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1 Context and objectives 

The AGFORWARD research project (January 2014-December 2017), funded by the European 

Commission, is promoting agroforestry practices in Europe that will advance sustainable rural 

development.  The project has four objectives: 

1. to understand the context and extent of agroforestry in Europe, 

2. to identify, develop and field-test innovations (through participatory research) to improve the 

benefits and viability of agroforestry systems in Europe,  

3. to evaluate innovative agroforestry designs and practices at a field-, farm- and landscape scale, 

and 

4. to promote the wider adoption of appropriate agroforestry systems in Europe through policy 

development and dissemination. 

The third objective of the project is addressed in work-package 6 which focused on the field- and 

farm-scale evaluation of innovations, and work-package 7 which focused on the landscape 

evaluation.  

 

Within work-package 6 deliverables 6.16 and 6.17 focus on the biophysical evaluation of agroforestry 

systems at the field- and farm-scale. This report (Deliverable 6.18) assesses the economics of 

agroforestry systems at field- and farm-scales and compares them with alternative land uses such as 

arable cropping, pasture and forestry. More specifically this report evaluates the financial 

profitability (from a farmer perspective) and the economic benefits (from a societal perspective). The 

report also explores how farm-scale modelling results can be up-scaled at the regional level. 

 

2 Methodological framework 

This study used biophysical and economic models to assess the economics of agroforestry systems 

and to compare them with arable, pasture and forestry systems. The biophysical model used in this 

report was the Yield-SAFE model (van der Werf et al. 2007; Palma et al. 2017). The Yield-SAFE model 

is a parameter-sparse, process-based dynamic model for predicting resource capture, growth, and 

production in agroforestry systems that has been frequently used by various research organizations 

in recent years. It works on a daily time-step for a specified rotation of the trees that may last a given 

number of years. 

 

Numerous improvements to two models have been undertaken to assess the economics of 

agroforestry, arable, pasture and forestry systems:  

 The Farm-SAFE model: this is a Microsoft Excel-based spreadsheet model (Graves et al. 2007; 

2011) that evaluates the financial and economic costs and benefits of arable, forestry, 

silvoarable, and silvopastoral systems. It works at an annual time-step and assesses the 

economics for a whole rotation of the trees (maximum rotation length = 60 years). The model 

was developed during the SAFE project to initially assess the financial profitability of silvoarable 

systems (Dupraz et al. 2005). 

 The Forage-SAFE model: this is a Microsoft Excel-based spreadsheet model (García de Jalón et al. 

2017) that evaluates the management and economics of wood pasture systems. It works at a 

daily time-step and assesses the economics for one year in a steady state scenario. This is a new 

model that has been developed during the AGFORWARD project (Burgess et al. 2015). 
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This report assesses the profitability of agroforestry systems in multiple case studies across Europe. It 

also presents the improvements carried out in the Farm-SAFE and Forage-SAFE models during the 

AGFORWARD project. Within this report two peer-reviewed papers have been produced to show the 

improvements made in the Farm-SAFE model and to describe the Forage-SAFE model.  

 

The remainder of the report is separated into six main sections. The first section briefly describes the 

Farm-SAFE model, shows the improvements developed in the AGFORWARD project and presents 

results for various agroforestry, arable and forestry systems in Europe. This is followed by a peer-

reviewed paper that uses the Farm-SAFE model to predict the environmental impact of agroforestry 

relative agriculture and forestry. The next section introduces the Forage-SAFE model which has been 

produced within the framework of work-package 6. This section describes in detail how the model 

works as well as its applicability. It assesses the economic impact of managerial decisions on the 

profitability of wood pastures (e.g. tree cover density and carrying capacity). This is followed by a 

peer-reviewed paper that has been produced within this deliverable has been incorporated. The next 

section presents a methodology developed to up-scale farm-level results to the regional level. The 

region of Britany (France) was used as a case study to show the applicability of the approach. The last 

section describes the main conclusions of this report. 

 

3 The Farm-SAFE model 

Farm-SAFE is a Microsoft Excel-based spreadsheet model (Graves et al. 2007; 2011) that evaluates 

the financial and economic costs and benefits of arable, forestry and silvoarable systems. Farm-SAFE 

was developed within the framework of the SAFE project which aimed to provide guidelines on the 

viability of silvoarable systems in Europe and the extrapolation of plot-scale results to individual 

farms (Dupraz et al. 2005). The model integrates biophysical outputs of Yield-SAFE with 

financial/economic data for analyses and environmental outputs at farm-scale. The main objectives 

of Farm-SAFE were described in Graves et al. (2011).  These were: 

 To use a common conceptual framework of farm economics including net margins 

 To account for the effect of time on the value of money by discounting 

 To compare the profitability of the systems. Discounted future benefits and costs of each 

system should be aggregated and a net present value, infinite net present value, and 

equivalent annual value calculated. 

 To determine the feasibility of the systems. In particular, the effect of introducing the new 

agroforestry system on existing farm could be studied in terms of annual labour 

requirements, cash flow requirements and net benefit effects. 

 To examine the sensitivity of each system to changes in input values 

 

Within the AGFORWARD project (Burgess et al. 2015), the application and objectives of the Farm-

SAFE model has been extended, so that in addition to assessing the financial performance of arable, 

forestry and agroforestry systems, it can quantify and compare the environmental externalities. In 

combination with the Yield-SAFE model, Farm-SAFE can now evaluate the provision of ecosystem 

services. For instance, in addition to calculating the economic value of “provisioning” services (i.e. 

yields) of trees, crops, and livestock, which are frequently obtained from Yield-SAFE, the economic 

value of the “supporting” (e.g. soil nutrients) and “regulating” services (e.g. carbon capture, water 

quality, GHG emissions) of agroforestry systems can also were evaluated by using a Life Cycle 

Assessment that has been implemented within Farm-SAFE. The cultural services (e.g. aesthetic 
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pleasure, recreation potential) of agroforestry systems could also be evaluated within Farm-SAFE by 

using a range of social, and environmental economic research methods to identify, quantify, and rank 

social perceptions and preferences for agroforestry products and systems. However, on the whole, it 

has been difficult to obtain economic values for cultural services. 

 

The development of an ecosystem services approach in AGFORWARD allows a more complete 

comparison of the long-term impacts of agroforestry relative to arable, livestock or forestry 

monoculture systems that includes both the non-market and market costs and benefits of the 

systems. Farm-SAFE thus helps identify and quantify the financial risks and uncertainty associated 

with agroforestry systems in a systematic manner, as well as now identifying where and how 

agroforestry can be used to offer improved resource efficiency and ecosystem benefits for 

stakeholders. 

 

3.1 Financial analysis 

In Farm-SAFE, the financial performance of arable, forestry and silvoarable system was assessed on 

the basis of the annual net margins per hectare. The net margin was calculated as revenues from 

harvested products (grain, straw, timber and firewood) and grants minus variable costs (e.g. crop 

seed, tree planting, fertiliser, crop and tree protection, pruning, thinning, cutting and other costs) 

and assignable fixed costs (e.g. installation and repairs of infrastructure, fuel and energy, machinery, 

insurance and labour and rented machinery costs).  

 

Because people generally prefer to receive goods and services in the present rather than the future, 

revenues and costs were discounted and converted into financial net present values (NPVF: € ha-1), 

denoted using Equation 1: 

𝑁𝑃𝑉𝐹 = ∑ (
(𝑅𝑡 − 𝑉𝐶𝑡 − 𝐹𝐶𝑡)

(1 + 𝑖)𝑡 )

𝑛

𝑡=0

                                                                                                           𝐸𝑞. 1 

where Rt, VCt, and FCt were respectively revenue, variable costs, and assignable fixed costs in year t 

(€ ha-1), i was the discount rate, and n was the time horizon for the analysis. See Appendix to see the 

disaggregated revenues, variable costs, and assignable fixed costs in various case studies in Europe. A 

discount rate of 4% was chosen, as this is marginally above the discount rate of 3.5% used by the UK 

Government for cost-benefit analysis (HM Treasury, 2003).  Although the costs were obtained in 

terms of pounds sterling, in this paper they are report in terms of Euros, assuming an exchange rate 

of £1 being equivalent to €1.389. 

 

The financial profits of the different systems were compared in terms of a financial equivalent annual 

value (EAVF: € ha-1 year-1) using Equation 2: 

𝐸𝐴𝑉𝐹 = 𝑁𝑃𝑉𝐹 (
(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
) 𝑖                                                                                                  𝐸𝑞. 2 

The remainder of this section presents some results of the financial performance of the arable, 

forestry and agroforestry systems in six case studies in Europe.  
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3.1.1 Case study from Bedfordshire, United Kingdom 

The arable system is a four-year crop rotation of wheat, wheat, barley and oilseed; the forestry 

system is a poplar tree plantation; and the silvoarable system is poplar tree with cropped alleys with 

the same rotation of the arable system. The financial assumptions for the Bedfordshire study can be 

found in Tables A.1, A.7, A.9 and A.10 in the Appendix. The EAV was estimated for a time horizon of 

30 years at a 5% discount rate with and without grants.  

 

The equivalent annual value (EAV) of an arable, forestry and silvoarable system was calculated for a 

location in Bedfordshire in the United Kingdom (Table 1).  The analysis indicated that the EAV, with 

grants (based on arrangements in 2015 from UK Agro Business Consultants, 2015), for the arable 

system (561 € ha-1) was more profitable for the farmer than the silvoarable (467 € ha-1) and forest 

systems (131 € ha-1). Without grants, the profitability of the silvoarable system (72 € ha-1) was 

between that for the arable (314 € ha-1) and forest systems (-17 € ha-1). Since grants are paid by 

society it can be argued that the societal benefits of the system are best considered without the 

inclusion of grants. The forestry system without grants turned out to have a negative EAV. 

 

Table 1. Equivalent Annual Value (EAV) of an arable, forestry and silvoarable system in Bedfordshire 
in the United Kingdom. Results shown for a time horizon of 30 years at a 5% discount rate. 

 Arable
1
 Silvoarable

2
 Forestry

3
 

EAV with grants (€ ha
-1

 year
-1

) 561 467 131 
EAV without grants (€ ha

-1
 year

-1
) 314 72 -17 

1
: the arable system was a rotation of wheat, wheat, barley and oilseed rape 

2
: the silvoarable system was the same rotation as the arable system with 113 poplar trees per hectare. 

3
: the forestry system was hybrid poplars planted at a density of 156 trees per hectare. 

 

Figure 1 shows the cumulative annual net margins with grants of the arable, forestry and silvoarable 

systems along the rotation turn. The arable system presents the highest cumulative annual net 

margins with grants at the end of the rotation.  

 

 
Figure 1. Modelled cumulative net margin with grants of the arable system (blue line: a rotation of 
wheat, wheat, barley and oilseed rape), the silvoarable system (green line: same rotation as the 
arable system with poplar hybrids) and the forest system (red line) 
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The silvoarable system receives around 472 € ha-1 as tree establishment payments. This makes the 

cumulative annual net margins with grants higher than the arable system. Only in the first and 

second year the forestry system presents higher cumulative net margin than the arable system due 

to the grants received for planting trees. It is worth noting that from year 8 to year 29 the cumulative 

net margin of the forestry system is below zero.    

 

Figure 2 depicts the change in the crop revenue (crop yield and by-product) of the silvoarable system 

during the rotation. The crop component revenue decreases as the trees grow, due to light, water 

and nutrient competition. After year 16 the crop revenue is lower than the fixed and variable costs 

and consequently planting the crop is no longer profitable. Therefore, from year 17 onwards there is 

no crop component in the system. Farm-SAFE captures this phenomenon through annually 

calculating the moving average of the last three years. Thus when the mean net margin without 

grants in the last three years is lower than zero the model assumes that the farmer does not plant an 

arable crop.  Other time periods and threshold values for this calculation can also be specified in 

Farm-SAFE. 

 

Figure 2. Modelled change in the crop revenue (crop yield and by-product) during the rotation of the 
silvoarable system 
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3.1.2 Case study from Schwarzbubenland, Switzerland 

The arable system is a four-year crop rotation of oilseed rape, wheat, grass and wheat; the forestry 

system is a cherry tree plantation for timber production; and the agroforestry system is grassland 

with cherry trees used for fruit production. The EAV was estimated for a time horizon of 60 years at a 

5% discount rate with and without grants.  The financial assumptions for the Swiss study can be 

found in Tables A.2, A.7, A.9 and A.10 in the Appendix.   

 

Table 2 shows the EAV with and without grants of the three systems. The agroforestry system seems 

to be the most profitable if grants are considered in the analysis. However, without grants the 

agroforestry system is the least profitable system. In this case study, grants were a main factor in the 

relative profitability of the systems. Thus, it could be argued that in this case, grant eligibility would 

be a key driver of adoption of agroforestry. It is also worth noting that all three systems without 

grants are not profitable. 

 

Table 2. Equivalent Annual Value (EAV) of an arable, forestry and agroforestry system in 
Schwarzbubenland, Switzerland. Results shown for a time horizon of 60 years at a 5% discount rate. 

 Arable
1
 Agroforestry

2
 Forestry

3
 

EAV with grants (€ ha
-1

 year
-1

) 1,359 1,450 303 
EAV without grants (€ ha

-1
 year

-1
) -734 -1,354 -789 

1
: the arable system was a rotation of oilseed rape, wheat, grassland and wheat  

2
: the agroforestry system was grassland with cherry tree for fruit production planted at 80 trees per hectare. 

3
: the forestry system was cherry tree for timber production planted at a density of 816 trees per hectare. 

 

The evolution of the cumulative net margin of the three systems is shown in Figure 3. During the first 

15 years, the cumulative net margin of the agroforestry system lower than € 10,000 per hectare. 

However at the end of the rotation the agroforestry system is marginally more profitable than the 

arable and substantially more profitable than the forestry systems. The cumulative net margin of the 

forestry system is close to zero from year zero to year 59. It is only in year 60 that revenue from the 

harvested timber during clear felling that raises the cumulative net margin to approximately € 5,000 

per hectare. 

 

 

Figure 3. Modelled cumulative net margin with grants of the arable system (blue line: a rotation of 
oilseed rape, wheat, grassland and wheat), the agroforestry system (green line: grassland with cherry 
tree for fruit production), and the forestry system (red line: cherry tree for timber production) 
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3.1.3 Case study from Neu Sacro, Germany 

The arable system is a two-year rotation of wheat and sugar beet; the forestry system is short 

rotation coppice (SRC) poplar trees for bioenergy production; and the agroforestry system is a 

rotation of wheat and sugar beet with SRC poplar. The EAV was estimated for a time horizon of 28 

years at a 5% discount rate with and without grants. The financial assumptions for the German study 

can be found in Tables A.3, A.7, A.9 and A.10 in the Appendix. 

 

The EAV of the three systems is shown in Table 3. The difference between the EAV of the arable and 

agroforestry systems is not very large. The arable system presents higher EAV due to the crop is 

more profitable than the SRC poplar. The grants are the same for the three systems. The EAV without 

grants of the forestry system is below zero which demonstrates that the system without grants is not 

profitable. 

 

Table 3. Equivalent Annual Value (EAV) of an arable, forestry and agroforestry system in Neu Sacro. 
Results shown for a time horizon of 28 years at a 5% discount rate. 

 Arable
1
 Agroforestry

2
 Forestry

3
 

EAV with grants (€ ha
-1

 year
-1

) 559 508 120 
EAV without grants (€ ha

-1
 year

-1
) 391 340 -48 

1
: the arable system was a rotation of wheat and sugar beet 

2
: the agroforestry system was a rotation of wheat and sugar beet with SRC poplar and planted at 968 trees per 

hectare. 
3
: the forestry system was SRC poplar planted at a density of 10,000 trees per hectare. 

 

The evolution of the cumulative net margins is shown in Figure 4. As aforementioned, the difference 

between the arable and the agroforestry systems is relatively small. The curves are quite close to 

each other over the twenty-eight-year rotation. This is due to the main revenue of the agroforestry 

system which comes from the crop component. The revenue from the short rotation coppice is 

considerably lower than from the rotation of wheat and sugar beet. 

 

Figure 4. Modelled cumulative Net Margin with grants of the arable system (a rotation of wheat and 
sugar beet), the forestry system (SRC poplar) and the agroforestry system (a rotation of wheat and 
sugar beet with SRC poplar). 
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3.1.4 Case study from Cambridgeshire, United Kingdom  

The arable system is organic wheat; the forestry system is organic apple trees; and the agroforestry 

system is organic wheat and apple trees. The EAV was estimated for a time horizon of 15 years at a 

5% discount rate with and without grants. The financial assumptions for this case study can be found 

in Tables A.4, A.8, A.9 and A.10 in the Appendix. 

 

The results show that the agroforestry system has the highest EAV with grants (Table 4).  The arable 

system has the lowest EAV. However, without grants the arable system is the most profitable system. 

This shows the important influence of the grants when assessing the financial profitability of the 

systems.  In this case, the farmer was able to obtain agri-environment payments for using the tree 

strip area as an area for pollinators.   

 
Table 4. Equivalent Annual Value (EAV) of an arable, forestry and agroforestry system in 
Cambridgeshire, United Kingdom. Results shown for a time horizon of 15 years at a 5% discount rate 

 Arable
1
 Agroforestry

2
 Forestry

3
 

EAV with grants (€ ha
-1

 year
-1

) 556 871 652 
EAV without grants (€ ha

-1
 year

-1
) 361 201 176 

1
: the arable system was organic wheat  

2
: the silvoarable system included organic wheat and apple trees planted at 85 trees per hectare. 

3
: the forestry system was organic apple trees planted at a density of 765 trees per hectare. 

 

Figure 5 shows the evolution of the cumulative net margins over 15 years. The arable system that 

starts off by providing the highest net margin in year 1, in year 15, has the lowest cumulative net 

margin.  However, this is due to the arable system in this case also having the lowest grants. It is also 

worth noting that the apple trees of the forestry and agroforestry systems are dwarf trees and they 

do not produce much shade, and this is predicted to limit the yield reduction of the crop component 

in the silvoarable system.  

 

 

Figure 5. Modelled cumulative net margin with grants of the arable system (organic wheat), the 
forestry system (organic apple trees) and the agroforestry system (organic wheat and apple trees) 
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3.1.5 Case study from Extremadura, Spain 

The arable system is a two-year crop rotation of oat and grassland; the forestry system is holm oak 

trees; and the agroforestry system is a dehesa with holm oak and grassland. The financial 

assumptions can be found in Tables A.5, A.8, A.9 and A.11 in the Appendix. The EAV was estimated 

for a time horizon of 60 years at a 5% discount rate with and without grants. It is worth noting that 

holm oak is usually planted for a rotation of more than 60 years (holm oaks can easily be over 200 

years of age). However, since the MS Excel Yield-SAFE model version has a running limit of 60 years, 

the rotation here was also taken to be 60 years for this analysis. 

 

The EAV of the three systems is notably lower than in the other case studies (Table 5). With grants, 

the arable system was the most profitable option, followed by the dehesa and the holm oak forest. 

However without grants, the dehesa was by far the most profitable option. This could explain why 

dehesa in Extremadura occupies around 1,237,000 hectares and represents (MAPA, 2008).   

 

Table 5. Equivalent Annual Value (EAV) of an arable, forestry and agroforestry system in 
Extremadura, Spain. Results shown for a time horizon of 60 years at a 5% discount rate. 

 Arable
1
 Agroforestry

2
 Forestry

3
 

EAV with grants (€ ha
-1

 year
-1

) 298 183 74 
EAV without grants (€ ha

-1
 year

-1
) 40 148 -120 

1
: the arable system was a rotation of oat and grassland  

2
: the agroforestry system was a dehesa with holm oak and grassland planted at 50 trees per hectare. 

