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Abstract 

Burden of disease of four foodborne pathogens: a harmonized approach in Denmark 

Consumption of contaminated food products and exposure to a variety of health hazards can 

lead to a wide spectrum of foodborne diseases (FBD). The true impact of these diseases is 

still unknown worldwide. Burden of illness (BoI) and burden of disease (BoD) studies can be 

developed in order to help decision makers implement intervention and control measures to 

improve food safety systems. 

This thesis describes an integrated model to estimate the public health impact of four 

zoonotic foodborne pathogens in Denmark in 2016 – Campylobacter spp., Salmonella spp., 

Yersinia enterocolitica and verocytotoxin-producing Escherichia coli (VTEC).  

The applied model consisted of two general components: a BoI study, which was applied to 

estimate total incidence of these pathogens in the Danish population, accounting for 

underdiagnosis and under-reporting; and a BoD study, which built on the first and estimated 

disease burden in terms of the disability adjusted life year metric (DALYs). It also describes 

the model developed to estimate the BoD of yersiniosis – the first developed in Denmark and 

in Europe. 

Total incidence estimates point to 66,202 cases of illness, with Campylobacter contributing 

the most (51,225 cases), and Yersinia the least (1,860 cases). The total BoD is 2,290 

DALYs. Ranking in first place with the highest burden is campylobacteriosis, followed by 

salmonellosis, yersiniosis and VTEC infections, with 30, 8, 1 and 0.8 DALYs per 100,000 

inhabitants, respectively. Gastroenteritis was the sequela which born the highest burden, 

when compared to long-term sequelea. 

Total incidence estimates for all four pathogens show that children under five years old have 

the highest incidence when compared to other age groups, while BoD estimates regarding 

Campylobacter and Salmonella show the highest burden on elderly people, which can be 

explained by the high number of fatal cases estimated for that age group. Still, those two 

diseases have a considerable high burden on young children, as does yersiniosis and VTEC 

infections. 

Differences in methodological approach used to estimate total incidence and the BoD makes 

comparison among countries difficult. The burden of these preventable diseases is still 

considerable, even in developed countries like Denmark. Understanding the contribution of 

each cause to the burden of FBD and incorporating estimates into policy development 

worldwide will enable efficient and effective interventions and improvements throughout all 

the food chain. 

Keywords: Burden of Illness, Burden of Disease, DALYs, Y. enterocolitica, Campylobacter, 

Salmonella, VTEC. 
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Resumo 

Impacto na saúde pública de quatro agentes patogénicos de origem alimentar: uma 

abordagem harmonizada na Dinamarca 

O consumo de alimentos contaminados e a exposição a fatores de risco pode causar um 

alargado espectro de doenças de origem alimentar. O verdadeiro impacto destas doenças é 

ainda desconhecido. Estudos de burden of illness (BoI) e burden of disease (BoD) podem 

ser desenvolvidos, facilitando a implementação de medidas de intervenção e controlo por 

parte das autoridades, com o intuito de melhorar os sistemas de segurança dos alimentos. 

Esta tese descreve um modelo integrado para estimar o impacto na saúde pública de quatro 

agentes zoonóticos transmitidos por alimentos – Campylobacter spp., Salmonella spp., 

Yersinia enterocolitica e Escherichia coli verocitotoxinogénica (VTEC). 

O modelo aplicado é composto por duas componentes: um estudo de BoI para estimar a 

incidência total destes agentes patogénicos na população dinamarquesa, tendo em conta o 

grau de sub-diagnóstico e sub-notificação; e um estudo de BoD que contabiliza o impacto 

destas doenças utilizando uma medida universal designada: disability adjusted life year 

(DALYs). Também está descrito o modelo concebido para estimar o impacto da yersiniose – 

o primeiro a ser desenvolvido quer na Dinamarca, quer na Europa. 

A incidência total estimada aponta para 66,202 casos de doença; com Campylobacter dando 

um maior contributo (51,225 casos) e Yersinia o menor (1,860 casos). A totalidade do 

impacto destas quatro doenças foi de 2,290 DALYs. O maior impacto na saúde pública é 

causado por campilobacteriose, seguida de salmonelose, yersiniose e infeções por VTEC, 

com 30, 8, 1 e 0.8 DALYs por 100,000 habitantes, respetivamente. A gastroenterite foi a 

sequela com maior impacto, quando comparada com sequelas de longa duração. 

As estimativas de incidência total para os quatro agentes patogénicos mostram que crianças 

com menos de cinco anos têm uma maior incidência, comparando com outras faixas etárias, 

enquanto as estimativas de BoD para Campylobacter e Salmonella mostram um maior 

impacto em idosos. Ainda assim, essas duas doenças têm um considerável impacto em 

crianças, como o têm a yersiniose e as infeções VTEC. 

As diferenças na abordagem metodológica utilizada para estimar a incidência total e o BoD 

dificultam a comparação entre países. O impacto dessas doenças evitáveis  é ainda 

considerável, mesmo em países desenvolvidos como a Dinamarca. Compreender a 

contribuição de cada causa para o peso das doenças transmitidas por alimentos e 

incorporar estimativas no desenvolvimento de políticas em todo o mundo permitirá 

intervenções e melhorias eficientes e efetivas em toda a cadeia alimentar. 

 

Palavras-chave: Peso de Doença, Peso Global de Doença, DALYs, Y. enterocolitica, 

Campylobacter, Salmonella, VTEC 
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Internship Report 

 

As part of the Integrated Master’s Degree in Veterinary Medicine from the Faculty of 

Veterinary Medicine (FMV), University of Lisbon, I completed two internships with a total 

duration of nine months. 

The first internship took place at the FMV, from mid-September to January. I was supervised 

by Professor Telmo Nunes and acquired skills that were essential to prepare for my second 

internship in Denmark. I learned how to perform statistical data analysis in R and did 

literature research on Burden of Illness and Burden of Disease studies, as well as on 

Yersinia. Still in Lisbon, I started adapting a BoI model to R, which enabled me to extend my 

initial designated tasks for my second internship. 

In Denmark I spent five months at the National Food Institute, Technical University of 

Denmark (DTU-Food), where I developed a model to estimate the burden of disease of 

yersiniosis and adapted previously developed models concerning other three diseases 

(which was only possible due to the work I developed under the supervision of Professor 

Telmo Nunes). 

Under the supervision of Dr. Sara Monteiro Pires, I learned how stochastic disease models 

are built to estimate the true incidence of foodborne diseases and learned how to apply the 

Disability Adjusted Life Years metric to estimate the Burden of foodborne pathogens. I 

worked with R and adapted previously built models in @Risk to C language. I also had the 

opportunity of contributing to the Annual Report on Zoonoses in Denmark, writing an article 

on the Disease Burden of Yersiniosis in the country. 

I was able to interact with a wide range of researchers from different backgrounds, learn 

about their projects and be inspired by different ways of accessing problems. 

I enrolled in a three week PhD course, taught by Dr. Maarten Nauta and Dr. Sofia Duarte, on 

Quantitative Microbiological Risk Assessment, where I learned about food pathways and how 

to apply deterministic and stochastic models regarding growth, inactivation and cross 

contamination of foodborne pathogens, using Excel and @Risk. 

While in Denmark, I also had the opportunity to interact with an expert on Epidemiology from 

Statens Serum Institut, Dr. Steen Ethelberg, who helped me gather information to inform my 

yersiniosis’ model and enlightened me on how the surveillance of human zoonotic diseases 

was performed in Denmark. 

Another enriching experience was doing a presentation to another expert, this time on 

Yersinia, from the Danish Agriculture and Food Council. I met with Dr. Marianne Sandberg, 

first to present my ideas regarding yersiniosis’ model and second to try and gather data to 

develop a source attribution model for this disease. Although there was no data available, I 

left this meeting with new knowledge and ideas. 

Lastly, I had the opportunity to attend to several meetings of the Toxoplasma Group, which 

gathered experts from all Nordic countries, in order to understand how to tackle this parasitic 

disease, where I witnessed a true One Health approach, meeting researchers from all 

backgrounds. 

At the end of my internship I presented my work on Yersinia to everyone at the Risk Benefit 

Group, which enabled me to practice my oral presentation skills, as well as to think critically 

in order to answer all the questions related to the study developed. 
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I. Literature review 

 

1. Introduction  

 

In the United Nations Agenda for Sustainable Development, the second goal to achieve by 

the year 2030 is to “End hunger, achieve food security and improved nutrition and promote 

sustainable agriculture”. Ensuring that all people have access to safe, nutritious and 

sufficient food is the first step to accomplish that goal. This dissertation will focus on 

foodborne diseases, which is a main obstacle in the road towards achieving food safety. 

Foodborne diseases (FBD) have long posed a threat to public health. In this changing World, 

the types, severity and impact of these illnesses have been in constant mutation, varying 

between individuals, communities, countries and regions (World Health Organization [WHO], 

2015). 

Through the consumption of contaminated foods, people are exposed to a variety of 

foodborne health hazards and can acquire a wide spectrum of illnesses, caused by a range 

of agents of bacterial, viral, parasitic, prionic or chemical nature (WHO, 2015; Tauxe, Doyle, 

Kuchenmüller, Schlundt, & Stein, 2010; Tauxe, 2002). These illnesses are often acute and 

self-limiting (diarrhea and vomiting), but can also be severe and chronic, such as kidney and 

liver failure, neurological disorders, and non-communicable diseases, like cancer, 

reproductive and immunological problems (WHO, 2014) . 

Many foodborne pathogens have animals as main reservoirs, thus enabling transmission to 

humans through various exposure routes, including environmental from primary production 

sources, and foodborne transmission due to contamination at different points in the food 

chain (Pires, 2014). 

To join the multitude of current foodborne agents, new and re-emerging hazards, with 

different sources of contamination, have brought new challenges to food safety  in the last 

decade (WHO, 2014). 

With the globalization of food trade, people expect a wider variety of foods, which led to a 

modification in the food production, distribution and consumption. With this, contaminated 

food products can reach people living in different countries throughout the world, spreading 

more easily and reaching global consequences (WHO, 2014). Another reason for this 

accelerated spread is the growing easiness for travelling long distances (Tauxe, 2010). 

As expected, FBD not only influence people’s health, but have also a negative impact on 

economy. The burden on the health-care systems, trade and tourism, food and agricultural 

sectors, brings significantly high damages to economic productivity and threatens the 

livelihood of people (Food and Agriculture Organization [FAO], World Organization for Animal 

Health [OIE], & WHO, 2010). 

Veterinary doctors play a key part on the implementation of preventive and control measures, 

either concerning animal diseases, zoonoses or food hygiene and safety.   
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Therefore, on September 29, 2004 the Wildlife Conservation Society gathered a group of 

health experts from around the world for a symposium on the current and potential 

movements of diseases among human, domestic animal, and wildlife populations. With this 

event, the “One World, One Health” initiative was born, proposing 12 recommendations, The 

Manhattan Principles, for the application of a more holistic approach for the prevention of 

epidemic/epizootic disease and the maintenance of ecosystems integrity (FAO, OIE, WHO, 

United Nations System Influenza Coordination, United Nations Children’s Fund [Unicef], The 

World Bank, 2008). 

They concluded that, to overcome all the hardships caused by zoonoses and animal 

diseases, while trying to ensure the biological integrity of the Earth for future generations, it 

would require interdisciplinary and cross-sectoral approaches to disease prevention, 

surveillance, monitoring, control and mitigation, as well as to environmental conservation 

(FAO, OIE, WHO, United Nations System Influenza Coordination, Unicef, The World Bank, 

2008).   

With this vision, cooperation and strong partnership is expected between human and 

veterinary medicine, among other scientific-health and environmentally related disciplines.  

 

2. Estimating total incidence of foodborne pathogens 

 

To help decision makers implement prevention, intervention and control measures in order to 

improve food safety systems, ranking FBD’ impact is essential (WHO, 2015). 

Although the importance of FBD is recognized globally, accurate data on its epidemiology, 

causative agents and its relative impact on public health is lacking (WHO, 2015). In order to 

give good guidance for the development and implementation of food safety policies, to 

achieve effective and efficient food safety systems and thereby protect consumers and 

improve public health, the first step is to estimate the total disease burden and etiology of 

these illnesses (WHO, 2015).   

The burden of foodborne diseases reflects the number of cases occurring on the population. 

For many pathogens, such data can be retrieved from national public health surveillance 

systems, which can be both active and passive, as well as from outbreak surveillance. But, 

even with a surveillance system in place, the reported laboratory-confirmed cases are known 

to be largely underestimated (Scallan et al., 2011).  

Data collected by surveillance systems represent only the “tip of the iceberg” and leads to a 

wrong picture on how these diseases impact public health (Pires, 2014). That happens 

because some ill persons do not seek medical care; some physicians do not request and 

submit a stool sample to a clinical laboratory to be tested; the clinical laboratory might not be 

able to isolate and identify the causative pathogen; and failures to report positive cases to 
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the public health surveillance system might occur (WHO, 2015), leading to under-reporting 

and/or underdiagnosis (Figure 1). 

Underdiagnosis is a consequence of the health care system’s failure to capture cases in the 

community that do not seek medical care, while under-reporting, the consequence of not 

achieving diagnosis, classification or notification of cases that have sought care (Haagsma, 

Polinder, Stein, & Havelaar, 2013b). 

 

Figure 1 - The foodborne diseases’ surveillance pyramid. The tip of the pyramid represents 

pathogen-specific cases reported to public health surveillance, whereas the base represents 

all cases caused by that pathogen occurring in the country in a given year. (Adapted from 

Pires, 2014). 

                                                     

 

2.1. Surveillance of human disease in Denmark 

 

Public health surveillance systems are used to collect data in order to inform the authorities 

about epidemic and other health problems in a community. The data collected can be used 

to identify the magnitude and distribution of health events, to detect and monitor changes in 

infectious agents, and to evaluate control measures (Centers for Disease Control and 

Prevention [CDC], 2012). 

In Denmark, human cases due to foodborne zoonotic pathogens are reported to Statens 

Serum Institut (SSI) through different channels depending on the disease (Anonymous, 

2017): 

 

Reported 

Confirmed 
diagnostic 

Sample tested

Sample submitted
Sample collected

Seeking medical care

All cases

Under-reporting 

Underdiagnosis 
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• Notifiable through the laboratory surveillance system: Salmonella, Campylobacter, 

Yersinia, verocytotoxin-producing E. coli (VTEC) and Listeria.  

 

• Individually notifiable zoonotic pathogens: Chlamydia psittacci (ornithosis), 

Leptospira (Weils disease), Mycobacterium, Bovine Spongiform Encephalopathy 

(BSE) prions (var. Creutzfeldt-Jakob Disease), VTEC and Lyssavirus (rabies).  

 

• Non-notifiable zoonotic pathogens: Brucella. 

 

The general practitioners (GP) report individually notifiable zoonotic diseases to the Danish 

Health Authority and the Department of Infectious Disease Epidemiology at SSI. They also 

send samples from suspected cases to one of the official clinical microbiology laboratories. 

There are twelve clinical microbiological departments covering the whole of Denmark. Most 

are located at a hospital and receive samples from the surrounding GPs (Espenhain, 2013). 

Positive cases diagnosed are reported through the laboratory surveillance system to the Unit 

of Gastrointestinal Infections at SSI. The laboratories must report positive results within one 

week. In addition to this, all Salmonella and VTEC isolates are sent to the reference 

laboratory, also at SSI, for further sero and genotyping. The results are recorded in the 

Register of Enteric Pathogens (MiBa) and cases are reported as episodes, i.e. each patient-

infectious agent combination is only recorded once in a six-month period (Anonymous, 

2017). The diagram of the collaboration between the authorities, the industry and non-

governmental organizations is described by Figure 2. This inter-relationship is a successful 

example of a One Health approach, including a multidisciplinary team of scientists, which 

works independently, either from the State (policy makers and authorities) or other 

stakeholders, ensuring transparency. Also, stakeholders, such as industry, and the primary 

production sector (represented by the Danish Veterinary and Food Administration) are parts 

of this approach. This is an example of a holistic approach to food safety, quite unique in the 

world. 
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Figure 2 - Overview of the monitoring and outbreak investigation network for reporting 

infectious pathogens in humans, animals, foodstuffs and feed-stuffs in Denmark, 2016 

(Anonymous, 2017). 

 

 

2.2. Population, Physician and Laboratory surveys 

 

Surveys are a valuable tool to understand the behavior of the different groups that influence 

under-reporting and underdiagnosis (Flint et al., 2005). 

As mentioned before, underdiagnosis contributes to the underestimation of cases of FBD. 

People with gastrointestinal illness often do not seek medical care and therefore are not 

diagnosed. Those cases never reach the surveillance system and are not accounted for in 

the health reports. 

Population surveys can be used to understand patient-behavior and assess the proportion of 

people that do not seek medical care, which will then be used to correct the reported number 

of cases, getting closer to the true incidence of foodborne pathogens (Müller, Korsgaard, & 

Ethelberg, 2012; Scallan et al., 2006). 

General practitioners’ knowledge, submission and interpretation of clinical specimen test 

results have a marked influence on public health surveillance, outbreak detection and patient 

management (CDC, 2012). Undetected cases of foodborne illness and misinterpretation of 

laboratory test results can delay treatment, reporting and outbreak detection (Clogher et al., 

2012; Schmutz et al., 2017; Van Cauteren et al., 2015).  

