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Título da Tese:  

ESTUDO DE ABSORÇÃO DE CONGÉNERES DE DIOXINAS 

OCDD,1,2,3,4,6,7,8–HpCDD, 1,2,3,6,7,8-HxCDD e 1,2,3,7,8-PeCDD  EM AVES 

DE CAPOEIRA 

Resumo 

Os trabalhos experimentais que integram esta tese tiveram como objetivo 

principal, a integração de quatro linhas de investigação tendo em vista a obtenção 

de conhecimentos capazes de contribuir para uma caracterização fundamentada 

do risco e a subsequente gestão de risco nas crises alimentares resultantes da 

contaminação da cadeia avícola com dioxinas.  

Os dados utilizados no desenvolvimento deste trabalho foram recolhidos na 

sequência de três incidentes de contaminação da cadeia avícola com dioxinas, 

ocorridos em 2006, 2011e 2016 em Portugal e serviram de base para a realização 

de uma análise forense para encontrar a fonte de contaminação. Estes trabalhos 

permitiram identificar claramente, em cenário real, a fonte da contaminação das 

aves nos incidentes ocorridos em Portugal em 2006, 2011 e 2016, tendo sido 

possível estabelecer uma clara relação das aparas de madeira como sendo o 

veículo ambiental das dioxinas. Esta conclusão é baseada na consistência dos 

resultados obtidos em todos os materiais testados que foram considerados 

potenciais fontes de contaminação, bem como, pela análise dos perfis da 

concentração relativa, “impressão digital”, dos 17 congéneres de dioxinas. Pode 

afirmar-se que as fontes incomuns de contaminação da cadeia alimentar por 

dioxinas devem ser sempre colocadas em perspetiva quando o incidente não é 

afiliado nas fontes mais comuns, como a dieta (rações e água). 

Nesse contexto, procedeu-se ao desenvolvimento de uma metodologia analítica 

especialmente adaptada à deteção e quantificação de congéneres de dioxinas em 

matrizes lenhosas (madeira); ao estudo das contaminações com estes compostos 

tóxicos no setor do tratamento industrial das madeiras e à avaliação da forma 

como as referidas contaminações são mantidas e transferidas ao longo da cadeia 

avícola, quer em termos quantitativos, quer quanto à respectiva especiação 

química e ainda à forma como é feita a depleção destes contaminantes do 

organismo em aves de capoeira.   
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O estudo e caraterização dos contaminantes, nomeadamente, o estudo da 

influência dos diferentes produtos de tratamento de conservação das madeiras, 

mais comercializados em Portugal, na contaminação de aparas de madeira de 

pinho, permitiu reproduzir e estabelecer, em laboratório, uma correlação clara 

entre os produtos comerciais utilizados no tratamento da madeira e a 

contaminação das aparas de madeira que foram utilizadas nas camas das aves. 

O perfil da contaminação das aparas de madeira de pinho tratadas em laboratório 

encaixa perfeitamente no perfil das camas das aves implicadas nos incidentes de 

contaminação de aves ocorridos em Portugal.  

Surpreendentemente, os tratamentos de superfície das madeiras e os tratamentos 

de profundidade apresentaram perfis de contaminação muito semelhantes, o que 

permite considerar que, de forma geral, as camas de aves contaminadas com 

aparas de madeira tratada apresentarão um perfil semelhante, uma vez que as 

taxas de retenção dos conservantes na madeira não têm influência no perfil 

encontrado. 

O desenvolvimento da metodologia analítica para pesquisa das dioxinas na 

madeira utilizada, adaptada do método 1613B da EPA, revelou taxas de 

recuperação de padrão marcado que variaram entre 71,3% e 86,3%. Estas taxas 

são consideradas aceitáveis pelo método de referência e satisfazem os critérios 

estabelecidos na legislação da União Europeia, tanto para géneros alimentícios 

como para alimentos para animais. 

O estudo de avaliação do comportamento da “impressão digital” da contaminação 

ao longo da cadeia avícola permitiu concluir que, nas amostras de gordura e 

músculo de galinhas reprodutoras e frangos de engorda, a concentração média 

relativa do congénere mais clorado OCDD foi, respetivamente, 52% e 53% 

inferior, comparativamente ao perfil das amostras de aparas de madeira e de ovos 

de incubação. Por outro lado, a concentração média relativa de 1,2,3,7,8-PeCDD, 

1,2,3,6,7,8-HxCDD e 1,2,3,4,6,7,8-HpCDD nos perfis das amostras de gordura e 

músculo de frango e de galinhas reprodutoras foi de 50% a 97% superior quando 

comparada com os perfis das camas e dos ovos de incubação. Estas conclusões 

sugerem a existência de uma transformação in vivo que promove a descloração 

dos compostos mais clorados, permitindo aos gestores de risco associar, aos 

diferentes perfis apresentados pelas aves e pelos ovos, a mesma fonte de 

contaminação. 
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Verificou-se um equilíbrio entre a concentração de dioxinas no contaminante 

ingerido por galinhas (38,85 pg TEQ-OMS/g) e a concentração de dioxina nos 

ovos (42,25 pg TEQ-OMS/g). O facto de ovos terem concentrações relativas de 

alguns congéneres mais elevadas do que a gordura das respectivas progenitoras 

pode decorrer de efeitos associados à fisiologia da postura que conduz a um 

enorme afluxo de sangue ao ovário e ao oviduto e consequente concentração 

súbita de nutrientes e dos respectivos contaminantes. 

Além deste equilíbrio no teor de contaminação, também existe uma grande 

semelhança dos perfis da contaminação encontrada pela comparação das 

concentrações relativas dos diferentes congéneres entre as camas e ovos para 

incubação (R2 = 0,72 e sd = 0,16) e pela avaliação das representações gráficas 

dos perfis. Esta semelhança pode ser explicada pelo aumento sérico de uma 

lipoproteína de muito baixa densidade (VLDLy), de pequeno diâmetro e resistente 

à hidrólise pelos tecidos extra ováricos, cuja produção é induzida pelos 

estrogénios produzidos durante a postura de ovos. As partículas VLDLy estão em 

altas concentrações plasmáticas em galinhas poedeiras que reservam as VLDLy 

ricas em triglicerol, ligado às dioxinas e furanos, para serem utilizadas nos 

folículos ováricos em desenvolvimento. 

O estudo do incidente ocorrido em Portugal no ano de 2016, numa exploração de 

patos, revelou a existência de uma redução da contaminação uma vez retirada a 

fonte de exposição, com um nível de depleção diário médio que variou entre 

1,43% e 4,35% pg, evidenciando uma clara redução da contaminação, após 

retirada a fonte de contaminação. Concluiu-se, no entanto, que os pavilhões onde 

o período de depleção avaliado foi mais curto, apresentaram percentagens de 

depleção média diária mais elevadas, evidenciando que a percentagem de 

depleção vai diminuindo ao longo do tempo, após a retirada do contaminante 

(ausência de exposição).    

Os dados analisados relativamente a uma das crises que envolveu a 

contaminação de uma grande exploração de galinhas reprodutoras, configuram 

uma possibilidade de estudo dificilmente repetível em cenário real, da passagem 

da contaminação “carry-over” do contaminante presente nas respetivas camas 

constituídas por aparas de madeira, para as galinhas implicadas, para os ovos de 

incubação e para os pintos nascidos desses ovos. Estas “crises de dioxinas” 

envolveram, ao longo destes anos, várias dezenas de explorações e milhares de 

aves de produção, resultando na retirada do mercado e destruição de várias 
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toneladas de carne de aves, bem como de ovos de incubação. Estes resultados 

representam um valioso contributo para a avaliação e a gestão de risco. 

Palavras-chave: Dioxinas, Impressão digital, Carnes de aves, Depleção, 

Tratamento de madeiras 
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Title of the Thesis: 

STUDY OF OCDD, 1,2,3,4,6,7,8–HPCDD, 1,2,3,6,7,8-HXCDD AND 1,2,3,7,8-

PECDD CONGENERS OF DIOXIN ABSORPTION IN POULTRY 

Abstract: 

This thesis concerns a study which has integrated four main lines of investigation 

converging to a main goal – to contribute to the risk management of food crisis 

resulting from the contamination of the poultry chain with dioxins. Specifically, it 

includes: the development of a suitable analytical methodology to detect and 

quantify dioxins congeners in wood matrix; a study of the contaminant of biocides 

used for industrial wood treatments, the analyses of the pathway on how the 

contaminations are maintained and transferred throughout the poultry production 

chain in terms of level of contamination and respective chemical speciation and 

also depletion of the dioxins from poultry during production. 

The study of the dioxin contamination of different industrial wood preservatives, 

allowed to establish a clear correlation with the contamination profile of poultry and 

the previous contamination profile incidents found in wood shavings used as 

poultry litter. 

The study of the analytical methodology for wood shavings, adapted from the 

1613B EPA method, showed recovery rates of labelled compounds ranging 

between 71.3% and 86.3%. These rates are considered acceptable, considering 

the reference method and also the criteria stated in the European Union 

legislation, for both food and feed. 

The study of contamination fingerprint along the poultry chain, allows to establish 

the relationship with the wood shavings, identified as the source of the dioxins. In 

muscle samples of poultry, the average concentration of OCDD was about 50% 

lower when compared to the profile of the wood shaving samples. On the other 

hand, the average relative concentration of 1,2,3,7,8-PeCDD, 1,2,3,6,7,8-HxCDD 

and 1,2,3,4,6,7,8-HpCDD in poultry muscle samples was 50% higher when 

compared to the litters. These findings suggest the existence of a transformation in 

vivo of the most chlorinated congeners. The study of depletion of dioxins in a 

holding of ducks presented an average daily depletion rate ranging between 

1.43% and 4.35%, showing a clear reduction of contamination after the removal of 

the source of contamination. The depletion rates are factors that must be taken in 
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consideration to assess risk and, indirectly, helpful to manage risk of dioxins in 

food. 

Keywords: Dioxins, Fingerprint, Poultry meat, Depletion, Wood preservatives 
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1. Introduction   

 

In 1990, WHO published data in which it was estimated that more than 90% of 

human exposure to dioxins is through food. Food of animal origin normally 

contributes to about 80% of the total population exposure (WHO, 1998). 

The evolution of knowledge has led to the definition of strategies and the 

implementation of measures aimed at reducing environmental contamination by 

dioxins in order to limit the contamination of feed and food. Legislation has also 

been developed to establish critical contamination limits for foodstuffs. However, 

while significant steps have been taken towards reducing exposure, several 

incidents of contamination of the food and feed chain with dioxins continue to 

occur. 

In Portugal, following the implementation of residue monitoring plans, three 

incidents of contamination of poultry meat, in 2006, 2011 and 2016, occurred. By 

the assessment of the contamination profiles in 2006, a link was established with 

the profile of wood contaminated by chemical substances used in the treatment of 

wood, which were improperly sent to poultry farms to be used as bedding material 

for the birds (Cardo et al., 2009). 

There are several studies that classify and characterize the profile of the most 

studied sources of contamination. 

 

Figure 1 - Contamination profile of PCDDs e PCDFs in treated wood with Pentachlorophenol 

(Fries, et al., 1996) 
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During the nineties, a team of researchers established the profile of contamination 

of dioxins in wood treated with pentachlorophenol (Figure 1) in wood fence posts 

and walls of wood shelters (Fries et al., 1996). 

In Portugal in 2011, an association was established between the contamination 

profile of litters from a breeding hen’s holding and the patterns of contamination of 

poultry meat by dioxins. These litters were made of wood shavings from a given 

sawmill and had a profile of the contamination that resembled the profile found in 

wood treated with pentachlorophenol. 

1.1 Thesis outline 

This thesis is organized in nine chapters. Chapter 2 presents a literature review 

regarding the subjects covered by this study. Chapters 3, 4, 5 and 6 present the 

experimental section following four lines of research, which are presented in four 

scientific articles, published in international peer reviewed scientific journals: 

 Study of the adaptation of the analytical methodology for wood, taking into 

account the current constraints regarding the extraction efficiency. Cardo, 

M., Martins, A., Raminhos, C., Campos, M., Bernardo, F. (2016). 

Determination of PCDD/F levels in wood shavings used as bedding material 

for poultry production. Journal of Environmental Protection, 7, 2047-2055. 

http://dx.doi.org/10.4236/jep.2016.713159) 

 Study and characterization of the contaminant, namely, the influence of the 

different products of treatment/ preservation of the most marketed wood in 

Portugal. Cardo, M., Nunes, L., Duarte, M., Silva, A., Bernardo, F. (2016). 

PCDD/F Dioxin Profile of Treated Pinus pinaster Wood. Journal of 

Environmental Protection, 7, 1971-1979. 

 http://dx.doi.org/10.4236/jep.2016.712153); 

 Evaluation study of how the fingerprint of contamination behaves along the 

poultry production chain. Cardo, M.O., Castel-Branco, M., Andreozzi, V., 

Bernardo, F.A. (2014). Dioxins in the Food Chain: Contamination 

Fingerprint Analysis in Breeding Hens, Hatching Eggs and Broilers. Journal 

of Environmental Protection, 5, 1323-1330. 

 http://dx.doi.org/10.4236/jep.2014.513126);  

http://dx.doi.org/10.4236/jep.2016.712153
http://dx.doi.org/10.4236/jep.2016.713159
http://dx.doi.org/10.4236/jep.2014.513126
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 Study of the dioxin depletion from poultry organism after removal of the 

source of contamination. Cardo, M., Bernardo, F. (2016). Study of depletion 

and contamination profile of dioxins in duck intensive production. Journal of 

Environmental Protection, 7, 2056-2066. 

http://dx.doi.org/10.4236/jep.2016.713160). 

The result of this research is aiming to contribute to better understand some 

components of risk assessment (exposure and characterization) and, on this 

basis, to provide solid elements for a risk management in a food crisis scenario 

resulting from the contamination of the poultry production chain with dioxins. 

 

1.1.1 Study for the Adaptation of the EPA method 1613b to wood chips 

 

During 2006 and 2011, analytical testing results of poultry meat with high levels of 

contamination were obtained, with an average of 61.76 pg PCDD/F-TEQ-WHO/g 

fat in a universe of 10 samples in 2006, and 78.04 of 13 samples of poultry meat in 

2011. In these two episodes, the results obtained revealed considerable 

contaminations of the wood chips used as bedding material in poultry production, 

indicating that these materials were the most probable source of contamination of 

the animals. 

These results suggested that the wood chips used in poultry litters were obtained 

from contaminated wood, being the wood preservative treatment the possible 

source of the dioxins. Treated wood by-products are supposed to be disposed as 

hazardous residues and recovery is not allowed. In these cases, the treated wood 

could possibly be improperly disposed and channelled to poultry production as a 

normal wood by-product.   

The lack of a well-established laboratory methodology applied to this specific 

matrix (wood chips) poses additional challenges to analytical procedures, namely: 

the uniformity of distribution of the contamination in the matrix, its stability and, 

above all, the extraction efficiency of the lipophilic compounds that present trace 

amounts in wood. The study of all these aspects and their influence on the 

performance of the analytical processes were further investigated in this study. 

http://dx.doi.org/10.4236/jep.2016.713160
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1.1.2 Study of the contamination profile of wood preservation treatments  

 

A preliminary experimental study was carried out to evaluate whether the 

contamination profile found in the litters of breeding hens, that caused the 

contamination of the food chain in 2011, are reproducible, regardless the 

commercial product used in the pine wood treatment. 

The factors to be studied were: Pine wood, the most used in poultry litters in 

Portugal; The treatments to be applied, being tested four treatments with different 

preservatives of wood, two treatments of wood anti-sapstain (surface) and two 

treatments with negative pressure (depth). 

The variable response to be studied was the standardized gross concentration of 

each of the 17 dioxin and furan congeners of each sample (without application of 

the Toxicity Equivalent Factor values - TEF). 

The objective is to characterize the contamination profile of each preservation 

treatment, in order to enable the identification of the source in a real scenario 

contamination. However, where a sawmill uses wood, treated in other units using 

different preservatives, the resulting by-product mixture used as poultry litters 

might have standard concentrations of each congener of dioxins and furans, 

provided by each treatment of wood. This is one of the major problems of studies 

that seek to find the source of an environmental contamination which is, in 

general, multifactorial. 

In the current work, it was essential to ensure that the wood presented no 

contamination with dioxins and furans prior to the treatments of which they were 

submitted. However, there are studies that describe the possibility of plants 

absorbing dioxins produced during forest fires, which may be a problem for the 

species of wood under examination. In order to reduce any variability in the 

sampling, this study was developed after the testing results of the batch of wood 

samples were known. This step could exclude any contaminated wood prior to the 

experimental treatments.   



5 
 

From the experience gained it was also possible to conclude that, once the wood 

has been contaminated, its chips have a very similar contamination profile. In 

three samples of wood shavings provided by the same sawmill, from three 

different lots, collected from a holding of breeding hens, the results presented a 

considerable similarity (Figure 2). 

 

Figure 2 - The results of analyses carried out on poultry litters made of wood chips (Cardo et al., 

2014).  

 

1.1.3 Study of the contamination profile along the poultry production chain 

 

In 2011, sampling in the origin of the case leading to contingency measures in the 

crisis management, was carried out in a slaughterhouse, in breeding hens coming 

from a holding using litters of wood chips provided by a sawmill. Samples were 

collected from all possible sources of contamination, including feed, water and 

wood chips from bedding material. 

In the same episode, new muscle samples from breeding hens and samples of 

hatching eggs produced by positive hens, were collected. Broiler farms that 

received day-hold chicks from the eggs laid by the contaminated breeding hens, 

were also identified and muscle samples were collected from these broilers. 

The contamination profile of these samples was studied and compared to evaluate 

the behaviour of contamination profiles throughout the poultry production chain, 

including bedding material, breeding hens, hatching eggs and broilers. 
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1.1.4 Study of contamination depletion in poultry 

 

The study concerning the depletion of the contamination following the removal of 

the source (contaminated wood shavings from bedding material), considered the 

information collected from the incident occurred in Portugal in 2016.  

The sampling of meat from a duck farm that revealed the contamination was also 

performed in a slaughterhouse, as in the previous case (1.1.3). In the 

investigations carried out, wood shavings were again identified as the source of 

contamination. In this farm, to study the evolution of the contamination in terms of 

its levels and profile, the contaminated beds were removed and representative 

samples of meat were collected in six pens, with a lapse of time of about one 

month. 



7 
 

I – Part (Literature review)  

2. Dioxins and food safety   

 

Dioxins are toxic chemicals that persist in the environment and accumulate in the 

food chain. Their presence in the environment has declined since the 1970s, 

following concerted efforts by public authorities and industry (EFSA, 2010). 

Dioxins have no technological or other use, but are generated in a number of 

thermal and industrial processes as unwanted and often unavoidable by-products. 

In contrast to dioxins, PCBs had widespread use in numerous industrial 

applications, and were produced in large quantities for several decades with an 

estimated total world production of 1.2-1.5 million tonnes, until they were banned 

in most countries by the 1980s (EFSA, 2010). 

Dioxins and PCBs are found at low levels in many foods. Long-term exposure to 

these substances has been shown to cause a range of adverse effects on the 

nervous, immune and endocrine systems, and impair reproductive function. They 

may also cause cancer. Their persistence and the fact that they accumulate in the 

food chain, notably in animal fat, therefore continues to cause some safety 

concerns (EFSA, 2010). 

Dioxins and some PCBs referred to as dioxin-like PCBs (due to their similar 

toxicological properties) are often considered together within the context of public 

health. Other PCBs referred to as ‘non dioxin-like PCBs’ have a different 

mechanism of toxicity but can also cause adverse effects on health. 

The word "dioxins" covers a group of polychlorinated organic compounds being 75 

dibenzo-p-dioxins (PCDDs) and 135 dibenzofurans (PCDFs), of which 17 are of 

toxicological concern (CEC, 2001). The most toxic compound is 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD), classified as a carcinogen in humans by the 

International Agency for Research on Cancer and other prestigious international 

organizations (Fiedler et al., 2000).    

Dioxins and dioxin-like PCBs are poorly soluble in water. However, they are 

adsorbed into mineral and organic particles suspended in water (WHO/ FAO, 

2012). 
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The European Union's Scientific Committee for Food (SCF), in agreement with the 

World Health Organization (WHO), has concluded that dioxins have no 

carcinogenic effects when exposure is below a certain threshold. Other harmful 

effects, such as endometriosis, neurotoxic and immunosuppressive effects occur 

at lower levels and are therefore considered relevant for the determination of 

tolerable intake (CEC, 2001).  

In addition, other polychlorinated biphenyls (PCBs) are chlorinated aromatic 

hydrocarbons, synthesized by the direct chlorination of biphenyls and theoretically 

identified as a group of 209 different possible congeners, which can be divided into 

two groups, according to their toxicological properties. Of these compounds, 12 

have dioxin-like toxic properties and are therefore referred to as "dioxin-like 

PCBs". The remaining PCBs do not exhibit dioxin-like toxicity, having a different 

toxicological profile. According to the opinion of the Scientific Committee on Food 

of the European Union, each compound of the dioxin family or dioxin-like PCBs 

has a different level of toxicity (EC, 2000).   

To enable the quantification of the total toxicity of these different related 

compounds, the concept of Toxicity Equivalence Factors (TEF) was introduced in 

order to facilitate the risk assessment as well as regulatory control. This means 

that the analytical result for the 17 dioxin-like compounds and 12 dioxin-like PCBs 

is expressed in terms of a single quantifiable unit: The Toxic Equivalent 

Concentration (TEQ) (EC, 2000).   

Dioxins and PCBs are extremely resistant to chemical and biological degradation 

and thus persisting in the environment by its accumulation in the human and 

animal food chains (CEC, 2001). 

More than 90% of the human exposure to dioxins originates from food. Food of 

animal origin normally accounts for about 80% of such total exposure (EC, 2013). 

The exposure of animals to dioxins comes essentially from feedingstuffs. 

Therefore, the contamination of food for human consumption is generally related 

with the contamination of feedingstuffs. An integrated approach should therefore 

be followed to reduce the frequency or occurrence of dioxins throughout the food 

chain, i.e., from raw materials intended to animal feed, through animals for food 

production, to humans (CEC, 2006). Therefore, feed and in some cases other 
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factors in the production environment, such as soil or litters and air, may be the 

potential sources of dioxins.  

At international level, the European Commission actively participates in a number 

of relevant international activities, of which the following are particularly worthwhile 

mentioning (CEC, 2001): 

 the 1990 declaration adopted by the North Sea Conference1 undertaking, 

inter alia, 70 % reductions of chlorinated dioxins; 

 the revised Protocol of the Barcelona Convention2 for the protection of the 

waters of the Mediterranean from land-based sources, where dioxins are 

included in the list of substances to be controlled; 

 the Joint UNECE/WHO-ECEH Task Force on health aspects of long-range 

transboundary air pollution organised meetings in order to initiate the 

preparation of the assessment on health risks of POPs from Long-Range 

Transboundary Air Pollution3. 

The European Commission is also a contracting party to several conventions with 

regard to dioxins and PCBs (CEC, 2001): 

 The Basel Convention4 is designed to control the transboundary 

movements of hazardous waste and their disposal. PCBs and dioxins are 

classified as hazardous wastes. 

 The OSPAR Convention1 for the protection of the marine environment of the 

north-east Atlantic agreed in 1998 on the objective to cease emission, 

discharges and losses of hazardous substances by 2020 in order to 

achieve, close to zero concentrations of compounds such as dioxins/PCBs 

in the marine environment. 

                                                           
1 The Convention for the Protection of the Marine Environment of the North-East Atlantic or OSPAR convention is the current 
legislative instrument regulating international cooperation on environmental protection in the North-East Atlantic. The Convention 
was concluded at Paris on 22 September 1992. 
2 The Convention for Protection of the Mediterranean Sea against Pollution (Barcelona Convention), is a regional convention to 
prevent pollution from ships, aircraft and land based sources in the Mediterranean Sea. This includes but is not limited to dumping, 
run-off and discharges. Signers agreed to cooperate and assist in dealing with pollution emergencies, monitoring and scientific 
research. The convention was adopted on 16 February 1976 and last amended on 10 June 1995. 
The Barcelona Convention form part of the United Nations Environment Programme (UNEP). 
3 The Convention on Long-Range Transboundary Air Pollution, often abbreviated as Air Pollution, or OSPAR convention is intended to 
protect the human environment against air pollution and to gradually reduce and prevent air pollution, including long-range 
transboundary air pollution. It is implemented by the European Monitoring and Evaluation Programme (EMEP), directed by the United 
Nations Economic Commission for Europe (UNECE). It was signed in 1979 and entered into force on 1983. 
4 The Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal, is an international 
treaty that was designed to reduce the movements of hazardous waste between nations, and specifically to prevent transfer of 
hazardous waste from developed to less developed countries (LDCs). The Convention was opened for signature on 1989, and entered 
into force on 1992. 
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 The Convention on the protection of the marine environment of the Baltic 

Sea Area5: the contracting parties declare to prohibit, totally or partially, the 

use of PCBs in the Baltic Sea and its catchment areas. 

 The UNECE POPs Protocol to the Convention on long-range transboundary 

air pollution3, signed by the EU in Aarhus in June 1998, aims to control and 

reduce the emissions of a number of POPs which require the most urgent 

action, such as dioxins and PCBs. 

 The Stockholm Convention (POPs Convention), signed by the EU in May 

2001 in Stockholm, aims to reduce the total release of dioxins, furans and 

PCBs, with the goal of their continuing minimisation and, where feasible, 

ultimate elimination. In 1995, the Governing Council of the United Nations 

Environment Programme (UNEP) called for global action to be taken on 

POPs, to reduce and/or eliminate emissions and discharges of persistent 

organic pollutants, defined as "chemical substances that persist in the 

environment for long periods, become widely distributed geographically, 

bio-accumulate through the food chain, are toxic to humans and animals 

and pose a risk of causing adverse effects to human health and the 

environment" (SSC, 2010). 

UNEP promote an Intergovernmental Negotiating Committee to prepare the 

Stockholm Convention which is a global treaty to protect human health and 

the environment from persistent organic pollutants (POPs).  In 

implementing the Convention, Governments will take measures to eliminate 

or reduce the release of POPs into the environment (SSC, 2010). Over 150 

countries signed the Convention in 2001 and it entered into force, on 17 

May 2004. In March 2016, there were 180 parties to the Convention, (179 

states and the European Union). The Stockholm Convention was adopted 

to EU legislation in Regulation (EC) N. º 850/2004 (EPCEU, 2004). The 

Stockholm Convention focuses on eliminating or reducing releases of 12 

POPs, the so-called "Dirty Dozen". It sets up a system for tackling additional 

chemicals identified as unacceptably hazardous. It recognizes that a special 

effort may sometimes be needed to phase out certain chemicals for certain 

uses and seeks to ensure that this effort is made. It also channels 

resources into cleaning up the existing stockpiles and dumps of POPs that 

                                                           
5 Convention on the Protection of the Marine Environment of the Baltic Sea Area, (Helsinki Convention) is an international convention 
encompassing various measures for the prevention and elimination of pollution of the Baltic Sea. It was signed in 1992 and entered 
into force on 2000. 
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litter the world's landscape. Ultimately, the Convention points the way to a 

future free of dangerous POPs and promises to reshape our economy's 

reliance on toxic chemicals.  

The Stockholm Convention focus on five essential aims: 

• Eliminate dangerous POPs, starting with the 12 worst 

• Support the transition to safer alternatives 

• Target additional POPs for action 

• Clean-up old stockpiles and equipment containing POPs 

• Work together for a POPs-free future 

 

At EU level, the SCF adopted, on 30 May 2001, an opinion on the assessment of 

the risks of dioxins and dioxin-like PCBs in food (EC, 2001). This was based on an 

update of the new scientific information made available after the adoption of the 

SCF opinion on this matter in November 2000 (EC, 2000). A Tolerable Weekly 

Intake (TWI) for dioxins and dioxin-like PCBs of 14 pg TEQ-WHO/kg body weight 

was established by the Committee. Exposure estimations indicated that a 

considerable proportion of the European Community population is exposed through 

the contaminated diet to values above TWI, and certain population groups in several 

countries may be at increased risk due to specific dietary habits (EC, 2001).  