3
: the forestry system was holm oak trees planted at a density of 600 trees per hectare. 

 
Figure 6 shows the cumulative net margin over time with grants for the arable, dehesa and forestry 

systems. The cumulative net margin is highest for the arable system. However, without grants the 

cumulative net margin of the dehesa would finish higher than the cumulative net margin of the 

arable system. In the forestry system the main revenue was the planting grants obtained in the first 

years. The price of holm oak timber at the age of sixty years is almost negligible. 

 

 

Figure 6. Modelled cumulative net margin with grants of the arable system (rotation of oat and 
grassland), the forestry system (holm oak trees) and the agroforestry system (dehesa with holm oak 
and grassland). 
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3.1.6 Case study from Restinclières, France 

The arable system is a six-year rotation of wheat, wheat, sunflower, wheat, oilseed and sunflower; 

the forestry system is walnut trees for timber production; and the agroforestry system is a 

silvoarable system with a rotation of wheat and oilseed and walnut tree for timber production. The 

EAV was estimated for a time horizon of 50 years at a 5% discount rate with and without grants. The 

financial data for the system can be found in Tables A.6, A.8, A.9 and A.11 in the Appendix. 

 

The EAV of each system is shown in Table 6. With and without grants, the silvoarable system has the 

highest EAV followed by the arable and forestry systems. The high per cubic metre value of timber of 

large walnut trees makes the agroforestry system very profitable. Because of the low tree density, 

walnut trees in the silvoarable system were assumed to reach greater diameters than in the forestry 

system, which leads to higher revenues. The forestry without grants results in a negative EAV.   

 

Table 6. Equivalent Annual Value (EAV) of an arable, forestry and silvoarable system in Restinclières, 
France. Results shown for a time horizon of 50 years at a 5% discount rate. 

 Arable
1
 Agroforestry

2
 Forestry

3
 

EAV with grants (€ ha
-1

 year
-1

) 506 670 178 
EAV without grants (€ ha

-1
 year

-1
) 140 246 -60 

1
: the arable system was a six years rotation of wheat, wheat, sunflower, wheat, oilseed and sunflower.  

2
: the silvoarable system was an alley cropping system with a rotation of wheat and oilseed and walnut tree for 

timber production planted at 170 trees per hectare. 
3
: the forestry system was walnut trees for timber production planted at 210 trees per hectare. 

 
Figure 7 shows the change in the cumulative net margins of the three systems. Until year 50 the 

arable system is considerably higher than the other two systems. However, in year 50, the elevated 

price of the timber makes the cumulative net margin of the silvoarable system higher than the arable 

system. 

 
Figure 7. Modelled cumulative net margin with grants of the arable system (a rotation of wheat, 
wheat, sunflower, wheat, oilseed and sunflower), the agroforestry system (rotation of wheat and 
oilseed and walnut tree for timber production), and the forestry system (walnut trees for timber 
production) 
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Figure 8 shows the evolution of the crop revenue (crop yield and by-product) of the silvoarable 

system. As can be seen, the crop component after year 17 is not profitable and consequently the 

farmer stops planting the crop until the trees are clear felled at the end of the rotation. 

 

Figure 8. Modelled evolution along the rotation turn of the crop revenue (crop yield and by-product) 
of the silvoarable system.  
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3.1.7 Case study from Suffolk, United Kingdom 

Table 7 shows the EAV of an arable, forestry and agroforestry system in Suffolk, UK. The arable 

system is a rotation of wheat, fallow and potatoes, the agroforestry system is a rotation of wheat, 

fallow and potatoes with SRC willow planted at 1,320 trees per hectare, and the forestry system is 

SRC willow planted at a density of 15,000 trees per hectare.   

 

Table 7. Equivalent Annual Value (EAV) of an arable, forestry and agroforestry system in Suffolk, UK. 
Results shown for a time horizon of 21 years at a 5% discount rate. 

 Arable
1
 Agroforestry

2
 Forestry

3
 

EAV with grants (€ ha
-1

 year
-1

) 719 785 357 
EAV without grants (€ ha

-1
 year

-1
) 299 365 14 

1
: the arable system was a rotation of wheat, fallow and potatoes. 

2
: the agroforestry system was a rotation of wheat, fallow and potatoes with SRC willow and planted at 1,320 

trees per hectare. 
3
: the forestry system was SRC willow planted at a density of 15,000 trees per hectare. 

 

 

Figure 9. Modelled cumulative net margin with grants of the arable system (a rotation of wheat, 
fallow and potatoes), the forestry system (SRC willow) and the agroforestry system (a rotation of 
wheat, fallow and potatoes with SRC willow). 
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3.2 Estimating the optimal rotation age 

For this deliverable, the Farm-SAFE model was written in the “R” software. The “R” version calculates 

the same financial costs and revenues as the Farm-SAFE model in Microsoft Excel at the plot level, 

but it does not allow calculations at the “unit-” or “farm-level”. The advantages of the “R”, compared 

to the Excel, version are that the model is more computationally powerful, it can be used to easily 

run a large number of simulations, and it can be easily linked to other models written in R. One of the 

improvements of the Farm-SAFE model in “R” software is the calculation of the economically optimal 

rotation age. Now the end-user can analyse the economic results of cutting the trees in different 

years. Figure 10 and Figure 11 show the NPV and EAV with and without grants for each year cutting 

the trees. Thus, the end-user can assess when it would be most profitable to cut the trees.  

 
Figure 10. . Estimates of the net present value (NPV) and the equivalent annual value (EAV) of the 
forestry system (with and without grants) makes it possible to determine the most profitable 
rotation age of the forestry system (poplar tree) in Bedfordshire 

 

Figure 11. Estimates of the net present value (NPV) and the equivalent annual value (EAV) of the 
forestry system (with and without grants) makes it possible to determine the most profitable 
rotation age of the silvoarable system (poplar tree) in Bedfordshire 
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3.3 Ecosystems services  

The Farm-SAFE financial and economic model of arable, forestry, and agroforestry systems has been 

adapted to include several environmental externalities such as greenhouse gas (GHG) emissions and 

sequestration, soil erosion losses, and nonpoint-source pollution from fertiliser use. 

 

3.3.1 Greenhouse gas emissions  

In order to incorporate negative externalities of GHG emissions, Life Cycle Assessment (LCA) data 

were used. Farm-SAFE was adapted to incorporate an analysis of GHG emissions and sequestration in 

aboveground biomass. In doing this, the resources and energy used in the production system (inputs) 

and the emissions released into the environment (outputs) were measured and included in the 

economic analysis.  

 

In order to include the GHG emissions in the assessment a ‘cradle-to-farm gate’ perspective was 

used. Figure 12 shows the LCA system boundaries for an arable system. Operations assumed to take 

place outside the farm gate such as cooling, drying, crop storage, and further processing of the 

outputs were not taken into consideration. The establishment of the farm itself, the construction of 

the infrastructure and transportation were also excluded from the analysis.  

 

 

Figure 12. System diagram for the Life Cycle Assessment (LCA) of arable cropping, showing the 
system boundary and which inputs were included in the analysis of GHG emissions. Source: Kaske 
(2015). 
 

One of the model innovations developed during AGFORWARD is the flexibility for the user to change 

the tractor size and soil type. For some field operations, these factors are associated with the fuel 

consumption and work rate which affects the GHG emissions. Equations of these relationships are 

calculated and used to interpolate values. Figure 13 shows an example of the equation used for the 
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relationship between the clay content of the soil and a) fuel consumption and b) work rate. As 

shown, in both cases the higher the clay content percentage in the soil the higher fuel consumption 

and work rate.  

 
a) Ploughing with four furrows b) Subsoiling of tramlines (3 leg sub-soiler) 

  
Figure 13. Assumed relationship of the effect on the proportional clay content of the soil on a) fuel 

consumption for ploughing, and b) the work rate of sub-soiling. 

 
Figure 14 shows the changes in the annual carbon emissions in the arable, forestry and silvoarable 

systems in Bedfordshire, United Kingdom. The arable system shows the highest carbon emissions 

followed by the silvoarable and the forestry systems. During the first sixteen years the carbon 

emissions of the arable and silvoarable systems are very similar. However, after year sixteen there is 

no longer a crop component in the silvoarable system and consequently, the annual emissions are 

notably reduced.  

 

Figure 14. Modelled carbon emissions associated with machinery use from an arable, silvoarable and 
forestry system in Bedfordshire, United Kingdom 
 

 

Figure 15 shows the change in the potential annual carbon sequestration of the arable, forestry and 

agroforestry systems in Bedfordshire, United Kingdom. The forestry system shows the highest carbon 
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sequestration followed by the agroforestry and the arable systems. For the arable system, it was 

assumed that there is no annual carbon sequestration because all sequestered carbon is in effect 

released shortly after production and use of the products.   

 

Figure 15. Modelled annual sequestered carbon for an arable, agroforestry, and forestry system in 
Bedfordshire, UK 
 

Figure 16 shows the annual carbon emissions in the arable, forestry and agroforestry systems in 

Schwarzbubenland, Switzerland. The arable system shows the highest carbon emissions followed by 

the agroforestry and the forestry systems.  

 

Figure 16. Modelled annual carbon emissions for the arable, agroforestry and forestry systems in 
Schwarzbubenland, Switzerland 
 

Figure 17 shows the change in the potential annual carbon sequestration of the arable, forestry and 
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carbon sequestration followed by the agroforestry and the arable systems. In the forestry system, a 

thinning in year twenty-eight produces a sharp decrease in the quantity of sequestered carbon.  

 

 

Figure 17. Modelled annual sequestered carbon for the arable, agroforestry and forestry system in 
Schwarzbubenland, Switzerland 
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3.3.2 Soil erosion losses 

Soil erosion losses can be evaluated using of the Revised Universal Soil Loss Equation (RUSLE) 

(Equation 1), which is frequently used to calculate the annual soil loss in different production 

systems.  The RUSLE equation is described as: 

 

A = R * K * LS * C * P              (Equation 1) 

Where A is the estimated average soil loss in tons per acre per year; R is the rainfall-runoff erosivity 

factor; K is the soil erodibility factor; L is the slope length factor; S is the slope steepness factor; C is 

the cover-management factor; P is the support practice factor.  

 

When comparing soil loss in arable, forestry and silvoarable systems in the same geographical area, 

the factors R, K, LS and P were considered to be the same and only changes in the C-factor were used 

to assess the differences among the systems. Figure 18 shows the K factor values used in Farm-SAFE 

to calculate soil erosion losses. 

 
 
Figure 18. K factor values used in Farm-SAFE to calculate soil erosion losses by water through the 
RUSLE equation (Source: European Soil Data Centre, http://esdac.jrc.ec.europa.eu/). 
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Figure 19 and Figure 20 show the modelled soil erosion losses (annual and cumulative) for each land 
use in Bedfordshire. 

 

Figure 19. Modelled annual soil erosion losses by water for the arable, agroforestry and forestry 
system in Bedfordshire, UK 

 

Figure 20. Modelled cumulative soil erosion losses by water for the arable, agroforestry and forestry 
system in Bedfordshire, UK 
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3.3.3 Nitrogen and phosphorus surplus 

The emissions of Nitrogen (N) and Phosphorus (P) have been incorporated in the assessment of 

Farm-SAFE. The differences among arable, forestry and silvoarable systems are calculated as a 

function of the N and P fertilizer rates and the N and P leaching rates of each system. Figure 21 and 

Figure 22, show the nitrogen surplus in the case study for Bedfordshire (UK).  Figure 23 and Figure 

24, show the phosphorous surplus in the same case study.   

 

Figure 21. Modelled annual nitrogen surplus for the arable (blue line), agroforestry (green) and 
forestry (red) systems in Bedfordshire, UK 
 

 

Figure 22. Modelled cumulative nitrogen surplus for the arable (blue line), agroforestry (green line) 
and forestry (red line) systems in Bedfordshire, UK 
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Figure 23. Modelled annual phosphorus surplus for the arable (blue line), agroforestry (green line) 
and forestry (red line) systems in Bedfordshire, UK 
 

 

Figure 24. Modelled cumulative phosphorus surplus for the arable (blue line), agroforestry (green 
line) and forestry (red line) system in Bedfordshire, UK 
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3.4 Economic analysis 

Whilst the financial analysis aimed to show a plot-level profitability indicator from a farmer 

perspective the economic analysis attempted to provide a plot-level profitability indicator from a 

societal perspective. The economic appraisal built upon the NPVF (see Equation 1) and included 

benefits and costs from the five environmental externalities converted into monetary terms (EEt) in 

each year t. The NPV for the economic appraisal (NPVE) was denoted as:  

𝑁𝑃𝑉𝐸 = ∑ ((
(𝑅𝑡 − 𝑉𝐶𝑡 − 𝐹𝐶𝑡)

(1 + 𝑖)𝑡 ) + (
𝐸𝐸𝑡

(1 + 𝑗)𝑡
))

𝑛

𝑡=0

                                                                 𝐸𝑞. (3) 

where j is the assumed discount rate for environmental costs and benefits (which was assumed to be 

4% as in the financial analysis).  From the NPVE, the economic EAV was calculated as in Equation 2.  

 

The final goal of Farm-SAFE is to allow the end-user to assess the financial and economic profitability 

of the different land uses. In doing so, Farm-SAFE first quantifies the environmental externalities 

using the different indicator units and subsequently, converts them into monetary terms.  

 

3.4.1 The case study of Bedfordshire, United Kingdom 

Figure 25 shows the quantified environmental externalities and how much they represent in 

monetary terms at the end of the rotation age in Bedfordshire (30 years).   

 

Figure 25. The quantity and derived economic value of five environmental externalities (GHG 
emissions, carbon sequestration, soil erosion, nitrogen surplus, and phosphorus surplus) for the 
arable, silvoarable and forestry for the case study in Bedfordshire case study, UK 
 
Figure 26 shows the results of the financial and economic analysis in Bedfordshire, UK. As shown, 

including grants, agroforestry is the most profitable land-use system in the economic analysis, i.e. 

when the environmental externalities are internalised.  
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A B 

 
Figure 26. Comparison of A) the cumulative financial net margin of the arable, agroforestry and 
forestry system with B) an economic analysis of the same systems including five externalities for the 
case study in Bedfordshire, UK 
 
Table 8 shows the EAV of the arable, forestry and silvoarable systems in Bedfordshire, including the 

GHG emissions in the economic assessment. The carbon price used for the calculations is 7.63 € per 

tonne of CO2 which can be obtained by farmers in the UK (UK Forestry Commission, available at: 

www.forestry.goc.uk/carboncode). It is worth noting that this is a very conservative value, and other 

values, such as mitigation values and social cost values are higher.  As shown, the forestry system has 

the lowest GHG emissions and the highest potential for sequestration. Internalising GHG emissions 

reduces the difference in the economic profitability between the arable system and the forestry and 

silvoarable system. Starting from the assumption of no grants, the inclusion of the societal cost of 

GHG emissions reduces the difference between the EAV of the arable and the silvoarable system 

from 242 € ha-1 to 159 € ha-1. These results highlight how including environmental costs can change 

the relative societal advantage of different land uses.   

 

Table 8. Equivalent Annual Value (EAV) of an arable, forestry and silvoarable system in Bedfordshire 
in the United Kingdom. Results shown for a time horizon of 30 years at a 5% discount rate. 

 Arable
1
 Silvoarable

2
 Forestry

3
 

EAV with grants (€ ha
-1

 year
-1

) 561 467 131 
EAV without grants (€ ha

-1
 year

-1
) 314 72 -17 

Emissions of CO2eq in 30 years (t CO2eq ha
-1

) 81 42 3 
EAV of CO2eq emissions (€ ha

-1
 year

-1
) -40 -21 -1 

Potential sequestration of CO2eq in 30 years (t CO2eq ha
-1

) 0 129 177 
EAV of CO2eq potential sequestration (€ ha

-1
 year

-1
)  0 64 88 

EAV with grants and GHG externalities (€ ha
-1

 year
-1

) 521 510 218 

EAV without grants and GHG externalities (€ ha
-1

 year
-1

)  274 115 70 
1
: the arable system was a rotation of wheat, wheat, barley and oilseed rape 

2
: the silvoarable system was the same rotation as the arable system with poplar hybrids planted at 113 trees 

per hectare. 
3
: the forestry system was hybrid poplars planted at a density of 156 trees per hectare. 
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3.4.2 The case study of Schwarzbubenland, Switzerland 

An economic assessment was also used in the Schwarzbubenland case study. The approach was 

similar to the one used in the Bedfordshire case study but only GHG emissions and above-ground 

carbon sequestration were included in the assessment. Table 9 shows the EAV of the arable, forestry 

and silvoarable systems in Switzerland, including the GHG emissions in the economic assessment. As 

in the Bedfordshire case study the arable system has the highest carbon emissions and the lowest 

rate of carbon sequestration. With grants, the agroforestry system is the most profitable land use 

(with and without GHG emissions).  However, without grants, it is the least profitable land use (with 

and without the GHG emissions).     

 

Table 9. Equivalent Annual Value (EAV) of an arable, forestry and silvoarable system in 
Schwarzbubenland, Switzerland. Results shown for a time horizon of 60 years at a 5% discount rate. 

 Arable
1
 Agroforestry

2
 Forestry

3
 

EAV with grants (€ ha
-1

 year
-1

) 1,359 1,450 303 
EAV without grants (€ ha

-1
 year

-1
) -734 -1,354 -789 

Emissions of CO2eq in 60 years (t CO2eq ha
-1

) 137 52 3 
EAV of CO2eq emissions (€ ha

-1
 year

-1
) -55 -21 -1 

Potential sequestration of CO2eq in 60 years (t CO2eq ha
-1

) 0 42 50 
EAV of CO2eq potential sequestration (€ ha

-1
 year

-1
)  0 17 20 

EAV with grants and GHG externalities (€ ha
-1

 year
-1

) 1,303 1,515 322 

EAV without grants and GHG externalities (€ ha
-1

 year
-1

)  -789 -1,359 -770 
1
: the arable system was a rotation of oilseed rape, wheat, grassland and wheat  

2
: the agroforestry system was grassland with cherry tree for fruit production planted at 80 trees per hectare. 

3
: the forestry system was cherry tree for timber production planted at a density of 816 trees per hectare. 
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4 Modelling and valuing the environmental impacts of arable, forestry and agroforestry 

systems: a case study 
This is the pre-submission version of the following paper which has been published in Agroforestry Systems.  

The following citation should be used for this paper: García de Jalón, S., Graves, A., Palma, J.H.N., Williams, A., 

Upson, M.A., Burgess, P.J. (2017). Modelling and valuing the environmental impacts of arable, forestry and 

agroforestry systems: a case study.  Agroforestry Systems DOI: 10.1007/s10457-017-0128-z 

 

4.1.1 Abstract 

The use of land for intensive arable production in Europe is associated with a range of externalities 

that typically imposes costs on third parties. The introduction of trees in arable systems can 

potentially be used to reduce these costs.  This paper assesses the profitability and environmental 

externalities of a silvoarable agroforestry system, and compares this with the profitability and 

environmental externalities from an arable system with no trees and a forestry system. A silvoarable 

experimental plot of poplar trees planted in 1992 in Bedfordshire, Southern England, was used as a 

case study. The Yield-SAFE model was used to simulate the growth of the silvoarable, arable, and 

forestry land uses along with the associated environmental externalities, including carbon 

sequestration, greenhouse gas emissions, nitrogen and phosphorus surplus, and soil erosion losses 

by water. The Farm-SAFE model was then used to quantify the monetary value of these effects. The 

study assesses both the financial profitability from a farmer perspective and the economic benefit 

from a societal perspective.  The arable system was the most financially profitable followed by the 

silvoarable and forestry systems. However, when the environmental externalities were included, 

silvoarable agroforestry provided the greatest societal benefit.  This suggests that the appropriate 

integration of trees in arable land can provide greater well-being benefits to society overall, than 

either arable farming without trees, or the forestry systems alone.  

