011). The presence of 

molecular determinants of antimicrobial resistance was predicted based on homology and SNP 

models using the Comprehensive Antibiotic Resistance Database (CARD; 

https://card.mcmaster.ca/analyze/rgi), through Resistance Gene Identifier software (RGI; 

McArthur et al., 2013).  

5.1.2. Results 

LV60 isolate was serotyped as S. Enteritidis, using the method of Kauffman-White scheme, 

and found to be wild-type to all the antibiotics tested, except tetracycline.  

The de novo assembly yielded 4.977Mbp distributed in 83 contigs (largest contig with 

970,921bp) with a N50 of 491,005bp. Overall, the structural and functional annotation with 

PGP detected 97 tRNA genes, 7 rRNA genes and identified 4,656 mRNA genes.  

From mapping against the bacterial genome of S. Enteritidis strain p125109, the main 

difference between the two genomes was the absence of the O-antigen polymerase gene wzy 

in the LV60 isolate, which in S. Enteritidis is located outside the O antigen gene cluster (Liu et
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al., 2014). The coding sequence of wzy gene was searched against the assembled genome 

using blastn, confirming its absence. The flanking regions of wzy gene, which coded for a 

disrupted membrane and a hypothetical protein, were also absent. The wzy gene is involved 

in the Wzx/Wzy-dependent pathway, which constitutes the predominant pathway for O-antigen 

production in Gram-negative bacteria, specifically in Salmonella (Hong et al., 2015). 

However, in this study, the absence of the wzy gene did not compromised the use of a high-

throughput genome sequencing serotype determination method (Zhang et al., 2015), which 

corroborated the result obtained by the gold standard method. Indeed, this method, based on 

the detection of O and H antigens encoding genes, predicted an antigenic profile 9:g,m:- based 

on the O-9,46 wbaV gene, which encodes to the O-antigen tyvelosyl transferase. Furthermore, 

the S. Enteritidis serotype was confirmed by the presence of sdf gene (Salmonella difference 

fragment virulence gene), a characteristic marker of commonly circulating S. enterica 

Enteritidis (Agron et al., 2001). 

Sixty-one SNVs were detected between LV60 and the S. Enteritidis strain p125109. The SNVs 

that resulted in amino acid substitutions are represented in Table 5.1.1. In silico analysis with 

ResFinder tool did not reveal the presence of any acquired antibiotic resistance genes (90% 

identity and 40% minimum length) or plasmids (95% identity). However, the RGI analysis, 

using the perfect algorithm, showed the presence of a Salmonella-specific MerR-like gold (Au) 

sensor- GolS - involved in Au resistance (Pontel et al., 2007). This constitutes a matter of 

concern since antibacterial biocides and metals can contribute to the development and 

maintenance of antibiotic resistance in bacterial communities through mechanisms of cross- 

or co-resistance (Baker-Austin et al., 2006; Lemire et al., 2013; Pal et al., 2015). 

Furthermore, the RGI strict algorithm, which detects previously unknown variants of known 

antimicrobial resistance genes, identified 52 genes involved in efflux, transport, and 

permeability, which might justify the low-level tetracycline resistance identified by phenotypic 

methods (Table 5.1.2). Resistance to additional classes of antibiotics such as 

fluoroquinolones, aminoglycosides and chloramphenicol were bioinformatically predicted. 

Indeed, efflux pumps are often associated with discrete decreases in antibiotic susceptibility 

that may not necessarily reflect an alteration in interpretation categories (Fernández & 

Hancock, 2012).  

Genes responsible for the intrinsic resistance to benzylpenicillin, glycopeptides, macrolides, 

and rifampicin were also detected. 

The total number of pathogenicity determinants present in the genome of S. Enteritidis LV60, 

matching 1164 pathogenic families, showed a 94.1% certainty of the isolate being a human 

pathogen. Here we highlight the presence of Salmonella Pathogenicity Island 4, which usually 

encodes a non-fimbrial adhesion and the cognate type 1 secretion system (Gerlach et al., 

2007).  
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The use of complementary web tools assigned this isolate to ST11, which according with MLST 

data (http://mlst.warwick.ac.uk/) is commonly found among CTX-M-14 and CTX-M-15-

producing S. Enteritidis human isolates (Kim, 2011; Bado et al., 2012;). In this study, the 

identification of ST11 in an isolate of animal origin, together with other pathogenicity 

determinants may suggest its zoonotic potential.  

We also identified 6 prophage regions, among which three were incomplete and three were 

intact. The last included prophage regions reaching the lengths of 64.3Kb, 49.2Kb and 31.7Kb, 

and encoding 42, 78 and 66 DNA coding sequences, respectively.  

Overall, 33 different IS were detected within the genome, which were distributed as follows: 

27.03% of IS3 family, 18.92% of IS256 family, 13.51% of IS unclassified elements, 10.81% of 

IS200/IS605 complex and of ISL3 family, 8.11% of IS481 family, 5.41% of IS630 family, and 

2.7% of IS1 and IS110 families. All identified structures (pathogenicity island, prophages, ISs) 

constitute a multiplicity of pathogenicity factors in LV60 S. Enteritidis isolate and contribute for 

the fitness of the isolate in different environments; its presence may also suggest the possibility 

of acquisition of other factors by different mechanisms, including resistance genes e.g. by 

horizontal gene transfer, contributing to its biological diversity and genetic evolution.  

Table 5.1.1. Single nucleotide variants that represent amino acid substitutions in S. Enteritidis LV60 
using S. Enteritidis strain p125109 as the reference genome. 

Reference 
Position Reference Allele Gene (Product) Amino acid 

change Coverage 

40158 C T SEN_RS00180 (arylsulfatase) Pro92Ser 155 
55278 C A ileS (isoleucine-tRNA ligase) Ala557Glu 144 
93979 G A SEN_RS00415 (hypothetical protein) Ala96Thr 127 
156264 G A SEN_RS00685 (peptidase M23) Gly299Asp 123 
353437 T C SEN_RS01600 (isopropylmalate isomerase) Val454Ala 119 
357149 A T SEN_RS01625 (hypothetical protein) Leu1Met 177 
401018 C A prpE (acetyl-CoA synthetase) Arg9Ser 132 
411602 T G SEN_RS01845 (hypothetical protein) Trp209Gly 58 
561577 T C SEN_RS02560 (MFS transporter) Ser333Pro 68 
659902 T G dpiB (sensor histidine kinase) Tyr3Asp 52 
988620 G C SEN_RS04610 (hypothetical protein) Ala89Pro 130 
1044895 G T helD (DNA helicase IV)/Mobile element Ala204Ser 75 
1156702 G C sirA (virulence gene transcriptional regulator) Val181Leu 112 

1325689 A G 
SEN_RS06450 (hydrogenase-1 operon 
protein HyaF) Tyr209His 93 

1427037 T A 
SEN_RS06930 (diguanylate 
phosphodiesterase) Asp16Glu 92 

1787654 A G SEN_RS08735 (transporter) Arg348Gly 79 
1807289 G A SEN_RS08820 (lipoprotein) Ala14Val 79 
1931818 C T SEN_RS09505 (NAD-dependent deacetylase) Met37Ile 82 