Measures have been implemented to further reduce environmental contamination 

caused by the presence and release of dioxins, in order to limit the impact of 

environmental pollution on feed and food contamination. In October 2001, the 

European Commission presented a Communication to the Council, the European 

Parliament and the Economic and Social Committee on a Community strategy on 

dioxins, furans and polychlorinated biphenyls. The strategy was focused on 

current and future measures to reduce the release of polychlorinated 

dibenzodioxins (PCDDs), commonly known as dioxins, polychlorinated 

dibenzofurans (PCDFs), more commonly referred to as furans, and 

polychlorinated biphenyls (PCBs) in the environment, thus avoiding harmful effects 

on the environment and health (CEC, 2001). This strategy consists of two parts, 

one part containing actions for reducing the presence of dioxins, furans and PCBs 

in the environment and the other part containing actions for reducing their 

presence in feed and food and was based on the following facts: 

 Bioaccumulation along the trophic chain also occurs from releases from 

landfills, polluted soils or sediments. The abrupt drop in the "reference 
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levels" in the environment over the last 20 years will probably not be 

repeated in the coming decades because, despite the efforts made to 

reduce emissions, there are deposits that will continue to be a continuous 

source of release;  

 Toxic properties appear to have been underestimated, with new 

epidemiological and toxicological data emerging, especially with regard to 

endocrine effects, reproduction and neurological development. These data 

indicated that dioxins and some PCBs have a health impact which is higher 

than initially assumed, even if at very small doses, particularly in the most 

vulnerable groups, such as foetuses and infants, directly exposed to 

maternal levels accumulated;  

 Dietary exposure to dioxins and dioxin-like PCBs, of a significant proportion 

of the European population, exceeds the estimated TWI or TDI (EFSA, 

2004):   

 The European Union has assumed new obligations by becoming a 

contracting party to several world conventions on dioxins and PCBs;   

 The enlargement of the EU in 2004 probably increased the average 

exposure in the EU. In fact, the new Member States are likely to produce 

higher emissions (than the EU past average) due to the diversity of their 

previous legislation and the large number of obsolete industrial facilities. 

These countries, formerly referred to as "Eastern Europe", certainly 

contribute in large part to the total dioxins released into the environment in 

Europe, which highlights and increases the need to ensure full compliance 

with the relevant environmental acquis in the countries that have recently 

joined the EU. 

The objectives of the European strategy are (CEC, 2001): 

 To assess the current state of the environment and ecosystems; 

 To reduce human exposure to dioxins and PCBs in the short term and 

maintain them at safe levels in the medium and long term; 

 To reduce the environmental emissions of dioxins and PCBs. The 

quantitative objective is to reduce levels of human intake to less than 14 pg 

WHO-TEQ/kg body weight /week. 

As food contamination is directly related to feed contamination, an integrated 

approach is followed to reduce dioxin/PCB incidence all along the food chain, i.e. 
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from feed materials through food-producing animals to humans. Taking measures 

with regard to feed is therefore a decisive step to reduce human intake. Measures 

in food and feed solely based on establishing maximum levels would not be 

sufficiently effective in reducing the level of feed and food contamination, unless 

the levels were set so low that a large part of the feed and food supply would be 

declared unfit for animal or human consumption. Besides the important measures 

to limit the release of dioxins and PCBs into the environment, other measures 

aiming the reduction of dioxins and dioxin-like PCBs in feed and food, were 

envisaged to come into application in the course of the year 2002 (CEC 2001). 

Under this strategy the legislative measures concerning food and feed would entail 

the establishment of strict, but feasible Maximum Limits (ML), threshold levels of 

action for dioxins and PCB’s. These ML would function as an "early warning" 

mechanism of dioxin and PCB contamination above desirable levels to trigger 

proactive action by the competent authorities and food operators and target levels 

over time, so that the exposure of the EU population falls within the acceptable 

limits recommended by the scientific committees (CEC, 2001).   

The strategy also envisaged a set of actions related to the reduction of the 

presence of dioxins and PCB’s in the environment that had to be identified for the 

short to medium-term and for the long-term. The short to medium-term actions (5 

years) had foreseen measures related to hazard identification, risk assessment, 

risk management, research, communication to the public and cooperation with 

third countries and international organisations. The identified long-term actions (10 

years) included data collection on the level of dioxin/ PCB contamination in air, 

water (sediment) and soil in order to be considered and integrated in the global 

strategy and monitoring and surveillance of the level of dioxin/PCB contamination 

in air, water (sediment) and soil to enable the identification of measures targeting 

the sources and improve the consumer protection. Furthermore, this strategy listed 

high and medium priorities for research in different domains including the transport 

and final destination of dioxins and PCB’s in the environment (air, terrestrial and 

aquatic), ecotoxicology and human health, agri food industry, the sources 

inventory, the analytical aspects, decontamination measures and monitoring 

(CEC, 2001).  
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Following the publication of the Community strategy, the European Commission 

published a Recommendation (CEC, 2002) on reducing the presence of dioxins, 

furans and PCBs in feed and food. It requires Member States to carry out random 

monitoring for the presence of dioxins and PCBs and that, in cases of non-

compliance and where dioxin levels are above action levels, Member States in 

cooperation with operators initiate surveys to identify the source of contamination, 

verify whether dioxin-like PCBs are present and take measures to reduce or 

eliminate the source of contamination. 

Following the publication of the Community strategy on dioxins, furans and 

polychlorinated biphenyls in 2001, the European Commission published three 

progress reports, one in 2004, one in 2007 and one in 2010, all related to the 

progress made in the implementation of the strategy (CEC, 2004; CEC, 2007; 

CEC, 2010).   

In 2006, a new recommendation of the European Commission was issued on 

reducing the presence of dioxins, furans and PCBs in feed and food, which 

already included action levels for PCBs, since the Commission already had data 

on the presence of dioxin-like PCBs in feed and food (CEC, 2006). This 

recommendation was also repealed twice, one in 2011 to review action levels 

(CEC, 2011), and another in 2013, to intensify monitoring in certain food (CEC, 

2013).  

In this context, the European legislation in the safety of food and feed have been 

developed, notably in the establishment of maximum levels for certain 

contaminants in foodstuffs (CEC, 2006b) and laying down methods of sampling 

and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-

like PCBs in certain foodstuffs (EC, 2014). 

2.1. Historical note    

The first descriptions of toxic effects caused by polychlorinated organic 

compounds date back to 1947, when abnormally high incidence of cancer was 

observed in fishermen in Hudson Bay, USA, and its clear correlation with high 

levels of PCBs in fish fat from that bay was established. Since then, many other 

episodes have been described, studied and well documented. The most famous 

were those that occurred in Yusho (Japan, 1968), Yu-Cheng (Taiwan, 1979), 
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Agent orange (Vietnam, 1965-1971), Seveso (Italy, 1976), Sweden (1970), 

Holland (1989), Brazil (1997-1998), Belgium (1999), Ireland (2008) and Portugal 

(2006, 2011 and 2016). 

In the Yusho incident in 1968, in Fukuoka, Japan, about 1200 persons were 

affected. In addition to very serious health problems resulting in skin changes 

(acne, pigmentation and hyperkeratosis), there has been a significant increase in 

the number of cancer deaths in males, with adverse effects in new-borns: Low 

weight, very brownish skin, deformities in the gums, being born some already with 

teeth but with abnormal pigmentation. The food incriminated in this accident was 

rice oil contaminated with 2 to 3 g of PCB/kg, which on average corresponded to a 

daily exposure of 633 mg of PCBs, i.e., an exposure about 100,000 times higher 

than the Tolerable Daily Intake (TDI). This oil was produced by the Japanese 

company “Kanemi Rice Oil” and contained a pesticide commercially known as 

“Kaneclhor 400”, which is a commercial blend containing PCBs (WHO, 1993; 

Penteado and Vaz, 2001; Furen et al., 2005; Charnley and Kimbrough, 2005). 

The incident occurred in Yu-Cheng, Taiwan, in 1979, had also its origin in rice oil. 

The number of victims of this incident was estimated at about 2000. The main 

signs of intoxication were peri-ocular edema, excessive ocular discharge, delayed 

reflexes, darkening of the skin, deep deformities in foetuses, intense dental 

pigmentation in children and increased incidence of cancer. Contaminated rice oil 

used in cereal flakes contained between 53 and 99 mg / kg of PCBs. These 

contaminants were introduced into the food chain through the wet oil extraction 

system. It was estimated that the total accumulated PCBs and PCDFs, per person, 

varied between 700 and 1800 mg. The content of these compounds in the blood of 

the victims was 50 to 100 μg/liter (WHO, 1993; Penteado and Vaz, 2001).   

During the Vietnam War, between 1965 and 1971, the US Army applied about 72 

million liters of herbicides contaminated with 2,3,7,8-Tetrachlorodibenzo-p-dioxin 

as defoliant of the zones near the perimeter of their military bases. The "Orange 

Agent" was a phenoxy herbicide widely used in these actions. In studies 

conducted in 1996, 30 years after the incident, levels of 34 pg TCDD/g were found 

in fish and 82 pg PCDD/g in duck fat. In individuals living close to the military 

bases, there were levels of 1832 pg TEQ/g in breast milk in 1970, of 103 pg TEQ/g 

in adipose tissue in 1980 and blood samples taken in 1991/92, showed levels of 
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33 pg TEQ/g of TCDD, whereas samples collected in inhabitants of northern 

Vietnam, where "orange agent" was not used, TCDD levels were found below 2.9 

pg TEQ/g (Schecter et al., 1995; Gochfeld, 2001; Schecter et al., 2001; 

Dwernychuk et al., 2002).   

In 1976, north of Milan in Seveso, due to an explosion in a reactor of a pesticide 

factory, dioxins (TCDD) were spreaded throughout the surrounding soils within a 

range of 6 km. In total, 1800 hectares of land were affected, with the need to 

displace 730 inhabitants of this region who had been exposed for 15 days. In 

children descended from these inhabitants, the usual skin signs were detected. 

Fifteen years later, a significant increase in the incidence of leukaemia and 

myelomas in women were observed. The other common types of cancer did not 

increase (Bertazzi et al., 1998).  

Since the 1970s, the Baltic Sea is considered to be the most polluted region of 

Europe with dioxins. The heavy industries of Eastern Europe have dumped 

effluents for decades without any treatment. The Baltic coastal countries, Sweden 

and Finland, implemented an ongoing program, monitoring dioxins and PCBs 

levels in various products of marine origin (fish), wild animals (reindeer, caribou, 

seals) and food (milk, poultry and eggs), including the milk of lactating women. 

Fish meal produced from fish caught in highly polluted areas (Baltic, Black Sea 

and Arctic) may contain significant levels of PCDD/F and PCB and thus 

contaminating feed (Watterson et al., 1999; Roots et al., 2006, Roots et al., 2007).  

In the Netherlands, in 1989, abnormally high levels of dioxins have also been 

detected in water, soil, pasture and milk. This accident occurred following a fire at 

the premises of the German chemical industry Sandoz, due to a failure of two 

incinerators, whose untreated effluents were drained to the Rhine River. Through 

this river, parts of France and a wide pasture area in the Netherlands, were also 

contaminated. This incident brought to the discussion the possibility of cross-

border contamination (CIPR, 2000).  

In Brazil, between 1997 and 1998, in a by-product factory of the citrus juice 

industry, PCDD/Fs were accidentally introduced into "granulated" peels of these 

dehydrated fruits. These raw materials were exported to Europe (France, Belgium, 

the Netherlands and Germany) and used for feeding dairy cows. Following this 

use, the PCDD/Fs content in cow's milk in Germany, increased on average from a 
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concentration of 0.6 pg TEQ/g fat, recorded in August 1997, to a concentration of 

1.4 pg TEQ/g, in March 1998. In April of that same year, the incorporation of this 

raw material in animal feed was prohibited (Fiedler et al., 2000; Malisch, 2000; 

Pereira, 2004).  

The accident in Belgium, in 1999, considered as a recent episode, was caused by 

a cross-contamination in a tank truck transporting frying oils for refining to be 

incorporated in feed, which was mixed with the refrigerant liquid containing dioxins 

in the tank. The oil was inadvertently used and caused contamination of the meat 

of several animals in many countries where the feed was marketed (Bernard, et 

al., 2002). As a result of this incident, the affected countries had to adopt 

exceptional prevention measures (Becerra and Chandran, 2003; Larebeke et al., 

2001; Larebeke et al., 2002; Vellinga and Loock, 2002).   

France banned all meat of Belgian origin. The Netherlands removed all Belgian 

meat and closed 350 pig farms. Portugal withdrew from the market 10 tonnes of 

chicken meat. Greece destroyed 146 tonnes of poultry products. Russia 

withdrawal 20 tonnes of turkey meat. Egypt has banned all poultry products 

imported from the European Union. Algeria has adopted the same measures as 

Egypt. Several countries have prevented imports: France, The Netherlands, Spain, 

Canada, Austria, South Korea and Cyprus.   

In Ireland, during December 2008, following samples collected in pig 

slaughterhouse under the national residue monitoring plan, results were found with 

PCB levels above the limit laid down in the EU legislation (CEC, 2006b). The 

source of contamination of the animals found was feed from a waste recycling 

plant. There were 17 identified holdings of contaminated pigs, which were 

responsible for 8% of national slaughters, all of which were slaughtered for 

destruction. Concerning the meat that was already in the market, the government 

has faced difficulties to trace back the affected pig meat and therefore ordered the 

withdrawal of all meat produced in the previous months, despite only 10% would 

be contaminated. The financial loss to the pig meat sector in Ireland was 

overwhelming, not only because of the destruction of the commodity, but also 

because of the image left to the recipients of its exports (JCAFF, 2009). The 

government provided financial aid to pig farmers following this incident (Kennedy 

et al., 2009).   
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In the detected situations of contamination of the food chain in Portugal in the 

poultry sector, in the years 2006, 2011 and 2016, the source of contamination 

identified was always dioxins contaminated wood shavings, used as poultry litters. 

In all episodes, the wood processing plants (sawmills) that supplied the wood 

shavings and the affected farms, were traced. Environmental authorities have 

identified problems in the separation of the by-products of treated wood in these 

plants. The recipient farms were all tested and, in those presenting levels of meat 

contamination above the established limits, the animals were slaughtered and 

destroyed (Cardo et al., 2007; Cardo, 2008, Cardo et al., 2009, Cardo et al., 

2014).  

In the literature consulted, there are many other cases described, smaller in size 

but also resulting in the release of polychlorinated organic compounds with serious 

harm to human health and to the environment. Recent history has shown that this 

type of accidents can also produce serious economic and market impact in 

countries with high export potential. The government of these countries are highly 

pressed for the implementation of surveillance and internal monitoring systems of 

the emissions of these compounds, as well as the control of the different possible 

and unavoidable ways of importing that chemical hazard, to ensure a reliable 

control system. In this regard, the collaboration between countries within an 

international strategy to study the behaviour of dioxins in the atmospheric, 

terrestrial and aquatic environment, as well as the establishment of models to 

explain it, is one of the global current priorities (Watterson et al., 1999). The 

problem related to the existence of chlorinated organic compounds in the 

environment and in the food chain, is not a problem caused by less developed 

countries nor resulting from accidents with the visibility of those previously 

reported. It is rather of a global and permanent nature, as pollutants are 

generated, disposed of and bioaccumulated daily in hazardous quantities without 

respecting frontiers. 

2.2. Chemical structure of dioxins    

Polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs), 

often referred to as "Dioxins", are two classes of aromatic, tricyclic, ether-

functional and quasi-planar structure compounds. Benzene rings are attached by 

two oxygen atoms to unsaturated hydrogen bonds in the benzene nuclei that can 
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be saturated with chlorine atoms (Figures 3 and 4). Derivatives of the PCDDs, 

whose chlorine substitutions occurred at the tetra-, penta-, hexa-, hepta- and 

octachlorinated positions, are designated TCDD, PeCDD, HxCDD, HpCDD and 

OCDD respectively (Assunção and Pesquero, 1999; EC, 2000a; Fiedler et al., 

2000).         

   

 

Figure 3 - Structure of a polychlorinated dibenzo-p-dioxin compound (adapted from Huwe, 2002). 

 

 

Figure 4 - Structure of a polychlorinated dibenzo-furan compound (adapted from Huwe, 2002).   

 

 

Depending on the number of chlorine atoms (1 to 8) and on the substitution 

position, different congeners can be distinguished: 75 for dioxins and 135 for 

furans (Assunção and Pesquero, 1999; EC, 2000a; Fiedler et al., 2000).  

The toxicity of dioxins varies considerably: in particular the congeners in which the 

substitution occurs at the 2,3,7 and 8 positions are especially important because of 

their toxicity, stability and persistence. Molecules having a different number of 

chlorine atoms are called congeners, and those having the same number of 

chlorine atoms, but in different positions, are called isomers from the same 

homologue group (Assunção and Pesquero, 1999; Fiedler et al., 2000). 
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Dioxins and furans share similar properties. They have low water solubility and 

tend to prefer organic phases, such as humus and lipid, to water. Water solubility 

decreases as the number of chlorine atoms increases. The least soluble congener 

is OCDD (Mackay et al., 1992).  

PCDDs and PCDFs are solid at room temperature and have a rather low volatility. 

Dispersion in the atmosphere is thus likely to occur mainly in particulate aerosols 

(WHO Regional Office for Europe, 2000). 

Of the 210 congeners theoretically possible, only 17 have considerable toxicity. 

One of the PCDDs, designated 2,3,7,8-Tetrachlorodibenzo-p-dioxin, is the most 

toxic synthetic compound known. TCDD induced the appearance of a wide variety 

of toxicological responses in laboratory animals, namely carcinogenicity, 

hepatotoxicity, genotoxicity and reproductive toxicity (Assunção and Pesquero, 

1999; Bryant et al., 2001; Weiss, 2006).  

The compounds Polychlorinated biphenyls (PCBs) are also a group of chemical 

substances that contain chlorine in different positions (Figure 5), and there may be 

between 1 and 10 chlorine atoms in the molecule (Eurochlor, 2002).  

 

 

Figure 5 - Structure of a polychlorinated biphenyl (Huwe, 2002). 

 

The viscosity, density and lipidic solubility of PCBs increase, as a function of 

substitution levels by chlorine atoms, however, their solubility in water is inversely 

proportional.    
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2.3. Sources of dioxins    

Polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) have been 

demonstrated to occur in nearly all environmental compartments, such as soil, 

lake and river sediments, and air, in aquatic organisms, plants and human and 

animal tissues. The majority of the PCDD/F found in the environment today are of 

anthropogenic origin. To minimize the risk for human health by these highly toxic 

compounds, it is of great importance to recognize the main sources of PCDD/F 

and to correlate the environmental occurrence of PCDD/F with these sources 

(Hagenmaier et al., 1994).  

Dioxins are only one amongst several groups of toxic polychlorinated organic 

substances, as there are a large number of other chemically related compounds 

that are not dioxins but are also toxic, such as PCDFs, PCBs and PCN 

(Polychloro-naphthalenes).  

Dioxins are contaminants unintentionally generated by activities of the chemical 

industry of pesticide and herbicide synthesis, or bleach, paper pulp, plastics, 

especially PVC, solvents, paints and preservatives of wood (pentachlorophenol-

PCP) and are also released to the atmosphere following the incineration of 

municipal, industrial and domestic waste, forest fires and metal smelters at 

temperatures below 800°C. Dioxins can therefore easily be found in soils, 

vegetation, the food chain, the animal organism and humans (USEPA, 1994; CEC, 

2001).  

PCBs, unlike dioxins, are intentionally produced chemicals that were 

manufactured for decades until they were banned from marketing and use in 1985 

due to reproductive toxicity and bioaccumulative effects. Most of these products, 

characterized by high persistence in biota fat, are found in soils, sediments and in 

the whole aquatic environment ("historical pollution"). There are two types of use 

of PCBs (EC, 2000; CEC, 2001): 

a. Closed uses: dielectric fluids (insulation) in electrical equipment and 

hydraulic fluids. In this case, most of the emissions come from leaks, 

fires, accidents, illegal discharges and irregular eliminations. 

b. Open uses: as pesticide additives, flame retardants, sealants, paints, 

among others. In this case, the main emitting sources are landfill, 

migration and emissions into the atmosphere from evaporation. Other 
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less relevant sources are incineration of waste, agricultural use of 

sewage sludge, combustion of waste oils, as well as PCB reservoirs 

such as marine and river sediments and port sludge. Their use was due 

precisely to their intrinsic technical potential, as insulators. The 

industrial value of PCBs results from their chemical stability, heat 

resistance, low vapour pressure, high dielectric constant and low acute 

toxicity. These properties make these compounds particularly useful for 

the above-described uses and were therefore produced on a large 

scale. Although they are no longer produced, except under specific 

conditions, their natural elimination will take a few years because they 

have very long half-life, they are still used and, in some cases, 

deposited in "dumps" or landfills or simply abandoned, thus continuing 

to contaminate the environment (USEPA, 2005; USEPA, 2006). 

The chemical stability of PCBs and the fact that they are lipophilic compounds, 

allow them to persist in the environment and to associate with organic compounds 

in soil, marine sediments and biological tissues where they can accumulate and 

enter the food chain. They are distributed in the environment and transported in 

the atmosphere, being detected in lipid tissues of animals and humans from 

remote areas (Eurochlor, 2002). The American company "Monsanto Corporation" 

in 1929, began the production and sale of PCBs to be used as insulators, 

extremely effective in transformers and electric accumulators, or as hydraulic fluids 

and for metal finishing. They are also found in electric cables and car components. 

Only in 1976, the USA Congress banned the production of PCBs. By then, 

“Monsanto Corporation” had already sold 1.2 million tons of PCBs, however 

scattered and in unknown locations. Sixty-five percent of them are still used in 

electrical equipment that is deeply aged, about 20% of them have already been 

released to the oceans, about 11% are incorporated in the soil and 4% have been 

incinerated or perhaps degraded (USEPA, 2005; USEPA 2006).   

There are several natural sources of dioxin production. For example, prior to the 

production and use of chlorinated compounds on a large scale, dioxins have been 

identified in nature, especially in forest soils. The analysis of the profile of the 

different congeners in the contaminations found and their comparison with the 

profiles of the contaminations with known sources, reveals that these 

contaminations cannot be explained by the introduction of the compounds 
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produced by Man and thus confirms the biological formation of these compounds 

(Rappe, 2003; Otles and Yildiz, 2003). Studies of lake sediments near large 

industrial sites in the USA, have shown a history of deposition of dioxins and 

furans. The depositions were quite low until 1920 and had a peak around 1980. 

U.S. EPA estimates that, between 1985 and 1995, emissions to the environment 

decreased by about 75 % (USEPA, 1994). These studies may suggest that the 

deposition of dioxin-like compounds in the environment occurred mostly as a result 

of industrial activity. The major sources of environmental contamination with 

dioxins and furans (PCDD/Fs) were grouped into five major groups by USEPA 

(USEPA, 2005; USEPA, 2006):   

A) Combustion - PCDD/Fs are formed in most combustion processes, including 

the incineration of waste (such as municipal solid waste, sludge, hospital 

waste and hazardous waste), the burning of various fuels (such as coal, 

wood and petroleum products), other sources of high temperatures (such as 

cement kilns) and little or no controlled combustion (such as forest fires, fires, 

building fires and open-burning); 

B) Metal smelters, refineries – PCDD/Fs can be formed during various types of 

primary or secondary metal operations, including iron smelting, steel 

production and iron scrap recovery; 

C) Chemical industry - PCDD/Fs can be formed as by-products of paper pulp 

production, chlorinated phenols (such as pentachlorophenol), PCBs, phenolic 

herbicides and chlorinated aliphatic compounds; 

D) Biological and photochemical processes - Recent studies suggest that 

PCDD/Fs can be formed under certain environmental conditions, such as 

composting, by the action of microorganisms on chlorinated phenolic 

compounds. Formation is also reported during the photolysis of highly 

chlorinated phenolic compounds; 

(E) Reservoirs or warehouses - These are materials or sites containing 

previously formed PCDD/Fs or PCBs from which redistribution and circulation 

into the environment may be possible. This class includes soils, sediments, 

biota, water and some anthropogenic materials. The reservoirs become 

sources from the moment they begin to release into the environment.          

USEPA estimates that reducing emissions from identified sources have been 

responsible for decreasing the levels of PCDD/Fs in the environment in the recent 

decades. These reductions were imposed by the legislation on emissions from 
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municipal and hospital waste incinerators, changes in the amount of lead in motor 

fuels, changes in the processes used in pulp mills and reduction in the 

manufacture of phenolic chlorinated compounds, such as pentachlorophenol and 

the ban on the use of pesticides such as 2,4,5 -T (2,4,5-Trichlorophenoxyacetic 

acid, the "orange agent", mentioned above).    

At present, major concerns are related to the uncontrolled combustion of domestic 

waste and domestic fireplaces, which are expected to be the largest source of 

dioxin emissions into the environment in the future. There are already Danish and 

Swedish studies on this form of environmental contamination (Lonnermark et al., 

2008). The amount of gaseous emissions of PCDD/Fs produced during this 

combustion process and the amount on the ashes may be reduced according to 

the temperature of the combustion, the use of inhibitors, the combustion and ash 

removal conditions, as well as the use of wood not contaminated with paint or 

wood preservatives (Todd, 2003; Lavric et al., 2004). 

Concern related to hazardous waste deposits also tends to gain greater 

prominence within environmental concerns (Todd, 2003). 

Recent PCDD/Fs studies on gaseous emissions in several EU Member States, 

measured as total toxic equivalents, taking into account international toxic 

equivalency factors (EFT) for PCDD/Fs, assume that the major source of dioxin 

contamination is due to the gaseous emissions, calculating that they range from 

approximately 100-1000 g TEQ/year in West Germany, 100-200 g TEQ/year in 

Sweden, up to 1000 and up to 4000 g TEQ/year in the Netherlands and the UK, 

respectively. Similar studies on gaseous emissions of dioxins in the USA make a 

central estimate of 9300 g TEQ/year, which may vary between 3300 and 26000 g 

TEQ/year (USEPA, 1994). 

 

2.3.1 Combustion and formation of PCDD/Fs 

 

Three hypotheses are described which seek to justify the biosynthesis of dioxins 

and furans during combustion and their emission through the gaseous effluents 

from waste incinerators. PCDD/Fs can (Fiedler et al., 2000): 
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(A) Already be present in the waste. Measurements in Germany have been 

carried out indicating an average concentration of 50 ng TEQ/kg of waste, 

which is incompletely destroyed or converted during combustion. This 

source is not relevant in most modern incinerators; 

B) Be produced from similar chlorinated precursors (pre-dioxins) such as 

PCBs, chlorinated phenols and chlorinated benzenes; 

C) Be formed again during the process by the pyrolysis of non-similar 

chemical compounds such as PVC or other chlorinated carbons and/or by 

the combustion of non-chlorinated organic matter such as polystyrene, 

cellulose, lignin, carbon and carbon particles in the presence of chlorine 

donors. 

PCDD/Fs are formed during the incomplete combustion of organic matter in the 

presence of chlorine. During incineration, PCDD/Fs and other polychlorinated 

compounds such as benzene, phenol, naphthalene and biphenyl, are formed from 

the carbon that exists in the ashes during the cooling of the exhaust gases and is 

dependent on several factors such as the carbon morphology, the existence of 

catalytic ions (Cu2+, Fe3+, Pb2+ and Zn2+), oxygen concentration and 

temperature. The maximum PCDD/Fs formation occurs between 300º and 325º C. 

The formation of PCDD/Fs below 250º C and above 450º C is negligible (EA, 

1999; Meyer et al., 2004). Incineration of solid urban and hospital waste is 

identified as one of the activities that releases larger amounts of dioxins due to the 

incomplete combustion of these incinerators and the large quantities of PVC 

(polyvinyl chloride), which are the largest source of chlorine in these incinerators 

(Otles and Yildiz, 2003). Other sources of dioxins resulting from combustion are, 

as already mentioned, cement kilns, hazardous waste incinerators, metal smelters, 

wood combustion and leaded gasoline vehicles (Otles and Yildiz, 2003; Todd, 

2003). 

Recent studies have shown that domestic combustion of wood treated with wood 

preservatives significantly increases the formation of dioxins. The formation of de 

novo dioxins during combustion, can occur by two main routes: (i) condensation of 

chemically similar precursors, such as chlorobenzenes and chlorophenols, or (ii) 

the combination of carbon, oxygen and chlorine sources in the presence of a metal 

catalyst.  
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The most studied catalyst is copper in the form of copper oxide (CuO) or copper 

chloride (CuCl2). Copper chloride can efficiently chlorinate furans and dioxins at 

temperatures ranging from 200 to 400ºC and in contrast, copper oxide effectively 

dechlorinates, the more chlorinated dioxin and furan congeners, by heating under 

low oxygen conditions (Tame et al., 2007). Thus, the amount and distribution of 

different PCCD/F congeners that are formed during combustion is related to the 

chlorination and dechlorination reactions that occur (Tame et al., 2007). PCDDs 

are more likely to result from the condensation or bonding of phenolic compounds 

and PCDFs result from the chlorination and dechlorination reactions of 

dibenzofurans (Oh et al., 2004). 

There are several studies concerning the formation of dioxins during combustion. 

The formation of PCDD/Fs in the gaseous emissions is considerable, but is more 

relevant in reactions that involve catalysts on the surface of the incinerated 

material during the incineration process (EA, 1999). 

In the combustion process, the following PCDD/F emissions should be considered: 

• Reactions in the gas phase; 

• Non-catalyzed surface reactions; 

• Catalyzed surface reactions; 

• de novo formation. 