  

4.2 Introduction 

The objectives of the EU Common Agricultural Policy, in concise form, are to ensure i) viable food 

production, ii) balanced territorial development, and iii) sustainable management of natural 

resources, with a focus on greenhouse gas emissions, biodiversity, soil and water (Article 110 in EU, 

2013). Silvoarable agroforestry (the integration of trees with arable production) is a land use practice 

that could help achieve these objectives.  

 

Over recent decades, many agricultural systems in Europe have been simplified through 

intensification and mechanisation in order to reduce management cost and labour (Dupraz et al. 

2005; Burgess and Morris, 2009, Quinkenstein et al. 2009), whilst at the same time becoming 

increasingly reliant on external inputs such as nutrients, pesticides, and machinery (Nemecek et al. 

2011; Palma et al. 2007). These systems have enabled the competitive production of high quantities 

of safe and low cost food for consumers without the need to expand the area of agricultural land. 

However, many systems have resulted in significant negative environment costs that are borne by 

society as a whole, rather than individual producers or consumers. These costs, or externalities, 

include water pollution (leaching and runoff of nitrogen, phosphorus and pesticides), soil 

degradation (e.g. erosion, compaction and loss of soil organic matter and soil biodiversity), and 

greenhouse gas (GHG) emissions such as CO2 and N2O (Nemecek et al. 2011; Renzulli et al. 2015). 

These environmental externalities are rarely accounted for in the profitability analysis of agricultural 

systems, since usually they have no market value.   
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Various studies have found that environmental externalities from arable systems can be reduced by 

the appropriate integration of trees (Jose, 2009; Mosquera-Losada et al. 2011; Quinkenstein et al. 

2009; Smith et al. 2012), such as the potential for mitigating climate change through carbon 

sequestration (Nair et al. 2009; Nair and Nair, 2014), reducing soil degradation (Graves et al. 2015), 

and reducing adverse impacts on water quality from agrochemical use (Nair, 2011a; Palma et al. 

2007). However, whilst planting trees on arable land can help reduce environmental externalities, 

the uptake of silvoarable systems remains relatively slow.  This could be a result of the cost of tree 

planting and management reducing immediate profitability and the uncertainty regarding the long-

term financial benefits from harvesting mature trees. In the EU, efforts have been made to promote 

adoption of silvoarable systems through policy (Article 222) and projects such as SAFE (Dupraz et al. 

2005) and AGFORWARD (Burgess et al. 2015) have been funded to provide scientific guidance on the 

costs and benefits of implementing silvoarable systems across Europe.  

 

For long rotation systems such as agroforestry and forestry systems, modelling becomes essential. In 

recent years various biophysical models such as Hi-sAFe (Dupraz et al. 2004), SCUAF (Young et al. 

1998), WaNuLCAS (van Noordwijk and Lusiana, 1999), and Yield-SAFE (Van der Werf et al. 2007) have 

been developed to simulate the growth and interaction of trees and crops in silvoarable systems. 

Some economic models have also been developed to assess the financial profitability of silvoarable 

systems.  These for example, include ARBUSTRA (Liagre, 1997), Farm-SAFE (Graves et al. 2011), and 

POPMOD (Thomas, 1991).  

 

The Farm-SAFE model (Graves et al. 2011) integrates the Yield-SAFE outputs with financial and 

economic analysis. Yield-SAFE simulates the biophysical growth of trees and crops, it can be adapted 

to quantify the impact of selected environmental externalities, and it can be used to determine the 

financial and economic impacts of different arable, silvoarable and forestry land uses. Within the 

AGFORWARD project, the Farm-SAFE model has been adapted to assess both the financial 

profitability from a farmer perspective and the economic profitability from a societal perspective.  

Using the adapted Farm-SAFE model, this paper evaluates and compares the biophysical 

development, financial profitability, and social impact of environmental externalities for arable, 

forestry, and silvoarable poplar systems to provide a more complete assessment of the societal 

benefits and costs of these land uses.  

 

4.3 Methods and data 

The methodological framework of this study is separated into five stages: i) simulation of the 

biophysical growth of trees and crops for the Bedfordshire case study, ii) assessment of financial 

performance, iii) quantification of the environmental externalities, iv) conversion of the 

environmental externalities into monetary terms, and v) assessment of full economic performance 

through inclusion of the environmental externalities in the analysis.   

 

4.3.1 Bedfordshire case study  

The case study is based on an experiment in Silsoe in Bedfordshire, England comprising 2.5 ha of 

silvoarable (poplar + cultivated crops) and forestry (poplar + fallow land) treatments surrounded by 

one hectare of conventionally cropped arable land (Burgess et al. 2005). The site is located in a 

relatively flat area at 59 m above mean sea level. The mean soil texture is 55% clay, 26% silt, and 19% 
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sand. Annual rainfall ranges from 410 mm to 867 mm and mean annual temperature from 9.1°C to 

11.3°C. 

 

Four poplar hybrid varieties, including Beaupré (Populus trichocarpa x P. deltoides), were planted in 

1992.  The four hybrids were planted at a spacing of 6.4 m in a North-South orientation along rows 

spaced 10 m apart. Tree height and diameter at breast height was measured at intervals until 2011, 

when the poplars were harvested, 19 years after planting (Upson, 2014). The arable crops from 1992 

to 2003 included spring wheat, winter wheat, winter barley and spring beans; after 2003 the 

understorey reverted to grass (Burgess et al. 2005; Upson 2014).   

 

4.3.2 Biophysical simulation 

Because poor management led to crop failure in some years, a standardised crop rotation of wheat, 

wheat, barley and oilseed rape was assumed for the financial and economic analysis.  The crop yields 

and the tree growth were simulated using the Yield-SAFE biophysical model (van der Werf et al. 

2007) calibrated using the tree growth of the Beaupré hybrid and the relative crop yields obtained in 

the silvoarable system relative to the arable control (Burgess et al. 2005). Daily climatic data were 

retrieved from CliPick (Palma et al. 2015). In this way, crop and tree growth simulations were derived 

for three systems: i) a control arable system, ii) a silvoarable system (Beaupré at a density of 156 

trees per hectare and arable cropping for 14 years), and iii) a forestry system (Beaupré at a density of 

156 trees per hectare).  The length of the tree rotation was specified as 30 years. 

 

The modelled mean control crop yields of 8.78 t ha-1, 6.70 t ha-1 and 3.49 t ha-1 for wheat, barley and 

oilseed rape respectively are similar to mean yields reported for the UK by Agro Business Consultants 

(2015) (Figure 27a). The simulated crop yields in the silvoarable system (Figure 27b) declined as the 

tree canopy expanded, with the final crop grown 14 years after tree planting (i.e. three years longer 

than achieved in practice). 

 

4.3.3 Financial analysis 

The financial performance of arable, forestry and silvoarable system was assessed using Farm-SAFE 

(Graves et al. 2011) on the basis of the annual net margins per hectare. The net margin was 

calculated as revenues from harvested products (grain, straw, timber and firewood) and grants 

minus variable costs (e.g. crop seed, tree planting, fertiliser, crop and tree protection, pruning, 

thinning, cutting and other costs) and assignable fixed costs (e.g. installation and repairs of 

infrastructure, fuel and energy, machinery, insurance and labour and rented machinery costs).   

 

Because people generally prefer to receive goods and services in the present rather than the future, 

revenues and costs were discounted and converted into financial net present values (NPVF: € ha-1), 

denoted using Equation 1: 

𝑁𝑃𝑉𝐹 = ∑ (
(𝑅𝑡 − 𝑉𝐶𝑡 − 𝐹𝐶𝑡)

(1 + 𝑖)𝑡 )

𝑛

𝑡=0

                                                                                                           𝐸𝑞. 1 

where Rt, VCt, and FCt were respectively revenue, variable costs, and assignable fixed costs in year t 

(€ ha-1), i was the discount rate, and n was the time horizon for the analysis. A discount rate of 4% 

was chosen, as this is marginally above the discount rate of 3.5% used by the UK Government for 

cost-benefit analysis (HM Treasury, 2003).  Although the costs were obtained in terms of pounds 
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sterling, in this paper they are report in terms of Euros, assuming an exchange rate of £1 being 

equivalent to €1.389. 

 

The financial profits of the different systems were compared in terms of a financial equivalent annual 

value (EAVF: € ha-1 year-1) using Equation 2: 

𝐸𝐴𝑉𝐹 = 𝑁𝑃𝑉𝐹 (
(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
) 𝑖                                                                                                  𝐸𝑞. 2 

Financial data (Table 10) related to the crops were obtained from a 2015 farm management 

handbook (Agro Business Consultants, 2015), e.g. a wheat grain price of £125 t-1.  The assumed crop 

prices were then assumed for the full rotation cycle. The grant receipts were based on the Basic 

Payment Scheme (BPS) for lowlands in England (235 € ha-1 yr-1) also in 2016.  

 

Table 10. Assumptions for crop revenues and costs in the analysis 
Crop Grain 

price 
(€ t

-1
) 

Seed 
rate 
(kg ha

-1
) 

Fertiliser rate Variable 
costs

1
 

(€ ha
-1

) 

Fixed costs 
(exc. labour) 
 2

 (€ ha
-1

) 

Labour 
costs 
(€ ha

-1
) 

(kg N ha
-1

) (kg P2O5 ha
-1

) (kg K2O ha
-1

) 

Wheat 174 160  175 60 55 653 444 162 

Barley 160 155  145 55 40 653 444 146 

Oilseed 361 5  200 55 45 535 444 151 

(1) Includes seed, fertiliser, spray and other costs. 

(2) Includes costs relating to fuel and repairs, machinery, interest on working capital, installation, rent and 

other fixed costs. 

 

Table 11 shows the summary of costs for the tree component in the silvoarable and forestry system. 

The silvicultural management was based on Savill (1991) and the associated costs and labour inputs 

were derived from the experimental plot in the Bedfordshire case study (Graves et al. 2007). The 

woodland planting grant was considered only for the forestry system which as a wide-spaced 

broadleaved system was eligible for support (1888.90 € ha-1 paid upon completion in the first year 

and 472.20 € ha-1 yr-1 during the first five years (Agro Business Consultants, 2015)). 

 
4.3.4 Modelling the environmental externalities 

4.3.4.1 Greenhouse gas (GHG) emissions 

A Life Cycle Assessment (LCA) model (Williams et al. 2010) was integrated into the Farm-SAFE model 

to measure GHG emissions in carbon dioxide equivalents (CO2e) associated with the manufacture 

and use of machinery and agrochemicals. The analysis focused only on CO2 emissions and did not 

consider N2O. In order to compare the arable, forestry and silvoarable systems, a functional unit of 

one hectare was used in the analysis. Equation 3 shows the emissions that were included in the LCA: 

 𝐸𝑚𝑖. 𝐶𝑂2𝑒𝑡 = 𝑀𝑚 + 𝑀𝑓 + 𝑀𝑝 + 𝐹                                                                   𝐸𝑞. 3                                             

where Emi.CO2et is the total emitted GHG (t CO2e ha-1 yr-1) in year t, and other factors include the 

emissions from the manufacture of field machinery (Mm), fertiliser (Mf) and pesticides (Mp) and the 

emissions associated with the fuel used for field operations (F). For the arable system and silvoarable 

intercrop area, machinery operations included cultivation, agrochemical application, harvesting and 

baling. In the forestry system and the tree component of the silvoarable system, the machinery 

operations included site preparation (ground preparation, full weeding, marking out, planting, tree 

protection and grass sward establishment), agrochemical application (localised weeding) and 
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harvesting (pruning, epicormics removal, grass sward maintenance and clear felling). Nursery costs 

were not included. The GHG emissions of the silvoarable system were calculated by adding the GHG 

emissions of the intercrop area and the tree component area together. Emissions from manufacture 

of machinery was based on a per hectare utilisation rate calculated from the estimated life 

expectancy of the machinery (Nix, 2014). Emissions from manufacturing field diesel, fertiliser, and 

pesticides were calculated from the per hectare quantities used. Emissions to the atmosphere from 

field diesel, fertiliser, and pesticides were also traced back to the quantities used.   

 

Table 11. Summary of costs associated with the tree component of the systems. 

Tree operations Units Forestry Silvoarable 

Establishment cost (total) (€ ha
-1

) 753.28 753.28 
Costs of individual plants (€ tree

-1
) 1.33 1.33 

Costs of individual tree protection  (€ tree
-1

) 0.27 0.27 
Costs of tree mulch (€ tree

-1
) 0.40 0.40 

Costs of ground preparation (€ ha
-1

) 48.93 48.93 
Labour for planting trees (min tree

-1
) 3.00 3.00 

Labour for tree protection (min tree
-1

) 0.40 0.40 
Labour for tree mulch (min tree

-1
) 1.70 1.70 

Weeding cost (total) (€ ha
-1

) 10.40 22.93 
Single herbicide for tree row (min m

-2
) 0.08 0.00 

Annual cost of herbicide (€ tree
-1

) 0.00 0.002 
Removal of mulch (min tree

-1
) 1.50 0.00 

Grass cut between tree rows  (€ ha
-1

) 0.00 20.00 
Labour to establish grass sward (min m

-2
) 0.50 0.00 

Labour to maintain grass sward (min m
-2

) 0.30 0.00 
Labour to tree maintenance (min tree

-1
) 1.20 1.20 

Pruning cost (total) (€ ha
-1

) 805.06 805.06 
Height first prune (m) 1.00 1.00 
Labour first prune (min tree

-1
) 1.00 1.00 

Height last prune (m) 8.00 8.00 
Labour last prune (min tree

-1
) 15.00 15.00 

Removal of prunings (min tree
-1

) 4.00 4.00 

Harvest cost (total) (€ ha
-1

) 583.96 583.96 
Tree cutting (min tree

-1
) 7.00 7.00 

Admin. and insurance and other cost (total) (€ ha
-1

) 90.00 90.00 
Administrative, insurance and tax cost (€ ha

-1
) 9.00 9.00 

Average annual maintenance costs  (€ ha
-1

 year
-1

) 51.28 51.40 

 

A ‘cradle-to-field gate’ approach was applied i.e. emissions associated with grain drying, crop storage 

and downstream processing were excluded. The construction of farm infrastructure was also 

excluded. The GHG emissions from land-use change were not included.  

 

4.3.4.2 Aboveground-biomass carbon sequestration 

Estimates for aboveground carbon sequestration were obtained from the simulated tree growth. It 

was assumed that the carbon sequestered by the arable crops and tree branches would be quickly 

lost to the atmosphere after harvest and hence they were excluded from the analysis. Equation 4 

was used to convert the simulated biomass into carbon dioxide equivalent sequestration (t CO2e ha-1 

yr-1): 

𝑆𝑒𝑞. 𝐶𝑂2𝑒𝑡 = 0.50 𝛽𝑡𝑖𝑚𝑏𝑒𝑟,𝑡 ∗
𝐴𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝐶𝑂2 

𝐴𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝐶
                                                                                     𝐸𝑞. 4                                             

where Seq.CO2et was the sequestered carbon dioxide equivalent (t CO2e ha-1 yr-1) in time t, where 

0.50 is assumed to be the carbon content of dry timber (Nair, 2011), βtimber is the annual increment in 
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timber mass on a dry weight basis, and the final component converts carbon to a carbon dioxide 

equivalent. 

   

4.3.4.3 Soil erosion losses by water 

The Revised Universal Soil Loss Equation (RUSLE) was used in Farm-SAFE to calculate the annual soil 

loss by water (Equation 5): 

𝐴𝑡 = 𝑅 𝐾 𝐿 𝑆 𝐶𝑡 𝑃                                                                                                                                 𝐸𝑞. 5                                             

where At was the estimated average soil loss in year t (t ha-1 yr-1), R is the rainfall-runoff erosivity 

factor, K is soil erodibility, L is slope length, S is slope steepness, C relates to cover-management, and 

P relates to support practice. The values for R, K, L and S, determined by climatic, soil and 

topographic characteristics, were obtained from the European Soil Data Centre (ESDAC) database for 

the geographical location of the Bedfordshire case study (see Panagos et al. 2014; Panagos et al. 

2015a; Panagos et al. 2015c).  

 

In order to compare soil erosion losses between arable, forestry, and silvoarable systems in the same 

geographical location, the dynamic change in the cover-management factor (Ct) in year t was 

calculated for each system drawing on Palma et al. (2007) using Equation 6:  

𝐶𝑡 = 𝐶𝑜𝑣𝑐𝑟𝑜𝑝,𝑡 𝐶𝑐𝑟𝑜𝑝 + 𝐶𝑜𝑣𝑡𝑟𝑒𝑒,𝑡 𝐶𝑡𝑟𝑒𝑒                                                                                             𝐸𝑞. 6 

where Covcrop,t is the proportion of cropped land in year t, Ccrop is the cover-management factor of the 

crop component, Covtree,t is the proportion of land under the tree component in year t, and Ctree the 

cover-management factor of the tree component. A common value for the P factor, among the three 

land uses, was obtained from the ESDAC database (Panagos et al. 2015d). 

 

This approach represents a development of the approach reported by Palma et al. (2007). In Palma 

et al. (2007), the land cover proportion of the crop and tree component were static (time-invariant), 

whereas our approach considers the change in land cover proportions, and hence the decrease in Ct, 

as the tree grows. 

 

4.3.4.4 Nitrogen surplus 

The nitrogen surplus (Nsur; kg N ha-1 yr-1) in year t of the different land use systems was calculated 

using the approach of Palma et al. (2007) and Feldwisch et al. (1998) (Equation 7): 

𝑁𝑠𝑢𝑟 = 𝑁𝑓𝑒𝑟𝑡 + 𝑁𝑎𝑑𝑒𝑝 + 𝑁𝑓𝑖𝑥 + 𝑁𝑚𝑖𝑛 –  𝐷 − 𝑉 − 𝑈 −  I                                                                         𝐸𝑞. 7  

where Nfert is the addition of N fertiliser, Nadep is the atmospheric deposition, Nfix is the biotic N 

fixation, Nmin is the mineralisation, D is the denitrification, V is the volatilisation, U is the crop and 

tree uptake and I is the immobilisation. 

 

Annual nitrogen fertilisation (Nfert) for winter wheat, barley and oilseed rape was assumed to be 175, 

145 and 200 kg N ha-1 respectively (Agro Business Consultants, 2013). Atmospheric deposition (NAdep) 

was estimated by summing values of deposition of oxidized and reduced nitrogen from EMEP (2003). 

Since there was no legume crop N fixation (Nfix) was assumed to be 1 kg N ha-1 yr-1 for non-symbiotic 

organisms (Wild, 1993). N mineralisation (Nmin) and immobilisation (I) were assumed to reach a long-

term steady state equilibrium where the amount of mineral nitrogen released by the soil would be 

equal to the amount annually returned to the soil in the form of organic matter (Vlek et al. 1981; 

Noy-Meir and Harpaz, 1977). Denitrification (D) was assumed to be 30 kg N ha-1 yr-1 (Palma et al. 
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2007). Since organic fertilisation was not considered, nitrogen volatilisation (V) was assumed to be 

derived from mineral N application. Following van Keulen et al. (2000) it was estimated as 5% of Nfert.  