2419980 G A 
SEN_RS11950 (NADH: ubiquinone 
oxidoreductase subunit M) Leu474Phe 130 
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Reference 
Position Reference Allele Gene (Product) Amino acid 

change Coverage 

2426844 A G SEN_RS11980 (NADH dehydrogenase 
subunit G) Val610Ala 125 

2463887 T C SEN_RS12170 (amino acid transporter) Ile452Val 34 

2647060 G A 
SEN_RS12985 (outer membrane protein 
RatA) Pro459Ser 108 

2647626 G T 
SEN_RS12985 (outer membrane protein 
RatA) Ala270Glu 111 

2672592 A C SEN_RS13070 (hypothetical protein) Ile313Ser 61 

2956057 C A 
SEN_RS14420 (2-C-methyl-D-erythritol 4-
phosphate cytidylyltransferase) Arg53Leu 123 

3185834 C A 
SEN_RS15495 (D-mannonate 
oxidoreductase) Asn151Lys 81 

3659470 G T SEN_RS17815 (membrane protein) Gln71Lys 122 

3802073 G A 
coaD (phosphopantetheine 
adenylyltransferase) Val116Ile 127 

4051393 T C SEN_RS19620 (DNase TatD) Ser141Pro 150 
4059155 G A fadB (3-ketoacyl-CoA thiolase) Ala395Val 84 

4348398 A G 
SEN_RS20980 (membrane protein)/ 
Salmonella Pathogenicity Island 4 Asn2902Asp 158 

4402123 C T SEN_RS21190 (sugar:sodium symporter) Ala350Val 77 
4476625 T C SEN_RS21580 (hypothetical protein) Lys76Glu 170 
4555382 C T SEN_RS21985 (DNA polymerase III subunit 

chi) 
Asp10Asn 110 
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5.1.3. Conclusion 

The detection of an avian S. Enteritidis isolate harboring multiple efflux pumps, pathogenicity 

factors, a variety of mobile genetic elements and heavy-metal-tolerance genes raises concerns 

regarding the dissemination of infection in birds and potential risk of zoonotic transmission.  

This study demonstrated the added value of WGS as a routine tool for surveillance programs 

directed to food-producing animals, which might complement sanitary measures, essential to 

prevent the spread of Salmonella infections among animals. It also proved to have an added 

value as a complementary typing method. Moreover, the simultaneous detection of putative 

Au resistance, intrinsic antibiotic resistant genes, and mobile genetic elements, underline this 

method as a helpful resource to follow the spread and evolution of antibiotic resistance in this 

species by genomic comparison studies. 

5.1.4. Data Access 

This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the 

accession LIHI00000000. The version described in this paper is version LIHI01000000. 
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ABSTRACT 
 
 
We screened 1840 Enterobacteriaceae isolates from food-producing animals, meat, meat 

products and animal feed, for the detection of plasmid-mediated colistin resistance, during 

2010-2015. The mcr-1 gene was detected in 8% Escherichia coli and in 0.47% Salmonella 

enterica isolates, with a high number of mcr-1 positive E. coli isolates (45.7%) being extended-

spectrum β-lactamase or plasmid-mediated AmpC β-lactamase co-producers. Here we 

describe the detection and characterization of a novel mcr-1 variant, mcr-1.9, in an E. coli from 

a swine, co-producing blaCTX-M-8. Our findings highlight the spread of mcr-1 genes over food-

producing animals and meat, in Portugal. 

 

Keywords 
Enterobacteriaceae; food-producing animals; meat; mcr-1; mcr-1.9; ESBL; PMAβ 

 

 
5.2.1. Introduction 

 
Following the original report of plasmid-mediated colistin resistance (PMCR) in China by the 

end of 2015 (Liu et al., 2016), several studies in different countries reported a worldwide 

distribution of the mcr-1 gene in Enterobacteriaceae isolates from humans, food and 

companion animals, meat and environment (Campos et al., 2016; Figueiredo et al., 2016; 

Hasman et al., 2015; Jones-Dias et al., 2016a; Perrin-Guyomard et al., 2016; Quesada et al., 

2016; Zurfuh et al., 2016; Zhang et al., 2016). More recently, two novel variants, mcr-2 and 

mcr-3, were detected in colistin resistant E. coli isolates: from sick calves and piglets in Belgium 

(Xavier et al., 2016), and from a faecal sample of an apparently healthy pig at a conventional 

farm in China (Yin et al., 2017), respectively (Table 5.2.1). MCR-1 variants were also detected, 

namely MCR-1.2, identified in a human isolate of Klebsiella pneumoniae, in Italy (Di Palato et 

al., 2016); MCR-1.3 in E. coli from chickens from China (Yang et al., 2017); MCR-1.5 from 

clinical E. coli isolates previously described in Argentina (Tijet et al., 2017); and MCR-1.6 in 

Salmonella enterica serovar Typhimurium isolate from a healthy person in China (Lu et al., 

2017) (Table 5.2.1). In this study, we analysed several colistin-resistant E. coli and S. enterica 

isolates from food-producing animals, meat, meat products and animal feed, for the presence 

of PMCR-encoding genes.  
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5.2.2. Material and Methods 

Antimicrobial susceptibility testing 
A total of 1206 E. coli and 634 S. enterica isolates from healthy food-producing animals, meat 

and animal feed (Tables 5.2.2 and 5.2.3), were submitted to colistin, cefotaxime and 

ceftazidime susceptibility testing for the determination of Minimum Inhibitory Concentrations 

(MIC), using the agar dilution method (EUCAST/ESCMID, 2003). Results were interpreted 

according to the epidemiological cut-off values of the European Committee on Antimicrobial 

Susceptibilty Testing (EUCAST, http://mic.eucast.org/Eucast2/). Non-wild type isolates 

towards cefotaxime and ceftazidime, were tested for the phenotypic detection of extended-

spectrum β-lactamases (ESBL) and plasmid-mediated AmpC β-lactamases (PMAβ), by the

microdilution method (TREK, diagnostic systems).  

Genetic detection of PMCR 
Colistin-resistant E. coli and S. enterica isolates were screened for the presence of PMCR-

encoding genes (mcr-1 and mcr-2), using a multiplex PCR (Cavaco et al., 2016), followed by 

sequencing of the amplicons. 

Identification of ESBL and PMAβ 
Identification of variants of blaESBL and blaPMAβ genes of all Enterobacteriaceae isolates 

harbouring mcr genes and concomitantly exhibiting an ESBL or PMAβ phenotype, was

performed as previously (Jones-Dias et al., 2016b).  

Characterization of E. coli LV23529 
Transfer experiments  
Conjugation experiments were performed using sodium azide-resistant E. coli J53 as a 

recipient strain. Transconjugants were selected on McConkey agar supplemented with sodium 

azide (150µg/mL), cefotaxime (2µg/mL) and colistin (2µg/mL). Plasmid DNA was extracted 

from E. coli LV23529 using a NucleoBond Xtra Plus kit (Macherey-Nagel), and transformed 

into E. coli TOP10 OneShot chemically competent cells (Invitrogen), accordingly to 

manufacture’s protocol. E. coli transformants were selected on MacConkey agar 

supplemented with 2µg/mL of colistin. MICs of recipients and transformants were determined 

as mentioned above. 