Even though many foodborne infections are self-limiting and do not require treatment, to 

successfully manage patient disease, the physician should properly diagnose it. Also, the 

use of antimicrobial drugs in mild or moderate cases of foodborne illness is relatively 

common, despite guide lines recommending their use only for severe cases (Rosner, 

Werber, Höhle, & Stark, 2013). Knowledge of which diagnostic tests to order and their right 
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interpretation, as well as correct treatment approaches, is needed to achieve better patient 

outcomes. However, laboratory testing methods are constantly changing, therefore both 

open communication between physicians and microbiologists and educational interventions 

are a main step to achieve best practices (Clogher et al., 2012). 

Physician surveys can be useful to understand their perception and practices (Wong et al., 

2004) and will help to reconstruct the surveillance pyramid, assessing the proportion of 

physicians that do not request and submit a stool sample (Schmutz et al., 2017; Van 

Cauteren et al., 2015). 

At last, in a laboratory-based surveillance, clinical microbiology laboratories are the key. It is 

through the identification and notification to the public health authorities of culture-confirmed 

infections that recognition of both foodborne outbreaks and sporadic cases, and 

epidemiological understanding overtime is achieved. Thereby, to interpret laboratory-based 

surveillance data, laboratory testing and reporting procedures must be considered (Voetsch 

et al., 2004). 

Differences between laboratories’ routine testing practices and their reporting systems might 

contribute to variations in the incidence rate of reported cases of foodborne illnesses, adding 

to under-reporting.  

Laboratory surveys might therefore help to characterize current practices and monitor 

changes in methodologies overtime (Voetsch et al., 2004).  

 

2.3. Burden of foodborne illness studies 

 

Both in Europe and outside, several countries have conducted burden of illness (BoI) studies 

in an attempt to estimate the true incidence of foodborne illnesses in their population 

(Cressey & Lake, 2011; Haagsma et al., 2013a; Hall et al., 2005; Scallan et al., 2011; 

Thomas et al., 2013; Vaillant et al., 2005). 

Table 1 shows an overview of the countries performing these studies, the number of 

pathogens considered and the estimation of incidence per 100,000 population. 

Even though all studies follow similar methodologies, there are differences in details of the 

surveillance pyramid reconstruction approach and on the number of pathogens included, 

highlighted by Table 1, therefore the results of these studies cannot directly be compared 

(Haagsma et al., 2013a). 

The above being true, I would like to emphasize that all these studies have considered 

Campylobacter spp., non-typhoidal Salmonella spp., verocytotoxin-producing Escherichia 

coli (VTEC) (although many grouped it with other E. coli pathotypes) and Yersinia 

enterocolitica, considering them relevant causes of FBD. 
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Table 1 - Burden of illness studies by country, number of studied pathogens and estimated 

incidence per 100,000 population. 

Country Number of 

pathogens 

Estimated 

Incidence/100,000 

population 

Reference 

Australia 16 8,056 Hall et al., 2005 

Canada 30 4,923 Thomas et al., 2013 

France 23 450 Vailant et al., 2005 

Germany 7 1,522 Haagsma et al., 2013a 

Italy 2 276 Haagsma et al., 2013a 

Netherlands 6 6,649 Haagsma et al., 2013a 

Poland 4 2,671 Haagsma et al., 2013a 

Sweden 5 2,014 Haagsma et al., 2013a 

United 

Kingdom 

6 7,201 Haagsma et al., 2013a 

United States 

of America 

31 3,100 Scallan et al., 2011 

New Zealand 24 12,900 Cressey & Lake, 2011 

 

In eight out of eleven countries, Campylobacter spp. is the pathogen with the highest 

incidence, when compared to Salmonella spp. VTEC and Y. enterocolitica (Table 2), ranking 

from first to third, when compared with all foodborne hazards included in its respective study. 

(Hall et al., 2005; Cressey & Lake, 2011; Haagsma et al, 2013a; Thomas et al., 2013). 

In the United States (US) and in France, Salmonella spp., compared to the other three 

pathogens, is the highest incident pathogen, occupying the second and fourth position, 

respectivily, according to Scallan and colleagues (2011) and Vailant and colleagues (2005). 

Regarding Yersinia enterocolitica, New Zealand estimated more cases of this pathogen than 

Salmonella spp. (Cressey & Lake, 2011), which is not seen in the other studies, where 

Yersinia occupies lower positions in the ranking than both Campylobacter and Salmonella 

(Hall et al., 2005; Vailant et al., 2005; Scallan et al., 2011; Haagsma et al., 2013a; Thomas et 

al., 2013). Although in Australia Yersinia is one of the pathogens with lower incidence (Hall et 

al., 2005), in countries like Canada, France and the US (that considered a larger number of 

pathogens), Yersinia is the 7th and 8th most incident pathogen (Thomas et al., 2013; Vailant 

et al., 2005; Scallan et al., 2011), showing that it is not a negligible cause of FBD. 
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VTEC was only considered separatly in Canada and France. Nonetheless, verocytotoxin-

producing E. coli is an important cause of FBD and should not be discarded. 

 

Table 2 - Estimated incidence of Campylobacter spp., Salmonella spp., VTEC and Y. 

enterocolitica and their ordinal position among other foodborne pathogens by country. 

Country Campylobacter Salmonella VTEC Yersinia 

Australia 208,000 

3rd 

81,000 

4th 

- 1.620 

14th 

Canada 145,350 

3rd 

87,510 

4th 

33,350 

6th 

25,915 

7th 

France 12,796 – 17,322 

5th 

30,598 – 41,139 

4th 

373 – 747 

10th 

655 – 1,909 

8th 

Germany 515,000 

1st 

430,000 

2nd 

- 86,000 

5th 

Italy 156,000 

1st 

34,000 

2nd 

- - 

Netherlands 322,000 

2nd 

55,000 

3rd 

- 20,000 

4th 

Poland 765,000 

1st 

242,000 

2nd 

- 9,600 

3rd 

Sweden 122,000 

1st 

40,000 

2nd 

- 9,500 

3rd 

United 

Kingdom 

2,500,000 

1st 

563,000 

2nd 

- 55,000 

5th 

United States 

of America 

845,024 

4th 

1,027,561 

2nd 

- 97,656 

8th 

New Zealand 190,092 

2nd 

22,570 

5th 

- 29,715 

4th 

 

3. Burden of Disease studies 

 

The impact of a disease can be measured by its incidence and/or the number of deaths 

(mortality) caused by it in a population (Devleesschauwer et al., 2015), therefore burden of 

foodborne illness studies could be used to rank diseases. However, using only these two 

population health measures, the impact of FBD on human health is not depicted accurately 

(Devleesschauwer et al., 2015).  In fact, a disease might have a very high incidence but 

cause very low burden due to its mild symptoms, or because it is mostly asymptomatic. On 

the other hand, a disease can cause few cases per year, but have high mortality rate. How to 
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compare, for example, an incidence of 300,000 cases, low severity and 0% mortality with a 

disease causing three cases with high severity and 33% mortality?  

Also, ignoring the age at which people die due to a specific disease, can be problematic. 

What if two diseases have the same incidence and the same mortality, but the deaths in one 

occur in younger people? Likewise, if those population health measures are the same, but 

one disease only causes acute symptoms (i.e. have short duration) and the other chronic life-

long sequelae? 

To overcome these limitations, the Disability Adjusted Life Year (DALY) metric was 

developed (Murray & Lopez, 1996) and is currently the most used metric to estimate the 

burden of disease (WHO, 2015), a concept developed in the 1990s. By incorporating 

morbidity, mortality and disability in one metric, the DALY enables the comparison and 

ranking between diseases for all regions of the world (Murray & Lopez, 1996). 

The concept of the DALY metric is simple: it represents the years lived with disability (YLD), 

i.e. years lived with decreased quality of life, and the years of life lost (YLL) due to premature 

death as a consequence of a given disease or condition, at the individual or population level 

(Anonymous, 2017). 

  

3.1. Foodborne disease model 

 

Risk factors increase the probability of having a disease by facilitating the exposure to 

biological, chemical or physical hazards. The course of disease is then characterized by 

distinct health states, with possibly different severity levels (Devleesschauwer et al., 2014b). 

Therefore, a disease model, also called health-outcome tree, provides a qualitative 

representation of all potential disease progression pathways throughout time (Mangen et al., 

2013). 

Depending on the perspective of the study, there are three disease model approaches 

relevant to burden of disease studies regarding foodborne diseases (Devleesschauwer et al., 

2014b; Haagsma et al., 2013b; Mangen et al., 2013): 

 

I. Outcome-based disease models 

This approach assigns different health states of disease, independent of the etiology (Figure 

3). For example, a disease model for the burden of diarrhea might describe different severity 

levels, as well as different health-outcomes occurring sequentially in time (e.g. reactive 

arthritis), which contribute to YLDs, and diarrhea related death, contributing to YLLs 

(Devleesschauwer et al., 2014b; Haagsma et al., 2013b; Mangen et al., 2013). 
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II. Hazard-based disease models 

This approach represents all relevant health-outcomes, acute and/or chronic, that can be 

attributed to a single agent (Figure 3). Being so, the starting point using a hazard-based 

disease model is illness caused by the exposure to biological, chemical or physical hazards 

(Devleesschauwer et al., 2014b; Haagsma et al., 2013; Kretzschmar et al., 2012).  

 

III. Risk factor-based disease models 

The third possible disease model used to estimate the burden of foodborne diseases 

associates different health states with risk factors that can influence exposure to causative 

agents of foodborne illness (Figure 3) (Devleesschauwer et al., 2014b; Haagsma et al., 

2013). As an example, a disease model for unsafe water would include the health-outcomes 

associated with feco-oral agents (Clasen et al., 2014; Prüss-Ustün et al., 2014). 

 

Figure 3 - Foodborne disease model depicting the three possible approaches: Risk factor-

based, Hazard-based and Outcome-based (Adapted from Haagsma, 2013b). 

 

 

  

3.2 Disability weights 

 

The disability weight (DW) concept was developed in order to reflect the impact of health 

states causing different disabilities and to compare morbidity and mortality (Murray & Lopez, 

1996). Disability is, in this context, defined as any short or long-term loss of health (Salomon 

et al., 2015). 

A DW for a health state is scaled from zero, indicating full health, to one, which implies that 

the health state is equivalent to death (worst possible health state) (Salomon et al., 2015). 

Risk factor-based 
approach

Risk factor 1

Risk factor 2

Risk factor 3

.
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Hazard-based 
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Not affected
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In the DALY calculation, the DWs are a crucial component. By multiplying the number of 

people affected by a health-outcome with the time of its duration and the correspondent DW, 

the number of years lived with disability can be calculated (Murray & Lopez, 1996). 

This value is based on judgements of possibly three sets of respondent groups. Namely, 

health-care professionals, individuals who experience a specific health state and the general 

public (Salomon et al., 2012). 

The Global burden of disease study of 1996 (GBD) used a panel of health-care professionals 

on the basis that they would have knowledge of a large set of health states and would be 

able to perform comparative unbiased judgements. However, most of the studies using DW 

use the responses of the general public, under the argument that the views of the general 

public are relevant in comparative assessments that inform public policy (Salomon et al., 

2012). 

 

3.3 Social weighting 

 

In the course of developing the DALY metric, the first GBD study applied two social value 

choices: time discounting and age weighting (Murray & Lopez, 1996). These two factors 

were applied in attempt to address two questions:  

‘Are lost years of healthy life valued more at some ages than others?’  

Age weighting reflects that individuals have different roles and changing levels of 

dependency and productivity with age (Murray & Lopez, 1996). Its application means that, 

depending of an individual’s age, time will be valued differently, specifically, youngest and 

oldest ages are given less weight (Pires, 2014). 

‘Is a year of healthy life gained now worth more to society than a year of healthy life gained 

sometime in the future?’ 

Time discounting is based on a standard practice in economic analysis, which entails that 

benefits now are preferable to a benefit gained later in time (Murray & Lopez, 1996). By 

applying this social weighting function, we consider that future life years are less valuable 

than those lived today (Devleesschauwer et al., 2014a; M. Pires, 2014). 

These two social weighting functions have not been universally accepted and, in recent 

years, have not been applied by burden of disease studies (Institute for Health Metrics and 

Evaluation [IHME], 2016; WHO, 2015). 
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4. Yersiniosis 

 

4.1. Yersinia spp. 

 

The genus Yersinia, of the family Enterobacteriaceae, comprises three major human 

pathogens and several non-pathogenic species. The pathogenic species are Yersinia pestis, 

the causative agent of the plague, Yersinia enterocolitica and Yersinia pseudotuberculosis, 

which are both enteropathogens, causing yersiniosis (European Food Safety Authority 

(EFSA), 2007). 

Of these three species, Y. pestis is neither foodborne nor found in Europe. Regarding the 

two enteropathogenic species, Y. enterocolitica is the most frequent cause of human disease 

in Europe, since Y. pseudotuberculosis  cases are rare and are mostly found in North-

Eastern Europe, mainly, Finland and Russia (EFSA, 2007; Jalava et al., 2004). In 2015, 

99.5% of the reported cases of yersiniosis in the European Union/European Economic Area 

(EU/EEA) were caused by Y. enterocolitica (EFSA, 2016). 

 

4.2. Yersinia enterocolitica 

 

Y. enterocolitica is a Gram-negative, facultative anaerobic rod (occasionally coccoid). It does 

not form a capsule or spores and it is nonmotile at 35–37 °C, but motile at 22–25 °C (Bottone 

et al., 2005). In addition, it has the capacity of growing at refrigeration temperatures (Van 

Damme, De Zutter, Jacxsens, & Nauta, 2017). Within this species there is enough 

biochemical heterogeneity to establish six biotypes and different O-antigen specificity for 

several (more than 48) serotypes (Nesbakken, 2015). 

Bio and serotyping of Y. enterocolitica are crucial, as its pathogenic potential varies greatly 

between bio/serotype combinations (Table 3) (Nesbakken, 2015). Harboring a virulence 

plasmid and having the High Pathogenicity Island, enables the differentiation of three groups 

of Y. enterocolitica pathogenicity: highly pathogenic, pathogenic and non-pathogenic (EFSA, 

2007). 

Although biotype 1A is regarded as non-pathogenic, recent studies have provided conflicting 

reports on the subject (EFSA, 2016). In a literature review, Bottone (2015) concluded that 1A 

strains may cause symptomatic infections in patients with underlying disorders 

(immunosuppression). In a study that compared Y. enterocolitica 1A isolated from patients 

and asymptomatic carriers, it was concluded that more research is needed to prove that this 

strain is a primary cause for human yersiniosis and not only a secondary finding (Stephan et 

al., 2013). 
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Table 3 - Pathogenic potential of Y. enterocolitica associated with bio and serotype (Adapted 

from EFSA, 2007). 

Biotype Serotypes Virulence 

for humans 

Frequency in 

Europe 

Pathogenicity 

Determinants 

1A Numerous (O:8; O:5; 

O:7; O:13;…) 

NP ++++ⁿ  None 

1B O:8; O:21; O:13; O:7;… HP ≈0  Both 

2 O:9; O:5,27 P ++ to +++  pYV 

3 O:3; O:5,27  +  pYV 

4 O:3 P ++++  pYV 

5 O:3; O:2,3; O:1,2,3 P ≈0  pYV 

ⁿ: From 0 to ++++ indicates the frequency of each subgroup. NP: non-pathogenic; HP: highly 

pathogenic; P: pathogenic; pYV: virulence plasmid. 

 

4.2.1. Epidemiology of Yersinia enterocolitica 

 

Numerous animals, animal-derived food products, vegetables and water sources have been 

identified as sources of Y. enterocolitica, however the understanding of its epidemiology is 

still incomplete (Nesbakken, 2015; Rosner, Stark, & Werber, 2010). 

There is often a strong correlation between the bio/serotype of strains isolated from humans 

and the ones isolated from pigs in the same geographical area (EFSA, 2007; Fredriksson-

Ahomaa, Stolle, Siitonen, & Korkeala, 2006; Kapperud, 1991; Rosner, Stark, Höhle, & 

Werber, 2012; Tauxe, 2002), therefore pork is considered the main source of pathogenic Y. 

enterocolitica (Van Damme et al., 2017).  

The most frequently reported bio/serotype combination since the beginning of EU’s 

yersiniosis surveillance has been 4/O:3 (EFSA, 2016). The main reservoir of this strain is the 

pig, which can asymptomatically carry the pathogen in the intestinal tract, lymph nodes and 

tonsils, which is the major source of contamination (Fredriksson-Ahomaa, Björkroth, Hielm, & 

Korkeala, 2000; Laukkanen-Ninios, Fredriksson-Ahomaa, & Korkeala, 2014).  

Case control studies of sporadic cases of yersionisis conducted in Norway (Ostroff et al., 

1994) and in Germany (Rosner et al., 2012) have identified consumption of pork as an 

important risk factor for Y. enterocolitica infections. 

This pathogen has also been isolated from tonsils and fecal samples of wild boars 

(Fredriksson-Ahomaa, Wacheck, Koenig, Stolle, & Stephan, 2009; Nesbakken, 2015). They 

are also a significant concern regarding yersiniosis, because of poor slaughter hygiene 

(EFSA, 2013). 