In reactions in the gaseous phase, which contribute with less than 10% of the total 

amount of PCDD/F, the dioxins formation probably occurs from short chain 

chlorinated hydrocarbons. These compounds, by oxidation, undergo an increase 

in the carbon chain, which form chlorinated aromatic compounds and 

consequently give rise to chlorinated biphenols. These compounds in contact with 

hydroxy (OH) groups, release hydrochloric acid (HCl) and form PCDD/F (EA, 

1999). 

In uncatalyzed surface reactions, the surface appears to function primarily as a 

site of absorption of PCDD/F precursors and thus concentrates compounds which 

can react towards PCDD/F formation. The differences between catalyzed and 

uncatalyzed surface reactions in PCDD/F formation, are difficult to establish and 

the formation process on uncatalyzed surfaces is not well described in the 
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literature. It is, however, clear that the catalyzed reactions produce more and more 

diversity of PCDD/F congeners in the different combustion processes (EA, 1999). 

In the catalyzed surface reactions, the PCDD/F can be formed from precursor 

molecules such as chlorophenol, chlorinated benzenes and chlorinated biphenols. 

This process is well studied and accepted as the major pathway of PCDD/F 

formation. Precursors are products of incomplete combustion, produced at high 

temperatures (> 400°C and most effectively at about 750°C). The precursors 

catalytically react with elements of the ashes to produce PCDD/F and is 

dependent on the number of precursors and the reaction temperature. Studies 

show that the formation of PCDD is dependent on the concentration of the 

precursors, but it was not possible to establish this relation with temperature (EA, 

1999). 

One of the most important precursor compounds for the formation of PCDD/F is 

chlorophenol. Two different pathways are described for the formation of PCDDs 

and PCDFs.  

The formation of PCDDs is carried out by the binding of chlorinated phenolic 

anions to the precursors on the surface of the incinerated materials and the 

phenolic rings are bonded by oxidation. The role of the catalyst in the oxidation is 

to transfer electrons that lead to the bonding of the two aromatic rings. In 

oxidation, there are HCl and Cl release reactions. The process shown in Figure 6 

refers to 2,4,6-trichlorophenol, which reacts to form 1,3,7,9-TCDD or 1,3,6,8-

TCDD.   

 

Figure 6 – PCDD formation mechanism (adapted from EA, 1999). 
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Further precursors, such as chlorobenzene and phenoxyphenols, are mentioned in 

the furans formation process (Figure 7). The mechanism appears to include a 

cyclization or ring closure reaction of the Pschorr type (Rotko et al., 2013). 

This reaction is catalyzed by a metal and appears to be of particular importance in 

the incineration of urban solid waste, especially when Cu and Fe metals are 

present, with Fe having the greatest positive effect on PCDD/F formation (EA, 

1999).   

 

Figure 7 – PCDF formation mechanism (adapted from EA, 1999). 

 

In the de novo formation of PCDD/F, the small amount of carbon remaining in the 

ashes of the material during combustion binds to the catalyst in the ash particles. 

The chlorine in the metal ligands is transferred to the aromatic carbon rings. It is 

also possible that the flue gas HCL also serves as an additional chlorine source to 

the chlorine in the metal ligands. HCl reacts with oxygen in the copper catalysts to 

form Cl2 and H2O. Air oxygen diffuses through the pores of ash particles where it 

reacts with the carbon that is in contact with the metal ligands containing chlorine. 

It is the chlorine that enters the substitution reactions for chlorination of the 

aromatic rings that incorporate the carbon to form the dioxins. Some of the formed 

PCDD/F diffuses in the gaseous state and the rest remain in the ashes, presenting 

large amounts of PCDD/F (EA, 1999). 

The production of PCDD/F is very dependent on the temperature of the reaction. 

Larger production occurs at 325°C, which means that dioxins are produced in the 

colder parts of the combustion (EA, 1999). 

The formation of dioxins requires the presence of carbon incorporated into the 

pores of the ash particles, which means that, in complete combustion, it limits the 

+ 
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amount of carbon available for de novo formation of dioxins in the ash, after 

combustion. 

The chlorine concentration in the flue gases does not appear to influence the 

formation of dioxins since the chlorine, in the de novo formation of the dioxins, 

comes from the metal ligands of the pores of the ash particles (EA, 1999). 

The de novo formation of dioxins seems to favour the formation of PCDF in PCDD 

debris. This is an important conclusion that shows that in contaminations in which 

the profile presents a great amount of furans, the formation de novo is the 

explanation (EA, 1999). 

The formation of de novo does not utilize CO and CO2 of the combustion gases in 

the formation of PCDD/F, since this pathway only includes reactions between 

molecules present in the ashes with air oxygen (EA, 1999). 

In high temperature combustion, predominates the catalyst reaction surface 

pathway and PCDD/F production from precursors compared to de novo formation. 

On the other hand, in low-temperature combustion, the de novo production path 

predominates in relation to the precursor pathways (EA, 1999). The high or low 

values of PCDD and PCDF indicate whether the reactions were from precursors or 

via de novo formation. 

When the combustion temperature drops to about 300°C, PCDF formation 

predominates in relation to PCDD formation. It is established that, incinerations at 

higher temperatures for a longer time, result in complete combustion and that, with 

a rapid decrease in the temperature of the combustion products to shorten the 

time, the gases remain in the temperature window between 200 and 450°C. Under 

these circumstances PCDD/F production is very low. 

 

2.3.2 Chemical industry and formation of PCDD/Fs 

 

Dioxins and similar compounds may also be formed as by-products of the 

chemical industry, such as bleach or the production of other chlorinated 

compounds, such as pentachlorophenol, PCBs, phenolic herbicides (e.g. 2,4,5-

trichloro-phenoxyacetic acid), chlorinated benzenes, chlorinated aliphatic 
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compounds, chlorinated catalysts and halogenated diphenyl ethers. Despite the 

production of intermediate chlorinated phenols, as well as PCBs, has been ceased 

in the United States and Europe in the 1970s, production continued to occur in 

other parts of the world until the 1990s, being still allowed for special cases, under 

limited use, controlled disposal and therefore, these substances may continue to 

be a source of PCDD/Fs and PCB emissions to the environment (USEPA, 2005; 

USEPA, 2006).  

Processes in the manufacture of industrial chemicals can, theoretically, give rise to 

persistent organic pollutants (particularly PCDD/Fs and PCB). Most of the 

processes share common steps, including chlorination of organic or inorganic raw 

materials, purification of the products, separation of product streams (usually by 

distillation), destruction of high-molecular-weight side products and recycle of 

hydrogen chloride. Most of the processes involve a hydrocarbon, saturated or 

unsaturated, treated with elemental chlorine and, in most processes, also a 

catalyst (SSCPOP, 2008). 

Central to formation of the basic structure of PCDD/Fs and PCB in chemical 

industry is the presence or generation of aromatic materials. Those materials 

must, at some point, be chlorinated. PCDD/PCDF formation is favoured in 

processes where chlorinated phenols are a substrate or phenols are reacted with 

chlorine (SSCPOP, 2008). 

In the 1990s, the contribution of chemical industry to the total emissions of 

hexachlorobenzene (HCB) worldwide was 33.8% (organic chemical industry 5.8%, 

other solvent use 0.004% and pesticide use 28%) following non-ferrous metal 

industry (36%).  Fuel combustion (3.7%), iron and steel industry (0.3%) and waste 

incineration (26%) were other sources identified (Bailey, 2001). 

Among these persistent bioaccumulative toxic substances, special attention must 

be paid to phenolic compounds used as pesticides, because these products may 

pose a great risk to the environment and to human health. 

Several countries have not yet found a safe storage solution for these pesticides. 

Sometimes they do have little information on existing quantities and even some 

Member States do not have hazardous waste incinerators for disposal. For 

example, in Europe, Poland is aware of the existence of about 60,000 tonnes of 
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pesticides under these conditions (about 10,000 in landfills, 25,000 in warehouses 

and 25,000 in private properties). Bulgaria had about 35 tonnes in 1996. In 1997, 

Croatia imported more than 503 tonnes of pesticides with persistent 

bioaccumulative toxicants. Estonia has also a history of importing these products. 

The situation is probably similar in other Member States of the EU, which should 

be identified as risk regions. In some of these countries, the concentration of these 

pesticides has been reduced in the environment, which has not happened in 

Albania and Romania, where relatively high concentrations of DDT and other 

chlorinated pesticides in water and sediment, are still present. In Slovakia, the 

values found show that there is high exposure to hexachlorobenzene from an 

unknown source, which results in a high concentration of this compound in human 

tissues. Other countries already prohibit the use of this type of chlorinated 

pesticides. Hungary was the first country in the world to ban the use of chlorinated 

pesticides in 1966. The Czech Republic banned it in 1974 followed by Slovakia in 

1976. Some African, Asian and South American countries continue to use these 

products as cheap and efficient pesticides (Holoubek et al., 2001). 

The formation of PCDD/Fs resulting from the use of chlorine in the paper pulp 

bleaching process resulted in the presence of PCDD/Fs in paper and waste water 

and solid waste from that industry. Sludge from Municipal Wastewater Treatment 

Plants, also occasionally presents PCDD/Fs (USEPA, 2005). 

The persistent and hydrophobic nature of these compounds causes them to 

accumulate in soil, sediments, organic matter and waste disposal sites. These 

compounds can be diffused from these sites by various processes, such as 

through dusts, sediment re-suspension, transport and can be naturally dispersed 

by volatilization of the sediments. The deposition and accumulation in the leaves 

of the plants can result in emissions, especially during forest fires or during the 

course of composting of these plant materials (Watterson et al., 1999; USEPA 

2005). 

2.4. Congeners Profile in different sources of PCDDs / PCDFs 

 

The analytical profile shows the relative amount of each congener of the PCDD/Fs 

in a given sample. 
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The profiles can be useful to identify or eliminate potential sources that contributed 

to a certain food contamination with PCDD/Fs, to compare different sources of 

contamination and to predict the quantities of each congener in a process of 

PCDD/Fs formation (USEPA, 2005). However, to perform chemical fingerprinting 

there must be a plausible transport pathway from the source to a receptor in order 

to conclude that a fingerprint is a result of that source. 

Once a contamination in food or feed is discovered, it is essential to trace back the 

origin and discover the source in order to identify potentially contaminated farms, 

factories, production processes and food products. It has been shown that 

congener patterns may be very helpful in discovering the source of the 

contamination. Therefore, it is necessary to collate representative patterns and 

make them available to risk managers and to the laboratories involved in feed and 

food control (Hoogenboom et al., 2016). 

When comparing patterns of PCDD/Fs, it seems obvious to do this based on the 

contribution of the individual congeners to the sum of the measured levels. An 

alternative, often described in literature, is the relative contribution to the TEQ 

level. The latter approach has some advantages. If the pattern is dominated by the 

octachlorinated congeners, the other congeners will not really be visible. 

Furthermore, in the case of elevated levels in food of animal origin, a modified 

profile is obtained as result of kinetics and metabolism. In these cases, a direct 

comparison between that pattern and patterns from primary sources may not 

easily lead to a good fit (Hoogenboom et al., 2016). Studies on the citrus pulp 

used as feed, following the cow milk incident, have shown that the primary source 

profile presented very high levels of the most chlorinated furans (OCDF and 

1,2,3,4,6,7,8-HPCDF), but these congeners presented rather low transfer rates to 

milk. In these cases, the pattern based on TEQ contribution clearly gives a much 

better fit. This can also be overcome by applying transfer rates in the calculations. 

However, since there is a reasonable correlation between transfer rates and TEFs, 

a comparison based on TEQ contribution was an appropriate alternative 

(Hoogenboom et al., 2016). 

For tracing sources in feed and food, first, it has to be checked how many 

congeners are increased in comparison to usual background levels. In most 

cases, from the 17 PCDD/Fs with 2,3,7,8-substitution routinely determined in feed 

and food, only a limited number is significantly increased and can be used for 
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source identification. However, also the absence of specific congeners offers 

important information for identification of the source. The combination may be a 

suitable starting point for the development of a decision that can assist pointing out 

the potential source. In addition, also other non-2,3,7,8 substituted congeners may 

be helpful, but these are not routinely identified and quantified (Hoogenboom et 

al., 2016). 

Hoogenboom et al., (2016), provided a strategy for the identification of sources 

based on the congener pattern, based on TEQ contribution:    

 If the contamination reveals the predominance of PCDFs, the most likely 

source is PCBs. The pattern may vary depending on the chlorination grade 

of the original PCB mixture, with high contribution of TCDF in case of a low 

chlorinated PCBs, and a shift to PeCDFs in case of higher chlorinated 

PCBs. Since most laboratories routinely analyse for PCBs, it will be easy to 

check whether this is the source. It is important that information on PCBs is 

provided in the analytical reports.  

 If the contamination reveals the predominance of PCDDs, there are roughly 

two options. One is the use of contaminated clays, with TEQ based patterns 

that are in general dominated by PeCDD and to a lesser extent TCDD, 

HxCDDs (in particular 1,2,3,7,8,9 HxCDD) and HpCDD. On an absolute 

basis, OCDD is by far the most important congener. However, also 

incidents with chlorophenols show only PCDDs. Depending on the 

chlorination grade there is a shift from TCDD, as in the Seveso incident and 

agent Orange (trichlorophenol, 2,4,5-Trichlorophenoxyacetic acid), to 

HpCDD, as occurred with materials contaminated with pentachlorophenol. 

In the Kaolinite incident in Germany during 2010/2011, an intermediate 

pattern with high contribution of 1,2,3,7,8,9-HxCDD was observed, but also 

the presence of relative high levels of tetrachlorophenol. Checking for 

chlorophenols may be an alternative to decide between clay materials and 

a pattern based on tetrachlorophenols, although the patterns can be 

distinguished. 

 A mixed PCDD/PCDF pattern can be caused by different sources. The 

pattern dominated by the PeCDD/Fs and to a lesser extent TCDD/Fs points 

in the direction of burning of chlorinated plastics (PVC). Depending on the 

materials involved there may be a higher dominance of either the PCDDs or 
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PCDFs. A mixed pattern is also observed in the case of certain minerals, 

such as recycled zinc oxide and the so-called sequestered minerals, that 

were produced by heating minerals in the presence of kelp. These mineral 

based patterns in general show much higher contributions of the HxCDFs 

and can as such be distinguished from the patterns caused by burning. 

 A fourth category involves profiles containing only one, or maybe two 

2,3,7,8-substituted congeners, as in the gelatine incident the Netherlands, 

in 2006, in which the congener pattern was dominated by 1,2,3,7,8-PeCDD 

and 2,3,7,8-TCDD, and was not recognized from any previous incident or 

known dioxin source (Hoogenboom et al., 2007), but also in a more recent 

incident in Chile with feed contaminated with zinc oxide in 2008. In this 

episode, 2,3,4,7,8-PeCDF were found as the major congeners in pork 

samples and contributed about 30% among the congeners (Meekyung et 

al., 2011).  

Usual methods to apply for source identification are the comparison of the 

homologue profiles, the comparison of the congeners profiles of the 2,3,7,8-

substituted PCDD/F and the comparison of the isomer distribution patterns 

(Hagenmaier et al., 1994). 

 

1. Comparison of the homologue profiles 

 

Most frequently the profiles of the ten homologue groups of tetra-to-

octachlorinated PCDD/F are used to the detection of sources. In these 

cases, the diagrams are based on the mean values of “n” analytical 

samples. For the calculation of the arithmetic mean values, all analytical 

data is normalized to the total sum of PCDD and PCDF= 100. Nevertheless, 

changes in the homologue profiles can occur temporally and spatially from 

the source to the sample under consideration, resulting in misinterpretation 

regarding the source. Therefore, the applicability of the comparison of 

homologue profiles for source identification in environmental samples is 

limited.  

  

2. Comparison of the congeners profiles of the 2,3,7,8-substituted PCDD/F 
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The congeners profile of different thermal processes shows also some 

variation, however, the differences in the congeners profiles are smaller 

than that in the homologue profiles. As in the homologue profiles, the 

congeners profile of chemicals (PCP, PCB and chlorine production) are 

completely different from those of thermal processes.  

  

3. Comparison of the isomer distribution patterns 

 

The mass fragmentograms obtained in dioxin analysis by GC/MS are such 

patterns. In some cases, the non-2,3,7,8-substituted isomers are of great 

importance in characterizing the different sources, e.g. 1,2,4,6,8,9-HxCDF 

and 1,2,3,4,6,8,9-HpCDF to identify PCP as a dioxin source. However, the 

data of non-2,3,7,8-substituted isomers are not available in many cases 

because they are not included in routine dioxin analysis reports. 

 

4. Comparison of the profiles of the relative congener concentrations of the 

2,3,7,8-substituted PCDD/F 

 

Because of the limitations of the previous methods in source identification, 

Hagenmaier et al., (1994), have developed a new strategy. The strategy is 

based on the assumption that the concentration of all isomers changes in 

the environment within one homologue group, with the same tendency. 

Therefore, the profiles of relative congener concentrations should be 

subjected to changes in the environment to a lower degree than the 

homologue profiles. This new strategy rests on the following calculations: 

 The ratio of the concentration of the 2,3,7,8-substituted congeners to 

the concentration of the corresponding homologue groups; 

 The concentration of OCDD and OCDF are divided by the 

concentration of the 2,3,7,8-substituted PCDD and PCDF, 

respectively; 

 The PCDD/PCDF ratio in form of the quotient of PCDD concentration 

and the total concentration of PCDD+PCDF.  

The application of this procedure to the average source analysis results in a 

close similarity of the relative congener profiles for all thermal processes. 

That implies that the isomer distribution patterns for different thermal 
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processes are quite similar and relatively constant. That means that the 

processes taking place in the air path are homologue-specific but not 

isomer specific.  In contrast to the homologue profiles the relative congener 

profiles of sewage sludge samples with low PCDD/PCDF concentrations 

differ significantly from the PCP profile and suggest that the main PCDD/F 

source of these sludge’s is of thermal origin.  

Several published studies classify and typify the profile of the most widely studied 

sources of contamination that risk managers shall bear in mind when assessing a 

food chain contamination episode (Cleverly et al., 1997; Muto and Sugawara, 

2001; Gullett and Touati, 2003; USEPA, 2005; USEPA, 2006). 

Track down of dioxin sources requires consistent detection of all congeners. 

Source identification requires both quantitative data and qualitative information 

about fingerprint. For inspection and comparison of the profile of the different 

PCDD/Fs congeners, some observations can be made regarding the data 

presented in these studies: 

a) In combustion emissions it is common that all PCDD/Fs congeners be 

chlorinated in the 2,3,7,8-positions, although with different relative 

percentages of total PCDD/Fs (USEPA, 2005); 

b) In emissions resulting from combustion, the congener 2,3,7,8-TCDD 

generally represents 0.1 to 1% of the totals of PCDD/Fs. Exceptions are 

the fat combustion emissions in boilers, where available data indicates 

that the 2,3,7,8-TCDD congener generally represents 7% of total 

PCDD/Fs (USEPA, 2005); 

c) It cannot be concluded that the congener octachlorodibenzo-p-dioxin 

(OCDD) is the dominant congener for all emissions from combustion. 

OCDD dominates emissions caused by mass combustion, fat burning in 

boilers, industrial wood combustion, unleaded gasoline combustion, diesel 

fuel combustion in trucks and sludge incinerators. The dominant 

congeners for other sources of combustion are 1,2,3,4,6,7,8-HpCDF in 

mass combustion, hazardous waste incineration and secondary 

aluminium smelting, OCDF in hospital waste incineration and in coal 

boilers, the congener 2,3,4,7,8-PeCDF in cement kilns that burn 

hazardous waste and the congener 2,3,7,8-TCDF in cement kilns which 

do not burn hazardous waste (USEPA, 2005); 
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d) In 2008 in Campania, Italy, contaminations with polychlorinated dibenzo-

p-dioxins (PCDDs), dibenzofurans (PCDFs) were found in buffalo milk. 

The study of the congeners distribution showed that the congener profile 

was characterized by a prevalence of PCDFs in respect of PCDDs, which 

has suggested that the likely cause of contamination is to be attributed to 

the illegal burning of waste (Espositoa et al., 2009; Espositoa et al., 2010); 

e) There is a marked difference in the distribution of the PCDD/Fs congeners 

between the cement kilns that burn hazardous waste and the ones that 

don’t burn hazardous waste. When they do not burn hazardous waste as 

a combustion supplement, the dominant congeners are 2,3,7,8-TCDF; 

OCDD; 1,2,3,4,6,7,8-HpCDD and OCDF. When burning hazardous waste, 

the dominant congeners are 1,2,3,7,8-PeCDF; 2,3,7,8-TCDF; 1,2,3,4,7,8-

HxCDF and 1,2,3,4,6,7,8-HpCDD (USEPA, 2005); 

f)   There are similarities in the profile of penta-chlorophenol (PCP) congeners 

and gaseous emissions from diesel truck exhausts, emissions from 

unleaded fuel vehicles and emissions from industrial wood combustion. In 

these sources, more chlorinated compounds, such as octa and hepta-

CDD/CDF, dominate the total emissions and PCDDs have higher total 

weight than PCDFs (Wunderli et al., 2000; Muto and Sugawara, 2001); 

g) After ingestion of wood chips contaminated with PCP, the birds and cattle 

present contaminations in the muscle in which the OCDD and HpCDD 

congeners are the dominant ones. However, in the bovine species, unlike 

birds, the congeners 1,2,3,6,7,8 HxCDD and 1,2,3,4,6,7,8 HpCDF are 

differentiated, presenting values slightly increased (Fries et al., 2002, 

Ryan et al., 1985); 

h) One conclusion drawn by Fiedler et al., (2000) and Huwe et al., (2000) 

from different studies is that cattle fed with PCP treated wood chips 

eliminated large amounts of OCDD (Octachlorodibenzodioxin). The 

amount excreted was almost four times higher than the amount ingested, 

which points to the possibility of in vivo formation of OCDD from pre-

dioxins, i.e. chlorinated phenoxyphenois and pentachlorophenol; 

i)   The incident with citrus pulp from Brazil, in 1998, in which, pellets of feed 

for dairy cows included lime, have shown that the feed raw material 

contamination profile presented very high levels of the most chlorinated 
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furans (OCDF and 1,2,3,4,6,7,8-HPCDF), but these congeners presented 

rather low transfer rates to milk (Hoogenboom et al., 2016);  

j)   High levels of polychlorinated dibenzo-p-dioxins (PCDDs) and 

polychlorinated dibenzofurans (PCDFs) were detected in free-range eggs. 

The source of dioxins in the poultry farm was pentachlorophenol-treated 

wood, which was used as structural components in one 40-year-old farm 

building adapted to a henhouse. The contamination found elevated 

amounts of OCDD, OCDF, HxCDD, HpCDD and HpCDF (Piskorska-

Pliszczynska et al., 2016); 

k) The profiles found in litters of wood chips contaminated with treated wood, 

in the muscle of the breeding hens raised in these litters, in the hatching 

eggs placed by these contaminated chickens and in the respective chicks 

born from these eggs showed a coincidence of the peaks of higher 

relative concentration in the different samples, especially for the 

congeners 1,2,3,4,6,7,8-HpCDD and OCDD (Cardo et al., 2014); 

l) Some studies on dioxin congeners fingerprint analysis, found transformation 

of the congeners profile from the contamination source to the 

contaminated organism. Changa et al. (2016) observed that OCDD was 

the dominant PCDD/Fs congener in 54 of the 55 sediment samples and in 

all water samples, in aquacultures in a place which is right next to an 

abandoned pentachlorophenol factory. The fish samples showed that 

unlike the observed in the water and sediment samples, in which OCDD 

was the major congener, 2,3,4,6,7,8-hexachlorodibenzofuran (HxCDF) 

predominated in 33 out of 55 fish samples and represented 36.4–74.7% of 

the total PCDD/Fs in regard to mass concentration;  

m) In a study of the poultry production chain contamination with wood 

shavings from the bedding material in a breeding hens farm which 

affected the hatching eggs and the offspring, also found transformation of 

the congeners profile from the contamination source to the contaminated 

organisms. It was concluded that in the fat and muscle profiles of broilers 

and breeding hens, the relative average concentration of OCDD was 52% 

and 53% lower, compared to the profile of the wood shavings and 

hatching eggs, respectively. On the other hand, the relative average 

concentration of 1,2,3,7,8-PeCDD, 1,2,3,6,7,8-HxCDD and 1,2,3,4,6,7,8-

HpCDD in the profiles of fat and muscle samples of broiler and breeding 



39 
 

hens was 50% - 97% higher when compared to the profiles of the beds 

and hatching eggs (Cardo et al., 2014); 

n) Contaminations may have distinct dioxin sources. Litten and Fowler, 

(2001), studied suspended solids from the Hudson River and New 

York/New Jersey harbour waters. The upper site was near to a 

deactivated facility that manufactured 2,4,5-trichlorophenoxy acetic acid 

for production of “Agent Orange” where the contamination was dominated 

by 2,3,7,8-TCDD.  The lower site was near a facility incinerating obsolete 

electrical equipment where the contamination was dominated by 

2,3,4,7,8-PeCDF and 1,2,3,4,7,8-HxCDF. The intermediate site had a 

contamination which was a mixture of both because this site receives 

water from the upper site by the river current and receives water from the 

lowest site by the rise of the tide; 

o) It should, also, be realized that some congeners with relatively high TEFs 

may be metabolized by certain species, as is e.g. the case for TCDF and 

1,2,3,7,8-PeCDF in pigs and cows (Hoogenboom et al., 2016). 

 

Chemical fingerprinting is a well-established technique for distinguishing different 

sources of contamination, and it is particularly well stablished to work with families 

of organic compounds, such as PCBs, polycyclic aromatic hydrocarbons, and 

CDD/CDFs. This is because these classes contain many individual compounds, 

which together comprise a compositional pattern, also referred to as a “profile,” a 

“signature,” or a “fingerprint” and also because the relative concentrations of an 

individual profile can be used as a marker of the original source of contamination. 

However, because organic compounds can be transformed in the environment or 

in vivo, segments of the original patterns can be altered. Another complication of 

these “real world” factors is that multiple sources often mix together and mask the 

individual signature of a specific source of contamination. 

Environmental transformations and mixed sources must be considered when 

interpreting dioxins contamination fingerprints, especially in fingerprint analysis of 

samples from soil or sediment, which typically represents many decades of input 

of CDD/CDFs that may have been chemically transformed during transport from 

their original source and after deposition and/or mixed with other sources. 

Many fingerprint analysis methods are known and they range, from simple profile 

comparisons of individual samples, to sophisticated multivariate analyses. 
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Individual profile comparisons can be useful when the profiles are clearly different 

or similar. 

Multivariate statistical analyses such as hierarchical cluster analysis and principal 

components analysis (PCA) are often used to condense and simplify a complex 

set of variables (Shields et al., 2015; Cardo, 2008). 

These widely used and accepted techniques are scientifically defensible, although 

the underlying mathematics are complex. 

There are several chemical fingerprinting methods, Shields, (2015) describe and 

systematize the most used: 

1. Individual Profile Evaluation: The first fingerprinting step, and sometimes 

the only step, is the evaluation of individual samples by comparison of 

profiles of the relative concentrations of either the commonly reported 

seventeen 2,3,7,8-substituted congeners or the 10 homologue classes. 

Concentrations of CDD/CDFs found in different samples can vary by orders 

of magnitude, therefore, standardization of the results is necessary so that 

the congener or homologue profiles from different samples can be 

compared. 

a. Standardization Methods: Four types of standardization methods are 

commonly used. Shields (2015) define them as the “2,3,7,8-sum,” 

“relative homologue,” “relative TEQ,” and “total homologue” methods. 

Profiles using these four standardization methods in samples of similar 

sources may have common 2,3,7,8 - sum profiles, but very different 

profiles can be found using the other standardization methods. Each of 

these methods provides a different, yet equally valid, view of the 

relative concentrations of the congeners and homologue classes. The 

use of multiple standardization methods for both visual comparisons 

and exploratory data analyses provides a more rigorous analysis than 

using just one standardization method. The differences of each of 

these standardization methods are: 

i. “2,3,7,8-Sum” Standardization Method: Each reported 2,3,7,8-

substituted congener is divided by the sum of the 2,3,7,8-

substituted congeners reported. This is a common standardization 

method and is similar to dividing each congener by the total 

CDD/CDFs (USEPA, 2005) and takes advantage of the detail 

provided in the congener specific results. However, there are two 
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problems with this method: CDD/CDF profiles can be altered by 

weathering and bioaccumulation and the profile comparisons can 

be limited by lack of detection of specific congeners. Another 

challenge is the problem of viewing the low concentrations that are 

masked when the relative concentrations of OCDD or others are 

extremely high. Presenting the relative concentrations on a 

logarithmic scale allows examination of the pattern of the low 

concentration congeners. However, if the scale is expanded too 

much to show the differences in the low percentage congeners, 

the differences between the major contributing congeners are 

difficult to detect. 

ii. “Relative Homologue” Standardization Method: Each 2,3,7,8-

substituted congener is divided by its respective homologue class 

(e.g., 2,3,7,8-TCDD is divided by the total TCDDs, 1,2,3,4,7,8-

HxCDF is divided by the total HxCDFs). OCDD and OCDF are 

divided by the total 2,3,7,8-substituted dioxins and furans, 

respectively. This method, somewhat neutralizes the effects of 

differential weathering and bioaccumulation resulting from the 

degree of chlorination (i.e., homologue class) among 

environmental samples (e.g., soil, sediments, and dust). 

