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Abstract

This paper explores theoretical implications of the e¢ cient structure and

quiet-life hypotheses on the basis of the generalized user-revenue model con-

structed by Homma (2009, 2012). From the perspective of the extended

generalized-Lerner index (EGLI) on the cost frontier, the following two points

are noteworthy: 1) it is not always possible to justify anti-monopoly and anti-

concentration policies using support for the quiet-life hypothesis; and 2) new

industrial organization policies are required if support for the e¢ cient struc-

ture hypothesis is undesirable. Furthermore, where intertemporal regular

linkage of single-period EGLIs on the cost frontier exists, the appropriate

industrial organization policies must be determined based on a long-term

perspective. If this linkage shows an upward trend caused mainly by an up-

wardly trending intertemporal regular linkage of single-period Her�ndahl in-

dices, then anti-monopoly and anti-concentration policies are justi�ed from a

long-term perspective. If the upward trend of the intertemporal regular link-

age of single-period EGLIs on the cost frontier is, however, caused mainly

by the intertemporal regular linkage of single-period dynamic cost e¢ cien-

cies or single-period optimal planned �nancial goods, then other policies are

desirable because in this case anti-monopoly and anti-concentration policies

cause unnecessary distortion in the economy.

Keywords: E¢ cient structure hypothesis; Quiet-life hypothesis; Generalized

user-revenue model; Extended generalized-Lerner index; Cost frontier; Dy-

namic cost e¢ ciency; Intertemporal regular linkage
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1 Introduction

On the basis of the generalized user-revenue model (hereafter the GURM)

constructed by Homma (2009, 2012), we explore theoretical implications

of the e¢ cient structure hypothesis proposed by Demsetz (1973) and the

quiet-life hypothesis �rst put forward by Berger and Hannan (1998). We

develop mathematical formulations and subsequent interpretations covering

the relative magnitude of both hypotheses, the relation between both hy-

potheses and the extended generalized Lerner index (hereafter the EGLI)

on the cost frontier proposed by Homma (2009, 2012), and the relation be-

tween both hypotheses and the existence of intertemporal regular linkages of

single-period dynamic cost e¢ ciencies, single-period optimal planned �nan-

cial goods, single-period Her�ndahl indices, and single-period EGLIs on the

cost frontier.

The �rst step in considering the theoretical implications of both hypothe-

ses requires formulating them in mathematical terms; this is accomplished

in Sections 2 and 3. Thus far, in the extant literature, formulations of these

hypotheses have only been attempted in empirical contexts (e.g., Berger and

Hannan 1998 and Homma et al. 2014). Consequently, they have been ver-

i�able but lack theoretical depth because dynamic-uncertainty banking be-

havior has not been explicitly formulated under imperfect competition. This

paper formulates both hypotheses on the basis of the GURM elaborated by

Homma (2009, 2012). The GURM was developed from Hancock�s (1985,

1987, 1991) user-cost model (hereafter UCM) of �nancial �rms. Speci�cally,

the GURM is a more general model that relaxes the following �ve implicit

assumptions of the UCM. First, �nancial �rms are risk neutral. Second, no

strategic interdependence exists between �nancial �rms. Third, no asym-

metric information exists in the market for �nancial assets and liabilities.

Fourth, no uncertainty exists in holding revenues and costs. Fifth, the utility

function of �nancial �rms does not depend on equity capital. Furthermore, in

order to formulate both hypotheses, this paper develops the GURM in terms

of relaxing the sixth implicit assumption of the UCM that no cost ine¢ ciency

exists in �nancial �rms (i.e., �nancial �rms are perfectly cost e¢ cient).
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Following the mathematical formulation of both hypotheses, Section 3 of-

fers theoretical interpretations based on these elaborations. Demsetz�s (1973)

e¢ cient structure hypothesis proposes that under the pressure of market com-

petition, e¢ cient �rms prevail and grow, so that they become larger, capture

greater market shares, and accrue higher pro�ts. Under this hypothesis, a

market becomes more e¢ cient as a result of market concentration, thus anti-

monopoly and anti-concentration policies cause unnecessary strain in the

economy. Signi�cantly, from the perspective of industrial organization, this

hypothesis is a composite that suggests three stages of causal relations from

�rm e¢ ciency to �rm growth (i.e., the �rst stage), then to market structure

(i.e., the second stage), and �nally to market performance (i.e., the third

stage).

Demsetz (1973) equated market structure to market share, whilst market

performance was considered in terms of �rms�pro�ts. From the perspec-

tive of contemporary industrial organization, however, it is more desirable to

regard market structure as the Her�ndahl index that accounts for the distri-

bution of a �nancial good, rather than using a simple market share proxy.

In addition, market performance could be better captured by accounting for

the degree of market competition (i.e., the Lerner index) rather than just

considering individual �rms�pro�ts. Thus, there is scope for improving on

how Demsetz�s (1973) original ideas about the two stages of causal relations

from �rm growth to market structure (i.e., the second stage) and to market

performance (i.e., the third stage) are operationalized. By contrast, there is

no such need to reconsider Demsetz�s (1973) approach in terms of the �rst

stage causality from �rm e¢ ciency to �rm growth. As noted by Homma et

al. (2014), this �rst stage causality is the fundamental feature of the e¢ cient

structure hypothesis, so this paper also regards this causality as the e¢ cient

structure hypothesis. Speci�cally, by regarding �rm e¢ ciency as dynamic

cost e¢ ciency, and by considering �rm growth as an increase in a �nancial

good (e.g., a loan), this paper endeavors to theoretically interpret the e¢ -

cient structure hypothesis on the basis of the mathematical formulations put

forward in the �rst step. As will be seen, not only the original interpretation

of Demsetz (1973) but also a more advanced interpretation of the e¢ cient
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structure hypothesis is possible.

Moving on, according to Berger and Hannan (1998), the quiet-life hy-

pothesis suggests that in a concentrated market, �rms do not minimize costs

for various reasons including insu¢ cient managerial e¤ort, lack of pro�t-

maximizing behavior, wasteful expenditures to obtain and maintain monopoly

power, and/or survival of ine¢ cient managers. Consequently, increases in

market concentration will decrease �rm e¢ ciency, thus justifying anti-monopoly

and anti-concentration policies. Similar to Homma et al. (2014), by regard-

ing the relationship between market concentration and �rm e¢ ciency as that

between the Her�ndahl index and dynamic cost e¢ ciency, this paper seeks

to theoretically interpret the quiet-life hypothesis on the basis of the math-

ematical formulations in the �rst step. Doing so suggests that not only the

original interpretation of Berger and Hannan (1998) but also a more advanced

interpretation of the quiet-life hypothesis is possible.

The third step involves theoretically clarifying the relative magnitude

of the e¢ cient structure hypothesis to the quiet-life hypothesis; this is ap-

proached in Section 4. Where support for both hypotheses decreases market

performance (i.e., the degree of competition on the cost frontier) and if the

quiet-life hypothesis is superior in magnitude to the e¢ cient structure hy-

pothesis, then anti-monopoly and anti-concentration policies are necessary.

If the e¢ cient structure hypothesis is, however, superior in magnitude to

the quiet-life hypothesis, then new industrial organization policies which dif-

fer from existing anti-monopoly and anti-concentration policies, and under

which e¢ ciency improvements would increase the degree of competition on

the cost frontier, are needed. Consequently, it is important to clarify which

of these two hypotheses is superior, because the necessary industrial organi-

zation policy interventions depend on this.

The fourth step involves identifying and exploring the relation between

both hypotheses and the EGLI on the cost frontier; this is covered in Section

5. According to Homma (2009, 2012), the EGLI is useful because it accounts

for not only the e¤ect of market structure and conduct but also the e¤ect

of �nancial �rms�risk attitudes, the e¤ect of �uctuation risk on short-run

pro�ts, and the e¤ect of equity capital on the risk of burden from �nancial

3
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distress costs. This paper develops the EGLI in terms of explicitly accounting

for dynamic cost e¢ ciency, to clarify the theoretical relation between both

hypotheses and the EGLI. Beyond theory, this development is desirable from

a normative policy perspective because it facilitates evaluation by the stan-

dard of a frontier bank (i.e., the most cost-e¢ cient bank). On the basis of this

development, this paper theoretically clari�es under what assumptions either

or both of the hypotheses increase or decrease the EGLI on the cost frontier

and thus whether either or both of the hypotheses are desirable. Indeed, the

results of the theoretical analysis conducted herein suggest that both desir-

able and undesirable cases exist, and the following two points are particularly

noteworthy: (1) it is not always possible to use support for the quiet-life hy-

pothesis to justify anti-monopoly and anti-concentration policies; and (2) new

industrial organization policies are needed if support for the e¢ cient struc-

ture hypothesis is undesirable. In terms of the �rst point, support for the

quiet-life hypothesis can decrease the EGLI on the cost frontier (i.e., increase

the degree of competition on the cost frontier), and hence where this occurs

it cannot always be used to justify anti-monopoly and anti-concentration

policies, even if an increase in market concentration decreases dynamic cost

e¢ ciency. Such policies are only justi�ed where increased market concen-

tration increases the EGLI on the cost frontier (i.e., decreases the degree of

competition on the cost frontier). As such, the enactment and enforcement of

anti-monopoly and anti-concentration policies requires careful consideration.

Regarding the second point, so far, a theoretical foundation for suggesting

that support for the e¢ cient structure hypothesis is undesirable is lacking.

However, at least theoretically, support for the e¢ cient structure hypothesis

can both decrease the EGLI on the cost frontier (i.e., increase the degree of

competition on the cost frontier) and increase the EGLI on the cost frontier

(i.e., decreases the degree of competition on the cost frontier). In terms of

the latter, it is determined that support for the e¢ cient structure hypothesis

is undesirable. In this case, new industrial organization policies which dif-

fer from existing anti-monopoly and anti-concentration policies, and under

which e¢ ciency improvements would increase the degree of competition on

the cost frontier, are advised.
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The last step requires clarifying the relation between both hypotheses and

the intertemporal regular linkages (i.e., cyclical linkages, monotonic trending

linkages, and terminal up-and-down volatile linkages) of single-period dy-

namic cost e¢ ciencies, single-period optimal planned �nancial goods, single-

period Her�ndahl indices, and single-period EGLIs on the cost frontier; this

is considered in Section 6. These linkages serve to permit long-term forecasts

and long-term dynamic analyses, so they are critical from the perspective of

industrial organization.

2 Extending the GURM to Explicitly Account

for Dynamic Cost E¢ ciency

To formulate both hypotheses, this section extends the GURM to explicitly

account for dynamic cost e¢ ciency. Speci�cally, a dynamic cost function

is derived by employing the following two procedures, then dynamic cost

e¢ ciency is de�ned by using this dynamic cost function. First, a static

transformation function of three vectors and one variable is de�ned, namely,

a vector of real balances of �nancial goods, a vector of real resource inputs, a

vector of exogenous (state) variables a¤ecting the quality of �nancial goods,

and an index of (exogenous) technical change. Moreover, using this de�ned

function, a static cost function is derived from the vector of variable input

prices in addition to two vectors and one variable other than the vector of

real resource inputs in this de�ned function. Second, a dynamic transforma-

tion function is derived from the vector of Her�ndahl indices in the previous

period and static cost e¢ ciency in the previous period in addition to three

vectors and one variable in the static transformation function. The dynamic

cost function of these vectors and e¢ ciency in addition to three vectors and

one variable in the static cost function is, furthermore, derived. Next, af-

ter deriving the dynamic cost function and de�ning dynamic cost e¢ ciency,

quasi-short-run pro�ts are rede�ned using the derived dynamic cost function.

The dynamic-uncertainty behavior of �nancial �rms is then reformulated to

explicitly account for the e¤ects of the Her�ndahl indices in the previous

5



period and static cost e¢ ciency in the previous period. Furthermore, on the

basis of this formulation, stochastic Euler equations are derived, and gener-

alized user-revenue prices (hereafter the GURPs) and EGLIs are rede�ned

by transforming these equations.

The following preliminary assumptions are made. First, time is divided

into discrete periods. Second, these periods are su¢ ciently short that vari-

ations in exogenous (state) variables within the period can be neglected. In

other words, exogenous variables are constant within each period but can

change discretely at the boundaries between periods. Third, the process of

adjustment is essentially instantaneous, allowing stock adjustment problems

to be ignored. These assumptions are made to facilitate empirical research, in

a manner similar to that of Hancock (1985, 1987, 1991), Homma and Souma

(2005), and Homma (2009, 2012), with the expectation that the GURM may

provide a consistent basis for such research.

2.1 Dynamic Cost E¢ ciency and Dynamic Marginal

Variable Costs

2.1.1 Static E¢ cient Production Technology (Static Transforma-
tion Function)

In order to derive and de�ne the static cost function as a precursor to de�ning

usual static cost e¢ ciency, static e¢ cient production technology is de�ned

as follows.

De�nition 1 (Static E¢ cient Production Technology) The static ef-
�cient production technology of the i-th �nancial �rm in period t is repre-

sented by the following static transformation function:

�Si

�
qi;t;xi;t; z

Q
i;t; � i;t

�
= 0; (t � 0) ; (2.1.1)

where qi;t = (qi;1;t; � � �; qi;NA+NL;t)
0 is a vector of real balances of �nancial

goods, namely �nancial assets (i.e., qi;1;t; � � �; qi;NA;t) and liabilities (i.e.,
qi;NA+1;t; ���; qi;NA+NL;t), xi;t = (xi;1;t; � � �; xi;M;t)

0 is a vector of real resource in-
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puts, namely labor, materials, and physical capital, zQi;t =
�
zQ0i;1;t; � � �; z

Q0
i;NA+NL;t

�0
is a vector of exogenous (state) variables a¤ecting the quality of �nancial

goods, namely, �nancial technological factors that a¤ect �nancial goods and

real resource inputs, and � i;t is an index of (exogenous) technical change.

Similar to the conventional transformation function, this static transfor-

mation function has the following two properties. First, some elements of the

real balance vector qi;t may be outputs or inputs, but not all can be inputs,

as the existence of outputs cannot otherwise be guaranteed. Second, the

static transformation function �Si satis�es appropriate regularity conditions.

That is, �Si is strictly convex in (qi;t;xi;t) and @�
S
i /@qi;j;t > 0 if qi;j;t is an

output, @�Si /@qi;j;t < 0 if qi;j;t is an input, and @�
S
i /@xi;j;t < 0, because xi;t

is an input vector.

2.1.2 Static Frontier Variable Cost Function

Next, to derive and de�ne the static frontier cost function required for de�n-

ing usual static cost e¢ ciency, real resource inputs are assumed to be opti-

mized within a single period, taking �nancial goods (i.e., outputs and �xed

inputs) as given. Speci�cally, for a single period, it is assumed that the �nan-

cial �rm takes the vector of input prices pi;t = (pi;1;t; � � �; pi;M;t)0 as given and
minimizes real resource variable costs

XM

j=1
pi;j;t � xi;j;t with respect to the

vector of real resource inputs xi;t subject to the static transformation func-

tion �Si given by Eq. (2.1.1). Under this assumption, the following static

frontier variable cost function is derived and de�ned.

De�nition 2 (Static Frontier Variable Cost Function) The static fron-
tier variable cost function of the i-th �nancial �rm in period t, denoted by

CSFVi

�
pi;t;qi;t; z

Q
i;t; � i;t

�
, is given by

CSFVi

�
pi;t;qi;t; z

Q
i;t; � i;t

�
= min

xi;t

nXM

j=1
pi;j;t � xi;j;t

����Si �qi;t;xi;t; zQi;t; � i;t� = 0o ; (t � 0) : (2.1.2)
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From the �rst property of the static transformation function, some ele-

ments of the real balance vector qi;t may be outputs or inputs, but not all

can be inputs, so some elements of qi;t in the static frontier variable cost

function may be outputs or �xed inputs, but not all can be �xed inputs.

In order to explicitly account for this property, let qOi;t =
�
qOi;1;t; � � �; qOi;NO;t

�0
denote the output vector of real balances of the i-th �nancial �rm in period

t, and let qFi;t =
�
qFi;1;t; � � �; qFi;NF ;t

�0
be the �xed input vector. Both vectors

include all elements of qi;t.1 In this case, similar to the conventional variable

cost function, because of the duality between transformation functions and

variable cost functions, this static frontier variable cost function CSFVi also

has the following properties: it is strictly increasing in pi;t and qOi;t, strictly

decreasing in qFi;t, homogeneous of degree one, and strictly concave in pi;t.

2.1.3 Static Actual Variable Cost Function

On the basis of the derived and de�ned static frontier variable cost function,

the static actual variable cost function required to de�ne usual static cost

e¢ ciency is de�ned as follows.

De�nition 3 (Static Actual Variable Cost Function) The static actual
variable cost function of the i-th �nancial �rm in period t, denoted by

CSAVi

�
aSIEi;t ;pi;t;qi;t; z

Q
i;t; � i;t

�
, is given by

CSAVi

�
aSIEi;t ;pi;t;qi;t; z

Q
i;t; � i;t

�
=
XM

j=1
pi;j;t � aSIEi;j;t �

@CSFVi

�
pi;t;qi;t; z

Q
i;t; � i;t

�
@pi;j;t

=
XM

j=1
pi;j;t � aSIEi;j;t � xSFDi;j

�
pi;t;qi;t; z

Q
i;t; � i;t

�
� CSFVi

�
pi;t;qi;t; z

Q
i;t; � i;t

�
; (t � 0) ;

(2.1.3.1)

where aSIEi;t =
�
aSIEi;1;t ; � � �; aSIEi;M;t

�0
is a vector of ine¢ ciency coe¢ cients of static

factor demand functions denoted by xSFDi;j

�
pi;t;qi;t; z

Q
i;t; � i;t

�
1In this case, qt =

�
qO0t ;q

F 0
t

�0
and NO +NF = NA +NL are satis�ed.
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(= @CSFVi

�
pi;t;qi;t; z

Q
i;t; � i;t

�.
@pi;j;t, j = 1; :::;M). Some elements of this

vector aSIEi;t may be less than, equal to, or greater than one, but not all can

be less than one, as the static actual variable cost function is otherwise less

than the static frontier variable cost function.

From the duality between the static transformation function and the sta-

tic frontier cost function, the following equations hold:

xSFDi;j

�
pi;t;qi;t; z

Q
i;t; � i;t

�
=
@CSFVi

�
pi;t;qi;t; z

Q
i;t; � i;t

�
@pi;j;t

; (j = 1; :::;M) :

(2.1.3.2)

From these equations, the j-th static factor demand function,

xSFDi;j

�
pi;t;qi;t; z

Q
i;t; � i;t

�
, means the j-th optimal input for cost minimization,

so the product of this static factor demand function and the ine¢ ciency coef-

�cient, aSIEi;j;t �xSFDi;j

�
pi;t;qi;t; z

Q
i;t; � i;t

�
, is the j-th actual input that explicitly

accounts for input ine¢ ciency because the ine¢ ciency coe¢ cient aSIEi;j;t does

not necessarily equal one. The product of this actual input and the j-th

factor price is the j-th actual input cost, so the sum of all actual input costs

is the actual total cost (i.e., the static actual variable cost function) that is

not less than the minimum total cost (i.e., the static frontier variable cost

function). From the de�nition of the static actual variable cost function

(De�nition 3), this variable cost function also exhibits properties similar to

the static frontier variable cost function. That is, the static actual variable

cost function CSAVi is strictly increasing in pi;t and qOi;t, strictly decreasing

in qFi;t, homogeneous of degree one, and strictly concave in pi;t. Further-

more, if all the ine¢ ciency coe¢ cients of factor demand functions equal aSIEi;t

(i.e., aSIEi;t = aSIEi;j;t � 1, j = 1; :::;M), the following equation holds, so the

ine¢ ciency coe¢ cient aSIEi;t has a cost neutral property:

CSAVi

�
aSIEi;t ;pi;t;qi;t; z

Q
i;t; � i;t

�
= aSIEi;t � CSFVi

�
pi;t;qi;t; z

Q
i;t; � i;t

�
: (2.1.3.3)
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2.1.4 Static Cost E¢ ciency

On the basis of the derived and de�ned static frontier and actual variable

cost functions, static cost e¢ ciency is de�ned as follows.

De�nition 4 (Static Cost E¢ ciency) The static cost e¢ ciency of the i-
th �nancial �rm in period t, denoted by EF Si;t, is given by

EF Si;t =
CSFVi

�
pi;t;qi;t; z

Q
i;t; � i;t

�
CSAVi

�
aSIEi;t ;pi;t;qi;t; z

Q
i;t; � i;t

� ; (t � 0) : (2.1.4)

From this de�nition and the de�nition of the static actual variable cost

function (De�nition 3), static cost e¢ ciency EF Si;t is not greater than one (i.e.,

EF Si;t � 1), and, if all the ine¢ ciency coe¢ cients of factor demand functions
equal aSIEi;t (i.e., aSIEi;t = aSIEi;j;t � 1, j = 1; :::;M), EF Si;t is the inverse of the

ine¢ ciency coe¢ cient aSIEi;t (i.e., EF Si;t = 1
�
aSIEi;t ).

2.1.5 Static Neutral Cost E¢ ciency

From the perspective of empirical feasibility, it is useful to account for a

speci�cation where all ine¢ ciency coe¢ cients of factor demand functions are

equal, because most empirical models that estimate cost e¢ ciency assume a

cost neutral ine¢ ciency coe¢ cient. Consequently, also from the perspective

of empirical analyses, consideration of this case is important for illuminating

the theoretical foundation of many extant empirical models.