Cattle can be asymptomatic carriers of serotype O:9 (EFSA, 2016), although case-control 

studies have not identified beef as a source of yersiniosis (Nesbakken, 2015). The link 
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between cattle and humans has been milk and dairy products, which have been connected 

with outbreaks of yersiniosis (EFSA, 2007; Nesbakken, 2015). 

Water and vegetables have also been associated with sporadic cases and outbreaks of Y. 

enterocolitica infections (Macdonald et al., 2011; MacDonald et al., 2016; Ostroff et al., 

1994). 

Other source of yersiniosis are rodents, reservoirs of biotype 1B (serotypes O:8 and O:21) in 

Japan, and potentially in North America (EFSA, 2007). Dogs and cats might also be vehicles 

of this pathogen (Stamm, Hailer, Depner, Kopp & Rau, 2013).  

 

4.2.2. Control of Y. enterocolitica in the food chain 

 

Y. enterocolitica can survive and grow at temperatures as low as -5 ºC (Laukkanen-Ninios et 

al., 2014). Therefore this bacterium has the ability to survive and propagate at refrigeration 

temperatures, which implies that it has to be controlled in the food chain (Nesbakken, 2015; 

Van Damme et al., 2017). 

 

I. Pig meat chain 

 

Because pigs are the major known source of Y. enteroclitica infection worldwide,  the control 

of this foodborne pathogens throughout all the meat chain is essential to ensure the 

protection of consumers (Nesbakken, 2015). 

Lowering the prevalence of Y. enterocolitica in farms would also lower the contamination at 

slaughterhouses, helping to reduce yersiniosis’ cases caused by contaminated pork 

(Laukkanen-Ninios et al., 2014). Therefore, identifying control measures at farm level is the 

first step to reduce yersiniosis’ burden. 

At farm level, some risk factors have been identified as contributors for seropositive herds, 

namely: 

1. Buying animals from herds with an unknown carrier state for human 

pathogenic Y. enterocolitica (Skjerve, Lium, Nielsen, & Nesbakken, 1998; 

Virtanen, Salonen, Laukkanen-Ninios, Fredriksson-Ahomaa, & Korkeala, 

2012); 

2. Buying piglets from more than one farm (Virtanen et al., 2012; Vilar, Virtanen, 

Heinonen & Korkeala, 2013; Virtanen, Nikunen & Korkeala, 2014); 

3. Use of non-municipal water sources and having a continuous production 

(instead of applying an all-in/all-out strategy) (Vilar et al., 2013). 

 

According to a Norwegian study, it is possible to establish clusters of pig herds free of 

pathogenic Y. enterocolitica, and keep them free from this foodborne pathogen for many 
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years (Nesbakken, Iversen, & Lium, 2007), however it may not be an economically feasible 

practice (Laukkanen-Ninios et al., 2014). 

Laukkanen-Ninios and collaborators (2014) have also concluded that there is insufficient 

data on how to reduce the prevalence of this pathogen at farm level and that more studies 

regarding infection’s dynamic on farms are required. 

During slaughter and dressing procedures, human pathogenic Y. enterocolitica from the oral 

cavity and/or intestinal content of pigs, may contaminate both the carcasses and the 

environment in the slaughterhouses (Nesbakken, 2015; Van Damme et al., 2015), therefore 

control measures are needed to prevent it (Laukkanen-Ninios et al., 2014).  

One way to reduce contamination at environmental level would be to slaughter pigs at an 

older age (135 days or older), when the secretion of the pathogen in feces decreases, 

however, at this age, pigs still carry the pathogen in high concentrations in the tonsils 

(Nesbakken, Iversen, Eckner & Lium, 2006), so the major source of contamination remains 

(Laukkanen-Ninios et al., 2014). 

During the slaughter process, scalding, singeing, bagging of the rectum after bunging, and 

removal of the head with tonsils and tongue intact are the phases that can reduce carcass 

contamination with Y. enterocolitica (Nesbakken, Nerbrink, Røtterud & Borch, 1994;  

Laukkanen et al., 2008; Laukkanen-Ninios et al., 2014; Van Damme et al., 2015, 2017). 

Although  various control measures during slaughter and dressing procedures have been 

identified, the best way to reduce contamination at the slaughterhouse due to Y. 

enterocolitica is to improve hygiene practices and use the bagging of the rectum (Laukkanen-

Ninios et al., 2014; Nesbakken, 2015). The separation of the head with tonsils and tongue 

intact, even though consisting in an efficient control measure, would require changes in many 

slaughter lines (Laukkanen-Ninios et al., 2014). 

Regarding meat inspection, compulsory procedures that involve incisions in the submaxillary 

lymph nodes in order to detect tuberculosis, represent a cross-contamination risk 

(Nesbakken, Eckner, Høidal & Røtterud, 2003). EFSA also recommends a visual post 

mortem inspection to avoid this risk factor on its ‘Scientific opinion on the public health 

hazards to be covered by inspection meat (swine)’ (EFSA, 2011). 

After slaughter, control measures seem ineffective, since Y. enterocolitica can survive and 

grow during cold storage and under modified atmospheres (Laukkanen-Ninios et al., 2014; 

Nesbakken, 2015). 

 

II. Consumer phase 

 

The correct handling of pork, hygienic practices during food preparation and adequate 

cooking of meat in both domestic and restaurant kitchens are of vital importance to reduce 

the number of cases of yersiniosis (Nesbakken, 2015). 
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Many people are not aware of basic food safety practices, as well as the risks associated 

with the consumption of animal derived food products (Laukkanen-Ninios et al., 2014). 

Therefore, consumers need to be informed and educated regarding food safety procedures 

of food handling, storage and preparation of food, which can be achieved by sharing 

information in a more appealing and disseminated way (Langiano et al., 2012; Losasso et al., 

2012; Nesbitt et al., 2014). 

 

4.3. Clinical manifestations of yersiniosis 

 

Yersiniosis’ most common presentation is gastroenteritis with self-limiting diarrhea 

associated with mild fever and abdominal pain; however, moderate and bloody diarrhea can 

also occur (Bottone, 1997; Helms, Simonsen, & Molbak, 2006; Huovinen et al., 2010; 

Nesbakken, 2015; Ostroff et al., 1992; Rosner et al., 2013; Schiellerup, Krogfelt, & Locht, 

2008; Stolk-Engelaar & Hoogkamp-Korstanje, 1996; Zheng, Sun, Lin, Mao, & Jiang, 2008). 

In addition, in older children and young adults, symptoms may resemble those of appendicitis 

(pseudoappendicitis), due to an infection limited to the right fossa iliaca, causing terminal 

ileitis or mesenteric lymphadenitis (Azghari et al., 2016; Bottone, 1997; Nesbakken, 2015; 

Rosner et al., 2013; Shorter, Thompson, Mooney, & Modlin, 1998; Stolk-Engelaar & 

Hoogkamp-Korstanje, 1996; Van Noyen, Selderslaghs, Bekaert, Wauters, & Vandepitte, 

1991; Zheng et al., 2008) .In a cohort study, yersiniosis patients were more than 70 times 

more likely to report an appendectomy than the reference group (RR 73.5 [95% CI: 9.9 – 

544.0]; p<0.001) (Rosner et al., 2013). 

Yersiniosis can also cause long-term extra-intestinal complications, such as reactive arthritis 

(Bottone, 1997; Hannu, Inman, Granfors, & Leirisalo-Repo, 2006; Helms et al., 2006; 

Huovinen et al., 2010; Nesbakken, 2015; Ostroff et al., 1992; Rosner et al., 2013; Schiellerup 

et al., 2008; Stolk-Engelaar & Hoogkamp-Korstanje, 1996; Townes et al., 2008; Zheng et al., 

2008) and erythema nodosum (Bottone, 1997, 2015; Helms et al., 2006; Nesbakken, 2015; 

Rosner et al., 2013; Stolk-Engelaar & Hoogkamp-Korstanje, 1996; Zheng et al., 2008). In 

addition, Irritable bowel syndrome, a chronic gastrointestinal disorder, is also a possible 

sequela of this disease (Helms et al., 2006; Ostroff et al., 1992; Porter et al., 2013; Rosner et 

al., 2013, Schwille-Kiuntke, Frick, Zanger, & Enck, 2011). 

Y. enterocolitica can also cause septicemia (Azghari et al. 2016, Bottone, 1997, 2015; Helms 

et al., 2006; Stolk-Engelaar & Hoogkamp-Korstanje, 1996; Zheng et al., 2008), especially in 

immunosuppressed persons and those in iron overload or being treated with desferrioxamine 

(Bottone, 1997). 
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4.4. Yersiniosis in the European Union and Denmark 

 

Yersiniosis was the third most reported zoonosis in the European Union for the year 2015 

(Figure 4), and has been so since 2005  (EFSA, 2016; EFSA, 2009). 

In the EU/EEA, the notification rate of yersiniosis for the year 2015 was 2.2 cases per 

100,000 population, which was 6.8% higher than the year before. Although there was an 

increase in 2015, for the last eight years there has been a statistically significant decrease in 

the reported cases of this disease (EFSA, 2016).  

 

Figure 4 - Reported numbers of confirmed human zoonoses cases in the EU, 2015. (Adapted 

from EFSA, 2016) 

 

 

Twenty six member states reported this disease in 2015 (Table 4). Portugal reported it for the 

first time. Finland, Denmark and Check Republic had the highest country-specific notification 

rates in 2015. Lithuania has been decreasing the number of reported cases since 2011, 

when it was the country with the highest notification rate; the opposite has happened with 

Denmark, with a steady increase since 2011, having the second highest country-specific 

notification rate in 2015 and 2014 (9.54 and 7.71 cases per 100,000 population, 

respectively); while Finland has showed a fairly constant prevalence of yersiniosis, having 

the highest notification rate in 2012-2015. 

Only 0.5% of the reported cases were caused by Y. pseudotuberculosis in 2015 (EFSA 

2016). 
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Table 4 - Reported cases of yersiniosis and notification rates in the EU/EEA, by country and 

year, 2011–2015 (Adapted from EFSA, 2016). 

 
Country/Year 

 
2015 

 
2014 

 
2013 

 
2012 

 
2011 

Confirmed 
cases & rates 

Confirmed 
cases & rates 

Confirmed 
cases & rates 

Confirmed 
cases & rates 

Confirmed 
cases & rates 

Cases Rate Cases Rate Cases Rate Cases Rate Cases Rate 

Austria 118 1,38 107 1,26 158 1,87 130 1,55 119 1,42 

Belgium(a) 350 - 309 - 350 - 256 - 214 - 

Bulgaria 12 0,17 20 0,28 22 0,30 11 0,15 4 0,05 

Croatia 16 0,38 20 0,47 0 0,00 0 0,00 - - 

Cyprus 0 0,00 0 0,00 1 0,12 0 0,00 0 0,00 

Czech 
Republic 

678 6,39 557 5,30 526 5,00 611 5,82 460 4,39 

Denmark 540 9,54 434 7,71 345 6,16 291 5,22 225 4,05 

Estonia 53 4,04 62 4,71 72 5,45 47 3,55 69 5,19 

Finland 582 10,64 579 10,62 549 10,12 565 10,46 554 10,31 

France (a) 624 - 574 - 430 - 314 - 294 - 

Germany 2739 3,37 2470 3,06 2 579 3,15 2 690 3,29 3 381 4,21 

Greece (b ) - - - - - - - - - - 

Hungary 41 0,42 43 0,44 62 0,63 53 0,54 93 0,93 

Ireland 13 0,28 5 0,11 4 0,09 2 0,04 6 0,13 

Italy (a) 16 - 18 - 25 - 14 - 15 - 

Latvia 64 3,22 28 1,40 25 1,24 28 1,37 28 1,35 

Lithuania 165 5,65 197 6,69 262 8,82 276 9,19 370 12,12 

Luxembourg 15 2,66 19 3,46 15 2,79 28 5,33 14 2,74 

Malta 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00 

Netherlands(b) - - - - - - - - - - 

Poland 172 0,45 212 0,56 199 0,52 201 0,52 235 0,62 

Portugal 24 0,23 - - - - - - - - 

Romania 25 0,13 32 0,16 43 0,22 26 0,13 47 0,23 

Slovakia 224 4,13 172 3,18 164 3,03 181 3,35 166 3,08 

Slovenia 10 0,48 19 0,92 26 1,26 22 1,07 16 0,78 

Spain (d) 432 2,07 436 2,08 243 1,73 221 1,89 264 2,26 

Sweden 245 2,51 248 2,57 313 3,28 303 3,20 350 3,72 

United 
Kingdom 

44 0,07 58 0,09 59 0,09 54 0,09 59 0,09 

EU Total 7 202 2,20 6 619 2,06 6 472 2,05 6 324 2,05 6 983 2,33 

Iceland 1 0,03 3 0,92 0 0,00 - - - - 

Norway 76 1,47 211 4,13 55 1,09 43 0,86 60 1,22 

 

In Denmark, yersiniosis is notifiable through the laboratory surveillance system and, even 

though biotype 1A is still considered non-pathogenic, all Y. enterocolitica biotypes causing 

human infection are reported. In 2016, with 572 reported cases of yersiniosis, Denmark 

reached the highest notification rate for the past seven years, reporting 10 cases per 100,000 

population (Anonymous, 2017).  

Danish children under five years old are the most affected by this disease (Figure 5), 

although cases in other age groups also occur. Since 2010, there has been a consistent 

increase in the number of reported cases. However, in 2014 and 2015 more than half (61%) 
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were of biotype 1A (SSI, 2016). Also, in 2016, 70% of the reported cases were of the non-

pathogenic strain (Anonymous, 2017). 

 

Figure 5 - Age-specific cases of yersiniosis per 100,000 population in Denmark, 2010 - 2017. 

Cases from 2017 are from January to August.  (SSI, 2017). 

 

 

Improvements of the surveillance system (automatic data capture) are believed to contribute 

to the observed increase from 2014 to 2015, which can also be related to the evolution of 

laboratory methods, as an increasing number of patients is diagnosed with biotype 1A, 

leading to a mismatch between the number of registered cases and the real number of 

disease cases (SSI, 2016). 

Most EU countries do not report biotype 1A, Denmark being responsible for 98.8% of the 

reports in 2015. EFSA concludes that the 6.8% increase of yersiniosis cases was due to 

improvements in surveillance systems in Denmark and Spain and because Portugal and 

Croatia started to report (EFSA, 2016). 
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II. Objectives 

 

The main purpose of this study was to estimate the disease burden of yersiniosis, 

campylobacteriosis, salmonelosis and VTEC infections in the Danish population for the year 

2016, using a harmonized approach. 

To achieve that goal, specific objectives were delineated: 

1. Adapt a previously developed model in @Risk 6.0 (palisade Corporation, 2014) to R 

3.3.2 (R Core Team, 2016), in order to estimate the true incidence of yersiniosis, 

campylobacteriosis, salmonellosis and VTEC infections, by accounting for 

underdiagnosis and under-reporting in the Danish population; 

 

2. Gather data to quantify the under-reporting and underdiagnosis of yersiniosis in the 

Danish population; 

 

3. Identify all potential health-outcomes associated with yersiniosis and estimate the 

probability of their occurrence given infection; 

 

4. Develop a health-outcome tree for yersiniosis, using the information gathered in 

objective three; 

 

5. Update the data and adapt the calculations necessary to estimate the probability of 

each health-outcome of campylobacteriosis, salmonellosis and VTEC infections to R, 

using previously developed health-outcome trees; 

 

6. Use the DALY calculator (Devleesschauwer et al., 2016), a graphical interface for 

probabilistic DALY calculation developed in R, to calculate DALYs, YLDs and YLLs 

for each health-outcome of each of the four studied diseases, using the data and 

estimates collected in objectives one to five; 

 

7. Compare and rank these diseases regarding their public health impact in Denmark. 
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III. Material and methods  

 

Four pathogens were selected for this study. Yersinia enterocolitica, Campylobacter spp., 

Salmonella spp., and VTEC. They were selected due to data availability and due to their 

public health significance (assessed in terms of incidence in the population). 

 

1. Estimating the incidence of four foodborne pathogens 

 

1.1 Public health surveillance data 

 

All the pathogens selected for this study are of mandatory notification through the Danish 

laboratory surveillance system. Results are recorded in the Register of Enteric Pathogens 

(MiBa) maintained by SSI. Everyone can then consult all data regarding every notifiable 

human disease in Denmark through SSI website (www.ssi.dk). This data give information 

regarding the year (since 2001) and month in which the case occurred, gender and age 

group of the individuals affected, the geographic region and if it was a travel-related infection. 

For Salmonella spp. and VTEC there is also information regarding the agent’s serotype. 

The website was accessed (on February 2017) to retrieve information on the number of 

cases of human campylobacteriosis, sallmonelosis, VTEC infections and yersiniosis reported 

through the Danish surveillance system in the year 2016. 

All the surveillance data were aggregated in six age categories (0 to 4 years old, 5 to 14 

years old, 15 to 44 years old, 45 to 64 years old and 65 years old or more) and by gender 

(male and female) to account for differences in different age and sex groups (Annex I). 

 

1.2. Modelling approach 

 

To estimate the total incidence of the four selected pathogens in Denmark, the surveillance 

pyramid was re-constructed as described by Haagsma and colleagues (2013) and by Pires 

(2014), using a model that scales up the reported number of cases, caused by each 

pathogen, correcting it for underdiagnosis and under-reporting. 