Nitrogen uptake (U) was estimated as:  

𝑈 = {

𝑌𝑐

𝛼
+ 𝜆 ∗ 𝛽𝑡 𝑖𝑓    𝑌𝑐 <

𝑌𝑚𝑎𝑥

2
4 ∗ 𝑌𝑐 − 𝑌𝑚𝑎𝑥

2 ∗ 𝛼
+ 𝜆 ∗ 𝛽𝑡 𝑖𝑓    𝑌𝑐 ≥

𝑌𝑚𝑎𝑥

2

                                                                                          𝐸𝑞. 8 

where Yc is the harvested crop yield, Ymax is the maximum harvested crop yield (kg ha−1 yr-1),  βt is the 

increment in above-ground tree biomass (kg ha−1 yr-1), α is a unitless coefficient dependant on the 

biomass of the crop residue and the harvested product (Equation 9), and λ is a unitless coefficient 

used to derive tree nitrogen uptake from βt (Equation 10).  The α coefficient was given as: 

𝛼 =
1

𝑁𝐶𝑐 + 𝑁𝐶𝑟 ∗
𝑌𝑟
𝑌𝑐

                                                                                                                                         𝐸𝑞. 9 

where NCc and NCr were the N content in the crop grain and residue, respectively (a content of 1% 

and 0.4% N in the grain and residue was assumed (van Keulen and Wolf, 1986)), and Yr was the 

residue yield (kg ha−1 yr-1).  The λ coefficient was given as: 

𝜆 = 𝐶𝑡𝑎𝑏 + 𝐶𝑡𝑏𝑔 ∗ 𝑅𝑆𝑅                                                                                                                                   𝐸𝑞. 10 

where Ctab and Ctbg were the N content in the aboveground and belowground tree biomass, 

respectively. A content of 0.66% and 0.41% concentration of N in the tree above ground and below 

ground biomass respectively was assumed (Gifford, 2000a,b). RSR was the root to shoot ratio of the 

tree (unit-less). A root to shoot ratio of 0.25 for broadleaved tree species was assumed (IPCC, 1996). 

 

 

 

 

4.3.4.5 Phosphorus surplus 

An approach similar to N was used to measure phosphorus surplus (Psur; kg P2O5 ha-1 yr-1). Equation 

11 shows the P inputs and outputs considered in the analysis to estimate differences among land-use 

systems: 

𝑃sur = Pfert + PA𝑑𝑒𝑝 − U                                                                                                                              𝐸𝑞. 11  

where Pfert is the addition of P fertiliser, PAdep is the atmospheric deposition and U is the crop and 

tree P uptake (all units in kg P2O5 ha-1 yr-1). 

Phosphorus fertilisation (Pfert) for winter wheat, spring barley and oilseed rape was assumed to be 60, 

55 and 55 kg P2O5 ha-1 yr-1, respectively (Agro Business Consultants, 2013). Atmospheric deposition 

(PAdep) was assumed to be 0.33 kg P2O5 ha-1 yr-1 (Tipping et al. 2014). The same equations as in N 

were used to calculate P uptake. A content of 0.25% and 0.2% P in the grain and residue respectively 

was assumed (Sandaña and Pinochet, 2014). A content of 0.04% concentration of P in the tree 

biomass was assumed (Ovington and Madgwick, 1958). 
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4.3.5 Valuation of the environmental externalities 

The environmental externalities were converted into monetary terms using the benefit transfer 

method which estimates economic values for a study site by transferring available data from 

previous studies undertaken in another location (Johnston et al. 2015).  

 

The valuation of CO2e was based on the value of €7.8 (t CO2e)-1 currently received by farmers 

planting woodland in the UK (UK Forestry Commission, 2015).  Although the Department for Energy 

and Climate Change (DECC, 2009, 2012) predicts that these values will increase over time up to €233 

(t CO2e)-1 at some stage between 2015 and 2045), the current value is used in this study.  

 

Using Graves et al. (2015) the valuation of soil erosion losses was based on the annual off-site cost of 

dredging of water courses. Jacobs (2008) estimated an annual off-site cost of dredging water courses 

in England and Wales of €12.9 million with an agricultural apportionment of 95%, giving a total cost 

(adjusted to 2009 prices) of €12.2 million. As Anthony et al. (2009) reported a sediment load of 1.9 

million t yr−1 a unit cost of removal of around €6.41 t−1 sediment was estimated. 

 

The value for the N surplus was based on the costs of nitrate removal in freshwater. For the purposes 

of this study we assumed that, over a long period, the rate of nitrate leaching would be similar to the 

nitrogen surplus, and that water draining from the site is used for drinking water. Oxera (2006) 

estimated the upper and lower bound of the cost of nitrate removal to two difference water work 

sizes, expressed as population equivalents (PE). This study selected the more conservative estimate 

(PE > 100,000) which was given as € 1.9 kg NO3
1- removed from freshwater.  The same cost-based 

approach used for N surplus was used to value P surplus. Again it was assumed that, over a long 

period, the rate of phosphorus loss would be equivalent to the phosphorus surplus. Using the costs 

associated with chemical dosing under new phosphate treatment standards (Ofwat, 2005), the 

standard estimate for large works (PE > 80,000) is equivalent to € 5.2 kg P (Ofwat, 2005). 

 

4.3.6 Economic analysis 

Whilst the financial analysis aimed to show a plot-level profitability indicator from a farmer 

perspective the economic analysis attempted to provide a plot-level profitability indicator from a 

societal perspective. The economic appraisal built upon the NPVF (see Equation 1) and included 

benefits and costs from the five environmental externalities converted into monetary terms (EEt) in 

each year t. The NPV for the economic appraisal (NPVE) was denoted as:  

𝑁𝑃𝑉𝐸 = ∑ ((
(𝑅𝑡 − 𝑉𝐶𝑡 − 𝐹𝐶𝑡)

(1 + 𝑖)𝑡 ) + (
𝐸𝐸𝑡

(1 + 𝑗)𝑡
))

𝑛

𝑡=0

                                                                 𝐸𝑞. (12) 

where j is the assumed discount rate for environmental costs and benefits (which was assumed to be 

4% as in the financial analysis).  From the NPVE, the economic EAV was calculated as in Equation 2.  
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4.4 Results 

4.4.1 Biophysical simulation 

As partly described in the methodology, the average yields in the control arable system matched the 

mean values for wheat, barley and oilseed rape in south-eastern England (Figure 27a) (Agro Business 

Consultants, 2015).  In the silvoarable system, crop yields (per cropped area) were firstly modelled 

assuming intercropping for all of the 30 years of the tree rotation (Figure 27b).  However, from Year 

15 onwards, the crop component of the silvorable system was no longer profitable due to tree 

competition for water and sunlight. During the first 14 years, the mean wheat, barley and oilseed 

rape were 7.76, 6.13, and 3.16 t ha-1 respectively.  These represent mean yield reductions of 15, 26 

and 6% respectively.  

a: Arable system 

 

b. Silvoarable system 

 

 

Figure 27. Modelled crop yields (per cropped area) in a) the control arable and b) the silvoarable 
system  
 

The observed and modelled tree diameter and height, showed that overall tree diameter and height 

in the forestry system (Figure 28a) was higher than in the silvoarable system (Figure 28b). Over the 

30 years, it is estimated that 1.2 ha of separate forestry and arable systems would be needed to 

produce the crop and timber yields obtained in the silvoarable system, i.e. 0.35 ha of arable crops 

and 0.85 ha of the forestry system i.e. the land equivalent ratio was 1.2. 
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a: Forestry system 

 

 

b: Silvoarable system 

 

 

 

Figure 28. Observed and modelled height and diameter at breast height (Dbh) of the poplar trees in a) 
the forestry and b) the silvoarable system. 
 
4.4.2 Financial analysis 

The biophysical simulation was used to provide the yield data for assessment of the financial 

profitability of the arable, forestry, and silvorable system, with grants (Figure 29a) and without grants 

(Figure 29b). Figure 29 shows the discounted financial cumulative net margin of the three land-uses. 

The cumulative net margin in Year 30 indicates the NPVF. In both analyses with and without grants, 

the arable system was the most profitable land-use (NPVF = 9,674 € ha-1) followed by the silvoarable 

system (NPVF = 5,940 € ha-1) and the forestry system (NPVF = 2,939 € ha-1). As forestry grants were 

lower than in the other land uses, the difference in profitability was reduced relative to arable and 

silvoarable land uses, when excluding grants in the analysis.  In the silvoarable system, the 

cumulative net margin did not substantially increase between Year 12 and 29. This was because as 

the trees developed, the yield and profitability of the crop component decreased, and after Year 14, 

cultivating the crop component was no longer profitable.   
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a) Financial cumulative net margin with grants 

 

b) Financial cumulative net margin without grants 

 

 

Figure 29. Financial cumulative net margin (assuming a discount rate of 4%) in the arable, forestry 
and silvoarable system a) with grants and b) without grants   
 

4.4.3 Environmental externalities 

The environmental externalities assessed in this study were modelled for all three systems. The 

overall GHG emissions for the arable system were higher than for both the forestry and silvoarable 

land uses (Figure 30a). Although the GHG emission from the crop and tree component in the 

silvoarable system was greater than for the arable system in year 1, the emissions from the 

silvoarable system were subsequently lower whilst there was a crop (until year 14) and emissions 

were almost negligible due to the cessation of cropping from year 15. 

 

Carbon sequestered in aboveground timber (Figure 30b) in the forestry system was greater than in 

the silvoarable system, as the trees initially benefited from reduced competition for water. Because 

carbon stored in the crop was assumed to be rapidly returned to atmosphere after harvest, the 

aboveground biomass in the arable system was negligible. 

 

Soil erosion loss by water (Figure 30c) was low in all three land-uses. This was mainly because the 

area was relatively flat and extreme rainfall events are relatively rare. However, the capacity of tree 

canopy growth to reduce the annual rate of soil erosion is evident in both the forestry and 

silvoarable systems. 

 

The N and P surpluses (Figure 30d and Figure 30e respectively) in the arable system were notably 

greater than in the forestry and silvoarable systems. In the silvoarable system, N and P surplus was 

greatest in the initial years of the rotation, but as the trees developed, their uptake of N and P 

increased and N and P surpluses were reduced.       
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a) GHG emissions 
 

 

b) Carbon sequestration in aboveground 
biomass 

 
c) Soil erosion losses by water 

 

d) Nitrogen surplus 

 
 

a) Phosphorus surplus 

 

 

 

Figure 30. Modelled environmental externalities of the arable, forestry, and silvoarable system over a 
time horizon of 30 years in terms of a) GHG emissions, b) aboveground carbon sequestration, c) soil 
erosion, d) nitrogen surplus, and e) phosphorus surplus.  
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4.4.4 Economic analysis 

The final stage of our analysis was to assess the profitability of the three land use systems by 

including the economic value of the environmental externalities. Table 12 shows the annual 

economic value of the environmental externalities as well as the financial and economic profitability 

of the systems. The externality with the greatest cost was N surplus. In the arable system, a mean 

nitrogen surplus of about 25 kg N ha-1 was associated with an environmental cost of 186 € ha-1 yr-1.  

Soil erosion loss by water was the externality with the lowest economic impact; its greatest value 

was in the arable system where a mean annual loss of 0.4 t soil ha-1 was estimated to cause an 

economic impact costing 2.5 € ha-1 yr-1.  

 

The results show that both with and without grants, the arable system was the most financially 

profitable land-use (EAVF with grants = 559 € ha-1 yr-1) followed by the silvoarable (EAVF with grants = 

344 € ha-1 yr-1) and the forestry system (EAVF with grants = 170 € ha-1 yr-1). However, these results 

were altered when the environmental externalities were included. In this case, the societal benefit of 

the silvoarable system (EAVE with grants = 331 € ha-1 yr-1) was similar to that of arable system (EAVE 

with grants = 328 € ha-1 yr-1) and greater than that of the forestry (EAVE with grants = 203 € ha-1 yr-1).  

 

Table 12. Financial and Economic Equivalent Annual Value (EAV) of an arable, forestry and silvoarable 
system in Bedfordshire in the United Kingdom. Results shown for a time horizon of 30 years at a 4% 
discount rate. 

 Arable
1
 

Silvoarable
2
 

Forestry
3
 Crop 

component 

Tree 

component 
Combined 

Financial analysis      

EAVF with grants (€ ha
-1

 yr
-1

) 559.4 335.2 8.3 343.5 170.0 

EAVF without grants (€ ha
-1

 yr
-1

) 314.8 90.6 8.3 98.9 37.4 

Environmental externalities      

CO2eq emissions (t CO2eq ha
-1

 yr
-1

) 2.4 1.1 0.0 1.1 0.0 

EAV CO2eq emissions (€ ha
-1

 yr
-1

) -19.7 -11.2 -0.3 -11.5 -0.3 

CO2eq sequestration (t CO2eq ha
-1

 yr
-1

) 0.0 0.0 4.0 4.0 4.7 

EAV CO2eq sequestration (€ ha
-1

 yr
-1

) 0.0 0.0 30.0 30.0 35.0 

Soil erosion losses by water (t soil loss ha
-1

 yr
-1

) 0.4 - - 0.2 0.2 

EAV Soil erosion losses (€ ha
-1

 yr
-1

) -2.5 - - -1.5 -1.6 

Nitrogen surplus (kg N ha
-1

 yr
-1

) 24.6 - - 2.2 0.0 

EAV Nitrogen surplus (€ ha
-1

 yr
-1

) -186.3 - - -27.9 0.0 

Phosphorus surplus (kg P ha
-1

 yr
-1

) 5.1 - - 0.2 0.0 

EAV Phosphorus surplus (€ ha
-1

 yr
-1

) -22.8 - - -1.6 0.0 

Economic analysis      

EAVE with grants and environmental 

externalities (€ ha
-1

 yr
-1

) 

328.1 - - 330.9 203.1 

EAVE without grants and environmental 

externalities (€ ha
-1

 yr
-1

)  

83.5 - - 86.3 70.5 

1
: the arable system was a rotation of wheat, wheat, barley and oilseed rape 

2
: the silvoarable system was the same rotation as the arable system with poplar hybrids planted at 156 trees 

per hectare. 
3
: the forestry system was hybrid poplars planted at a density of 156 trees per hectare. 
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4.5 Discussion 

Analyses of agroforestry economics in Europe tend to focus on their financial performance relative to 

arable and forestry counterfactuals (Graves et al. 2007), whilst at the same time noting that the lack 

of externalities in economic assessments is a gap in research that needs to be filled.  This analysis 

advances knowledge of the overall contribution of land use systems to society by taking both a 

financial and economic perspective of the relative value of arable, forestry, and silvoarable systems. 

This we do by linking LCA and valuation data to increased knowledge of the effect of environmental 

externalities on society. 

 

The estimated mean CO2e emission in the arable system was 2.4 t CO2e ha-1 yr-1. Camargo et al. 

(2013) estimated values for wheat, barley and oilseed rape of 1.5-2.0 t CO2e ha-1 yr-1. Williams et al. 

(2010) estimated a global warming potential for wheat of around 0.7 t CO2e produced t-1, which 

assuming a yield of 9 t ha-1 would be equivalent to 6.3 CO2e ha-1 yr-1.  This higher value included the 

contribution of N2O emissions and operations beyond the field-gate such as crop storage and drying. 

Compared to the arable system, CO2e emissions in the silvoarable system were reduced by 56%, but 

CO2e emissions per produced tonne of crop yield increased by 4.4% in the silvoarable system.  

 

Mean carbon sequestration in the silvorable system (determined only as carbon stored as timber) 

was 4 t CO2e ha-1 yr-1. Palma et al. (2007) estimated values between 1.83 and 8.8 t CO2e ha-1 yr-1 for 

poplar trees in a silvoarable system in the Netherlands. Compared to the forestry system, carbon 

sequestration in the silvoarable system was reduced by 15%. Lehman and Gaunt (2004) and 

Harmand et al. (2004) reported that compared to arable systems, agroforestry systems were unlikely 

to lead to significant long-term belowground soil carbon sequestration as organic matter produced is 

relatively quickly decomposed.   

 

Soil erosion loss by water in the three land uses was lower than 0.4 t ha-1 yr-1; a value that is relatively 

low compared to other areas in Europe (Panagos et al. 2015). This can be explained by the relatively-

flat case study area and the lack of extreme rainfall events. Hence the economic cost of soil erosion 

was at 1.5-2.5 € ha-1 yr-1 was also low.  Compared to the arable system, soil erosion loss in the 

silvoarable system was reduced by about 50%. Whilst the absolute effect was low in this case-study, 

on more steep slopes and in areas with more extreme rainfall, the benefits could be substantial.  

 

Annual loss of N was the costliest environmental externality. In the arable system, the mean N loss 

was about 25 kg N ha−1 yr−1 which is within the range of estimated annual N losses from temperate 

European arable systems of 10-100 kg N ha−1 yr−1 (Hadas et al. 1999; Nemeth, 1996; Hoffmann and 

Johnsson, 2003; Ersahin, 2001; Di and Cameron, 2002; Webster et al. 2003). In the silvoarable 

system, the mean annual N loss during the years when the intercrop was cultivated (0-14 years) was 

4.7 kg N ha−1, which is equivalent to an 80% reduction compared to the arable control.  This was a 

result of a lower fertiliser rate per hectare because 20% of the area was not cropped (-20%) and 

nitrogen uptake by the trees and grass in the tree rows. This is greater than the 37% reduction 

reported by Udawatta et al. (2002) in young temperate agroforestry systems. However Udawatta et 

al only reported the reduction for the first three years, greater reductions could be anticipated as the 

trees grow. In fact, when only the first three years of the rotation were considered, the reduction of 

N loss was 36% in the silvorable system is similar to that observed by  Udawatta et al. (2002). Similar 

reduction effects were seen in the case of P loss which was the second most expensive 
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environmental externality. Whilst in the arable system, P loss was 5.1 kg P ha−1 yr−1, in the silvoarable 

system it was 0.44 kg P ha−1 yr−1 during the years when the crop was cultivated.  

 

There are a number of recommendations for future research that flow from this paper.  As with all 

case study research it is important to consider that specific conditions change with location, and new 

analyses are likely to be required to assess the performance of competing land use systems at other 

sites.  Many environmental processes operate at a landscape scale, where surrounding topography 

and land uses become important, for example, having a bearing on rates of soil erosion, N and P 

losses into water bodies, if the plots are located far, rather than near to them.  Further research 

could build on the results of this study through a bottom-up approach to upscale the provision and 

economic value of the environmental externalities at the landscape level. Detailed spatial data would 

be necessary to adequately conduct this upscaling. It should be noted however, that whilst modelling 

environmental externalities at a landscape scale is desirable for some environmental processes, it 

can also lead to a reduction in specific detail (Tscharntke et al. 2005; Palma et al. 2007). Whilst we 

have made good progress in quantifying and valuing a number of environmental externalities, others 

such as habitat for wildlife, landscape diversity, pollination services, air quality, noise reduction, need 

yet to be assessed. Past research has indicated that trees have the potential to improve such 

ecosystem services (Sing et al. 2015; Faber et al. 2002) and if these more environmental externalities 

are included in future analyses, the economic profitability of forestry and silvoarable system may 

increase further relative to arable systems. 

 

4.6 Conclusions 

Based on an experimental plot in Bedfordshire, this paper modelled the financial profitability and 

valued the environmental externalities for an arable, silvoarable and forestry system. The results 

showed that the arable system was the most financially profitable land use but produced the most 

negative externalities. The silvoarable system whilst more profitable than the forestry system also 

produced greater negative externalities. The inclusion of the economic value of GHG emissions, 

carbon sequestration and loss of soil, N and P showed that silvoarable systems provided a similar 

societal benefit as the arable system, and a greater benefit that the forestry system. The expense of 

removing N and P in freshwater meant that these cost were particularly high in the arable system. 