The following three points are assumed in addition to the cost neutral inef-

�ciency coe¢ cient. First, the static frontier variable cost function is identical

for all �nancial �rms. Second, the component other than the cost neutral in-

e¢ ciency coe¢ cient of the static frontier and actual variable cost functions is

identical for all �nancial �rms. Third, the cost neutral ine¢ ciency coe¢ cient

is an exponential function of an individual function of an index of (exogenous)

technical change. The reasons for this third assumption are that static cost

e¢ ciency, de�ned later, exhibits a time-variant property and many existing

cost functions take a logarithmic form. Under these three assumptions, the
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static actual variable cost function can be speci�ed as follows:

CSAVi

�
aSIEi;t ;pi;t;qi;t; z

Q
i;t; � i;t

�
= exp

�
aSi (� i;t)

	
�Csf

�
pi;t;qi;t; z

Q
i;t; � i;t

�
; (t � 0) ;

(2.1.5.1)

where the coe¢ cient exp
�
aSi (� i;t)

	
is the cost neutral ine¢ ciency coe¢ cient

aSIEi;t (i.e., aSIEi;t = exp
�
aSi (� i;t)

	
), and the function Csf

�
pi;t;qi;t; z

Q
i;t; � i;t

�
is common to all �nancial �rms. Similarly, the static frontier variable cost

function can be speci�ed as follows:

CSFV
�
pi;t;qi;t; z

Q
i;t; � i;t

�
= exp

n
min
i
aSi (� i;t)

o
�Csf

�
pi;t;qi;t; z

Q
i;t; � i;t

�
; (t � 0) ;
(2.1.5.2)

where the logarithm of the cost neutral ine¢ ciency coe¢ cient mini aSi (� i;t)

is the minimum of the logarithms of the ine¢ ciency coe¢ cients aSi (� i;t)

(i = 1; :::; NF ) for all �nancial �rms. This speci�cation enables the static

frontier variable cost function to always be no greater than the static actual

variable cost function. On the basis of these speci�cations, static neutral cost

e¢ ciency can be speci�ed as follows:

EF Si;t = CSFV
�
pi;t;qi;t; z

Q
i;t; � i;t

�.
CSAVi

�
aSIEi;t ;pi;t;qi;t; z

Q
i;t; � i;t

�
= exp

hn
min
i
aSi (� i;t)

o
� aSi (� i;t)

i
; (t � 0) : (2.1.5.3)

Accordingly, static neutral cost e¢ ciency is time variant and can be speci�ed

only by the cost neutral ine¢ ciency coe¢ cients. In practical terms, static

neutral cost e¢ ciency can be easily estimated by specifying these ine¢ ciency

coe¢ cients as the time-variant coe¢ cients of individual dummies of �nancial

�rms.

2.1.6 Dynamic E¢ cient Production Technology (Dynamic Trans-
formation Function)

If we regard the economic behavior of �nancial �rms as static within a single

period, it is valid to also regard the e¢ cient production technology as being

static. However, for intertemporal dynamic behavior, it is desirable to also

account for the possibility that the e¢ cient production technology is also

11



dynamic. To explicitly account for both the e¢ cient structure and quiet-life

hypotheses, the e¢ cient production technology needs to be formulated to

dynamically account for the e¤ects of the Her�ndahl indices in the previous

period and static cost e¢ ciency in the previous period. Accordingly, dynamic

e¢ cient production technology is de�ned as the following function of a vector

of Her�ndahl indices in the previous period and static cost e¢ ciency in the

previous period in addition to three vectors and one variable in the static

transformation function.

De�nition 5 (Dynamic E¢ cient Production Technology) The dynamic
e¢ cient production technology of the i-th �nancial �rm in period t is repre-

sented by the following dynamic transformation function:

�Di

�
qi;t;xi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
= 0; (t � 0) ; (2.1.6)

where b1 is a parameter used to distinguish between the initial period and the

later period: b1 = 0 for the initial period (i.e., t = 0), and b1 = 1 for the

later period (i.e., t � 1). In addition, HIt�1 = (HI1;t�1; :::; HINA+NL;t�1)
0

is a vector of Her�ndahl indices in the previous period, EF Si;t�1 is static cost

e¢ ciency in the previous period, and all others are as per the static trans-

formation function.

From this de�nition, for the initial period, the dynamic transformation

function equals the static transformation function, and, for the later period,

they di¤er. Because static cost e¢ ciency is included in the previous period

as a variable, the dynamic transformation function in the current period is

premised on the existence of the static transformation function in the previ-

ous period. Therefore, for all periods including the initial period, provided

that the static transformation function exists, the dynamic transformation

function can also exist. To the extent that Her�ndahl indices in the previous

period and static cost e¢ ciency in the previous period a¤ect the transforma-

tion function in the current period, the coexistence of both transformation

functions continues; this provides the production-technological foundation for

simultaneous support of both the e¢ cient structure and quiet-life hypothe-

ses. The properties of the dynamic transformation function with respect to

12



the element of the vector of real balances of �nancial goods and the element

of the vector of real resource inputs are similar to the static transformation

function.

2.1.7 Dynamic Frontier Variable Cost Function

Next, the following dynamic frontier variable cost function is derived and

de�ned as a precursor to de�ning dynamic cost e¢ ciency.

De�nition 6 (Dynamic Frontier Variable Cost Function) The dynamic
frontier variable cost function of the i-th �nancial �rm in period t, denoted

by CDFVi

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
, is given by

CDFVi

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
= min

xi;t

nXM

j=1
pi;j;t � xi;j;t

����Di �qi;t;xi;t; zQi;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t� = 0o ;
(t � 0) ; (2.1.7)

where three vectors and a variable other than the vector of Her�ndahl indices

in the previous period and static cost e¢ ciency in the previous period are

similar to the static frontier variable cost function.

From this de�nition, similar to the relation between static and dynamic

transformation functions, for the initial period, the dynamic frontier vari-

able cost function equals the static frontier variable cost function, and, for

the later period, they di¤er. The coexistence of both frontier variable cost

functions due to the coexistence of both transformation functions (on which

both frontier variable cost functions are based) yields the di¤erence to the

frontier criterion used for de�ning cost e¢ ciency. To explicitly account for

the possibility of simultaneous support for both the e¢ cient structure and

quiet-life hypotheses, static cost e¢ ciency regarding the static frontier vari-

able cost function and dynamic cost e¢ ciency (de�ned later) regarding the

dynamic frontier variable cost function are required to coexist. Properties

of the dynamic frontier variable cost function with respect to the element of

13



the vector of real balances of �nancial goods and the element of the vector of

real resource input prices are also similar to the static frontier variable cost

function.

2.1.8 Dynamic Actual Variable Cost Function

On the basis of the derived and de�ned dynamic frontier variable cost func-

tion, the dynamic actual variable cost function is de�ned as follows as a

precursor to de�ning dynamic cost e¢ ciency.

De�nition 7 (Dynamic Actual Variable Cost Function) The dynamic
actual variable cost function of the i-th �nancial �rm in period t, denoted by

CDAVi

�
aDIEi;t ;pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
, is given by

CDAVi

�
aDIEi;t ;pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
=
XM

j=1
pi;j;t � aDIEi;j;t �

@CDFVi

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
@pi;j;t

=
XM

j=1
pi;j;t � aDIEi;j;t � xDFDi;j

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
� CDFVi

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
; (t � 0) ; (2.1.8.1)

where aDIEi;t =
�
aDIEi;1;t ; � � �; aDIEi;M;t

�0
is the vector of ine¢ ciency coe¢ cients of

dynamic factor demand functions denoted by

xDFDi;j

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
(= @CDFVi

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�.
@pi;j;t; j = 1; :::;M; ):

Some elements of this vector aDIEi;t may be less than, equal to, or greater than

one, but not all can be less than one, as otherwise the dynamic actual variable

cost function would be less than the dynamic frontier variable cost function.

Similar to the static case, from the duality between the dynamic transfor-

mation function and the dynamic frontier cost function, the following equa-
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tions hold:

xDFDi;j

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
=
@CDFVi

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
@pi;j;t

; (j = 1; :::;M) :

(2.1.8.2)

From these equations, the j-th dynamic factor demand function,

xDFDi;j

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
, means the j-th optimal input

for cost minimization on the basis of dynamic e¢ cient production technol-

ogy, so the product of this dynamic factor demand function and the dynamic

ine¢ ciency coe¢ cient, aDIEi;j;t �xDFDi;j

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
,

is the j-th actual dynamic input that explicitly accounts for input dynamic

ine¢ ciency because the dynamic ine¢ ciency coe¢ cient aDIEi;j;t does not nec-

essarily equal one. The product of this actual dynamic input and the j-th

factor price is the j-th actual dynamic input cost, so the sum of all actual

dynamic input costs is the actual dynamic total cost (i.e., the dynamic actual

variable cost function) that is not less than the minimum dynamic total cost

(i.e., the dynamic frontier variable cost function). From this de�nition of

the dynamic actual variable cost function (De�nition 7), this variable cost

function also has properties similar to the dynamic frontier variable cost

function. Furthermore, if all the dynamic ine¢ ciency coe¢ cients of dynamic

factor demand functions equal aDIEi;t (i.e., aDIEi;t = aDIEi;j;t � 1, j = 1; :::;M),

similar to the cost neutral ine¢ ciency coe¢ cient aSIEi;t , the following equation

holds so that the dynamic ine¢ ciency coe¢ cient aDIEi;t also has a cost neutral

property:

CDAVi

�
aDIEi;t ;pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
= aDIEi;t � CDFVi

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
: (2.1.8.3)
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2.1.9 Dynamic Cost E¢ ciency

On the basis of the derived and de�ned dynamic frontier and actual variable

cost functions, similar to the de�nition of static cost e¢ ciency, dynamic cost

e¢ ciency is de�ned as follows.

De�nition 8 (Dynamic Cost E¢ ciency) The dynamic cost e¢ ciency of
the i-th �nancial �rm in period t, denoted by EFDi;t, is given by

EFDi;t =
CDFVi

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
CDAVi

�
aDIEi;t ;pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

� ; (t � 0) :
(2.1.9)

From this de�nition and the de�nition of the dynamic actual variable

cost function (De�nition 7), similar to the de�nition of static cost e¢ ciency,

dynamic cost e¢ ciency EFDi;t is also not greater than one (i.e., EF
D
i;t � 1),

and, in the case that all the dynamic ine¢ ciency coe¢ cients of dynamic

factor demand functions equal aDIEi;t (i.e., aDIEi;t = aDIEi;j;t � 1, j = 1; :::;M),

EFDi;t is the inverse of the dynamic ine¢ ciency coe¢ cient a
DIE
i;t (i.e., EFDi;t =

1
�
aDIEi;t ).

2.1.10 Dynamic Neutral Cost E¢ ciency

For the dynamic case, the following assumption should be noted. For the later

period, rather than the initial period, the cost neutral dynamic ine¢ ciency

coe¢ cient is a function of not only the index of (exogenous) technical change

but also the vector of Her�ndahl indices in the previous period and static cost

e¢ ciency in the previous period. The purpose of this additional assumption

is for dynamic cost e¢ ciency to not only be time-variant but also depend on

market structure in the previous period and cost e¢ ciency in the previous

period, and thereby to explicitly account for the possibility of simultaneous

support for both the e¢ cient structure and quiet-life hypotheses. Under these

assumptions, the dynamic actual variable cost function can be speci�ed as
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follows:

CDAVi

�
aDIEi;t ;pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
= exp

�
aDi
�
b1 �HIt�1; b1 � EF Si;t�1; � i;t

�	
� Cdf

�
pi;t;qi;t; z

Q
i;t; � i;t

�
;

(t � 0) ; (2.1.10.1)

where the coe¢ cient exp
�
aDi
�
b1 �HIt�1; b1 � EF Si;t�1; � i;t

�	
is the cost neutral

dynamic ine¢ ciency coe¢ cient aDIEi;t (i.e.;

aDIEi;t = exp
�
aDi
�
b1 �HIt�1; b1 � EF Si;t�1; � i;t

�	
); and the function Cdf

�
pi;t;qi;t; z

Q
i;t; � i;t

�
is a common component for all

�nancial �rms. Similarly, the dynamic frontier variable cost function can be

speci�ed as follows:

CDFV
�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
= exp

n
min
i
aDi
�
b1 �HIt�1; b1 � EF Si;t�1; � i;t

�o
� Cdf

�
pi;t;qi;t; z

Q
i;t; � i;t

�
;

(t � 0) ; (2.1.10.2)

where the logarithm of the cost neutral dynamic ine¢ ciency coe¢ cient

mini a
D
i

�
b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
is the minimum of the logarithms of these

dynamic ine¢ ciency coe¢ cients aDi
�
b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
(i = 1; :::; NF )

for all �nancial �rms. This speci�cation forestalls the dynamic frontier vari-

able cost function from ever being greater than the dynamic actual variable

cost function. On the basis of these speci�cations, dynamic neutral cost

e¢ ciency can be speci�ed as follows:

EFDi;t =
CDFV

�
pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
CDAVi

�
aDIEi;t ;pi;t;qi;t; z

Q
i;t; b1 �HIt�1; b1 � EF Si;t�1; � i;t

�
= exp

hn
min
i
aDi
�
b1 �HIt�1; b1 � EF Si;t�1; � i;t

�o
�aDi

�
b1 �HIt�1; b1 � EF Si;t�1; � i;t

��
; (t � 0) : (2.1.10.3)
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From this speci�cation, similar to static neutral cost e¢ ciency, dynamic neu-

tral cost e¢ ciency can be speci�ed only by the cost neutral dynamic in-

e¢ ciency coe¢ cients, is time-variant, and depends on market structure in

the previous period and cost e¢ ciency in the previous period. In practi-

cal estimations, dynamic neutral cost e¢ ciency can be easily estimated by

specifying these dynamic ine¢ ciency coe¢ cients as individual dummies of

�nancial �rms that are time variant and dependent on Her�ndahl indices in

the previous period and static cost e¢ ciency in the previous period.

2.1.11 Dynamic Frontier and Actual Marginal Variable Costs

Because the relation between the marginal cost of the dynamic frontier vari-

able cost function (hereafter the dynamic frontier marginal variable cost) and

the marginal cost of the dynamic actual variable cost function (hereafter the

dynamic actual marginal variable cost) is used in the mathematical formu-

lations of both the e¢ cient structure and quiet-life hypotheses considered

later, this relation is clari�ed by the following proposition.

Proposition 1 Dynamic frontier marginal variable cost (i.e., @CDFVi;t

�
@qi;j;t)

is related to dynamic actual marginal variable cost (i.e., @CDAVi;t

�
@qi;j;t) as

follows:

@CDFVi;t

@qi;j;t
=

 
EFDi;t +

@EFDi;t
@ ln qi;j;t

,
@ lnCDAVi;t

@ ln qi;j;t

!
�
@CDAVi;t

@qi;j;t

=

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @CDAVi;t

@qi;j;t
; j = 1; :::; NA +NL,

(2.1.11.1)

where CDFVi;t is the dynamic frontier variable cost function, CDAVi;t is the dy-

namic actual variable cost function, qi;j;t is the real balance of the j-th �nan-

cial good, and EFDi;t is dynamic cost e¢ ciency.
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Proof. From the de�nition of dynamic cost e¢ ciency, the following equation
holds:

EFDi;t =
CDFVi;t

CDAVi;t

:

Partially di¤erentiating both sides of this equation with respect to the real

balance of the j-th �nancial good qi;j;t leads to the following expression:

@EFDi;t
@qi;j;t

=
1

CDAVi;t

�
 
@CDFVi;t

@qi;j;t
� EFDi;t �

@CDAVi;t

@qi;j;t

!
:

Transforming this equation with respect to dynamic frontier marginal vari-

able cost @CDFVi;t

�
@qi;j;t and rearranging yields

@CDFVi;t

@qi;j;t
= CDAVi;t �

@EFDi;t
@qi;j;t

+ EFDi;t �
@CDAVi;t

@qi;j;t

=
CDAVi;t

qi;j;t
�
@EFDi;t
@ ln qi;j;t

+ EFDi;t �
@CDAVi;t

@qi;j;t

=

 
EFDi;t +

@EFDi;t
@ ln qi;j;t

,
@ lnCDAVi;t

@ ln qi;j;t

!
�
@CDAVi;t

@qi;j;t

=

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @CDAVi;t

@qi;j;t
:

As noted, where the dynamic ine¢ ciency coe¢ cients are cost neutral,

dynamic cost e¢ ciency EFDi;t is the inverse of the cost neutral dynamic in-

e¢ ciency coe¢ cient aDIEi;t (i.e., EFDi;t = 1
�
aDIEi;t ). Therefore, the following

equation holds: 
@ lnCDAVi;t

@EFDi;t

!�1
= CDAVi;t �

@EFDi;t
@CDAVi;t

= CDAVi;t �
@
�
aDIEi;t

��1
@CDAVi;t

= 0:

Consequently, the following equation is obtained:

@CDFVi;t

@qi;j;t
= EFDi;t �

@CDAVi;t

@qi;j;t
: (2.1.11.2)
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Based on its de�nition, dynamic cost e¢ ciency is not greater than one, so

dynamic frontier marginal variable cost is not greater than dynamic actual

marginal variable cost. Where the dynamic ine¢ ciency coe¢ cients are not

cost neutral, if the inverse of the elasticity of the dynamic actual variable

cost function with respect to dynamic cost e¢ ciency is not greater than

dynamic cost ine¢ ciency (i.e.,
�
@ lnCDAVi;t

�
@EFDi;t

��1 � 1�EFDi;t), then the
same relation between these two marginal variable costs holds. However, this

relation cannot otherwise be established.

2.2 GURM Based on Dynamic E¢ cient Production

Technology

In this subsection, the GURM is modi�ed to explicitly account for dynamic

cost e¢ ciency based on the dynamic e¢ cient production technology con�g-

ured previously. Homma�s (2009, 2012) quasi-short-run pro�ts are rede�ned

using the dynamic frontier and actual variable cost functions derived and

de�ned in the previous subsection. Moreover, the dynamic-uncertainty be-

havior of �nancial �rms con�gured by Homma (2009, 2012) is reformulated

to explicitly account for the e¤ects of Her�ndahl indices in the previous pe-

riod and static cost e¢ ciency in the previous period. Furthermore, on the

basis of this formulation, Homma�s (2009, 2012) stochastic Euler equations

are rederived, and the GURPs and EGLIs are rede�ned to explicitly reveal

the di¤erence between the frontier and the actual by transforming these

equations.

2.2.1 Quasi-Short-Run Pro�ts Using Dynamic Frontier and Ac-
tual Variable Cost Functions

In the context of dynamic e¢ cient production technology, quasi-short-run

pro�t de�ned by Homma (2009, 2012) is improved upon in the following

three respects. First, the Her�ndahl indices in the previous period and sta-

tic cost e¢ ciency in the previous period are added to the exogenous vari-

ables a¤ecting quasi-short-run pro�t. Second, the stochastic endogenous

holding-revenue and holding-cost rates de�ned by Homma (2009, 2012) are

20
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replaced by stochastic dynamic endogenous holding-revenue rates (hereafter

SDEHRRs) and stochastic dynamic endogenous holding-cost rates (hereafter

SDEHCRs), respectively. Third, the static frontier variable cost function is

similarly replaced by a dynamic frontier variable cost function or a dynamic

actual variable cost function. Quasi-short-run pro�ts are de�ned as follows.

De�nition 9 (Quasi-Short-Run Pro�t Based on Dynamic Frontier Cost)
The quasi-short-run pro�t based on the dynamic frontier cost of the i-th �-

nancial �rm during period t, denoted by �QSFi

�
qi;t�1;qi;t; z

�
i;t

�
, is de�ned as

follows:

�QSFi

�
qi;t�1;qi;t; z

�
i;t

�
=
XNA+NL

j=1
bj�
��
1 + bC � hRi;j

�
Qj;t�1; z

DH
i;j;t�1

�
+ � i;j;t

	
� pG;t�1 � qi;j;t�1 � pG;t � qi;j;t

�
� CDFVi

�
qi;t; z

C
i;t

�
, (t � 1), (2.2.1.1)

�QSFi

�
qi;0; z

�
i;0

�
=
XNA+NL

j=1
bj �
�
bC � hRi;j

�
Qj;0; z

DH
i;j;0

�
+ � i;j;0

	
�pG;0 �qi;j;0�CDFVi

�
qi;0; z

C
i;0

�
,

(2.2.1.2)

where z�i;t =
�
zDH0i;t�1; �

0
i;t; pG;t�1; pG;t; z

C0
i;t

�0
(t � 0) are vectors of exogenous

variables a¤ecting quasi-short-run pro�t, and in the case of t = 0, z�i;0 =�
zDH0i;0 ; �

0
i;0; pG;0; ; z

C0
i;0

�0
. More speci�cally, zDHi;t�1 =

�
HI0t�2; EF

S
i;t�2; z

H0
i;t�1

�0
(t � 0) are vectors of exogenous variables a¤ecting the certain or predictable
components of SDEHRR and SDEHCR in the period t � 1 (� �1), and in
the case of t � 1,

zDHi;�1 =
�
HI0�2; EF

S
i;�2; z

H0
i;�1
�0
= zDHi;0 =

�
HI0�1; EF

S
i;�1; z

H0
i;0

�0
= zHi;0.

zHi;t�1 =
�
zH0i;1;t�1; � � �; zH0i;NA+NL;t�1

�0
(t � 0) are vectors of exogenous variables

other than Her�ndahl indices two periods prior and static cost e¢ ciency two

periods prior, and in the case of t = 0, zHi;�1 = z
H
i;0 =

�
zH0i;1;0; � � �; zH0i;NA+NL;0

�0
.
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�i;t =
�
� i;1;t; � � �; � i;NA+NL;t

�0
(t � 0) are vectors of the uncertain or unpre-

dictable components of SDEHRR and SDEHCR, and pG;t (t � 0) are general
price indices. zCi;t =

�
p0i;t; z

Q0
i;t ; b1 �HI0t�1; b1 � EF Si;t�1; � i;t

�0
(t � 0) are vectors

of exogenous variables a¤ecting the dynamic frontier variable cost function.

bj is a parameter distinguishing between �nancial assets and liabilities: bj = 1

for �nancial assets (i.e., j = 1; :::; NA), and bj = �1 for liabilities (i.e.,
j = NA+1; :::; NA+NL). bC �hRi;j

�
Qj;t�1; z

DH
i;j;t�1

�
+ � i;j;t (j = 1; :::; NA+NL)

are the SDEHRRs or the SDEHCRs of the j-th �nancial good of the i-th �rm

at the end of period t � 1, and bC is a parameter distinguishing cash from
other �nancial assets. In other words, if qi;j;t represents cash (i.e., j = 1),

then bC = 0, whereas if the �nancial good is another type of �nancial asset

(i.e., j 6= 1), then bC = 1. hRi;j
�
Qj;t�1; z

DH
i;j;t�1

�
is the certain or predictable

component of the SDEHRR or the SDEHCR, and Qj;t�1 is total j-th �nancial

goods (i.e., �nancial assets or liabilities) in the market.