The model described here is multiplicative, meaning that successive sets of non-pathogen 

specific and pathogen-specific parameters are applied by multiplication to obtain proportional 

increases in the number of reported cases (Figure 6). With this approach, a multiplication 

factor (the inverse of a proportion) was estimated for each pathogen, which was then applied 

to the number of reported cases. 

The non-pathogen specific and pathogen specific parameters, the inputs in the model, were 

informed by a population-based telephone survey applied to the Danish population in 2009 

http://www.ssi.dk/
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(Müller et al., 2012), by evidence from National Health Registries, by literature review or 

expert elicitation. 

In the telephone survey 1,853 people were interviewed and 206 met the case definition 

(diarrhea or vomit, with no underlying disorders). Of these, 155 reported having non-bloody 

diarrhea and five having bloody-diarrhea in the 28 days prior the interview. Participants that 

met the case definition were also asked about duration of disease, care seeking behavior, 

stool sample collection and absence from work or normal activities (Müller et al., 2012). 

To account for uncertainty in the model, probability distributions describing a range of 

plausible values for each parameter were used. 

 

Figure 6 - Schematic of the modelling approach to estimate the total incidence of foodborne 

pathogens in Denmark. 

 

 

1.1.1. Non-pathogen specific parameters  

 

There are three non-pathogen specific parameters and they are the same for Campylobacter 

spp., Salmonella spp., VTEC and Yersinia enterocolitica (Table 5). 

 

I. Probability of seeking medical care 

 

This parameter is divided in two: the probability of seeking medical care when having non-

bloody diarrhea (a mild case of gastroenteritis) and the probability of seeking medical care 

when having bloody diarrhea (severe case). It is so, due to the fact that it is more likely that 

people will consult a GP when severely ill. 

Reported number of cases

Probability of Seeking care

Probability of submitting a stool sample for 
analysis

Probability of reporting a positive laboratory 
result

Probability of testing for a pathogen in a 
sample

Sensitivity of Laboratory analysis

Estimated incidence
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Pires (2014) assumes that non-bloody diarrhea cases with short duration (i.e. one to two 

days) are likely to be viral infections and less likely to seek medical care, and that cases with 

longer duration (three or more days) would most likely correspond to bacterial infections and 

a higher probability of seeking care. Therefore, the data from the telephone survey was 

stratified and analyzed in order to calculate two different underdiagnosis multipliers: one for 

viral foodborne infections and one for bacterial ones. Consequently, the data available to 

estimate underdiagnosis of bacterial diseases was reduced, as only 40 participants reported 

having diarrhea for 3 or more days. This assumption was not made for bloody-diarrhea 

cases. 

 

II. Probability of submitting a stool sample for analysis 

 

This parameter is divided in three: probability of submitting a stool sample for analysis for 

non-bloody diarrhea cases, for bloody diarrhea cases and for hospitalized patients. 

The two first sub-parameters were estimated with the information from the telephone survey 

on the proportion of interviewed participants having a stool sample taken and submitted. For 

the hospitalized cases it was assumed that the proportion would be higher (Pires, 2014). 

 

III. Probability of reporting a positive laboratory result 

 

This parameter was defined on the basis of the proportion of cases that have been reported 

in MiBa in the years of 2009 to 2013 and on the National Registry for Foodborne Pathogens 

(Steen Ethelberg, Personal Communication). This proportion applies to all cases, regardless 

of its severity. 

 

 

The parameters informed by data from the telephone survey were defined as Beta 

distributions. This probability distribution was chosen because it can describe the uncertainty 

or random variation of a probability, fraction or prevalence (Vose, 2008). In this case, it 

describes the uncertainty about various binomial probabilities, in which given a number, s, of 

positive responses for one variable and given the total number, n, of interviewed persons 

within that category, we have α set to the value (s + x) and β set to (n – s + y), where 

Beta(x,y) is the prior. 

The probability of submitting a stool sample for analysis for hospitalized cases was informed 

by expert elicitation and therefore we used a PERT (or BetaPERT) distribution. This 

probability distribution is a version of the Beta distribution and requires three parameters, 

namely a minimum, a most likely and a maximum value. It is used for modelling expert 



25 
 

estimates, where one is given the expert’s minimum, most likely and maximum guesses 

(Vose, 2008). 

 

Table 5 - Non-pathogen specific parameters used to estimate the true incidence of 

Campylobacteriosis, Salmonelosis, VTEC infections and yersiniosis in Denmark. 

Notation Description Distribution  Reference 

                   Probability of seeking medical care 

PCSnb Non-bloody diarrhea ~ Beta(14;26)* Müller et al., (2012) 

PCSb Bloody diarrhea ~ Beta(4;3)** Müller et al., (2012) 

                   Probability of submitting a stool sample for analysis 

PSSnb Non-bloody diarrhea ~ Beta(7;16) Müller et al., (2012) 

PSSb Bloody diarrhea ~ Beta(2;3) Müller et al., (2012) 

PSSh Hospitalized patients ~ Pert(0.3;0.7;0.9) Pires (2014) 

                   Probability of reporting a positive laboratory result 

PRR All cases ~ Beta(9;1) MiBa 

*Data from cases that reported having diarrhea for three or more days. 
** Data from patients that reported having bloody diarrhea, regardless of duration. 

 

 

1.1.2. Pathogen-specific parameters 

 

There are four pathogen-specific parameters (Table 6), which combined with the probability 

of submitting a stool sample for analysis and the probability of reporting a positive laboratory 

result will account for the under-reporting associated to campylobacteriosis, salmonellosis, 

VTEC infections and yersiniosis. 

 

I. Probability of testing for a pathogen in a stool sample 

 

Campylobacter spp., Salmonella spp. and Yersinia enterocolitica are the three most common 

foodborne pathogens in Denmark and are included in the standard testing protocol of 

gastroenteritis patients (Steen Ethelberg, Personal communication).  

Therefore, the probability that a laboratory will test for one of these three pathogens is the 

same, as well as higher when compared to VTEC. 

This probability is lower for VTEC because historically there is less awareness regarding this 

pathogen, the laboratory testing methods have changed overtime (Clogher et al., 2012) and 

because of it being included later, and at different times, in laboratories’ routine procedures 

throughout the country (Pires, 2014). 
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II. Sensitivity of laboratory analysis 

 

The sensitivity of a laboratory test measures the proportion of positive results that are 

correctly identified as such, which translates as the ability of the test to identify correctly 

affected individuals. This parameter varies between laboratory methods and thus, also varies 

between pathogens. 

In the same way as all the other parameters, this one was defined as a probability 

distribution. For Campylobacter spp. and Salmonella spp. a triangular distribution was used. 

This distribution constructs a triangular shape from the three input parameters (a minimum, a 

most likely and a maximum). It is commonly used due to the intuitive nature of its defining 

parameters and speed of use, offering considerable flexibility due to its shape (Vose, 2008). 

The information to define this parameter for Y. enterocolitica was obtained by expert 

elicitation, therefore we used a PERT distribution, using the expert minimum, most likely and 

maximum estimates as distribution’s parameters. 

 

III. Proportion of bloody diarrhea in cases and proportion of hospitalized cases 

 

The probabilities of a patient having bloody diarrhea and of being hospitalized are related to 

the severity of disease and vary between pathogens. 

In a literature review by Pires (2014) the proportion of cases with bloody diarrhea is 

substantially higher for VTEC, followed by Salmonella spp. and Campylobacter spp., while 

the proportion of hospitalized cases, although following the same ranking, presents similar 

values between the three pathogens. 

Both these parameters for yersiniosis were also informed by a literature review.  

For the proportion of bloody diarrhea, data from a prospective case-case comparison study 

performed in Denmark (Schiellerup et al., 2008), which concluded that reactive joint pain 

after gastro-intestinal (GI) infection is positively correlated to severity of GI symptoms, were 

used. From the 2,105 surveyed patients, 91 had yersiniosis, 17 of which presented severe 

gastro-enteritis (GE), defined by bloody diarrhea and/or hospitalization. 

For the proportion of hospitalized cases data were used from a case-control study also 

performed in Denmark (Helms et al., 2006), which determined short and long-term odd ratios 

of hospitalization due to GE. Among 52,121 patients (compared with a reference group of 

587,720 persons from the general population) 3,922 had yersinniosis, of which 368 were 

hospitalized. 
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Table 6 - Pathogen-specific parameters used to estimate the true incidence of 

Campylobacteriosis, Salmonelosis, VTEC infections and yersiniosis in Denmark. 

Notation Description Distribution  Reference 

                   Yersinia-specific 

PTP Probability of testing for Yersinia in 

sample 

~ Beta(9.9;0.1) S. Ethelberg, 

PC⁰ 

Sen Sensitivity of laboratory analysis ~ Pert(0.7;0.76;0.88) E. Moller 

Nielsen PC⁰ 

Pbd Proportion of bloody diarrhea in 

cases 

~ Beta(18;75) Schiellerup et 

al. (2008) 

Ph Proportion of hospitalized cases ~ Beta(369;3,555) Helms et al. 

(2006) 

PA1 Proportion of biotype 1A 70% S. Ethelberg 

PC⁰ 

                   Campylobacter-specific 

PTP Probability of testing for 

Campylobacter in sample 

~ Beta(9.9;0.1) S. Ethelberg, 

PC⁰ 

Sen Sensitivity of laboratory analysis ~ Triang(0.7;0.76;0.82) Haagsma et 

al., (2013a) 

Pbd Proportion of bloody diarrhea in 

cases 

~ Beta(4.74;21.3) Haagsma et 

al., (2013a) 

Ph Proportion of hospitalized cases ~ Beta(2,221;15,771) Espenhaim, 

(2013) 

                   Salmonella-specific 

PTP Probability of testing for 

Salmonella in sample 

~ Beta(9.9;0.1) S. Ethelberg, 

PC⁰ 

Sen Sensitivity of laboratory analysis ~ Triang(0.85;0.88;0.91) Haagsma et 

al., (2013a) 

Pbd Proportion of bloody diarrhea in 

cases 

~ Beta(2.34;3.81) Haagsma et 

al., (2013a) 

Ph Proportion of hospitalized cases ~ Beta(5,811;22,085) Espenhaim, 

(2013) 

                   VTEC-specific 

PTP Probability of testing for VTEC in 

sample 

~ Beta(4;6) S. Ethelberg, 

PC⁰ 

Sen Sensitivity of laboratory analysis ~ Beta(7;3) Haagsma et 

al., (2013a) 

Pbd Proportion of bloody diarrhea in 

cases 

~ Beta(2.79;0.73) Haagsma et 

al., (2013a) 

Ph Proportion of hospitalized cases ~ Beta(165;424) Espenhaim, 

(2013) 

⁰PC: Personal communication 
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IV. Proportion of biotype 1A on the yersiniosis’ reported cases 

As mentioned before, Denmark registers and reports all positive stool samples of Y. 

enterocolitica. However, biotype 1A is considered non-pathogenic for humans. Of the 572 

cases that presented a positive stool sample for Y. enterocolitica in 2016, 70% belonged to 

that biotype. Therefore, they were excluded to better depict the incidence of this disease. 

Although all data were stratified by gender and age groups, access to that information 

regarding the cases of biotype 1A was not possible. Therefore, it was assumed that these 

cases would be equally distributed among all gender and age group categories. As such, 

only 30% of the reported cases for each category were considered, accounting for a total of 

172 cases of yersiniosis. 

 

1.1.3. Model for re-constructing the surveillance pyramid 

 

After gathering all public health surveillance data regarding campylobacteriosis, 

salmonellosis, VTEC infections and yersiniosis and defining all parameters needed as input 

for the model, an overall multiplying factor was estimated to correct the reported cases to the 

true incidence of each selected pathogen in Denmark in the year 2016. 

The defined parameters were combined in different steps (Table 7), which were all modelled 

using R 3.3.2 (R Core Team, 2016), using Monte Carlo simulation. The model was run for 

20,000 iterations. 

Monte Carlo simulation is a computer simulation technique that randomly selects a single 

value from each of the probability distributions that define the parameters of our model. Since 

the parameters are combined using various calculation steps, each single value will then be 

used to calculate a mathematical solution (the multiplying factor, the output). Subsequently, 

each result is stored, and the sequence can be repeated several number of times (iterations). 

Values with higher probabilities are more likely to occur and will be stored more frequently. At 

the end of the simulation run, the values for the multiplying factor can be analyzed in various 

ways: using graphs like a histogram or a cumulative distribution graph that depict the shape 

and range of the uncertainty in the model output or analyzed statistically. 

 

 

 

 

 



29 
 

Table 7 - Variables and calculations to re-construct the foodborne pathogens' surveillance 

pyramid. 

Notation Description Calculation 

N Number of reported cases Data (reported cases) 

Na* Number of cases excluding biotype 

1A 

N * (1 - PA1) 

Nh Number of hospitalized cases Na * Ph 

NCS Number of cases that seek care Na – Nh 

PCS Probability of seeking medical care (1 – Pbd) * PCSnb + Pbd * PCSb 

PSS Probability of submitting a stool 

sample for analysis 

(1 – Pbd) * PSSnb + Pbd * PSSb 

Tnh Total number of non-hospitalized 

cases 

NCS * 1/(PCS * PSS * PRR * PTP * Sen) 

Th Total number of hospitalized cases Nh * 1/(PSSh * PRR * PTP * Sen) 

T  Total number of cases Tnh + Th 

M Multiplier T/Na 

* This step is only taken into account when applying the model for yersiniosis data. Therefore, when 

considering the other three selected pathogens, whenever it reads “Na” it should be considered N, as 

in the reported cases for each disease. 

 

1.3. Sensitivity analysis 

 

The aim of a sensitivity analysis was to investigate the inter-relationships between inputs, the 

non-pathogen specific and pathogen-specific parameters, and the output, the multiplying 

factor. 

A rank order correlation was used on the data that had been generated from input 

distributions and data calculated for the selected output, assuming that all the input 

parameters have either a purely positive or negative statistical correlation with the output. A 

rank order correlation is a statistical way of measuring an ordinal association, i.e. the 

relationship between rankings of different variables or different rankings of the same variable, 

to different observations of a particular variable (in this case the output). This analysis 

https://en.wikipedia.org/wiki/Ranking
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replaces each collected value by its rank among other values generated for that input or 

output, and then calculates the Spearman’s rank order correlation coefficient, , between 

each input and the output (Vose, 2008). 

The Spearman’s rank order correlation coefficient, , is a non-parametric statistic (meaning 

that the statistic correlation is not affected by the type of mathematical relationship between 

the variables) for quantifying the correlation relationship between two variables (Vose, 2008).  

The sensitivity analysis was performed using @Risk 7.5 (Palisade Corporation, 2017). 

 

1.4. Scenario Analysis  

 

Four different alternative scenarios for each disease model were carried on, based on the 

sensitivity analysis. The increase on the different probabilities was assumed to be one which 

could be achieved if real measures were taken to decrease underdiagnosis and under-

reporting. 

 

For the Campylobacter spp. and Y. enterocolitica’s disease models the alternative scenarios 

were done with the following changes: 

 

1) For the probability of submitting a stool sample for non-bloody diarrhea cases the 

scenario consists of increasing this probability to 40% (on the population survey 21 

respondents went to the GP and had non-bloody diarrhea, but only six samples were 

submitted: 29%).  

Therefore, 

PSSnb ~ Beta(9.4; 13.6) 

2) For the probability of seeking care for non-bloody diarrhea cases the scenario also 

consists on increasing this probability to 40% (on the population survey 38 

respondents had non-bloody diarrhea, but only 13 went to a GP: 34%). 

Therefore, 

PCSnb ~ Beta(16.2; 23.8) 

3) For the probability of submitting a stool sample for bloody diarrhea cases there was 

also an increase to 40% (three respondents went to the GP and had bloody diarrhea 

and only one sample was taken: 33%). 

Therefore, 

PSSb ~ Beta (2.2; 2.8) 

4) On the fourth scenario all the previous changes were combined. 
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For the Salmonella spp.’s disease model the alternative scenarios were done with the 

following changes: 

 

1) For the probability of submitting a stool sample for bloody diarrhea cases there was 

also an increase to 40% (three respondents went to the GP with bloody diarrhea and 

only one sample was taken: 33%). 

Therefore, 

PSSb ~ Beta (2.2; 2.8) 

2) For the probability of submitting a stool sample for non-bloody diarrhea cases the 

scenario consists of increasing this probability to 40% (on the population survey 21 

respondents went to the GP and had non-bloody diarrhea, but only six samples were 

submitted: 29%).  

Therefore, 

PSSnb ~ Beta(9.4; 13.6) 

3) For the probability of seeking care for bloody diarrhea cases the scenario consists on 

increasing this probability to 50% (on the population survey seven respondents had 

bloody diarrhea, but only three went to a GP: 43%). 

Therefore, 

PCSb ~ Beta(4.5; 2.5) 

4) On the fourth scenario all the previous changes were combined. 

 

Finally, for the VTEC’s disease model the alternative scenarios were done with the following 

changes: 

 

1) For the probability of submitting a stool sample for bloody diarrhea cases there was 

also an increase to 40% (three respondents went to the GP with bloody diarrhea and 

only one sample was taken: 33%). 