Differences in weathering and bioaccumulation between 2,3,7,8-

substituted congeners and non-2,3,7,8-substituted congeners with 

the same degree of chlorination probably also occur; yet fewer 

changes are likely within the homologue class than between them. 

iii. “Relative TEQ” Standardization Method: The TEQ for each 

reported 2,3,7,8-substituted congener is divided by the TEQ for 

the sample. This standardization method takes advantage of the 

detail provided in the congener-specific results, and it also 

provides information on which congeners contribute to toxicity. 

Another advantage of this method is that the dominance of OCDD 

(often with orders of magnitude greater than some of the lower 

chlorinated congeners) does not mask the patterns of the low-

concentration congeners. However, this standardization method 

has the same two problems as the “2,3,7,8-sum method”, namely, 

CDD/F profiles of similar environmental media can be altered by 
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weathering and bioaccumulation, and the profile comparisons can 

be limited by lack of detection of specific congeners. 

iv. “Total Homologue” Standardization Method: Each homologue 

class is divided by the total CDD/CDFs (e.g., total PeCDFs divided 

by the total CDD/CDFs). This is a common standardization 

method and a convenient way of showing gross differences in 

profiles. However, unlike the congener-specific methods, subtle 

but potentially important differences among the low-concentration 

congeners are not presented. Also, unlike the “relative homologue” 

method, it does not account for any significant dechlorination of 

environmental samples resulting from weathering or differential 

uptake by organisms. 

2. Exploratory Data Analysis: To complement visual comparisons and/or ratio 

analyses described above, exploratory data analyses can be used to 

evaluate sources. Mathematical methods can be used to identify patterns 

(similarities and differences) in groups of multivariate CDD/CDF congener 

data. Methods used to assist in source identification of CDD/CDFs include, 

but are not limited, to double ratio plots, hierarchical cluster analysis, 

discriminant analysis, principal component analysis (PCA), neural networks, 

and polytopic vector analysis (PVA). 

Data sets often have a large proportion of undetected congeners. The 

analyst needs to describe, not only the screening criteria used to include or 

exclude these data but also, if included, what value was used to represent 

the estimated concentration. Typically, one-half the detection limit is used, 

but sometimes, zero, or the full detection limit. The analyst should conduct 

and describe sensitivity analyses with regard to differences and similarities 

in the conclusions, depending on the data processing methodology applied.  

Congener profiles can vary significantly depending on the standardization 

method. The multivariate analyses should be applied to all four common 

standardization methods if data is available, as sometimes only the 2,3,7,8 

congeners are available and no homologue class data is reported, despite 

sometimes the opposite is true. The results of the exploratory data analysis 

are more robust if they are consistent across different standardization 

methods.   
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2.5. Toxicity of dioxins 

The USEPA attributes carcinogenic potential to the complex mixture of dioxin 

congeners to which humans and animals are exposed through food or air. The 

tetrachlorinated congener, "2,3,7,8-TCDD" (tetrachloro-dibenzene-p-dioxin) is one 

of the most toxic substance known, classified as a human carcinogen, based on 

the evidence from animal and human studies. There is no safety limit, since it is 

possible to induce cancer in laboratory animals even at very low doses. Other 

dioxins are classified as potential human carcinogens (McGregor et al., 1998; 

USEPA, 2004).  

Different animal species have a different sensitivity to dioxins, whereas humans, in 

comparative terms, have an intermediate sensitivity in the spectrum of effects 

verified in the sequence of exposures to those compounds (USEPA, 2004). 

Dioxins are efficiently absorbed in the gastrointestinal tract and accumulate in the 

lipidic tissues of the body, increasing the risk with prolonged exposure, i.e., with 

age and with very abrupt weight loss diets, especially in adults and elderly people 

(Hue et al., 2006; Weiss, 2006). The literature on the toxicokinetics of PCDDs and 

PCDFs is quite extensive and exposure to PCDDs and PCDFs may result from 

inhalation of contaminated fly ash, dust and soil or by oral exposure. The uptake 

following oral exposure of the most toxic PCDDs and PCDFs in experimental 

animals is generally in the range 50–90%, depending on the vehicle. Uptake of 

higher chlorinated congeners is much lower, because of lower solubility and larger 

molecular size. Absorption of more than 90% has been demonstrated in breastfed 

infants (WHO, 2000). Liver and adipose tissues are the predominant storage sites 

of absorbed PCDDs and PCDFs. However, the distribution is highly dose-

dependent because of induction of specific binding proteins in the liver, and there 

are large differences in the distribution pattern between various PCDDs and 

PCDFs (WHO, 2000). 

In addition to the carcinogenic potential, a number of other adverse effects on 

human and animal health are attributed to dioxins, in particular at foetal 

development level, growth percentile, psychomotor and mental delays and various 

endocrine disruptions of varying degrees of severity involving, in particular, thyroid 

and gonads (McGregor et al., 1998).  
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Depending on the degree of chlorination, 1 to 8 chlorine atoms and their position on 

the benzene rings, multiple congeners may be formed. The toxicity thereof varies 

considerably, with particular importance to those in which the 2,3,7 and 8 positions 

are occupied. However, as already mentioned, of the 210 possible congeners, only 

17 are toxicologically worrisome (Assunção and Pesquero, 1999; EC, 2000; Bryant 

et al., 2001; Weiss, 2006).    

PCBs belong to the group of chlorinated hydrocarbons which are synthesized by 

the direct chlorination of biphenyl. Depending on the number of chlorine atoms, 

which may be from 1 to 10 and their position on the two rings, it is theoretically 

possible to have 209 different compounds or congeners, but only 12 have a 

toxicological action similar to dioxins (EC, 2000b). 

From a toxicological point of view, PCBs can be divided into three groups. Non-

ortho and mono-ortho have higher toxicological properties similar to dioxins, and 

di-ortho PCBs are less toxic and have different toxicological properties (EC, 

2000b). In PCBs, which do not have any chlorine atoms in the ortho position 

(Figure 8), the two phenol rings assume a co-planar position and thus, have 

properties similar to those of dioxins. Non-ortho and mono-ortho PCBs were 

assigned with toxicity equivalence factor values, TEF (Weiss, 2006). 

The exposure assessment should take into account that, although dioxins are 

more toxic than PCBs, the quantities of PCBs released into the environment are 

several times higher (EC, 2000). 

 

Figure 8 - Molecular structure of PCBs and bonding positions of chlorine atoms (Weiss, 2006). 

 

2.5.1 Toxicity Equivalence Factor and Toxic Equivalent concentration  

Each compound in the dioxin family or dioxin-like PCBs has a different level of 

toxicity. In order to assess the cumulative sum of the toxicities of these different 

related compounds, the concept of Toxicity Equivalence Factors (TEF) was 
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introduced in order to facilitate risk assessment, as well as regulatory control. TEF 

values are theoretical values, administrative tools, based on current knowledge 

that must be revised as new data become known and available (Fiedler et al., 

2000). 

The transformation of the "gross concentrations" of each congener using the TEF 

values gives the analytical result for the 17 dioxin-like compounds and 12 dioxin-

like PCBs and is expressed in terms of a single quantifiable unit: " TCDD Toxic 

Equivalent Concentration" (TEQ) (Weiss, 2006). 

This conversion is based on the assumption that all dioxin congeners have the 

same qualitative effect because they bind to the same dioxin receptor in cells but 

with different intensities. The different intensity is expressed by the TEF and 

estimated by the relation between the lower toxicity of the respective congener and 

the toxicity of the 2,3,7,8-TCDD that assumes the theoretical TEF value of 1. 

Moreover, it is assumed that the toxic effects are not synergistic or antagonistic, but 

cumulative (EC, 2000b).  

TEF estimates the toxicity of dioxin-like compounds relative to the toxicity of 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is assigned a TEF of 1.0 

(WHO/FAO, 2012). 

Different models of TEF have been developed. At the international level, the most 

commonly used TEF values are those proposed by NATO Committee on the 

Challenges of Modern Society (NATO/CCMS) in 1988 and the revision of TEF 

values for mammals and proposed new values for birds and fish by WHO in 1998. 

According to the model used, the TEQ values are expressed respectively in I-TEQ 

(NATO/CCMS) or WHO-TEQ (WHO) (EC, 2000b; Fiedler et al., 2000; Huwe, 

2002). 

The toxicity assessment of the different compounds to which these three groups of 

substances belong (PCDD, PCDF and PCB) and their congeners, are determined 

by comparison with the toxicity of 2,3,7,8, TCDD, also called “Seveso dioxin” and 

are expressed in special units of toxic equivalence (Table 1) (Jensen, 2003; Rappe, 

2003).   

In toxicological concepts, the most toxic congener, 2,3,7,8-TCDD, is referred to as 

"toxic equivalency factor dioxin" (TEF) = 1.0 (Luscombe, 1999). 
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Table 1 - Toxic Equivalence Factors (TEF) > 0 of PCDD/Fs e PCBs (1998 – WHO). 

Congeners  WHO- TEF 

PCDD  

2,3,7,8-TCDD  

1,2,3,7,8-PeCDD  

1,2,3,4,7,8-HxCDD  

1,2,3,6,7,8-HxCDD  

1,2,3,7,8,9-HxCDD  

1,2,3,4,6,7,8-HpCDD  

OCDD 

 

1  

1  

0.1  

0.1  

0.1  

0.01  

0.0001 

PCDF  

2,3,7,8-TCDF  

1,2,3,7,8-PeCDF  

2,3,4,7,8-PeCDF  

1,2,3,4,7,8-HxCDF  

1,2,3,6,7,8-HxCDF  

1,2,3,7,8,9-HxCDF  

2,3,4,6,7,8-HxCDF  

1,2,3,4,6,7,8-HpCDF  

1,2,3,4,7,8,9-HpCDF  

OCDF 

 

0.1  

0.05  

0.5  

0.1  

0.1  

0.1  

0.1  

0.01  

0.01  

0.0001 

Não-ortho-PCB  

3,3’,4,4’-TCB                      (77)  

3,4,4’,5-TCB                       (81)  

3,3’,4,4’,5-PeCB                (126)  

3,3’,4,4’,5,5’-HxCB           (169) 

 

0.0001  

0.0001  

0.1  

0.01 

Mono-ortho-PCB  

2,3,3’,4,4’-PeCB                (105)  

2,3,4,4’,5-PeCB                 (114)  

2,3’,4,4’,5-PeCB                (118)  

2’,3,4,4’,5-PeCB                (123)  

2,3,3’,4,4’,5-HxCB            (156)  

2,3,3’,4,4’,5’-HxCB          (157)  

2,3’,4,4’,5,5’-HxCB          (167)  

2,3,3’,4,4’,5,5’-HpCB       (189) 

 

0.0001  

0.0005  

0.0001  

0.0001  

0.0005  

0.0005  

0.00001  

0.0001 

(…) related compounds that are supposed not to have 

the same effect as dioxins.   

Adapted from Meyer et al., 2004 
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TEF values assigned to the other congeners are classified in relation to the toxicity 

of 2,3,7,8-TCDD. To determine the TEQ value of a food or in the atmosphere, the 

concentration of each congener is multiplied by its TEF value. The total TEQ for a 

mixture of PCDD/Fs and PCBs can then be established by summing the individual 

values of the set of congeners (Luscombe, 1999). 

In the 1998 review, WHO established the most recommended TEF models for use 

with mammals and humans and separately developed models for birds and fish 

because it is not possible to synchronize TEF values between mammals, birds and 

fish.   

Notwithstanding the uncertainties that may compromise the TEF values concept 

when used for risk analysis purposes (such as non-cumulative interactions, 

differences in the form of the dose-response curve and the different responses of 

the species to exposure, prediction of TEQ values), the TEF model, continues to be 

considered the most appropriate and practical for the risk analysis of compounds 

with properties similar to those of dioxins (Table 2) (Van den Berg et al., 1998). 

Non-dioxin-like PCBs ("classical" or "non-coplanar" PCBs) have a different 

toxicological profile from dioxins and are therefore not used for the determination of 

TEQ. These circulate more easily through the muscles and blood, directly affect the 

nervous system and the brain development. Their concentration in the aquatic biota, 

namely fish and molluscs, is of several orders of magnitude greater than that of 

dioxins (CEC, 2001). 

In June 2005, a World Health Organization (WHO)-International Programme on 

Chemical Safety expert meeting was held in Geneva during which the toxic 

equivalency factors (TEFs) for dioxin-like compounds, including some 

polychlorinated biphenyls (PCBs), were re-evaluated (Table 3). Changes were 

decided by the expert panel for 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) 

(TEF=0.3), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.03), 

octachlorodibenzo-p-dioxin and octachlorodibenzofuran (TEFs = 0.0003), 3,4,4',5-

tetrachlorbiphenyl (PCB 81) (TEF = 0.0003), 3,3',4,4',5,5'-hexachlorobiphenyl 

(PCB 169) (TEF=0.03), and a single TEF value (0.00003) for all relevant mono-

ortho-substituted PCBs. 
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Table 2 - Toxic Equivalence Factors of PCDD/PCDFs proposed by NATO/CCMS (1988) and by 

WHO (1998). 

 Congeners I-TEFs 

(NATO/CCMS) 

WHO-TEFs 

Human/ Mammals fish Birds 

PCDD  

2,3,7,8-TCDD  

1,2,3,7,8-PeCDD  

1,2,3,4,7,8-HxCDD  

1,2,3,6,7,8-HxCDD  

1,2,3,7,8,9-HxCDD  

1,2,3,4,6,7,8-HpCDD  

OCDD 

 

1  

0.5 

0.1  

0.1  

0.1  

0.01  

0.001 

 

1  

1  

0.1  

0.1  

0.1  

0.01  

0.0001 

 

1  

1  

0.5  

0.01  

0.01  

0.001  

< 0.0001 

 

1  

1  

0.05  

0.01  

0.1  

< 0.001  

0.0001 

PCDF  

2,3,7,8-TCDF  

1,2,3,7,8-PeCDF  

2,3,4,7,8-PeCDF  

1,2,3,4,7,8-HxCDF  

1,2,3,6,7,8-HxCDF  

1,2,3,7,8,9-HxCDF  

2,3,4,6,7,8-HxCDF  

1,2,3,4,6,7,8-HpCDF  

1,2,3,4,7,8,9-HpCDF  

OCDF 

 

0.1  

0.05  

0.5  

0.1  

0.1  

0.1  

0.1  

0.01  

0.01  

0.001 

 

0.1  

0.05  

0.5 

0.1  

0.1  

0.1  

0.1  

0.01  

0.01  

0.0001 

 

0.05  

0.05 

0.5  

0.1  

0.1  

0.1  

0.1  

0.01  

0.01  

0.0001 

 

1  

0.1  

1  

0.1  

0.1  

0.1  

0.1  

0.01  

0.01  

0.0001 

Adapted from CCME, 2002. 

Additivity, an important prerequisite of the TEF concept was again confirmed by 

results from recent in vivo mixture studies. Some experimental evidence shows 

that non-dioxin-like aryl hydrocarbon receptor agonists/antagonists are able to 

impact the overall toxic potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 

related compounds, and this needs to be further investigated. Certain individual 

and groups of compounds were identified for possible future inclusion in the TEF 

concept, including 3,4,4'-TCB (PCB 37), polybrominated dibenzo-p-dioxins and 

dibenzofurans, mixed polyhalogenated dibenzo-p-dioxins and dibenzofurans, 

polyhalogenated naphthalenes, and polybrominated biphenyls. Concern was 

expressed about direct application of the TEF/total toxic equivalency (TEQ) 
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approach to abiotic matrices, such as soil and sediment, for direct application in 

human risk assessment. This is problematic, as the present TEF scheme and TEQ 

methodology are primarily intended for estimating exposure and risks via oral 

ingestion (e.g., by dietary intake). A number of future approaches to determine 

alternative or additional TEFs were also identified. These included the use of a 

probabilistic methodology to determine TEFs that better describe the associated 

levels of uncertainty and "systemic" TEFs for blood and adipose tissue and TEQ for 

body burden (Van den Berg et al., 2006). 

Table 3 - WHO-TEFs for human risk assessment based on the conclusions of the WHO - 0151 

International Programme on Chemical Safety (IPCS) expert meeting, Geneva, June 2005. 

Congener TEF value Congener TEF value 

Dibenzo-p-dioxins (‘PCDDs’)   
‘Dioxin-like’ PCBs, Non-ortho 

PCBs + Mono-ortho PCBs  

 

2,3,7,8-TCDD 1   

1,2,3,7,8-PeCDD 1 Non-ortho PCBs   

1,2,3,4,7,8-HxCDD 0.1 PCB 77 0.0001 

1,2,3,6,7,8-HxCDD 0.1 PCB 81 0.0003 

1,2,3,7,8,9-HxCDD 0.1 PCB 126 0.1 

1,2,3,4,6,7,8-HpCDD 0.01 PCB 169 0.03 

OCDD 0.0003   

Dibenzofurans (‘PCDFs’)   Mono-ortho PCBs   

2,3,7,8-TCDF 0.1 PCB 105 0.00003 

1,2,3,7,8-PeCDF 0.03 PCB 114 0.00003 

2,3,4,7,8-PeCDF 0.3 PCB 118 0.00003 

1,2,3,4,7,8-HxCDF 0.1 PCB 123 0.00003 

1,2,3,6,7,8-HxCDF 0.1 PCB 156 0.00003 

1,2,3,7,8,9-HxCDF 0.1 PCB 157 0.00003 

2,3,4,6,7,8-HxCDF 0.1 PCB 167 0.00003 

1,2,3,4,6,7,8-HpCDF 0.01 PCB 189 0.00003 

1,2,3,4,7,8,9-HpCDF 0.01   

OCDF 0.0003   

 

The European Commission adopted the result of this re-evaluation in 2012 for 

calculation of TEQ concentrations. The concentrations of the individual substances 

in a given sample shall be multiplied by their respective TEF, as established by the 
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WHO in 2005 (Table 3) and subsequently summed to give the total concentration 

of dioxin-like compounds expressed as TEQs (EC, 2012). 

2.5.2 Tolerable Daily Intake  

 

In 1990, WHO estimated that more than 90% of human exposure to dioxins occurs 

through diet and mainly food of animal origin, since animals function as recyclers, 

leading to the accumulation and consequent biomagnification of dioxins in the food 

chain. Food of animal origin approved for consumption may be responsible for the 

daily intake of approximately 2 pg TEQ/kg body weight. Other food, particularly 

those with low lipid content, is less important in terms of daily intake (Fiedler et al., 

2000).  

In 1998, WHO, the United States Agency for Toxic Substances and Disease 

Registry (ATSDR), the WHO Joint Expert Committee on Food Additives 

(JECFA/WHO) and the European Commission's Scientific Committee on 

Foodstuffs (ECSCF) published an extensive study on the effects of dioxins on 

human and animal health based on results obtained in animal models. It was 

recommended that the average daily dose of dioxin exposure should be limited to 

values within the range of 1 to 4 pg TEQ/Kg of body weight, to ensure that serum 

levels do not reach troubling values (WHO, 1998; Otles and Yildiz, 2003).  

At a meeting in Bilthoven, Holland, in 1990, WHO experts had recommended a 

tolerable daily intake (TDI) for dioxins and furans of 10 pg TEQ/kg body weight/day 

(Fiedler et al., 2000). At this time, it would have been agreed that the 

recommended value should be changed to 1 to 4 pg TEQ/kg/day, after having 

discussed the results on studies in industrialized countries indicating that the 

maximum daily dose of PCDD/Fs was estimated at values of 50 to 200 pg 

TEQ/person/day or 1 to 3 pg TEQ/kg body weight/day for an adult of 60 kg. If 

dioxin-like PCBs are included in the total intake, total TEQ may be 2 to 3 times 

higher (Fiedler et al., 2000). 

The EU's Scientific Committee for Food (ECSCF) adopted, in 30 May 2001, an 

opinion on the risk assessment of dioxins and dioxin-like PCBs in food. An 

acceptable weekly exposure (TWI) was established for dioxins and PCBs in the 

form of dioxins of 14 pg (WHO-TEQ)/Kg of body weight. This TWI is in line with the 
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tolerable monthly exposure of 70 pg (WHO-TEQ)/kg body weight established by 

the Joint FAO/WHO Expert Committee on Food Additives (JECFA) at its fifty-

seventh meeting (Rome, 5-14 June 2001). It also corresponds to the lower limit of 

the TDI range of 1-4 pg WHO-TEQ/kg body weight established by the WHO, 

following the consultation in 1998. Recent and representative daily exposure data 

indicate that average daily doses of dioxins and PCBs in the form of dioxins in the 

EU are between 1 and 3 pg WHO-TEQ/kg of body weight per day, which means 

that a considerable part of the European population will continue to exceed TWI or 

TDI (CEC, 2001). 

In the USA, based on the 2003 CDC (Centre for Disease Control and Prevention) 

report, the average level of dioxins in the serum lipids of the population screened 

by that body would already be below the detection limits of the techniques used. 

Based on this study, 95% of the monitored population had serum levels of dioxins 

below 16.8 pg TEQ/g. Compared with previous studies, in which the average 

serum levels of dioxins in the American population studied in 1970 were close to 

80 pg TEQ/g, it was concluded that in 2003, 95% of the US population had serum 

levels of dioxins four times lower than the levels found in 1970. This data indicates 

that the effort that has been made to reduce dioxin emissions has produced 

results, since there is a clear trend of decreasing levels of dioxins in the American 

population (Otles and Yildiz, 2003). 

2.5.3 Dioxin adverse health effects 

 

Most of the available knowledge on the effect of dioxins on health, was obtained 

from in vitro studies (i.e. cell culture), from animal testing and from epidemiological 

studies. However, available data indicate that there is a good correlation between 

the effects of dioxins in laboratory animals and those described in epidemiological 

studies in humans (Heuvel and Lucier, 1993; ATSDR, 1998; Grassman et al., 

1998). 

Various hypotheses have been advanced for the explanation of most or all of the 

deleterious effects of dioxins and similar compounds on health. 

In the mammalian, fish and bird organisms, the dioxin molecules bind to a specific 

soluble cellular protein Aryl Hydrocarbon Receptor (AhR). Although the 
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mechanism of action is not fully understood, it is known that dioxins can produce 

changes in the regulation of various genes (expression and/or repression) by 

altering cellular function. In this way, they interfere with the normal functioning of 

hormone-producing organs and chemical messengers that interfere with the 

growth and general regulation of the organism, especially in detoxification 

mechanisms (WHO-ECEH, 1998; Environment Canada, 2003). 

Experiments conducted in recent years have established that the most toxic 

effects of PCDD/F and some PCB, such as dermal toxicity, immunotoxicity, 

carcinogenicity and reproductive and developmental toxicity, are mediated by the 

AhR present in most animal tissues and human (Okey et al., 1994; McGregor et 

al., 1998; EC, 2000b). 

Developmental neurotoxicity has been reported in animals and there is evidence 

of this effect in humans in epidemiological studies in children exposed in utero to 

non-coplanar PCB. 

PCB can be grouped into two categories, according to their mechanism of toxicity. 

Non-coplanar PCBs predominantly have neurotoxic effects. Coplanar PCBs have 

a dioxin-like effect and also act through the receptor (Ah) and, like PCDD/F, 

coplanar PCB have a significant number of toxic effects mediated by AhR 

(CEHPA, 2001). 

The ligand (e.g. TCDD) enters the cell by passive diffusion through the cell 

membrane and binds to the Ah receptor (AhR). The binding affinity depends on 

both the characteristics of the host and the properties of the ligand. After binding of 

the ligand in the cellular cytosol to the AhR, the TCDD-AhR complex undergoes a 

transformation/ activation and moves to the nucleus where it interacts with the Aryl 

hydrocarbon nucleon-transferase (ARNT) protein to form, by phosphorylation, a 

heterodimer complex linked to specific DNA strands, and may activate the 

expression or repression of several genes. Binding of the Dioxin-like compounds 

to the Ah receptor is correlated with the induction of oxidative enzyme systems 

such as cytochrome P-450-1A1 and cytochrome P-450-1A2. These enzymes 

belong to a family of 12 cytochrome P-450 isoenzymes, a group of chemically 

distinct but functionally similar enzymes, found mainly in the endoplasmic 

reticulum of hepatocytes (Heuvel and Lucier, 1993; Swanson and Bradfield, 1993; 

Safa, 1998; Sahlberg et al., 2002) 
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Cytochrome P-450 enzymes are essential for the synthesis of steroids and act on 

the metabolism of other endogenous compounds. Some of these enzymes are 

involved in the processes of bio-transformation, conjugation and removal or bio-

activation of xenobiotics. Enzyme induction is a biochemical response to exposure 

to PCDD/F, however enzyme activity does not guarantee that a toxic response is 

imminent and does not necessarily have any connection with a toxic expression 

(Environment Canada, 2003). 

According to the EPA and to the available scientific data, the interaction of dioxins 

with the Ah receptor is essential for expression of an adverse effect, with different 

responses from organisms of the same species and different species related to 

that receptor binding Ah (US EPA, 2004). For example, this binding to the Ah 

receptor may explain the fact that the lethal dose of 2,3,7,8-TCDD is 5000 times 

lower for the guinea pig than for the hamster, the less sensitive species known 

(Heuvel and Lucier, 1993; Fiedler et al., 2000). 

Different dioxin congeners bind to the Ah receptor with different strength giving 

rise to a change in toxicity. Although there is evidence that the functioning of the 

Ah receptor is involved in many of the different effects caused by dioxin, there may 

be effects of TCDD that are not mediated by this receptor. For example, 2,3,7,8-

TCDD induces apoptosis in cultures of two human leukemic lymphoblastic T cell 

lines. However, it was found that the death of these cells was not dependent on 

the Ah receptor (Hossain, 1998). 

Evidence suggests that PCDD/F can contaminate living beings in a variety of 

ways. Studies indicate that oral absorption may be greater than 50%. However, a 

study in humans points to an approximate 90% absorption and other studies point 

to the lack of significant inter-species differences in the gastrointestinal absorption 

of these compounds in mammals (Muller, 2002). 

The dermal absorption of PCDD/F is very slow and dose dependent and most of 

the administered amount is retained in the layer of the stratum corneum of the 

skin. The percentage of dermal absorption is estimated to range from 10% to 40%, 

with the absolute amount increasing and the percentage of absorption decreasing 

with increasing dose (Muller, 2002). 
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Studies with rodents suggest that trans pulmonary absorption of PCDD/F is almost 

total (Muller, 2002). 

Exposure of foetuses, transplacental, to dioxin-like compounds in maternal blood 

is also described. In addition, it may be noted that the major source of exposure in 

the postnatal period is through the ingestion of breast milk (Muller, 2002). 

After gastrointestinal absorption, PCDD/F are distributed throughout the lymphatic 

system. When they enter the bloodstream these compounds are initially found in 

well-irrigated tissues, but within a few hours the highest concentrations are found 

in the liver and adipose tissue. The distribution of coplanar PCB is similar to 

PCDD/F. The half-life for elimination of the various tissues is from hours to weeks 

in rodents, but in one study in Rhesus monkeys, the half-life for elimination of 

adipose tissue was about one year. In humans, the half-life for the elimination of 

adipose tissue and/ or blood is years (Muller, 2002). 

PCDD/F are eliminated more in the urine than in the faeces and most are 

metabolites of the administered compounds (Muller, 2002). 

The adverse effects of dioxins are well established in studies with animal 

experimentation models and highly exposed human populations (Grassman et al., 

1998). 

The reasons to consider animal models relevant for assessing and predicting 

human response, are as follows (Grassman et al., 1998): 

- Immune, developmental and reproductive responses as well as the 

carcinogenic responses to dioxins observed in humans also occur in animal 

models; 

- The preponderance of the biochemical effects induced by dioxins, both in 

animals and in humans, are mediated by the Ah receptor; 

- Animal dosage schedules may be wide-ranging so that the range of 

exposures found in human populations can be examined; 

- Quantification of doses based on the internal dose (tissue dose and body 

load) can be used to compare responses between species, since these 
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parameters consider the differences between species regarding the 

clearance rates; 

- Biochemical responses to dioxins in animal models show quantitative and 

qualitative similarity to those observed in human beings. 

Occasional exposure to high concentrations of dioxins (acute toxicity) may lead to 

hepatic impairment, weight loss, and typical skin lesions known as reversible, but often 

disfiguring "chloracne", characterized by bumps and dark spots on the skin, skin 

hyperkeratosis and hyperplasia (Luscombe, 1999; Charnley and Kimbrough, 2005). 

Longer exposure induces cancer and leads to diminished immune system, 

nervous and endocrine system changes, reproductive function and physical and 

mental development (Luscombe, 1999).  