De�nition 10 (Quasi-Short-Run Pro�t Based on Dynamic Actual Cost)
The quasi-short-run pro�t based on the dynamic actual cost of the i-th �-

nancial �rm during period t, denoted by �QSAi

�
qi;t�1;qi;t; z

�
i;t

�
, is de�ned by

replacing the dynamic frontier variable cost function CDFVi (�; �) in De�nition
9 with the dynamic actual variable cost function CDAVi (�; �) as follows:

�QSAi

�
qi;t�1;qi;t; z

�
i;t

�
=
XNA+NL

j=1
bj�
��
1 + bC � hRi;j

�
Qj;t�1; z

DH
i;j;t�1

�
+ � i;j;t

	
� pG;t�1 � qi;j;t�1 � pG;t � qi;j;t

�
� CDAVi

�
qi;t; z

C
i;t

�
, (t � 1), (2.2.1.3)

�QSAi

�
qi;0; z

�
i;0

�
=
XNA+NL

j=1
bj �
�
bC � hRi;j

�
Qj;0; z

DH
i;j;0

�
+ � i;j;0

	
�pG;0 �qi;j;0�CDAVi

�
qi;0; z

C
i;0

�
,

(2.2.1.4)

where �QSAi

�
qi;t�1;qi;t; z

�
i;t

�
is not greater than �QSFi

�
qi;t�1;qi;t; z

�
i;t

�
(i.e.,
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�QSAi

�
qi;t�1;qi;t; z

�
i;t

�
� �QSFi

�
qi;t�1;qi;t; z

�
i;t

�
), because CDAVi

�
qi;t; z

C
i;t

�
is

not less than CDFVi

�
qi;t; z

C
i;t

�
(i.e., CDAVi

�
qi;t; z

C
i;t

�
� CDFVi

�
qi;t; z

C
i;t

�
).

The SDEHRR (or the SDEHCR) in De�nitions 9 and 10 is the revenue

obtained (or cost required) from holdings per currency unit for a single time

period. Thus,
�
bC � hRi;j

�
Qj;t�1; z

DH
i;j;t�1

�
+ � i;j;t

	
� pG;t�1 � qi;j;t�1 is the holding

revenue or cost, which is received or paid at the end of period t � 1, and
the net cash �ow of the i-th �rm produced by �nancial good j in period t is

de�ned as

bj �
��
1 + bC � hRi;j

�
Qj;t�1; z

DH
i;j;t�1

�
+ � i;j;t

	
� pG;t�1 � qi;j;t�1 � pG;t � qi;j;t

�
.

For example, for an asset such as a loan (with the exception of cash), bj = 1,

in which case the second and third terms,
�
bC � hRi;j

�
Qj;t�1; z

DH
i;j;t�1

�
+ � i;j;t

	
�

pG;t�1 � qi;j;t�1, indicate holding revenues, and the �rst and fourth terms,
pG;t�1 � qi;j;t�1 � pG;t � qi;j;t, represent the change in the nominal asset for the
period. If loan repayments by the borrower exceed total new loans for the

period, the revised balance indicates a positive change, and if repayments are

lower than total new loans for the period, the value is negative. These terms

thus express the net cash �ow resulting from the acceptance of an asset.

However, cash, which is an asset, generates no interest. As such, the holding

revenue for cash is zero. Similarly, in the case of a liability such as a deposit,

bj = �1, the second and third terms, �
�
bC � hRi;j

�
Qj;t�1; z

DH
i;j;t�1

�
+ � i;j;t

	
�

pG;t�1 � qi;j;t�1, indicate holding costs, whereas the �rst and fourth terms,
�pG;t�1 � qi;j;t�1 + pG;t � qi;j;t, represent nominal liability change. The change
is therefore positive if new deposits exceed withdrawals and negative if new

deposits are less than withdrawals. These terms thus indicate the net cash

�ow resulting from the issuance of a liability.

2.2.2 Dynamic-Uncertainty Behavior and Stochastic Euler Equa-
tions

To formulate the dynamic-uncertainty behavior of �nancial �rms as a sto-

chastic dynamic programming problem (hereafter SDP), similar to Homma
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( 2009, 2012), the following three key assumptions are made. First, the de-

cision of the �nancial �rm is made after uncertainty is resolved, such that,

in each period, the �nancial �rm chooses the state variable of the next pe-

riod directly. Second, the �nancial �rm chooses a plan that maximizes the

expected value of the discounted intertemporal utility function of a stream

of planned quasi-short-run pro�ts and planned equity capital. Third, the in-

tertemporal utility function is additively separable. The reason for the �rst

key assumption is that the adjustment cost of stock variables is assumed to

be zero and more reliable information on the decision leads to a rise in the

value of the �rm. In the second key assumption, the utility function is used

to explicitly account for the e¤ect of risk attitudes other than risk neutrality,

and the utility function depends on planned equity capital to account for

(although indirectly) the risk of the burden of �nancial distress costs from

a banking theory perspective because an increase in equity capital reduces

this risk. The third key assumption is conventional and widely held.

These key assumptions are based on the following three underlying as-

sumptions. First, the state variables are classi�ed as either endogenous or

exogenous. The endogenous state variable vectors qi;t (t � 0) are vectors

of real balances of �nancial goods, and the exogenous state variable vectors

zi;t (t � 0) are those which a¤ect quasi-short-run pro�ts z�i;t (t � 0) (i.e.,

zi;t = z
�
i;t). Within these exogenous variables, the vectors of those exogenous

variables that a¤ect equity capital are de�ned as zei;t =
�
pG;t; z

C0
i;t

�0
(t � 0).

Second, the exogenous state variable vectors zi;t (t � 0) are vectors of ran-
dom variables, and the stochastic term fzi;tgt�0 follows a stationary Markov
process. Let (Z;BZ) be a measurable space, where Z is a set of zi;t, and

BZ is a �-algebra of its subsets. In this case, the stochastic properties of the

exogenous state variables can be expressed as a stationary transition func-

tion: Q : Z � BZ ! [0; 1].2 The interpretation of this de�nition is that

Q (zi;t; Ai;t+1) is the probability that the state of the next period lies in the

set Ai;t+1, given that the current state is zi;t. The product space of (Z;BZ)

is expressed as
�
Zt;Bt

Z

�
= (Z � � � � � Z;BZ � � � � �BZ), and zi;0 (2 Z) is

2For further details regarding the stationary transition function, see Stokey and Lucas
(1989, p.212).
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given. Third, the decision to be made in period t can depend on informa-

tion that will be available at that time. This information can be expressed

as a sequence of vectors of exogenous state variables. Let zti = (zi;1; :::; zi;t)

(2 Zt) denote the partial history in periods 1 through t, and let (Y;BY )

be a measurable space, where Y is a set of vectors of the endogenous state

variables qi;t, and BY is a �-algebra of its subsets. A plan q
p
i is then de�ned

as the set of a value qpi;0 (2 Y ) and a sequence of functions q
p
i;t : Z

t ! Y

(t � 1), where qpi;t (zti) is the value of qi;t+1 that will be chosen in period t if
the partial history of the exogenous state variables in periods 1 through t is

zti (i.e., q
p
i =

n
qpi;0;

�
qpi;t (z

t
i)
	1
t=1

o
).

From the second underlying assumption, the following de�nition of prob-

ability measures is proposed.

De�nition 11 (Probability Measure) The probability measures on
�
Zt;Bt

Z

�
,

�t (zi;0; � ) : Bt
Z ! [0; 1] (t � 1), are de�ned as follows.3 For any rectangle

Ati = Ai;1 � � � � � Ai;t 2 Bt
Z,

�t
�
zi;0; A

t
i

�
=

Z
Ai;1

���
Z
Ai;t�1

Z
Ai;t

Q (zi;t�1;dzi;t)Q (zi;t�2;dzi;t�1)���Q (zi;0;dzi;1) ,

(2.2.2.1)

where the probability measure �t (zi;0; � ) satis�es the properties of measures,
and �t (zi;0; Zt) = 1.

From this de�nition of probability measures and the above key and un-

derlying assumptions, the SDP of the i-th �nancial �rm is formulated as

follows:

max
qpi

ui

h
�QSFi

�
qi;0;q

p
i;0 (zi;0) ; z

�
i;0

�
; qpe;i

�
qpi;0 (zi;0) ; z

e
i;0

�i
+ lim
T!1

XT

t=1

Z
Zt
�ti � ui

h
�QSFi

�
qpi;t�1

�
zt�1i

�
;qpi;t

�
zti
�
; z�i;t

�
;

qpe;i
�
qpi;t
�
zti
�
; zei;t

��
�t
�
zi;0;dz

t
i

�
, (2.2.2.2)

3For a comprehensive account of probability measures, see Stokey and Lucas (1989:
pp. 220-225).
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where ui (�; �) is the utility function, �ti =
Yt�1

s=0
�i;s =

Yt�1

s=0

1

1 + rDi;s
is the

cumulative discount factor, and rDi;s is the subjective rate of time preference.
4

�QSFi

�
qpi;t�1

�
zt�1i

�
;qpi;t (z

t
i) ; z

�
i;t

�
(t � 1) and �QSFi

�
qi;0;q

p
i;0 (zi;0) ; z

�
i;0

�
are

the planned quasi-short-run pro�t based on the dynamic frontier cost, which

are as follows:

�QSFi

�
qpi;t�1

�
zt�1i

�
;qpi;t

�
zti
�
; z�i;t

�
=
XNA+NL

j=1
bj �
��
1 + bC � hRi;j

�
Qpj;t�1; z

DH
i;j;t�1

�
+ � i;j;t

	
� pG;t�1 � qpi;j;t�1

�
zt�1i

�
�pG;t � qpi;j;t

�
zti
��
� CDFVi

�
qpi;t
�
zti
�
; zCi;t

�
(t � 1), (2.2.2.3)

�QSFi

�
qi;0;q

p
i;0 (zi;0) ; z

�
i;0

�
=
XNA+NL

j=1
bj �
��
1 + bC � hRi;j

�
Qj;0; z

DH
i;j;0

�
+ � i;j;0

	
� pG;0 � qi;j;0

�pG;0 � qpi;j;0 (zi;0)
�
� CDFVi

�
qpi;0 (zi;0) ; z

C
i;0

�
. (2.2.2.4)

The functions in these planned quasi-short-run pro�ts (Eqs. (2.2.2.3) and

(2.2.2.4)) are de�ned as follows.

� hRi;j
�
Qpj;t�1; z

DH
i;j;t�1

�
: Planned certain or predictable component of the

SDEHRR or the SDEHCR. Using this component, the planned SDEHRR

or the planned SDEHCR is de�ned as bC � hRi;j
�
Qpj;t�1; z

DH
i;j;t�1

�
+ � i;j;t;

j = 1; :::; NA+NL, where Q
p
j;t�1 is the planned total j-th �nancial good

in the market. Other vectors and variables (i.e., zDHi;j;t�1 and � i;j;t) are

as de�ned above.

� CDFVi

�
qpi;t (z

t
i) ; z

C
i;t

�
: Planned dynamic frontier variable cost function.

4For details regarding this optimization problem, see Stokey and Lucas (1989, pp.241-
254).
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In addition, qpe;i
�
qpi;t (z

t
i) ; z

e
i;t

�
(t � 0) is the planned equity capital, given by

qpe;i
�
qpi;t
�
zti
�
; zei;t

�
=

NAX
j=1

pG;t � qpi;j;t
�
zti
�
+

MFX
j=1

pFi;j;t � x
p
F;i;j

�
qpi;t
�
zti
�
; zCi;t

�
�

NA+NLX
j=NA+1

pG;t � qpi;j;t
�
zti
�
, (t � 0), (2.2.2.5)

where pFi;j;t is the j-th real resource �xed factor price,
5 and xpF;i;j

�
qpi;t (z

t
i) ; z

C
i;t

�
is the conditional factor demand function for the j-th planned real resource

�xed input.

The necessary conditions for the SDP in sequence form can be found by

adopting a variational approach. Such conditions are represented by stochas-

tic Euler equations, which for the above SDP (2.2.2.2) are expressed as

�
@uF�i;t

@�QSF�i;t

�
 
bj � pG;t +

@CDFV �i;t

@qp�i;j;t

!
+ bj � pG;t �

@uF�i;t
@qp�e;i;t

+ �i;t � bj � pG;t �
Z
Z

(
1 + bC �

 
hR�i;j;t +

@hR�i;j;t
@ ln qp�i;j;t

!
+ � i;j;t+1

)

�
@uF�i;t+1

@�QSF�i;t+1

Q (zi;t;dzi;t+1) = 0; j = 1; :::; NA +NL, (2.2.2.6)

where qp�i;j;t = q
p�
i;j;t (z

t
i) (j = 1; ���; NA+NL) denote the optimal levels for �nan-

cial goods. Furthermore, �QSF�i;t = �QSFi

�
qp�i;t�1

�
zt�1i

�
;qp�i;t (z

t
i) ; z

�
i;t

�
, qp�e;i;t =

qpe;i
�
qp�i;t (z

t
i) ; z

e
i;t

�
, uF�i;t = ui

�
�QSF�i;t ; qp�e;i;t

�
, CDFV �i;t = CDFVi

�
qp�i;t (z

t
i) ; z

C
i;t

�
,

and hR�i;j;t = h
R
i;j

�
Qp�j;t; z

DH
i;j;t

�
(j = 1; � � �; NA + NL). For dzi;t+1, the following

5pFi;j;t is an element of pi;t. p
F
i;j;t is therefore an element of z

C
i;t because pi;t is an element

of zCi;t.
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equality holds:

dzi;t+1 = dz�i;t+1 =
�
dzDH0i;t ;d�

0
i;t+1; dpG;t; dpG;t+1;dz

C0
i;t+1

�0
=

�
d� 0i;t+1; dpG;t+1;dp

0
i;t+1;dz

Q0
i;t+1; d� i;t+1

�0
( * dzDHi;t = 0Z , dpG;t = 0, dHIt = 0HI , and dEFDi;t = 0).

If the utility function uF�i;t is concave and continuously di¤erentiable in

qp�i;t�1 and q
p�
i;t and is integrable,

6 and if each of the partial derivatives of

uF�i;t with respect to q
p�
i;t�1 is absolutely integrable,

7 then the stochastic Euler

equations (2.2.2.6) with the transversality conditions

lim
t!1

�ti �
Z
Z

@uF�i;t+1

@�QSF�i;t+1

�
@�QSF�i;t+1

@qp�i;j;t
� qp�i;j;tQ (zi;t;dzi;t+1) = 0; j = 1; :::; NA +NL

(2.2.2.7)

are su¢ cient conditions for an optimal plan qp�i =
n
qp�i;0;

�
qp�i;t
	1
t=1

o
.

Equation (2.2.2.6) is the stochastic Euler equations in the case of no

dynamic cost ine¢ ciency and no dynamic price ine¢ ciencies (i.e., no dynamic

pricing errors). However, to derive not only the GURP on the cost frontier

but also the GURP on the actual cost, these ine¢ ciencies need to be explicitly

considered. If these ine¢ ciencies exist, Eq. (2.2.2.6) is corrected as follows:

�
@uA�i;t

@�QSA�i;t

�
 
bj � pG;t +

@CDAV �i;t

@qp�i;j;t

!
+ bj � pG;t �

@uA�i;t
@qp�e;i;t

+ �i;t � bj � pG;t �
Z
Z

(
1 + bC �

 
hR�i;j;t +

@hR�i;j;t
@ ln qp�i;j;t

!
+ � i;j;t+1

)

�
@uA�i;t+1

@�QSA�i;t+1

Q (zi;t;dzi;t+1) = "
P
i;j;t; j = 1; :::; NA +NL, (2.2.2.8)

where �QSA�i;t (= �QSAi

�
qp�i;t�1

�
zt�1i

�
;qp�i;t (z

t
i) ; z

�
i;t

�
) is the maximum planned

6Integrability of uF�i;t means that
R
Z
uF�i;t Q (zi;t�1;dzi;t) <1.

7Absolute integrability of
@uF�i;t

@qp�i;j;t�1
is de�ned as

R
Z

���� @uF�i;t
@qp�i;j;t�1

���� Q (zi;t�1;dzi;t) <1.
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quasi-short-run pro�t based on dynamic actual cost, uA�i;t (= ui
�
�QSA�i;t ; qp�e;i;t

�
)

is the maximum planned utility based on this quasi-short-run pro�t, CDAV �i;t

(= CDAVi

�
qp�i;t (z

t
i) ; z

C
i;t

�
) is the planned dynamic actual variable cost, and

"Pi;j;t (j = 1; :::; NA + NL) are terms used to explicitly account for dynamic

price ine¢ ciencies (i.e., dynamic pricing errors). More speci�cally, if no dy-

namic price ine¢ ciency exists, then "Pi;j;t = 0, whereas if any dynamic price

ine¢ ciency exists, then "Pi;j;t 6= 0. In the case of no dynamic cost ine¢ ciency
and no dynamic price ine¢ ciencies, Eq. (2.2.2.8) equals Eq. (2.2.2.6).

2.2.3 Risk Corrections, GURP on the Cost Frontier, and GURP
on the Actual Cost

Similar to Homma (2009, 2012), the GURP on the cost frontier and the

GURP on the actual cost (see below) can be derived by transforming the

stochastic Euler equations (Eqs. (2.2.2.6) and (2.2.2.8)). More speci�cally,

�rst, similar to the treatment in the consumption-based capital asset pricing

model (hereafter CCAPM), Eqs. (2.2.2.6) and (2.2.2.8) are transformed into

an expression of risk correction. Next, these transformed equations are again

transformed with respect to dynamic frontier marginal variable cost or dy-

namic actual marginal variable cost and rearranged. Finally, the right-hand

sides of these retransformed equations are de�ned as the GURP on the cost

frontier and the GURP on the actual cost, respectively. The form of the Eq.

(2.2.2.6) expression of risk correction is provided by the following theorem.

Theorem 1 Under the assumption that @uF�i;t
.
@�QSF�i;t 6= 0 and E

�
� i;j;t+1

�� zi;t� =
0, Eq.(2.2.2.6) can be transformed into an expression of risk correction as fol-
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lows:

� bj � pG;t �MCDFV �i;j;t + bj � pG;t �MRSF��e;i;t

+ �i;t � bj � pG;t �
�
1 + bC �

�
hR�i;j;t + �

�
i;j;t

�	
� E
�
IMRSF��;i;t+1 jzi;t

�
+ �i;t � bj � pG;t �

cov
�
� i;j;t+1; @u

F�
i;t+1

.
@�QSF�i;t+1

��� zi;t�
@uF�i;t

.
@�QSF�i;t

= 0;

j = 1; :::; NA +NL, (2.2.3.1)

where MCDFV �i;j;t = @CDFV �i;t

�
@qp�i;j;t , MRS

F��
e;i;t =

�
@uF�i;t

�
@qp�e;i;t

�.�
@uF�i;t

.
@�QSF�i;t

�
,8

��i;j;t = @h
R�
i;j;t

�
@ ln qp�i;j;t , IMRS

F�
�;i;t+1 =

�
@uF�i;t+1

.
@�QSF�i;t+1

�.�
@uF�i;t

.
@�QSF�i;t

�
,9

and E [ � jzi;t ] =
R
Z
�Q (zi;t;dzi;t+1).

8This term is the marginal rate of substitution (MRS) of quasi-short-run pro�t based
on the dynamic frontier cost for equity capital. This MRS quanti�es the rate at which the
�nancial �rm is just willing to substitute quasi-short-run pro�t for equity capital, or, in
other words, it is a measure of the opportunity costs of equity capital.

9This term represents the intertemporal marginal rate of substitution (IMRS) with
respect to quasi-short-run pro�t based on the dynamic frontier cost. This IMRS quanti�es
the rate at which the �nancial �rm is just willing to substitute quasi-short-run pro�t in
period t for pro�t in period t +1. If the �nancial �rm is risk averse, the marginal utility
of quasi-short-run pro�t is a decreasing function of quasi-short-run pro�t. The IMRS
therefore declines if quasi-short-run pro�t increases from the current period to the next
period and rises if pro�ts fall.
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Proof. Both sides of Eq. (2.2.2.6) are divided by @uF�i;t
.
@�QSF�i;t , provided

@uF�i;t

.
@�QSF�i;t 6= 0, which gives

� bj � pG;t �
@CDFV �i;t

@qp�i;j;t
+ bj � pG;t �

@uF�i;t
�
@qp�e;i;t

@uF�i;t

.
@�QSF�i;t

+ �i;t � bj � pG;t �
Z
Z

(
1 + bC �

 
hR�i;j;t +

@hR�i;j;t
@ ln qp�i;j;t

!
+ � i;j;t+1

)

�
@uF�i;t+1

.
@�QSF�i;t+1

@uF�i;t

.
@�QSF�i;t

Q (zi;t;dzi;t+1) = 0; j = 1; :::; NA +NL. (T1.1)

To simplify the expressions, the notation of Theorem 1 is used. Eq. (T1.1)

can then be rewritten as

� bj � pG;t �MCDFV �
i;j;t + bj � pG;t �MRSF��e;i;t

+ �i;t � bj � pG;t � E
��
1 + bC �

�
hR�i;j;t + �

�
i;j;t

�
+ � i;j;t+1

	
� IMRSF��;i;t+1 jzi;t

�
= 0;

j = 1; :::; NA +NL. (T1.2)

To transform these equations into explicit expressions of risk correction, the

expectation in the third term of the left-hand side of Eq. (T1.2) is trans-

formed by the same method as employed in the CCAPM. Let w�i;j;t+1 =

1 + bC �
�
hR�i;j;t + �

�
i;j;t

�
+ � i;j;t+1. The expectation in the third term is then

expressed as E
�
w�i;j;t+1 � IMRSF��;i;t+1

�� zi;t�. As in the CCAPM, the covariance
of w�i;j;t+1 with respect to IMRS

F�
�;i;t+1, cov

�
w�i;j;t+1; IMRS

F�
�;i;t+1

�� zi;t�, is the
focus of attention. Using the property of covariance

cov
�
w�i;j;t+1; IMRS

F�
�;i;t+1

�� zi;t� = E
�
w�i;j;t+1 � IMRSF��;i;t+1

�� zi;t�
�E

�
w�i;j;t+1

�� zi;t� � E �IMRSF��;i;t+1�� zi;t� ,
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E
�
w�i;j;t+1 � IMRSF��;i;t+1

�� zi;t� can be written as
E
�
w�i;j;t+1 � IMRSF��;i;t+1

�� zi;t� = E
�
w�i;j;t+1

�� zi;t� � E �IMRSF��;i;t+1�� zi;t�
+cov

�
w�i;j;t+1; IMRS

F�
�;i;t+1

�� zi;t� . (T1.3)
Substituting w�i;j;t+1 = 1 + bC �

�
hR�i;j;t + �

�
i;j;t

�
+ � i;j;t+1 for E

�
w�i;j;t+1

�� zi;t�,
under the assumption that E

�
� i;j;t+1

�� zi;t� = 0, leads to
E
�
w�i;j;t+1

�� zi;t� = 1 + bC � �hR�i;j;t + ��i;j;t� . (T1.4)

Substituting w�i;j;t+1 = 1 + bC �
�
hR�i;j;t + �

�
i;j;t

�
+ � i;j;t+1 and IMRS

F�
�;i;t+1 =�

@uF�i;t+1

.
@�QSF�i;t+1

�.�
@uF�i;t

.
@�QSF�i;t

�
for cov

�
w�i;j;t+1; IMRS

F�
�;i;t+1

�� zi;t�, the
property of covariance gives the following:

cov
�
w�i;j;t+1; IMRS

F�
�;i;t+1

�� zi;t�
= cov

�
� i;j;t+1; IMRS

F�
�;i;t+1

�� zi;t�
=

cov
�
� i;j;t+1; @u

F�
i;t+1

.
@�QSF�i;t+1

��� zi;t�
@uF�i;t

.
@�QSF�i;t

. (T1.5)

Substituting Eqs. (T1.4) and (T1.5) for Eq. (T1.3), the expectation in the

third term of the left-hand side of Eq. (T1.2) can be transformed to explicitly

express risk corrections, as follows:

E
��
1 + bC �

�
hR�i;j;t + �

�
i;j;t

�
+ � i;j;t+1

	
� IMRSF��;i;t+1 jzi;t

�
=
�
1 + bC �

�
hR�i;j;t + �

�
i;j;t

�	
� E
�
IMRSF��;i;t+1 jzi;t

�
+
cov
�
� i;j;t+1; @u

F�
i;t+1

.
@�QSF�i;t+1

��� zi;t�
@uF�i;t

.
@�QSF�i;t

. (T1.6)

Substituting Eq. (T1.6) into Eq. (T1.2) thus adds a risk-adjustment term,

as given by Eq. (2.2.3.1).
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Similarly, the form of the Eq. (2.2.2.8) expression of risk correction is

provided by the following theorem.