Therefore, 

PSSb ~ Beta (2.2; 2.8) 

2) For the probability of testing for VTEC in the sample the alternative scenario 

increased this probability to 45% (through an expert’s personal communication only 3 

out of 10 stool samples would be tested for VTEC: 37.5%) 

Therefore, 

PTP ~ Beta(4.6; 5.4) 

     

3) For the probability of seeking care for bloody diarrhea cases the scenario consists on 

increasing this probability to 50% (on the population survey seven respondents had 

bloody diarrhea, but only 3 went to a GP: 43%) 
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Therefore we have, 

PCSb ~ Beta(4.5; 2.5) 

4) On the fourth scenario all the previous changes were combined. 

 

2. Estimating the burden of disease of four foodborne pathogens 

 

The disability-adjusted life year (DALY) metric was used to estimate the burden of disease of 

Campylobacter spp., Salmonella spp., Yersinia enterocolitica and VTEC. 

The DALY is a summary measure of population health, commonly used in disease burden 

assessment studies  (Murray & Lopez, 1996; GBD's Disease and Injury Incidence and 

Prevalence collaborators, 2016). DALYs are conceptually simple, representing the years of 

life lost due to decreased quality of life and/or premature death as a consequence of a 

disease or condition, measured at individual or population level. 

DALYs aggregate morbidity and disability, expressed as years lived with disability (YLD), and 

mortality, expressed as years of life lost (YLL), into a single figure, calculated as: 

 

𝐷𝐴𝐿𝑌 =  𝑌𝐿𝐷 +  𝑌𝐿𝐿 

 

YLD represents the healthy time lost while living with a disease or condition and is calculated 

as, 

𝑌𝐿𝐷 = ∑(𝑛𝑖 × 𝑡𝑖 × 𝑑𝑤𝑖)    

 

Where, 𝑛 is the number of incident cases of health-outcome 𝑖,  𝑡  is the average duration of 𝑖 

until remission or death and 𝑑𝑤 is the disability weight assigned to 𝑖. 

YLL represents the time lost due to premature death and is calculated with the following 

formula, 

𝑌𝐿𝐿 =  ∑(𝑑𝑖 × 𝑒) 

 

Where, 𝑑 is the number of deaths due to health-outcome 𝑖 in a certain period of time and 𝑒 is 

the residual life expectancy at the age of death. 

Figure 7 represents a theoretical example of the calculation of DALYs. It portrays the life of 

an individual born with perfect health and, at age 20, a given event (e.g. foodborne disease) 

decreases his or her life by 25% (disability weight of 0.25). Thereafter, the person lives in this 

new health state for another 40 years, dying prematurely at age 60. The burden associated 

with the disease for this individual (total DALYs) is calculated by summing the YLD and YLL 

due to premature death (his/her dying age compared with the life expectancy of the 

population). 
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Figure 7 - Theoretical example of disability adjusted life years (DALYs). 

 

In this study, DALYs were calculated by a hazard-based and incidence-based approach. 

Therefore, this calculation required the identification of all health-outcomes associated with 

campylobacteriosis, salmonellosis, yersiniosis and VTEC infections and the estimation of 

their probability of occurrence. 

 

2.1. Health-outcomes of four foodborne pathogens 

 

The disease outcomes of foodborne infections and the probabilities of developing these 

outcomes after infection can be described in an outcome tree. Figures 8 to 11 represent the 

outcome trees for Campylobacter spp., Salmonella spp., Y. enterocolitica and VTEC 

infections.  

The outcome trees currently used for Campylobacter spp., Salmonella spp. and VTEC 

infections were developed on the basis of a literature review of other burden of disease 

studies and of studies associating specific outcomes with foodborne infections, previously 

described by Pires (2014). Because the association between some of the health-outcomes 

considered then and its association with foodborne infections has been disputed (Jess et al, 

2011), this study excluded one of the health-outcomes previously considered, namely 

Inflammatory bowel disease (IBD). 

The health-outcome tree for yersiniosis was developed on the basis of a literature review of 

studies associating specific health-outcomes with Y. enterocolitica infections. 

A thorough literature search was made using search engines such as: google and google 

scholar, science direct and the DTU online library, using key-words such as: Yersinia, Y. 

enterocolica, clinical manifestations and sequelae. A preliminary selection was made by 

selecting studies developed between 1990 and 2017 and by interest on the title. From this 
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research a total of 66 articles were selected. From those, 17 had relevant information 

regarding yersiniosis’ health-outcomes. 

These 17 studies depicted different types of methodologies: 

 

• Six literature reviews (Azghari et al., 2016; Bottone, 2015; Bottone, 1997; 

Hannu, et al., 2006; Schwille-Kiuntke, et al., 2011) 

• Five case-control studies (Helms et al., 2006; Huovinen et al., 2010; Ostroff et 

al., 1992; Rosner et al., 2013; Van Noyen, et al., 1991) 

• Three case-case comparison studies (Schiellerup et al., 2008; Stolk-Engelaar 

& Hoogkamp-Korstanje, 1996; Zheng et al., 2008) 

• One retrospective cohort study (Porter et al., 2013) 

• One case report (Shorter et al., 1998) 

• One population-based telephone survey (Townes et al., 2008) 

 

On chapter 4.3 (Clinical manifestations of yersiniosis) all health-outcomes of yersiniosis were 

identified and refer all these studies. 

To our knowledge, a health-outcome tree for yersiniosis had thus far not been developed, 

and only one study estimated the burden of this disease (Lake, Cressey, Campbell, & 

Oakley, 2010), although only considering two possible health-outcomes (reactive arthritis and 

gastroenteritis). 

 

Figure 8 - Outcome tree for Campylobacter spp. Outcomes with dashed white lines are 

currently not considered in the model. 
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Figure 9 - Outcome tree for non-typhoidal Salmonella spp. Outcomes with dashed white and 
black lines are currently not considered in the model. 

 

 

 

 

Figure 10 - Outcome tree for Y. enterocolitica. Outcomes with dashed white and black lines 

are currently not considered in the model. 
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Figure 11 - Outcome tree for VTEC. Outcomes with dashed white and black lines are 

currently not considered in the model. 

 

Due to lack of consistent data, pseudo-appendicitis syndrome and erythema nodosum were 

not considered in yersiniosis’ model (Anonymous, 2017). Also, in consistency with the model 

previously developed by Pires (2014) for Salmonella spp., sepsis was not considered for Y. 

enterocolitica’s disease model. Dialyses and kidney transplant (VTEC’s health-outcomes) 

were also not accounted for due to lack of sound data (Pires, 2014). 

After all health-outcomes were identified, the probabilities of their occurrence given infection 

were collected through a literature review. The uncertainty associated with the input data was 

considered by including them in the model as probability distributions, using the Pert 

distribution. 

I. Gastroenteritis (GE) 

 

The input used to estimate the burden of GE for each foodborne pathogen was the total 

incidence calculated as mentioned through chapter one of the Material and methods section 

of this thesis (see Tables 15 to 18). The input data were aggregated by age and sex 

(applying the same age groups used to calculate total number of cases) and incidence by 

1,000 population.  

 

 

 

...
Infection

(VTEC)
Assymptomatic

Symptomatic 
infection

Gastroenteritis 
(GE)

HUS

End-stage 
renal disease

Dialyses

Kidney 
transplant

Death Graft rejection 

Recovery 

Functioning graft 



37 
 

II. Reactive arthritis (ReA) 

 

For Campylobacter spp., Salmonella spp. and Y. enterocolitica the incidence of ReA after 

infection was calculated based on the probability of developing ReA for patients with GE 

visiting a general practitioner, the probability of seeking care for a patient with ReA and the 

probability of hospitalization for ReA patients who visit a GP (Table 9). 

Under the assumption that a case with ReA that does not visit a GP has mild symptoms of 

ReA; that a case that visits a GP due to his/her symptoms of ReA has a moderate form of 

ReA; and that patients who are hospitalized have a severe form of ReA, the incidence of 

mild, moderate and severe ReA was estimated as follows. 

Initially, a multiplying factor only accounting for under-reporting (Table 8) was applied to the 

reported cases in order to estimate the number of cases that visited a GP but were not 

reported to the Danish surveillance system. 

The probability of developing ReA for patients with GE visiting a GP was then multiplied by 

the previous estimation (cases seeking medical care not captured by the surveillance 

system) and by the probability of seeking care for patients with ReA, thus estimating the 

number of cases with GE that visited a GP and developed ReA. In the subsequent step, the 

number of cases developing ReA but not visiting a GP was calculated by subtracting the 

modes of the number of cases visiting a GP and developing ReA to the number of cases 

developing ReA (either visiting a GP or not). Finally, the number of hospitalized patients with 

ReA who visited a GP was calculated by the multiplication of the number of cases with ReA 

visiting a GP by the probability of hospitalization for ReA patients who visited a GP. 

Table 9 presents the collected input for this health-outcome and data sources.  

 

Table 8 - Variables and calculations to re-construct the foodborne pathogens' surveillance 

pyramid, accounting only for under-reporting. 

Notation Description Calculation 

N Number of reported cases Data (reported cases) 

PSS Probability of submitting a stool 

sample for analysis 

(1 – Pbd) * PSSnb + Pbd * PSSb 

T Total number of cases N * 1 / (PSS * PRR * PTP * Sen) 

M Multiplier T/N 
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Table 9 - Description of Reactive arthritis' input and data sources. 

Pathogen Input Reference 

PRGE PRGP PRH 

Campylobacter 

spp. 

~ Beta(46;565)  

 

 

~ Beta(10;37) 

 

 

 

~ Beta(2;45) 

(Havelaar et 

al., 2012; 

Pires, 2014) 

Salmonella spp. ~Pert(0.023;0.08;0.15) (Havelaar et 

al., 2012; 

Pires, 2014) 

Y. enterocolitica ~ Beta(22;71) (Havelaar et 

al., 2012; 

Pires, 2014; 

Schiellerup et 

al., 2008) 

PRGE: probability of developing ReA for patients with GE visiting a general practitioner. 
PRGP: probability of seeking care for a patient with ReA. 
PRH: probability of hospitalization for ReA patients. 

III. Irritable bowel syndrome (IBS) 

 

IBS is considered a long-term sequela of Campylobacter spp., Salmonella spp. and Y. 

enterocolitica infections.  

The probability of developing post-infectious IBS (Haagsma, Siersema, De Wit, & Havelaar, 

2010), defined by ~ Pert (7.2; 8.8; 10.4), was applied to the total incidence of each pathogen 

in order to estimate the incidence of IBS, which was calculated per 1,000 population and 

stratified by gender and age group.  

 

IV. Guillain-Barré syndrome (GBS) 

 

The Guillain-Barré syndrome is a long-term and possibly fatal sequela associated with 

Campylobacter spp. infections. 

To estimate its incidence, the number of reported cases of campylobacteriosis was combined 

with the probability of developing GBS given infection, defined as ~ Beta (60; 29,942) (Pires, 

2014). After, the point estimate for the probability of developing GBS for each age group 
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(Annex II) was multiplied, resulting in the estimation of GBS’ incidence calculated per 1,000 

population and stratified by gender and age group. 

 

V. Hemolytic uremic symdrome (HUS) and End-stage renal disease (ESRD) 

 

The burden of disease of HUS was estimated based on the reported incidence of HUS for 

the year 2016 (Annex II), under the assumption that all cases of VTEC associated HUS were 

diagnosed and reported. 

End-stage renal disease is a consequence of HUS, therefore ESRD’s incidence was 

calculated by applying the probability of its development given HUS, defined by ~ Beta (24; 

712), to the incidence of HUS (Pires, 2014). 

 

VI. Mortality 

 

Disease by all four foodborne pathogens can lead to mortality. 

The excess mortality risk associated with the infections caused by three of these four 

pathogens was calculated using the mean value for the relative mortality associated with: 

Campylobacter spp., 1.86, Salmonella spp., 2.85, and Y. enterocolitica,, 2.10, (Helms, 

Vastrup, Gerner-smidt, & Mølbak, 2003), using the following formula: 

 

Excess mortality risk = ℮(log 𝑂𝑅−1) 

Where, 𝑂𝑅  is the relative mortality. 
In the absence of Danish data, these multipliers were applied to Dutch data for the age-

specific mortality risk by all causes (Annex II), stratified by gender and age groups, and 

finally applied only to the laboratory-confirmed cases, assuming that they reflect the most 

severe cases of disease (Pires, 2014). 

Regarding the mortality associated with VTEC infections, the input data used was derived 

from surveillance data: three deaths for the last 15 years (Flemming Scheutz, Personal 

Communication) and the total number of reported cases in that time frame, 2,180 cases. 

With these data, a probability distribution was defined, ~ Beta (4; 2,178), and applied to the 

number of reported cases of VTEC for the year 2016. 

Mortality was calculated per 1,000 population and the uncertainty with these input data was 

not considered in the model. 

There is also another health-outcome which can be fatal, the Guillain-Barré syndrome, which 

is associated with Campylobacter spp. infections. To estimate the number of deaths caused 

by this syndrome, the probability of dying from the GBS given infection, ~ Pert (0.01; 0.02; 

0.05) (Pires, 2014), was applied to the number of GBS cases estimated. It was calculated 

per 1,000 population and stratified by gender and age group. The uncertainty associated with 
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these input data was considered by including them in the model using a Pert distribution. 

Table 10 summarizes all health-outcomes’ input and data sources (except ReA, showed in 

Table 9). 

 

Table 10 - Description of health-outcomes' input and data sources. 

Health-

outcome 

Input Reference 

Campylobacter Salmonella Yersinia VTEC 

IBS ~ Pert (7.2; 8.8; 10.4) NA (Haagsma et 

al., 2010) 

GBS ~ Beta (60; 29,942) NA Pires (2014) 

HUS NA Incidence Surveillance 

ESRD NA ~Beta (24; 710) Pires (2014) 

Mortality 1.86 

GBS: 

~Pert(0.01; 0.02; 0.05) 

2.85 2.10 ~ Beta (4; 2178) (Helms et al., 

2003; Pires, 

2014; 

Statistics 

Netherlands' 

data used as 

surrogate) 

IBS: Irritable bowel syndrome; GBS: Guillain-Barre syndrome; HUS: Hemolytic uremic syndrome; 
ESRD: End-stage renal disease 

 

 

2.2. Disability weights and duration of health-outcomes 

  

The disability weight (DW) reflects the impact of a health condition in terms of health-related 

quality of life, and has a value ranging from 0, indicating full health, through 1, indicating 

worst imaginable health state.  

DWs were retrieved from the Global burden of disease for the year 2013 study (Salomon et 

al., 2015). When the DW for a specific health-outcome was not available, a proxy DW was 

used from an outcome which has similar health effects. When DWs for specific health-

outcomes differentiated between multiple degrees of severity, the overall DW on the basis of 

the proportion of cases that presented these degrees in Denmark (estimated based on BoI 

estimates) were calculated. For example, three severity levels of gastroenteritis were 

considered: mild, moderate and severe, each with a correspondent DW and a proportion of 

the totality of cases. 

Data on the duration of each health-outcome were collected through a literature review. 

Tables 11 to 14 summarize all the DW and durations of the different health-outcomes caused 

by each of the four foodborne pathogens. 
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Table 11 - Duration and disability weights for Campylobacter spp. health-outcomes. 

Health-

outcome 

Duration 

(years) 

Disability weights Reference 

 

 

GE 

 

0.008 [0.003; 

0.019] 

Mild: 

0.074 

95% CI: 

[0.049; 

0.104] 

Moderate: 

0.188 95% 

CI: [0.125; 

0.264] 

Severe: 

0.247 95% 

CI: [0.164; 

0.348] 

*Overall: ~ 

Pert(0.0817; 

0.05; 0.123) 

(Salomon et 

al., 2015) 

 

 

 

ReA 

 

0.608219178 

 

Not visiting a GP: 

0.023 

 

Visiting a GP: 

0.115 

 

Hospitalized: 

0.186 

(Haagsma, 

Havelaar, 

Janssen, & 

Bonsel, 

2008) 

IBS  

5 

 

0.042 

(Havelaar et 

al., 2012) 

GBS Life-long Mild: 

0.090 

Severe: 

0.280 

Residual 

symptoms: 

0.160 

(Havelaar, 

de Wit, van 

Koningsveld, 

& van 

Kempen, 

2000) 

GE: Gastroenteritis; ReA: Reactive arthritis; IBS: Irritable bowel syndrome; GBS: Guillain-Barre 
syndrome. 

 

Table 12 - Duration and disability weights for Salmonella spp. health-outcomes. 

Health-

outcome 

Duration 

(years) 

Disability weights Reference 

 

 

GE 

 

0.008 [0.003; 

0.019] 

Mild: 

0.074 

95% CI: 

[0.049; 

0.104] 

Moderate: 

0.188 95% 

CI: [0.125; 

0.264] 

Severe: 0.247 

95% CI: 

[0.164; 0.348] 

*Overall: ~ 

Pert(0.0817; 

0.05; 0.123) 

(Salomon et 

al., 2015) 

 

 

 

ReA 

 

0.608219178 

 

Not visiting a GP: 

0.023 

 

Visiting a GP: 

0.115 

 

Hospitalized: 

0.186 

(Haagsma 

et al.,2008) 

IBS  

5 

 

0.042 

(Havelaar et 

al., 2012) 

GE: Gastroenteritis; ReA: Reactive arthritis; IBS: Irritable bowel syndrome 
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Table 13 - Duration and disability weights for Y. enterocolitica’s health-outcomes. 