Genetic environment of mcr-1.9 gene 
Plasmid DNA was extracted from E. coli LV23529, using a NucleoBond Xtra Plus kit 

(Macherey-Nagel), and quantified using Qubit 1.0 Fluorometer (Invitrogen). 
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The Nextera XT DNA Sample Preparation Kit (Illumina) was used to prepare sequencing 
libraries from 1ng of genomic DNA according to the manufacturer's instructions. Plasmid 

sequencing was performed using 150 bp paired-end reads on a MiSeq (Illumina), as previously 

described (Manageiro et al., 2017). Sequence reads were trimmed and filtered according to 

quality criteria, and de novo assembled into contigs by means of CLC Genomics Workbench 

9.0 (Qiagen). The contig carrying the mcr-1.9 gene and respective genetic environment was 

manually annotated after blasted against GenBank. 

 
5.2.3. Results and Discussion 
Overall, we detected mcr-1-like genes in 100 colistin-resistant Enterobacteriaceae isolates (E. 

coli, n=97 and S. enterica, n=3) (Tables 5.2.2 and 5.2.3). All amplicons excepting one, 

exhibited a sequence with 100% homology to the recently described mcr-1 (Liu et al., 2016); 

one amplicon (of a commensal isolate LV23529 from a swine), hereafter named mcr-1.9, 

differed from mcr-1 by one-point mutation (T1238C), leading to Val413Ala substitution (Table 

5.2.1). 

To our knowledge, this was the most wide-ranging study conducted in Portugal, reporting for 

the first time the occurrence of mcr genes in E. coli isolates, from food-producing animals 

[turkeys (27%), swine (10.1%) and broilers (1.5%)] and swine meat (5.1%). Noteworthy, this is 

the high frequency of mcr-positive E. coli isolates from turkeys, when comparing with other 

European countries (Haenni et al., 2016). No colistin-resistant isolates were detected in bovine 

animals and bovine meat; these findings agree with some studies (EFSA/ECDC, 2017), though 

contradicting others, reporting a higher frequency of mcr-1-positive isolates from veal calves, 

particularly ESBL-producing isolates (Haenni et al., 2016; Xavier et al., 2016). Regarding S. 

enterica, mcr-1 gene was confirmed in three isolates (8.6%, 3/35), one in S. Reading from 

bovine meat, and two in serotype 4,5,12:i:- from bovine and swine meat. 

In our country, PMCR had been detected in S. enterica isolates from humans and food 

(Campos et al., 2016; Figueiredo et al., 2016), and more recently in one E. coli strain isolated 

from fresh vegetables (Jones-Dias et al., 2016a). The presence of colistin resistance gene in 

food represents a potential public health threat, as it is located in mobile genetic elements that 

have the potential to spread horizontally. 

Worryingly, we observed that a high number of mcr-1 positive E. coli isolates (45.7%, 42/92) 

were ESBL or PMAβ co-producers (Table 5.2.2): blaCTX-M-1, n=14; blaCTX-M-32, n=13; blaCTX-M-14, 

n=5; blaCTX-M-27, n=1; blaSHV-12, n=3; blaCMY-2, n=3; blaAmpC, n=2 (Table 5.2.2). Bioinformatics 

analysis of the MCR-1.9-producing isolate revealed genes conferring resistance to β-lactams 

(blaCTX-M-8 and blaTEM-1), sulphamethoxazole (sul3), trimethoprim (dfrA12-type), 

chloramphenicol (cmlA1-type) and colistin (mcr-1.9). 
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Table 5.2.3. S
a

lm
o
n
e

lla
 spp (n

= 634), from
 food-producing anim

als, m
eat, m

eat products and anim
al feed. 

Serotypes 
Isolate origin/ 
Anim

al species 

Isolates 
tested for 
M

IC
a (n) 

Year 
C

olistin 
resistant 
isolates (%

) 
[M

IC
 range m

g/L]

m
c
r positive 

isolates (%
) 

[M
IC

 range m
g/L] 

Frequence 
of m

c
r positive 

isolates (%
) 

Faeces/ 
Environm

ent 

Poultry 
Enteritidis 

47 
2013-2015 

11/47 (23,4)    [4 - 8] 
0 

Typhim
urium

 
11 

2014-2015 
1/11   (9,1)      [8] 

0 
4,5,12:i:- 

5 
2014-2015 

0 
O

ther 
325 

2011-2015 
1

 /325
b (0,3)     [>16]

0 

Bovine 
Typhim

urium
 

1 
2014-2015 

0 
4,5,12:i:- 

4 
2014-2015 

0 

Anim
al feed 

Enteritidis 
6 

2014-2015 
6/6    (100)    [4 - 16] 

0 
O

ther 
7 

2014-2015 
0 

M
eat and m

eat 
products 

Enteritidis 
Poultry; Sw

ine 
20 

2014-2015 
6/20 (30)         [4 - 8] 

0 
Typhim

urium
 

Poultry; Sw
ine 

37 
2014-2015 

0 
4,5,12:i:- 

Bovine; Sw
ine; 

Poultry 
54 

2014-2015 
6/54 (11,1)      [8 - 16] 

2/6 (33,3) c
2/54 (3,7) 

O
ther 

Bovine; Sw
ine; 

Poultry 
117 

2014-2015 
4/117 (3,4)      [4 - >16] 

1/4 (25) d
1/117 (0,9) 

Total 
634 

35/634 (5,5%
) 

3/35 (8,6) 
3/634 (0,47) 

a M
IC

: m
inim

um
 inhibitory concentration, range [1 - >16m

g/L];  b S
. H

avana; c Bovine and sw
ine; d S. R

eading (sw
ine m

eat); c,d N
on-ESBL or non-P

M
A

β
 p

ro
d
u
c
e
rs

.
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The mcr-1.9 genetic background was characterized by an IS26 element upstream of the mcr-

pap2 element and by the absence of ISApl1. Plasmid analysis revealed the presence of IncF 

[F2:A-:B-], IncX4-harbouring mcr-1.9 (pLV23529-MCR-1.9), and IncI1-ST113-carrying the 

blaCTX-M-8. The new mcr-1.9 positive isolate, co-harbouring blaCTX-M-8 and blaTEM-1 genes, is here 

reported for the first time in an E. coli isolate of animal origin. In fact, blaCTX-M-8 gene is rarely 

detected in Europe in isolates of animal origin (Börjesson et al., 2016), but in humans seems 

to be emerging (Eller et al., 2014). Only the transferability of the blaCTX-M-8 gene was achieved 

by conjugation, with TcLV23529 (blaCTX-M-8) exhibiting the ESBL resistance phenotype from 

LV23529 isolate, and susceptibility to colistin (Table 5.2.4). Although conjugation assays for 

mcr-1.9 were negative, the colistin resistance determinant could be transferred to E. coli 

TOP10, with transformant TLV23529 (mcr-1.9) showing the respective resistance to colistin 

(Table 5.2.4). Indeed, selection pressure exerted by broad-spectrum cephalosporins and other 

antimicrobials may enhance the rapid dissemination of PMCR and vice-versa.  