Theorem 2 Under the assumption that @uA�i;t
.
@�QSA�i;t 6= 0 and E

�
� i;j;t+1

�� zi;t� =
0, Eq. (2.2.2.8) can be transformed into an expression of risk correction as

follows:

� bj � pG;t �MCDAV �i;j;t + bj � pG;t �MRSA��e;i;t

+ �i;t � bj � pG;t �
�
1 + bC �

�
hR�i;j;t + �

�
i;j;t

�	
� E
�
IMRSA��;i;t+1 jzi;t

�
+ �i;t � bj � pG;t �

cov
�
� i;j;t+1; @u

A�
i;t+1

.
@�QSA�i;t+1

��� zi;t�
@uA�i;t

.
@�QSA�i;t

= PIEi;j;t;

j = 1; :::; NA +NL, (2.2.3.2)

where MCDAV �i;j;t = @CDAV �i;t

�
@qp�i;j;t , MRS

A��
e;i;t =

�
@uA�i;t

�
@qp�e;i;t

�.�
@uA�i;t

.
@�QSA�i;t

�
,10

IMRSA��;i;t+1 =
�
@uA�i;t+1

.
@�QSA�i;t+1

�.�
@uA�i;t

.
@�QSA�i;t

�
,11 and PIEi;j;t =

"Pi;j;t

.�
@uA�i;t

.
@�QSA�i;t

�
, which is the price ine¢ ciency normalized by the

marginal utility of quasi-short-run pro�t based on dynamic actual cost.

Proof. The proof is similar to the proof of Theorem 1 with two exceptions,

so we omit the derivation. First, CDFV �i;t , uF�i;t , �
QSF�
i;t , uF�i;t+1, and �

QSF�
i;t+1 in Eq.

(2.2.3.1) are replaced by CDAV �i;t , uA�i;t , �
QSA�
i;t , uA�i;t+1, and �

QSA�
i;t+1 , respectively.

Second, PIE i;j;t is added to the right-hand side of Eq. (2.2.3.1).

As similarly described by Homma (2009, 2012), the fractions in the �fth

terms on the left-hand sides of Eqs. (2.2.3.1) and (2.2.3.2),

cov
�
� i;j;t+1; @u

F�
i;t+1

.
@�QSF�i;t+1

��� zi;t�.�@uF�i;t .@�QSF�i;t

�
and

cov
�
� i;j;t+1; @u

A�
i;t+1

.
@�QSA�i;t+1

��� zi;t�.�@uA�i;t .@�QSA�i;t

�
,

10The interpretation of this term is similar to MRSF��e;i;t in Eq. (2.2.3.1) with the excep-

tion of replacing uF�i;t and �
QSF�
i;t in MRSF��e;i;t with u

A�
i;t and �

QSA�
i;t , respectively.

11The interpretation of this term is similar to IMRSF��;i;t+1 in Eq. (2.2.3.1) with the

exception of replacing uF�i;t , �
QSF�
i;t , uF�i;t+1, and �

QSF�
i;t+1 in IMRSF��;i;t+1 with u

A�
i;t , �

QSA�
i;t ,

uA�i;t+1, and �
QSA�
i;t+1 , respectively.
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i.e., the ratio of the covariance of uncertain components of the SDEHRR and

the SDEHCR with respect to the marginal utility of quasi-short-run pro�t

based on the dynamic frontier cost in period t+1 to the same marginal utility

in period t and the ratio of the covariance of the same uncertain components

with respect to the marginal utility of quasi-short-run pro�t based on dy-

namic actual cost in period t+1 to the same marginal utility in period t, are

risk-adjustment terms. If �nancial �rms are risk averse, the marginal utility

of quasi-short-run pro�t based on the dynamic frontier cost or dynamic actual

cost is a decreasing function of pro�t. Therefore, cov
�
� i;j;t+1; �

QSF�
i;t+1

��� zi;t� and
cov
�
� i;j;t+1; �

QSA�
i;t+1

��� zi;t� are positive if cov�� i;j;t+1; @uF�i;t+1.@�QSF�i;t+1

��� zi;t� and
cov
�
� i;j;t+1; @u

A�
i;t+1

.
@�QSA�i;t+1

��� zi;t� are negative, respectively, and vice versa.
In this case, the variance of quasi-short-run pro�t based on dynamic frontier

cost or dynamic actual cost in the next period increases if a �nancial asset in

the current period increases, whereas the same variance decreases if a liability

in the current period increases, and vice versa. For example, if � (0 < � < 1)

of the j-th �nancial good in period t increases, then from Eq. (2.2.1.1) (or

Eq. (2.2.1.3)), quasi-short-run pro�t based on the dynamic frontier cost (or

the quasi-short-run pro�t based on dynamic actual cost) in the next period

becomes

�QSFi;t+1 + bj �
�
1 + bC � hRi;j

�
Qj;t; z

DH
i;j;t

�
+ � i;j;t+1

	
� pG;t � �

(or �QSAi;t+1 + bj �
�
1 + bC � hRi;j

�
Qj;t; z

DH
i;j;t

�
+ � i;j;t+1

	
� pG;t � �).
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In this case, its variance can be expressed as

var
�
�QSFi;t+1 + bj �

�
1 + bC � hRi;j

�
Qj;t; z

DH
i;j;t

�
+ � i;j;t+1

	
� pG;t � �

��� zi;t�
= var

�
�QSFi;t+1

��� zi;t�+ 2 � bj � pG;t � � � cov�� i;j;t+1; �QSFi;t+1

��� zi;t�
+(bj � pG;t � �)2 � var

�
� i;j;t+1

�� zi;t�
(or var

�
�QSAi;t+1 + bj �

�
1 + bC � hRi;j

�
Qj;t; z

DH
i;j;t

�
+ � i;j;t+1

	
� pG;t � �

��� zi;t�
= var

�
�QSAi;t+1

��� zi;t�+ 2 � bj � pG;t � � � cov�� i;j;t+1; �QSAi;t+1

��� zi;t�
+(bj � pG;t � �)2 � var

�
� i;j;t+1

�� zi;t� ). (2.2.3.3)

Thus, if � is su¢ ciently small, the third term on the right-hand side of this

equation is much smaller than the second term. The sign of the second term,

cov
�
� i;j;t+1; �

QSF
i;t+1

��� zi;t� (or cov�� i;j;t+1; �QSAi;t+1

��� zi;t�), determines whether this
variance is greater than var

�
�QSFi;t+1

��� zi;t� (or var��QSAi;t+1

��� zi;t�). Thus, if the j-
th �nancial good is a �nancial asset (i.e., bj = 1), the variance is greater than

var
�
�QSFi;t+1

��� zi;t� (or var��QSAi;t+1

��� zi;t�) if the sign of cov�� i;j;t+1; �QSFi;t+1

��� zi;t� (or
cov
�
� i;j;t+1; �

QSA
i;t+1

��� zi;t�) is positive. Similarly, if the j-th �nancial good is
a liability (i.e., bj = �1), this variance is greater than var

�
�QSFi;t+1

��� zi;t� (or
var
�
�QSAi;t+1

��� zi;t�) if the sign of cov�� i;j;t+1; �QSFi;t+1

��� zi;t� (or cov�� i;j;t+1; �QSAi;t+1

��� zi;t�)
is negative.

To derive and de�ne the GURP on the cost frontier, the following corol-

lary to Theorem 1 is established.

Corollary 1 (to Theorem 1) Equation (2.2.3.1) can be expressed as fol-
lows:

MCDFV �i;j;t = bj �pG;t�
��
bC � hR�i;j;t � rFF�i;t

� ��
1 + rFF�i;t

�
+ bC � ��i;j;t

��
1 + rFF�i;t

�
+MRSF��e;i;t +$

F�
i;j;t

�
; j = 1; :::; NA +NL, (2.2.3.4)

where rFF�i;t (= 1
�
E
�
�i;t � IMRSF��;i;t+1 jzi;t

�
� 1) is the reference rate on the

cost frontier corresponding to the risk-free rate referred to in the CCAPM
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and $F�
i;j;t (= �i;t � cov

�
� i;j;t+1; @u

F�
i;t+1

.
@�QSF�i;t+1

��� zi;t�.�@uF�i;t .@�QSF�i;t

�
) is

the discounted risk-adjustment term on the cost frontier.

Proof. Transforming Eq. (2.2.3.1) with respect toMCDFV �
i;j;t and rearranging

then gives

MCDFV �
i;j;t = bj�pG;t�

��
bC �

�
hR�i;j;t + �

�
i;j;t

�
�
�
1
�
E
�
�i;t � IMRSF��;i;t+1 jzi;t

�
� 1
�	

�E
�
�i;t � IMRSF��;i;t+1 jzi;t

�
+MRSF��e;i;t + �i;t �

cov
�
� i;j;t+1; @u

F�
i;t+1

.
@�QSF�i;t+1

��� zi;t�
@uF�i;t

.
@�QSF�i;t

35
= bj�pG;t�

��
bC �

�
hR�i;j;t + �

�
i;j;t

�
� rFF�i;t

	��
1 + rFF�i;t

�
+MRSF��e;i;t +$

F�
i;j;t

�
= bj�pG;t�

��
bC � hR�i;j;t � rFF�i;t

� ��
1 + rFF�i;t

�
+ bC � ��i;j;t

��
1 + rFF�i;t

�
+MRSF��e;i;t +$

F�
i;j;t

�
;

j = 1; :::; NA +NL.

Similarly, to derive and de�ne the GURP on the actual cost, the following

corollary to Theorem 2 is formulated.

Corollary 2 (to Theorem 2) Equation (2.2.3.2) can be expressed as fol-
lows:

MCDAV �i;j;t + PIEi;j;t = bj � pG;t �
��
bC � hR�i;j;t � rFA�i;t

� ��
1 + rFA�i;t

�
+bC � ��i;j;t

��
1 + rFA�i;t

�
+MRSA��e;i;t +$

A�
i;j;t

�
; j = 1; :::; NA +NL, (2.2.3.5)

where rFA�i;t (= 1
�
E
�
�i;t � IMRSA��;i;t+1 jzi;t

�
�1) is the reference rate on the ac-

tual cost and$A�
i;j;t (= �i;t�cov

�
� i;j;t+1; @u

A�
i;t+1

.
@�QSA�i;t+1

��� zi;t�.�@uA�i;t .@�QSA�i;t

�
)

is the discounted risk-adjustment term on the actual cost.

Proof. The proof is similar to the proof of Corollary 1 to Theorem 1 with

two exceptions, so we omit the derivation. First, MCDFV �
i;j;t , rFF�i;t , MRSF��e;i;t ,

and$F�
i;j;t in Eq. (2.2.3.4) are replaced byMC

DAV �
i;j;t , rFA�i;t ,MRS

A��
e;i;t , and$

A�
i;j;t,

respectively. Second, PIE i;j;t is added to the left-hand side of Eq. (2.2.3.4).
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The right-hand sides of Eqs. (2.2.3.4) and (2.2.3.5) are then the prices of

the j-th �nancial good because they are equivalent toMCDFV �
i;j;t andMCDAV �

i;j;t +PIE i;j;t,

respectively. From the perspective of production theory, these corollaries are

thus used as de�nitions for the GURP on the cost frontier and the GURP

on the actual cost, respectively.

De�nition 12 (Generalized User-Revenue Price on the Cost Frontier)
The generalized user-revenue price on the cost frontier of the j-th �nancial

good of the i-th �nancial �rm in period t, denoted by pGURFi;j;t , is de�ned as

pGURFi;j;t = bj � pG;t �
��
bC � hR�i;j;t � rFF�i;t

� ��
1 + rFF�i;t

�
+ bC � ��i;j;t

��
1 + rFF�i;t

�
+MRSF��e;i;t +$

F�
i;j;t

�
= pSURFi;j;t + �BPF�i;j;t +MRSBPF��e;i;t +$BPF�

i;j;t ; j = 1; :::; NA +NL, (2.2.3.6)

where pSURFi;j;t (= bj�pG;t�
�
bC � hR�i;j;t � rFF�i;t

� ��
1 + rFF�i;t

�
) is the stochastic user-

revenue price on the cost frontier similarly de�ned by Homma (2009, 2012),

�BPF�i;j;t (= bj � pG;t � bC � ��i;j;t
��
1 + rFF�i;t

�
) expresses the market structure and

conduct e¤ect on the cost frontier, MRSBPF��e;i;t (= bj � pG;t�MRSF��e;i;t ) expresses

the equity capital e¤ect on the cost frontier, and $BPF�
i;j;t (= bj � pG;t � $F�

i;j;t)

expresses the risk-adjustment e¤ect on the cost frontier.

De�nition 13 (Generalized User-Revenue Price on the Actual Cost)
The generalized user-revenue price on the actual cost of the j-th �nancial good

of the i-th �nancial �rm in period t, denoted by pGURAi;j;t , is de�ned as

pGURAi;j;t = bj � pG;t �
��
bC � hR�i;j;t � rFA�i;t

� ��
1 + rFA�i;t

�
+ bC � ��i;j;t

��
1 + rFA�i;t

�
+MRSA��e;i;t +$

A�
i;j;t

�
= pSURAi;j;t + �BPA�i;j;t +MRSBPA��e;i;t +$BPA�

i;j;t ; j = 1; :::; NA +NL, (2.2.3.7)

where pSURAi;j;t (= bj �pG;t�
�
bC � hR�i;j;t � rFA�i;t

� ��
1 + rFA�i;t

�
) is the stochastic user-

revenue price on the actual cost similarly de�ned by Homma (2009, 2012),

�BPA�i;j;t (= bj � pG;t � bC � ��i;j;t
��
1 + rFA�i;t

�
) expresses the market structure and

conduct e¤ect on the actual cost, MRSBPA��e;i;t (= bj � pG;t�MRSA��e;i;t ) expresses
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the equity capital e¤ect on the actual cost, and $BPA�
i;j;t (= bj � pG;t � $A�

i;j;t)

expresses the risk-adjustment e¤ect on the actual cost.

As similarly noted by Homma (2009, 2012), the four terms on the right-

hand sides of Eqs. (2.2.3.6) and (2.2.3.7) represent the stochastic user-

revenue price (hereafter SURP), market structure and conduct e¤ects, equity

capital e¤ects, and risk-adjustment e¤ects, respectively. Especially, ��i;j;t in

the second term of the right-hand side of Eqs. (2.2.3.6) and (2.2.3.7) re�ects

the e¤ects of market structure of the j-th �nancial good and the strategic

interdependence of �nancial �rms, as expressed by

��i;j;t =
@hR�i;j;t
@ ln qp�i;j;t

=
qp�i;j;t
Qp�j;t

�
@hR�i;j;t
@ lnQp�j;t

�
 
1 +

XNF

k 6=i

@qp�k;j;t
@qp�i;j;t

!

= s�i;j;t � �
Q�
i;j;t �

�
1 + CV �i;j;t

�
; j = 1; :::; NA +NL, (2.2.3.8)

where s�i;j;t (= q
p�
i;j;t

�
Qp�j;t ) is the ratio of the real balance of the j-th �nancial

good of the i-th �nancial �rm to the total balance in the market for the

j-th �nancial good. The range of s�i;j;t is 0 < s
�
i;j;t � 1, and s�i;j;t = 1 if the

i-th �nancial �rm has a monopoly. In addition, �Q�i;j;t (= @h
R�
i;j;t

�
@ lnQp�j;t ) is

the elasticity of the certain or predictable components of the SDEHRR or

the SDEHCR for the j-th �nancial good with respect to the total balance

in the market, and represents the fractional change in the former due to

a 1% increase in the latter. Furthermore, CV �i;j;t (=
PNF

k 6=i @q
p�
k;j;t

�
@qp�i;j;t ) is

the conjectural derivative quantifying how the i-th �nancial �rm regards the

changes in the j-th �nancial good of other �rms with respect to the change in

the j-th �nancial good of the i-th �nancial �rm in period t. If s�i;j;t = 1 and

CV �i;j;t = 0, then the i-th �nancial �rm has a monopoly in the j-th �nancial

good market in period t. If CV �i;j;t = 0, then the i-th �nancial �rm is a

Cournot �rm, i.e., the outputs of all other �nancial �rms are not expected to

change as the output of the i-th �nancial �rm changes. If CV �i;j;t = �1, then
the i-th �nancial �rm is a competitive �rm, i.e., ��i;j;t is zero. Higher values

of CV �i;j;t correspond to larger absolute values of �
�
i;j;t, and thus represent less
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intense competition.12

From these de�nitions and the above two corollaries, the following two

remarks immediately follow.

Remark 1 From Corollary 1 to Theorem 1 and De�nition 12,

MCDFV �i;j;t = pGURFi;j;t ; j = 1; :::; NA +NL (2.2.3.9)

holds, and thus the classi�cation of �nancial goods into inputs and outputs

based on the sign of each GURP on the cost frontier is consistent with the

classi�cation based on the sign of each partial derivative of the dynamic fron-

tier variable cost function with respect to �nancial goods (i.e., the sign of

each dynamic frontier marginal variable cost). The sign of the dynamic fron-

tier marginal variable cost is the same as the sign of the GURP on the cost

frontier, indicating that a �nancial good is an output if positive and a �xed

input if negative.

Remark 2 From Corollary 2 to Theorem 2 and De�nition 13,

MCDAV �i;j;t + PIEi;j;t = pGURAi;j;t ; j = 1; :::; NA +NL (2.2.3.10)

holds, and thus the classi�cation of �nancial goods into inputs and outputs

based on the sign of each GURP on the actual cost is not always consistent

12The concept of conjectural variation is popular in both theoretical and empirical stud-
ies of industrial organization. Theorists of industrial organization, however, regard it
critically for the following reasons: 1) it represents ad hoc assumptions about the con-
duct of �rms, 2) it lacks a game-theoretic foundation, and 3) it forces dynamics into
an essentially static model with the strategy space and time horizon of the underlying
game being only loosely de�ned (e.g., Fellner, 1949; Friedman, 1983, p. 110; Daughety,
1985; Makowski, 1987; Tirole, 1989, pp. 244�245). These shortcomings are often recog-
nized as the cost that the modeler must pay for realism without sacri�cing simplicity and
tractability (i.e., parsimony). However, Dockner (1992), Cabral (1995), and Pfa¤ermayr
(1999) have demonstrated that the concept of conjectural variation can be supported by
a consistent theoretical foundation, if it is considered to be a reduced form of a dynamic
game. Their �ndings can be used to justify a static conjectural variations analysis for
both modeling dynamic interactions and estimating the degree of oligopoly power. From
this viewpoint, we believe that the use of the conjectural derivative is rationalized by
considering the derivative to be a reduced form of an (unmodeled) dynamic game.
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with the classi�cation based on the sign of each partial derivative of the dy-

namic actual variable cost function with respect to �nancial goods (i.e., the

sign of each dynamic actual marginal variable cost). Both classi�cations are

consistent in the following two limited cases: 1) the sign of dynamic actual

marginal variable cost is the same as the sign of price ine¢ ciency normal-

ized by the marginal utility of quasi-short-run pro�ts based on dynamic actual

cost, and 2) if both signs are not equal, then the absolute value of dynamic

actual marginal variable cost is greater than the absolute value of normalized

price ine¢ ciency.

From these remarks and Proposition 1, the following remark immediately

follows.

Remark 3 From Remarks 1 and 2 and Proposition 1, the GURP on the cost
frontier is related to the GURP on the actual cost as follows:

pGURFi;j;t =

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=;��pGURAi;j;t � PIEi;j;t
�
; j = 1; :::; NA+NL.

(2.2.3.11)

From this remark, similar to the relation between dynamic frontier mar-

ginal variable cost and dynamic actual marginal variable cost, if the inverse

of the elasticity of the dynamic actual variable cost function with respect

to dynamic cost e¢ ciency is not greater than dynamic cost ine¢ ciency (i.e.,�
@ lnCDAVi;t

�
@EFDi;t

��1 � 1 � EFDi;t), then the GURP on the cost frontier is
not greater than the GURP on the actual cost minus the normalized price

ine¢ ciency (i.e., pGURAi;j;t �PIE i;j;t), and vice versa. In addition, if the sign
of normalized price ine¢ ciency is not negative (i.e., PIE i;j;t � 0), then the

GURP on the cost frontier is not greater than the GURP on the actual cost.