Health-

outcome 

Duration 

(years) 

Disability weights Reference 

 

 

GE 

 

0.04 [0.003; 

0.08] 

Mild: 

0.074 

95% CI: 

[0.049; 

0.104] 

Moderate: 

0.188 95% 

CI: [0.125; 

0.264] 

Severe: 0.247 

95% CI: 

[0.164; 0.348] 

*Overall: ~ 

Pert(0.09; 

0.06; 0.1) 

(Rosner et 

al., 2013; 

Salomon et 

al., 2015)  

 

 

 

ReA 

 

0.608219178 

 

Not visiting a GP: 

0.023 

 

Visiting a GP: 

0.115 

 

Hospitalized: 

0.186 

(Haagsma 

et al., 2008; 

Schiellerup 

et al., 2008) 

IBS  

5 

 

0.042 

(Havelaar et 

al., 2012) 

GE: Gastroenteritis; ReA: Reactive arthritis; IBS: Irritable bowel syndrome 

  

Table 14 - Duration and disability weights for VTEC’s health-outcomes. 

Health-

outcome 

Duration 

(years) 

Disability weights Reference 

 

 

GE 

 

0.019 [0.014; 

0.027] 

Mild: 

0.074 

95% CI: 

[0.049; 

0.104] 

Moderate: 

0.188 95% 

CI: [0.125; 

0.264] 

Severe: 

0.247 95% 

CI: [0.164; 

0.348] 

*Overall: ~ 

Pert(0.0817; 

0.05; 0.123) 

(Majowicz et 

al., 2014; 

Salomon et 

al., 2015) 

 

HUS 

 

0.077 [0.038; 

0.115] 

 

0.21 

(Kirk et al., 

2015) 

 

ESRD 

 

Life-long 

 

0.573 [0.397; 0.749] 

(Havelaar et 

al., 2012; 

Pires, 2014) 

GE: Gastroenteritis; HUS: Hemolytic uremic syndrome; ESRD: End-stage renal disease 

 

2.3. Life expectancy 

 

Life expectancy at a specific age can be derived from country-specific life tables (if 

available), or standard life tables with fixed life-expectancy (Pires, 2014).  

To calculate YLL the WHO “Standard Life Table for Years of Life Lost” was chosen (WHO, 

2017), which was developed based on the projected frontier period life expectancy and life 

table for the year 2050 (Annex II). 
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To calculate YLD the Danish life expectancy estimates for 2015 – 2016 were chosen 

(Statistics Denmark, accessed March 6th, 2017) (Annex II). 

The different choices of life expectancy tables are based on two principles. First, to calculate 

YLL it is important to account for an individual highest possible longevity, so the burden of life 

lost can be measured at its maximum. And second, when calculating YLD (some health-

outcomes can be life-long) the interest is on accounting for the actual years individuals in a 

certain population live with a specific disease or condition. 

 

2.4. The Disability Adjusted Life Year model 

 

To calculate the total DALYs associated with the four selected foodborne pathogens in 

Denmark for the year 2016, the incidence of all considered health-outcomes was estimated 

and combined with all variables described above.  

Total years lived with disability (YLD), years of life lost (YLL) and overall DALYs for each 

sequela of each disease were calculated by applying a stochastic model using a Graphical 

User Interface for calculating DALYs and performing uncertainty and sensitivity analyses, the 

DALY calculator, accessible in the R statistical programming environment (Devleesschauwer 

et al., 2016). 
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IV. Results 

 

1. Burden of disease of four foodborne pathogens 

 

1.1. Total incidence of disease by four foodborne pathogens 

 

The total estimated multiplier to correct reported cases to the real number of cases occurring 

in the Danish population in 2016 varied between pathogens (Tables 15 to 18). This multiplier 

was lower for Salmonella spp. (7.7), and highest for VTEC (19.7), while for Campylobacter 

and Y. enterocolitica the estimations were similar (11.0 and 10.9, respectively). These mean 

that for each case captured by the Danish public health surveillance system, around 8, 11 

and 20 people fell ill due to Salmonella spp., Campylobacter spp. and Y. enterocolitica, and 

VTEC infections, respectively. 

In 2016, 4,674 cases of campylobacteriosis, 1,068 cases of salmonellosis, 172 cases of 

yersiniosis caused by pathogenic biotypes of Y. enterocolitica and 250 cases of VTEC 

infections were reported to the Danish public health surveillance system. When accounting 

for under-reporting and underdiagnosis, estimates suggest that a total of 51,225 cases of 

campylobacteriosis, 8,197 cases of salmonellosis, 1,860 cases of yersiniosis and 4,920 

cases of VTEC occurred in Denmark in 2016. 

 

Table 15 - Estimated incidence due to Campylobacter spp. infections in Denmark, 2016 

(cases per 100,000 population). 

Reported/ 100,000 Multiplier Estimated total incidence / 
100,000 (Median [95% CI]) 

 Male Female  Male Female 

Total 
Population 

75.8 86.7 11.0 
 [5.97; 23.8] 

832.8 [453.0; 
1804.9] 
 

952.4 [518.1; 
2064.0] 
 

Age group      

0 – 4 78.3 
 

102.8  860.3 [468.0; 
1864.6] 
 

1129.4 [614.4; 
2447.7] 
 

5 – 14 28.5 51.3  313.2 [170.4; 
678.8] 
 

563.8 [306.7; 
1221.8] 
 

15 – 44 92.0 99.3  1010.4 [549.6; 
2189.7] 
 

1090.8 [593.4; 
2364.1] 
 

45 – 64 79.9 100.0  877.5 [477.3; 
1901.7] 
 

1098.6 [597.6; 
2381.0] 
 

65+  63.4 62.3  717.9 [390.5; 
1555.9] 

684.7 [372.5; 
1484.0] 
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Table 16 - Estimated incidence due to Salmonella spp. infections in Denmark, 2016 (cases 

per 100,000 population). 

Reported/ 100,000 Multiplier Estimated total incidence / 
100,000 (Median [95% CI]) 

 Male Female  Male Female 

Total 
Population 

19.2 17.9 7.7 [3.7; 18.1] 
 

147.6 [71.5; 
348.7] 
 

137.6 [66.7; 
325.2] 
 

Age group      

0 – 4 38.5 
 

43.5 
 

 295.6 [143.3; 
698.5] 
 

333.8 [161.8; 
788.5] 
 

5 – 14 13.5 20.4  103.8 [50.3; 
245.2] 
 

156.7 [75.9; 
370.1] 
 

15 – 44 15.3 14.6  117.3 [56.9; 
277.2] 
 

111.8 [54.2; 
264.1] 
 

45 – 64 20.8 16.5  159.6 [77.4; 
377.1] 
 

127.0 [61.5; 
300.0] 
 

65+  23.5 18.2  180.5 [87.5; 
426.5] 
 

139.7 [67.7; 
330.0] 
 

 

Table 17 - Estimated incidence due to Yersinia enterocolitica infections in Denmark, 2016 

(cases per 100,000 population). 

Reported/ 100,000 Multiplier Estimated total incidence / 
100,000 (Median [95% CI]) 

 Male Female  Male Female 

Total 
Population 

3.6 2.4 10.9 [6.0; 
23.3] 

38.9 [21.5; 
83.2] 
 

26.1 [14.4; 
55.8] 
 

Age group      

0 – 4 4.1 5.6  44.7 
[24.7;95.7] 
 

60.8 [33.6; 
130.1] 
 

5 – 14 2.5 3.2  26.8 [14.8; 
57.5] 
 

35.3 [19.5; 
75.5] 
 

15 – 44 4.2 2.5  46.0 [25.4; 
98.5] 
 

27.7 [15.3; 
59.3] 
 

45 – 64 3.2 1.7  35.2 [19.4; 
75.3] 
 

18.6 [10.2; 
39.7] 
 

65+  3.2 1.8  35.1 [19.4; 
75.1] 
 

19.2 [10.6; 
41.2] 
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Table 18 - Estimated incidence due to VTEC infections in Denmark, 2016 (cases per 

100,000 population). 

Reported/ 100,000 Multiplier Estimated total incidence / 
100,000 (Median [95% CI]) 

 Male Female  Male Female 

Total 
Population 

5.0 3.7 19.7 [6.0; 
105.2] 

97.7 [29.7; 
522.5] 
 

73.6 [22.4; 
393.5] 
 

Age group      

0 – 4 22.2 25.5  436.8 [132.9; 
2335.9] 
 

502.5 [153.0; 
2687.5] 
 

5 – 14 4.4 4.3  86.8 [26.4; 
464.1] 
 

86.8 [26.4; 
464.1] 
 

15 – 44 3.1 3.0  60.5 [18.4; 
323.7] 
 

58.8 [17.9; 
314.4] 
 

45 – 64 4.1 1.9  80.3 [24.4; 
429.4] 
 

36.5 [11.1; 
195.0] 
 

65+  5.6 1.9  109.8 [33.4; 
587.3] 

36.2 [11.2; 
198.0] 

 

Figures 12 to 15 depict the estimated total incidence per 100,000 population segregated by 

gender and age group.  

 

Figure 12 - Estimated incidence of campylobacteriosis per 100,000 population segregated by 

gender and age group, Denmark, 2016 (error bars refer to the 95% confidence interval). 

 

0

500

1000

1500

2000

2500

3000

0 - 4 5 - 14 15 - 44 45 - 64 65+

In
c
id

e
n
c
e
 p

e
r 

1
0
0
,0

0
0
 p

o
p
u
la

ti
o
n

Male Female Total



47 
 

Figure 13 - Estimated incidence of salmonellosis per 100,000 population segregated by 

gender and age group, Denmark, 2016 (error bars refer to the 95% confidence interval). 

 

 

Figure 14 - Estimated incidence of yersiniosis per 100,000 population, segregated by gender 

and age group, Denmark, 2016 (error bars refer to the 95% confidence interval). 
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Figure 15 - Estimated incidence of VTEC per 100,000 population, segregated by gender and 

age group, Denmark, 2016 (error bars refer to the 95% confidence interval). 
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Regarding yersiniosis, while in the female population the incidence was substantially higher 
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VTEC has a fairly low incidence in all age groups except in children under five. 

The uncertainty of all estimates was large, especially for VTEC. 
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1.1.2. Sensitivity analysis  

 

The sensitivity analyses were done separately for all four disease models. 

All the variables and its contributions to the four disease models were evaluated: 1) 

proportion of hospitalized cases (Ph), 2) Proportion of bloody diarrhea in cases (Pbd), 3) 

Probability of seeking care for non-bloody diarrhea cases (PCSnb), 4) Probability of seeking 

care for bloody diarrhea cases (PCSb), 5) Probability of submitting a stool sample for 

analysis for non-bloody diarrhea cases (PSSnb), 6) Probability of submitting a stool sample 

for analysis for bloody diarrhea cases (PSSb), 7) Probability of reporting a positive laboratory 

result (PRR), 8) Probability of testing for the pathogen in sample (PTP), 9) Sensitivity of 

laboratory analysis (SEN), and 10) Probability of submitting a stool sample for analysis for 

hospitalized patients (PSSh). 

Figures 16 to 19 show the Spearman’s rank order correlation coefficients of each variable, 

demonstrating their effect on the output (multiplying factor).  

 

Figure 16 – Sensitivity analyses of Campylobacter spp.’s disease model illustrated in a 

“tornado” type of graph, showing the main sources of the model’s uncertainty. The 

abbreviations of the input variables are on the vertical axis. 

 

PH: proportion of hospitalized cases; PBD: Proportion of bloody diarrhea in cases; PCSNB: Probability 

of seeking care for non-bloody diarrhea cases; PCSB: Probability of seeking care for bloody diarrhea 

cases; PSSNB: Probability of submitting a stool sample for analysis for non-bloody diarrhea cases: 

PSSB: Probability of submitting a stool sample for analysis for bloody diarrhea cases: PRR: Probability 

of reporting a positive laboratory result; PTP: Probability of testing for the pathogen in sample; SEM: 

Sensitivity of laboratory analysis and PSSH: Probability of submitting a stool sample for analysis for 

hospitalized patients. 
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Figure 17 – Sensitivity analyses of Salmonella spp.’s disease model illustrated in a “tornado” 

type of graph, showing the main sources of the model’s uncertainty. The abbreviations of the 

input variables are on the vertical axis. 

 

PH: proportion of hospitalized cases; PBD: Proportion of bloody diarrhea in cases; PCSNB: Probability 

of seeking care for non-bloody diarrhea cases; PCSB: Probability of seeking care for bloody diarrhea 

cases; PSSNB: Probability of submitting a stool sample for analysis for non-bloody diarrhea cases: 

PSSB: Probability of submitting a stool sample for analysis for bloody diarrhea cases: PRR: Probability 

of reporting a positive laboratory result; PTP: Probability of testing for the pathogen in sample; SEM: 

Sensitivity of laboratory analysis and PSSH: Probability of submitting a stool sample for analysis for 

hospitalized patients. 

 

Figure 18 – Sensitivity analyses of Y. enterocolitica’s disease model illustrated in a “tornado” 

type of graph, showing the main sources of the model’s uncertainty. The abbreviations of the 

input variables are on the vertical axis. 

 

PH: proportion of hospitalized cases; PBD: Proportion of bloody diarrhea in cases; PCSNB: Probability 

of seeking care for non-bloody diarrhea cases; PCSB: Probability of seeking care for bloody diarrhea 

cases; PSSNB: Probability of submitting a stool sample for analysis for non-bloody diarrhea cases: 

PSSB: Probability of submitting a stool sample for analysis for bloody diarrhea cases: PRR: Probability 

of reporting a positive laboratory result; PTP: Probability of testing for the pathogen in sample; SEM: 

Sensitivity of laboratory analysis and PSSH: Probability of submitting a stool sample for analysis for 

hospitalized patients. 
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Figure 19 – Sensitivity analyses of VTEC’s disease model illustrated in a “tornado” type of 

graph, showing the main sources of the model’s uncertainty. The abbreviations of the input 

variables are on the vertical axis. 

 

PH: proportion of hospitalized cases; PBD: Proportion of bloody diarrhea in cases; PCSNB: Probability 

of seeking care for non-bloody diarrhea cases; PCSB: Probability of seeking care for bloody diarrhea 

cases; PSSNB: Probability of submitting a stool sample for analysis for non-bloody diarrhea cases: 

PSSB: Probability of submitting a stool sample for analysis for bloody diarrhea cases: PRR: Probability 

of reporting a positive laboratory result; PTP: Probability of testing for the pathogen in sample; SEM: 

Sensitivity of laboratory analysis and PSSH: Probability of submitting a stool sample for analysis for 

hospitalized patients. 
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Finally, on VTEC’s disease model the input variables influencing the multiplier the most were 

the probability of submitting a stool sample for bloody diarrhea cases, the probability of 

testing for the pathogen in the sample and the probability of submitting a stool sample for 

bloody diarrhea cases. 
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1.1.3. Scenario Analysis  

 

An overview of the results for the scenario analysis is shown on Table 19. As expected, there 

is a decrease on the multiplying factor in all scenarios, with a substantial one on scenario 

four, which encompasses all the changes in all the other three scenarios.  

For campylobacteriosis and yersiniosis, scenarios two and three (that increased the PCSnb 

and PSSb, respectively) have similar decreases, whereas for salmonellosis it is the first, 

which also changed the PSSb, and second (PSSnb) scenarios. 

Regarding VTEC’s multiplying factor, all scenarios show different decreases, with the third 

scenario (PCSb) having the least impact, which also occurs with scenario three (PCSb) for 

Salmonella spp. multiplier. 

 

Table 19 – Median and 95% confidence intervals (95% CI) for the multiplier and each of the 

four scenarios of each foodborne pathogen’s disease model. 

 Multiplier Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 Median  

[95% CI] 

Median  

[95% CI] 

Median  

[95% CI] 

Median  

[95% CI] 

Median  

[95% CI] 

Campylobacter 

spp. 

11 [5.9; 24.4] 8.4 [5; 17] 9.9 [5.5; 20.2] 9.9 [5.5; 20.5] 6.8 [4.1; 12.9] 

Salmonella 

spp. 

7.7 [3.8; 18] 6.4 [3.1; 14.1] 6.4 [3.4; 13.3] 7.3 [3.5; 16.7] 5.1 [2.8; 10.3] 

Y. 

enterocolitica 

10.9 [6; 23] 8.5 [4.9; 16.5] 9.4 [5.4; 19.7] 9.6 [5.5; 19.4] 6.7 [4.1; 12.3] 

VTEC 19.6 [5.9; 

102.7] 

13.8 [4.8; 61] 15.4 [5; 71.8] 17.8 [5.5; 

90.8] 

9.6 [3.7; 35.3] 

 

Figures 20 to 23 show the empirical cumulative distribution function of the multiplier and each 

scenario considered, for each of the four foodborne pathogens. A shift to the left means a 

decrease in the multiplying factor according to each scenario. 
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Figure 20 – Empirical cumulative distribution function of Campylobacteriosis’ multiplier (blue) 

and the first (pink), second (green), third (red) and fourth (orange) scenarios. 

 

 

Figure 21 – Empirical cumulative distribution function of salmonellosis’ multiplier (blue) and 

the first (pink), second (green), third (red) and fourth (orange) scenarios. 
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Figure 22 – Empirical cumulative distribution function of yersiniosis’ multiplier (blue) and the 

first (pink), second (green), third (red) and fourth (orange) scenarios. 