Likewise, mcr genes have been associated with several plasmid incompatibility types, resulting 

in a potentially greater bacterial host range.  IncX4 plasmid has been widely implicated in the 

spread of mcr-1 gene in Europe, from human and animal isolates (Campos et al., 2016; 

Hasman et al., 2015; Veldman et al., 2013); ISApl1 was not identified in mcr-1.9-carrying IncX4 

plasmid, which is in accordance with other studies about mcr-1 gene (Veldman et al., 2016). 

Indeed, initially ISApl1 was presumably involved in the transposition of the mcr-1 cassette and 

then was lost, contributing for the stability of mcr gene on IncX4 plasmids (Sun et al., 2017).  

5.2.4. Conclusions 
This study corroborates a worldwide dissemination of PMCR gene, underlining the importance 

of its continuous monitoring. We also emphasized the benefit of employing next generation 

sequencing-based methods on the early detection and characterization of antimicrobial 

resistance, as it allowed a rapid analysis of a large dataset in silico, being also important when 

new resistance genes emerge. 
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The emergence and spread of antibiotic resistant bacteria is currently one of the greatest 

threats in public health (O'Neill, 2016). The selective pressure exerted by the abusive and 

inadequate use of antibiotics in human and animal clinical practices, animal and agricultural 

production, and the environmental impact resulting from these activities, are the main causes 

for the emergence of antibiotic resistance. It is a dynamic, complex, multifactorial process 

involving humans, animals and the environment (Cantas et al., 2013; Butaye et al., 2014; 

Roca et al., 2015; Woolhouse et al., 2015). 

The research studies developed throughout this thesis (Chapters 3, 4 and 5), intended to 

demonstrate the relevance of different animal species and products of animal origin as 

reservoirs of bacteria carrying antibiotic resistance determinants, through phenotypic and 

molecular characterization of Gram negative bacteria, and the mobile genetic elements 

involved in the spread of resistance. A total number of 4689 Gram negative strains belonging 

to Enterobacteriaceae family were analyzed, being 2406 Salmonella enterica, 2282 

Escherichia coli and one Morganella morgannii, isolated from different animal species, 

samples and geographic regions, during the period 2009-2015. Although a specific 

discussion has been included in each manuscript, the main findings will be globally analysed 

and discussed in the present chapter (Chapter 6). 

In a brief review of the state of the art, in Chapter 3, the dynamics of antibiotic resistance is 

debated. Specifically, it is discussed how the spread of resistant bacteria is facilitated by the 

existence of multiple pathways between the different reservoirs (humans, animals and the 

environment) by the involvement of mobile genetic elements, and by the impact of 

environmental pollution (antibiotic molecules) (Bauer et al., 2008; Heuer et al., 2011; 

Marshall & Levy, 2011; Garcia-Alvarez et al., 2012).  

The selective pressure exerted by the administration of antibiotics, the accumulation of 

antibiotic residues in the environment, the international movement of people and trade of 

animals, food products and feedstuffs contribute for the exposure to commensal and 

pathogenic resistant bacteria (Barbosa & Levy, 2000; Martinez et al., 2002; Perron et al., 

2008; Allen et al., 2010; Gaze et al., 2011). Antibiotic-producing environmental bacteria also 

contribute for selection of antibiotic resistant bacteria (Hemala et al.,2014). Studies carried 

out by Kreitlow et al., (1999) and Martins et al., (2008) showed that some cyanobacteria 

produce proteins that show antimicrobial activity, more effective in Gram positive than in 

Gram negative, due to the protective layer of lipopolysaccharides in the latter. 

Mobile genetic elements show a prominent role in the dissemination of antibiotic resistance, 

constituting the base for horizontal gene transfer and genetic recombination within the 

bacterial populations; these elements contribute for the diversity and adaptability of the 

strains to the different niches (Leavis et al., 2007; Devirgillis et al., 2011; Brown et al., 2012; 

Butaye et al., 2014; Roca et al., 2015; Gomes-Neves et al., 2015; Woolhouse et al., 2015). 
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The monitoring of antibiotic resistance and the implementation of surveillance programs on 

commensal, zoonotic and pathogenic bacteria are some of the strategic priorities to control 

the spread of antibiotic resistance. Phenotypic characterization of antibiotic susceptibility and 

the interpretation of results according to epidemiological breakpoints may lead to important 

findings regarding changes in resistance patterns. It may also show how resistance 

mechanisms are emerging and disseminating through different animal populations and 

products of animal origin. 

In Chapters 4.1, 4.2, 4.3 and 4.8, antibiotic susceptibility of several Salmonella spp 

serotypes identified in different animal species and samples was determined. Antibiotic 

susceptibility depends on animal species, serotype, strains and the antibiotic consumption 

during production cycle. The great variability of serotypes found in the mentioned study 

suggests the existence of diversity with regards to sources of infection, specifically breeding 

flocks, hatcheries, feed and feedstuffs, environment, human contact, animal facilities and 

equipment (Papadopoulou et al., 2009). 

Serotype variability in different countries and animal populations, and its association with 

specific resistance patterns may explain some of the differences in levels of resistance and 

multidrug resistance (EFSA/ECDC, 2015). Other factors, such as national and international 

trade of animals, food products and feedstuffs, management systems and the pyramidal 

structure of primary animal production may also influence the spread of resistant strains 

(EFSA/ECDC, 2015). 

In our studies, the frequency of resistance towards ampicillin, tetracycline and 

sulfamethoxazole was particularly high in serotypes Typhimurium, Rissen and 4, [5], 12: i: -, 

unlike 3rd generation cephalosporins, in which the frequency of resistance was low, as 

described in Europe (EFSA/ECDC, 2015). The frequency of non-wild type strains to 

ciprofloxacin was high, particularly in poultry, in serotypes Enteritidis, Mbandaka and 

Havana, which may be explained by the high consumption of fluoroquinolones at national 

level (DGAV, 2013, EMA, 2016). Among the various serotypes, some resistant strains to 

ciprofloxacin and susceptible to nalidixic acid occurred, suggesting an increase on the 

occurrence of plasmid-mediated quinolone resistance (PMQR) mechanisms (Veldman et al., 

2011). 

Also in Chapters 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8, E. coli strains isolated from food-producing, 

companion and zoo animals were analyzed, showing different antibiotic susceptibility 

patterns. For all antibiotics tested, the frequency of strains showing decreased susceptibility 

was higher in food-producing animals, followed by companion and zoo animals, which can 

be attributed to the higher antibiotic consumption in that group of animals, particularly 

penicillins, tetracyclines, sulfonamides and fluoroquinolones (DGAV, 2013, EMA, 2016). 