2.2.4 EGLIs on the Cost Frontier and the Actual Cost

Similar to Homma (2009, 2012), the EGLIs on the cost frontier and the actual

cost can be derived using Eqs. (2.2.3.6) and (2.2.3.9), which represent the

relationship between the GURP on the cost frontier and dynamic frontier
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marginal variable cost, and Eqs. (2.2.3.7) and (2.2.3.10), which represent

the relationship between the GURP on the actual cost and the dynamic

actual marginal variable cost, respectively. More speci�cally, dividing the

discrepancy between the SURP on the cost frontier and the dynamic frontier

marginal variable cost by the SURP on the cost frontier gives the EGLI on

the cost frontier. Similarly, dividing the discrepancy between the SURP on

the actual cost and the dynamic actual marginal variable cost by the SURP

on the actual cost gives the EGLI on the actual cost. The SURP on the

cost frontier is the price at which the market structure and conduct e¤ect

on the cost frontier, the equity capital e¤ect on the cost frontier, and the

risk-adjustment e¤ect on the cost frontier are assumed to be zero, so the

discrepancy between the SURP on the cost frontier and dynamic frontier

marginal variable cost equals the product of negative one and the sum of

these e¤ects. Similarly, the SURP on the actual cost is the price at which

the market structure and conduct e¤ect on the actual cost, the equity cap-

ital e¤ect on the actual cost, the risk-adjustment e¤ect on the actual cost,

and normalized price ine¢ ciency are assumed to be zero, so the discrepancy

between the SURP on actual cost and dynamic actual marginal variable cost

equals the sum of the normalized price ine¢ ciency and the product of neg-

ative one and the sum of these e¤ects. Where there is no dynamic cost

ine¢ ciency and no dynamic price ine¢ ciency, the EGLI on the actual cost

equals the EGLI on the cost frontier. In this subsection, the case of positive

SURPs on the cost frontier and the actual cost and the positive dynamic

frontier and actual marginal variable costs is considered with respect to the

relevant �nancial good as an output.

The discrepancy between the SURP on the cost frontier and the dynamic

frontier marginal variable cost and the discrepancy between the SURP on

the actual cost and the dynamic actual marginal variable cost are expressed

in Remarks 4 and 5, respectively.

Remark 4 From Eqs. (2.2.3.6) and (2.2.3.9), the discrepancy between the

SURP on the cost frontier and the dynamic frontier marginal variable cost
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can be expressed as

pSURFi;j;t �MCDFV �i;j;t = �
�
�BPF�i;j;t +MRSBPF��e;i;t +$BPF�

i;j;t

�
= �bj � pG;t �

�
bC � ��i;j;t
1 + rFF�i;t

+MRSF��e;i;t +$
F�
i;j;t

�
;

j = 1; :::; NA +NL. (2.2.4.1)

Remark 5 From Eqs. (2.2.3.7) and (2.2.3.10), the discrepancy between the

SURP on the actual cost and the dynamic actual marginal variable cost can

be expressed as

pSURAi;j;t �MCDAV �i;j;t = �
�
�BPA�i;j;t +MRSBPA��e;i;t +$BPA�

i;j;t

�
+ PIEi;j;t

= �bj � pG;t �
�
bC � ��i;j;t
1 + rFF�i;t

+MRSA��e;i;t +$
A�
i;j;t

�
+ PIEi;j;t;

j = 1; :::; NA +NL. (2.2.4.2)

The EGLIs on the cost frontier and the actual cost are de�ned by dividing

both sides of Eqs. (2.2.4.1) and (2.2.4.2) by the SURPs on the cost frontier

and the actual cost, respectively.

De�nition 14 (Extended Generalized-Lerner Index on the Cost Frontier)
The extended generalized-Lerner index on the cost frontier of the j-th �nan-

cial good of the i-th �nancial �rm in period t, denoted by EGLIFi;j;t, is de�ned

as

EGLIFi;j;t =
pSURFi;j;t �MCDFV �i;j;t

pSURFi;j;t

= �
�BPF�i;j;t +MRSBPF��e;i;t +$BPF�

i;j;t

pSURFi;j;t

= �
bC � ��i;j;t +

�
MRSF��e;i;t +$

F�
i;j;t

�
�
�
1 + rFF�i;t

�
bC � hR�i;j;t � rFF�i;t

;

j = 1; :::; NA +NL. (2.2.4.3)

De�nition 15 (Extended Generalized-Lerner Index on the Actual Cost)
The extended generalized-Lerner index on the actual cost of the j-th �nancial
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good of the i-th �nancial �rm in period t, denoted by EGLIAi;j;t, is de�ned as

EGLIAi;j;t =
pSURAi;j;t �MCDAV �i;j;t

pSURAi;j;t

=
PIEi;j;t �

�
�BPA�i;j;t +MRSBPA��e;i;t +$BPA�

i;j;t

�
pSURAi;j;t

=
PIEi;j;t �

�
1 + rFA�i;t

�
� bj � pG;t �

�
bC � ��i;j;t +

�
MRSA��e;i;t +$

A�
i;j;t

�
�
�
1 + rFA�i;t

�	
bj � pG;t �

�
bC � hR�i;j;t � rFA�i;t

� ;

j = 1; :::; NA +NL. (2.2.4.4)

As similarly noted by Homma (2009, 2012), under the assumption that

the j-th �nancial good is an output (i.e., pSURFi;j;t ,MCDFV �
i;j;t , pSURAi;j;t ,MCDAV �

i;j;t >

0), the signs of bC � hR�i;j;t � rFF�i;t and bC � hR�i;j;t � rFA�i;t are positive if the j-th

�nancial good is a �nancial asset other than cash, and negative if the j-th

�nancial good is a liability. If the sign of ��i;j;t is determined by the sign of

the elasticity of the collected or paid interest rate of the SDEHRR or the

SDEHCR with respect to the total balance in the market, then the sign of

��i;j;t is negative if the j-th �nancial good is a �nancial asset and positive

if the j-th �nancial good is a liability.13 From Eqs. (2.2.3.1) and (2.2.3.2),

the signs of MRSF��e;i;t and MRS
A��
e;i;t are positive, and from Eqs. (2.2.3.4) and

(2.2.3.5), the signs of $F�
i;j;t and $

A�
i;j;t can be either positive or negative. From

the de�nitional identities of $F�
i;j;t and $

A�
i;j;t in Eqs. (2.2.3.3), (2.2.3.4), and

(2.2.3.5), if the j-th �nancial good is a �nancial asset and the risks (variances)

of quasi-short-run pro�ts based on dynamic frontier cost and dynamic actual

cost increase due to an increase in the asset, then (cov
�
� i;j;t+1; �

QSF�
i;t+1

��� zi;t�,
13If the j-th �nancial good is a �nancial asset (other than cash), then the elasticity of

the certain or predictable components of the SDEHRR with respect to the total balance in
the market (i.e., �Q�i;j;t; j = 2; :::; NA ) corresponds to the sum of the same elasticities of the
collected interest rate, the uncollected interest rate, and the service charge rate, minus the
same elasticity of the default rate. If the j-th �nancial good is a liability, then the elasticity
of the certain or predictable components of the SDEHCR with respect to the total balance
in the market (i.e., �Q�i;j;t; j = NA + 1; :::; NA + NL) corresponds to the sum of the same
elasticities of the paid interest rate, the unpaid interest rate, and the insurance premium
rate, minus the same elasticity of the service charge rate. The sign of the elasticity of the
certain or predictable component of the collected interest rate with respect to the total
balance in the market is usually negative, and the sign of the same elasticity of the paid
interest rate is usually positive. However, the sign of the other elasticities can be positive
or negative.
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cov
�
� i;j;t+1; �

QSA�
i;t+1

��� zi;t� > 0), and if the �nancial �rm is risk averse, the signs
of $F�

i;j;t and $
A�
i;j;t are negative, whereas if the risks (variances) of quasi-short-

run pro�ts based on dynamic frontier cost and dynamic actual cost decrease,

then (cov
�
� i;j;t+1; �

QSF�
i;t+1

��� zi;t�, cov�� i;j;t+1; �QSA�i;t+1

��� zi;t� < 0), and if the �-

nancial �rm is still risk averse, the signs of $F�
i;j;t and $

A�
i;j;t are positive. On

the other hand, if the j-th �nancial good is a liability and the risks (variances)

of quasi-short-run pro�ts based on dynamic frontier cost and dynamic actual

cost increase due to an increase in the liability, then (cov
�
� i;j;t+1; �

QSF�
i;t+1

��� zi;t�,
cov
�
� i;j;t+1; �

QSA�
i;t+1

��� zi;t� < 0), and if the �nancial �rm is risk averse, the signs
of $F�

i;j;t and $
A�
i;j;t are positive, whereas if the risks (variances) of quasi-short-

run pro�ts based on dynamic frontier cost and dynamic actual cost decrease,

then (cov
�
� i;j;t+1; �

QSF�
i;t+1

��� zi;t�, cov�� i;j;t+1; �QSA�i;t+1

��� zi;t� > 0), and if the �nan-
cial �rm is still risk averse, the signs of $F�

i;j;t and $
A�
i;j;t are negative. From

Eqs. (2.2.3.2), (2.2.3.5), and (2.2.3.10), the sign of PIE i;j;t can also be either

positive or negative. Under the assumption that the j-th �nancial good is an

output, if the sign of PIE i;j;t is positive, then (MCDAV �
i;j;t < pGURAi;j;t ), and the

j-th �nancial good is short, whereas if the sign of PIE i;j;t is negative, then

(MCDAV �
i;j;t > pGURAi;j;t ), and the j-th �nancial good is over.

From De�nitions 14 and 15, we can appreciate that the factors that have

an impact on the degree of competition are not those that a¤ect market

structure and conduct (��i;j;t) from the perspective of conventional industrial

organization. From a �nancial perspective, the risk-averse attitude of �nan-

cial �rms (rFF�i;t , rFA�i;t ), the �uctuation risk of quasi-short-run pro�t ($
F�
i;j;t,

$A�
i;j;t), and the equity capital (which re�ects the risk of the burden of �nancial

distress costs) (MRSF��e;i;t , MRS
A��
e;i;t ) also have an impact. Furthermore, from

a productive e¢ ciency perspective, the dynamic cost and price ine¢ ciencies

(1 � EFDi;t , PIEi;j;t) also have an impact. Consequently, similar to Homma
(2012, Propositions 1 and 2), the following two propositions can be derived.

Proposition 2 If �nancial �rms are risk averse, an increase in equity capi-
tal increases the EGLIs of �nancial assets other than cash on the cost frontier

and the actual cost (decreases the degree of competition) and decreases the

same EGLIs of liabilities (increases the degree of competition).
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Proof. The proof is similar to the proof of Proposition 1 in Homma (2012)
with the exception of replacingMRS��e;i;t, u

�
i;t, �

QS�
i;t , and r

F�
i;t withMRS

F��
e;i;t (or

MRSA��e;i;t ), u
F�
i;t (or u

A�
i;t ), �

QSF�
i;t (or �QSA�i;t ), and rFF�i;t (or rFA�i;t ), respectively,

so we omit the derivation.

Proposition 3 Under the assumption that the risks (variances) of quasi-
short-run pro�ts based on the dynamic frontier cost and the dynamic actual

cost increase due to an increase in �nancial assets other than cash and liabil-

ities, if the �nancial �rm is risk averse, then the EGLIs on the cost frontier

and the actual cost increase (the degree of competition decreases), whereas if it

is assumed that the risks (variances) decrease, then the same EGLIs decrease

(the degree of competition increases) if the �nancial �rm is risk averse.

Proof. The proof is similar to the proof of Proposition 2 in Homma (2012)
with the exception of replacing $�

i;j;t and r
F�
i;t with $

F�
i;j;t (or $

A�
i;j;t) and r

FF�
i;t

(or rFA�i;t ), respectively, so we omit the derivation.

From De�nitions 14 and 15, using the EGLIs on the cost frontier and the

actual cost, the impact of dynamic cost and price ine¢ ciencies on the EGLI,

which was not considered in Homma (2009, 2012), can be de�ned.

De�nition 16 (Impact of Ine¢ ciencies on the EGLI (IIEE)) The im-
pact of the dynamic cost and price ine¢ ciencies of the j-th �nancial good of

the i-th �nancial �rm in period t on the EGLI, denoted by IIEEi;j;t, is de�ned

as

IIEEi;j;t = EGLI
F
i;j;t�

pSURAi;j;t

pSURFi;j;t

�EGLIAi;j;t =
pSURFi;j;t �MCDFV �i;j;t �

�
pSURAi;j;t �MCDAV �i;j;t

�
pSURFi;j;t

=

�
�BPA�i;j;t � �BPF�i;j;t

�
+
�
MRSBPA��e;i;t �MRSBPF��e;i;t

�
+
�
$BPA�
i;j;t �$BPF�

i;j;t

�
� PIEi;j;t

pSURFi;j;t

;

j = 1; :::; NA +NL. (2.2.4.5)

From De�nition 16, the following proposition can be established.

Proposition 4 If the �nancial �rm is risk averse and the dynamic fron-

tier variable cost function in period t+ 1 equals the dynamic actual variable
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cost function in period t + 1 (i.e., CDFV �i;t+1 = CDAV �i;t+1 ) (hereafter Assumption

1), and if the inverse of the elasticity of the dynamic actual variable cost

function with respect to dynamic cost e¢ ciency is not greater than the dy-

namic cost ine¢ ciency (i.e.,
�
@ lnCDAVi;t

�
@EFDi;t

��1 � 1 � EFDi;t) (hereafter
Assumption 2), and if the j-th �nancial good is a �nancial asset, or if the

j-th �nancial good is a liability, the ratio of the subtraction of the certain

or predictable components of the SDEHCR from the reference rate on the

cost frontier to the subtraction of the certain or predictable components of

the SDEHCR from the reference rate on the actual cost (hereafter RH) is

not less than the ratio of the addition of one and the reference rate on the

cost frontier to the addition of one and the reference rate on the actual cost

(hereafter RR) (i.e., RHi;j;t =
�
rFF�i;t � hR�i;j;t

�� �
rFA�i;t � hR�i;j;t

�
� RRi;j;t =�

1 + rFF�i;t

�� �
1 + rFA�i;t

�
), and if Assumption 2 holds, then the IIEE is not

less than zero (i.e., IIEEi;j;t � 0). Where dynamic cost and price ine¢ cien-
cies exist, the degree of competition can therefore be overestimated. How-

ever, under Assumption 1, if the j-th �nancial good is a liability, the RH is

less than the RR (i.e., RHi;j;t =
�
rFF�i;t � hR�i;j;t

�� �
rFA�i;t � hR�i;j;t

�
< RRi;j;t =�

1 + rFF�i;t

�� �
1 + rFA�i;t

�
), and Assumption 2 holds, then the IIEE can be neg-

ative, zero, or positive.

Proof. FromDe�nitions 6 and 7, the dynamic actual variable cost function in
period t is not less than the dynamic frontier variable cost function in period

t (i.e., CDAV �i;t � CDFV �i;t ), so quasi-short-run pro�t based on dynamic actual

cost in period t is not greater than quasi-short-run pro�t based on dynamic

frontier cost in period t from De�nitions 9 and 10 (i.e., �QSA�i;t � �QSF�i;t ). Fur-

thermore, if the �nancial �rm is risk averse, the marginal utility of the �rm

with respect to quasi-short-run pro�t is a decreasing function of quasi-short-

run pro�t, so the marginal utility with respect to quasi-short-run pro�t based

on dynamic actual cost in period t is not less than the marginal utility with

respect to quasi-short-run pro�t based on dynamic frontier cost in period t

(i.e., @uA�i;t
.
@�QSA�i;t � @uF�i;t

.
@�QSF�i;t ). In this case, under the assumption

that the dynamic frontier variable cost function in period t + 1 equals the

dynamic actual variable cost function in period t+1 (i.e., CDFV �i;t+1 = CDAV �i;t+1 ),
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from the de�nitions of the reference rates on the cost frontier and the actual

cost (i.e., rFF�i;t = 1
.
E
h
�i;t �

�
@uF�i;t+1

.
@�QSF�i;t+1

�.�
@uF�i;t

.
@�QSF�i;t

�
jzi;t

i
�

1 and rFA�i;t = 1
.
E
h
�i;t �

�
@uA�i;t+1

.
@�QSA�i;t+1

�.�
@uA�i;t

.
@�QSA�i;t

�
jzi;t

i
� 1),

the reference rate on the actual cost is not less than the reference rate on

the cost frontier (i.e., rFA�i;t � rFF�i;t ) because quasi-short-run pro�t based

on dynamic actual cost in period t + 1 equals quasi-short-run pro�t based

on dynamic frontier cost in period t + 1 (i.e., �QSA�i;t+1 = �QSF�i;t+1 ) and thus

the marginal utility with respect to quasi-short-run pro�t based on dy-

namic actual cost in period t + 1 equals the marginal utility with respect

to quasi-short-run pro�t based on dynamic frontier cost in period t + 1

(i.e., @uA�i;t+1
.
@�QSA�i;t+1 = @uF�i;t+1

.
@�QSF�i;t+1 ). In this case, from the de�ni-

tions of the SURPs on the cost frontier and the actual cost (i.e., pSURFi;j;t =

bj �pG;t�
�
bC � hR�i;j;t � rFF�i;t

� ��
1 + rFF�i;t

�
and pSURAi;j;t = bj �pG;t�

�
bC � hR�i;j;t � rFA�i;t

���
1 + rFA�i;t

�
), if the j-th �nancial good is a �nancial asset (i.e., bj = 1) or

if the j-th �nancial good is a liability (i.e., bj = �1) and the ratio of the
subtraction of the certain or predictable components of the SDEHCR from

the reference rate on the cost frontier to the subtraction of the certain or

predictable components of the SDEHCR from the reference rate on the ac-

tual cost (RH) is not less than the ratio of the addition of one and the

reference rate on the cost frontier to the addition of one and the reference

rate on the actual cost (RR) (i.e., RHi;j;t =
�
rFF�i;t � hR�i;j;t

�� �
rFA�i;t � hR�i;j;t

�
�

RRi;j;t =
�
1 + rFF�i;t

�� �
1 + rFA�i;t

�
), then the stochastic user-revenue price on

the actual cost is not greater than the stochastic user-revenue price on the

cost frontier (i.e., pSURAi;j;t � pSURFi;j;t ), whereas if the j-th �nancial good is

a liability (i.e., bj = �1) and the RH is less than the RR (i.e., RHi;j;t =�
rFF�i;t � hR�i;j;t

�� �
rFA�i;t � hR�i;j;t

�
< RRi;j;t =

�
1 + rFF�i;t

�� �
1 + rFA�i;t

�
), then the

stochastic user-revenue price on the actual cost is greater than the stochas-

tic user-revenue price on the cost frontier (i.e., pSURAi;j;t > pSURFi;j;t ). Further-

more, from Proposition 1 (i.e.,MCDFV �
i;j;t =

n
EFDi;t +

�
@ lnCDAVi;t

�
@EFDi;t

��1o
�MCDAV �

i;j;t ), if the inverse of the elasticity of the dynamic actual variable cost

function with respect to dynamic cost e¢ ciency is not greater than the dy-

namic cost ine¢ ciency (i.e.,
�
@ lnCDAVi;t

�
@EFDi;t

��1 � 1�EFDi;t) (Assumption
47



2), then dynamic actual marginal variable cost is not less than dynamic fron-

tier marginal variable cost (i.e., MCDAV �
i;j;t �MCDFV �

i;j;t ). Consequently, under

Assumption 1, if the j-th �nancial good is a �nancial asset and Assumption

2 holds, or if the j-th �nancial good is a liability, the RH is not less than the

RR, and Assumption 2 holds, then the discrepancy between the SURP on

the cost frontier and the dynamic frontier marginal variable cost is not less

than the discrepancy between the SURP on the actual cost and the dynamic

actual marginal variable cost (i.e., pSURFi;j;t �MCDFV �
i;j;t � pSURAi;j;t �MCDAV �

i;j;t ), so

the IIEE is not less than zero (i.e., IIEE i;j;t � 0) because the sign of the

SURP on the cost frontier is positive under the assumption that the j-th

�nancial good is an output (i.e., pSURFi;j;t , MCDFV �
i;j;t , pSURAi;j;t , MCDAV �

i;j;t > 0).

However, under Assumption 1, if the j-th �nancial good is a liability, the RH

is less than the RR, and Assumption 2 holds, then the SURP on the actual

cost is greater than the SURP on the cost frontier (i.e., pSURAi;j;t > pSURFi;j;t )

and the dynamic actual marginal variable cost is not less than the dynamic

frontier marginal variable cost (i.e., MCDAV �
i;j;t �MCDFV �

i;j;t ), so the IIEE can

be negative, zero, or positive.

Further, under the assumption that the j-th �nancial good is an output

(i.e., pSURFi;j;t , MCDFV �
i;j;t , pSURAi;j;t , MCDAV �

i;j;t > 0), if the j-th �nancial good is

a �nancial asset, then the sign of the elasticity of the certain or predictable

components of the SDEHRR or the SDEHCR with respect to the j-th �nan-

cial good is negative (i.e., ��i;j;t < 0), whereas if the j-th �nancial good is

a liability, then the sign of this elasticity is positive (i.e., ��i;j;t > 0). From

the de�nitions of market structure and conduct e¤ects based on the cost

frontier and the actual cost (i.e., �BPF�i;j;t = bj � pG;t � bC � ��i;j;t
��
1 + rFF�i;t

�
and �BPA�i;j;t = bj � pG;t � bC � ��i;j;t

��
1 + rFA�i;t

�
), the signs of these e¤ects are,

therefore, negative (i.e., �BPF�i;j;t , �BPA�i;j;t < 0). Furthermore, from the proof

of Proposition 4, under Assumption 1, the reference rate on the actual cost

is not less than the reference rate on the cost frontier (i.e., rFA�i;t � rFF�i;t ),

so the market structure and conduct e¤ect based on actual cost is not less

than the market structure and conduct e¤ect based on the cost frontier (i.e.,

�BPA�i;j;t � �BPF�i;j;t ).