The effects of dioxins on human health are therefore very diverse and can be very 

variable among individuals, suggesting the existence of genetic differences that 

produce a different response of cells to dioxins (Heuvel and Lucier 1993; Yildiz, 

2003). 

Studies in Europe and the US show that permanent perinatal exposure to dioxins 

and PCBs has effects on brain development and thyroid hormone metabolism, 

causing interference in intelligence and behavioural changes and intellectual and 

sexual development; in the liver changes in the levels of liver enzymes are noted; 

in the bone marrow interference in haematopoiesis occurs, in thymus may appear 

early involution, and pulmonary function may also be affected. An effect also 

described is the change in the relationship between the birth rates of males and 

females, with a clear increase in female offspring. This phenomenon was verified 

after the Seveso accident and in the Yusho and Yucheng accidents, where in the 

first case the rate was 0.31 (328 boys and 346 girls were born between 1977 and 

1996 from potentially exposed parents) when normal is 0.51, i.e., 106/100 

(ATSDR, 2000; Fiedler et al., 2000; Mocarelli et al., 2000; Okubo et al., 2000; 

CEHPA, 2001; Yoshimura et al., 2001). 

Seventy-one men were studied which, at the time of Seveso's accident in Italy had 

about six years. After about thirty years of this exposure showed a decrease in the 

number and motility of spermatozoa (Mocarelli et al., 2008). 
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Other adverse health effects have been described following the accidental 

exposure of factory workers to large concentrations of dioxins. In these individuals 

chloracne occurs and there is a small increase in the incidence of cancer (Otles 

and Yildiz, 2003). 

Chronic exposure of animals to dioxins has led to the appearance of several types of 

cancer, however, the International Agency for Research on Cancer (IARC), which 

classified TCDD as a human carcinogen, assessed tetrachloro-dibenzodioxin and 

concluded that this compound did not affect the genetic material and that there was 

an exposure limit below which the risk of cancer may be negligible (McGregor et al., 

1998). 

Epidemiological studies with individuals exposed to high levels in certain industries 

in Germany, the Netherlands and the USA, have concluded that there is an 

increase in the cancer mortality rate (Fiedler et al., 2000). 

In these groups exposed to the same risk factors, average concentrations of 

2,3,7,8-TCDD in blood lipids were in the range of 2,000 ng/ kg (with maximum of 

32,000 ng/ kg) in the US group. The average concentrations of affected workers in 

the Dutch group were 1434 ng/ kg (range 301-3,683 ng/ kg). Average values of the 

order of 1008 ng/ kg were detected in workers with severe chloracne in the BASF 

accident in Germany and concentrations of the order of 2252 ng/ kg were detected 

in the Boehringer German workers group (Fiedler et al., 2000). 

These concentrations of 2,3,7,8-TCDD found in workers' blood after exposure are 

comparable to those found in the blood of 2-year-old rats subjected to a 

carcinogenicity study. In mice exposed to 100 ng of 2,3,7,8-TCDD/ kg body 

weight/ day, hepatocellular carcinomas and squamous cell carcinomas of the lung, 

were observed. The concentrations of 2,3,7,8-TCDD found in the blood of these 

rats were in the range of 5,000-10,000 ng/ kg. These studies reveal that there is a 

parallelism in the carcinogenic response to 2,3,7,8-TCDD exposure in humans and 

rats (Fiedler et al., 2000). 

Based on the above results, it can be inferred that a residual exposure to 2,3,7,8-

TCDD of 2-3 ng/kg, to which human populations are currently exposed, is 100 to 

1000 times lower than the inducers doses recorded in rat carcinogenicity studies 

(Fiedler et al., 2000). 
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There is, however, some disagreement regarding the linearity of the correlation 

between the exposure limit and the expression of the carcinogenic processes. 

USEPA's opinion is based on the linearity of the correlation and thus on the 

absence of a threshold from which it can be extrapolated that there is a potential 

risk of cancer. ECSCF and JECFA have concluded that in exposure to dioxins, 

cancer is an extreme phenomenon. They concluded, in particular with respect to 

2,3,7,8-tetrachloro-dibenzodioxin, that this was not a carcinogenic initiation factor 

and that there was a tolerable threshold of exposure to that compound for all 

purposes, including cancer, and that the carcinogenicity of the compound would 

not be linked to mutagenicity or its effect on DNA binding but rather to 

immunosuppression (Otles and Yildiz, 2003). 

One of the most worrying aspects of dioxin toxicity is clearly the extreme sensitivity 

of the developing foetus and child. Neurological and behavioural effects may 

persist during school age (CEHPA, 2001). 

While the WHO emphasizes that the ultimate goal for human exposure should be 

less than 1 pg/kg/day, based on lifetime exposure, there is still considerable 

concern about youth exposure levels. This is of particular concern and is in 

accordance with available laboratory evidence demonstrating lifelong effects 

resulting from single low doses at certain critical times such as during gestation 

(Luscombe, 1999). 

The toxic effects in other species show substantial differences, and the 

toxicological mechanisms are still not well understood (Eisler, 1986; Eisler, 2000) 

nor well studied: 

- Invertebrate organisms: Studies in two species of earthworms showed that they 

did not express adverse effects after 85 days exposed to an environment 

highly contaminated with 5 mg/kg of 2,3,7,8-TCDD, but both species died in 

an environment with 10 mg/kg 2,3,7,8-TCDD. In environments containing 

concentrations of 50 μg of 2,3,7,8-TCDD, these earthworms accumulated 

five times the levels of the environment in 7 days. No absorption of dioxins 

was observed on the surface of the body and there was no degradation of 

TCDD during digestion, since its excrement showed the absence of mono, di 

and tri-CDD; 
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- Aquatic organisms: Sensitive teleost fish species showed reduced growth and 

necrosis of fins at concentrations below 0.1 ppt of 2,3,7,8-TCDD after a 24 to 

96-hour exposure. Concentrations of 1 ppt or higher were eventually fatal. 

Histopathological and teratogenic effects were reported in very young 

rainbow trout whose eggs were exposed to concentrations of 10 ppt of 

2,3,7,8-TCDD for 96 hours. Some had extensive degeneration and hepatic 

necrosis, followed by edema and death; the others had teratogenic 

alterations including operculum and maxillary defects;   

- Birds: There are more sensitive species in which the LD50 is only 15 μg/kg body 

weight and other less sensitive ones whose LD50 can be 810 μg/kg body 

weight. Duck (Anas platyrhynchos) has an intermediate sensitivity with an 

LD50 of about 108 μg/kg body weight. Signs of intoxication appeared about 7 

days after treatment including polydipsia, loss of appetite, hypoactivity, 

emaciation, weakness, muscle incoordination, hypersensitivity, bruised 

feathers, tremors, spasms, seizures, immobility and death up to 37 days. At 

necropsies, the liver was hypertrophied to about twice the normal size and 

accumulation of fluid in the pericardium and abdominal cavity. Chickens 

exhibit relative sensitivity to PCDDs with an LD50 of 2,3,7,8-TCDD ranging 

from 25 to 50 μg/ kg body weight. Chickens fed with 1 to 10 μg/ kg body 

weight daily for 21 days of 2,3,7,8-TCDD, 1,2,3,7,8,9-hexa CDD or hepta 

CDD showed signs of edema of the pericardium, subcutaneous and 

peritoneal, as well as hepatic hypertrophy and necrosis with fat degeneration, 

ending in death. These signs were observed in Italy in broilers in the case of 

Seveso in 1976; 

- Mammals: Comparative toxicological studies in guinea pig (Cavia sp.) and 

mouse (Mus sp.) confirm significant differences in sensitivity and toxic effects 

between species, for example 2,3,7,8-TCDD produces severe skin lesions 

(Chloracne) in humans and monkeys, edema in birds and severe liver 

damage in rats, mice and rabbits. This marked difference is also observable 

among guinea pigs whose LD50 for 2,3,7,8-TCDD is 8400 times lower than 

that for hamsters (Cricetus sp.). 

Direct exposure of humans or animals to dioxins, PCDFs or PCBs may occur 

through inadvertently or accidental liberation of those substances in the 
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atmosphere, although those are not the most frequent way for living beings 

exposed. Water and food throughout the production chain are the most common 

vehicles.       

2.6. Wood preservatives and the occurrence of PCDD/F and PCBs  

 

Wood is one of the most valuable resources in the world. The world's timber needs 

will continue to grow because it is an easy material to work with, both simple tools 

and industrial machinery. 

Wood can withstand higher loads compared to iron and may become resistant to 

most chemicals; it is a good insulator for electricity and temperature differences, 

being one of the best insulators used in construction. Wood has many useful uses, 

both in terms of construction and furniture as well as in the paper industry but, it is 

surprising to know that half the wood produced worldwide is burned. Wood had 

been the main source of thermic energy until the mid-nineteenth century and its 

use as a fuel is now more pronounced in developing regions of Africa and South 

America. 

Today, meeting global wood needs has meant increasing production with 

improved forest management and finding industrial processes that waste less 

wood, as well as finding new ways to value the by-products of the wood industry 

and increasing wood durability. 

Despite its incomparable characteristics that have made wood, an essential 

commodity for civilization, it can be damaged by the action of insects and fungi, 

when they are in environments that allow the access and development of these 

organisms. 

The durability of the wood is variable with the environmental conditions to which 

they are exposed and with the species of wood. The wood found in the Egyptian 

pyramids kept in hot and very dry environment, lasted for thousands of years. 

Under natural conditions, in the temperate climate, there are species that normally 

last decades, even in contact with the soil but others do not last for ten years 

(Wilkinson, 1979).  
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The treatment of wood easily allows to increase its durability by about six times. 

The techniques of wood preservation must not be considered a novelty, since 

some of these techniques were already practiced by ancient civilizations. The 

industrialization of wood treatment began in England around the early 1800s with 

the treatment of wood beams for railroad growth and telegraph poles (Wilkinson, 

1979).  

In Portugal, modern timber conservation began later, probably in the early 20th 

century. The first wood preservative used was "carbolineum" (Europe) or 

"anthracene oil" (USA), which is an aromatic polycyclic hydrocarbon that has 

fungicidal action. Subsequently, other treatments were used, such as copper 

naphthenate, also with fungicide action, and Pentachlorophenol, which is a 

polychlorinated aromatic compound with disinfectant, fungicide, insecticidal, 

bactericidal and molluscicidal action. Until the Second World War, copper sulphate 

treatments were used for railroad and telephone and telegraph poles, obtained in 

the “Pinhal de Leiria” region, Marinha Grande and Figueira da Foz (Nunes et al. 

2016). 

Later, the treatment of railroad beams with "creosote" began, and around 1952, 

the treatments with salts mixtures were implemented and vacuum impregnation 

started to be used (Nunes et al., 2016). 

In 1985, there were already 14 companies with 26 vacuum cylinders installed in 17 

different locations in Portugal. These companies mainly used mixtures of salts 

including Chromium Copper Arsenate (CCA). This product was only withdrawn in 

2003 because of the possibility of volatilization of arsenic and replaced by CCB, in 

which arsenic was replaced by boron. Currently, CCB is also no longer used and 

has been replaced by other formulations that still maintain copper (Nunes et al., 

2016). 

In Portugal, wood treatment is carried out by 23 companies and is dominated by 

the production of posts, poles and stakes, with an approximate production of 

84300 cubic meters: the most used species to produce those devices is Pinus 

pinaster (Nunes et al., 2016). 

Currently, the commercial products used in Portugal are based on Alkaline 

Quaternary Copper (ACQ). It is a wood preservative, recently introduced in 
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countries in which there is a need for alternatives to Cromated Copper Arsenate 

(CCA). The products contain copper, a bactericide and fungicide, and a quaternary 

ammonium compound (quat), which acts as a biocide, increasing the tolerance of 

treated wood to copper-resistant bacteria and fungi and also acts as an insecticide 

(USFS, 2006). 

The most commonly used commercial products in Portugal are “Celcure C4”, 

“Celcure VS725”, “Korasit K2” whose active ingredients are essentially quaternary 

ammonium salts and copper and “Tanalith E 8001”, whose active ingredients are 

propiconazole, tebuconazole, baramine and copper and “Coprol Premium”, whose 

active principles are propiconazole and copper. Of the twenty-three existing 

companies, fifteen use the “Tanalith E 8001”, two use the “Celcure C4” or 

“VS725”, four use the “Korasit” and two the “Coprol Premium”. As “Celcure” is 

used by the two largest companies, this product shares with “Tanalith E” the 

leadership of the internal market, with “Korasit” and “Coprol” having a marginal 

market share (Nunes et al., 2016).  

The log of the trees has two zones that usually have different colours, heartwood 

and sapwood. The central part of the log is the heartwood, usually darker, and the 

peripheral part, the sapwood, usually lighter. The sapwood can be defined as the 

part of the trunk that contains living cells and reserve nutrients, presenting bands 

whose thickness varies from species to species, with vigour of growth and tree 

age. The heartwood can be defined as the central part of the trunk that has 

ceased to have living cells and that the reserve nutrients have been converted into 

fibres of material resulting from the death of the parenchyma cells and which 

prevents the circulation of liquids in the cells (Chapelet et al., 1991). 

The applicability of preservatives is closely related to the permeability of wood. 

Some species are poorly permeable to preservative solutions, even using 

pressure, while other species are very permeable. There are woods that are 10 

million times more permeable than others (Wilkinson, 1979). 

Despite the complexity of the structure of the wood, in the coniferous trees the 

water conduction system is very primitive, the preservative solution runs mainly 

through the tracheids, the most common cells, which form a continuous path to the 

circulation and a path less important, from radial tracheids to longitudinal 
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tracheids. Some species of conifers contain resin, in these the flow of the solutions 

can also be produced by the resin channels (Chapelet et al., 1991).    

In the hardwood trees (Angiosperms), which are considered more evolved plants, 

the conduction is carried through specialized cells for the conduction of water, 

denominated vessel elements, that lead the water that is absorbed by the roots, 

for the rest of the plant (Chapelet et al., 1991). 

2.6.1. Chemical composition of wood preservatives 

 

Wood preservatives are generally classified as being based on the chemical 

composition of the preservative and the solvent used during the treatment 

process. 

Some preservatives may be water-soluble, i.e., those whose solvent is water. 

Waterborne preservatives often include some kind of co-solvent such as an amine 

or ammonia to maintain one or more active principles in the solution. 

The preservatives may also be oily or oil soluble, i.e. those which are dissolved in 

a type of organic solvent. 

Each solvent has advantages and disadvantages, depending on the objective of 

the application. 

Wood preservatives can also be classified or grouped by type of application or 

environmental exposure of the wood. Some preservatives have sufficient leaching 

resistance for situations where wood is directly exposed to soil and water.  

2.6.1.1 Oil-born biocides for wood preservation 

 

The most common oil-born preservatives are creosote, pentachlorophenol and 

copper naphthenate. Occasionally, copper-8 quinolinolate and IPBC (3-Iodo-2-

propynyl N-butylcarbamate) are also used for above-ground applications. 

Conventional oily-type preservatives, such as creosote and pentachlorophenol 

solutions, have been largely confined to uses that do not involve frequent human 

contact. The exception is copper naphthenate, which is a more recently developed 

preservative and has been less widely used. Oily-type preservatives have an oily 
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appearance, oily consistency to the touch, and sometimes have a noticeable 

odour. The oil or oil solvent, which is used as a carrier, makes the wood less 

susceptible to cracking (USFS, 2006). 

Creosote 

Creosote is composed of polycyclic aromatic hydrocarbons or neutral oils: 

mixtures of anthracene and naphthalene, which make up most of the creosote and 

are still part of the creosote formation of tar acids (phenols, cresols, xylenols and 

naphthols - constitute about 15% of creosote) and tar bases (pyridine, quinoline 

and acridine - constitute about 5% of creosote). 

As there are some fungi, crustaceans and termites that are resistant to creosote, 

reinforced creosote has been developed for the treatment of wood, namely 

creosote reinforced with at least 2% pentachlorophenol, creosote reinforced with 

copper (incorporation of copper naphthenate, copper pentachlorophenate or other 

copper compounds, directly to creosote), Arsenic-reinforced creosote (0.3 to 0.4% 

arsenic trioxide, As2O3). Creosote can also be reinforced with malachite green and 

tributyltin oxide (bis(tri-n-butyltin)oxide) - TBTO (USFS, 2006; DETF, 2013). 

Pentachlorophenol 

The active pentachlorophenol (2,3,4,5,6-Pentachlorophenol) principles are 

chlorinated phenols that are crystalline solids that can be dissolved in different 

types of organic solvents. The effectiveness of pentachlorophenol (PCP) and the 

properties of the treated wood are influenced by the properties of the solvent. 

This product is obtained by the direct chlorination of the phenol, it is insoluble in 

water and has acid character. 

Due to the acidic character of pentachlorophenol, it can give rise to salts called 

phenates or phenoxides, when submitted to the action of alkaline hydroxides. But 

despite its high efficiency as a wood preservative and its insolubility in water, this 

product should not be used in the marine environment, because it is solubilized by 

the sodium salt present in sea water. 

The molecular formula of pentachlorophenol is C6Cl5OH. In commercial form, it 

contains about 85% PCP, 6% tetrachlorophenols and 6% other types of 

chlorinated phenols, the remainder being inert materials. When PCP is subjected 
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to the action of sodium hydroxide, it gives sodium pentachlorophenate (PCP-Na), 

a water-soluble product. 

Pentachlorophenol is effective when used in contact with soil, freshwater, or above 

ground. It is not as effective as when used in sea water. A heavy oil solvent is 

preferred when the wood is treated to be used in contact with the soil. Wood 

treated with lighter solvents may be less durable. 

The effectiveness of pentachlorophenol is similar to that of creosote for the 

conservation of hardwood and coniferous trees (USFS, 2006; DETF, 2013). 

Carbolineum or Anthracene Oil 

Carbolineum is an oily, water-insoluble, flammable, dark brown mixture from coal 

tar components, smelling of tar. It contains among other things anthracene and 

phenol. 

Because of its rot-resisting and disinfecting effect, Carbolineum was used over 

many years for the preservation of wooden structures such as railroad ties, 

telephone poles and cabins. 

Carbolineum is an aromatic polycyclic hydrocarbon which has fungicidal action 

obtained from a fraction of bituminous coal tar at a higher boiling temperature than 

that used to obtain creosote. 

Carbolineum or Anthracene oil is usually applied in the rural environment by 

brushing, spraying or by immersing the wood (DETF, 2013). 

Naphthenate 

Naphthenic acids are petroleum derivatives. The most used in wood preservation 

are copper naphthenate, which has a fungicidal action and is used as an additive 

to creosote and zinc naphthenate, which is used as a preservative and is very 

effective against termites. 

Copper naphthenate is effective when used in contact with soil, in contact with 

water, or above ground. It is not suitable for use on wood to be applied in contact 

with salt water. It is an organometallic compound product of the reaction of copper 

salts and naphthenic acids (USFS, 2006; DETF, 2013). 
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Copper-8-quinolinolate 

Copper-8 quinolinolate is considered a wood preservation product because it is 

recognized as an effective fungicidal product and not toxic to mammals. For these 

reasons, it is accepted in the treatment of wood that can come into direct contact 

with foodstuffs, such as wooden boxes for transporting fruits and vegetables, 

among other similar uses. 

Copper-8 quinolinolate is effective when used above ground. Its effectiveness is 

reduced when it is used in direct contact with the soil or with water. Copper-8 

quinolinolate is an organometallic compound. Its formula consists of at least 10% 

copper-8-quinolinolate, 10% nickel-2-ethylhexanoate, and 80% inert ingredients. It 

is a good preservative for use above ground, as anti-sapstain, to control molds 

and is also used for treatment of wood under pressure. 

The application of copper-8 quinolinolate in wood is normally done in 

concentrations of 2.5% to 5.0%. However, its application is rather limited due to 

the high cost of the product and does not justify the use in wood intended for other 

uses (USFS, 2006, DETF, 2013). 

IPBC  

The IPBC (3-Iodo-2-propynyl N-butylcarbamate) is not intended for use in contact 

with soil or on surfaces exposed to the weather. IPBC contains 97 percent butyl 3-

iodo-2-propynyl carbamate, which includes a minimum of 43.4% iodine. 

The IPBC preservative is a fungicide that, although it appears in oil soluble 

formulations, can also be used in aqueous formulations. 

IPBC is colourless, not an effective insecticide and is generally not used as a 

single treatment but appears associated with other active principles. 

IPBC has relatively low acute toxicity to mammals and has low toxicity to birds, but 

is highly toxic to fish and aquatic invertebrates. 

IPBC has not been used in pressure treatments, so there has been little 

assessment of the environmental impact of IPBC treated wood (USFS, 2006).  
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2.6.1.2 Water-soluble wood preservatives 

During the last decade, waterborne preservatives have become more widely used. 

Today the most commonly used preservatives are copper compounds (typically 

containing ammoniacal copper quaternary compounds or copper azole, whereas 

sometimes also other copper compounds). Some of the preservatives also contain 

chromium, boric acid and/or water-based micro emulsions such as azoles or 

quaternary ammonium compounds (Salminen et al., 2014).  

The aqueous preservatives react or precipitate in the treated wood, having a 

fixation, that allows it to resist leaching. As the aqueous preservatives leave the 

surface of the wood dry, it can be painted. They are generally used to treat wood 

used in homes, decks and fences. Aqueous preservatives are mainly used for the 

treatment of coniferous tree woods (softwood) because they are not effective in 

protecting wood from hardwoods against deterioration. The treatment of most 

wood species of hardwood trees is difficult with aqueous preservatives. 

These preservatives may increase the risk of corrosion of metals in contact with 

treated wood used in humid places. All metals should be of galvanized iron, 

copper, silicon bronze, or stainless steel if the wood is treated with aqueous 

preservatives containing copper. In these cases, aluminium should not be used.  

Aqueous preservatives consist mainly of metal salts and include the arsenic, 

chromium, copper, zinc and fluorine compounds. 

Other metals and anions used with an insecticidal effect, such as mercury, nickel, 

thallium and cyanide, are not widely used for economic reasons (cost-benefit), lack 

of efficiency or high toxicity to humans and/or the environment. 

Borate-based preservatives are another type of aqueous preservative that does 

not fix the wood and so leach quickly if exposed to rain or wet soil. Borate 

treatment is not likely to create corrosion of metals in contact with treated wood 

(USFS, 2006; DFET, 2013). 

Sodium pentachlorophenate and Sodium tribromofenate 

Both pentachlorophenol and tribromophenol can be easily transformed into sodium 

pentachlorophenate (PCP-Na) and sodium tribromofenate (TBP-Na), respectively, 

when exposed to sodium hydroxide to become water-soluble. 
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Although none of these preservatives are authorized to treat wood, both provide 

efficient treatments that meet the essential characteristics of wood preservatives. 

The use of TBP-Na was carried out in substitution of sodium pentachlorophenate 

and, although not having the efficiency of PCP-Na, has been used industrially in 

the less demanding countries in the quality of wood preservatives due to its low 

cost in relation to other alternative products. 

Chromated copper arsenate (CCA) 

Chromated copper arsenate, commonly known as CCA, is marketed in products 

containing about 19% copper oxide (CuO), with different concentrations of 

chromium oxide (CrO3) and arsenic oxide (As2O5) being present. 

The CCA is suitable for wood used on the surface, in contact with the soil, or in 

contact with fresh or sea water. CCA-treated wood has dominated the treated 

wood market since the late 1970s until 2004. The CCA has been voluntarily 

discontinued by manufacturers for most applications around residential areas 

where human contact is likely (USFS, 2006 DFET, 2013). 

“Wolmanit” CB (CCB) 

The Chromated Copper Borate (CCB) is an alternative product to CCA, having the 

element boron in substitution of the arsenic. This difference in the composition of 

the product causes a slight loss in resistance to leaching, especially for wood that 

is not sheltered from the weather or in contact with water or damp soil. However, 

CCB is very efficient in situations where there are no factors favouring leaching 

(USFS, 2006; DFET, 2013). 

Ammoniacal Copper Arsenate (ACA) 

ACA is an effective product against a large number of xylophages fungi and is 

used in the treatment of wood by impregnation. It consists of arsenic, ammonia 

and copper hydroxide. 

The ammonia present in the formulation of this preservative product opens the cell 

wall structure, allowing better diffusion of the active ingredients into the cells of the 

wood. 
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After treatment, the ammonia evaporates with the drying of the wood, causing 

precipitation of copper and arsenic elements in the form of copper arsenate 

(USFS, 2006; DFET, 2013). 

Ammoniacal Copper Zinc Arsenate (ACZA) 

Ammoniacal Copper Zinc Arsenate (ACZA) contains copper oxide (50%), zinc 

oxide (25%), and arsenic pentoxide (25%). ACZA is an enhancement of the above 

formulation, ACA. After treatment, the colour of treated wood varies from olive 

green to bluish green. The wood may have a slight ammonia odour until 

completely dried. ACZA is a preservative used to protect wood from deterioration 

and prevent insect attack in a wide range of exposures and applications (USFS, 

2006).  

Acid Copper Chromate (ACC) 

The acid copper chromate is composed of chromium in the hexavalent form as 

one of the ingredients. It is a mixture of copper sulphate, sodium dichromate and 

chromium trioxide marketed under the trademark "CELCURE". 

Chromium is included in the formulation of this product to reduce the corrosive 

effect of copper sulphate to metals and to precipitate copper in the form of 

insoluble copper chromate (USFS, 2006). 

Alkaline Copper Quaternary (ACQ) Compounds  

Alkaline Quaternary Copper (ACQ) is one of several wood preservatives that have 

been developed as alternatives to CCA. The fungicides and insecticides in the 

ACQ are copper oxide (67%) and a quaternary ammonium compound (quat). 

Many variations of the ACQ were produced. ACQ Type B (ACQ-B) which is an 

ammoniacal copper formulation, ACQ type D (ACQ-D) is a copper amine 

formulation, and ACQ type C (ACQ-C) is an ammoniacal-amine formulation 

combined with a quaternary ammonium compound. 

The stakes treated with these three formulations are protected from fungi and 

insects when applied in contact with the soil (USFS, 2006; DFET, 2013). 
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Copper Azoles (CBA-A and CA-B) 

Copper azole is another preservative formulation recently developed to address 

the restrictions applied to CCA. It is composed of copper amine, but with additional 

biocides, to protect the wood from decay and insect attack. The first formulation of 

azole copper developed was type A (CBA-A), containing 49% copper, 49% boric 

acid and 2% tebuconazole. Type A (CA-B) azolic copper does not contain boric 

acid. It is composed of 96% copper and 4% tebuconazole. Wood treated with this 

product has a tan-brown colour and little or no odour. 

Copper azole is similar to ACQ except that the dissolved copper preservative is 

boosted by an organic triazole incorporated as an azolic co-biocide such as 

propiconazole or tebuconazole instead of the quaternary ammonium biocide used 

in ACQ. This product is effective with smaller retentions than required with ACQ 

for equivalent performance. 

It is widely marketed under the brand name “Wolmanized” in North America, and 

under the “TANALITH” brand throughout Europe and other international markets 

(USFS, 2006; DFET, 2013). 

Borates 

Boric acid and sodium tetraborate (borax) are not sufficiently soluble to allow 

adequate treatment of the wood, but higher concentrations can be achieved if the 

solution is prepared using one part of boric acid and 1.54 parts of tetraborate 

sodium decahydrate. This saturated solution, if dehydrated, results in the 

commercial product known worldwide under the trade name "Timbor", considered 

the main borate preservative. The salt resulting from the dehydration of the 

solution with both ingredients corresponds to disodium octaborate tetrahydrate or 

DOT (Na2B8O13.4H2O), which has a borate content equivalent to 117.3% of boric 

acid (H3BO3). 

Borate compounds are the most commonly used water-based preservatives. Non-

fixing preservatives are easily leached. They are used with pressure treatment for 

wood used in areas with high risk of termites and as surface treatments for a wide 

range of wood products, such as shelters and the interior of wood structures (FPL, 

1999).  
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Boron has some outstanding performance characteristics, including fungal and 

insect activity, low toxicity in mammals and a very affordable commercial value. 

Another advantage of boron is its ability to penetrate into hardwoods that generally 

resist traditional pressure treatment with other preservatives. Borate treated wood 

has no colour or odour and can be applied with a brush. 

Boron has many potential rural applications, but the chemical is easily released 

from the wood when exposed to water. It may be an effective treatment for insect 

protection in areas permanently protected from water (USFS, 2006, DFET, 2013). 

2.7. Wood preservation treatments 

 

2.7.1 Pressure treatments 

 

Pressure treatments force the preservative to penetrate the wood under pressure 

above the atmospheric pressure. Pressure treated wood is more common than all 

other methods combined and allows better and more uniform penetration of the 

preservative solution into the wood. In many species, deeper, more uniform 

penetrations and larger retentions require this method of treatment. Appropriate 

pressure methods for treating wood with antifungal and pesticides should be used 

when it is intended for use in situations of high danger of deterioration, namely by 

contact with soil and water (FPL, 1999). 