 

Figure 23 – Empirical cumulative distribution function of VTEC’s multiplier (blue) and the first 

(pink), second (green), third (red) and fourth (orange) scenarios. 
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1.2. Disability Adjusted Life Years for four foodborne pathogens 

 

The overall estimated burden of disease was higher for Campylobacter spp. with 1,751 

DALYs. For Salmonella spp. a total of 432 DALYs were estimated, followed by an estimation 

of 63 and 44 DALYs for Y. enterocolitica and VTEC, respectively (Table 20). 

Figure 24 shows the separate contribution of YLLs and YLDs for each pathogen’s total 

burden. Both Campylobacter spp. and Y. enterocolitica have a relative contribution of YLDs 

of around 60%. For Salmonella spp. and VTEC the estimations point for a higher burden 

related to YLLs (around 60% of the total DALY estimation). 

Tables 21 to 24 show the results of total DALYs, YLD and YLL caused by each different 

health-outcome associated with the different foodborne pathogens, while Figure 25 depicts 

their relative contribution to the total burden of disease. Gastroenteritis is the major 

contributor for the disease burden for all pathogens except Campylobacter spp., for which 

irritable bowel syndrome occupies that place. Regarding reactive arthritis, its contribution to 

the burden of Salmonella spp. is lower than that of Campylobacter spp. and Y. enterocolitica. 

 

Table 20 - Estimated total DALYs, YLL and YLD for Campylobacter spp., Salmonella spp., Y. 
enterocolitica and VTEC in Denmark, 2016. 

 Campylobacter spp. Salmonella spp. Y. enterocolitica VTEC 

Reported cases 4674 1068 172 250 

 Median 95% CI Median 95% CI Median 95% CI Median 95% CI 

Total cases 59,677 [49,617– 

71,781] 

9,711 [8,119-  

11,524] 

2,130 [1,813- 

2,523] 

6,952 [4,445-

10,107] 

Deaths 59 -  26 -  2 -  0 [0 - 1] 

DALY Total 1,751 [1,697-

2,255] 

432 [425- 

440] 

63 [59 - 

69] 

44 [36 - 53] 

DALY/100,000 30  7.5  1.1  0.8  

         

YLD 1,060 [1,010– 

1,112] 

163 [156- 

171] 

41 [37 - 

47] 

19 [13 - 27] 

YLL 691 [687- 

696] 

269 - 22 - 25 [19 - 32] 

 
Note: the DALY calculator uses the estimated total incidence as input for the model. The input is 

defined as a PERT distribution with most likely value the median and minimum and maximum value 

the 95% percentiles. Even though the estimates were based on the BoI estimates described on 

chapter 2, the use of a probability distribution in another stochastic model leads to different results on 

the estimated total cases for each pathogen. 
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Figure 24 - Disease burden of four foodborne pathogens in Denmark for the year 2016. YLL 
and YLD components are shown separately. 

 
 

 

Guillain-Barré syndrome has a small contribution to Campylobacter spp. burden, even 

though it has the potential of causing severe and fatal illness. In the estimations for 2016, 

GBS caused no deaths and all its burden amounts to YLD. 

Hemolytic uremic syndrome also has a low contribution to VTEC burden, which is 

approximately 0% for the 6 reported cases for the year 2016. Although estimations point for 

only 1 case of end-stage renal disease, its contribution is of 16%, causing a burden of seven 

DALYs. 

 

Table 21 - Estimated total DALYs, YLL and YLD associated with different health-outcomes of 
Campylobacter spp. infection in Denmark, 2016. 

 Gastroenteritis Reactive Arthritis Irritable bowel 
syndrome 

Guillain- Barré 
Syndrome 

 Median 95% CI Median 95% CI Median 95% CI Median 95% CI 

DALY 711 [695 – 734] 175 [126 –
234] 

845 [817 – 
872] 

16 [15 - 17] 

YLD 41 [25 – 64] 175 [126 –
234] 

845 [817 – 
872] 

16 [15 - 17] 

YLL 670 - 0 - 0 - 0 - 
Deaths 59 - 0 - 0 - 0 - 
Cases 53,467 [43,508 – 

65,578]  
1,036 [747 – 

1,393] 
4,026 [3,891 – 

4,153]  
1,141 [1,098  

1,183] 
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Table 22 - Estimated total DALYs, YLL and YLD associated with different health-outcomes of 
Salmonella spp. infection in Denmark, 2016. 

 Gastroenteritis Reactive Arthritis Irritable bowel syndrome 

 Median 95% CI Median 95% CI Median 95% CI 

DALY 276 [273 – 279] 23 [18 – 29] 133 [129 – 137] 

YLD 7 [4 – 10] 23 [18 – 29] 133 [129 – 137] 
YLL 269 - 0 - 0 - 
Deaths 26 - 0 - 0 - 
Cases 8,639 [7,066 - 10,452]  439 [381 – 505] 633 [615 – 652]  

 

 

 

Table 23 - Estimated total DALYs, YLL and YLD associated with different health-outcomes of 
Y. enterocolitica infection in Denmark, 2016. 

 Gastroenteritis Reactive Arthritis Irritable bowel syndrome 

 Median 95% CI Median 95% CI Median 95% CI 

DALY 29 [24 – 34] 7 [6 – 9] 28 [27 – 29] 

YLD 7 [3 – 13] 7 [6 – 9]  28 [27 – 29] 
YLL 22 - 0 - 0 - 
Deaths 2 - 0 - 0 - 
Cases 1,833 [1,508 - 2,212]  177 [158 – 197] 131 [127 – 136]  

 

 

 

Table 24 - Estimated total DALYs, YLL and YLD associated with different health-outcomes of 
VTEC infection in Denmark, 2016. 

 Gastroenteritis Hemolitic uremic syndrome End-stage renal disease 

 Median 95% CI Median 95% CI Median 95% CI 

DALY 36 [24 – 51] 0 - 7 [6 – 10] 

YLD 11 [6 – 19] 0 - 7 [6 – 10] 
YLL 25 [18 - 32] 0 - 0 - 
Deaths 0 [0 - 1] 0 - 0 - 
Cases 6,929 [4,484 - 10,093]  6 - 1 [0 – 1]  
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Figure 25 – Relative contribution of DALYs caused by different health-outcomes to the total 
burden of campylobacteriosis, salmonelosis, yersiniosis and VTEC infections in Denmark, 
2016. 

 

GBS: Guillain-Barré Syndrome; GE: Gastroenteritis; IBS: Irritable bowel syndrome; ReA: Reactive 

arthritis; HUS: Hemolytic uremic syndrome; ESRD: End-stage renal disease. 

 

The total DALY estimates by age group and gender per 100,000 population (Figures 26 to 

29) show a higher burden of disease for older people (65 years old or more) for 

campylobacteriosis and salmonellosis, whether for yersiniosis and VTEC infections, children 

under five years old have the highest burden, with the last disease causing a substantially 

higher burden in that population. 

The burden of disease for campylobacteriosis and for salmonellosis is higher in the female 

population, except for people aged between 15 and 44 years old with Salmonella spp. 

infections. For both yersiniosis and VTEC infections there is no defined trend regarding sex. 
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Figure 26 - Distribution of total burden of campylobacteriosis in age groups and sex in 

Denmark, 2016 (total DALYs per 100,000 population). 

 
 

Figure 27 - Distribution of total burden of salmonellosis in age groups and sex in Denmark, 

2016 (total DALYs per 100,000 population). 

 
 

 

Figure 28 - Distribution of total burden of yersiniosis in age groups and sex in Denmark, 2016 

(total DALYs per 100,000 population). 
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Figure 29 - Distribution of total burden of VTEC infections in age groups and sex in Denmark, 

2016 (total DALYs per 100,000 population). 

 
 

Tables 25 to 28 show the detailed burden, cases and deaths estimates stratified by age 

group and sex. All the foodborne pathogens caused a higher number of deaths in the oldest 

age group (people older than 64 years old), except VTEC which did not lead to fatal cases in 

the year 2016. 

 

Table 25 – Estimated total DALYs, YLLs, YLDs, total cases and deaths associated with 

Campylobacter spp. infections in Denmark, 2016 by age group and sex. 

 

Table 26 – Estimated total DALYs, YLLs, YLDs, total cases and deaths associated with 

Salmonella spp. infections in Denmark, 2016 by age group and sex. 

0

1

2

3

4

5

6

7

8

0–4 5–14 15–44 45–64 65+

DALY/100,000 Male DALY/100,000 Female

 DALY YLD YLL Cases Deaths 

 Male Female Male Female Male Female Male Female Male Female 

0–4 53 51 29 34 24 17 1,953 1,501 0 0 

5–14 26 39 24 38 2 1 2,155 1,292 0 0 

15–44 258 262 228 235 30 27 14,003 12,794 1 0 

45–64 262 265 148 175 114 90 9,554 7,940 3 2 

65+ 242 294 70 80 172 214 3,969 4,886 23 29 

 DALY YLD YLL Cases Deaths 

 Male Female Male Female Male Female Male Female Male Female 

0–4 23 22 9 10 14 12 592 512 0 0 

5–14 8 10 7 10 1 0 616 425 0 0 

15–44 32 30 26 24 6 6 1,472 1,483 0 0 

45–64 48 50 24 19 24 31 1,172 1,398 1 1 

65+ 87 124 18 17 69 107 843 1,226 9 14 
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Table 27 – Estimated total DALYs, YLLs, YLDs, total cases and deaths associated with Y. 

enterocolitica infections in Denmark, 2016 by age group and sex. 

 DALY YLD YLL Cases Deaths 

 Male Female Male Female Male Female Male Female Male Female 

0–4 3 3 2 2 1 1 108 83 0 0 

5–14 2 2 2 2 0 0 101 76 0 0 

15–44 11 8 10 7 1 1 390 545 0 0 

45–64 7 7 5 4 2 3 186 305 0 0 

65+ 7 12 4 3 3 9 125 225 1 2 

 

Table 28 – Estimated total DALYs, YLLs, YLDs, total cases and deaths associated with 

VTEC infections in Denmark, 2016 by age group and sex. 

 DALY YLD YLL Cases Deaths 

 Male Female Male Female Male Female Male Female Male Female 

0–4 9 11 3 6 6 5 1,093 901 0 0 

5–14 4 3 2 1 2 2 407 395 0 0 

15–44 4 4 1 1 3 3 914 909 0 0 

45–64 2 3 1 1 1 2 394 853 0 0 

65+ 0 1 0 1 0 0 255 922 0 0 
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V. Discussion 

 

This dissertation describes an integrated model to estimate the public health impact of four 

foodborne pathogens in Denmark for the year 2016. It also describes the model developed to 

estimate the burden of disease of yersiniosis, which is the first developed in the country and 

in Europe. These burden of disease estimates are used to rank foodborne pathogens at the 

national level and are used to provide evidence to the National Food and Veterinary 

Administration under a project running at the Denmark Technical University (DTU) Food. 

The applied model consisted of two general components: a burden of illness study, which 

was applied to estimate the total incidence of these pathogens in the Danish population for 

that time frame; and a burden of disease study, which built on the first component and 

estimated disease burden in terms of the disability adjusted life year metric. These two 

components are discussed separately, and a general discussion follows. 

 

1. Burden of Illness of four foodborne pathogens 

 

Results show that campylobacteriosis was the most frequent infection by foodborne 

pathogens in Denmark in 2016, with an estimated incidence of 889 cases per 100,000 

inhabitants, followed by salmonellosis, VTEC infections and yersiniosis with 143, 85 and 32 

cases per 100,000 population, respectively. 

Although this ranking follows the ranking of reported incidence, estimates show a large and 

variable degree of under-reporting for each pathogen. The pathogen with the largest degree 

of under-reporting and underdiagnosis (which translates as the biggest difference between 

reported and estimated total cases) was VTEC, with a multiplying factor of approximately 20. 

Campylobacter spp. and Y. enterocolitica had similar underreporting factors of around 11, 

which leaves Salmonella spp. with the lowest multiplier, of around eight.  

 

1.1. Limitations of the modelling approach 

 

1.1.1. Surveillance system 

 

The basic input data of the BoI model were the number of cases reported to the Danish 

surveillance system, for each pathogen. 

All these data were aggregated by age group and sex, but for yersiniosis the biotypes 

causing disease needed to be taken into account because one biotype is considered non-

pathogenic. As a consequence, the proportion of cases caused by pathogenic biotypes of Y. 

enterocolitica needed to be considered in the model, but this could not be categorized by age 

or sex (i.e. only the percentage of the total cases was known). Therefore, a reduction to 30% 

of the total reported cases which was caused by the pathogenic biotypes was applied equally 
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to all age and sex groups. As a consequence, sex and/or age groups with relatively more or 

less notified cases caused by pathogenic biotypes of Y. enterocolitica might have been 

under-represented or over-represented, respectively. Such bias may have influenced the age 

and sex-distribution of the burden of yersiniosis estimates. 

Regarding VTEC-associated hemolytic uremic syndrome cases, it was assumed that all 

cases were captured by the Danish surveillance system. However, it is likely that some HUS 

diagnosed cases were not linked to VTEC infections, which means that the incidence 

currently used may be underestimated (Pires, 2014). More data is needed to improve the 

disease model in order to capture the total incidence of VTEC infections.  

 

1.1.2. Non-pathogen and pathogen specific parameters 

 

Several of the model’s variables were informed by a population-based telephone survey 

conducted in 2009 that attempted to determine the incidence of acute gastrointestinal illness 

in Denmark (Müller et al., 2012). 

Although the methods were sound, the study collected data from a relatively low number of 

gastroenteritis patients, therefore data to inform some of the model’s parameters were 

sparse. 

Through the sensitivity analysis performed, almost all of the variables contributing the most 

to the model’s uncertainty were those informed by this study (Figures 17 to 20). An update of 

this study would be useful in order to improve future estimates. 

Also, all parameters used to correct the number of reported cases to total incidence, by 

accounting for under-reporting and underdiagnosis, were defined without any specific age 

and sex-distribution, due to insufficient data to inform these specifications. This led to an age 

and sex-independent multiplying factor for each of the four foodborne pathogens. 

Being possible that people seeking medical care can have different behaviors according to 

age groups and sex, as well as that different approaches from general practitioners regarding 

different individuals exist (younger children, for example), it could be interesting to gather 

data and develop an age and sex-specific multiplying factor.  

Regarding pathogen-specific parameters, even though the symptoms of mild uncomplicated 

disease by all four pathogens are similar, general practitioners and laboratories are more 

likely to test for Salmonella spp. in a stool sample, due to a positive public health impact 

caused by the implementation of various EU-level  and Danish prevention and control 

measures, which brought awareness to this pathogen (ECDC, 2015).  Whether VTEC’s 

differences in the diagnostic methodology and principles for testing (Espenhain, 2013), which 

translated in a lower probability of testing for VTEC in a stool sample, affect  its multiplier in a 

negative way, as shown by the sensitivity analysis (Figure 20). 
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1.2. Scenario analysis 

 

The scenario analysis showed that the improvements chosen for the parameters that 

influenced negatively the multiplying factor the most would decrease the median value of the 

model’s output, as well as its 95% confidence intervals.  

The decrease of the multiplier would translate an improvement of the reporting and diagnosis 

capacities, which means that the Danish surveillance system would capture more cases of 

disease in the population. This scenario analysis could therefore be used to encourage 

Danish food authorities and policy makers to bring awareness to the general population to 

seek medical care when having a foodborne illness and to doctors and clinical microbiology 

laboratories to increase their stool sample requests and specific-pathogen testing.  

On the other hand, the decrease of the 95% confidence intervals would mean that the 

uncertainty around the estimates was lower, and therefore food authorities and policy makers 

would have more certain results to develop new public health measures if needed. 

 

1.3. Comparability with other studies 

 

Several countries have previously conducted studies to estimate multipliers to correct for 

under-reporting and underdiagnosis. Estimates varied extensively, from seven in Denmark 

(Pires, 2014) to 111 in Portugal for Salmonella spp. (Morgado, 2015), as did the methods 

applied to inform the different models used in each study. 

Even though both previous Danish estimates used the same disease model and the same 

population-based telephone survey done by Muller and colleagues (2012), they have 

reached different multipliers (Table 29). That can be explained by the assumption to consider 

gastroenteritis cases with duration shorter than three days as viral infections, which was a 

central assumption of this study when informing the different model’s parameters. 

When comparing Pires (2014) and this study, all multipliers show similar results for 

Campylobacter spp. and Salmonella spp., which was expected since most disease model 

parameters were defined in the same way. The incongruence between the two VTEC’s 

multipliers can be explained by an oversight on the previous Danish estimates, only found 

after publishing (Pires, Personal communication). An important addition of this study was the 

development of the model for yersiniosis, which has not been done before in an exclusively 

national study.  

Regarding the American, Canadian, New Zealander and Portuguese studies, all used the 

same disease model for the different pathogens assessed. The model here described had 

differences compared to the one used in these studies, namely considering the probability of 

submitting a stool sample for analysis for hospitalized patients and the proportion of 

hospitalized patients. They also accounted for the proportion of travel-related and of 
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foodborne cases. The study from New Zealand used the American multipliers as surrogate, 

while the others informed their model’s parameters based on country-specific data. 

In this study’s modelling approach, it was considered that hospitalized patients would have 

an increased probability of a sample being taken when compared with patients with non-

bloody diarrhea and bloody diarrhea, under the assumption that hospitalized patients would 

have more severe symptoms than the other cases. 