From the de�nition of the marginal rate of substitution of quasi-short-run
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pro�t based on the dynamic actual cost for equity capital (i.e., MRSA��e;i;t =�
@uA�i;t

�
@qp�e;i;t

�.�
@uA�i;t

.
@�QSA�i;t

�
), the following equation holds:

@MRSA��e;i;t

@�QSA�i;t

=

 
@uA�i;t

@�QSA�i;t

!�1
�
 

@2uA�i;t

@�QSA�i;t @qp�e;i;t
�MRSA��e;i;t �

@2uA�i;t

@�QSA�2i;t

!
.

(2.2.4.6)

The signs of the marginal utility of the �nancial �rm with respect to quasi-

short-run pro�t based on dynamic actual cost and the marginal utility of the

�nancial �rm with respect to equity capital are positive (i.e., @uA�i;t
.
@�QSA�i;t ,

@uA�i;t
�
@qp�e;i;t > 0), so the sign of the marginal rate of substitution of quasi-

short-run pro�t based on dynamic actual cost for equity capital is also pos-

itive (i.e., MRSA��e;i;t > 0). If the �nancial �rm is risk averse, the marginal

utility of the �nancial �rm with respect to quasi-short-run pro�t is a decreas-

ing function of quasi-short-run pro�t, so the sign of the second-order partial

derivative of the utility of the �nancial �rm with respect to quasi-short-run

pro�t based on dynamic actual cost is negative (i.e., @2uA�i;t
.
@�QSA�2i;t < 0).

If the relationship between quasi-short-run pro�t and equity capital is, there-

fore, complementary (i.e., @2uA�i;t
.
@�QSA�i;t @qp�e;i;t > 0), or if this relation-

ship is substitutive (i.e., @2uA�i;t
.
@�QSA�i;t @qp�e;i;t < 0) and the absolute value

of the cross partial derivative of the utility of the �nancial �rm with re-

spect to quasi-short-run pro�t based on dynamic actual cost and equity

capital is less than the product of the negative marginal rate of substi-

tution of quasi-short-run pro�t based on dynamic actual cost for equity

capital and the second-order partial derivative of the utility of the �nan-

cial �rm with respect to quasi-short-run pro�t based on dynamic actual

cost (i.e.,
���@2uA�i;t .@�QSA�i;t @qp�e;i;t

��� < �MRSA��e;i;t � @2uA�i;t
.
@�QSA�2i;t ), then the

sign of the partial derivative of the marginal rate of substitution of quasi-

short-run pro�t based on dynamic actual cost for equity capital with re-

spect to quasi-short-run pro�t based on dynamic actual cost is positive

(i.e., @MRSA��e;i;t

�
@�QSA�i;t > 0). Thus the marginal rate of substitution of

quasi-short-run pro�t based on the dynamic frontier cost for equity capital is

greater than the marginal rate of substitution of quasi-short-run pro�t based
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on the dynamic actual cost for equity capital (i.e., MRSF��e;i;t >MRS
A��
e;i;t ) be-

cause quasi-short-run pro�t based on dynamic actual cost is not greater than

quasi-short-run pro�t based on the dynamic frontier cost from De�nitions

9 and 10 (i.e., �QSA�i;t � �QSF�i;t ). Thus, from the de�nitions of equity cap-

ital e¤ects based on the cost frontier and the actual cost (i.e., MRSBPF��e;i;t

= bj � pG;t�MRSF��e;i;t and MRS
BPA��
e;i;t = bj � pG;t�MRSA��e;i;t ), if the j-th �nancial

good is a �nancial asset (i.e., bj = 1), then the equity capital e¤ects based

on the cost frontier are greater than the equity capital e¤ects based on the

actual cost (i.e., MRSBPF��e;i;t >MRSBPA��e;i;t ), whereas if the j-th �nancial good

is a liability (i.e., bj = �1), then the equity capital e¤ects based on the cost
frontier are less than the equity capital e¤ects based on the actual cost (i.e.,

MRSBPF��e;i;t <MRSBPA��e;i;t ). However, if the relationship between quasi-short-

run pro�t and equity capital is substitutive (i.e., @2uA�i;t
.
@�QSA�i;t @qp�e;i;t < 0)

and the absolute value of the cross partial derivative of the utility of the

�nancial �rm with respect to quasi-short-run pro�t based on dynamic actual

cost and equity capital is greater than the product of the negative marginal

rate of substitution of quasi-short-run pro�t based on dynamic actual cost

for equity capital and the second-order partial derivative of the utility of

the �nancial �rm with respect to quasi-short-run pro�t based on dynamic

actual cost (i.e.,
���@2uA�i;t .@�QSA�i;t @qp�e;i;t

��� > �MRSA��e;i;t � @2uA�i;t
.
@�QSA�2i;t ), the

sign of the partial derivative of the marginal rate of substitution of quasi-

short-run pro�t based on dynamic actual cost for equity capital with re-

spect to quasi-short-run pro�t based on dynamic actual cost is negative (i.e.,

@MRSA��e;i;t

�
@�QSA�i;t < 0). The marginal rate of substitution of quasi-short-

run pro�t based on the dynamic frontier cost for equity capital is therefore

less than the marginal rate of substitution of quasi-short-run pro�t based

on the dynamic actual cost for equity capital (i.e., MRSF��e;i;t <MRS
A��
e;i;t ). In

this case, if the j-th �nancial good is a �nancial asset, then the equity cap-

ital e¤ect based on the cost frontier is less than the equity capital e¤ect

based on actual cost (i.e., MRSBPF��e;i;t <MRSBPA��e;i;t ), whereas if the j-th �-

nancial good is a liability, then the equity capital e¤ect based on the cost

frontier is greater than the equity capital e¤ect based on actual cost (i.e.,

MRSBPF��e;i;t >MRSBPA��e;i;t ).
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From the proof of Proposition 4, under Assumption 1, the marginal utility

of quasi-short-run pro�t based on dynamic actual cost in period t is not less

than the marginal utility of quasi-short-run pro�t based on the dynamic fron-

tier cost in period t (i.e., @uA�i;t
.
@�QSA�i;t � @uF�i;t

.
@�QSF�i;t ) and the marginal

utility of quasi-short-run pro�t based on the dynamic actual cost in period

t+1 equals the marginal utility of quasi-short-run pro�t based on the dynamic

frontier cost in period t+1 (i.e., @uA�i;t+1
.
@�QSA�i;t+1 = @uF�i;t+1

.
@�QSF�i;t+1 ). From

the de�nition of the risk-adjustment e¤ects based on the cost frontier and

the actual cost (i.e., $BPF�
i;j;t = bj �pG;t ��i;t�cov

�
� i;j;t+1; @u

F�
i;t+1

.
@�QSF�i;t+1

��� zi;t�.�
@uF�i;t

.
@�QSF�i;t

�
and$BPA�

i;j;t = bj�pG;t��i;t�cov
�
� i;j;t+1; @u

A�
i;t+1

.
@�QSA�i;t+1

��� zi;t�.�
@uA�i;t

.
@�QSA�i;t

�
), the absolute value of the risk-adjustment e¤ect based

on the cost frontier is, therefore, not less than the absolute value of the risk-

adjustment e¤ect based on the actual cost (i.e.,
��$BPF�

i;j;t

�� � ��$BPA�
i;j;t

��) because
the covariance of uncertain components of the SDEHRR and the SDEHCR

with respect to the marginal utility of quasi-short-run pro�t based on the

dynamic frontier cost in period t+1 equals the covariance of the same uncer-

tain components with respect to the marginal utility of quasi-short-run pro�t

based on dynamic actual cost in period t+1 (i.e., cov
�
� i;j;t+1; @u

F�
i;t+1

.
@�QSF�i;t+1

��� zi;t�
=cov

�
� i;j;t+1; @u

A�
i;t+1

.
@�QSA�i;t+1

��� zi;t�). Consequently, if dynamic cost ine¢ -
ciency exists, the impact of the risk-adjustment e¤ect can be underestimated.

As noted above, under the assumption that the j-th �nancial good is

an output, if the sign of PIE i;j;t is positive, then (MCDAV �
i;j;t < pGURAi;j;t ), the

j-th �nancial good is short, whereas if the sign of PIE i;j;t is negative, then

(MCDAV �
i;j;t > pGURAi;j;t ), the j-th �nancial good is over. In these cases, the sign

of the IIEE is ambiguous because the market structure and conduct e¤ect, the

equity capital e¤ect, and the risk-adjustment e¤ect are also simultaneously

a¤ected.
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3 Mathematical Formulations and Theoreti-

cal Interpretations of the E¢ cient Struc-

ture and Quiet-Life Hypotheses

This section formulates the e¢ cient structure and quiet-life hypotheses on

the basis of the extended GURM that accounts for dynamic cost e¢ ciency.

In terms of the former, three formulations are possible. The �rst is that the

e¢ cient structure hypothesis is expressed by the e¤ect of the improvement

in dynamic cost e¢ ciency in the previous period on the planned optimal

�nancial good in the current period, so it is a direct de�nition of the e¢ -

cient structure hypothesis. The second formulation involves expressing the

e¢ cient structure hypothesis by the ratio of the following two sums, and pro-

vides the foundation for rigorous theoretical interpretations: the numerator

is the sum of the net e¤ect of the improvement in dynamic cost e¢ ciency

in the previous period and the e¤ect of the same improvement. The former

net e¤ect is on the GURP on the cost frontier (i.e., the dynamic frontier

marginal variable cost with respect to the planned optimal �nancial good)

in the current period and on the dynamic actual marginal variable cost with

respect to the planned optimal �nancial good in the current period. This net

e¤ect is normalized by the same dynamic actual marginal variable cost and

accounts for the correction in dynamic marginal cost e¢ ciency in the current

period (as discussed below). The latter e¤ect is on the elasticity of the dy-

namic actual variable cost in the current period with respect to dynamic cost

e¢ ciency in the current period. This e¤ect is normalized by the square of the

same elasticity. Similarly, the denominator is the sum of the net e¤ect of an

increase in the planned optimal �nancial good in the current period and the

e¤ect of the same increase in the planned optimal �nancial good. Similar to

the numerator, the former net e¤ect is on the same GURP and on the same

dynamic actual marginal variable cost. This net e¤ect is normalized by the

same dynamic actual marginal variable cost and accounts for the correction

in dynamic marginal cost e¢ ciency in the current period. The latter e¤ect

is on the same elasticity of dynamic actual variable cost and is normalized
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by the square of the same elasticity. The third formulation is that the net

e¤ect in the numerator of the second formulation is expressed by the sum

of the e¤ects of the improvement in dynamic cost e¢ ciency in the previous

period on the e¢ ciency di¤erence of the GURP of the planned optimal �nan-

cial good in the current period, the pricing error of the same �nancial good,

and dynamic actual marginal variable cost with respect to the same �nancial

good, which is corrected by dynamic marginal cost ine¢ ciency in the current

period. Similar to the numerator, the net e¤ect in the denominator of the

second formulation is expressed by the sum of the e¤ects of an increase in

the planned optimal �nancial good in the current period on the same fac-

tors as the numerator. This formulation is, therefore, used to extensively

interpret the e¢ cient structure hypothesis with these e¤ects. Similarly, in

terms of the quiet-life hypothesis, three formulations are also possible. The

�rst is that the quiet-life hypothesis is expressed by the e¤ect of an increase

in the Her�ndahl index in the previous period on dynamic cost e¢ ciency in

the current period, so it is a direct de�nition of the quiet-life hypothesis.

The second formulation is that the quiet-life hypothesis is expressed by the

following ratio, so it provides the foundation for rigorous theoretical inter-

pretations: the numerator is the sum of the net e¤ect of the same increase

in the Her�ndahl index and the e¤ect of the same increase. Similar to the

e¢ cient structure hypothesis, the former net e¤ect is on the same GURP

and on the same dynamic actual marginal variable cost. This net e¤ect is

normalized by the same dynamic actual marginal variable cost and accounts

for the same correction in dynamic marginal cost e¢ ciency. The latter e¤ect

is on the same elasticity of dynamic actual variable cost, and is normalized

by the same square of the same elasticity. The denominator is the product of

the same dynamic actual marginal variable cost as per the e¢ cient structure

hypothesis and the same square of the same elasticity. The third formulation

is that the same net e¤ect in the second formulation is expressed by the sum

of the e¤ects of the same increase in the Her�ndahl index on the same e¢ -

ciency di¤erence of the GURP as per the e¢ cient structure hypothesis, the

same pricing error, and the same corrected dynamic actual marginal variable

cost, so it is the formulation that is used to extensively interpret the quiet-life
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hypothesis with these e¤ects.

3.1 Mathematical Formulations and Theoretical Inter-

pretations of the E¢ cient Structure Hypothesis

As already noted, the e¢ cient structure hypothesis is a composite that sug-

gests three stages of causal relations from �rm e¢ ciency to �rm growth (i.e.,

the �rst stage), then to market structure (i.e., the second stage), and �nally to

market performance (i.e., the third stage). There is no scope for improving on

Demsetz (1973) vis-à-vis the �rst stage causality from �rm e¢ ciency to �rm

growth. As noted by Homma et al. ( 2014), this �rst stage causality is the

fundamental feature of the e¢ cient structure hypothesis, so this paper also

regards this causality as the e¢ cient structure hypothesis. Speci�cally, by

regarding �rm e¢ ciency as dynamic cost e¢ ciency, and by considering �rm

growth as an increase in a �nancial good (e.g., a loan), this section endeav-

ors to rigorously formulate and theoretically interpret the e¢ cient structure

hypothesis.

De�nition 17 (Acceptance of the E¢ cient Structure Hypothesis) If
the planned optimal �nancial good (e.g., the planned optimal loan) in the

current period increases because of improved dynamic cost e¢ ciency in the

previous period, then the e¢ cient structure hypothesis is accepted. Speci�-

cally, if the sign of @qp�i;j;t
�
@EFDi;t�1 is positive (i.e., @q

p�
i;j;t

�
@EFDi;t�1 > 0),

then the e¢ cient structure hypothesis is accepted.

From this de�nition, the following two propositions are derived.
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Proposition 5 @qp�i;j;t
�
@EFDi;t�1 is expressed as follows:

@qp�i;j;t
@EFDi;t�1

=

2424 @pGURFi;j;t

@EFDi;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �i;j;t

@EFDi;t�1

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �i;j;t �
@2 lnCDAVi;t

@EFDi;t�1@EF
D
i;t

#,2424@pGURFi;j;t

@qp�i;j;t
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �i;j;t

@qp�i;j;t

35
�
 
@ lnCDAVi;t

@EFDi;t

!2
+MCDAV �i;j;t �

@2 lnCDAVi;t

@qp�i;j;t@EF
D
i;t

35 , (3.1.1)

where @pGURFi;j;t /@X (X = EFDi;t�1 or q
p�
i;j;t) is expressed as

@pGURFi;j;t

@X
=
@pSURFi;j;t

@X
+
@�BPF�i;j;t

@X
+
@MRSBPF��e;i;t

@X
+
@$BPF�

i;j;t

@X
. (3.1.2)

Proof. Partial di¤erentiation of both sides of Eq. (2.2.3.9) with respect to
the j-th planned optimal �nancial good in the current period gives

@MCDFV �
i;j;t

@qp�i;j;t
=
@pGURFi;j;t

@qp�i;j;t
. (P5.1)

Similarly, partial di¤erentiation of both sides of Eq. (2.1.11.1) with respect

to the j-th planned optimal �nancial good in the current period gives

@MCDFV �
i;j;t

@qp�i;j;t
=

8<:@EFDi;t@qp�i;j;t
�
 
@ lnCDAVi;t

@EFDi;t

!�2
�
@2 lnCDAVi;t

@qp�i;j;t@EF
D
i;t

9=; �MCDAV �
i;j;t

+

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@qp�i;j;t
. (P5.2)
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Substituting Eq. (P5.2) for the left-hand side of Eq. (P5.1) gives8<:@EFDi;t@qp�i;j;t
�
 
@ lnCDAVi;t

@EFDi;t

!�2
�
@2 lnCDAVi;t

@qp�i;j;t@EF
D
i;t

9=; �MCDAV �
i;j;t

+

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@qp�i;j;t
=
@pGURFi;j;t

@qp�i;j;t
. (P5.3)

Transforming Eq. (P5.3) with respect to @EFDi;t
�
@qp�i;j;t and then rearranging

gives

@EFDi;t
@qp�i;j;t

=

2424@pGURFi;j;t

@qp�i;j;t
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@qp�i;j;t

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �
i;j;t �

@2 lnCDAVi;t

@qp�i;j;t@EF
D
i;t

#,8<:MCDAV �
i;j;t �

 
@ lnCDAVi;t

@EFDi;t

!29=; . (P5.4)

From this equation, @qp�i;j;t
�
@EFDi;t is expressed as follows:

@qp�i;j;t
@EFDi;t

=

8<:MCDAV �
i;j;t �

 
@ lnCDAVi;t

@EFDi;t

!29=;,2424@pGURFi;j;t

@qp�i;j;t
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@qp�i;j;t

35
�
 
@ lnCDAVi;t

@EFDi;t

!2
+MCDAV �

i;j;t �
@2 lnCDAVi;t

@qp�i;j;t@EF
D
i;t

35 . (P5.5)
Similar to Eq. (P5.1), partial di¤erentiation of both sides of Eq. (2.2.3.9)

with respect to dynamic cost e¢ ciency in the previous period gives

@MCDFV �
i;j;t

@EFDi;t�1
=
@pGURFi;j;t

@EFDi;t�1
. (P5.6)
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Similar to Eq. (P5.2), partial di¤erentiation of both sides of Eq. (2.1.11.1)

with respect to dynamic cost e¢ ciency in the previous period gives

@MCDFV �
i;j;t

@EFDi;t�1
=

8<: @EFDi;t
@EFDi;t�1

�
 
@ lnCDAVi;t

@EFDi;t

!�2
�
@2 lnCDAVi;t

@EFDi;t�1@EF
D
i;t

9=; �MCDAV �
i;j;t

+

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@EFDi;t�1
. (P5.7)

Similar to Eq. (P5.3), substituting Eq. (P5.7) for the left-hand side of Eq.

(P5.6) gives8<: @EFDi;t
@EFDi;t�1

�
 
@ lnCDAVi;t

@EFDi;t

!�2
�
@2 lnCDAVi;t

@EFDi;t�1@EF
D
i;t

9=; �MCDAV �
i;j;t

+

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@EFDi;t�1
=
@pGURFi;j;t

@EFDi;t�1
. (P5.8)

Similar to Eq. (P5.4), transforming Eq. (P5.8) with respect to @EFDi;t
�
@EFDi;t�1

and then rearranging gives

@EFDi;t
@EFDi;t�1

=

2424 @pGURFi;j;t

@EFDi;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@EFDi;t�1

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �
i;j;t �

@2 lnCDAVi;t

@EFDi;t�1@EF
D
i;t

#,8<:MCDAV �
i;j;t �

 
@ lnCDAVi;t

@EFDi;t

!29=; . (P5.9)
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From Eqs. (P5.5) and (P5.9), @qp�i;j;t
�
@EFDi;t�1 is expressed as follows:

@qp�i;j;t
@EFDi;t�1

=
@qp�i;j;t
@EFDi;t

�
@EFDi;t
@EFDi;t�1

=

2424 @pGURFi;j;t

@EFDi;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@EFDi;t�1

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �
i;j;t �

@2 lnCDAVi;t

@EFDi;t�1@EF
D
i;t

#,2424@pGURFi;j;t

@qp�i;j;t
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@qp�i;j;t

35
�
 
@ lnCDAVi;t

@EFDi;t

!2
+MCDAV �

i;j;t �
@2 lnCDAVi;t

@qp�i;j;t@EF
D
i;t

35 ,
where, from Eq. (2.2.3.6), @pGURFi;j;t /@X (X = EFDi;t�1 or q

p�
i;j;t) is expressed

as
@pGURFi;j;t

@X
=
@pSURFi;j;t

@X
+
@�BPF�i;j;t

@X
+
@MRSBPF��e;i;t

@X
+
@$BPF�

i;j;t

@X
.

@pGURFi;j;t

�
@EFDi;t�1 in Eq. (3.1.1) is the e¤ect of the improvement in dy-

namic cost e¢ ciency in the previous period on the GURP of the j-th planned

optimal �nancial good on the cost frontier (i.e., the dynamic frontier marginal

variable cost with respect to the j-th planned optimal �nancial good) in the

current period.
n
EFDi;t +

�
@ lnCDAVi;t

�
@EFDi;t

��1o
(= MCDFV �

i;j;t

�
MCDAV �

i;j;t =

pGURFi;j;t

�
MCDAV �

i;j;t ) in Eq. (3.1.1) is the dynamic marginal cost e¢ ciency

that can be interpreted as a coe¢ cient quantifying the di¤erential shapes

of the dynamic frontier variable cost function and the dynamic actual vari-

able cost function. If both shapes are perfectly equal (i.e., MCDFV �
i;j;t (=

pGURFi;j;t )=MCDAV �
i;j;t ), then the following equation holds:n

EFDi;t +
�
@ lnCDAVi;t

�
@EFDi;t

��1o
= 1. However, for example, if the dy-

namic actual variable cost function is an increasing homothetic function of

the dynamic frontier variable cost function (i.e., both shapes are not very dif-

ferent), then the following inequality holds: MCDFV �
i;j;t (= pGURFi;j;t )�MCDAV �

i;j;t .

Further, this inequality also holds:
n
EFDi;t +

�
@ lnCDAVi;t

�
@EFDi;t

��1o � 1.