However, the frequency of strains with decreased susceptibility to cefotaxime was higher in 

companion animals (8%), followed by food-producing (3%) and zoo animals (2.7%). Although 
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the consumption of 3rd generation cephalosporins is low, it may be underestimated because 

human cephalosporins are frequently administered in clinical therapy of companion animals 

(DGAV, 2013; EMA, 2016). 

Third generation cephalosporins and fluoroquinolones are antibiotics of critical importance in 

veterinary and human clinical practice (Vaarten, 2012; WHO, 2014; OIE, 2015). Research 

studies all over the world, using strains recovered from several animal species and products 

of animal origin, have been reporting a significant increase of strains that harbour ESBL, 

PMAβ and PMQR, showing resistance to the mentioned antibiotics (Veldman et al., 2011; 

Dierikx et al., 2012; Ewers et al., 2012; Tamang et al., 2012a; Liebana et al., 2013; Jones-

Dias et al., 2013; Stefani et al., 2014; Jamborova et al., 2015; Michael et al., 2016).  

Thus, in Chapters 4.2 and 4.3, resistance mechanisms to 3rd generation cephalosporins 

and/or cephamycins (associated to ESBL and/or PMAβ-encoding genes), in S. enterica 

strains isolated from poultry (live animals), as well as poultry and swine food products, were 

investigated. We reported for the first time in Portugal the occurrence of ESBL and/or PMAβ 

enzymes belonging to CTX-M family [(CTX-M-1 in S. Havana), (CTX-M-14, CTX-M-15 nd 

CTX-M-32 in S. I4, [5], 12: i: - and in S. London)], CMY-2 in S. Havana, and SHV-12 in S. 

Enteritidis. CTX-M-1 is the most frequent enzyme in strains of S. enterica of animal origin, not 

only in Europe (Rodriguez et al., 2009, Dierikx et al., 2010, Freire Martin et al., 2014), as in 

other continents (Choi et al., 2015, Fitch et al., 2016). However, other enzymes, namely 

CTX-M-14, CTX-M-15, CTX-M-32 and SHV-12 were also identified in food-producing 

animals (Politi et al., 2005; Riäno et al., 2006; Chiaretto et al., 2008; Tamang et al., 2011). In 

Portugal, blaCTX-M-1 and blaTEM-52 genes had only been described in strains of E. coli isolated 

from poultry feces and meat (Machado et al., 2008a). 

In E. coli strains isolated from food-producing animals, CTX-M-1 was also the most frequent. 

In humans, the occurrence of this β-lactamase is rare and seems to be associated with direct 

or indirect contact through the food chain (Gonçalves et al., 2011; Leverstein-van Hall et al., 

2011, Veldman et al., 2014; Day et al., 2016). Companion and zoo animals are also potential 

reservoirs of ESBL and PMAβ-encoding genes, which can be transmitted to humans due to 

close contact with owners, caretakers and visitors (Ewers et al., 2012; Dobiasova et al., 

2013; Donati et al., 2014). 

Regarding PMAβ enzymes, CMY-2 was identified in six E. coli strains isolated from food-

producing (n = 2) and companion animals (n = 4), and S. Havana (n = 2) isolated from 

broilers. As in other studies, CMY-2 represents the most frequent PMAβ in animals (Dierikx 

et al., 2010; EFSA, 2011a; Dierikx et al., 2012; Ewers et al., 2012; Li et al., 2013; Liebana et 

al., 2013) and humans, mainly in strains isolated from nosocomial and community-acquired 

infections (Nicolas-Chanoine et al., 2014; Jamborova et al., 2015; Alonso et al., 2016). 

In the study described on Chapter 4.3, we identified CTX-M-15 in two E. coli strains isolated 

from companion animals and in seven strains from captive dolphins. This enzyme has been 
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widely described in companion animals (Sun et al., 2010; Hordijk et al., 2013; Klimes et al.,

2013; Veldman et al., 2013; Jamborova et al., 2015; Day et al., 2016), and here was 

detected for the first time in dolphins. 

E. coli CTX-M-15 producer and belonging to ST131 is one of the most widespread and

successful bacterial clones among humans, isolated from hospitals, health care units and the

community (EFSA, 2011a; Nicolas-Chanoine et al., 2014). Detection of this enzyme in E. coli

strains from captive dolphins, which are in permanent contact with humans, prompted us to

evaluate its zoonotic potential, as described in Chapter 4.4. Genetic relatedness between

the E. coli strain isolated from a dolphin and a collection of human clinical strains isolated

from different health care units, with common resistance determinants [blaCTX-M-15 and

aac(6')-Ib-cr] associated to the same plasmid (IncF), demonstrated the clonality between the

human strains and the animal strain. Results confirmed the zoonotic potential of the isolate,

suggesting the occurrence of the same genetic events in the dolphin and the human isolates,

leading to the same pattern of allelic diversity, ST131 fimH30-Rx. Although we were alerted

for the transmission of a high-risk clone, we were not able to establish the direction of the

transfer of resistance and virulence determinants. Thus, we confirmed the possibility of

interconnection between human and animal health, although it is unclear whether

environmental intervention took place in the transmission (Robinson et al. ,2016).

In the study described on Chapter 4.5, antibiotic susceptibility of 387 E. coli strains isolated

from broiler and turkey cecal samples at slaughter was determined. The frequency of 3rd

generation cephalosporin resistant strains was not high, levelling between 4% and 2.7%,

respectively, in contrast to that observed for fluoroquinolones, 90.6% and 79.5%,

respectively. Although the administration of 3rd generation cephalosporins is not authorized

for poultry, the occurrence of resistant strains can be explained by co-selection, using other

antibiotics, namely fluoroquinolones (Michael et al., 2017). As a matter of fact, the total sales

of fluoroquinolones in our country increased by 0.4% during the period 2011-2014, with a

peak in 2014, when samples included in this study were collected (EMA/ESVAC, 2016).

Molecular characterization of 15 isolates nonsusceptible to cefotaxime and/or cefoxitin

revealed a wide diversity of resistance mechanisms, such as penicillinases from TEM family,

ESBLs from several families [SHV (-12), TEM (-52) and CTX-M (-1, -32 and -166)], being

CTX-M-166, a novel variant characterized by the substitution of alanine for valine at amino

acid position 120 (Ala120Val).

In three strains, only the ampC gene was detected or associated with the blaTEM-1. After

sequencing AmpC-encoding gene, the analysis revealed that nucleotide mutations

responsible for conformational modifications in the AmpC β-lactamases were found,

specifically in the Ώ-loop (A220T, strain 19991) and helix-9 (I284V, strain 10908) (Kim et

al.,2006), suggesting the occurrence of extended-spectrum AmpC β-lactamases, (ESAC);

phenotypic susceptibilty assay showed sinergy with clavulanic acid. In the third strain
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exhibiting no synergy with clavulanic acid, mutations were observed on well conserved 

regions in the promoter/attenuator gene of the chromosomal ampC gene, suggesting that it is 

not an ESAC strain.  