Aqueous preservatives are generally applied by the full-cell process and 

preservative retention is controlled by adjusting the concentration of the treatment 

solution. 

The main steps of this method may have several changes, but follows the same 

principle (FPL, 1999): 

i. The wood is closed in the treatment cylinder and vacuum is applied for 

about half an hour or more to remove air from the cylinder and, as much as 

possible, of the wood; 

ii. Depending on the system, the preservative is admitted into the cylinder 

without breaking the vacuum, at room temperature or heated; 
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iii. After the cylinder is full, the pressure is applied until the wood no longer 

holds preservative or until the required preservative retention is achieved; 

iv. When the pressure period is over, the preservative is removed from the 

cylinder; 

v. A short vacuum period is applied to remove excess product from the wood 

and thus prevent preservative dripping. 

 

2.7.2 Treatments without pressure 

 

There are various types of wood treatment without pressure, which differ greatly in 

penetration and retention levels, such as thermal process, dual-diffusion vacuum 

treatment, cold immersion and surface applications. 

Looking from the industrial aspect, non-pressure treatments provide a lower 

durability than the pressure methods. 

In industry, the most used methods are described below (FPL, 1999): 

a) Immersion of the wood for a few minutes is mainly intended for antifungal 

treatments, applied after cutting the wood to prevent blueing (sapstain). 

Blueing is a term used to describe wood that has bluish or gray-black spots 

on the surface. This colouring is caused by wood fungi. The blueness of 

the wood is considered a fault that is taken into account during the 

classification, since this alteration of the colouring of the wood makes it 

unsuitable for some purposes and thus, less valued. This type of fungus 

develops on the cells of the wood, but the wood itself is not destroyed as 

there is no degradation. The discoloration is caused by fungi of the 

Ascomycetes and Deuteromycetes groups. There are between 100 and 

250 different species of fungi that can cause blueness. The most important 

species are Ceratocystis (Ascomycetes group) and Aureobasidium, 

Alternaria and Cladosporium (Deuteromycetes group). The blue coloration 

can often be the result of mixed colonization’s. The blueness occurs mainly 

in coniferous wood, and pine wood is particularly susceptible. The risk of 

blueing can be significantly reduced by the correct choice of cutting 

season, storage conditions and, above all, by reducing the time between 

cutting and processing the wood. During the drying of recently cutted wood 
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in the sawmill, the risk of blueness is especially high. Anti-blueing or anti-

sapstain products are temporarily effective during the drying phase and 

prevent wood loss and recovery. Immersion treatment is sufficient to 

reliably prevent the occurrence of blueness. Other non-pressure methods, 

such as vacuum treatments for antifungal or anti-bluing and pesticide 

treatments are also used (USFS, 2006; DFET, 2013). 

b) In the vacuum process, the wood is placed in a sealed container (autoclave) 

and an amount of air is withdrawn, creating a pressure lower than 

atmospheric pressure in the wood cells. The preservative is inserted into 

the tank under vacuum, covering the wood, and forces the preservative to 

penetrate the wood to occupy the space that was reserved for air. The vacuum 

method is most effective in wood having a high percentage of sapwood relative 

to the heartwood, such as pine. It is a process widely used in conjunction with 

the pressure method, since the penetration into the heartwood is much lower 

than that of the pressure methods, achieving higher level of penetrations and 

retention, if the wood is dehydrated before (FPL, 1999).  

c) The thermal process or hot-cold bath, involves placing wood in a tank of hot 

preservative oil, followed by immersion in cold preservatives for several 

hours. The hot bath expands the air inside the wood, forcing the air out of 

the wood. The wood is then immersed in a cold bath and the heated air 

retracts, absorbing the preservative. The thermal process is often used in 

the treatment of posts, with pentachlorophenol or creosote solutions. The 

retention is greater than in the immersion method (FPL, 1999). 

d) Double diffusion, is one of the few processes that uses green or wet wood 

for the treatment. The wood is successively treated in two solutions of 

water-based salt, generally one of fluorine and another of copper, which 

react with each other to form an insoluble compound. The chemicals 

diffuse into the wood from a high concentration solution to the wood having 

a low concentration. It produces excellent results on coniferous wood 

poles, but has not been widely used (FPL, 1999). 
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II. Part (Experimental work) 

Specific objectives   

To assess the three episodes of dioxin contamination in the poultry chain occurred 

in Portugal, by working in each of the "case study" to develop a risk assessment 

and management methodology on the basis of the available data obtained in real 

situations, in order to determine: 

- the sources and modalities of the contamination of the animals (sources of 

exposure, including feed, drinking water, poultry atmosphere and litters); 

- the role of bedding material made of wood shavings, treated with different 

preservatives and methods, in the contamination of the poultry litters; 

- the development of an appropriate analytical "methodology" that, in the absence 

of an existing validated reference method, could be better adapted to the 

reference matrix – the wood chips;   

- how the dioxin contamination is transferred throughout the food production chain, 

i.e., transferred to birds, their meat, possible vertical transmission, eggs, chicks 

and broilers;  

- the dioxins dynamic in the organism of the animals and the physiological 

mechanisms which could explain the existence of the contaminant in the hatching 

eggs and in the offspring;  

- the evaluation of the contamination fingerprint in the different stages of the 

poultry production chain and the organic depletion in the live birds; 

- in light of the results of this assessment, to put into perspective the way in which 

the data obtained enables to improve risk management by the application of 

control procedures and measures that may be appropriate to be implemented 

throughout the poultry production chain. 
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3. Determination of PCDD/F Levels in Wood Shavings Used as Bedding 

Material for Poultry Production 
 

Abstract 

 

During 2006 and 2011, following the implementation of dioxin contamination 

monitoring in poultry meat, levels higher than legally allowed in meat from poultry 

slaughtered for human consumption, were found. The wood shavings used as 

bedding material in the poultry farm showed considerable high contaminations, 

indicating that these materials were the likely source of contamination of the 

animals. Wood shavings samples (n=23), used as poultry litters in intensive farms 

of broilers, were analysed. In both episodes, contamination profiles of higher and 

lower concentrations, seems to be very similar, being OCDD, OCDF, 1,2,3,4,6,7,8-

HpCDD and 1,2,3,4,6,7,8-HpCDF responsible for 97.4% of the total contamination. 

The present work describes the analytical adapted methodology used and the 

specific clean up procedures, which revealed that recoveries of 13C12- Labelled 

compounds added to the wood shavings samples ranged from 71.3% and 86.3%. 

Key words: Dioxins, Wood shavings, Analytical method, Food chain. 

3.1 INTRODUCTION 

 

Safety of the food chain is periodically challenged due to the occurrence of PCDD, 

PCDF and PCBs contamination in food. 

Some recent cases of contamination of the food chain are known. An accident in 

Belgium in 1999 with a tanker carrying frying oil for refining and incorporation in 

feed mixed with the container of coolant fluid containing dioxins. The oil ended up 

being used inadvertently and caused contamination of meat from different animals 

in various countries where the feed was marketed (Bernard et al., 2002). 

In Ireland, in December 2008, following samples taken from a pig slaughterhouse 

in the national residue monitoring plan, results found PCB levels above the limit 

laid down in Regulation (EC) N.º 1881/2006 of the Commission of 19 December 
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2006 (CEC, 2006b). The animal source of contamination found was feed from a 

waste recycling facility. 

During 2006 and 2011, in Portugal, following the implementation of a National 

Residues Monitoring Plan, the competent authority found residues of dioxin 

contamination in poultry meat with levels higher than legally allowed in meat from 

poultry slaughtered for human consumption.  

To identify the original source of contamination of these birds, all potential sources 

of contamination were analysed and the results showed considerable high 

contaminations of the wood shavings used as bedding material in the poultry farm, 

indicating that these materials were the likely source of contamination of the 

animals (Cardo et al., 2014) 

However, the absence of a well stablished laboratorial methodology applied to that 

specific matrix (wood shavings) led to the need to adapt the method 1613b 

(USEPA, 1994).  

In this paper it is described the method applied for the determination of PCDD/Fs 

in this type of matrix and is also done the interpretation of the results, particularly 

in what regards the source of contamination. 

3.2 MATERIALS AND METHODS 

 

3.2.1 Sampling 

Sapling procedures, packing, transport and storage were performed by officers 

from the competent authority, under the scope of the National Residue Monitoring 

Plan, respecting the official procedures to ensure stability of conditions and 

integrity of the sample, to avoid causing any change that could affect the level of 

dioxins. Each sample was individually packed and labelled in opaque polyethylene 

sample bags, immediately after sampling. Samples of litter were preserved in dry, 

cool places. 

3.2.2 Materials 

All chemicals used were residue analysis Pico grade. Native and carbon-13 

labelled PCDD and PCDF standards were obtained from Cerilliant, CIL Cambridge 
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Isotope Laboratories (LGC, Barcelona, Spain) and from Wellington Laboratories 

(Technospec, Barcelona, Spain). Carbosphere activated carbon, 80-100 mesh, 

with a surface area of 1000 m2/g was obtained from Altech (I.L.C., Lisbon). The 

alumina Basic Super I for dioxin analysis was purchased from ICN (Promochem, 

Barcelona, Spain). 

3.2.3 Extraction procedure 

The samples of wood shavings were grinded and homogenised, then mixed with 

sodium sulphate and transferred to a Twisselman extractor. Prior to extraction, 

samples were fortified with a standard mixture containing 13C12-labeled PCDDs 

and PCDFs and equilibrated during at least one hour. After that time, a 24 hours’ 

extraction was performed using hexane/dichloromethane mixture (50:50 v/v). The 

extracts were evaporated to dryness. 

3.2.4 Carbon Chromatography 

For carbon chromatography were used glass columns with 2 g of Carbosphere. 

The sample residue was dissolved in dichloromethane and brought onto the top of 

the Carbosphere column which was placed in a reflux unit and refluxed for 2 h with 

dichloromethane. This fraction was discarded. The column was rinsed with toluene 

and refluxed for 1 h with toluene, which was discarded. The PCDD/F fraction was 

recovered by reverse elution from the column by refluxing with toluene for 24 h. 

This fraction was carefully evaporated to dryness under a gentle stream of 

nitrogen. 

3.2.5 Alumina Chromatography 

The residue was solved in hexane and the mixture was brought onto a column 

containing acidic silica gel and 5 g alumina, previous washed with hexane. The 

alumina column was eluted with a mixture of hexane/DCM (97:3 v/v). This eluate 

was discarded. The PCDDs/PCDFs were eluted using a hexane/ DCM mixture 

(60:40 v/v). 

3.2.6 Silica Chromatography 

The residue was solved in hexane and the sample was brought onto a column 

containing neutral silica, basic silica and two acid silica layers at different 

concentrations (44% and 22%). The eluate was evaporated to dryness in 
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Kuderna-Danish concentrators (KD) under a nitrogem blowdown device to be 

injected in the GC/HRMS. 

3.2.7 Instrumental analysis 

All analyses were performed by GC–HRMS using a MAT95XL high-resolution 

mass spectrometer (Finnigan, Bremen, Germany) coupled to Trace GC 2000 gas 

chromatograph (Thermo Finnigan, Bremen, Germany) equipped with a AS2000 

auto-sampler. Gas chromatographic separations were carried out using a DB-5 

MS capillary column (60 m x 0,25 mm i.d from J&W Scientific, USA) using helium 

as carrier gas, with a constant flow at 1 mL/min.  

The samples and standards were injected (2 µL) in split less mode (split less time 

1 min) at an injector temperature of 280 ºC and at an initial oven temperature of 

120 ºC. After 1 min, the temperature was ramped at 25 ºC/min to 200 ºC and then 

at 3 ºC/min up to 300 ºC. The latter temperature was held during 11 min. 

The mass spectrometer was operated in the electron impact ionization mode using 

selected ion monitoring (SIM). Electron energy was set to 40 eV and the source 

temperature was set at 250ºC. The MS system was tuned to a resolution of 10 000 

(10% valley) and masses issued from FC-43 (Perfluorotributylamine) tuning 

compound were used as lock mass. In order to stablish the calibration curve for 

each congener, a set of calibration solutions were injected in every sequence of 

injection series.  

The two most abundant signals of the molecular ion cluster were recorded (from 

tetra- to octa-chlorodibenzo-p-dioxins and -dibenzofurans). Quantification was 

performed using internal standards and the isotopic dilution technique. The 

isotopic ratio between principal and secondary signals, for each congener, was 

verified using the criteria of ± 15% of the theoretical value. For calculation of the 

detection limits, a signal-to-noise ratio of 3:1 was applied. 

3.2.8 Quality control 

Every batch of samples has a procedure blank control and all samples were spike 

with 13C12- labelled reference compounds. Results were corrected with recovery 

rate. 

3.2.9 Statistical analysis 
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Analysis of data was carried out in accordance with the methodology of the USA 

EPA for analysis of contaminants (Russell and Plumb, 2004). This procedure 

includes the conversion of the congeners concentration into a decimal percentage 

of the sum of congeners, the construction of the bar plot of the standard 

concentrations and the use of the square of the Pearson correlation coefficient (r2) 

(Johnson and Wichern, 2001) as a measure to assess whether the profile of the 

concentration of congeners in the samples (compared visually on the bar plot) is 

statistically similar. It is considered that the profiles are similar if the average of r2 

is close to 1 and the standard deviation (SD) is next to zero. 

3.3 RESULTS  

 

The assessed data from the wood shaving analysis concerns 23 samples, are 

presented in Table 4. 

Table 4 - Results of PCDD/F-WHO-TEQ/g found in wood shavings (pg/g). 

Incident 

Total 

Number of 

Samples  

(n) 

Number of 

Samples with 

Conc. (≥2 pg 

PCDD/F-

WHO-

TEQ/g) 

Number of 

Samples with 

Conc. (< 2 pg 

PCDD/F-

WHO-

TEQ/g) 

Highest 

concentration 

(pg PCDD/F-

WHO-

TEQ/g) 

Average 

concentration 

(pg PCDD/F-

WHO-

TEQ/g) (SD) 

Average 

concentration 

(≥2 pg 

PCDD/F-WHO-

TEQ/g) (SD) 

Average 

concentration 

(<2 pg 

PCDD/F-

WHO-

TEQ/g) (SD) 

2006 10 4 6 368 62 (116) 154 (148) 0.47 (0.35) 

2011 13 6 7 446 78 (164) 169 (216) 0.42 (0.62) 

Total 23 10 13 446 71 (143) 163 (182) 0.44 (0.49) 

 

At that time, the highest levels of dioxins found in the most contaminated wood 

shavings samples (≥2 pg PCDD/F-WHO-TEQ/g) were 368 pg PCDD/F-WHO-

TEQ/g with an average of 154 pg PCDD/F-WHO-TEQ/g in 2006 and 446 pg 

PCDD/F-WHO-TEQ/g with an average of 169 pg WHO-TEQ/g in 2011. 

The contamination profile shows that the total contamination was predominantly 

constituted by the most chlorinated congeners (97.4%), having OCDD 73,5%, 

OCDF 8,2%, 1,2,3,4,6,7,8-HpCDD 13% and 1,2,3,4,6,7,8-HpCDF 2,7% (Figure 9). 
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Figure 9 - Relative concentration of the different congeners in all wood shavings samples 

(contamination profile). 

 

The square of the Pearson correlation coefficient (r2) and standard deviation (sd) 

of the different congeners relative concentrations found in the wood shavings 

analysis, is considerable (r2 = 0.98 and sd = 0.02). 

Recoveries of 13C12- Labelled compounds added to the wood shavings samples 

ranged from 71.3% and 86.3% (Table 5). 

Table 5 - Recovery rates (R) and Level of Quantification (LQ) by each PCDD/PCDF congener. 

 
R(%) SR(%) R-2* SR (%) R+2* SR(%) 

Average 

LQ (pg/g) 

SD  

LQ (pg/g) 

2378-TCDF 79.3 15.0 49.3 109.3 0.019 0.02 

2378-TCDD 84.7 13.1 58.5 110.8 0.013 0.02 

12378-PeCDF 85.0 12.1 60.8 109.2 0.028 0.04 

23478-PeCDF 84.0 13.0 58.1 109.9 0.028 0.04 

12378-PeCDD 86.3 11.5 63.4 109.2 0.04 0.05 

123478-HxCDF 85.2 12.8 59.7 110.8 0.041 0.06 

123678-HxCDF 79.9 12.8 54.4 105.5 0.041 0.06 

234678-HxCDF 80.9 13.3 54.3 107.5 0,043 0.07 

123789-HxCDF 84.3 13.9 56.5 112.2 0,043 0.09 

123478-HxCDD 85.6 11.2 63.1 108.0 0,059 0.08 

123678-HxCDD  81.5 11.2 59.0 104.0 0,05 0.07 

123789-HxCDD 81.5 11.2 59.0 104.0 0.05 0.08 
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1234678-HpCDF 79.3 11.2 56.9 101.8 0.056 0.06 

1234789-HpCDF 84.1 12.9 58.4 109.9 0.071 0.09 

1234678-HpCDD 83.2 12.0 59.3 107.1 0.09 0.13 

OCDF 71.3 14.3 42.8 99.9 0.09 0.14 

OCDD 71.3 14.3 42.8 99.9 0.15 0.33 

 

3.4 DISCUSSION 

 

Main differences between used method and USEPA method 1613B  

The main steps that have been modified and adapted in the method used for the 

analysis of wood shavings are resumed in Figure 10, comparatively with the 

USEPA method 1613B. 

Determine % 
solids

Determine 
particle size

Particle size 
> 1mm

Grind

Method 1613 Rev B
(solid samples)

Modified method

SDS Extraction

Concentrate Back- extract

Transfer 
throught sodium 

sulfate

Reconcentrate
Micro-

concentrate

Extract clean-upAnalysis

Extraction

Extract clean-up 
(carbon column)

Extract clean-up 
(Alumina 
column)

Concentrate

Analysis

Particle size 
< 1mm

Particle size 
< 1mm

Concentratte

Concentrate

Extract clean-up 
(Silica column)

Concentrate

 

Figure 10 - Flow chart of the USEPA method 1613B and the used method. 

 

The analytical procedure used to quantify PCDD/F on the wood shavings samples 

in this study was based on the USEPA method 1613B with the follow 

modifications: 

I. Extraction  
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The reflux was done in one step for a period of 24 hours with 

hexane/dichloromethane mixture (50:50 v/v) and not the two steps foreseen in the 

reference method with toluene. 

II. Concentration    

The extracts were concentrated using a rotary evaporator with a recirculating 

water pump and adapting vacuum to the system, taking care with the speed of 

evaporation because if it is too fast, part of the analyte may be lost.    

The concentration was performed in two steps, warming the water bath and 

applying different pressures, 550 mbar to evaporate the DCM and 250 mbar to 

evaporate the n-hexane. 

III. Extract clean-up (Carbon column) 

A carbon column clean-up was used to remove nonpolar interferences. 

Unlike the reference method, the back extract was not performed after the 

concentration. Instead, the concentrated extract was cleaned-up in a carbon 

column succeeded by a back flash reflux. 

In the adapted method, the column was just pre-eluted with 10 ml of DCM which 

were discarded. The reference method foresees a pre-elution of the column with 5 

ml of toluene followed by 2 mL of methylene chloride: methanol: toluene (15:4:1 

v/v), 1 mL of DCM: cyclohexane (1:1 v/v), and 5 mL of hexane.      

The sample extract was added to the column, the sample container was rinsed 

twice with 5 mL portions of DCM applied separately to the column whilst the 

reference method foresees the same procedure with 1 mL portions of hexane and 

a final addition of 2 mL of hexane to complete the transfer.  

After the addition of the sample, a two hours reflux with 35 mL of DCM was 

completed and when finished, the carbon columns were washed with 15 ml 

toluene to drag the excess of DCM, succeeded by a new one-hour reflux of 35 mL 

of toluene. The reference method foresees an elution with two 3 mL portions of 

hexane, 2 mL of methylene chloride: cyclohexane (1:1 v/v) and 2 mL methylene 

chloride: methanol: toluene (15:4:1 v/v).       
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The column was inverted (back flash), and eluted the PCDDs/PCDFs with 45 mL 

of toluene during a 24-hour reflux period, whilst the reference method foresees an 

elution with 20 mL of toluene.  

IV. Extract clean-up (Alumina column) 

The alumina column was used to remove nonpolar and polar interferences as well 

as chlorodiphenyl ethers. 

The reference method prescribes either the use of acid alumina (6 g acid alumina) 

or the use of basic alumina (6 g basic alumina). In the methodology used in this 

study, the column was packed with 5g of basic Alumina (Alumina B- Super 1for 

dioxin analysis). 

The pre-elution of the column followed the reference method.  

The concentrated extract solution was diluted in 5 ml hexane and added to the 

column (no dilution on the reference method). The receiver was rinsed twice, with 

2,5 ml portions of hexane (1 ml in the reference method) and apply separately to 

the column. The interfering compounds were eluted with 20 ml hexane: DCM (97: 

3 v/v) (100 ml hexane in the reference method) and the eluate was discarded.  

In this methodology, the last elution was completed with 80 ml of a DCM: hexane 

solution (40:60 v/v) to obtain the final extract which was collected. According to the 

reference method, the choice of eluting solvents would depend on the choice of 

alumina (acid or basic), 20 mL DCM: hexane (20:80 v/v) when acid alumina is 

used or 20 mL DCM: hexane (50:50 v/v) when basic alumina is used. 

V. Extract clean-up (Silica gel column) 

The extract was concentrated and eluted, after an elution of 1 to 3 ml of hexane 

(50-100mL hexane in the reference method) through a column of silica filled in the 

following sequence (glass wool plug into the tapered end of a graduated 

serological pipet, pack with 1 cm neutral silica, 1 cm basic silica (NaOH), 1 cm 

acid silica at 44% topped with 1 cm acid silica at 22% and a glass wool plug). 

The reference method foresees a different composition of the column which is 

packed bottom to top with: 1 g silica gel, 4 g basic silica gel, 1 g silica gel, 8 g acid 
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silica gel, 2 g silica gel and 4 g granular anhydrous sodium sulphate taped with 

glass-wool.  

The concentration flask was rinsed twice with 2 ml of hexane (1 mL of hexane in 

the reference method with an extra elution of 100 mL hexane through the column). 

The product of this elution was concentrated and placed in a Kuderna-Danish 

concentrator (KD) previously prepared with ebullition regulators for injection in the 

GC/ HRMS. 

Level of contamination and congener’s profile 

The results revealed average levels of 62 pg PCDD/F-WHO-TEQ/g fat in 2006 and 

of 78 pg PCDD/F-WHO-TEQ/g fat in 2011, which exceeded the maximum limit 

allowed by the European legislation for these substances in poultry meat, set at 2 

pg PCDD/F-WHO-TEQ/g fat until 2011. 

Once applied the statistical methodology, it becomes clear that in both incidents 

the contamination profiles were very similar (Figure 9).  

Risk management concerning the presence of environmental contaminants that 

may reach the food chain is a challenging task and must always put in perspective 

some unusual sources of contamination. 

In both incidents during 2006 and 2011, the association between the poultry meat 

contamination and the litters used in the poultry production was established.  

The pattern detected in the wood shavings contamination matches the profile 

found for contaminated technical pentachlorophenol by other authors (Hagenmaier 

and Brunner, 1987; Fries et al., 1996; Cleverly et al., 1997). This could suggest 

that the wood shavings used in the litters were obtained from treated wood, being 

the wood preservative the possible source (inadequate disposal of wood by-

products).  

The role of metal catalysts in de novo formation of PCDD/PCDF is described by 

Tame et al. (2017) and cooper is described as having the ability to couple with 

oxygen, lowering the temperature of exothermic oxidation with chlorination of the 

carbon. The high chlorination efficiency manifests in the homologues profiles 

where octa and hepta homologues of dibenzofuran and dibenzo-p-dioxin 
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dominate. Cooper is very often used in commercial industry wood preservative 

solutions. 

Recoveries of 13C12- Labelled compounds added to the wood shavings samples 

of the modified method are considered as acceptable by the European legislation. 

The recovery shall be within 60 to 120 % especially for congeners contributing 

more than 10 % to the TEQ-level for analysis of foodstuffs and feed for 

confirmatory methods and, for screening methods, the recoveries shall be in the 

range of 30 to 140 % (EC, 2014; EC, 2014b). 

3.5 CONCLUSIONS 

 

In both incidents during 2006 and 2011, contamination profiles of the wood 

shavings from the poultry litters, in what respect to congeners higher and lower 

relative concentrations, seems to be very similar (r2 = 0.98 and sd = 0.02), being 

OCDD, OCDF, 1,2,3,4,6,7,8-HpCDD and 1,2,3,4,6,7,8-HpCDF responsible for 

97.4 % of the total contamination.  

The method used, with all adaptations described, proved to be accurate and 

reproducible in the determination of low and high levels of PCDD/PCDF in wood 

shavings used as litters in poultry production farms. Quality requirements of the 

reference standards for recoveries, for food and environmental dioxins analysis 

are met.  

Further investigation is still needed to explain the formation of PCDD/F in order to 

clarify the possible role of wood preservatives in the contamination of the poultry 

food production chain. 
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4. PCDD/F Dioxin Profile of Treated Pinus pinaster Wood 
 

Abstract 

 

This work describes the treatment of Pinus pinaster wood with four different 

industrial wood preservatives (two anti-bluing or fungicide and two fungicide/ 

pesticide) and the detection and quantification of the dioxin contamination profile in 

the wood shavings. The samples were collected from poultry liters during three 

contamination incidents of poultry meat. Two methods used were, both 

nonpressure: one by immersing the wood samples in the preservative solution and 

the other by impregnation of the preservative solution into the wood, with vacuum. 

It was concluded that there is no difference in terms of contamination profile, 

caused by the different industrial wood treatment preservative products in study. A 

clear correlation between the commercial products used in wood treatment and 

the contamination profile of wood shavings that have been used as bedding 

material in poultry production was detected.  

Key words: Dioxin, Wood treatment, Fingerprint analysis, Food chain. 

 

4.1 Introduction 

 

During 2006, 2011 and 2016, following the implementation of a monitoring plan, 

contaminations with dioxins in poultry meat were found: the levels of 

contamination were higher than legally allowed in meat from poultry slaughtered 

for human consumption (CEC, 2006). To identify the original source of 

contamination of the birds, all potential sources of contamination were analyzed 

and the results showed considerable high contamination with dioxins of the wood 

shavings used as bedding material in the poultry farms, indicating that these 

materials were the likely source of contamination of the animals (Cardo et al., 

2014).  

In those incidents of contamination of the food chain with dioxins, the 

investigations performed revealed that the contaminated wood shavings used as 



86 
 

poultry bedding material were delivered by wood industries that illegally disposed 

wood shavings byproducts produced with treated wood. 

In these episodes, contamination profiles of higher and lower concentrations in the 

poultry muscle and fat, seems to be very similar, being OCDD, OCDF, 

1,2,3,4,6,7,8-HpCDD and 1,2,3,4,6,7,8-HpCDF responsible for 97.4 % of the total 

contamination (Cardo et al., 2014). 

In Portugal wood treatment is performed by 23 companies and is dominated by the 

production of poles, beams and poles, with a production of about 84300 cubic 

meters and the most widely used wood species is the maritime pine (Pinus 

pinaster) (Nunes et al., 2016). 

The most widely used commercial products in Portugal are Celcure C4, Celcure 

VS725, Korasit K2 whose active principles are mainly quaternary ammonium salts 

and copper, the TANALITH E 8001 whose active principles are propiconazole, 

tebuconazole, baramina and copper and Coprol Premium whose active 

ingredients are propiconazole and copper. Of the twenty-three existing companies, 

fifteen use TANALITH E 8001, two use celcure C4 or VS725, four use Korasit and 

two the Coprol Premium. As the Celcure is used by the two largest companies, 

this product shares with TANALITH E the leadership of the domestic market, 

representing Korasit and Coprol a marginal share of the market (Nunes et al., 

2016). 

This work describes the treatment of Pinus pinaster wood with four different 

industrial wood preservatives and the fingerprint analysis of the dioxin 

contamination profile with the wood shavings samples collected during the food 

chain contamination incidents. The methods used were both nonpressure, one by 

immersing the wood samples in the preservative solution and the other by 

impregnation of the preservative solution with vacuum. 

4.2 Materials and methods 

 

1) Wood treatment 

The treatment of wood was held at the laboratory of the Center for Structural 

Behavior of Structures from the Department of structures of the National Civil 

Engineering Laboratory (LNEC). 
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For the comparative study of different treatments of wood, a lot of pine wood has 

been chosen from the same stock and a research analysis for detection and 

quantification of PCDD/F were made to ensure that the wood batch was not 

contaminated. The procedure used in the treatment of wood that was described in 

the Table 7. 

Table 6 - Procedure for wood treatment. 

Procedure Il 

Choose the wood batch. 

A pine batch was chosen with no visible signs of having been burned in forest fires 

Selection of samples 

The selected samples showed no heartwood in order to use only the sapwood in the treatment and the 

wood were stored in a room with controlled environmental conditions for dehydration to stabilize the 

weight. 