In this case, dynamic marginal cost e¢ ciency can be interpreted as a dis-
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count factor. In contrast, if both shapes are very di¤erent (for example,

the dynamic frontier variable cost function has no area where the mar-

ginal cost decreases, whereas the dynamic actual variable cost function has

an area where the marginal cost decreases), then this inequality can hold:

MCDFV �
i;j;t (= pGURFi;j;t )>MCDAV �

i;j;t . Further, this inequality would also hold:n
EFDi;t +

�
@ lnCDAVi;t

�
@EFDi;t

��1o
> 1. In this case, dynamic marginal cost

e¢ ciency can be interpreted as an extra factor. Consequently,

�
n
EFDi;t +

�
@ lnCDAVi;t

�
@EFDi;t

��1o �@MCDAV �
i;j;t

�
@EFDi;t�1 in Eq. (3.1.1) can

be interpreted as the decreasing e¤ect of the improvement in dynamic cost ef-

�ciency in the previous period on dynamic actual marginal variable cost with

respect to the j-th planned optimal �nancial good in the current period (i.e.,

�@MCDAV �
i;j;t

�
@EFDi;t�1 ), which is corrected by dynamic marginal cost e¢ -

ciency in the current period (i.e.,
n
EFDi;t +

�
@ lnCDAVi;t

�
@EFDi;t

��1o
). Con-

sidering the case that both shapes are perfectly equal (i.e.,n
EFDi;t +

�
@ lnCDAVi;t

�
@EFDi;t

��1o
= 1) as a criterion for interpreting dy-

namic marginal cost e¢ ciency, if the dynamic actual variable cost function

is an increasing homothetic function of the dynamic frontier variable cost

function (i.e., both shapes are not very di¤erent), then this decreasing ef-

fect is evaluated at a discount, whereas if this dynamic actual variable cost

function is not an increasing homothetic function (i.e., both shapes are very

di¤erent), then this decreasing e¤ect is evaluated at an extra. Without this

correction, the former case overestimates this decreasing e¤ect, whereas the

latter case underestimates it. Speci�cally, in order to compare these cases,

it is assumed that, following an improvement in dynamic cost e¢ ciency in

the previous period, dynamic actual marginal variable costs with respect

to the j-th planned optimal �nancial good in the current period are equal

where dynamic marginal cost e¢ ciencies in the current period are one and

other than one. If dynamic marginal cost e¢ ciency in the current period

is less than one, then the decreasing e¤ect (in terms of absolute value) is

greater than in the case that this dynamic marginal cost e¢ ciency is one

(i.e., �@MCDAV �
i;j;t

�
@EFDi;t�1 = �@MCDFV �

i;j;t

�
@EFDi;t�1 ), whereas if this dy-

namic marginal cost e¢ ciency is greater than one, then the decreasing e¤ect

(in terms of absolute value) is less than in the case that this dynamic mar-
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ginal cost e¢ ciency is one. If taking this dynamic marginal cost e¢ ciency to

be one as a criterion, the need to correct this decreasing e¤ect by multiply-

ing by this dynamic marginal cost e¢ ciency, therefore, arises. Consequently,

@pGURFi;j;t

�
@EFDi;t�1 �

n
EFDi;t +

�
@ lnCDAVi;t

�
@EFDi;t

��1o �@MCDAV �
i;j;t

�
@EFDi;t�1

in Eq. (3.1.1) can be concisely interpreted as the net e¤ect of the improve-

ment in dynamic cost e¢ ciency in the previous period on the GURP of the

j-th planned optimal �nancial good on the cost frontier in the current pe-

riod and on the dynamic actual marginal variable cost with respect to the

same planned optimal �nancial good in the current period, which accounts

for the correction in dynamic marginal cost e¢ ciency in the current period

(hereafter �the net e¤ect�). In addition, @2 lnCDAVi;t

�
@EFDi;t�1@EF

D
i;t in Eq.

(3.1.1) can be interpreted as the e¤ect of the same improvement in dynamic

cost e¢ ciency on the elasticity of dynamic actual variable cost in the cur-

rent period with respect to dynamic cost e¢ ciency in the current period

(hereafter �the e¤ect on the elasticity�). The remainder of Eq. (3.1.1),�
@ lnCDAVi;t

�
@EFDi;t

�2
, and MCDAV �

i;j;t can be interpreted as coe¢ cients con-

necting the net e¤ect and the e¤ect on the elasticity, which use the product

of these coe¢ cients as a common criterion (i.e., denominator). From the

proof of Proposition 5, the net e¤ect is based on MCDAV �
i;j;t and the e¤ect on

the elasticity is based on
�
@ lnCDAVi;t

�
@EFDi;t

�2
, so the need to multiply these

coe¢ cients in order to connect these e¤ects based on the product of these

coe¢ cients arises. Generally speaking, the numerator of Eq. (3.1.1) can be

interpreted as the sum of the net e¤ect based on MCDAV �
i;j;t and the e¤ect on

the elasticity, which is based on
�
@ lnCDAVi;t

�
@EFDi;t

�2
. For the denominator

of Eq. (3.1.1), the interpretation is similar to that of the numerator of Eq.

(3.1.1) with the exception of replacing EFDi;t�1 with q
p�
i;j;t. The denominator is

the sum of the net e¤ect of an increase in the j-th planned optimal �nancial

good in the current period and the e¤ect of the same increase in the j-th

planned optimal �nancial good. Similar to the numerator, the former net ef-

fect is on the same GURP and on the same dynamic actual marginal variable

cost. This net e¤ect is normalized by the same dynamic actual marginal vari-

able cost and accounts for the correction in dynamic marginal cost e¢ ciency

in the current period. The latter e¤ect is on the same elasticity of dynamic

60



actual variable cost and is normalized by the square of the same elasticity.

Consequently, if both the numerator and denominator are simultaneously

positive or negative, then the e¢ cient structure hypothesis is accepted.

Proposition 6 @qp�i;j;t
�
@EFDi;t�1 is, furthermore, expressed as follows:

@qp�i;j;t
@EFDi;t�1

=

24Ai;j;t � @ lnCDAVi;t

@EFDi;t

!2
+MCDAV �i;j;t �

@2 lnCDAVi;t

@EFDi;t�1@EF
D
i;t

35
,24Bi;j;t � @ lnCDAVi;t

@EFDi;t

!2
+MCDAV �i;j;t �

@2 lnCDAVi;t

@qp�i;j;t@EF
D
i;t

35 , (3.1.3)

where Ai;j;t and Bi;j;t are respectively expressed as follows:

Ai;j;t =

 
@pGURFi;j;t

@EFDi;t�1
�
@pGURAi;j;t

@EFDi;t�1

!
+
@PIEi;j;t
@EFDi;t�1

+
@MCDAV �i;j;t

@EFDi;t�1
�
MCDAV �i;j;t �MCDFV �i;j;t

MCDAV �i;j;t

, (3.1.4)

Bi;j;t =

 
@pGURFi;j;t

@qp�i;j;t
�
@pGURAi;j;t

@qp�i;j;t

!
+
@PIEi;j;t
@qp�i;j;t

+
@MCDAV �i;j;t

@qp�i;j;t
�
MCDAV �i;j;t �MCDFV �i;j;t

MCDAV �i;j;t

. (3.1.5)

Proof. From Proposition 5 (Eq. (3.1.1)), Ai;j;t is initially expressed as

follows:

Ai;j;t =
@pGURFi;j;t

@EFDi;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@EFDi;t�1
. (P6.1)
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Rearranging this equation then gives

Ai;j;t =
@pGURFi;j;t

@EFDi;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@EFDi;t�1

=

 
@pGURFi;j;t

@EFDi;t�1
�
@pGURAi;j;t

@EFDi;t�1

!
+

 
@pGURAi;j;t

@EFDi;t�1
�
@MCDAV �

i;j;t

@EFDi;t�1

!

+
@MCDAV �

i;j;t

@EFDi;t�1
�

241�
8<:EFDi;t +

 
@ lnCDAVi;t

@EFDi;t

!�19=;
35 . (P6.2)

FromRemark 2 (Eq. (2.2.3.10)), the second term in this equation is expressed

as follows:
@pGURAi;j;t

@EFDi;t�1
�
@MCDAV �

i;j;t

@EFDi;t�1
=
@PIE i;j;t
@EFDi;t�1

. (P6.3)

From Proposition 1 (Eq. (2.1.11.1)), the third term in the same equation is

expressed as follows:

@MCDAV �
i;j;t

@EFDi;t�1
�

241�
8<:EFDi;t +

 
@ lnCDAVi;t

@EFDi;t

!�19=;
35 = @MCDAV �

i;j;t

@EFDi;t�1
�
 
1�

MCDFV �
i;j;t

MCDAV �
i;j;t

!

=
@MCDAV �

i;j;t

@EFDi;t�1
�
MCDAV �

i;j;t �MCDFV �
i;j;t

MCDAV �
i;j;t

. (P6.4)

Substituting Eqs. (P6.3) and (P6.4) into Eq. (P6.2) then gives

Ai;j;t =

 
@pGURFi;j;t

@EFDi;t�1
�
@pGURAi;j;t

@EFDi;t�1

!
+
@PIE i;j;t
@EFDi;t�1

+
@MCDAV �

i;j;t

@EFDi;t�1
�
MCDAV �

i;j;t �MCDFV �
i;j;t

MCDAV �
i;j;t

.

The derivation of Bi;j;t (Eq. (3.1.5)) is similar to the derivation of Ai;j;t (Eq.

(3.1.4)) with the exception of replacing EFDi;t�1 with q
p�
i;j;t, so we omit the

derivation.

From Proposition 6, the net e¤ect of the improvement in dynamic cost

e¢ ciency in the previous period on the GURP of the j-th planned optimal

�nancial good on the cost frontier in the current period and on the dynamic

actual marginal variable cost with respect to the same planned optimal �nan-
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cial good in the current period, which accounts for the correction in dynamic

marginal cost e¢ ciency in the current period, can be expressed as the sum

of the e¤ects of the improvement in dynamic cost e¢ ciency in the previous

period on the e¢ ciency di¤erence of the GURP of the j-th planned opti-

mal �nancial good in the current period (i.e., pGURFi;j;t � pGURAi;j;t ), the pricing

error of the same �nancial good (i.e., PIE i;j;t (= pGURAi;j;t �MCDAV �
i;j;t )), and

the dynamic actual marginal variable cost with respect to the same �nancial

good (i.e., MCDAV �
i;j;t ), which accounts for the correction in dynamic marginal

cost e¢ ciency in the current period (i.e.,
�
MCDAV �

i;j;t �MCDFV �
i;j;t

��
MCDAV �

i;j;t ).

Regarding the net e¤ect of an increase in the j-th planned optimal �nan-

cial good in the current period, the expression is similar to the net e¤ect of

the improvement in dynamic cost e¢ ciency in the previous period with the

exception of replacing EFDi;t�1 with q
p�
i;j;t.

3.2 Mathematical Formulations and Theoretical Inter-

pretations of the Quiet-Life Hypothesis

As already noted, the quiet-life hypothesis concerns the relationship between

market concentration and �rm e¢ ciency. Similar to Homma et al. ( 2014), by

regarding this as the relationship between the Her�ndahl index and dynamic

cost e¢ ciency, this section endeavors to rigorously formulate and theoretically

interpret this hypothesis.

De�nition 18 (Acceptance of the Quiet-Life Hypothesis) If dynamic
cost e¢ ciency in the current period decreases because of an increase in the

Her�ndahl index in the previous period, then the quiet-life hypothesis is ac-

cepted. Speci�cally, if the sign of @EFDi;t /@HIj;t�1 is negative (i.e.,

@EFDi;t /@HIj;t�1 < 0), then the quiet-life hypothesis is accepted.

Similar to De�nition 17, from this de�nition, the following two proposi-

tions are derived.
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Proposition 7 @EFDi;t /@HIj;t�1 is expressed as follows:

@EFDi;t
@HIj;t�1

=

2424 @pGURFi;j;t

@HIj;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �i;j;t

@HIj;t�1

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �i;j;t �
@2 lnCDAVi;t

@HIj;t�1@EFDi;t

#,8<:MCDAV �i;j;t �
 
@ lnCDAVi;t

@EFDi;t

!29=; , (3.2.1)

where @pGURFi;j;t /@HIj;t�1 is expressed as

@pGURFi;j;t

@HIj;t�1
=
@pSURFi;j;t

@HIj;t�1
+
@�BPF�i;j;t

@HIj;t�1
+
@MRSBPF��e;i;t

@HIj;t�1
+
@$BPF�

i;j;t

@HIj;t�1
. (3.2.2)

Proof. The proof of this proposition is similar to Eq. (P5.9) in the proof
of Proposition 5 with the exception of replacing EFDi;t�1 with HIj;t�1, so we

omit the derivation.

The interpretation of Eq. (3.2.1) in Proposition 7 is similar to the numer-

ator of Eq. (3.1.1) in Proposition 5 with the exception of replacing EFDi;t�1
with HIj;t�1. Eq. (3.2.1) is the sum of the net e¤ect of an increase in the

Her�ndahl index in the previous period and the e¤ect of the same increase

in the Her�ndahl index. Similar to the numerator of Eq. (3.1.1) in Propo-

sition 5, the former net e¤ect is on the GURP of the j-th planned optimal

�nancial good on the cost frontier in the current period and on the dynamic

actual marginal variable cost with respect to the same planned optimal �-

nancial good in the current period. This net e¤ect is normalized by the

same dynamic actual marginal variable cost and accounts for the correction

in dynamic marginal cost e¢ ciency in the current period. The latter e¤ect

is on the elasticity of dynamic actual variable cost in the current period

with respect to dynamic cost e¢ ciency in the current period and is normal-

ized by the square of the same elasticity. Under the assumption that the

j-th �nancial good is an output (i.e., pSURFi;j;t , MCDFV �
i;j;t > 0) and the sign

of dynamic marginal cost e¢ ciency in the current period is positive (i.e.,

MCDFV �
i;j;t

�
MCDAV �

i;j;t > 0), if the numerator of Eq. (3.2.1) in Proposition 7 is

negative, then the quiet-life hypothesis is accepted.
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Proposition 8 @EFDi;t /@HIj;t�1 is, furthermore, expressed as follows:

@EFDi;t
@HIj;t�1

=

24Ai;j;t � @ lnCDAVi;t

@EFDi;t

!2
+MCDAV �i;j;t �

@2 lnCDAVi;t

@HIj;t�1@EFDi;t

35
,8<:MCDAV �i;j;t �

 
@ lnCDAVi;t

@EFDi;t

!29=; , (3.2.3)

where Ai;j;t is expressed as

Ai;j;t =

 
@pGURFi;j;t

@HIj;t�1
�
@pGURAi;j;t

@HIj;t�1

!
+
@PIEi;j;t
@HIj;t�1

+
@MCDAV �i;j;t

@HIj;t�1
�
MCDAV �i;j;t �MCDFV �i;j;t

MCDAV �i;j;t

. (3.2.4)

Proof. The derivation of Ai;j;t (Eq. (3.2.4)) is similar to the derivation of
Ai;j;t in Eq. (3.1.4) of Proposition 6 with the exception of replacing EFDi;t�1
with HIj;t�1, so we omit the derivation.

The interpretation of Ai;j;t (Eq. (3.2.4)) is similar to the interpretation of

Ai;j;t in Eq. (3.1.4) of Proposition 6 with the exception of replacing EFDi;t�1
with HIj;t�1. The net e¤ect of an increase in the Her�ndahl index in the

previous period on the GURP of the j-th planned optimal �nancial good

on the cost frontier in the current period and on dynamic actual marginal

variable cost with respect to the same planned optimal �nancial good in the

current period, which accounts for the correction in dynamic marginal cost

e¢ ciency in the current period, can be expressed as the sum of the e¤ects of

an increase in the Her�ndahl index in the previous period on the e¢ ciency

di¤erence of the GURP of the j-th planned optimal �nancial good in the

current period (i.e., pGURFi;j;t � pGURAi;j;t ), the pricing error of the same �nan-

cial good (i.e., PIE i;j;t (= pGURAi;j;t �MCDAV �
i;j;t )), and dynamic actual marginal

variable cost with respect to the same �nancial good (i.e., MCDAV �
i;j;t ), which

accounts for the correction in dynamic marginal cost e¢ ciency in the current

period (i.e.,
�
MCDAV �

i;j;t �MCDFV �
i;j;t

��
MCDAV �

i;j;t ).
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4 Relative Magnitude of the E¢ cient Struc-

ture Hypothesis to the Quiet-Life Hypoth-

esis

This section de�nes the relative magnitude of the e¢ cient structure hypothe-

sis to the quiet-life hypothesis and clari�es the condition whereby the former

is superior (or inferior) in magnitude to the latter. As already noted, if a

criterion for judging industrial organization policies is that support for both

hypotheses should be associated with increased EGLI on the cost frontier,

then anti-monopoly and anti-concentration policies are necessary if the quiet-

life hypothesis is superior in magnitude to the e¢ cient structure hypothesis.

If the e¢ cient structure hypothesis is, however, superior in magnitude to the

quiet-life hypothesis, then new industrial organization policies which di¤er

from existing anti-monopoly and anti-concentration policies, and in which

an e¢ ciency improvement would decrease the EGLI on the cost frontier, are

needed. Consequently, from the perspective of industrial organization and

anti-monopoly policies, it is important to clarify which of these hypotheses

are superior, because this determines the recommended policy interventions.

De�nition 19 (Relative Magnitude) The relative magnitude of the e¢ -
cient structure hypothesis to the quiet-life hypothesis, denoted by RMi;j;t, is

de�ned as follows:

RMi;j;t =
@ ln qp�i;j;t
@EFDi;t�1

�
@EFDi;t

@ lnHIj;t�1
. (4.1)

RMi;j;t is the ratio of the elasticity of the j-th planned optimal �nancial

good in the current period with respect to dynamic cost e¢ ciency in the

previous period to the elasticity of dynamic cost e¢ ciency in the current

period with respect to the Her�ndahl index in the previous period. From

this de�nition and Propositions 5 and 7, the following proposition holds.
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Proposition 9 RMi;j;t is expressed as follows:

RMi;j;t =

242424 @pGURFi;j;t

@EFDi;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �i;j;t

@EFDi;t�1

35
�
 
@ lnCDAVi;t

@EFDi;t

!2
+MCDAV �i;j;t �

@2 lnCDAVi;t

@EFDi;t�1@EF
D
i;t

35 �
8<:MCDAV �i;j;t �

 
@ lnCDAVi;t

@EFDi;t

!29=;
35

,242424@pGURFi;j;t

@ ln qp�i;j;t
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �i;j;t

@ ln qp�i;j;t

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �i;j;t �
@2 lnCDAVi;t

@ ln qp�i;j;t@EF
D
i;t

#
�

2424 @pGURFi;j;t

@ lnHIj;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=;
�
@MCDAV �i;j;t

@ lnHIj;t�1

#
�
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3535 . (4.2)

Proof. From De�nition 19 and Proposition 5, the numerator of RMi;j;t is

expressed as follows:

@ ln qp�i;j;t
@EFDi;t�1

=
@qp�i;j;t
@EFDi;t�1

� 1

qp�i;j;t

=
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�
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Similarly, from De�nition 19 and Proposition 7, the denominator of RMi;j;t

is expressed as follows:

@EFDi;t
@ lnHIj;t�1

=
@EFDi;t
@HIj;t�1

�HIj;t�1

=

2424 @pGURFi;j;t

@ lnHIj;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@ lnHIj;t�1

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �
i;j;t �

@2 lnCDAVi;t

@ lnHIj;t�1@EFDi;t

#,8<:MCDAV �
i;j;t �

 
@ lnCDAVi;t

@EFDi;t

!29=; . (P9.2)

Substituting Eqs. (P9.1) and (P9.2) into Eq. (4.1) then yields Eq. (4.2).

From Proposition 9, the following proposition is then established.

Proposition 10 Considering CMi;j;t as a criterion, if dynamic actual mar-

ginal variable cost with respect to the j-th planned optimal �nancial good in

the current period is less than CMi;j;t (i.e., MCDAV �i;j;t < CMi;j;t), then the e¢ -

cient structure hypothesis is superior in magnitude to the quiet-life hypothesis,

whereas if the same dynamic actual marginal variable cost is greater than the

same criterion (i.e., MCDAV �i;j;t > CMi;j;t), then the quiet-life hypothesis is su-

perior in magnitude to the e¢ cient structure hypothesis, where CMi;j;t is as
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follows:

CMi;j;t = �
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!235 .
(4.3)
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Proof. From Proposition 9 (Eq. (4.2)), the following relations between

inequalities hold:

RMi;j;t =
@ ln qp�i;j;t
@EFDi;t�1

�
@EFDi;t

@ lnHIj;t�1
< ( > , = )� 1

()

2424 @pGURFi;j;t

@EFDi;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@EFDi;t�1

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �
i;j;t �

@2 lnCDAVi;t

@EFDi;t�1@EF
D
i;t

#
�

8<:MCDAV �
i;j;t �

 
@ lnCDAVi;t

@EFDi;t

!29=;
< ( > , = )�

2424@pGURFi;j;t

@ ln qp�i;j;t
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@ ln qp�i;j;t

35
�
 
@ lnCDAVi;t

@EFDi;t

!2
+MCDAV �

i;j;t �
@2 lnCDAVi;t

@ ln qp�i;j;t@EF
D
i;t

35 � "" @pGURFi;j;t

@ lnHIj;t�1

�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@ lnHIj;t�1

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �
i;j;t �

@2 lnCDAVi;t

@ lnHIj;t�1@EFDi;t

#

() MCDAV �
i;j;t < ( > , = )�

2424@pGURFi;j;t

@ ln qp�i;j;t
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@ ln qp�i;j;t

35
�
 
@ lnCDAVi;t

@EFDi;t

!2
+MCDAV �

i;j;t �
@2 lnCDAVi;t

@ ln qp�i;j;t@EF
D
i;t

35 � "" @pGURFi;j;t

@ lnHIj;t�1

�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �
i;j;t

@ lnHIj;t�1

35 � @ lnCDAVi;t

@EFDi;t

!2

+MCDAV �
i;j;t �

@2 lnCDAVi;t

@ lnHIj;t�1@EFDi;t

#,242424 @pGURFi;j;t

@EFDi;t�1
�

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=;
�
@MCDAV �

i;j;t

@EFDi;t�1

#
�
 
@ lnCDAVi;t

@EFDi;t

!2
+MCDAV �

i;j;t �
@2 lnCDAVi;t

@EFDi;t�1@EF
D
i;t

35 � @ lnCDAVi;t

@EFDi;t

!235
( = CMi;j;t).