The results showed that planting trees in arable systems could potentially reduce nutrient surpluses 

and provide a large economic benefit to society.  Inclusion of other environmental externalities 

associated could increase the relative value of incorporating trees in agricultural systems.    

  



41 

 

Modelling the economics of agroforestry  www.agforward.eu 

5 The Forage-SAFE model 

The development of Forage-SAFE model aims to provide a better understanding of the management 

and economics of wood pastures systems. The model simulates the daily balance between the 

produced and demanded food for livestock to estimate annual farm net margin. Forage-SAFE allows 

modification of a large number of biophysical and financial parameters related to the tree, pasture 

and livestock components in order to analyse their effect on profitability. The model estimates 

optimal managerial decisions that maximises net farm income such as tree cover density, carrying 

capacity and composition of livestock species. A conference paper presenting the model is described 

below: 

 

Forage-SAFE: a tool to assess the management and economics of wood pasture systems 

García De Jalón S.1,*, Graves A.1, Moreno G.2, Palma J.H.N.3, Crous-Duran J.3, Oliveira T.3  

and Burgess P.J.1 
1Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK 
2Forestry School, INDEHESA. Universidad de Extremadura, Plasencia 10600, Spain 
3Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal 

This paper has been presented to the 15th International Conference on Environmental Science and 

Technology in Rhodes, Greece in 31st August - 2nd September 2017. 

 

5.1.1 Abstract 

The Forage-SAFE model has been developed to better understand the impact of trees on the 

profitability of wood pastures. It assesses the daily balance between the demand for and production 

of forage to estimate an annual farm net margin. The model allows the modification of selected 

biophysical and financial parameters related to the tree, pasture and livestock components (such as 

tree cover density, carrying capacity and livestock species) which can be optimised to maximise net 

farm income. A case study in a dehesa wood pasture in South-western Spain was used to show the 

applicability of the model. The case study results showed that net margin was maximised at around 

27% tree cover for a carrying capacity of 0.4 livestock unit per hectare from which 61% were 

ruminants and 39% Iberian pigs. The analysis also showed that high carrying capacities were 

positively correlated with tree cover profitability. This was accentuated as the proportion of Iberian 

pigs increased. 

 

Keywords: Forage-SAFE, wood pasture, tree cover, bio-economic, profitability  

 

5.2 Introduction 

Wood pastures are silvopastoral agroforestry systems with irreplaceable ecological, social, and 

cultural values. They occupy around 20.3 million ha in the 27 EU member states, equivalent to 

around 4.7% of all European land (Plieninger et al. 2015).  

 

Wood pastures are complex systems where three agro-silvo-pastoral components can interact over 

time. This makes it difficult to evaluate the economic impact of management decisions on farm 

profitability. For instance, trees have the potential to increase on-farm fodder production for 

livestock e.g. Moreno and Pulido 2009; López-Díaz et al. 2016. However, measuring the economic 

impact or the marginal effect of trees on farm profitability based on observed data can be difficult 

and expensive. Thus modelling approaches are useful to identify optimal managerial decisions in 
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wood pasture systems. The Forage-SAFE model was developed to provide a tool that can simulate 

the daily demand for and production of grasses and other forages to assess annual profits in wood 

pastures. The aim in developing the model was to provide a better understanding of the economic 

impact of farm-management decisions of the tree, pasture and livestock components. 

 

5.3 Methodological structure of Forage-SAFE 

Forage-SAFE is a dynamic bio-economic model developed in Microsoft Excel. It contains some macros 

in Microsoft Visual Basic for Applications (VBA) to facilitate model usability and run various 

optimization problems. 

A total of 304 parameters can be set in Forage-SAFE to define the biophysical, managerial and 

economic characteristics of wood pasture systems. The biophysical characteristics included 

production data of pasture, fruit, timber, firewood and browse. The managerial characteristics 

included data related to the livestock (species, type, age, calendar, weight and consumption), the 

trees (planting, tree protection, pruning, thinning, cutting and browsing) and pasture and fodder 

crops (e.g., planting, fertilising, spraying, harvesting and baling). The economic variables included 

revenues (sale of livestock and tree products, and other services) and farm costs (variable, fixed, 

subcontracted labour and rented machinery, and unpaid labour).  

 

Forage-SAFE includes seven spreadsheets: 

i) Biophysical input data: this is the principal spreadsheet where end-users set biophysical 

and managerial variables. Annual results are shown in this sheet. It is divided into three 

parts: i) biophysical and managerial input data, ii) main annual results with button links 

to graphical results, and iii) estimation of ‘locally’ optimal values of tree cover, carrying 

capacity and distribution of livestock species to maximise production and profitability. 

ii) Financial input data: to insert financial data.  

iii) Graphs: main graphical results provided at a daily resolution. 

iv) Livestock demand: calculations of daily food and energy demanded by each livestock 

species (e.g., cows, sheep, pigs) and type (e.g. suckler cow, growing cow and male adult 

cow). 

v) Production NO TREE: calculations of the daily production of pasture and duration of 

energy content in areas beyond the tree canopy. 

vi) Production TREE: calculations of the daily production of pasture and duration of energy 

content in areas under the tree canopy. It also calculates browse and acorn production. 

vii) Biophysical analysis: calculations of the daily balance between energy and food 

production and demand in the wood pasture. 

 

5.3.1 Fodder and tree production 

5.3.1.1 Energy from the pasture 

The model calculated the energy produced from the pasture (MJ ha-1 d-1) as the product of pasture 

produced on day d (kg dry matter (DM) ha-1 d-1) and the energy content (MJ kg DM-1). The model 

calculated the daily balance between the produced and consumed pasture in order to quantify the 

pasture that was not consumed by the livestock and was available in subsequent days, updating the 

energy content each day.  
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Equation 1 shows the discretised equation to measure the potential change of available energy from 

pasture (AEP) on day t (MJ ha-1 d-1):  

𝑑𝐴𝐸𝑃𝑡

𝑑𝑡
= 𝑃𝑃𝑡 ∗ 𝐸𝐶𝑃 + 𝑆𝐸𝑃𝑡 Eq.1 

Where PPt is the pasture production in terms of dry weight (kg DM ha-1 d-1) on day t, ECP is the 

energy content in the pasture (MJ kg DM-1), and SEPt is the surplus energy from the accumulated 

pasture (MJ ha-1 d-1), i.e. pasture previously produced that has not been consumed.   

 

The surplus of pasture was calculated on a daily basis as the difference between pasture production 

and consumption. Equation 2 shows how the model calculated the surplus of energy from 

accumulated pasture on day t (SEPt):  

𝑆𝐸𝑃𝑡 = 

𝑆𝑃𝑡−1 ∗ 𝐸𝐶𝑃 ∗ 𝐷𝑡−1 + 

𝑆𝑃𝑡−2 ∗ 𝐸𝐶𝑃 ∗ 𝐷𝑡−2 ∗ 𝐷𝑡−1 + 

𝑆𝑃𝑡−3 ∗ 𝐸𝐶𝑃 ∗ 𝐷𝑡−3 ∗ 𝐷𝑡−2 ∗ 𝐷𝑡−1 + 

… + 

𝑆𝑃𝑡−𝑛 ∗ 𝐸𝐶𝑃 ∗ 𝐷𝑡−𝑛 ∗ 𝐷𝑡−(𝑛−1) ∗ 𝐷𝑡−(𝑛−2) ∗ 𝐷𝑡−(𝑛−3) ∗ … ∗ 𝐷𝑡−(𝑛−(𝑛−1)) 

 

Eq.2 

where SP is the surplus from pasture produced on day t (kg ha-1 d-1), and D is the pasture senescence 

coefficient which indicates the retention of energy content over time. As pasture senescence is 

affected by weather conditions D varies for each time instant. For example under extreme heat the 

retention of energy decreases more rapidly than at more normal temperatures. For instance, in arid 

Mediterranean climates the retention of energy content in summer is lower than in autumn. This is 

also affected by microclimatic conditions caused by the tree effect on pasture. 

 

The model separately calculates the available energy from pasture in treeless areas and areas under 

tree canopy. Equation 1 shows how the available energy from pasture in treeless areas varies along 

time. In areas under the tree canopy, the available energy is similarly calculated but adds the effect 

of tree density on pasture growth (see Equation 3). The Gompertz equation was used to simulate the 

effect of tree density. 

𝑑𝐴𝐸𝑃𝑤𝑡𝑡

𝑑𝑡
= (𝑃𝑃𝑤𝑡𝑡 ∗ (1 − 𝑒(−𝑒−𝑏∗(𝛿−𝐶)))) ∗ 𝐸𝐶𝑃𝑤𝑡 + 𝑆𝐸𝑃𝑤𝑡𝑡 Eq.3 

where AEPwtt is the available energy from pasture in areas under the tree canopy, PPwtt is the dry 

weight of pasture production, ECPwt is the energy content of the pasture, and SEPwtt is the surplus 

of energy from the accumulated pasture. The pasture production under tree canopy is multiplied by 

a value between 0 and 1 derived from a Gompertz equation where δ is the proportion of tree cover 

and b and C are constants.  

 

Finally the available energy from pasture in the system combining treeless areas and areas under 

tree canopies is calculated by Equation 4:  

 𝐴𝐸𝑃𝑡 = (1 − 𝛿) ∗ 𝐴𝐸𝑃𝑤𝑜𝑡𝑡 + 𝛿 ∗ 𝐴𝐸𝑃𝑤𝑡𝑡  Eq.4 

where δ is the proportion of tree cover, AEPwot is  the available energy from pasture in treeless areas 

and AEPwt is the available energy from pasture in areas under tree canopy. 
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End-users need to insert daily grass production data. This can be modelled data from an agroforestry 

model (e.g. Yield-SAFE, van der Werf et al. 2007, Modelo Dehesa, Hernández Díaz-Hambrona et al. 

2008; Iglesias et al. 2016, and SPUR2, Hanson et al. 1994) or real data. 

 

5.3.1.2 Energy and resources from the tree  

Fruit and browse were included in the model as sources of food to feed the livestock. Daily fruit 

production was simulated by a normal probability distribution. The day of the year of highest 

production and the standard deviation in terms of number of days need to be inserted to simulate 

the daily fruit production. The produced energy from tree fruit was calculated as the product of the 

dry weight of fruit and the energy content per dry weight. Browse production was considered as a 

food supplement when pasture production did not meet the demand of the ruminants. Browse can 

be restricted for specific dates when pruning is allowed. Pruning costs associated with browsing can 

be considered in the analysis if required. Forage-SAFE also allows the inclusion of farm products that 

provide economic revenues such as timber, firewood, cork, wool and milk. 

  

5.3.2 Livestock demand for fodder 

The fodder demand by livestock was calculated for each livestock species (cattle, sheep and Iberian 

pigs) and type (growing, suckler and male adults). The model calculated the total energy demand on 

day t (DE; units: MJ ha-1 d-1) using Equation 5:  

𝐷𝐸𝑡 = ∑ ∑(𝑛𝑡,𝑠,𝑦 ∗ 𝑑𝑒𝑡,𝑠,𝑦)

3

𝑦=1

3

𝑠=1

 Eq.5 

where nt,s,y is the number of animals per hectare of species s of type y on day t, and det,s,y is the 

associated energy demand per animal species and type (MJ animal-1).  Forage-SAFE included two 

distinct ways to calculate each animal’s demand for energy. One way was by setting the consumption 

of each animal (DM kg animal-1) according to specific characteristics such as species, type, weight and 

physiological state (gestation, lactation and maintenance). The other way was to use the utilised 

metabolisable energy (UME) equation (Hodgson 1990). The equation was calculated for a “reference 

animal” defined by Hodgson (1990) as a lactating dairy cow with a live weight (W) of 500 kg and milk 

yield (Y) of 10 kg d-1 (UME; units: MJ LU-1 d-1) and then converted into kilocalories. Equation 6 shows 

the UME equation used to calculate the demand of a lactating dairy cow per day: 

𝑈𝑀𝐸𝑡 = 8.3 + 0.091 ∗ 𝑊𝑡 + 4.94 ∗ 𝑌𝑡 Eq.6 

where Wt and Yt indicated the weight and milk yield respectively on day t. 

 

5.3.3 Assessing the profitability of the wood pasture 

The daily comparison of energy produced by the pasture, browse and fruit in kilocalories (MJ) with 

the demanded energy from livestock was used to estimate how much supplementary food as forage, 

concentrates or acorns was needed to meet the livestock demand. Gross and net margins were used 

to assess farm profitability:  

 

Gross margin was defined as the revenue from any product and/or service of the wood pasture (e.g. 

animal sale, wool, milk, firewood and hunting) plus farming subsidies minus variable costs. Variable 

costs were separately measured for the livestock (animal purchase, forage and concentrates, 

veterinary and medicines, bedding and miscellaneous), the crop (seed and plants, fertiliser, crop 
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protection, baling and other costs), and the tree (planting, tree protection, pruning, thinning, cutting 

and other costs (see Equation 7). 

 

Net margin was defined as the gross margin minus labour and rented machinery costs and other 

fixed costs (installation and repairs of infrastructure, fuel and energy, machinery, interest on working 

capital, and other costs) (see Equation 8). 

 

5.3.4 Optimising managerial decisions  

Forage-SAFE includes an optimisation solver to optimise managerial decisions in terms of maximum 

production, or gross or net margin. Thus Forage-SAFE can suggest what tree cover, carrying capacity 

and livestock species composition are optimal, assuming everything else is held constant. Forage-

SAFE used the Generalized Reduced Gradient (GRG) algorithm of the nonlinear solving method as not 

all the equations of the model were linear. The GRG algorithm estimated a ‘locally’ rather than 

‘globally’ optimal solution. Hence there was no other set of values for the decision variables close to 

the current values that yielded a better value for the objective function (maximise production or 

gross and net margin). The objective functions (Equations 7 and 8) used in Forage-SAFE to maximise 

annual gross margin (GM) and net margin (NM), respectively were: 

𝑀𝑎𝑥. 𝐺𝑀 = ∑ ∑ 𝑃𝐼𝑡,𝑐 +

3

𝑐=1

365

𝑡=1

∑ ∑ 𝑆𝐼𝑡,𝑐 − ∑ ∑ 𝑉𝐶𝑡,𝑐

3

𝑐=1

365

𝑡=1

3

𝑐=1

365

𝑡=1

 Eq.7 

𝑀𝑎𝑥. 𝑁𝑀 = 𝐺𝑀 − ∑ ∑ 𝑆𝐶𝑡,𝑐

3

𝑐=1

365

𝑡=1

− ∑ ∑ 𝐹𝐶𝑡,𝑐

3

𝑐=1

365

𝑡=1

 
Eq.8 

where PId,c is the revenue from sale products of the component c (livestock, tree and crop) on day t, 

SI is the revenue from subsidies, VC is the variable costs, SC is the labour and rented machinery costs, 

and FC is other fixed costs. 

 

5.4 Results: an example in a dehesa wood pasture 

A case study in a dehesa in Extremadura, Spain was used to show the applicability of the model. 

Figure 31 shows the daily production, demand, consumption and surplus of pasture, browse and 

acorns in a modelled dehesa wood pasture. The left graph shows the daily energy balance for pasture 

and browse. Production was concentrated between February and early June and to a lesser extent 

between October and December. Likewise there was a surplus of pasture between March and July 

and from October to November. Overall, from early August to early October and from early 

December to late January the provision of food energy from the system did not meet the livestock 

demand. Thus farmers would need to use extra forage or concentrates to satisfy the livestock 

demand.  

 

From early June to late September pasture production was almost negligible. However during this 

period livestock did not need extra forage or concentrates until mid-August due to the surplus of 

pasture that was not consumed in the spring. During the spring, pasture production in treeless areas 

was higher than in areas under tree canopies. However, in early summer the retention of energy in 

the surplus pasture decreased faster in treeless areas than in areas under tree canopy. Thus when 

the pasture was dry with very low energy content in treeless areas, under the tree canopy the 

accumulated pasture was still fresh and provided a source of food for the livestock. This allowed an 

extension of the grazing period without external food. In a similar, but to a lesser extent, this also 
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occurred in the winter when due to protection from frosts the pasture under the tree canopy also 

retained a higher energy content. Browse was also used to feed ruminants in late January and this 

met some of the energy demands.  

 

The right graph shows the production and consumption of acorns. Iberian pigs were in the field from 

November to February coinciding with the period of maximum fruit production. It was assumed that 

pigs would have priority over ruminants, i.e. they would only eat acorns if pigs had previously 

satisfied their demand for acorns. Thus most acorns were used to feed the Iberian pigs. 

(a) 

 

(b) 

 

Figure 31. Produced (dotted lines), consumed (continuous lines), surplus (dashed and dotted line) 
and demanded (dashed lines) energy from pasture, browse and acorn in the dehesa case study at 
0.37 LU ha-1 (39.9% sheep, 38.5% cattle and 21.6% Iberian pigs). Figure (a) shows the daily energy 
balance of pasture and browse, Figure (b) shows the energy balance of acorns.  
 

Table 13 shows the estimated annual food production, consumption and extra requirements of the 

modelled dehesa at a carrying capacity 0.37 LU ha-1 (39.9% sheep, 38.5% cattle and 21.6% Iberian 

pigs) under different tree cover densities. The first part of the table shows annual production pasture 

and acorn. Maximum annual pasture production was attained at 0% tree cover (1465 kg DM ha-1), 

and then decreased as tree cover increased. Acorn production increased with increasing tree cover 

until 50% tree cover beyond which inter-tree competition decreased production. The maximum 

pasture consumption by livestock was reached at 30% percent tree cover (876 kg DM ha-1). Browse 

consumption increased as tree cover increased. The proportion of the energy that was in the pasture 

which was consumed ranged from 60% at no tree cover to 95% at full tree cover. This was mainly the 

low production at full tree cover and due to the energy content in the pasture under tree canopies 

lasted longer than in treeless areas.   

 

The lowest value of extra forage needed to meet livestock demand was 370 kg DM ha-1 in a dehesa 

with 40% tree cover and the highest value was 988 kg DM ha-1 at 100% tree cover. In a treeless 

dehesa the forage needed was 408 kg DM ha-1. Therefore a treeless dehesa needed 10.3% more 

forage than in a dehesa at 40% tree cover. The demand for acorns by Iberian pigs was met by 

ensuring that the tree cover was 20% or above.  
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The highest gross and net margin (183 € ha-1 and 37 € ha-1 respectively) were achieved at 20% tree 

cover. Whilst the gross margin included the revenue from the trees it did not include the associated 

labour costs which were considered in the net margins (e.g. tree planting, pruning and cutting, see 

Equations 1-3).  

 

The estimated net margin at 0% and 10% tree cover negative. This indicated that at the specified 

carrying capacity and livestock composition, the system without trees was not economically 

sustainable. For this reason, at 0% and 10% tree cover the Iberian pigs were replaced by ruminants in 

the analysis. Thus at 0% and 10% tree cover with only ruminants the net margin was 25 € ha-1 and 27 

€ ha-1 respectively. 

 

Table 13. Production, consumption, supplementary needs to satisfy livestock demand and farm 
profitability in the modelled dehesa (0.37 LU ha-1: 39.9% sheep, 38.5% cattle and 21.6% Iberian pigs). 
Bold and underlined figures indicate the best and worst values from a financial perspective. 

(a) Only sheep and cows were considered in the analysis since acorn production did not meet the Iberian pigs 
demand.   