Marking of samples 

The samples were then randomized to be allocated to each treatment and marked with numbering 

puncture.  

Cutting of samples 

They were cut into fractions 21,2x4,7x4,7 cm. 

Weighing 

The weighing of each sample was carried out immediately before treatment and after treatment to 

calculate the absorption of the solution and retention of the preservative. 

Treatment by immersion 

The treatment of the samples was performed according to the manufacturer's instructions (time, 

concentration).  

Vacuum treatment 

The treatment of the samples was performed according to the manufacturer's instructions (time, 

concentration) at a negative pressure of 0.92 bar.  

Fragmentation of the samples 

The samples after dehydration in a controlled atmosphere were fragmented using a chisel and hammer 

to be received in the mill. 

milling 

The fragmented samples were grinded into particles having the average size of 1mm
2
. 

The mill was cleaned of particles with compressed air spray and passed softwood (untreated) between 

the milling of each sample.  

Packaging of samples 

The samples were packaged and identified immediately after grinding. 
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The treatments were performed by immersion and by a vacuum method for 

comparing the contamination profile of the four different commercial products used 

for different purposes, two with an anti-bluing industrial product, or fungicidal and 

other two by depth vacuum impregnation with fungicide and pesticide effect. 

Treatment A, for use as an industrial fungicide treatment by immersion at a 

dilution in water of 7%. 

Composition: 

• 14.0% trimetilcocoamonia chloride. 

• 4.0% sodium tetraborate pentahydrate (Na2B4O7.5H2O); Also called Borax.  

Treatment B, for use as an industrial fungicide treatment by immersion at a 

dilution in water of 1.5 to 3.5%. 

Composition: 

• 10% Bardap26 (N,N-Didecyl-N-methyl-poly(oxyethyl)ammonium 

propionate). 

• 1.6% DCOIT (4,5-dichloro-2-N-octyl-4-isothiazolin-3-one). 

• 2% IPBC (3-iodo-2-carbamate proponyl). 

• 0.9% propiconazole (C15H17Cl2N3O2). 

Treatment C, for use as an industrial fungicide and insecticide treatment by 

pressure and vacuum in an autoclave to a 2-4% dilution in water.  

Composition: 

• 4.0% boric acid (H3BO3). 

• 4.2% Bardap 26 -  poly (oxy-1,2-ethanediyl), α- [2- (didecilmetilamónio) 

ethyl] - ω-hydroxy-propanoate (salt). 

• 20% copper (II) carbonate hydroxide, copper (II) 1: 1. Cu (OH) 2; CuCO3. 

Treatment D, for use as an industrial fungicide and insecticide for treatment with 

vacuum and pressure in an autoclave at a dilution of 2% in water.  

Composition: 

• 14% basic copper carbonate; CuCO3. 

• 0.50% didecyldimethylammonium chloride; (N- (3-aminopropyl) -N-

dodecilpropano-1,3-diamine) C22H48ClN.  

• 0.16% propiconazole (C15H17Cl2N3O2). 

• 0.16% tebuconazole (C16H22ClN3O). 
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To calculate the absorption of the applied solution, the following formula was used 

in which (mf) is the final weight; (mi) is the initial weight: 

 

The retention of preservative solution was calculated as below: 

 

 

2) Analytical Method  

The analytical method used for detection and quantification of dioxin was the USA 

EPA method 1613 revision B (USEPA, 1994). This method was developed by the 

Environmental Protection Agency, Science and Technology of the United States 

for the determination of 2,3,7,8-CDDs/CDFS replaced through octa-chlorination, 

dibenzo-p-dioxins and dibenzofurans in aqueous matrices, solid or tissue by 

isotope dilution, followed by capillary column of high resolution gas 

chromatography (HRGC)—high resolution mass spectrometry (HRMS). 

3)  Statistical Analysis  

Analysis of data was carried out in accordance with the methodology of the USA 

EPA for analysis of contaminants (Russell and Plumb, 2004).  The methodology 

consists in the conversion of the concentration of the different congeners of each 

sample to a decimal percentage of the sum of congeners. These standard 

concentrations in each sample is represented in a bar plot graphic. The square of 

the Pearson correlation coefficient (r2) (Johnson and Wichern, 2001) is then used 

as a measure to assess whether the profile of the concentration of congeners in 

the samples (compared visually on the bar plot) is statistically similar. It is 

considered that the profiles are similar if the average of r2 is close to 1 and the 

standard deviation (SD) is next to zero.  

The same methodology was applied to investigate a possible association between 

groups of analysis. 
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4.3 Results 

 

The results showed a negligible contamination of 0.078 ± 0.025 pg PCDD/F-WHO-

TEQ/g in the blank wood, without any chemical treatment. Those results were 

used to correct all the values obtained in the analyzes performed to compare the 

treatments.  

The results obtained during the treatment of wood is presented in Table 8. 

Table 7 - Absorption and retention of preservative solution. 

Sample solution Sample 
(mi) 
(Kg) 

(mf) 
(Kg) 

treatment Conc/ Time 
Volume 
(mm

3
) 

Liquid 
absorption 
(Kg/m3) 

Preservative 
retention 
(Kg/m3) 

MC/1/AZ A 1A 0.254 0.290 Immersion 7%/ 15 m 468308 78.28 5.48 

MC/2/AZ A 2A 0.293 0.322 Immersion 7%/ 15 m 468308 63.85 4.47 

MC/4/AZ B 1B 0.258 0.289 Immersion 4%/ 15m 468308 65.79 2.63 

MC/5/AZ B 2B 0.266 0.290 Immersion 4%/ 15m 468308 50.12 2.00 

MC/7/PR C 1C 0.243 0.456 Vacuum 4%/ 60 m 468308 455.05 18.20 

MC/8/PR C 2C 0.240 0.403 Vacuum 4%/ 60 m 468308 348.55 13.94 

MC710/PR D 1D 0.276 0.364 Vacuum 2%/ 60 m 468308 187.29 3.75 

MC/11/PR D 2D 0.273 0.394 Vacuum 2%/ 60 m 468308 257.44 5.15 

 

Contamination levels of wood samples subjected to different treatments are 

presented in the Table 9. 

Table 8 - Contamination levels of the different samples/ treatments. 

Sample pg WHO-PCDD/F-TEQ WHO/g 

MC/1/AZ 0.17 

MC/2/AZ 0.18 

MC/4/AZ 0.14 

MC/5/AZ 0.14 

MC/7/PR 0.34 

MC/8/PR 0.29 

MC/10/PR 0.27 

MC/11/PR 0.20 

 

Analyses for quantification of dioxins and furans in different samples subjected to 

the four different treatments had a very similar profile with a very high correlation 

coefficient (R2 = 0.99) and a very low standard deviation (SD = 0.001) (Figure 11). 

For this reason, it was not made the comparison between treatments. 
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Figure 11 - Profile contamination of samples from different treatments of wood. 

Given these results, it is interesting to compare the contamination profile of the 

total samples taken from the wood shavings used as bedding material during the 

episodes of poultry dioxins contamination in 2006, 2011 and 2016. For this 

purpose, only the samples that have showed contamination with substantial 

amounts, i.e. contamination with levels above 2 pg WHO-PCDD/F-TEQ WHO/g, 

will be used. 

 

 

Figure 12 - Fingerprint analysis of treated wood (line) with bedding material incident of 2006. 
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Figure 13 - Fingerprint analysis of treated wood (line) with bedding material incident of 2011. 

 

 

Figure 14 - Fingerprint analysis of treated wood (line) with bedding material incident of 2016. 

 

4.4 Discussion 

 

Several authors describe wood preservative retention comparison studies in 

different species of wood, with different preservation methods and products with 

different preservatives. 
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Table 9 - Comparison of preservative retention levels in different studies. 

Author Wood species Treatment 

method 

Product Dimension of 

samples mm 

Volum

e mm3 

Retention 

(Kg/m3) 

(Ozdemir  et al., 2015)  Pinus sylvestris L. Vacuum (45 m) Tanalith E (2%) 300x100x15 450000 15.39 

(Ozdemir et al., 2015)  Pinus sylvestris L. Vacuum (45 m) CCA (2%) 300x100x15 450000 15.67 

(Ozdemir et al., 2015)  Pinus sylvestris L. Vacuum (45 m) Bóric acid (1%) 300x100x15 450000 6.92 

(Chong, 1977)  Pinus radiata D.  Vacuum and 

pressure 

CCA (2%) 4.3x50x25 5375 13.3 

(Yildiz et al., 2004)  Pinus sylvestris  L. Vacuum (60 m) CCA (2%) 5×10×100  5000 13.24 

(Yildiz et al., 2004) Pinus sylvestris  L. Vacuum (60 m) Tanalith E 3491 

(2%) 

5×10×100  5000 11.64 

(Yildiz et al., 2004)  Pinus sylvestris  L Vacuum (60 m) ACQ-1900 (2%) 5×10×100  5000 12.99 

(Yildiz et al., 2004)  Pinus sylvestris  L Vacuum (60 m) Wolmanit CX-8 

(2%) 

5×10×100  5000 13.04 

(Yildiz, 2007)  Pinus sylvestris L. 

ssp.  

Vacuum and 

pressure 

Tanalith E 3492 

(2.4%) 

50x50x100 762000 4.95 

(Yildiz, 2007)  Pinus sylvestris L. 

ssp.  

Vacuum and 

pressure 

Tanalith E 3492 

(2.4%) 

50x100x152.4 762000 2.48 

 

Retentions obtained in this laboratory study varied with the concentrations of the 

solutions used. The vacuum treatment for impregnation of the solution, yielded an 

average retention of the solute of 16.7 Kg/m3, when a 4% concentration was used 

in the treatment "C" and an average retention 4.45 kg/m3 when a 2% 

concentration was used in the treatment D. 

The assessment of the wood impregnation studies is quite difficult since the 

retention levels vary with various factors such as the species of wood, wood 

moisture content, the volume of samples, the treatment time, pressure used, and 

the treatment used, i.e. if only applies vacuum or if vacuum is alternated with 

positive pressure. This difference is not as significant in immersion treatments. 

The impregnation studies performed by Yildiz et al., (2004) compared to this study, 

exhibited higher retention levels with lower concentrations but with lower volume 

samples and studies performed by Ozemir et al., (2015) showed similar retention 

levels with similar volume of samples but for less time. Studies by other authors 

referred in the Table 10, in some cases have higher retentions and other lower, 

even using vacuum and pressure. 
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The results of the contamination levels of the treated wood chips showed very low 

contaminations when compared with the contaminations observed in the incidents 

occurred in poultry contaminations, probably due to lower retentions comparing to 

the retentions obtained in industrial conditions. 

Contamination profiles of the different treatments used showed a very strong 

correlation R2 = 0.99 and a standard deviation of 0.001.  

The fingerprint analysis of the profile of the wood treated in this study, with the 

profile of the wood shavings from the bedding material implicated in the incidents 

that took place in Portugal in 2006, 2011 and 2016 with food safety concern 

(Figures 12-14) showed a very high correlation. R2 = 0.99 and SD = 0.002 

compared with the litters tested in 2006, R2 = 0.99 and SD = 0.007 compared with 

the litters tested in 2011 and R2 = 0.96 and SD = 0.012 compared with the litters 

tested in 2016. 

4.5 Conclusions 

 

The study and characterization of the contaminant, in particular, the study of the 

influence of different products marketed in Portugal for treatment/preservation of 

wood, allowed the conclusion that there is no difference in terms of contamination 

profile, caused by the different industrial wood treatment preservative products.   

The study established, at laboratory level, a clear correlation between the 

commercial products used in wood treatment and the contamination of wood 

shavings that have been used as bedding material in poultry production. The 

profile of the contamination of pine wood chips treated in the laboratory fits 

perfectly into the profile of the wood shavings implicated in the poultry 

contamination incidents in Portugal. 

Surprisingly, the surface treatment of wood and the depth (vacuum) treatments 

showed very similar contamination profiles, which allows us to consider that, in 

general, the litters of poultry contaminated with treated wood shavings present a 

similar profile, since the degree of retention of the preservative in wood does not 

affect the profile found. 
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This recurrence of the profile can be important for risk managers because it 

allows, based on a muscle and fat analysis, immediately associate an equivalent 

profile to the respective source of contamination without having to waste time and 

resources to examine all possible sources of contamination. 
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5. Dioxins in the Food Chain: Contamination Fingerprint Analysis in 

Breeding Hens, Hatching Eggs and Broilers 
 

Abstract  

 

While routine monitoring poultry meat was obtained from breeding hens, dioxins 

contaminations were detected in Portugal. Levels of 430.9 pg PCDD/F-WHO-

TEQ/g6 were found, which are higher than the official limits legally allowed for this 

matrix (1.75 pg PCDD/F-WHO-TEQ/g). To identify the magnitude of the 

contaminations, 60 samples were collected from poultry farms and different 

matrices, namely: feed, water, wood shavings from the litters, muscle of the 

breeding hens, hatching eggs collected in the positive farm and muscle collected 

from broilers farms supplied by the positive breeding farm. The comparison of the 

dioxins congeners profiles showed that there was a coincidence of peaks of higher 

relative concentrations in the wood shavings, with the peaks of the highest relative 

concentration in the hatching eggs, especially the relative concentrations of the 

congeners 1,2,3,4,6,7,8-HpCDD and OCDD, which may be explained by the role 

of VLDLy in the delivery of triglycerides to the oocyte, where they will be used as 

the energy source for the developing embryo. The comparison of the dioxins 

congeners profiles of the breeding hens muscle with the poultry muscle, showed a 

coincidence of peaks of higher relative concentrations in the congeners 1,2,3,7,8-

PeCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD and OCDD which may indicate 

a dechlorination pathway “in vivo”. Results allowed concluding that those wood 

shavings, improperly used as poultry litters, were certainly the source of 

contamination of the food chain.  

  

Keywords: Dioxin Fingerprint, Food Chain, Poultry 

 

 

                                                           
6
 The abbreviation “PCDD/F-WHO-TEQ” refers to the toxic equivalence factors (TEF) established for a range 

of PCDDs and PCDFs by the World Health Organization (WHO). 



97 
 

5.1 Introduction  

 

Food chain safety has been sporadically stressed by the presence of chemical 

hazards as contaminants of many food matrices. Among these hazards, PCDD, 

PCDF and PCBs are certainly those of the highest concern because of their high 

social and economic negative impacts. In the last decade many episodes of food 

chain contamination with dioxins have been reported in European Union (De Vries, 

et al., 2006; Kennedy, et al., 2010). In Portugal, during 2011, an episode of a 

natural poultry meat contamination with dioxins was also reported (Cardo, et al., 

2009). Many sources have been incriminated as vehicles for dioxins to food of 

animal origin: commercial organic feed, noncommercial feedstuffs, soil, plants, 

worms and insects (De Vries, et al., 2006). These are the matrices where original 

contaminations are systemically searched when some animal production is found 

carrying higher dioxins contaminations. However, in intensive poultry production, 

the birds do not assess soil or invertebrates. Some hens are accommodated in 

cages (laying hens) or inside pavilions without soil contact. And when, in these 

circumstances, feed is also confirmed as dioxin free, other sources must be 

searched to manage the risk efficiently. This study concerns to a search performed 

precisely to determine the source of dioxins contamination found in poultry meat 

obtained from breeding hens, in its hatching eggs and respective chickens.  

5.2 Material and Methods  

 

5.2.1. Sampling  

Sampling has been conducted according to following sequence:  

• From all possible sources of contamination in the breeding hens positive farm 

(feed, water and wood chips from litters);   

• From hatching eggs laid by the positive breeding hens;  

• From the broilers hatched from the eggs laid by the positive breeding hens.  

Samples partition was the following: 17 samples of muscle fat were collected from 

four breeding hen’s new batches of the implicated farm; wood shavings from the 

bedding material (n = 4), hatching eggs (n = 3), feed (n = 3) and water (n = 3).  
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From the 20 broiler farms supplied with one day old chicks coming from the 

positive breeding farm, were also sampled (30 samples: n = 28 broilers muscle fat 

and n = 2 wood shavings).  

Additionally, two positive samples of wood shavings were also tested for detection 

and quantification of pentachlorophenol - a wood preservative-using extraction 

with acetone/10% H2SO4 under reflux, clean-up with celite/H2SO4 column.  

The sample storage and transportation were made according good laboratory 

practices, to ensure sample stability and integrity, avoiding any change that could 

affect the reliability of the analytical procedure. Each sample was individually 

identified and packed immediately after collection.  

Litter samples were preserved in dry and dark conditions in a cool place, while 

muscle samples were frozen.  

5.2.2. Analytical Method  

The analytical method used for detection and quantification of dioxin was the USA 

EPA method 1613 revision B (USEPA, 1994). This method was developed by the 

Environmental Protection Agency, Science and Technology of the United States 

for the determination of 2,3,7,8-CDDs/CDFS replaced through octa-chlorination, 

dibenzo-p-dio- xins and dibenzofurans in aqueous matrices, solid or tissue by 

isotope dilution, followed by capillary column of high resolution gas 

chromatography (HRGC) - high resolution, mass spectrometry (HRMS).  

5.2.3. Statistical Analysis  

Analysis of data was carried out in accordance with the methodology of the USA 

EPA, for analysis of contaminants (Russell and Plumb, 2004).  The methodology is 

summarized in four basic steps.  

Step One: Standardization - the concentration of congeners observed for each 

sample is standardized. The constituents of each sample are converted to a 

decimal percentage of the sum of congeners.   

Step Two: Construction of the bar plot of the standard concentrations - graphic 

representation of the standard concentration of the different congeners for each 

sample. The Y-axis of the bar plot represents the relative amount of each 
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congener in the sample (standard concentration) and in the X-axis it is 

represented the identification of the 17 different congeners. This chart will give an 

indication of the congeners that are present in greater concentration and if that 

pattern is maintained for the different samples.  

Step Three: Statistical assessment of pattern reproducibility - this step concerns 

the used of the square of the Pearson correlation coefficient (r2) as a measure to 

assess whether the profile of the concentration of congeners in the samples 

(compared visually on the bar plot) is statistically similar.  The Pearson correlation 

coefficient (r2) measures the degree and direction of the correlation (positive and 

negative) between two variables of metric scale (Johnson and Wichern, 2001).  

Thus, a table is generated with the values of r2, in which each sample is compared 

with all others. If all values of the square of the Pearson correlation coefficient are 

near 1, it can be stated that the pattern of the samples, compared in pairs, is very 

similar.   

In order to assess the similarity of the concentration of congeners profile in various 

samples, it was used the global average comparison which is defined as the 

average values of r2 found. It is considered that the profiles are similar if the 

average of r2 is close to 1 and the standard deviation (SD) is next to zero.  

Step Four: Evaluation of the source of contamination - once established the 

congener’s profile of the dioxins contaminations in each group of samples (litters, 

breeding hens, hatching eggs and broilers), the same methodology of the previous 

steps was applied to investigate a possible association between them.  

5.3 Results  

 

A total of 17 samples were found positive in the 60 samples collected: 3 wood 

shavings, 4 breeding hens muscle fat, 3 hatching eggs and 7 broilers muscle fat. 

All samples of feed and drinking water were negative.  

The higher WHO-TEQ levels of PCDDs and PCDFs contaminations were detected 

in breeding hens muscle fat (430.9 pg WHO-TEQ/g) with an average of 193.66 pg 

WHO-TEQ/g. The higher level of dioxins found in the positive wood shavings 

samples was 65.94 pg WHO-TEQ/g with an average of 38.85 pg WHO-TEQ/g. 
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The higher level of dioxins found in the positive hatching eggs samples was 61.33 

pg WHO-TEQ/g with an average of 42.25 pg WHO-TEQ/g. The higher level of 

dioxins found in the positive broiler muscle fat samples was 8.59 pg WHO-TEQ/g 

with an average of 4.67 pg WHO-TEQ/g (Figure 15).  

The two wood shavings samples tested for detection and quantification of 

pentachlorophenol, revealed a concentration of 1.1 and 2.0 mg/kg of the product.  

The square of the Pearson correlation coefficient (r2) and standard deviation (sd) 

of the different congeners relative concentrations within each group of analysis is 

considerable: r2 = 0.99 and sd = 0.01 for the litters, r2 = 0.75 and sd = 0.15 for the 

breeding hens, r2 = 1 and sd = 0 for the hatching eggs and r2 = 0.83 and sd = 0.11 

for the broilers.  

The square of the Pearson correlation coefficient (r2) and standard deviation (sd) 

of the different congeners relative concentrations between each group of analysis 

is not so strong:   

r2 = 0.54 and sd = 0.16 for the wood shavings versus breeding hens (Figure 16);   

r2 = 0.58 and sd = 0.02 for the breeding hens versus hatching eggs (Figure 17);   

r2 = 0.72 and sd = 0.16 for the hatching eggs versus broilers (Figure 18).  

The square of the Pearson correlation coefficient (r2) and standard deviation (sd) 

of the different congeners relative concentrations between breeding hens and 

broilers muscle fat (r2 = 0.8 and sd = 0.12) is very high (Figure 19), as well as 

between litters and hatching eggs (r2 = 0.72 and sd = 0.16) (Figure 20). 
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Figure 15 - Average Levels of dioxins found in positive samples. 
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Figure 16 - Wood shavings from bedding material (line) Vs Breeding hens. 

 

 

Figure 17 - Breeding hens (line) Vs Hatching eggs. 

 

 



102 
 

 

Figure 18 - Hatching eggs (line) Vs Broilers. 

 

 

Figure 19 - Breeding hens (line) Vs Broilers. 
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Figure 20 - Wood shavings from bedding material (line) Vs Hatching eggs. 

 

5.4 Discussion  

 

The results set showed considerable high contaminations of the wood shavings, 

indicating that these materials are the likely source of contamination of the 

animals.  

During the earlier stages of its development, chicks have as habit to eat some 

particles of bedding materials. That behaviour is hazardous potentiated due to the 

fact that they select some special fragments with darker points, because they 

mimic the image of the small arthropods that are usually eaten in natural 

conditions (instinctive behaviour). Some wood by-product, obtained from partial 

burned pines, frequently have these different colour points.  

The pattern detected in the wood shavings matches with the profile found for 

contaminated technical pentachlorophenol by other authors (Hagenmaier and 

Brunner, 1987; Fries, et al., 1996; Cleverly, et al., 1997); this suggests that the 

wood shavings used in the litters were obtained from treated wood, being the 

wood preservative the possible source.  
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The assessment carried out between the profiles found in each of the wood 

shavings samples and the muscle fat of the breeding hens reared on those litters; 

the hatching eggs laid by those contaminated hens and the respective hatched 

chicks showed a coincidence of peaks of higher relative concentration in its 

samples, concerning especially to the relative concentrations of the congeners 

1,2,3,4,6,7,8-HpCDD and OCDD.   

Graphic representation of the relative concentrations of the different dioxin 

congeners in each matrices had different comparative expressions. For example, 

in the broilers and breeding hens muscle fat profiles, the average relative 

concentration of OCDD was 52% and 53% lower, comparatively to the wood 

shavings and hatching eggs profile, respectively (Salvantem, et al., 2007). On the 

other hand, the average relative concentration of 1,2,3,7,8-PeCDD, 1,2,3,6,7,8-

HxCDD and 1,2,3,4,6,7,8-HpCDD in the broilers and breeding hens muscle fat 

profiles was 50% - 97% higher when compared with the litters and hatching eggs 

profiles.  

The figures suggest that, probably, there was some factor that may affect the 

consistency in quantitative terms of the relative concentration of congeners found 

in wood shavings and in poultry muscle fat. Many explanations can be pointed to 

these facts, like: an “in vivo”, metabolic pathway (dechlorination of the most 

chlorinated congeners); a differentiation on the lipophilic affinity of each congener; 

variations on the affinity to the Ah receptor and selective faecal excretion by the 

birds, also equivalent to a lower absorptive capacity (Lynam, et al., 1998; Huwe, et 

al., 2000; Pirard and Pauw, 2004).  

It was verified an equilibrium between the dioxin concentration in the contaminant 

ingested by chickens (38.85 pg WHO-TEQ/g) and the dioxin concentration in the 

eggs (42.25 pg WHO-TEQ/g), which is confirmed by other study (De Vries, et al., 

2006; Petreas, et al., 1991).  

The fact that the square of the Pearson correlation coefficient (r2) of the different 

congeners relative concentrations between litters and hatching eggs (r2 = 0.72 

and sd = 0.16) and the graphic representations of the profiles was so consistent, 

may be explained by the estrogens produced during egg production which 

stimulate the liver to produce the egg-yolk targeted, very-low density lipoprotein 

(VLDLy). This oestrogen-dependent shift in VLDL synthesis from the production of 
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generic VLDL, which ranges in size from 30 to >200 nm, to smaller, yolk-targeted 

VLDL, which ranges in diameter from 15 to 55 nm represents a dramatic shift in 

lipid metabolism associated with changes in the composition and structure of 

VLDL in egg-producing females. Whereas the role of generic VLDL is to transport 

triglycerides throughout the body for tissue utilization or storage in adipose tissue, 

the function of VLDLy is to deliver triglycerides to the oocyte, where they will be 

used as the energy source for the developing embryo. The smaller diameter of 

VLDLy is thought to be critical for enabling the particles to pass through the pores 

in the granulosa basal lamina of the ovary, allowing them access to the developing 

ovarian follicles. VLDLy particles are in high plasma concentrations in laying hens 

and are resistant to hydrolysis by extra-ovarian tissues which preserves the 

triglycerol-rich VLDLy for uptake by the developing ovarian follicles (Salvantem, et 

al., 2007). 

5.5 Conclusions  

 

This study clearly identified the source of the poultry contamination, attending to 

the relationship established with an environmental vehicle of dioxins (wood 

shavings). This achievement is based on the consistence of the results obtained 

with all the tested materials regarded as potential source and the fingerprint 

analysis of the relative concentration of the 17 dioxin congeners.  

It can be stated that unusual sources of food chain contamination with dioxins 

must be always put in perspective when the incident is not affiliated in the most 

common sources. 
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6. Study of Depletion and Contamination Profile of Dioxins in Duck 

Intensive Production 
 

Abstract 

 

During 2016, following the implementation of a dioxin contamination monitoring in 

poultry meat (ducks) in a slaughterhouse, a positive sample was found. The 

investigation identified the wood shavings used as bedding material in the duck 

farm as the possible source of contamination of these animals. In this episode, 

contamination profiles of higher and lower concentrations, seems to be very 

similar, being OCDD, OCDF and 1,2,3,4,6,7,8-HpCDD responsible for 74,4% of 

the total contamination of those animals. The study revealed a reduction of poultry 

contamination after the removal of the source of contamination, with an average 

daily depletion percentage level ranging between 1.43% and 4.35%. 

6.1 Introduction 

 

Safety of the food chain is periodically challenged due to the occurrence of PCDD, 

PCDF and PCBs contamination in food. During the monitoring of dioxin in 2016, in 

a duck slaughterhouse, higher levels than legally allowed in poultry meat for 

human consumption were found. The identified source of contamination of the 

ducks was the wood shavings used as bedding material in the poultry farm, which 

presented considerable high levels of PCDD/F, indicating that these materials 

were the likely source of contamination of the animals. 

Relevant dioxin depletion studies in cow milk have been conducted notably by 

McLachlan and Richter, (1998), Fries et al., (1999), Malisch, (2000) and other in 

pigs and broilers by Hoogenboom, et al., (2004), Pirard and Pauw, (2005), but 

evidence on the depletion rates of dioxins in poultry is yet to be well established. 

Furthermore, studies on the transformation “in vivo” of the contamination profile 

during the life period in poultry highlight the need to deepen the study in this field.  

This paper addresses the study of the average depletion rates of PCDD/PCDF in 

ducks and of the contamination profile of dioxins. The results may provide a strong 
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contribution for risk management in food safety incidents due to dioxin 

contamination in the poultry food production chain. 

6.2 Materials and methods 

 

a. Sampling 

In the implicated farm, representative samples of muscle and fat from the ducks 

were performed with composite samples of muscle and fat of ten ducks for each 

pen with 3450 ducks. The first and the second samples were collected in each pen 

with a difference of approximately one month to access the progress of both, the 

contamination level and the contamination profile. 

Sampling has been conducted according to following sequence:  

• Two samples of muscle and fat of ducks in the slaughterhouse 

• Ten samples from the ducks breed in the 10 existing pens in the farm (n= 

10); 

• Two samples of wood shavings (n=2) tested for detection and quantification 

of PCDD/PCDF.  

• Seven samples of muscle and fat in the six positive pens, one in each pen 

and two samples in pen number 9 (n=7). 

The bedding material (wood shavings) of the positive pens were changed to rice 

husk nearly 15 days before each first sample collection, except for pens 1 and 8, 

in which the change was made a week later in pen 1 and on the same day, in the 

case of the pen 8. 