The identification of AmpC enzymes responsible for the hydrolysis of broad-spectrum 

cephalosporins is rare in E. coli strains of animal origin. Thus, to our knowledge, this study 

constitutes the second description of ESAC-type enzymes in animals (Haenni et al., 2014). In 

addition, this study revealed that the occurrence of ESBL-producing E. coli isolated from this 

poultry population is not due to a specific clone, unlike those from human clinical isolates or 

from animals kept in captivity (Chapter 4.4) (Mendonça et al., 2007). 

The characterization of kinetic parameters of the new ESBL enzyme detected, CTX-M-166, 

compared with the parental enzyme of the same group, CTX-M-1, was the main objective of 

the study developed in Chapter 4.6. Although the catalytic activity of the new variant has 

shown a strong affinity for penicillin, piperacillin, cefotaxime and ceftiofur, it is lower than that 

of CTX-M-1 enzyme. The aminoacid substitution identified represents a modification of a 

neutral aminoacid to another equally neutral, frequently associated to an increase in the 

protein flexibility, meaning substrate recognition and binding. Antibiotic selection pressure 

can cause the accumulation of mutations with important impact on the enzymatic activity and 

so, on the resistance phenotype. 

The development of next generation technologies, namely WGS and its application in 

research and diagnostics, granted a rapid and complete analysis of numerous genomes, 

from potentially pathogenic agents, to commensal and environmental organisms. The 

detection of intrinsic and acquired antibiotic resistance determinants, virulence factors, 

mobile genetic elements, tolerance to heavy metals and others represents a valuable tool for 

additional characterization, which should be used in research and surveillance programs, in 

the present and in the near future (Zankari et al., 2013; Anjum, 2015; Franzosa et al., 2015; 

Gilad, 2017; Nado et al., 2017). 

Thus, using the potential offered by this technology, we intended to make a complete 

characterization of a multidrug resistant CTX-M-166-producing E. coli strain, as described in 

Chapter 4.7. Several resistance genes, conferring resistance to β-lactams (blaTEM-1), 

aminoglycosides (strA-strB), tetracycline (tetA-type), sulfonamides (sul2) and trimethoprim 

(dfrA14-type), virulence factors (iss, gad, astA, iroN, iha, mchF-type, celb-type and cma-

type), insertion sequences (ISEcp1-blaCTX-M-166-orf477), plasmids (ST103-IncI1 and Col8282) 

and serotypes (O6:H16 ST48-fimH34) were identified with this approach. The study of the 

pathogenicity factors present in this genome indicated that there was a probability of 93.2% 

of this bacterial isolate acting as a human pathogen (Cosentino et al., 2013). The survival of 

a specific bacteria in multiple ecological niches, and their ability to adapt to alternative hosts, 

either by capturing new virulence factors or antibiotic resistance determinants, while 

maintaining their fitness may be a matter of concern. 
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The detection of PMQR-encoding genes has been increasing in Enterobacteriaceae strains 

isolated from animals (Veldman et al., 2011; Jones-Dias et al., 2013; Donati et al., 2014; 

Jamborova et al., 2015). Although these determinants may be responsible for a low level of 

resistance, PMQR are associated to a cumulative effect when combined with chromosomal 

mechanisms, which may explain high MIC values to nalidixic acid (> 512mg/L) and 

ciprofloxacin (> 8mg/L), observed in some of our strains. This may also increase the 

likelihood of dissemination of other resistance genes through co-selection (Donati et al.,

2014; Jamborova et al., 2015). 

In the studies developed in Chapters 4.2, 4.3, 4.4, 4.5 and 4.8, a phenotypic and genotypic 

characterization of S. enterica and E. coli strains isolated from food-producing, companion 

and zoo animals, regarding the detection of PMQR, was performed. Although the 

administration of fluoroquinolones in the veterinary practice is high (DGAV, 2013, ESVAC, 

2016), the results obtained in these studies indicate that PMQR-encoding genes occur at low 

frequency, as previously reported by other authors (Veldman et al., 2011; Donati et al., 2014; 

Jamborova et al., 2015). 

In the S. enterica strains analyzed, no PMQR-encoding genes were found, unlike in E. coli

strains where qnrS1 (n=3), qnrB19 (n=3) and aac(6 ')-Ib-cr (n=9) were detected. Despite the 

high consumption of fluoroquinolones, the low frequency of detection PMQR-encoding genes 

suggests that the occurrence of these determinants may not be triggered by selection 

pressure (Veldman et al., 2011). 

In Chapter 4.8, and to explore genetic diversity between different E. coli strains, we analysed 

two strains carrying the qnrS1 gene, isolated from a canine and a pigeon, and two strains 

carrying aac(6 ')-Ib-cr gene, isolated from two dolphins. Using WGS, and comparing both 

QnrS-1 genomes, a high genetic relationship was noticed between the two pairs of strains. 

The absence of chromosomal mutations at the level of the QRDR region corroborates with 

low quinolone MIC values of 0.38mg/L for ciprofloxacin and 8mg/L for nalidixic acid. Between 

both AAC(6')-Ib-cr- and CTX-M-15-bearing strains there were few genomic differences; the 

presence of four mutations in the QRDR region of both strains corroborates with high 

quinolone MIC values of >256mg/L for nalidixic acid and >32mg/L for ciprofloxacin. The 

absence of genes supporting conjugation (tra genes) in two, ST131 fimH30-Rx strains 

reinforces the preponderance of a clonal spread over horizontal transfer, as previously 

described in other E. coli ST131 strains (Nicolas-Chanoine et al., 2014).  The data gathered 

throughout this study illustrates two scenarios: the presence of the same strain in different 

hosts inhabiting remote locations and the persistence of a unique strain in a single niche 

during a long period of time. 

Although it may be rare in isolates from animals, qnrD gene is common in members of the 

Proteeae family (Zhang et al., 2013; Guillard et al., 2016); recently it has been described in 

Salmonella spp strains isolated from food-producing and animal products (Jiang et al., 2014; 
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Lin et al., 2015). In Chapter 4.9, genome analysis of a Morganella morgannii strain isolated 

from broilers aged 13 days old, and with post-mortem lesions identical to those observed in 

colisepticemia, was performed, through WGS. M. morgannii is a commensal bacterium 

occasionally causing infections in animals and humans (urinary tract, liver, skin and soft 

tissues) (Roels et al., 2007; Zhao et al., 2012; Lin et al., 2015). In this thesis, this emerging 

opportunistic pathogen was broadly characterized due to its uncommon presence in human 

and animal infections and because of its multidrug resistance; thus, the complete 

characterization of antibiotic resistance genes, virulence factors, and mobile genetic 

elements responsible for the putative dissemination of the M. Morgannii strain was 

performed.  

Genome characterization confirmed the phenotypic multiresistance pattern towards, 

aminoglycosides [aadA1y, aph(3')-Ic, and strA-strB], β-lactam (blaOXA-1), fluoroquinolones 

[qnrD1, acc(6')-Ib-cr], phenicols (catA2 and catB3), rifampicin (arr-2), sulfonamides (sul2), 

trimethoprim (dfrA1), tetracycline (tetY), and streptotrichin (sat2).  Several virulence factors 

and mobile genetic elements were also detected. The presence of inverted sequences in an 

IS26 suggests the occurrence of a recent event of genetic recombination in a small non-

conjugative plasmid (8449pb) carrying qnrD1 gene, corroborating with the absence of ability 

to conjugate (Zhang et al., 2013; Guillard et al., 2014). 