 

5.5 Conclusions 

This paper presents a bio-economic model that assesses the management and economics of wood 

pasture systems. A dehesa case study was selected to show the applicability of Forage-SAFE. The 

model quantified and compared on a daily time-step the energy demanded by livestock and the 

energy provided by the system. It was also used to calculate how much extra forage was needed to 

satisfy the livestock demand and the impact of this on system profitability. The results showed that 

trees in dehesas positively contribute to profitability until a certain density where the benefits start 

to be outweighed by the costs. Hence profitability was reduced by both too little and too much tree 

cover. Although annual pasture production was maximised at 0% tree cover, the combination of 

pasture, browse and acorns was maximised at a tree cover around 40%. In terms of profitability, the 

maximum net margin was reached at around 20% tree cover. The optimal tree density in terms of 

net margin increased as the proportion of Iberian pigs was increased. Hence in conclusion, a daily 

time-step modelling approach based on livestock demand for metabolisable energy and pasture 

production seems to be particularly valuable in quantifying the effect of trees in buffering the strong 

seasonality of pasture growth and in terms of assessing its effect on profitability. 

Indicator 
Tree cover (%) 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Production            

Pasture (kg DM ha
-1

) 1465 1431 1397 1363 1328 1279 1181 1010 781 529 281 

Acorns (kg ha
-1

) 0 134 263 374 454 493 492 460 409 350 290 

Consumption            

Pasture (kg DM ha
-1

) 874 875 876 876 875 870 848 799 705 502 267 

Browse (kg DM ha
-1

) 0 3 5 8 10 13 15 18 20 23 26 

Acorns (kg ha
-1

) 0 107 210 270 276 281 286 286 284 265 229 

Extra supplementary needs          

Forage needed (kg DM ha
-1

) 408 406 400 372 370 372 389 436 528 738 988 

Acorns needed (kg ha
-1

)  201 94 0 0 0 0 0 0 0 0 0 

Farm profitability            

Gross margin (€ ha
-1

) 124
 a

 129
 a

 183 181 179 177 175 173 159 118 70 

Net margin (€ ha
-1

) 25
 a

 27
 a

 37 33 29 24 20 16 1 -43 -93 
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6 Up-scaling: from farm to regional scale 

This section presents a methodology developed to up-scale farm-level results to the regional level. 

The region of Britany (France) was used as a case study to show the applicability of the approach (see 

location in Figure 32).  

 

Figure 32. Location of Britany region in France 
 

6.1 Land-use cover at regional scale 

Before undertaking the up-scaling approach it was necessary to assess the current land-use cover at 

the regional level. The CORINE land cover dataset was used to identify the geographical location of 

the different land uses.  Figure 33 shows the location of the different land uses in Brittany. Table 14 

shows the codes and description of the CORINE land uses. 

 

 
Figure 33. Land use cover in Brittany. The legend on the right shows the CORINE codes which are 
described in Table 14. Source: CORINE land cover. 
 

Figure 34 shows the area measured in hectares occupied by the CORINE land uses in Brittany. As 

shown, ‘Non-irrigated arable land’ was the most common land use in Brittany. ‘Non-irrigated arable 

land’ includes cereals, legumes, fodder crops, root crops and fallow land, and does not include 

permanent pasture. The second most common land use in Brittany was ‘Complex cultivation 

patterns’ which is when small parcels of different land uses such as annual crops, pasture and/or 

permanent crops are juxtaposed in a small space. The third most common was ‘Pastures’ which 

CORINE land use cover in  Brittany
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includes dense grass cover of floral composition dominated by graminaceae and not under a rotation 

system. 

 

Table 14. Codes and description of the CORINE land uses 
CORINE 
codes 

Description   

1 Continuous urban fabric 23 Broad-leaved forest 
2 Discontinuous urban fabric 24 Coniferous forest 
3 Industrial or commercial units 25 Mixed forest 
4 Road and rail networks and associated land 26 Natural grasslands 
5 Port areas 27 Moors and heathland 
6 Airports 29 Transitional woodland-shrub 
7 Mineral extraction sites 30 Beaches, dunes, sands 
8 Dump sites 35 Inland marshes 
9 Construction sites 36 Peat bogs 
10 Green urban areas 37 Salt marshes 
11 Sport and leisure facilities 39 Intertidal flats 
12 Non-irrigated arable land 40 Water courses 
16 Fruit trees and berry plantations 41 Water bodies 
18 Pastures 42 Coastal lagoons 
20 Complex cultivation patterns 43 Estuaries 
21 Agriculture land, with areas of natural vegetation 44 Sea and ocean 

 

 

Figure 34. Area (ha) occupied by the CORINE land uses in Brittany.  
 

6.2 Assessing farm profitability 

The Farm Accountancy Data Network (FADN) was used to estimate farm profitability in Brittany. The 

CORINE land cover was used to geographically locate the farm profitability data from FADN. Gross 

and Net Margin of agricultural land uses were used as indicators of farm profitability. Figure 35 

shows the gross margin (€ ha-1 year-1) of farms in Brittany including the following farm types: (15) 

Specialist cereals, oilseeds and protein (COP) crops, (48) Specialist sheep and goats, (49) Specialist 

cattle, (60) Mixed crops, and (80) Mixed crops and livestock. 

   

Although these values notably vary throughout time the results show that the gross margin in farms 

in Brittany ranges from 674 € ha-1 year-1 in farms specialised in cereals, oilseeds and protein crops to 

1,149 € ha-1 year-1 in farms specialised in cattle production (Figure 35). The estimated average farm 

gross margin in Brittany was around 904 € ha-1 year-1. Although the geographical distribution of the 
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gross margin in Brittany seems to be very heterogeneous the results seems to indicate that farms in 

north-eastern Brittany are slightly more profitable.  Figure 36 shows the net margin (€ ha-1 year-1) of 

farms in Brittany. The net margin ranges from 114 € ha-1 year-1 in some farms specialised in cattle 

production, to 168 € ha-1 year-1 for farms specialised in cereals, oilseeds and protein crops, and to 

653 € ha-1 year-1 in farms specialised in mixed crops. The estimated average farm gross margin in 

Brittany was around 389 ha-1 year-1. 

 

 

Figure 35. Gross margin of farms in Brittany. Source FADN and CORINE land cover. 
 

 

 

Figure 36. Net margin of farms in Brittany. Source FADN and CORINE land cover. 
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6.3 Calculating soil erosion loss by water at regional scale 

The report shows an approach to estimate the effect of increasing tree cover at regional scale. This 

can be applied to assess multiple ecosystem services. In this report only one regulating ecosystem 

service (the effect on reducing soil erosion losses by water) is evaluated. Soil erosion loss was 

assessed using the RUSLE equation (A = R * K * LS * C * P). A is the estimated average soil loss in tons 

per hectare per year; R is the rainfall-runoff erosivity factor; K is the soil erodibility factor; L is the 

slope length factor; S is the slope steepness factor; C is the cover-management factor; P is the 

support practice factor. Figure 37 shows the factors used in the RUSLE equation for calculating soil 

erosion losses by water in Brittany (data taken from the European Soil Data Centre).  
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Figure 37. Factors of the RUSLE equation for calculating soil erosion losses by water in Brittany (data 
taken from the European Soil Data Centre) 
 

Figure 38 shows the estimated current soil erosion losses by water in Brittany. The range of soil 

erosion losses was between 0  t ha-1 year-1  and 341 t ha-1 year-1  with a mean and median value of 

2.22 t ha-1 year-1  and 1.55 t ha-1 year-1, respectively.  

 

 

 

Figure 38. Current soil erosion loss by water in Brittany. Source: Soil European Data Centre. 
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6.4 Identifying potential areas for adopting agroforestry  

The next step in assessing the regional effect of increasing agroforestry in Brittany was to identify 

potential areas where increasing the tree cover could be more cost-effective. It was assumed that 

treeless areas would be where the introduction of trees could provide most benefit. 

 

Scenarios for the introduction of trees were developed. Instead of changing current land use, the 

scenarios considered different tree cover densities whilst maintaining the extent of current land use.  

This is because it was considered that introducing trees without changing the current land use would 

be the most likely scenario to occur. Figure 39 shows the frequency of tree cover in arable and 

pasture land in Brittany (including complex cultivation patterns, non-irrigated arable land, agriculture 

land, with areas of natural vegetation and pastures). As shown, most arable and pasture land is 

treeless in Brittany. This treeless area was identified as the area where trees should be planted. 

Figure 40 shows the geographical location of the tree cover categories in Brittany where the overall 

tree cover density is 5.87%.  

  

Figure 39. Frequency of tree cover density in arable and pasture land in Brittany. 
 

 

Figure 40. Tree cover in arable and pasture land in Brittany. 
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6.5 Assessing the effect of increasing tree cover in arable and pasture land  

This section shows the effect of increasing tree cover on soil erosion losses at a regional scale. 

Several scenarios for increasing tree cover in treeless area on the arable and pasture land with 0% 

tree cover were developed.  

 

6.5.1 Increasing tree cover in arable land 

In order to evaluate the effect of increasing tree cover at a regional scale, it is important to assess the 

effect at the plot level for the whole rotation of the trees. The RUSLE equation was used to 

dynamically evaluate the effect of introducing trees on soil erosion at the plot scale. When 

comparing soil loss in arable, forestry and silvoarable systems in the same geographical area, the 

factors R, K, LS and P were considered constant and only changes in the C-factor were used to assess 

the differences among the systems. Figure 41 shows the effect of introducing trees on the C factor, 

where the tree area was assumed to be 5%.  The graph shows how the introduction of trees in arable 

land reduced the C factor from 0.221 to 0.172 (a decrease of 22% in the C factor).  

 

 

Figure 41. Modelled C factor of the RUSLE equation in arable land (a rotation of wheat, wheat, barley 
and oilseed rape), forestry (poplar plantation) and agroforestry (alley cropping silvoarable system 
with poplar and a rotation of wheat, wheat, barley and oilseed rape). 
 

The next step was to up-scale from the plot level to the regional level. In doing so, four different 

scenarios were evaluated for the arable land in Brittany: 

(1) Status quo (no changes applied) 

(2) Increasing tree cover by 5% on 25% of treeless arable land 

(3) Increasing tree cover by 5% on 50% of treeless arable land 

(4) Increasing tree cover by 5% on 100% of treeless arable land 

The selection of target land, within the treeless arable land area, where the tree cover would 

increase, was randomly selected through random samples. Figure 42 shows the identified scenarios 

in arable land in Brittany.    
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a) Status quo (no changes applied) 
 

 

b) Increasing tree cover in 25% of treeless 
arable land 

 

c) Increasing tree cover in 50% of treeless 
arable land 

 

d) Increasing tree cover in 100% of treeless 
arable land 

 

 

Figure 42. Scenarios identifying potential area in ‘Non-irrigated arable land’ to increase tree cover 
density. 
 

Once the effect of increasing tree cover at the plot scale and the areas where tree cover might be 

increase were identified, the calculation at the regional level was done using the RUSLE equation. 

Figure 43 shows the effect of increasing tree cover on reducing soil erosion losses at the regional 

scale. In the status quo scenario, mean annual soil erosion losses were 2.22 t ha-1 year-1. Soil erosion 
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losses were reduced by 2.2%, 4.4% and 8.8% where a 5% increase in tree cover occurred on 25%, 

50% and 100% of treeless arable land, respectively. 

 

a) Status quo (no changes applied) 

 

b) Increasing tree cover in 25% of treeless arable land 

 
 

c) Increasing tree cover in 50% of treeless arable land 

 

d) Increasing tree cover in 100% of treeless arable land 

 

 
Figure 43. Scenarios showing the effect of increasing tree cover density by 5% on reducing soil 
erosion losses by water on 25%, 50% and 100% of non-irrigated arable land in Brittany. 
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6.5.2 Increasing tree cover in pasture land 

Figure 44 shows the effect of introducing trees on the C factor. The graph shows at the plot scale 

how the introduction of trees at 5% cover in pasture land reduced the C factor from 0.1 to 0.079 (a 

decrease by 21% in the C factor).  

 

 

Figure 44. Modelled C factor of the RUSLE equation in pasture land, forestry (poplar plantation) and 
agroforestry (pasture with trees). 
 

Four different scenarios were evaluated in pasture land in Brittany: 

(1) Status quo (no changes applied) 

(2) Increasing tree cover by 5% on 25% of treeless pasture land 

(3) Increasing tree cover by 5% on 50% of treeless pasture land 

(4) Increasing tree cover by 5% on 100% of treeless pasture land 

Figure 45 shows the identified scenarios in pasture land in Brittany. 
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a) Status quo (no changes applied) 
 

 

b) Increasing tree cover in 25% of treeless 
arable land 

 

c) Increasing tree cover in 50% of treeless 
arable land 

 

d) Increasing tree cover in 100% of treeless 
arable land 

 

 

Figure 45. Scenarios identifying potential area in ‘Pastures’ to increase tree cover density. 
 
Figure 46 shows the effect of a 5% increase in tree cover on reducing soil erosion losses at the 

regional level.  In the current status quo scenario, mean annual soil erosion losses were 2.22 t ha-1 

year-1. The results show that soil erosion losses would be reduced by 0.3%, 0.6% and 1.1% in the 

scenarios of increasing tree cover in 25%, 50% and 100% of treeless pasture land, respectively. 
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a) Status quo (no changes applied) 

 

b) Increasing tree cover in 25% of treeless pasture land 

 
c) Increasing tree cover in 50% of treeless pasture land 

 

d) Increasing tree cover in 100% of treeless pasture land 

 

 
Figure 46. Scenarios showing the effect of increasing tree cover density by 5% on reducing soil 
erosion losses by water on 25%, 50% and 100% of pasture land in Brittany. 
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6.6 Estimating the economic effect at regional level  

The last step in the methodology was to estimate the economic value of reducing soil erosion losses 

at the regional level. Thus the estimated soil erosion losses for Brittany were converted into 

monetary terms. 

 

Since erosion costs could not be identified for Brittany, this study uses soil erosion costs developed 

for the UK by Graves et al. (2015).  Based on Graves et al. (2015) the value of soil erosion losses was 

based on the annual off-site cost of dredging of water courses. Jacobs (2008) estimated an annual 

off-site cost of dredging water courses in England and Wales of €12.9 million with an agricultural 

apportionment of 95%, giving a total cost (adjusted to 2009 prices) of €12.2 million. As Anthony et al. 

(2009) reported a sediment load of 1.9 million t year−1 a unit cost of removal of around €6.41 t−1 

sediment was estimated. 

 

Table 15 shows the estimated costs of soil erosion losses in Brittany under the different scenarios. As 

shown, the costs saved by increasing tree cover in the evaluated scenarios in Brittany ranged from 

104,000 € year-1 when only 25% of treeless pasture land was considered, to 3,538,000 € year-1 when 

100% of treeless pasture and arable land was considered. The results also show that increasing tree 

cover density has a greater effect on arable land than on pasture land. This is likely to be because in 

Brittany the arable area is greater than the pasture area. 

 

Table 15. Estimated saved costs by reducing soil erosion losses as a result of increasing tree cover in 
Brittany 
 

 a) Status quo 
(no changes 

applied) 

b) Increasing 
tree cover  
on 25% of 

treeless land 

c) Increasing 
tree cover on 

50% of 
treeless land 

d) Increasing  
tree cover on 

100% of  
treeless land 

Increasing tree cover in arable land   
Soil erosion losses (million t soil year

-1
) 5.563 5.441 5.318 5.075 

Estimated cost (million € year
-1

) 35.660 34.879 34.087 32.529 
Relative reduction (%) 0.00 2.19 4.41 8.78 
Saved costs (€ year

-1
) 0.000 781,000 1,573,000 3,131,000 

Increasing tree cover in pasture land   
Soil erosion losses (million t soil year

-1
) 5.563 5.547 5.531 5.500 

Estimated cost (million € year
-1

) 35.660 35.556 35.456 35.253 
Relative reduction (%) 0.00 0.29 0.57 1.14 
Saved costs (€ year

-1
) 0.000 104,000 204,000 407,000 

Increasing tree cover in arable and pasture land   
Soil erosion losses (million t soil year

-1
) 5.563 5.425 5.286 5.011 

Estimated cost (million € year
-1

) 35.660 34.775 33.884 32.122 
Relative reduction (%) 0.00 2.48 4.98 9.92 
Saved costs (€ year

-1
) 0.000 885,000 1,776,000 3,538,000 
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7 Conclusions 

Financial analyses can quantify the benefits and costs of different land management practices from a 

farmer’s perspective, but this does not necessarily reflect the full benefits and costs to society. 

Including environmental externalities in the assessment helps highlight the most appropriate land 

use decisions from a societal perspective.  

 

This report presents results of the financial performance of arable, forestry and agroforestry systems 

in six case studies in Europe. It also presents some model improvements developed in Farm-SAFE in 

order to assess key environmental externalities from agricultural, forestry and agroforestry activities. 

More case studies and model improvements will continue to be being developed within the 

AGFORWARD project. 

 

In the examples selected from the UK and Switzerland, including carbon sequestration and emission 

cost tended to reduce the value of conventional arable system relative to agroforestry and forestry. 

In the UK case study, a part from carbon sequestration and emission cost, the externalities of soil 

erosion loss by water, and nitrogen and phosphorous surplus were considered. When these 

externalities are considered in the economic assessment, the relative societal benefit of the 

agroforestry or forestry system in comparison with the arable system is enhanced. Thus it could be 

argued that to compensate for this increase in the provision of environmental services in comparison 

with the arable system, forestry and agroforestry farmers should receive some sort of transfer 

payments such as subsidies.  These transfer payments would represent a redistribution of income 

that would help internalise the environmental externalities of land-use activities. 

 

This report also presents Forage-SAFE, a bio-economic model that assesses the management and 

economics of wood pasture systems. The model quantified and compared on a daily time-step, the 

energy required by livestock and the energy provided by the wood pasture system. It was used to 

calculate how much additional forage would be needed to satisfy livestock demand, and this had 

economic impacts on the profitability of the system.  

 

The results for the dehesa case study showed that trees provided revenue that outweighed their 

costs up to a certain density threshold.  Excessive or sparse tree cover was found to lead to 

unnecessary farm costs and reduced profitability.  The results showed that at 0% tree cover the 

annual pasture production was maximised. However, when pasture, browse and acorns were 

considered together, the maximum production of metabolisable energy was reached at a tree cover 

approximately 35%.  In terms of profitability, the maximum net margin including unpaid labour was 

reached at approximately 18%. This estimate increased as the proportion of Iberian pigs was 

increased. The use of Forage-SAFE has shown that a daily time-step modelling approach based on 

livestock demand for metabolisable energy and pasture, browse, and acorn production can be used 

to quantify the buffering effects of trees on the strong seasonality of pasture growth in order to 

study the economic implications. 