This model did not account for the proportions of travel-related and foodborne cases. In the 

Danish approach, after estimating total incidence and DALYs for each pathogen, Pires 

(2014) combines the DALYs estimates with source attribution estimates from pathogen-

specific studies. A more complete overview of concepts and methods regarding source 

attribution, can be found at Pires et al., (2009). 

 

Table 29 – Overview of multiplying factors estimated to correct for under-reporting and 

underdiagnosis of Campylobacter spp., Salmonella spp., Y. enterocolitica and VTEC 

infections in different countries worldwide. 

Country Reference Multiplying factor 

  Campylobacter spp. Salmonella spp. Y. enterocolitica VTEC 

AUS (Kirk et al. 

2014) 

10.5 7.4 7.4 NA 

CAN (Thomas et al., 

2013) 

27.2 26.1 39.3 20.1* 

DK (Haagsma et 

al., 2013) 

29.0 17.0 20.0 NA 

DK (Pires, 2014) 12.0 7.2 NA 31.2 

GRE (Vaillant et al., 

2005) 

274.8 51.45 NA NA 

NZ (Lake et al., 

2010) 

30.3 29.3 122.8 NA 

PT (Morgado, 

2015) 

NA 111.2 NA NA 

UK (Tam et al., 

2012) 

9.3 4.7 NA 7.4 

USA (Scallan et al., 

2011) 

30.3 29.3 122.8 26.1* 

DK This study 11.0 7.7 10.9 19.7 

AUS: Australia; CAN: Canada; DK: Denmark; GRE: Greece; NZ: New Zealand; PT: Portugal; UK: 

United Kingdom; USA: United States of America. *Estimates only including VTEC O157. NA: not 

available. 
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In this dissertation, the source attribution step was not included due to lack of data for Y. 

enterocolotica and VTEC. Even though attempts to collect data were done, there are no food 

estimates for Y. enterocolitica and VTEC (in Denmark or elsewhere). 

Differences in underreporting factors between countries are expected to occur due to 

variations among population behavior, health care systems, laboratories methodologies and 

surveillance systems. In addition, the differences between modelling approaches and on 

parameters’ definitions are also important variables that contribute to these differences and 

make it difficult to compare results from different countries, or even between different studies. 

To overcome this problem, a harmonized and well-defined approach would need to be 

developed. 

 

2. Burden of disease of four foodborne pathogens 

 

The ranking of the DALY estimates of the four foodborne diseases considered, followed the 

same order as the estimates of total incidence, except for yersiniosis and VTEC infections. 

Therefore, Campylobacteriosis caused the higher burden, 1,751 DALYs, followed by 

salmonellosis with 432, yersiniosis with 63 and VTEC infections with 44 DALYs. 

This ranking was to be expected since all diseases have similar mild symptoms and 

Campylobacter spp., Salmonella spp. and Y. enterocolitica have similar sequelae.  

Although campylobacteriosis may cause Guillain-Barré syndrome, which is a long-term and 

potentially severe sequela, only 16 DALYs, born by 1,141 cases, were attributed to this 

disease. This might be explained by a substantially higher number of mild cases of this 

disease. Also, the burden of campylobacteriosis was 4 times bigger than the burden of 

salmonellosis, even though its total incidence was 6 times higher, which can be explained by 

the large number of mild cases of gastroenteritis which cause a very low burden. 

Regarding yersiniosis and VTEC infections’ ranking positions, although the last has more 

severe sequelae than yersiniosis, those health-outcomes are not frequent, accounting for a 

lower number of DALYs. 

Although having a relatively high disability weight (0.21), the hemolytic uremic syndrome had 

a very low burden (approximately zero). This can be explained by the low number of reported 

cases developing this sequela. When applying the formula to calculate YLD with the most 

likely duration for this health-outcome (0.077 years) the result obtained is 0.9 DALYs. Since a 

PERT distribution was applied to the duration of HUS symptoms, this number can be lower, 

and therefore appear to be an absolute 0 (the DALY calculator only shows absolute values). 

Still, the total VTEC burden may be an underestimate because under-reporting was not 

considered for VTEC associated HUS cases. 

 

 



67 
 

2.1. Health-outcome trees 

 

To develop the first health-outcome tree for yersiniosis a literature review was carried out, in 

which several health-outcomes were identified in addition to the ones included in the disease 

model to estimate the burden of yersiniosis. 

Although there was evidence that all identified sequelae could be caused by Y. 

enterocolitica, lack of significant and sound data to inform the disease model made it 

impossible to include these in the burden of disease estimates. Therefore, the burden of 

yersiniosis might have been underestimated.  

Also, for Campylobacter spp. and Salmonella spp. a change in the health-outcome trees was 

made (when compared to Pires (2014)), excluding IBD. In a nationwide Danish study from 

SSI, conclusions indicate that there is no relation between these two pathogens and IBD, but 

that such infections are more often detected in patients suffering from IBD, because they 

have many samples taken (Jess et al., 2011). Recent studies have also excluded this 

sequela from their health-outcome trees (de Noordhout et al., 2017; Van Lier et al., 2016). 

In order to improve and increase available evidence on the link between foodborne infections 

and sequelae, studies such as cohort studies can be developed. These studies could help 

identify all potential health-outcomes associated with different foodborne infections, estimate 

probabilities of occurrence and revise currently used health-outcome trees 

 

2.2. Disability weights  

 

To inform the parameter defining the different sequelae, estimates from the Global Burden of 

Disease of 2013  were used (Salomon et al., 2015). However, DWs for many health-

outcomes were lacking, and therefore data from different studies was used (Haagsma et al., 

2008; Havelaar et al., 2000; Havelaar et al., 2012; Kirk et al., 2015). Different studies had 

assumed different disability weights for the same sequelae, which brought awareness to the 

validity and comparability of this model parameter, when comparing different burden of 

disease studies.  

To improve this disparity and to develop disability weights for a larger range of sequelae, 

new studies could be carried out. 

 

2.3. Comparability with other studies 

 

Several burden of disease studies have been developed by countries and by different 

organizations (Table 30) in order to estimate the burden of foodborne diseases and to rank 

them and give information on how public health interventions could be prioritized. 

There is only one study estimating the burden of yersiniosis (Lake et al., 2010). Their 

approach only includes gastroenteritis and reactive arthritis as health-outcomes of this 
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disease. Also, this study did not develop a health-outcome tree for this disease and assumed 

that aside from GE only ReA could contribute to the burden of yersiniosis. It is not clear if a 

literature review was carried out or if the authors’ decision was based on expert opinions. 

Even though not considering IBS as a sequela of yersiniosis, the estimates point to a burden 

twice as high when compared to this study estimates. In another study developed in New 

Zealand, the estimations of total incidence of yersiniosis were of 718 cases per 100,000 

population (Cressey & Lake, 2011). The estimates for Denmark in the year 2016 were of 9 

cases per 100,000 inhabitants. This can explain why the burden of yersiniosis is so high in 

New Zealand. 

Lake and colleagues (2010) included GE, ReA, IBD and GBS (only for campylobacteriosis), 

when considering the burden of Salmonella spp. and Campylobacter spp.. They do not 

account for the burden of IBS. Their estimates point to a higher burden of campylobacteriosis 

when compared to all the other studies, and one of the lowest for salmonellosis. The first 

estimate can be explained by the adding of an extra sequela of campylobacteriosis (IBD) 

when compared to this study. Regarding salmonellosis, total incidence estimated might be 

behind this low burden. 

Both studies from the Netherlands used the same health-outcomes as this study for each 

pathogen, but also included IBD as a sequela of campylobacteriosis and salmonellosis. The 

estimations are very similar when comparing the two Dutch studies, which can be explained 

by the application of exactly the same disease model, informed by the same parameter’s 

data. 

When comparing the burden of salmonellosis to the Danish burden, estimates have come to 

similar results. The same does not happen when comparing campylobacteriosis and VTEC’s 

burden. It is important to note that Dutch estimates for VTEC only include VTEC O157, and 

therefore differences were to be expected. 

Belgium has the lowest burden estimates for Salmonella spp., which can be explained by 

differences in the health-outcome trees used when compared to other studies. Both IBS and 

IBD were not included in the model developed. Furthermore, Noordhout and colleagues 

(2017) aknowledge that when accounting for under-reporting in their model, the mulplying 

factor used was particularly low for Belgium (3.5), when compared with the one used in the 

previous Danish estimates (7.2) (Pires, 2014). And therefore, when compared with the 

multiplier estimated in this study (7.7). 

The burden of campylobacteriosis estimated in this study, when compared to Belgium and 

WHO estimates for Europe is substantially high. The explanation can lie behind the 

differences in health-outcome trees. Both WHO and the Belgium study do not consider IBS 

as a sequela of campylobacteriosis. Although, when subtracting the DALYs caused by IBS, 

campylobacteroisis will still cause 15.8 DALYs per 100,000 population, which is still 
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considerably higher than the other estimates. Potential differences in the incidence of 

Campylobacter spp. might be behind this higher burden. 

 

Table 30 – Comparison of burden of disease estimates for Denmark 2016 and other 

countries and Europe. Total DALYs per 100,000 population. 

Country/ 

Region 

Reference DALYs per 100,000 population 

  Campylobacter spp. Salmonella spp. Y. enterocolitica VTEC 

BEL (Noordhout 

et al., 2017) 

9 0.9 NA NA 

DK (Pires, 

2014) 

28.4 6.9 NA 2.02 

JPN (Kumagai 

et al., 2015) 

4.8 2.5 NA NA 

NED (Havelaar 

et al., 2012) 

19.8 7.7 NA 0.7* 

NED (Van Lier et 

al., 2016) 

19.9 8.2 NA NA 

NZ (Lake et al., 

2010) 

37.9 4.5 2.2 NA 

EUR (WHO, 

2015) 

9 8   NA NA 

DK This study 30 7.5 1.1 0.8 

*Estimates only include VTEC O157. NA: not available. 

 

Lastly, comparing both Danish estimates, similar results have been achieved regarding 

campylobacteriosis and salmonellosis, which means the model applied is consistent and 

sound. 

The differences between VTEC’s burden estimates are related to the multiplying factor 

considered, which was only corrected after publishing. 

Overall, it is clear that differences in the methodological approach used to estimate the 

burden of disease of foodborne pathogens, makes comparison among countries difficult. 

Developing both more precise under-reporting and underdiagnosis multiplying factors and 

health-outcome trees could help improving the comparability of studies among countries. 

 

3. Age and gender distribution of the burden of foodborne illness and disease 

 

Total incidence estimates for all four pathogens show that children under five years old have 

the highest incidence when compared to other age groups. When comparing gender 
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differences, females with campylobacteriosis seem to be more affected. For yersiniosis, a 

decrease in the total incidence of cases with age is noticeable when looking at the female 

population. Still regarding burden of illness results, campylobacteriosis show a high 

incidence from ages 15 to 64, while VTEC have low incidences in all age groups beside 

children under five years of age. 

When looking at the burden of disease estimates, both Y. enterocolica and VTEC have the 

highest number of DALYs in the youngest age group. On the other hand, for Campylobacter 

spp. and Salmonella spp. the highest burden falls in the oldest age group. That can be 

explained by the high number of fatal cases estimated in elderly people, when compared to 

the others. Still, children under five have a considerable high burden caused by these two 

foodborne pathogens. 

In other studies, the public health impact of diarrheal diseases, including those caused by 

pathogens commonly transmitted through foods, has been found to be higher for young 

children (Havelaar et al., 2012; GBD’s Diarrhoeal Diseases Collaborators, 2017; WHO, 

2015).  Diarrheal diseases have also been associated with increased mortality, especially in 

the oldest age group, which includes people older than 65 years old (GBD’s Diarrhoeal 

Diseases Collaborators, 2017). 

Because disease may be more severe in these age groups due to higher vulnerability or 

lower immune status, this evidence enhances the importance of control and prevention 

measures to reduce the burden of foodborne diseases in the population. 
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VI. Conclusion 

 

This study presents the first Danish burden of disease of yersiniosis, the second worldwide, 

and the second estimates for campylobacteriosis, salmonellosis and verocytotoxin-producing 

E. coli infections in Denmark. 

Campylobacteriosis was the disease with the highest burden, followed by salmonellosis, 

yersiniosis and VTEC infections. 

The uncertainty around presented estimates shows that improved data availability and a 

global harmonized approach would increase the certainty of these results, as well as its 

comparability among countries. 

Still, they show that the burden of these preventable diseases is still considerable, even in 

high-income countries like Denmark. Understanding the contribution of each cause to the 

burden of foodborne diseases and incorporating these estimates into policy development 

worldwide will enable efficient and effective interventions and improvements throughout all 

the food chain and therefore improving public health. 

In addition, there are few burden of disease country-specific studies for foodborne diseases, 

most in high-income countries. These countries already have very well-developed 

surveillance systems and approaches to increase food safety, but are trying to better them. 

Other countries with less organized surveillance systems and higher or unknown incidence of 

foodborne diseases, would profit with the development of burden of illness and burden of 

disease studies. Ranking diseases on their public health burden, identifying specific 

food/animal sources using source attribution studies and performing risk assessment 

throughout the food chain, would facilitate food authorities’ decision process. 

Why not Portugal?  
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VIII. Annexes 

 

Annex I 

 

Table 31 – Reported cases of campylobacteriosis in Denamrk, 2016, aggregated by sex and 

age group. 

Age group Reported cases 

 Female Male Total 

0 – 4 120 149 269 

5 – 14 97 166 263 

15 – 44 1017 1064 2081 

45 - 64 607 756 1363 

65 + 328 370 698 

Total 2169 2505 4674 

 

 

Table 32 – Reported cases of salmonellosis in Denmark, 2016, aggregated by sex and age 

group. 

Age group Reported cases 

 Female Male Total 

0 – 4 59 63 122 

5 – 14 46 66 112 

15 – 44 169 156 325 

45 - 64 158 125 283 

65 + 118 108 226 

Total 550 518 1068 

 

 

Table 33 – Reported cases of VTEC in Denmark, 2016, aggregated by sex and age group. 

Age group Reported cases 

 Female Male Total 

0 – 4 34 37 71 

5 – 14 15 14 29 

15 – 44 34 32 66 

45 - 64 31 14 45 

65 + 28 11 39 

Total 142 108 250 
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Table 34 – Reported cases of Yersinia enterocolitica in Denmark, 2016 aggregated by sex 

and age group. 

Age group Reported cases 

 Female Male Total 

0 – 4 21 27 48 

5 – 14 28 35 63 

15 – 44 156 91 247 

45 - 64 82 43 125 

65 + 54 35 89 

Total 341 231 572 

 

Table 35 – Danish Population in 2016, aggregated by sex and age group. 

Age group Danish population 

 Female Male Total 

0 – 4 144,883 153,180 298,063 

5 – 14 323,368 340,137 663,505 

15 – 44 107,1204 110,5425 2,176,629 

45 - 64 755,699 759,701 1,515,400 

65 + 593,437 501,735 1,095,172 

Total 2,888,591 2,860,178 5,748,769 

 

Annex II 

 

Table 36 - Probability of developing Guillain-Barré syndrome for each age group. 

Age group Probability of developing GBS 

0 - 4 0,11 

5 - 14 0,08 

15 - 24 0,10 

25 - 64 0,57 

65 + 0,14 
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Table 37 – Reported cases of hemolytic uremic syndrome in Denmark, 2016, aggregated by 

sex and age group. 

Age group Reported cases 

 Female Male  

0 – 4 3 1 

5 – 14 0 1 

15 – 44 0 0 

45 - 64 0 1 

65 + 0 0 

 

 

Table 38 – Age-specific mortality risk by all causes in the Netherlands, 2012. 

 Age group Mortality risk 

0 0,00325 

1-4 0,00025 

5-9 0,0001 

10-14 0,00011 

15-19 0,0002 

20-24 0,00028 

25-29 0,00032 

30-34 0,00047 

35-39 0,0006 

40-44 0,001 

45-49 0,00171 

50-54 0,00292 

55-59 0,00486 

60-64 0,00753 

65-69 0,01196 

70-74 0,01924 

75-79 0,03391 

80-84 0,06292 

85-89 0,11268 

90+ 0,2419 
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Table 39 – Danish average life expectancy table for the years 2015-2016 (Adapted from 

Danish statistics). 

Age Men Women 

0 78.61 82.53 

1 77.97 81.84 

5 74 77.88 

10 69.03 72.9 

15 64.06 67.93 

20 59.11 62.97 

25 54.23 58.02 

30 49.36 53.07 

35 44.49 48.16 

40 39.68 43.26 

45 34.93 38.43 

50 30.33 33.69 

55 25.92 29.11 

60 21.73 24.7 

65 17.88 20.53 

70 14.23 16.53 

75 10.91 12.8 

80 7.91 9.49 

85 5.52 6.76 

90 3.75 4.51 

95 2.59 3.04 
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Table 40 – World Health Organization’ life table for calculating years of life lost (YLL) 

(Adapted from WHO, 2017). 

Age   SEYLL*  

0 91.94 

1 91.00 

5 87.02 

10 82.03 

15 77.04 

20 72.06 

25 67.08 

30 62.11 

35 57.15 

40 52.20 

45 47.2 

50 42.3 

55 37.4 

60 32.6 

65 27.8 

70 23.15 

75 18.62 

80 14.41 

85 10.70 

90 7.60 

95 5.13 

* Standard expected years of life lost 