Analysis through PathogenFinder (Cosentino et al., 2013) showed a 68.9% likelihood of 

being a human pathogen, which is in accordance with the opportunistic nature of this species 

(Zhao et al., 2012; Lin et al., 2015). The detection of M. morgannii of avian origin, carrying 

multiple mobile resistance determinants and virulence factors is a cause for concern, due to 

its capacity of dissemination and infect other birds, and the potential risk of zoonotic 

transmission. To our knowledge, this study represented the first genomic analysis of an 

animal isolate, carrying qnrD1 gene. 

Infection with Salmonella enterica is the first cause of human food poisoning in Europe, 

mostly related to the consumption of poultry food products, namely meat and eggs, being 

serotype Enteritidis (S. Enteritidis) the most frequent (EFSA/ECDC, 2015); in animals, 

infection is generally asymptomatic except in young chicks and poults, wherein mortality is 

high (Foley et al., 2013). 

In Chapter 5.1, using WGS and available bioinformatic tools, and in collaboration with 

Sanger Institute and Biocant, we analyzed the genome of a S. Enteritidis strain isolated from 

day-old chicks with omphalitis; molecular features associated with the serotype, antibiotic 

resistance, virulence, and mobile genetic elements, were explored. 

Due to the absence of the wzy gene, which encodes O antigen in Gram negative bacteria, 

including Salmonella (Hong et al.,2015), confirmation of serotype Enteritidis was obtained 

through the detection of sdf gene (Salmonella difference fragment virulence gene), encoding 

a marker for most common strains of circulating S. Enteritidis (Agron et al., 2001). In 
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addition, 52 genes encoding efflux, transport and permeability mechanisms, where identified, 

corroborating with the tetracycline phenotype. Although the isolate showed susceptibility 

towards fluoroquinolones, aminoglycosides and chloramphenicol, bioinformatic analysis 

allowed the detection of genes that have already been associated to resistance in such 

antibiotic classes. However, in this case, the strain maintained full susceptibility to antibiotics. 

(Fernandez & Hancock, 2012).  

The presence of a Salmonella-specific MerR-like gold (Au) sensor-GolS involved in Au 

resistance was identified (Pontel et al., 2007). Studies carried out by Pal et al., (2015) 

showed that although the genetic co-existence of resistance determinants to antibiotics, 

biocides and metals does not pose an immediate risk by horizontal gene transfer, as they are 

mostly located in different plasmids, the coexistence of various determinants of resistance 

poses a risk by promoting and maintaining plasmids with potential for co-selection (Baker-

Austin et al., 2006; Lemire et al., 2013; Pal et al., 2015).Thus, the identification of genetic 

determinants that encode multiple efflux pumps, virulence factors, mobile genetic elements 

and heavy metal tolerance is a cause for concern regarding the capacity dissemination of 

infection to other birds, as well as the risk of zoonotic transmission. 

Polymyxins, particularly colistin, have been used in human and veterinary medicine for about 

five decades. Due to nephrotoxic and neurotoxic effects, its use in humans is restricted to the 

treatment of severe infections caused by carbapenem resistant Enterobacteriaceae, 

Acinetobacter spp. and Pseudomonas aeruginosa. In veterinary medicine, colistin is widely 

used in preventive and curative treatments for gastrointestinal tract infections, in food-

producing animals, occupying the 5th place of sales in European countries (Kempf et al.,

2013; EMA/ESVAC, 2016). Shortly after the first notification of occurrence of plasmid-

mediated resistance (PMCR), mcr-1, by Liu et al., (2016), numerous studies worldwide 

reported the detection and dissemination of the mcr-1 gene in Enterobacteriaceae strains 

isolated from humans, different animal species, foodstuffs and the environment (Hasman et

al., 2006; Campos et al., 2016; Jones-Dias et al., 2016b; Figueiredo et al., 2016; Perrin-

Guyomard et al., 2016; Quesada et al., 2016, Zurfuh et al., 2016; Zhang et al., 2016). 

In Chapter 5.2, a retrospective study (2010-2015) on a collection of 1840 

Enterobacteriaceae strains (E. coli, n=1206; S. enterica, n=634), regarding susceptibility to 

polymyxins (colistin) and β-lactams (3rd generation cephalosporins, cefotaxime and 

ceftazidime), in strains resistant to colistin, was performed. We identified 138 colistin-

resistant strains (E. coli, n=103; Salmonella spp, n=35). The detection of mcr genes (mcr-1 

and mcr-2) in resistant strains revealed a high frequency of occurrence, particularly in 

turkeys (27 %) and pigs (10.6%). A new variant of the mcr-1 gene was detected and 

designated as mcr-1.9. This gene differed from mcr-1 in a single point mutation that 

consisted in a substitution of thymine by cytosine at position 1238 (T1238C), leading to the 

substitution of a valine by an alanine at position 413 (Val413Ala). 
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In addition, 45.7% (42/92) of E. coli strains bearing the mcr-1 gene were also resistant to 3rd 

generation cephalosporins and/or cephamycins (ESBL and/or PMAβ); several other bla 

genes were also detected (blaCTX-M-1, n=14; blaCTX-M-32, n=13; blaCTX-M-14, n=5; blaCTX-M-8, n=1; 

blaCTX-M-27, n=1; blaSHV-12, n=3; blaCMY-2, n=3; blaampC, n=2). We highlighted the first 

occurrence, in our country, of the enzyme CTX-M-8 in strains of animal origin. Although 

these β-lactamases are rare in European countries (Borjesson et al., 2016), they seem to be 

emerging in human strains (Eller et al., 2014). 

In addition to the mcr-1.9 and blaCTX-M-8 genes, other resistance determinants were identified, 

namely sulfamethoxazole (sul3), trimethoprim (dfrA12-type), chloramphenicol (cmlA1-type) 

and β-lactam (blaTEM-1), corroborating with the resistance phenotype observed. As previously 

reported (Hasman et al.,2015, Campos, et al.,2016), three plasmids were identified, among 

which we highlight IncX4, carrying the mcr-1.9 gene, and IncI1 carrying the blaCTX-M-8 gene; 

the latter have already been broadly identified in human, animals and food strains (Veldman 

et al., 2011, Accogli et al., 2013, Dierikx et al., 2013). Detection of the mcr-1 gene in two 

strains isolated from food-producing animals in Portugal in 2010 suggests the involvement of 

a silent dissemination, as reported in other studies (Campos et al., 2016; Haenni et al., 2016; 

Perrin-Guyomard et al., 2016). 

Indeed, it is alarming that in addition to the selection pressure exerted by colistin itself, 3rd 

generation cephalosporins can also act as a selection for resistance to colistin and vice-

versa. Moreover, abusive and inadequate use of tetracyclines and sulfonamides in animals, 

may contribute to the dissemination of plasmids bearing the mcr gene (Haenni et al., 2016). 