 

Finally, in the case study of Brittany, this report has shown an innovative approach of how plot and 

farm scale modelling outputs can be up-scaled to larger regional scales. The results show that 

increasing tree cover in treeless areas in pasture and arable land could provide significant economic 

benefits when externalities are evaluated at a regional level. 
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10 Appendix 

10.1 Arable data  

Table A.1. Arable financial data in Bedfordshire, UK 
D1.  
Metadata 

Country and region None Bedfordshire 
UK 

Bedfordshire 
UK 

Bedfordshire 
UK 

Bedfordshire 
UK 

Bedfordshire 
UK 

 Crop name  Wheat Wheat Barley Oilseed Fallow 

D2.  Grain price (€/t) 173.6111 173.6111 159.7222 361.1111 0 

Revenue By-product 1 (€/t) 37.5 37.5 55 0 0 

 Area payment (€/ha) 235.2 235.2 235.2 235.2 235.2 

D3.  Seed price (€/kg) 0.444444 0.638889 0.472222 10.11111 0 

Variable  Seed rate (kg/ha) 150 170 155 5 0 

costs Fertiliser price (€/kg N) 1.138889 1.138889 1.138889 1.138889 0 

  (€/kg P) 0.902778 0.902778 0.902778 0.902778 0 

  (€/kg K) 0.625 0.625 0.625 0.625 0 

  (€/kg  
Manure) 

0 0 0 0 0 

  (€/kg  
Limestone) 

0 0 0 0 0 

 Fertiliser rate (kg N/ha) 175 195 145 200 0 

  (kg P/ha) 60 65 55 55 0 

  (kg K/ha) 90 105 80 45 0 

  (€/kg Manure) 0 0 0 0 0 

  (kg  
Limestone/ha) 

0 0 0 0 0 

 Spray price (€/application) 298.6111 326.3889 222.2222 277.7778 0 

 Spray rate (app/ha) 1 1 1 1 0 

 Other price (€/unit) 0 0 0 0 0 

 Other rate (units/ha) 0 0 0 0 0 

 Aggregate variable cost 
if no breakdown 

(€/ha) 0 0 0 0 20 

 Total variable costs (€/ha) 675 781.3889 560.2083 633.8889 20 

D3. Fixed  Fuel and repairs (€/ha) 78.9412 78.9412 78.9412 78.9412 78.9412 

costs Machinery (€/ha) 0 0 0 0 0 

 Interests on working 
capital 

(€/ha) 0 0 0 0 0 

 General costs (€/ha) 0 0 0 0 0 

 Installation costs (€/ha) 0 0 0 0 0 

 Rent (€/ha) 0 0 0 0 0 

 Other 1 (€/ha) 0 0 0 0 0 

 Other 2 (€/ha) 34.72222 30.55556 27.77778 25 0 

 Labour  -Cultivation (hr/ha) 2.58419 2.58419 2.58419 2.58419 4.356899 

 Labour  -Spraying (hr/ha) 0.136503 0.136503 0.136503 0.136503 0 

 Labour  -Fertilizing (hr/ha) 0.136503 0.136503 0.136503 0.136503 0 

 Labour  - Harvesting (hr/ha) 1.805317 1.805317 1.805317 1.805317 0 

 Labour  - Straw baling (hr/ha) 0.555369 0.555369 0.555369 0.555369 0 

 Labour input farm 
operations 

(hr/ha) 0 0 0 0 0 

 Labour Yield dependant (h/t) 0.5706 0.5706 0.5706 0.5706 0 

 Labour Straw dependant (h/t) 0.190476 0.190476 0.190476 0.190476 0 

 Total Labour Time (hr/ha) 5.978958 5.978958 5.978958 5.978958 4.356899 

 Labour cost farm 
operations 

(€/h) 14.6 14.6 14.6 14.6 14.6 

 Labour cost expert  (€/h) 0 0 0 0 0 

 Labour cost other (€/h) 0 0 0 0 0 

 Total Labour Cost Total (€/ha) 37.72917 37.72917 37.72917 37.72917 63.61073 

 Aggregate fixed cost if 
no breakdown 
(excluding labour) 

(€/ha) 444.4444 444.4444 444.4444 444.4444 0 

 Total fixed costs 
(excluding labour) 

(€/ha) 444.4444 444.4444 444.4444 444.4444 78.9412 

 Net margin (no 
production) 

(€/ha) -884.244 -990.633 -769.453 -843.133 136.2588 
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Table A.2. Arable financial data in Schwarzbubenland and Zurich, Switzerland 

Country and region None Switzerland Switzerland Switzerland Zurich 
Switz-
erland 

Zurich 
Switzer-
land 

Zurich 
Switzer-
and 

Zurich 
Switzer-
land 

Zurich 
Switzer-
land 

Crop name  Establishment 
grass  

Maintenance 
grass - 
Harvest 

Maintenance 
grass - No 
Harvest 

Fallow Wheat Oilseed Grassland-
ext 

Grassland 

Grain price (€/t) 52.9 52.9 52.9 0 590 800 0 354.1667 

By-product 1 (€/t) 0 0 0 0 116 0 0 0 

Area payment (€/ha) 372.6 372.6 372.6 1040 1804 3201 1040 1040 

Seed price (€/kg) 10.58 0 0 0 0 0 0 0 

Seed rate (kg/ha) 32.5 0 0 0 0 0 0 0 

Fertiliser price (€/kg N) 0 0 0 0 0 0 0 0 

 (€/kg P) 0 0 0 0 0 0 0 0 

 (€/kg K) 0 0 0 0 0 0 0 0 

 (€/kg  
Manure) 

0 0 0 0 0 0 0 0 

 (€/kg  
Limestone) 

0 0 0 0 0 0 0 0 

Fertiliser rate (kg N/ha) 0 0 0 0 175 200 0 0 

 (kg P/ha) 0 0 0 0 60 55 0 0 

 (kg K/ha) 0 0 0 0 90 45 0 0 

 (€/kg  
Manure) 

36000 36000 36000 0 0 0 0 0 

 (kg  
Limestone/ha) 

0 0 0 0 0 0 0 0 

Spray price (€/application) 0 0 0 0 298.6111 277.7778 0 0 

Spray rate (app/ha) 0 0 0 0 1 1 0 0 

Other price (€/unit) 0 0 0 0 0 0 0 0 

Other rate (units/ha) 0 0 0 0 0 0 0 0 

Aggregate variable cost if no breakdown (€/ha) 0 0 0 0 1182 1462 0 0 

Total variable costs (€/ha) 343.85 0 0 0 1182 1462 0 0 

Fuel and repairs (€/ha) 0 0 0 125 1591 1366 371.4286 2677.815 

Machinery (€/ha) 0 0 0 0 0 0 0 0 

Interests on working capital (€/ha) 0 0 0 0 0 0 0 0 

General costs (€/ha) 0 0 0 0 0 0 0 0 

Installation costs (€/ha) 0 0 0 0 0 0 0 0 

Rent (€/ha) 0 0 0 0 0 0 0 0 

Other 1 (€/ha) 116.012 116.012 29.44 718 718 718 718 718 

Other 2 (€/ha) 143.52 143.52 143.52 795 791 784 795 795 

Labour  -Cultivation (hr/ha) 5.170372 2.688982 0.204364 2.313263 2.58419 2.58419 2.58419 2.917523 

Labour  -Spraying (hr/ha) 0 0 0 0 0.136503 0.136503 0.136503 0.136503 
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Labour  -Fertilizing (hr/ha) 0.13437 0.13437 0 0 0.136503 0.136503 0.136503 0.136503 

Labour  - Harvesting (hr/ha) 0 1.805317 0 0 1.805317 1.805317 1.805317 1.805317 

Labour  - Straw baling (hr/ha) 0 0 0 0 0.555369 0.555369 0.555369 0.555369 

Labour input farm operations (hr/ha) 0 0 0 0 0 0 0 0 

Labour Yield dependant (h/t) 0 0.5706 0 0 0.5706 0.5706 0.5706 0.5706 

Labour Straw dependant (h/t) 0 0 0 0 0.190476 0.190476 0.190476 0.190476 

Total Labour Time (hr/ha) 5.304743 5.199269 0.204364 1.19 34 29 14.29 22.26 

Labour cost farm operations (€/h) 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.76 

Labour cost expert  (€/h) 25.76 25.76 25.76 0 0 0 0 0 

Labour cost other (€/h) 25.76 25.76 25.76 0 0 0 0 0 

Total Labour Cost Total (€/ha) 133.1888 83.96683 5.264407 59.58966 66.56873 66.56873 66.56873 75.1554 

Aggregate fixed cost if no breakdown (excluding labour) (€/ha) 0 0 0 0 0 0 0 0 

Total fixed costs (excluding labour) (€/ha) 259.532 259.532 172.96 1638 3100 2868 1884.429 4190.815 

Net margin (no production) (€/ha) -230.782 113.068 199.64 -598 -2478 -1129 -844.429 -3150.82 
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Table A.3. Arable financial data in Neu Sacro, Germany 
 Country and region None Neu Sacro 

Germany 
arable 

Neu Sacro 
Germany 
arable 

Neu Sacro 
Germany 
agroforestry 

Neu Sacro 
Germany 
agroforestry 

 Crop name Sugar beet Wheat Sugar beet Wheat 

D2. Revenue Grain price (€/t) 38.5 260 38.5 260 

 By-product 1 (€/t) 0 0 0 0 

 Area payment (€/ha) 160 160 142.4 142.4 

D3. Variable 
costs 

Seed price (€/kg) 208 0.55 208 0.55 

 Seed rate (kg/ha) 1 110 1 110 

 Fertiliser price (€/kg N) 1.34 1.34 1.34 1.34 

  (€/kg P) 1.1 1.1 1.1 1.1 

  (€/kg K) 0.94 0.94 0.94 0.94 

  (€/kg Manure) 0 0 0 0 

  (€/kg  
Limestone) 

0.0535 0.0535 0.0535 0.0535 

 Fertiliser rate (kg N/ha) 67.5 114 67.5 114 

  (kg P/ha) 80 65 80 65 

  (kg K/ha) 160 115 160 115 

  (€/kg  
Manure) 

0 0 0 0 

  (kg  
Limestone/ha) 

700 400 700 400 

 Spray price (€/application) 227.25 312.5 227.25 312.5 

 Spray rate (app/ha) 1 1 1 1 

 Other price (€/unit) 0 0 0 0 

 Other rate (units/ha) 0 0 0 0 

 Aggregate variable cost if no 
breakdown 

(€/ha) 0 0 0 0 

 Total variable costs (€/ha) 801.55 726.76 801.55 726.76 

D3. Fixed 
costs 

Fuel and repairs (€/ha) 30 30 30 30 

 Machinery (€/ha) 430 163 430 163 

 Interests on working capital (€/ha) 75 75 75 75 

 General costs (€/ha) 0 0 0 0 

 Installation costs (€/ha) 0 0 0 0 

 Rent (€/ha) 350 350 350 350 

 Other 1 (€/ha) 0 20 0 20 

 Other 2 (€/ha) 0 0 0 0 

 Labour  -Cultivation (hr/ha) 2.741192 2.741192 2.741192 2.741192 

 Labour  -Spraying (hr/ha) 0.136503 0.136503 0.136503 0.136503 

 Labour  -Fertilizing (hr/ha) 0.136503 0.136503 0.136503 0.136503 

 Labour  - Harvesting (hr/ha) 7 1.805317 7 1.805317 

 Labour  - Straw baling (hr/ha) 0 0 0 0 

 Labour input farm operations (hr/ha) 0 0 0 0 

 Labour Yield dependant (h/t) 0 0.5706 0 0.59913 

 Labour Straw dependant (h/t) 0 0 0 0 

 Total Labour Time (hr/ha) 10.0142 5.390116 10.51491 5.689578 

 Labour cost farm operations (€/h) 17.5 17.5 17.5 17.5 

 Labour cost expert  (€/h) 0 0 0 0 

 Labour cost other (€/h) 0 0 0 0 

 Total Labour Cost Total (€/ha) 47.97086 47.97086 47.97086 47.97086 

 Aggregate fixed cost if no 
breakdown (excluding labour) 

(€/ha) 0 0 0 0 

 Total fixed costs (excluding 
labour) 

(€/ha) 885 638 885 638 

 Net margin (no production) (€/ha) -1526.55 -1204.76 -1544.15 -1222.36 
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Table A.4. Arable financial data in Cambridgeshire, UK 
 Country and region None Cambridgeshire 

UK organic 

 Crop name Wheat 

D2. Revenue Grain price (€/t) 226 

 By-product 1 (€/t) 0 

 Area payment (€/ha) 185.6731 

D3. Variable 
costs 

Seed price (€/kg) 0.513636 

 Seed rate (kg/ha) 220 

 Fertiliser price (€/kg N) 0 

  (€/kg P) 0 

  (€/kg K) 0 

  (€/kg Manure) 26 

  (€/kg Limestone) 0 

 Fertiliser rate (kg N/ha) 0 

  (kg P/ha) 0 

  (kg K/ha) 0 

  (€/kg Manure) 1 

  (kg Limestone/ha) 0 

 Spray price (€/application) 163 

 Spray rate (app/ha) 1 

 Other price (€/unit) 0 

 Other rate (units/ha) 0 

 Aggregate variable cost if no breakdown (€/ha) 0 

 Total variable costs (€/ha) 302 

D3. Fixed costs Fuel and repairs (€/ha) 213 

 Machinery (€/ha) 0 

 Interests on working capital (€/ha) 0 

 General costs (€/ha) 0 

 Installation costs (€/ha) 0 

 Rent (€/ha) 0 

 Other 1 (€/ha) 31 

 Other 2 (€/ha) 14 

 Labour  -Cultivation (hr/ha) 0 

 Labour  -Spraying (hr/ha) 0 

 Labour  -Fertilizing (hr/ha) 0 

 Labour  - Harvesting (hr/ha) 0 

 Labour  - Straw baling (hr/ha) 0 

 Labour input farm operations (hr/ha) 0 

 Labour Yield dependant (h/t) 0 

 Labour Straw dependant (h/t) 0 

 Total Labour Time (hr/ha) 0 

 Labour cost farm operations (€/h) 0 

 Labour cost expert  (€/h) 0 

 Labour cost other (€/h) 0 

 Total Labour Cost Total (€/ha) 0 

 Aggregate fixed cost if no breakdown 
(excluding labour) 

(€/ha) 0 

 Total fixed costs (excluding labour) (€/ha) 258 

 Net margin (no production) (€/ha) -374.327 
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Table A.5. Arable financial data in Extremadura Spain 
D1.  
Metadata 

Country and region  Extremadura 
Spain 

Extremadura 
Spain 

Extremadura 
Spain 

 Crop name  Oats mono 
(+grazing) 

Pasture 
mono 

Pasture mono 
dehesa 

D2. 
Revenue 

Grain price (€/t) 159.1707 159.1707 159.1707 

 By-product 1 (€/t) 92.84955 92.84955 92.84955 

 Area payment (€/ha) 186.7555 107 0 

D3 Seed price (€/kg) 0 0 0 

Variable Seed rate (kg/ha) 0 0 0 

costs Fertiliser price (€/kg N) 0 0 0 

  (€/kg P) 0 0 0 

  (€/kg K) 0 0 0 

  (€/kg Manure) 0 0 0 

  (€/kg  
Limestone) 

0 0 0 

 Fertiliser rate (kg N/ha) 0 0 0 

  (kg P/ha) 0 0 0 

  (kg K/ha) 0 0 0 

  (€/kg  
Manure) 

0 0 0 

  (kg  
Limestone/ha) 

0 0 0 

 Spray price (€/application) 0 0 0 

 Spray rate (app/ha) 0 0 0 

 Other price (€/unit) 0 0 0 

 Other rate (units/ha) 0 0 0 

 Aggregate variable cost if no 
breakdown 

(€/ha) 200.7416 47.7 47.7 

 Total variable costs (€/ha) 200.7416 47.7 47.7 

D3. Fixed 
costs 

Fuel and repairs (€/ha) 78.9412 78.9412 78.9412 

 Machinery (€/ha) 0 0 0 

 Interests on working capital (€/ha) 0 0 0 

 General costs (€/ha) 0 0 0 

 Installation costs (€/ha) 0 0 0 

 Rent (€/ha) 0 0 0 

 Other 1 (€/ha) 0 0 0 

 Other 2 (€/ha) 34.72222 34.72222 34.72222 

 Labour  -Cultivation (hr/ha) 2.509866 2.509866 2.509866 

 Labour  -Spraying (hr/ha) 0.136503 0.136503 0.136503 

 Labour  -Fertilizing (hr/ha) 0.136503 0.136503 0.136503 

 Labour  - Harvesting (hr/ha) 1.805317 1.805317 1.805317 

 Labour  - Straw baling (hr/ha) 0 0 0 

 Labour input farm operations (hr/ha) 0 0 0 

 Labour Yield dependant (h/t) 0.5706 0.5706 0.5706 

 Labour Straw dependant (h/t) 0 0 0 

 Total Labour Time (hr/ha) 5.158789 5.158789 5.158789 

 Labour cost farm operations (€/h) 0 0 0 

 Labour cost expert  (€/h) 0 0 0 

 Labour cost other (€/h) 0 0 0 

 Total Labour Cost Total (€/ha) 0 0 0 

 Aggregate fixed cost if no 
breakdown (excluding labour) 

(€/ha) 0 0 0 

 Total fixed costs (excluding labour) (€/ha) 113.6634 113.6634 113.6634 

 Net margin (no production) (€/ha) -127.65 -54.3634 -161.363 
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Table A.6. Arable financial data in Restinclières, France 
 Country and region None Restinclières 

France 
Restinclières 
France 

Restinclières 
France 

Restinclières 
France 

Restinclières 
France 

 Crop name Wheat Oilseed Setaside Sunflower Fallow 

D2. 
Revenue 

Grain price (€/t) 110 220 0 280 0 

 By-product 1 (€/t) 30 0 0 0 0 

 Area payment (€/ha) 340 360 337 360 0 

D3. 
Variable 
costs 

Seed price (€/kg) 0.265 10.6 5 1.36 0 

 Seed rate (kg/ha) 200 5 3 70 0 

 Fertiliser price (€/kg N) 0.2 0.2 0 0.2 0 

  (€/kg P) 0 0 0 0 0 

  (€/kg K) 0 0 0 0 0 

  (€/kg  
Manure) 

0 0 0 0 0 

  (€/kg  
Limestone) 

0 0 0 0 0 

 Fertiliser rate (kg N/ha) 680 645 0 110 0 

  (kg P/ha) 0 0 0 0 0 

  (kg K/ha) 0 0 0 0 0 

  (€/kg  
Manure) 

0 0 0 0 0 

  (kg  
Limestone/ha) 

0 0 0 0 0 

 Spray price (€/application) 36 34 0 24 0 

 Spray rate (app/ha) 3 4 0 2 0 

 Other price (€/unit) 0 0 0 0 0 

 Other rate (units/ha) 0 0 0 0 0 

 Aggregate variable cost 
if no breakdown 

(€/ha) 0 0 0 0 0 

 Total variable costs (€/ha) 297 318 15 165.2 0 

D3. Fixed 
costs 

Fuel and repairs (€/ha) 90 90 90 90 0 

 Machinery (€/ha) 0 0 0 0 0 

 Interests on working 
capital 

(€/ha) 0 0 0 0 0 

 General costs (€/ha) 0 0 0 0 0 

 Installation costs (€/ha) 0 0 0 0 0 

 Rent (€/ha) 0 0 0 0 0 

 Other 1 (€/ha) 55 55 55 55 0 

 Other 2 (€/ha) 78 78 78 78 0 

 Labour  -Cultivation (hr/ha) 2.58419 2.58419 0 2.58419 2.313263 

 Labour  -Spraying (hr/ha) 0.136503 0.136503 0 0.136503 0 

 Labour  -Fertilizing (hr/ha) 0.136503 0.136503 0 0.136503 0 

 Labour  - Harvesting (hr/ha) 1.805317 1.805317 0 1.805317 0 

 Labour  - Straw baling (hr/ha) 0.555369 0.555369 0 0.555369 0 

 Labour input farm 
operations 

(hr/ha) 0 0 0 0 0 

 Labour Yield 
dependant 

(h/t) 0.5706 0.5706 0 0.5706 0 

 Labour Straw 
dependant 

(h/t) 0.190476 0.190476 0 0.190476 0 

 Total Labour Time (hr/ha) 5.978958 5.978958 0 5.978958 2.313263 

 Labour cost farm 
operations 

(€/h) 0 0 0 0 0 

 Labour cost expert  (€/h) 0 0 0 0 0 

 Labour cost other (€/h) 0 0 0 0 0 

 Total Labour Cost Total (€/ha) 0 0 0 0 0 

 Aggregate fixed cost if 
no breakdown 
(excluding labour) 