The sample storage and transport were made according to Good Laboratory 

Practices to ensure sample stability and integrity, avoiding any change that could 

affect the reliability of the analytical procedure. Each sample was individually 

identified and packed immediately after collection. Litter samples were preserved 

in dry and dark conditions in a cool place, while muscle samples were frozen. 

b. Analytical Method  
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The analytical method used for detection and quantification of dioxin was the USA 

EPA method 1613 revision B (USEPA, 1994). This method was developed by the 

Environmental Protection Agency, Science and Technology of the United States 

for the determination of 2,3,7,8-CDDs/CDFS replaced through octa-chlorination, 

dibenzo-p-dioxins and dibenzofurans in aqueous matrices, solid or tissue by 

isotope dilution, followed by capillary column of high resolution gas 

chromatography (HRGC)—high resolution mass spectrometry (HRMS). 

c. Statistical Analysis  

Analysis of data was carried out in accordance with the methodology of the USA 

EPA, for analysis of contaminants (Russell and Plumb, 2004).  The methodology is 

summarized in four basic steps.  

Step One: Standardization 

The concentration of congeners observed for each sample is standardized. The 

constituents of each sample are converted to a decimal percentage of the sum of 

congeners.   

Step Two: Construction of the bar plot of the standard concentrations 

Graphic representation of the standard concentration of the different congeners for 

each sample. The Y-axis of the bar plot represents the relative amount of each 

congener in the sample (standard concentration) and in the X-axis it is 

represented the identification of the 17 different congeners. This chart will give an 

indication of the congeners that are present in greater concentration and if that 

pattern is maintained for the different samples.  

Step Three: Statistical assessment of pattern reproducibility 

This step concerns the used of the square of the Pearson correlation coefficient 

(r2) as a measure to assess whether the profile of the concentration of congeners 

in the samples (compared visually on the bar plot) is statistically similar.  The 

Pearson correlation coefficient (r) measures the degree and direction of the 

correlation, positive and negative, between two variables of metric scale (Johnson 

and Wichern, 2001). Thus, a table is generated with the values of r2, in which 

each sample is compared with all others. If all values of the square of the Pearson 

correlation coefficient are near 1, it can be stated that the pattern of the samples, 
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compared in pairs, is very similar.  In order to assess the similarity of the 

concentration of congeners profile in various samples, it was used the global 

average comparison which is defined as the average values of r2 found. It is 

considered that the profiles are similar if the average of r2 is close to 1 and the 

standard deviation (SD) is next to zero.  

Step Four: Evaluation of the source of contamination 

Once established the congener’s profile of the dioxins contaminations in each 

group of samples, the same methodology of the previous steps was applied to 

investigate a possible association between those groups. 

6.3 Results 

 

The results revealed levels with an average of 18 pg PCDD/F-WHO-TEQ/g fat in 

the first samples and an average of 8 pg PCDD/F-WHO-TEQ/g fat in the second 

samples (Table 11). 

Table 10 - Comparison of the level of contamination in samples collected over time. 

Pen Number 

of 

ducks 

First sample 

pg PCDD/F-

TEQ-OMS/g 

Ducks 

age. First 

sample 

Second 

sample 

pg PCDD/F-

TEQ-OMS/g 

Ducks 

age. 

Second 

sample 

Depletion 

in days 

Average 

depletion/ day 

pg PCDD/F-

TEQ-OMS/g 

Average 

depletion/ 

day (%) 

1 3450 17.1 40 18.7 75 35 -0.05 -2.86 

2 3450 9.05 70 0.76 95 25 0.33 4.00 

3 3450 3.23 42 0.92 67 25 0.09 4.00 

8 3450 47.1 47 31.7 81 34 0.45 2.94 

9 3450 15.4 40 9.45 63 23 0.26 4.35 

9 3450 9.45 63 1.29 110 47 0.17 2.13 

9 3450 15.4 40 1.29 110 70 0.20 1.43 

10 3450 24.1 117 1.30 159 42 0.54 2.38 

         

The evolution of the contamination profile of the ducks in the six pens, after the 

removal of the source of contamination is shown in Figures 21, 22, 23, 24, 25 and 

26.  

The Square Pearson Correlation Coefficient within each group ranged from 0,70 to 

0,99. 
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Figure 21 - Assessment of contamination profile in pen 1. 

 

 

Figure 22 - Assessment of contamination profile in pen 2. 
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Figure 23 - Assessment of contamination profile in pen 3. 

 

 

Figure 24 - Assessment of contamination profile in pen 8. 
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Figure 25 - Assessment of contamination profile in pen 9. 

 

 

Figure 26 - Assessment of contamination profile in pen 10. 

 

The profile of the samples collected in the bedding material (wood shavings) in the 

affected farm is presented in Figure 27. The level of contamination of the wood 
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shavings was 239 and 39.7 pg PCDD/F -TEQ-WHO/g and the Square of the 

Pearson Coefficient was R2=0.99. 

 

 

Figure 27 – Wood shavings contamination profile. 

 

The comparison of the profile of the average contamination of the bedding material 

and all the samples collected from muscle and fat of the different pens with ducks 

is presented in Figure 28. 

 

Figure 28 – Comparison wood shavings from bedding material (line) and muscle and fat of ducks.  
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6.4 Discussion 

 

The contamination levels found in the poultry meat exceeded the maximum limit 

allowed by the European legislation for these substances in poultry meat, set at 

1,75 pg PCDD/F-WHO-TEQ/g fat (CEC, 2006b). 

The study of the incident occurred during 2016 in the duck production holding 

revealed a reduction of contamination after the removal of the source of 

contamination, with an average daily depletion percentage level ranging between 

1.43% and 4.35%. 

Hoogenboom, et al., (2004) found depletion rates of 4,7% in broilers in a tree 

weeks’ elapse period, however the contamination profile was significantly different, 

being the least chlorinated congeners the predominant in the overall 

contamination. The author states that the least chlorinated congeners decrease 

more rapidly than the higher chlorinated congeners. 

Several factors may contribute to influence the depletion level. This number of 

variables in addition to the few results in each affected pen did not allow the 

confirmation of what was previously expected, i.e. that the depletion level is 

influenced by the level of initial contamination, by the age of the ducks, that is, with 

the growth rate (dilution effect), by weight of the ducks and by the elapsed time. 

The variables, except for the initial contamination, showed very similar quantitative 

values: 

• The first analysis in all pens were made in ducks in the same production stage, 

the last third of fattening, i.e., during the finishing phase, shortly before the 

expected date of slaughter, which is the period when they show lower growth 

rates; 

• The second analysis in the positive pens were made, with one exception, not 

later than 110 days of live, despite the decision to extend the life of animals with 

the expectation that their contamination would be reduce after changing the 

bedding material. However, with the exception of four samples, the life time could 

not be further extended due to the fact that slaughter of ducks after 90 days is not 

advantageous from a commercial point of view. Furthermore, there was the need 

to ensure that there were no welfare problems by overpopulation of the pens, i.e. 
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as the ducks grow older, the vital free space for each one gets tighter, with losses 

in animal health and mortality. These conditions did not allow extending the 

depletion time in at least some pens. 

The depletion rate (Average daily depletion percentage) has a negative 

association with the depletion period (Figure 29). In the case of pen 1, in which the 

bedding material was replaced by rice husk later, one week after the first sample, 

the depletion rate showed negative values.  

 

Figure 29 – Depletion rate variation with the depletion period in days. 

 

In some pens, there was an increase of the most chlorinated congeners (pen 1, 2 

and 3), in another pen, precisely the opposite happened (pen 9) and yet, there 

were two other pens in which the profile has remained unchanged (pen 8 and pen 

10). This lack of consistency in the behavior of the congener’s relative 

concentration does not allow drawing up conclusions concerning the profiles in the 

different pens. 

The pattern detected in the wood shavings matches with the profile found in 

contaminated wood shavings obtained from treated wood by other authors 

(Hagenmaier and Brunner, 1987; Fries, et al., 1996), this suggests that the wood 

shavings used in the litters were obtained from treated wood, being the wood 

preservative the possible source.  
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The assessment carried out between the profiles found in the wood shavings 

samples and the muscle fat of the ducks reared on those litters showed a 

coincidence of peaks of higher relative concentration in each samples. These 

results concern in particular the relative concentrations of the congeners 

1,2,3,4,6,7,8-HpCDD and OCDD (Cardo, et al., 2014).  Graphic representation of 

the relative concentrations of the different dioxin congeners in each matrix had 

different comparative expressions. For example, in the duck muscle fat profiles, 

the average relative concentration of OCDD and OCDF was respectively 18% and 

81% lower, comparatively to the wood shavings. On the other hand, the average 

relative concentration of 1,2,3,6,7,8-HxCDD and 1,2,3,4,6,7,8-HpCDD in the duck 

muscle fat profiles was respectively 89,4% and 35,4% higher when compared with 

the litters.  

In the wood shavings, the concentration of the three most chlorinated congeners 

(1,2,3,4,6,7,8-HpCDD, OCDF and OCDD) represents 91,6% of the total 

concentration of the 17 congeners, while, in the muscle and fat of the 

contaminated duck analysis it represents only 74,4%. 

The figures suggest that, probably, there are some factors which may affect the 

consistency in quantitative terms of the relative concentration of congeners found 

in wood shavings and in duck muscle fat. Several explanations could justify this 

lack of consistency: A dechlorination of the most chlorinated congeners due to an 

“in vivo” metabolic pathway; a differentiation on the lipophilic affinity of each 

congener; variations on the affinity to the Ah receptor and selective faecal 

excretion by the birds, also equivalent to a lower absorptive capacity (Lynam, et 

al., 1998; Pirard and Pauw, 2004). 

6.5 Conclusions 

 

This study clearly identified the source of the duck farm contamination, taking into 

account the relationship established with an environmental vehicle of dioxins 

(wood shavings). This achievement is based on the consistency of the results 

obtained with all the tested materials regarded as potential contamination source 

and the fingerprint analysis of the relative concentration of the 17 dioxin 

congeners. 
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This study was developed in a real scenario, involving 20 000 animals and 

subjected to legal constraints. These are related to animal welfare (excessive 

weight, husbandry area and animal density) and the deadlines imposed on official 

services to take action against the results found, as well as economic interests of 

the producer involved in the incident, limiting the depletion times applied in each 

pen and the number of analyzes performed. Despite these constraints, it was 

concluded that this study in a duck farm, revealed a reduction of contamination in 

muscle and fat of the ducks after the removing the source of contamination, with 

an average daily depletion percentage level (depletion rate) ranging between 

1.43% and 4.35%. These results do not allow to establish a fixed depletion rate for 

ducks, since it was not possible to establish a pattern associated with age or initial 

contamination level. Furthermore, it was concluded that pens with shorter 

estimated depletion period, showed higher average daily depletion percentage. 

This fact indicates that the average daily depletion percentage decreases over 

time after the removal of the contamination source. 
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7. Global Discussion 
 

The current study was carried out using real data collected during risk 

management contingency measures, following the contamination of the poultry 

production chain with dioxins occurred in Portugal in 2006, 2011 and 2016. 

The field study included hundreds of analysis for detection and quantification of 

dioxins, collected in dozens of affected poultry farms (breeding and fattening), in 

egg incubation centres and in slaughterhouses. In all three incidents, thousands of 

poultry were slaughtered and destroyed and thousands of kilograms of poultry 

meat were withdrawn from the market. These crises had a substantial financial 

impact in the poultry sector, especially on the affected farms, but there was no 

abnormal impact on consumption at market level. 

The results obtained in this study, provided the answers to better understand and 

explain the contamination of the animals by an uncommon and rarely described 

route. They will contribute to the evaluation and improvement of the crisis 

response capacity in cases of contamination of the food chain, notably with litters 

made of treated wood shavings. 

A reflection on the results obtained allows mentioning, with respect to the 

adaptation of the analysis method 1613 revision B that, the recovery rates of 13C12- 

labelled compounds added to the samples of wood chips varied between 71.3% 

and 86.3%. These rates are considered acceptable by both the 1613 B method 

(EPA, 1994) and the criteria for food and feed laid down in European Union 

legislation. 

According with the EU criteria for food and feed, the recovery shall be within 60% 

to 120%, especially for congeners contributing more than 10% to the TEQ-level for 

analysis of foodstuffs and feed for confirmatory methods and, for screening 

methods, the recoveries shall be in the range of 30% to 140% (EC, 2014; EC, 

2014b). 

The contamination profile detected in the woodchips of the bedding material 

corresponds to the profile of technical pentachlorophenol contaminated by dioxins 

found by other authors (Hagenmaier et al., 1987; Grozwalski and Gorski, 1990; 

Fries et al., 1996; Cleverly et al., 1997; Johnson et al., 2001). This profile could 
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suggest that the wood chips used in the bedding material were obtained from 

wood treated with pentachlorophenol. Pentachlorophenol contains dangerous 

impurities, namely up to 0,1% of polychlorodibenzodioxins and 1 to 5% of 

polychlorinated phenoxyphenois. However, the use of this substance for the 

treatment of wood has been subject to several restrictions in Europe since 1991, 

but there are some derogations for its use in the industrial treatment of wood 

(Directive 91/173/EEC of 21 March). Nevertheless, wood treated with this product 

may not be used inside buildings, for decorative purposes or not, for whatever 

purpose (housing, work, leisure) or in the manufacture of containers or packaging 

that may come in contact with other materials or products intended for human 

and/or animal consumption. 

This has raised new possibilities, such as the possibility that industrial products for 

the treatment of wood (pesticides and fungicides) currently in use may also be 

contaminated, possibly during the manufacturing process, as pesticides can 

contain impurities of PCDD/Fs, and their precursors, as a result of various 

manufacturing processes and conditions (Holt et al., 2012). 

The levels of contamination of treated wood will thus be dependent on the 

concentration of PCDD/Fs in the preservative solution and on the amount of 

product that is retained by the wood in the treatment process. 

Several authors describe studies comparing retention of wood preservatives in 

wood obtained from different species, with different conservation methods and 

with different preservatives.  

The retentions obtained in the laboratory in the present study varied with the 

concentrations of the solutions used. With impregnation treatment of the solution 

with vacuum, an average solute retention of 16.7 kg/m3 was obtained when a 

concentration of 4% in the treatment C was used and an average retention of 4.45 

kg/m3 with a concentration of 2% in treatment D.  

Comparison of wood impregnation studies is quite difficult since retention levels 

vary with a number of factors, such as wood species, wood moisture content, 

volume of tested wood pieces, treatment time, pressure used, and the treatment 

itself, that is, if only vacuum is applied or the vacuum is switched with positive 

pressure. This difference is not as substantial in immersion treatments. 
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The impregnation studies performed by Yildiz et al., (2004), compared to the 

values obtained in the present study, presented higher retention levels with lower 

concentrations, but with samples with a much lower volume. The studies 

performed by Ozemir et al., (2015) showed equivalent retention levels, with 

specimens of similar volume, but for less time. The studies performed by other 

authors, in some cases, have larger retentions and other smaller ones, even using 

vacuum and pressure. In industrial conditions the retentions are substantially 

higher. 

The results of the contamination levels of the treated wood chips presented very 

low contaminations when compared to the contaminations of the wood chips, 

observed in the incidents of poultry contaminations, probably due to lower 

retentions compared to the retentions obtained under industrial conditions. 

The contamination profiles of the different treatments used, showed a very strong 

correlation R2=0.99 and a standard deviation of 0.001, so there was no significant 

difference, in terms of profile, of the contamination caused by the different wood 

treatment products. 

The comparison of the profile of the wood treated in the present study, with the 

profile of the litters of wood chips responsible for the contamination of the poultry 

chain in the incidents occurred in Portugal in 2006, 2011 and in 2016, also showed 

a very high correlation. R2=0.99 and SD=0.002 compared to the beds analysed in 

2006, R2=0.99 and SD=0.007 compared to the beds analysed in 2011 and 

R2=0.96 and SD=0.012 compared to the beds analysed in 2016. 

This recurrence of the profile may be important for risk managers because it 

allows, on the basis of a sample of poultry meat, to immediately associate a profile 

equivalent to its source of contamination without having to waste time and 

resources analysing all possible sources of contamination. 

The set of results obtained during incidents of contamination of the poultry 

production chain in 2006, 2011 and 2016, showed considerable contamination of 

the wood chips, indicating that these materials are the probable source of 

contamination of the animals. 

During the early stages of their development, chicks have a habit of eating some 

particles from bedding materials, contaminating themselves through the digestive 
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tract in addition to contamination by inhalation and skin contact. This behaviour 

potentiates the danger of contamination, since the chicks select some special 

fragments with darker points, because they look like small arthropods that are 

normally consumed under natural conditions (instinctive behaviour). Furthermore, 

some by-products of wood, obtained from partially burned pine, treated or painted 

wood, often have different coloured particles. 

The results of analysis carried out in Portugal show that levels of average 

contamination with dioxins (pg TEQ-WHO/g) are decreasing along the poultry 

production chain (193.7 pg TEQ-WHO/g for breeding hens, 42.3 pg TEQ-WHO/g 

for hatching eggs and 4.7 pg TEQ-WHO/g for broilers). 

The evaluation performed between the profiles found in the wood shavings 

samples of the litters, in the muscle/fat of breeding hens reared on those beds and 

in the hatching eggs laid by these contaminated chickens and their respective day-

hold chicks, showed a coincidence of the peaks with the highest relative 

concentration in their samples, especially for the relative concentrations of the 

congeners 1,2,3,4,6,7,8-HpPCDD and OCDD. 

The graphical representation of the relative concentrations of the different dioxin 

congeners, in each of the matrices, had different comparative expressions. For 

example, in the fat and muscle profiles of broilers and breeding hens, the relative 

average concentration of OCDD was 52% and 53% lower, compared to the profile 

of the wood chips and hatching eggs, respectively (Salvantem et al., 2007). On the 

other hand, the relative average concentration of 1,2,3,7,8-PeCDD, 1,2,3,6,7,8-

HxCDD and 1,2,3,4,6,7,8-HpCDD in the profiles of fat and muscle samples of 

broiler and breeding hens was 50% to 97% higher, when compared to the profiles 

of the beds and hatching eggs. 

The numbers suggest that there is probably a factor that may affect the 

consistency, in quantitative terms, of the relative concentration of congeners found 

in wood chips and in poultry muscle. Many explanations can be pointed out for 

these facts, such as: an in vivo metabolic pathway that allows dechlorination of the 

most chlorinated congeners; a differentiation in the lipophilic affinity of each 

congener; variations in the affinity for the receptor "Ah" and the selective faecal 

excretion by birds, also equivalent to a lower absorption capacity (Lynam et al., 

1998; Pirad and paw, 2004). 
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A balance between the concentration of dioxins in the contaminant ingested by 

chickens (38.85 pg TEQ-WHO/g) and the concentration of dioxin in the eggs 

(42.25 pg TEQ-WHO/g) was verified, which is confirmed by other studies (De 

Vries et al., 2006; Petreas et al., 1991).  

The fact that the square of the Pearson correlation coefficient (r2) of the 

comparison of the relative concentrations of the different congeners between 

bedding material and hatching eggs (R2=0.72 and sd=0.16) and the graphical 

representations of the profiles are so consistent, can be explained by the 

oestrogens that is produced by the hens during laying of eggs that stimulate the 

liver to produce a very low density lipoprotein (VLDLy) intended for the production 

of yolk (egg yolk targeted). This shift from the synthesis of generic VLDL to 

oestrogen-dependent VLDL synthesis, translates into a variation in lipoprotein 

diameter which ranges from 30 to> 200 nm in size to a lower VLDLy, ranging from 

15 to 55 nm in diameter. This change represents a dramatic change in the lipid 

metabolism of females in posture associated with changes in the composition and 

structure of VLDL. While the role of generic VLDL is the transport of triglycerides 

throughout the body for use in tissues or storage in adipose tissue, the function of 

VLDLy is to deliver triglycerides to the oocyte where they will be used as energy 

source for the developing embryo. The smaller diameter of VLDLy is thought to be 

critical to allow particles to pass through the pores of the basal lamina of granulosa 

of the ovary, allowing them access to the developing ovarian follicles. VLDLy 

particles are at high plasma concentrations in laying hens and are resistant to 

hydrolysis by extra ovarian tissues that reserve the triglycerol-rich VLDLy for use 

in developing ovarian follicles (Salvantem et al., 2007). 

The study of the duck farm in Portugal in 2016 revealed a reduction in 

contamination, once the source of contamination was withdrawn, with an average 

daily depletion level ranging from 0.093 to 0.453 pg PCDD/F-TEQ-WHO/g, which 

is equivalent to 1.43% to 4.35% of the initial contamination. 

Another study, in which poultry was intentionally fattened with contaminated feed 

during 6 weeks, conclude that there was no decrease in dioxin residues in broiler 

chicken’s edible tissues after a 2 or 4 weeks’ withdrawal period (Iben et al., 2003). 

Depletion of PCDD and PCDF in eggs obtained from laying hens reared on 

woodchips treated with pentachlorophenol with a contamination of 40 pg WHO-
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TEQ/g was studied by Fochi et al., (2006). They found a regression line for the 

half-life of the different dioxin congeners in the posture, finding values of the order 

of 4 weeks for the mean depletion of the different congeners in the eggs. The 

authors considered that the pathway of exposure through dermal absorption and 

inhalation, besides feeding, cannot be excluded. This differs from previous studies 

that found values of 1.5 weeks for depletion after one week of exposure to 

contaminated feed and of 7 weeks for flocks reared on soil naturally contaminated 

with PCDD / PCDF (Fochi et al., 2006). 

The scarcity of results and the number of variables did not allow us to confirm 

what was expected, that is, that the level of depletion is influenced by the level of 

the initial contamination, with the age of the ducks, that is to say, with the rate of 

growth (effect of dilution) and with the time elapsed. 

The variables, except for the initial contamination, showed very similar quantitative 

values: 

 The first analysis was carried out on ducks in the same age group, in the 

last third of the fattening period, that is, in the finishing phase, shortly 

before the date of slaughter, which is the period when lower growth rates 

are registered;  

 The fact that the owner of the farm decided to extend the life of the animals 

expecting that the contamination would be reduced. However, the duck 

slaughtering after 80 days would not be commercially advantageous and 

the need to ensure that there were no welfare problems by overcrowding of 

pavilions, did not allow prolonging the depletion time in, at least, some 

pavilions. 

The analysis of the profiles in the different pens also did not allow conclusions to 

be drawn, since in some of the pens there seems to have been an increase in the 

more chlorinated congeners (Pavilions 1,2 and 3) and in another pavilion the 

opposite happened (Pavilion 9) and there were still two pavilions in which the 

profile remained unchanged (Pavilions 8 and 10). 

These results lead to the conclusion that it was not possible to establish a 

standard associated to the age or initial contamination level because no average 

fixed depletion rate for ducks could be fixed. It could be concluded that, the pens 

where the evaluated depletion period was shorter, presented higher percentages 
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of daily depletion, indicating that the average daily depletion percentage 

decreases over time, after removal of the source of contamination.
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8. Conclusions  
 

The first incident of contamination of the poultry production chain in Portugal 

pointed out a different source of contamination from the usual ones (feed and 

water), revealing that the contamination was introduced into the food chain 

indirectly through poultry beds that allowed prolonged exposure of poultry flocks to 

dioxins. 

The samples collected from this matrix revealed considerable contamination 

levels. However, knowing that wood does not have much fat and that dioxins are 

preferentially bound to fat in nature, the extraction efficiency of the reference 

analytical method was questioned. 

The fact that further investigations identified wood chips as the source of 

contamination and that this matrix had very low levels of fat, obliged, in order to 

assess the real importance of these contamination routes, to improve the method 

of analysis, in particular, to increase the capacity of extraction, as analytical data 

must be reliable. Chemical fingerprinting analysis methods, are dependent on the 

good quality of analytical chemistry data and are thus, vulnerable to data quality 

problems. Analytical data for the same compounds, but from different laboratories 

or derived by different methods, can introduce uncertainty in the comparison of the 

results. The frequency of “non-detects” in the congeners results and how the 

reporting limit is handled, can sometimes be critical to the data analyses and can 

potentially bias fingerprinting analysis results, particularly when compounds, such 

as CDD/CDFs, occur at extremely low concentrations. 

The new method resulted from this adaptation, proved to be quite efficient in 

extracting and achieving marked pattern recovery rates required both by the 

reference method for the development of adaptations and by the European 

legislation applicable to dioxin detection and quantification methods for PCDD/Fs 

and PCBs, in both food and feed. 

The fact that the analysis of wood chips during the three incidents of 

contamination of the food chain always revealed the same contamination profile, 

led to the need to evaluate the possible existence of different contamination 

profiles in the most used wood treatment products in Portugal. 
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The results of the comparison of four commercial solutions (two anti-sapstain and 

two pesticides of depth penetration) showed that the contamination profile of the 

different treatments showed a fairly high correlation (R2 = 0.99 and SD = 0.001). It 

is concluded that there is no difference in the wood contamination profile, regardless 

to the commercial product used. This profile also showed a very high correlation 

when compared to the profiles of contamination of the wood chips found in the 

incidents of 2006, 2011 and 2016. However, the values of the contamination levels 

found in the treated wood in the laboratory were substantially lower than the 

contamination levels of the poultry litters found during such incidents. 

The retention rates of the preservative solution in the laboratory are less significant 

than those obtained in the industrial treatments and consequently the 

contamination levels of the wood were expected to be lower, although it has been 

verified that the retentions have no influence on the resulting congeners profile, 

which remained unchanged. 

These results suggest that the PCDD/Fs present in the contamination of the 

treated wood result from the process of manufacturing the pesticides and not from 

the wood treatment process. For this reason, treated wood must be disposed off 

as hazardous waste and its recovery, prohibited. 

The misuse of hazardous wood by-products in poultry production has resulted in 

the absorption of dioxins, either by ingestion of some of the chips, especially in the 

early stages of growth, or by absorption through inhalation or contact with 

contaminated beds. 

The constancy and strong correlation of the contamination profiles observed in the 

wood treated with different wood preservatives was not reproducible in the 

contaminated meat and egg samples. This may suggest that the biotic PCDD/Fs 

distribution is more complex than the abiotic PCDD/Fs distribution. 

The contamination fingerprint of the bedding material has undergone surprising 

changes when passed to the birds, i.e., there is a maintenance of the profile 

between the contaminated litters and the eggs and there is a change in the profile 

in the live birds, in the breeding hens, as in the meat of the broilers. These data 

suggest an in vivo transformation of dioxins and furans by dechlorination of the 

most chlorinated congeners. 
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Poultry contamination has also been studied, not only in terms of contamination 

levels but also in their profiles. This evaluation allowed to conclude that the 

contamination levels of the birds decreases as the time passes after the removal 

of the source of contamination (wood chips). This study was limited by additional 

constraints related to animal welfare and other legal provisions to which official 

services are subjected to. 

It was found that the possibilities of contamination of the food chain can come from 

unexpected and sometimes multifactorial sources. This study contributed with new 

factors to be considered in a reflection of the control measures – under risk 

management – applicable in the poultry industry.  

Based on these conclusions, it may be considered a review of the measures 

applicable to risk management, namely regarding the actions of the different 

entities involved and the responsibility given to the different stakeholders in the 

agro-food production chain. 

The wood industry, notably the 23 companies, involved in the wood treatment in 

Portugal and the hundreds of sawmills that import, process, distribute and apply 

treated wood in the country, often do not understand the impact of their activities 

as suppliers of production factors in the animal food production chain. The 

separation of by-products from wood in the sawmills and wood industries, working 

on treated wood, must be very careful and rigorous and the by-products of treated 

wood should be sent as hazardous waste for incineration. Such awareness is 

essential, as the recovery of hazardous by-products to poultry farming is cost-

effective and their disposal, as hazardous waste, is very costly. 

Environmental authorities have been accompanying and collaborating with the 

veterinary health authority in the management of these crises. Their more frequent 

and targeted surveillance actions may be essential in the prevention and 

punishment of offenders by the application of penalties or sanctions, with 

dissuasive capacity to maintain and perpetuate illicit acts, would be determinant. 

Poultry producers are dependent on the quality of the wood shavings provided by 

the wood industry. Other poultry bedding materials, such as rice husk and 

shredded straw, have been used, without great success, because they are not as 

good in terms of handling and maintaining the good condition of the birds' paws 
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and are not available in quantities that can meet the needs of the national poultry 

production. Livestock producers will have to carry out random analysis of the wood 

shavings batches supplied and request a declaration that will hold the supplier 

accountable, stating that the consignment of wood chips delivered does not 

contain treated wood chips.  

In recent incidents, the slaughtering and destruction of animals and the withdrawal 

from the market of meat have represented high losses to the poultry production 

companies targeted, some of which have been bankrupt, as a result of these 

episodes.   

Veterinary health authorities monitor the presence of dioxins annually in poultry 

products and are responsible for the management of crises resulting from 

contamination of the food chain. In light of the significant number of incidents of 

contamination of the poultry chain with dioxins and the associated risks, the 

possibility for intensifying the sampling for dioxins in poultry meat and table eggs 

should be assessed and considered accordingly.     
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