The high frequency of mcr-1 occurrence in isolates of veterinary origin, most likely 

associated with the high consumption of colistin in food-producing animals (EMA, 2016), 

contrary to what happens in human medical practice, suggests a gene flow from animals to 

humans. In fact, plasmid resistance to colistin lies in the interface between animal health and 

human health (Skov & Monnet, 2016).  

In a One Health perspective, and recognizing the importance of colistin in human clinical 

practice as a last resource antibiotic in severe multidrug resistant infections, data obtained in 

this study and previously published by others emphasize the urgent need to control the 

dissemination of plasmids bearing the mcr gene, and reconsider the massive use of colistin 

in veterinary medicine worldwide. Moreover, the European Medicines Agency (EMA) issued 

a set of recommendations aiming to restrict the use of colistin to a second-line treatment in 

animals and to classify this antibiotic as a drug reserved to treat infections in animals, only 

when there is no alternative treatment (EMA, 2016). 

Horizontal transfer of antibiotic resistance genes among Gram negative bacteria plays a 

major role in the spread of multidrug resistance. The emergence and spread of antibiotic 

resistance among pathogenic bacteria of clinical relevance has been a major concern in 

public health. Commensal and environmental bacteria, mobile genetic elements and 
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bacteriophages constitute important reservoirs of antibiotic resistance genes (resistome), 

which pathogenic bacteria can capture by horizontal gene transfer (von Wintersdorff et al.,

2016). 

In the studies developed in Chapters 4 and 5, we emphasized the importance of 

associations between ESBL-, PMAβ-, PMQR- and PMCR-encoding genes with mobile 

genetic elements, such as integrons, ISs, transposons, phages and plasmids (Partridge, 

2015). ISs play an important role in the transfer of antibiotic resistance encoding-genes by 

encoding a transposase and providing promoters to activate silent genes, or enhance 

expression of downstream determinants (Zhao & Hu, 2013). ISEcp1-blaCTX-M-IS903 and 

ISEcp1-blaCTX-M-orf477 are two major genetic platforms important in the mobilization of 

blaCTX-M genes (Lartigue et al.,2004), as we found in our studies. Being ISEcp1 one of the 

most important and frequent genetic elements, others as IS903 and IS26 were also found to 

be adjacent to blaCTX-M genes. Such heterogeneity may be explained by continuous 

recombination events with exchange of genes and genetic rearrangements (Zhao & Hu, 

2013).  

Other mobile genetic elements like Class 1 and Class 2 integrons were identified in a large 

number of Salmonella and E. coli strains. Their spread among separate microbial 

populations may be facilitated due to their location in transposons, such as Tn402 in class 1 

and Tn7 in class 2 integrons. This association allow an increased mobility between different 

plasmids and between plasmids and the bacterial chromosomes (Stokes & Gillings, 2011). 

Overall, integrons play a relevant role as genetic reservoirs for transfer, integration and 

dissemination of resistance genes among bacteria (van Essen-Zandbergen et al., 2007; 

Ramírez et al., 2010; Sunde et al., 2015).   
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CONCLUDING REMARKS 
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The studies performed in this thesis included commensal, zoonotic and pathogenic bacterial 

strains belonging to Enterobacteriaceae family (Escherichia coli, Salmonella spp and 

Morganella morgannii), isolated from different animal species (food-producing, companion 

and zoo animals) and food products of animal origin. 

The research and monitoring of antibiotic resistance, as well as the implementation of 

surveillance programs consist of some of the strategic priorities aiming to control the spread 

of antibiotic resistance. Indeed, the phenotypic characterization of antibiotic susceptibility, 

and respective interpretation of the results according to epidemiological breakpoints, may 

result in the acquisition of important information related with changes in resistance patterns. 

It may also be relevant to predict the emergence of new resistance mechanisms and denote 

possible shifts in the dynamic of resistance within different animal populations and products 

of animal origin. 

Antibiotic susceptibility of Salmonella spp and E. coli strains is greatly related with the animal 

species of origin, strain’s serotype (for Salmonella) and genotype, as well as the antibiotic 

consumption to which the animals are subjected to. Overall, nonsusceptibility towards all 

tested antibiotics was higher in food-producing animals, followed by companion and zoo 

animals. In contrast, cefotaxime nonsusceptibility values were higher in companion animals, 

followed by food-producing and zoo animals. Regarding colistin, a very high frequency of 

resistance was reported in E. coli strains isolated from food-producing animals, particularly 

turkeys and swine. 

The diversity of hosts sampled and techniques used, which included bacteriological, classical 

molecular biology, and whole genome sequencing (WGS), contributed to deepen the 

knowledge about antibiotic resistance in Escherichia coli and Salmonella spp. Moreover, 

critically important molecular antibiotic resistance mechanisms present either in human or in 

veterinary medicine, were highlighted throughout the studies included in this thesis.  

Globally, we would like to emphasize: 

1. High diversity of resistance determinants to critical important antibiotics detected in

Salmonella spp and E. coli strains, namely: β-lactamases [ESBL and/or PMAβ (blaTEM-1,

blaTEM-52, blaSHV-12, blaCTX-M-1, blaCTX-M-8, blaCTX-M-14, blaCTX-M-15, blaCTX-M-32, blaCTX-M-27, blaCTX-M-

166, blaCMY-2)], blaESAC, PMQR (qnrB19, qnrS1, aac(6’)-Ib-cr, qnrD1), and PMCR (mcr-1, mcr-

1.9);

2. The first occurrence of ESBL enzymes of CTX-M family in Salmonella enterica

isolates from animal origin (blaCTX-M-1, blaCTX-M-14, blaCTX-M-15, blaCTX-M-32), ESBL-encoding

genes (blaCTX-M-8, blaCTX-M-27), and blaCTX-M-166 in E. coli strains isolated from swine and

broilers, respectively; blaESAC in E. coli isolated from poultry, PMQR (qnrD1) in M. morganii

from broilers and PMCR (mcr-1.9) in E. coli isolated from swine;
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3. Genes encoding unique efflux mechanisms that may anticipate the prediction of

antibiotic and metal resistance mechanisms in S. Enteritidis isolated from broilers;

4. Horizontal gene transfer possibly mediated by diverse mobile genetic elements, such

as insertion sequences (ISEcp1, IS26, IS903, ORF477), class 1 and 2 integrons, and

plasmids of several incompatibility groups (IncI1, IncF, IncX4, IncN, IncFIA, Col8282, among

others).

5. High genetic similarity between bacterial isolates recovered from animals and food

products of animal origin and human pathogens.

In summary, the studies performed in this thesis reinforce the need for a permanent 

investigation on the resistance mechanisms present in multiple ecological niches, and bring 

new insights into the current scenario of antibiotic resistance in Enterobacteriaceae, in 

Portugal. Prioritizing the molecular characterization of antibiotic resistance mechanisms that 

are critically important for humans and animals was essential, not only for understanding the 

emergence of new resistance mechanisms, but also to control its spread. 

Globally, this work achieved the objectives initially outlined, having even surpassed them, 

namely by using new generation technologies as an essential complementary tool in the 

study of antibiotic resistance. 
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