(€/ha) 0 0 0 0 0 

 Total fixed costs 
(excluding labour) 

(€/ha) 223 223 223 223 0 

 Net margin (no 
production) 

(€/ha) -180 -181 99 -28.2 0 
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10.2 Tree data: 

Table A.7. Tree cost data 
E1. Metadata (from 
Treesystem) 

Pricing system None UK Poplar 
Agroforestry 

UK Poplar 
Forestry 

Switzerland 
Cherry fruit 
Agroforestry 

Switzerland 
Cherry timber 
Forestry  

Germany Poplar 
SRC 96m alley 
Agroforestry 

Germany 
Poplar SRC 
Forestry  

E2. Establishment costs Cost of plant (€/tree) 0 0 55.2 0.8 0.332159 0.335977 

 Cost of individual tree protection (€/tree) 0.93 0.93 12.328 0.8 0 0 

 Labour for ground preparation (hr/ha) 0.41 0.41 0 6.5 0.41 0.41 

 Labour for full weeding (hr/ha) 1.4 1.4 0 1.5 1.4 1.4 

 Labour for marking out (hr/ha) 0 0 0 4 0 0 

 Labour for planting trees (min/tree) 2 2 100 2 0.009193 0.009195 

 Labour for tree protection (min/tree) 2.1 2.1 12 1 0 0 

 Labour for localised weeding (min/tree) 0.5 0.5 0 0.525 0 0 

 Labour for fertiliser (min/tree) 0 0 1 0 0 0 

 (€/kg N) (€/kg N) 0 0 1.138889 0 0 0 

 (€/kg P) (€/kg P) 0 0 0.902778 0 0 0 

 (€/kg K) (€/kg K) 0 0 0.625 0 0 0 

 (€/kg Manure) (€/kg Manure) 0 0 0 0 0 0 

 (€/kg Limestone) (€/kg Limestone) 0 0 0 0 0 0 

 (kg N/ha) (kg N/ha) 0 0 30 0 0 0 

 (kg P/ha) (kg P/ha) 0 0 20 0 0 0 

 (kg K/ha) (kg K/ha) 0 0 20 0 0 0 

 (€/kg Manure) (€/kg Manure) 0 0 0 0 0 0 

 (kg Limestone/ha) (kg Limestone/ha) 0 0 0 0 0 0 

 Cost of fertiliser (€/tree) 0 0 0 0 0 0 

E3. Maintenance costs Year of first weeding (year) 1 1 1 1 0 0 

 Year of last weeding (years) 3 3 60 3 0 0 

 Annual labour for weeding (min/tree) 0.5 0.5 12 0.5 0 0 

 Annual cost of herbicide for weeding (€/tree) 0.18 0.18 22.54 0.22 0 0 

 Application rate of herbicide (l/tree) 0.005 0.005 0 0 0 0 

 Establishment of grass sward (year) 1 1 0 0 0 0 

 Labour for grass sward establishment (hr/ha grass) 1.787131 1.787131 0 0 0 0 

 Materials for grass sward establishment (€/ha grass) 0 0 0 0 0 0 

 Final year of grass sward (year) 6 6 0 12 0 0 

 Labour for grass sward maintenance (hr/ha grass) 1.249578 1.249578 0 4 0 0 

 Materials for annual grass sward maintenance (€/ha grass) 30 90 0 144 0 0 

 Year of first removal of epicormics (year) 15 15 0 0 0 0 

 Year of last removal of epicormics (years) 30 30 0 0 0 0 

 Labour for removal of epicormics (min/tree) 1.15 1.15 0 0 0 0 

E4. Pruning Height at first prune (m) 1 1 1 1 0 0 
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E1. Metadata (from 
Treesystem) 

Pricing system None UK Poplar 
Agroforestry 

UK Poplar 
Forestry 

Switzerland 
Cherry fruit 
Agroforestry 

Switzerland 
Cherry timber 
Forestry  

Germany Poplar 
SRC 96m alley 
Agroforestry 

Germany 
Poplar SRC 
Forestry  

 Minutes per tree at first prune (min/tree) 1 1 15 0.183333 0 0 

 Height at last prune (m) 4.5 4.5 8 6 0 0 

 Minutes per tree at last prune (min/tree) 19 19 48 6.4 0 0 

 Removal of pruning (min/tree) 4 4 0 4 0 0 

E5. Administration Administrative cost of forestry (€/ha) 0 0 0 0 0 0 

 Insurance management (€/ha) 9 9 159.068 32 0 0 

E6. Thinning Marking up & thinning (min/tree) 7 7 0 7 0 0 

 Removal of tree thinning (min/tree) 5 5 0 5 0 0 

E7. Clear felling Clear fell (min/tree) 4 4 25 4 0 0 

 Removal of tree (min/tree) 2 2 2 2 0 0 

E8. Fruit harvest costs First year of harvest (years) 0 0 2 0 0 0 

 Last year of harvest (years) 0 0 60 0 0 0 

 Fruit harvest labour (h/t) 0 0 50 0 0 0 

 Harvest Amount (€/t) 0 0 1288 0 0 0 

Harvest for SRC Harvest labour for SRC (h/ha) 0 0 0 0 0.22 2 

 Removal of stumps for SRC (h/ha) 0 0 0 0 0.33 3 

 Harvest cost per ton for SRC (€/t) 0 0 0 0 45.1 45.1 

E8. Other costs First year of cost (years) 0 0 1 51 28 28 

 Last year of cost (years) 0 0 60 60 28 28 

 Amount (€/ha) 0 0 1200 62.4 165 1500 

E9. Establishment Establishment (Ground preparation) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Establishment (Full weeding) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Establishment (Marking out) (€/h) 14.6 14.6 25.76 0 0 0 

 Establishment (Planting) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Establishment (Protection) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Establishment (Fertiliser) (€/h) 14.6 14.6 25.76 0 0 0 

 Establishment (Localised weeding) (€/h) 14.6 14.6 25.76 25.76 0 0 

E10. Maintenance Maintenance (Weeding) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Maintenance (Pruning) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Maintenance (Removal of prunings) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Maintenance (Sward establishment) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Maintenance (Sward maintenance) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Maintenance (Epicormics) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Maintenance (Marking-up and thinning) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Maintenance (Removal of thinned trees) (€/h) 14.6 14.6 25.76 25.76 0 0 

E11. Clear fell Clear felling (Labour) (€/h) 14.6 14.6 25.76 25.76 0 0 

 Clear felling (Removal of clear felled trees) (€/h) 14.6 14.6 25.76 25.76 0 0 
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Table A.8. Tree cost data continued 
E1. Metadata (from 
Treesystem) 

Pricing system None Apple UK 
agroforestry 
organic 

Apple  
UK 
forestry 
organic 

Extremadura 
Spain 
forestry 
(800) 

Extremadura 
Spain 
agroforestry 
(50) 

Walnut 
France 
agroforestry 

Walnut 
France 
forestry 

E2. Establishment costs Cost of plant (€/tree) 6.5 6.5 0.36 0.36 6 6 

 Cost of individual tree protection (€/tree) 3.2 3.2 0.5 0.5 1.5 0.5 

 Labour for ground preparation (hr/ha) 0 0 6.95 1.23 4 6.5 

 Labour for full weeding (hr/ha) 0 0 0 0 0.5 1.5 

 Labour for marking out (hr/ha) 0 0 0 0 7 4 

 Labour for planting trees (min/tree) 10 10 2.7 2.7 2 2 

 Labour for tree protection (min/tree) 5 5 2.7 2.7 2 1 

 Labour for localised weeding (min/tree) 0 0 0 0 0.5 0.5 

 Labour for fertiliser (min/tree) 0 0 0 0 0 0 

 (€/kg N) (€/kg N) 0 0 0 0 0 0 

 (€/kg P) (€/kg P) 0 0 0 0 0 0 

 (€/kg K) (€/kg K) 0 0 0 0 0 0 

 (€/kg Manure) (€/kg Manure) 0 0 0 0 0 0 

 (€/kg Limestone) (€/kg  
Limestone) 

0 0 0 0 0 0 

 (kg N/ha) (kg N/ha) 0 0 0 0 0 0 

 (kg P/ha) (kg P/ha) 0 0 0 0 0 0 

 (kg K/ha) (kg K/ha) 0 0 0 0 0 0 

 (€/kg manure) (€/kg Manure) 0 0 0 0 0 0 

 (kg Limestone/ha) (kg  
Limestone/ha) 

0 0 0 0 0 0 

 Cost of fertiliser (€/tree) 0 0 0 0 0 0 

E3. Maintenance costs Year of first weeding (year) 1 1 1 1 1 1 

 Year of last weeding (years) 15 15 3 5 3 3 

 Annual labour for weeding (min/tree) 1.6 1.6 0.06225 0.53 0.5 0.5 

 Annual cost of herbicide for weeding (€/tree) 0 0 0 0.14 0.14 0.14 

 Application rate of herbicide (l/tree) 0 0 0 0 0 0 

 Establishment of grass sward (year) 1 1 12 0 1 1 

 Labour for grass sward establishment (hr/ha grass) 6 54.05405 3.88 0 8 8 

 Materials for grass sward establishment (€/ha grass) 10.5 94.59459 0 0 0 0 

 Final year of grass sward (year) 1.125 1.125 0 0 0 15 

 Labour for grass sward maintenance (hr/ha grass) 0 0 0 0 2 4 

 Materials for annual grass sward maintenance (€/ha grass) 6.9615 62.71622 0 0 30 90 

 Year of first removal of epicormics (year) 0 0 0 0 15 15 

 Year of last removal of epicormics (years) 0 0 0 0 30 30 

 Labour for removal of epicormics (min/tree) 0 0 0 0 1.15 1.15 

E4. Pruning Height at first prune (m) 1 1 2.64 2.64 1 1 

 Minutes per tree at first prune (min/tree) 0.7 0.7 5.425868 0 1 0.2 

 Height at last prune (m) 1 1 8.06 8.06 4.5 4.5 
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E1. Metadata (from 
Treesystem) 

Pricing system None Apple UK 
agroforestry 
organic 

Apple  
UK 
forestry 
organic 

Extremadura 
Spain 
forestry 
(800) 

Extremadura 
Spain 
agroforestry 
(50) 

Walnut 
France 
agroforestry 

Walnut 
France 
forestry 

 Minutes per tree at last prune (min/tree) 0.7 0.7 46.94006 0 7 7 

 Removal of pruning (min/tree) 0 0 0 0 4 4 

E5. Administration Administrative cost of forestry (€/ha) 0 0 0 0 0 0 

 Insurance management (€/ha) 0 0 0 0 20 20 

E6. Thinning Marking up & thinning (min/tree) 0 0 2 0 7 7 

 Removal of tree thinning (min/tree) 0 0 0 0 5 5 

E7. Clear felling Clear fell (min/tree) 0 0 23 23 4 4 

 Removal of tree (min/tree) 0 0 0 0 2 2 

E8. Fruit harvest costs First year of harvest (years) 4 4 0 0 1 51 

 Last year of harvest (years) 15 15 0 0 60 60 

 Fruit harvest labour (h/t) 6.857 6.857 0 0 0 0 

 Harvest Amount (€/t) 54.856 54.856 0 0 44 30 

Harvest for SRC Harvest labour for SRC (h/ha) 0 0 0 0 0 0 

 Removal of stumps for SRC (h/ha) 0 0 0 0 0 0 

 Harvest cost per ton for SRC (€/t) 0 0 0 0 0 0 

E8. Other costs First year of cost (years) 0 0 0 0 1 51 

 Last year of cost (years) 0 0 0 0 60 60 

 Amount (€/ha) 0 0 0 0 44 30 

E9. Establishment Establishment (Ground preparation) (€/h) 10 10 30.86 30.86 14.6 14.6 

 Establishment (Full weeding) (€/h) 10 10 0 0 14.6 14.6 

 Establishment (Marking out) (€/h) 10 10 0 0 14.6 14.6 

 Establishment (Planting) (€/h) 12 12 7.83 7.83 14.6 14.6 

 Establishment (Protection) (€/h) 6 6 7.83 7.83 14.6 14.6 

 Establishment (Fertiliser) (€/h) 0 0 0 0 14.6 14.6 

 Establishment (Localised weeding) (€/h) 9.3 9.3 0 0 14.6 14.6 

E10. Maintenance Maintenance (Weeding) (€/h) 10 10 30.9 0 14.6 14.6 

 Maintenance (Pruning) (€/h) 13 13 9.51 9.51 14.6 14.6 

 Maintenance (Removal of prunings) (€/h) 10 10 0 0 14.6 14.6 

 Maintenance (Sward establishment) (€/h) 10 10 30.86 0 14.6 14.6 

 Maintenance (Sward maintenance) (€/h) 10 10 0 0 14.6 14.6 

 Maintenance (Epicormics) (€/h) 10 10 0 0 14.6 14.6 

 Maintenance (Marking-up and thinning) (€/h) 7.2 7.2 9.51 0 14.6 14.6 

 Maintenance (Removal of thinned trees) (€/h) 10 10 0 0 14.6 14.6 

E11. Clear fell Clear felling (Labour) (€/h) 10 10 9.51 0 14.6 14.6 

 Clear felling (Removal of clear felled trees) (€/h) 10 10 0 0 14.6 14.6 
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Table A.9. Tree values 
Location  UK Switzerland Switzerland Germany Germany UK UK Extremadura  France  
Species  poplar Cherry fruit Wild 

Cherry 
Timber 

Poplar 
SRC 96m 
alley 

Poplar 
SRC 
forestry 

Apple 
forestry 

Apple 
agroforestry 

Oak Walnut 

Firewood 
value 

(€ m-3) 10 48.3 44    0  10 

By-
product 1 
value 

(€/t) 0 2760 0 70 70 655 118 164.4763 0 

Timber 
value 

Average 
tree 
size 

Standing 
value 

Standing 
value 

Standing 
value 

Standing 
value 

Standing 
value 

Standing 
value 

Standing 
value 

Standing 
value 

Standing 
value 

 (m3) (€/m3) (€/m3) (€/m3) (€/m3) (€/m3) (€/m3) (€/m3) (€/m3) (€/m3) 

 0 0 0 0      0 

 0.01 3.339703 0 0      0 

 0.02 4.497489 0 0      0 

 0.03 5.352833 0 0      0 

 0.04 6.056649 0 10      10 

 0.05 6.665697 0 10      10 

 0.06 7.208518 0 10      10 

 0.07 7.701812 0 20      20 

 0.08 8.156328 0 20      20 

 0.09 8.579452 0 30      30 

 0.1 8.976516 0 40      40 

 0.11 9.351512 0 60      60 

 0.12 9.707519 0 80      80 

 0.13 10.04697 0 100      100 

 0.14 10.37183 0 126      126 

 0.15 10.68369 0 135      135 

 0.16 10.98391 0 144      144 

 0.17 11.2736 0 153      153 

 0.18 11.55372 0 162      162 

 0.19 11.82509 0 171      171 

 0.2 12.08844 0 180      180 

 0.3 14.38745 0 270      270 

 0.4 16.27917 0 360      360 

 0.5 17.91619 0 450      450 

 0.6 19.37519 0 540      540 

 0.7 20.70108 0 630      630 

 0.8 21.92273 0 800      720 

 0.9 23.06001 0 800      810 

 1 24.12725 0 800      900 

 1.1 25.13517 0 800      925 

 1.2 26.09205 0 800      950 

 1.3 27.00444 0 800      1000 

 1.4 27.87759 0 800      1000 

 1.5 28.71583 0 800      1000 

 1.6 29.52276 0 800      1000 

 1.7 30.30139 0 800      1000 

 1.8 31.05431 0 1000      1000 

 1.9 31.78371 0 1000      1000 

 2 32.49153 0 1100      1100 

 3 38.67085 0 1200      1200 

 4 43.75547 0 1300      1300 

 5 48.15546 0 1400      1400 

 6 52.077 0 1500      1500 

 7 55.64074 0 1500      1500 

 8 58.92433 0 1500      1500 

 9 61.98114 0 1500      1500 
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Table A.10. Tree grants. 
G1. Metadata Grant 

system 
None UK 

poplar 
UK poplar 
agroforestry 

Switzerland Cherry 
fruit 
Schwarzbubenland 
Agroforestry 

Grants 
(timber 
cherry 
Switzerland) 

Germany 
Agroforestry 
SRC 

Germany 
Forestry 
SRC 

G2. 
Establishment 
payment 

Year of first 
planting 
grant 

(year) 1 1     

 Value of 
first 
planting 
grant 

(€/ha) 1888.889 1888.889     

 Year of 
planting 
grant 
supplement 

(year) 5 5     

 Value of 
planting 
grant 
supplement 

(€/ha) 472.2222 472.2222     

 Year of 
second 
planting 
grant 

(year)       

 Value of 
second 
planting 
grant 

(€/ha)       

 Percentage 
total cost 
payments 

For 
percentage 
payments 
based on 
costs, use 
inputs in 
"Options 
and 
results" 

none none  none   

G3. 
Compensation  

Initial year 
of receipt 

(year) 1 1 10 1 1 1 

payment Final year 
of receipt 

(year) 15 15 60 60 28 28 

 Amount (€/ha)   3680 1040 17.6 160 

G3. 
Maintenance  

Initial year 
of receipt 

(year) 1 1  1   

payment 
period 1 

Final year 
of receipt 

(year) 5 5  1   

 Amount (€/ha) 0 0  0   

G3. 
Maintenance  

Initial year 
of receipt 

(year)       

payment 
period 2 

Final year 
of receipt 

(year)       

 Amount (€/ha)       
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Table A.11. Tree grants 
G1. Metadata Grant 

system 
None UK apple 

agroforestry 
UK 
apple 
forestry 

Extremadura 
Spain 
agroforestry 

Extremadura 
Spain 
forestry 
holm oak 

Walnut 
France 
agroforestry 

Walnut 
France 
agroforestry 

G2. 
Establishment 
payment 

Year of first 
planting 
grant 

(year)    1 1  

 Value of 
first 
planting 
grant 

(€/ha)    2013.39 100  

 Year of 
planting 
grant 
supplement 

(year)     2  

 Value of 
planting 
grant 
supplement 

(€/ha)     500  

 Year of 
second 
planting 
grant 

(year)     5  

 Value of 
second 
planting 
grant 

(€/ha)     1000  

 Percentage 
total cost 
payments 

For 
percentage 
payments 
based on 
costs, use 
inputs in 
"Options 
and 
results" 

    From years 
1-4 in years 
1-4, 
planting 
grant = 50% 
of total 
costs 

From years 
1-4 in years 
1-4, 
planting 
grant = 50% 
of total 
costs 

G3. 
Compensation 
payment 

Initial year 
of receipt 

(year) 1 1 1  1 1 

 Final year 
of receipt 

(year) 15 15 60  10 10 

 Amount (€/ha) 452.85 452.85 18.4  240 240 

G3. 
Maintenance 
payment 
period 1 

Initial year 
of receipt 

(year)     1 1 

 Final year 
of receipt 

(year)     5 5 

 Amount (€/ha)     100 288 

G3. 
Maintenance 
payment 
period 2 

Initial year 
of receipt 

(year)     1 6 

 Final year 
of receipt 

(year)     15 10 

 Amount (€/ha)     50 122 

 

 