70



5 E¢ cient Structure and Quiet-Life Hypothe-

ses and the EGLI on the Cost Frontier

This section clari�es under what assumptions either or both the e¢ cient

structure and quiet life hypotheses increase or decrease the EGLI on the

cost frontier and considers the implications thereof. Results suggest that

both desirable and undesirable cases exist, and the following two points are

particularly noteworthy: (1) it is not always possible to justify anti-monopoly

and anti-concentration policies using support for the quiet-life hypothesis;

and (2) new industrial organization policies are needed if support for the

e¢ cient structure hypothesis is undesirable. In terms of the �rst point, there

is the case where support for the quiet-life hypotheses decreases the EGLI

on the cost frontier (i.e., increases the degree of competition on the cost

frontier), so support for this hypothesis cannot always be used to justify

anti-monopoly and anti-concentration policies, even if an increase in market

concentration decreases dynamic cost e¢ ciency. Justi�cation for such policies

is restricted to the case where an increase in market concentration increases

the EGLI on the cost frontier (i.e., decreases the degree of competition on the

cost frontier). Thus the enactment and enforcement of anti-monopoly and

anti-concentration policies requires careful consideration. In terms of the

second point, thus far, a theoretical foundation suggesting that support for

the e¢ cient structure hypothesis is undesirable is not discerned. However,

at least theoretically, there are cases where both support for the e¢ cient

structure hypothesis decreases the EGLI on the cost frontier (i.e., increases

the degree of competition on the cost frontier) and increases the EGLI on the

cost frontier (i.e., decreases the degree of competition on the cost frontier). In

the latter case, it is judged that support for the e¢ cient structure hypothesis

is undesirable: new industrial organization policies would be needed which

di¤er from existing anti-monopoly and anti-concentration policies and under

which an e¢ ciency improvement would increase the degree of competition
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on the cost frontier.

From De�nition 14 and Proposition 5, regarding the relation between the

e¢ cient structure hypothesis and the EGLI on the cost frontier, the following

two propositions can be derived for clarifying under what assumptions the

e¢ cient structure hypothesis increases or decreases the EGLI on the cost

frontier.

Proposition 11 The EGLI on the cost frontier decreases with dynamic cost
e¢ ciency in the previous period and the j-th optimal planned �nancial good

in the current period (i.e., the degree of competition on the cost frontier

increases with them, @EGLIFi;j;t
�
@EFDi;t�1 < 0 and @EGLIFi;j;t

�
@qp�i;j;t < 0)

if and only if the e¢ cient structure hypothesis is accepted (i.e., dynamic

e¢ ciency improves, @qp�i;j;t
�
@EFDi;t�1 > 0) under the following assumptions:

(A1) The j-th �nancial good is an output (i.e., pSURFi;j;t > 0 and MCDFV �i;j;t > 0);

and (A2) One of the following two pairs of inequalities holds:

@pGURFi;j;t

�
@EFDi;t�1 > max

�
MEi;j;t;

�
MCDFV �i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
@EFDi;t�1

��
and @pGURFi;j;t

�
@qp�i;j;t > max

�
MQi;j;t;

�
MCDFV �i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
@qp�i;j;t

��
,

or

�
MCDFV �i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
@EFDi;t�1

�
< @pGURFi;j;t

�
@EFDi;t�1 < MEi;j;t

and
�
MCDFV �i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
@qp�i;j;t

�
< @pGURFi;j;t

�
@qp�i;j;t < MQi;j;t,
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where MEi;j;t and MQi;j;t are respectively expressed as

MEi;j;t =

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �i;j;t
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@EFDi;t�1@EF
D
i;t

, 
@ lnCDAVi;t

@EFDi;t

!2
, (5.1)

MQi;j;t =

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �i;j;t

@qp�i;j;t
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@2 lnCDAVi;t

@qp�i;j;t@EF
D
i;t

, 
@ lnCDAVi;t

@EFDi;t

!2
. (5.2)

Proof. From De�nition 14 (Eq. (2.2.4.3)), the following equation holds:

@EGLIFi;j;t
@X

=
�
pSURFi;j;t

��1 � MCDFV �
i;j;t

pSURFi;j;t

�
@pSURFi;j;t

@X
�
@MCDFV �

i;j;t

@X

!
,

(X = EFDi;t�1 or q
p�
i;j;t). (P11.1)

From this equation, under assumption (A1), the following relation is then

revealed:

@EGLIFi;j;t
@X

> ( < )0()
MCDFV �

i;j;t

pSURFi;j;t

�
@pSURFi;j;t

@X
> ( < )

@MCDFV �
i;j;t

@X

 
=
@pGURFi;j;t

@X

!
,

(X = EFDi;t�1 or q
p�
i;j;t). (P11.2)

In addition, from Proposition 5 (Eq. (3.1.1)), the following relation holds:

@qp�i;j;t
@EFDi;t�1

> 0()
@pGURFi;j;t

@EFDi;t�1
> MEi;j;t and

@pGURFi;j;t

@qp�i;j;t
> MQi;j;t, or

@pGURFi;j;t

@EFDi;t�1
< MEi;j;t and

@pGURFi;j;t

@qp�i;j;t
< MQi;j;t, (P11.3)

where MEi;j;t and MQi;j;t are respectively expressed as Eqs. (5.1) and (5.2).
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From relations (P11.2) and (P11.3), under assumptions (A1) and (A2), the

following relation is, therefore, established:

@qp�i;j;t
@EFDi;t�1

> 0()
@EGLIFi;j;t
@EFDi;t�1

< 0 and
@EGLIFi;j;t
@qp�i;j;t

< 0.

Proposition 12 The EGLI on the cost frontier increases with dynamic cost
e¢ ciency in the previous period and the j-th optimal planned �nancial good

in the current period (i.e., the degree of competition on the cost frontier

decreases with them, @EGLIFi;j;t
�
@EFDi;t�1 > 0 and @EGLIFi;j;t

�
@qp�i;j;t > 0)

if and only if the e¢ cient structure hypothesis is accepted (i.e., dynamic

e¢ ciency improves, @qp�i;j;t
�
@EFDi;t�1 > 0) under the following assumptions:

(A3) assumption (A1) holds; and (A4) One of the following two pairs of

inequalities holds:

�
MCDFV �i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
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�
> @pGURFi;j;t

�
@EFDi;t�1 > MEi;j;t

and
�
MCDFV �i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
@qp�i;j;t

�
> @pGURFi;j;t

�
@qp�i;j;t > MQi;j;t,

or

@pGURFi;j;t

�
@EFDi;t�1 < min

�
MEi;j;t;

�
MCDFV �i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
@EFDi;t�1

��
and @pGURFi;j;t

�
@qp�i;j;t < min

�
MQi;j;t;

�
MCDFV �i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
@qp�i;j;t

��
,

where MEi;j;t and MQi;j;t are respectively expressed as Eqs. (5.1) and (5.2).

Proof. The proof of this proposition is similar to the proof of Proposition
11, so we omit the derivation.

Consider the following. First, the e¤ect of improved dynamic cost e¢ -

ciency in the previous period on the GURP of the j-th planned optimal �-

nancial good on the cost frontier (i.e., the dynamic frontier marginal variable

cost with respect to the j-th planned optimal �nancial good) in the current

period (i.e., @pGURFi;j;t

�
@EFDi;t�1 , hereafter EA) as a criterion for judging the

two magnitudes of the subtraction of the e¤ect of the same improvement in
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dynamic cost e¢ ciency on the elasticity of dynamic actual variable cost in

the current period with respect to dynamic cost e¢ ciency in the current pe-

riod, which is corrected by the ratio of dynamic actual marginal variable cost

with respect to the j-th planned optimal �nancial good in the current period

to the square of this elasticity, from the e¤ect of the same improvement in

dynamic cost e¢ ciency on the same dynamic actual marginal variable cost,

which is corrected by the dynamic marginal cost e¢ ciency in the current

period (i.e., MEi;j;t, hereafter EB), and the e¤ect of the same improvement

in dynamic cost e¢ ciency on the SURP of the j-th planned optimal �nan-

cial good on the cost frontier in the current period, which is discounted by

the ratio of dynamic frontier marginal variable cost with respect to the j-

th planned optimal �nancial good in the current period to the same SURP

on the cost frontier (i.e.,
�
MCDFV �

i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
@EFDi;t�1

�
, hereafter

EC). Second, consider the foregoing in terms of the e¤ect of an increase in

the j-th planned optimal �nancial good in the current period on the same

GURP on the cost frontier (i.e., @pGURFi;j;t

�
@qp�i;j;t , hereafter QA) as a crite-

rion for judging the two magnitudes of the subtraction of the corrected e¤ect

of the same increase in the j-th planned optimal �nancial good on the same

elasticity of dynamic actual variable cost from the corrected e¤ect of the same

increase in the j-th planned optimal �nancial good on the same dynamic ac-

tual marginal variable cost (i.e., MQi;j;t, hereafter QB), and the discounted

e¤ect of the same increase in the j-th planned optimal �nancial good on the

same SURP on the cost frontier (i.e.,
�
MCDFV �

i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t

�
@qp�i;j;t

�
,

hereafter QC). Then from assumption (A2) in Proposition 11, the EB and

EC are small from the perspective of the EA, and the QB and QC are also

small from the perspective of the QA, or the EB is large whilst the EC is

small from the perspective of the EA, and the QB is large whilst the QC is

small from the perspective of the QA. Similarly, from assumption (A4) in

Proposition 12, the EB is small and the EC is large from the perspective of

the EA, and the QB is small and the QC is large from the perspective of the

QA, or the EB and EC are large from the perspective of the EA, and the

QB and QC are also large from the perspective of the QA.

Similar to Propositions 11 and 12, from De�nition 14 and Proposition
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7, regarding the relation between the quiet-life hypothesis and the EGLI on

the cost frontier, the following two propositions can be derived to theoret-

ically clarify under what assumptions the quiet-life hypothesis increases or

decreases the EGLI on the cost frontier.

Proposition 13 The EGLI on the cost frontier decreases with the Her�nd-
ahl index in the previous period (i.e., the degree of competition on the cost

frontier increases with it, @EGLIFi;j;t /@HIj;t�1 < 0) if and only if the quiet-

life hypothesis is accepted (i.e., @EFDi;t /@HIj;t�1 < 0). Thus, the EGLI on

the cost frontier increases with dynamic cost e¢ ciency in the "current" pe-

riod (i.e., @EGLIFi;j;t
�
@EFDi;t > 0) under the following assumptions: (A5)

The j-th �nancial good is an output (i.e., pSURFi;j;t > 0 and MCDFV �i;j;t > 0) and

the sign of MCDAV �i;j;t is the same as the sign of MCDFV �i;j;t (i.e., MCDAV �i;j;t > 0);

and (A6) The following inequality holds:

MCDFV �i;j;t

pSURFi;j;t

�
@pSURFi;j;t

@HIj;t�1
<
@pGURFi;j;t

@HIj;t�1
< MHi;j;t,

where MHi;j;t is expressed as

MHi;j;t =

8<:EFDi;t +
 
@ lnCDAVi;t

@EFDi;t

!�19=; � @MCDAV �i;j;t

@HIj;t�1

�MCDAV �i;j;t �
@2 lnCDAVi;t

@HIj;t�1@EFDi;t

, 
@ lnCDAVi;t

@EFDi;t

!2
. (5.3)

Proof. From Eq. (P11.1), under assumption (A5), and replacing EFDi;t�1 or

qp�i;j;t with HIj;t�1, the following relation is revealed:

@EGLIFi;j;t
@HIj;t�1

> ( < )0()
MCDFV �

i;j;t

pSURFi;j;t

�
@pSURFi;j;t

@HIj;t�1
> ( < )

@MCDFV �
i;j;t

@HIj;t�1

 
=
@pGURFi;j;t

@HIj;t�1

!
.

(P13.1)

In addition, from Proposition 7 (Eq. (3.2.1)), under assumption (A5), the
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following relation holds:

@EFDi;t
@HIj;t�1

< 0()
@pGURFi;j;t

@HIj;t�1
< MHi;j;t, (P13.2)

where MHi;j;t is expressed as Eq. (5.3). Then from relations (P13.1) and

(P13.2) under assumptions (A5) and (A6), the following relation is estab-

lished:
@EFDi;t
@HIj;t�1

< 0()
@EGLIFi;j;t
@HIj;t�1

< 0.

Consequently, from this relation, the following inequality holds:

@EGLIFi;j;t
@EFDi;t

=
@EGLIFi;j;t
@HIj;t�1

�
 
@EFDi;t
@HIj;t�1

!�1
> 0.

Proposition 14 The EGLI on the cost frontier increases with the Her�nd-
ahl index in the previous period (i.e., the degree of competition on the cost

frontier decreases, @EGLIFi;j;t /@HIj;t�1 > 0) if and only if the quiet-life hy-

pothesis is accepted (i.e., @EFDi;t /@HIj;t�1 < 0). The EGLI on the cost

frontier decreases with dynamic cost e¢ ciency in the "current" period (i.e.,

@EGLIFi;j;t
�
@EFDi;t < 0) under the following assumptions: (A7) Assumption

(A5) holds; and (A8) The following inequality holds:

@pGURFi;j;t

@HIj;t�1
< min

 
MHi;j;t;

MCDFV �i;j;t

pSURFi;j;t

�
@pSURFi;j;t

@HIj;t�1

!
,

where MHi;j;t is expressed as Eq. (5.3).

Proof. The proof of this proposition is similar to the proof of Proposition
13, so we omit the derivation.

Similar to Propositions 11 and 12, considering the e¤ect of an increase

in the Her�ndahl index in the previous period on the GURP of the j-th

planned optimal �nancial good on the cost frontier in the current period (i.e.,

@pGURFi;j;t /@HIj;t�1 , hereafter HA) as a criterion for judging the two magni-

tudes of the subtraction of the e¤ect of the same increase in the Her�ndahl
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index on the elasticity of dynamic actual variable cost in the current period

with respect to dynamic cost e¢ ciency in the current period, which is cor-

rected by the ratio of dynamic actual marginal variable cost with respect to

the j-th planned optimal �nancial good in the current period to the square

of this elasticity, from the e¤ect of the same increase in the Her�ndahl index

on the same dynamic actual marginal variable cost, which is corrected by

dynamic marginal cost e¢ ciency in the current period (i.e., MHi;j;t, here-

after HB), and the e¤ect of the same increase in the Her�ndahl index on

the SURP of the j-th planned optimal �nancial good on the cost frontier

in the current period, which is discounted by the ratio of dynamic frontier

marginal variable cost with respect to the j-th planned optimal �nancial

good in the current period to the same SURP on the cost frontier (i.e.,�
MCDFV �

i;j;t

�
pSURFi;j;t

�
�
�
@pSURFi;j;t /@HIj;t�1

�
, hereafter HC), assumption (A6) in

Proposition 13 means that the HB is large and the HC is small from the

perspective of the HA. Similarly, assumption (A8) in Proposition 14 means

that the HB and HC are large from the perspective of the HA.

From the perspective of the EGLI on the cost frontier, in the case that

the EC is small from the perspective of the EA, and the QC is also small

from the perspective of the QA, then support for the e¢ cient structure hy-

pothesis is desirable, whereas if the EC is large from the perspective of the

EA, and the QC is also large from the perspective of the QA, then support

for this hypothesis is undesirable. In the former case, the ratio of the dis-

crepancy between the SURP on the cost frontier and the dynamic frontier

marginal variable cost to the same SURP decreases, so the EGLI on the

cost frontier decreases (i.e., the degree of competition on the cost frontier

increases), whereas, in the latter case, the ratio increases, so the EGLI on

the cost frontier increases (i.e., the degree of competition on the cost frontier

decreases). Regarding the quiet-life hypothesis, where HC is small from the

perspective of HA, support for this hypothesis is desirable. In this case, the

EGLI on the cost frontier decreases with the Her�ndahl index (i.e., the degree

of competition on the cost frontier increases with it), so anti-monopoly and

anti-concentration policies are unnecessary, even if dynamic cost e¢ ciency

decreases with the Her�ndahl index. Although it is for empirical studies to
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explore whether and when this case actually exists, at least theoretically,

support for the quiet-life hypothesis need not become a justi�cation for anti-

monopoly and anti-concentration policies. Justi�cation for such policies is

restricted to where the EGLI on the cost frontier increases with the Her�nd-

ahl index (i.e., the degree of competition on the cost frontier decreases with

it), so enactment and enforcement of such policies require careful consider-

ation. Similarly, regarding the e¢ cient structure hypotheses, where the EC

is large from the perspective of the EA, and the QC is also large from the

perspective of the QA, support for this hypothesis is undesirable, so policy

interventions which decrease the EC and QC are necessary. Put di¤erently,

policies which do not substantially increase the SURP on the cost frontier,

or which substantially decrease the discrepancy between the SURP on the

cost frontier and the dynamic frontier marginal variable cost are required.

In any case, new industrial organization policies which di¤er from existing

anti-monopoly and anti-concentration policies, and under which an e¢ ciency

improvement would increase the degree of competition on the cost frontier,

are required. This novel implication for existing industrial organization poli-

cies is revealed by providing the theoretical foundation for suggesting that

support for the e¢ cient structure hypothesis is undesirable.

6 Intertemporal Regular Linkages

This section theoretically clari�es the relations between the e¢ cient struc-

ture and quiet-life hypotheses and the intertemporal regular linkages (i.e.,

cyclical linkages, monotonic trending linkages, and terminal up-and-down

volatile linkages) of single-period dynamic cost e¢ ciencies, single-period op-

timal planned �nancial goods, single-period Her�ndahl indices, and single-

period EGLIs on the cost frontier.
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6.1 Intertemporal Regular Linkages of Single-Period

Dynamic Cost E¢ ciencies

The intertemporal regular linkage (i.e., cyclical linkage, monotonic trending

linkage, or terminal up-and-down volatile linkage) of single-period dynamic

cost e¢ ciencies is principally de�ned as the following relations between dy-

namic cost e¢ ciencies in period t� 1 and period t� 1+2T (i.e., EFDi;t�1 and
EFDi;t�1+2T ), where T is a natural number.

De�nition 20 (Intertemporal Regular Linkage of Dynamic Cost E¢ ciencies)
The intertemporal regular linkage of single-period dynamic cost e¢ ciencies

exists if any one of the following linkages (i.e., cyclical linkage, monotonic

trending linkage, and terminal up-and-down volatile linkage) exists mainly

between the dynamic cost e¢ ciencies in period t � 1 and period t � 1 + 2T
(i.e., EFDi;t�1 and EF

D
i;t�1+2T ), where T is a natural number. (E1) (Cyclical

Linkage) Dynamic cost e¢ ciency in period t � 2 + 2T (i.e., EFDi;t�2+2T ) is
dependent on dynamic cost e¢ ciency in period t� 3 + 2T (i.e., EFDi;t�3+2T ),
so @EFDi;t�2+2T

�
@EFDi;t�3+2T is positive, negative, or zero. Dynamic cost

e¢ ciency in period t � 1 + 2T (i.e., EFDi;t�1+2T ) is, moreover, dependent

on dynamic cost e¢ ciency in period t � 1 (i.e., EFDi;t�1), so the sign of
@EFDi;t�1+2T

�
@EFDi;t�1 is positive if T is an even number or negative if T

is an odd number; (E2) (Monotonic Trending Linkage) EFDi;t�2+2T is de-

pendent on EFDi;t�3+2T , so @EF
D
i;t�2+2T

�
@EFDi;t�3+2T is nonnegative (i.e.,

@EFDi;t�2+2T
�
@EFDi;t�3+2T � 0). EFDi;t�1+2T is, moreover, dependent on EFDi;t�1,

so the sign of @EFDi;t�1+2T
�
@EFDi;t�1 is positive (i.e., @EF

D
i;t�1+2T

�
@EFDi;t�1 >

0); and (E3) (Terminal Up-and-Down Volatile Linkage) EFDi;t�2+2T is de-

pendent on EFDi;t�3+2T , so the sign of @EF
D
i;t�2+2T

�
@EFDi;t�3+2T is nega-

tive (i.e., @EFDi;t�2+2T
�
@EFDi;t�3+2T < 0). EFDi;t�1+2T is, moreover, de-

pendent on EFDi;t�1, so the sign of @EF
D
i;t�1+2T

�
@EFDi;t�1 is positive (i.e.,

@EFDi;t�1+2T
�
@EFDi;t�1 � 0).

The relations between this linkage and the e¢ cient structure and quiet-life

hypotheses are derived from the following proposition.
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Proposition 15 @EFDi;t�1+2T
�
@EFDi;t�1 , where T is a natural number, is

expressed as follows:

@EFDi;t�1+2T
@EFDi;t�1

=

TY
k=1

"
@EFDi;t�1+2k
@HIj;t�2+2k

� dHIj;t�2+2k
dqp�i;j;t�2+2k

�
@qp�i;j;t�2+2k
@EFDi;t�3+2k

#
. (6.1.1)

Proof. @EFDi;t+1
�
@EFDi;t�1 is expressed as follows:

@EFDi;t+1
@EFDi;t�1

=
@EFDi;t+1
@HIj;t

� dHIj;t
dqp�i;j;t

�
@qp�i;j;t
@EFDi;t�1

. (P15.1)

Similarly, @EFDi;t+3
�
@EFDi;t�1 is expressed as follows:

@EFDi;t+3
@EFDi;t�1

=

"
@EFDi;t+3
@HIj;t+2

� dHIj;t+2
dqp�i;j;t+2

�
@qp�i;j;t+2
@EFDi;t+1

#
�
"
@EFDi;t+1
@HIj;t

� dHIj;t
dqp�i;j;t

�
@qp�i;j;t
@EFDi;t�1

#
.

(P15.2)

Consequently, from Eqs. (P15.1) and (P15.2), @EFDi;t�1+2T
�
@EFDi;t�1 , where

T is a natural number, is expressed as Eq. (6.1.1).

From Proposition 15 (Eq. (6.1.1)), the relations between the e¢ cient

structure and quiet-life hypotheses and the intertemporal regular linkages

(i.e., cyclical linkage, monotonic trending linkage, and terminal up-and-down

volatile linkage) of single-period dynamic cost e¢ ciencies are shown as the

following three propositions.

Proposition 16 The cyclical linkage of single-period dynamic cost e¢ cien-
cies occurs if one of two triplets of assumptions holds: (A0), (A1), and (A2);

or (A0), (B1), and (B2).

(A0) Dynamic cost e¢ ciency in period t � 2 + 2T (i.e., EFDi;t�2+2T ),

where T is a natural number, is dependent on dynamic cost e¢ ciency in

period t� 3 + 2T (i.e., EFDi;t�3+2T ), so @EFDi;t�2+2T
�
@EFDi;t�3+2T is positive,

negative, or zero;

(A1) The j-th optimal planned �nancial goods in periods t� 2 + 2k (i.e.,
qp�i;j;t�2+2k), where k = 1; : : : ; T , are large; that is, the following inequalities
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hold:

qp�i;j;t�2+2k >

P
i

�
qp�i;j;t�2+2k

�2P
k q

p�
k;j;t�2+2k

�
 
1 +

X
k 6=i

dqp�k;j;t�2+2k
dqp�i;j;t�2+2k

!

�
X
h 6=i

 
qp�h;j;t�2+2k �

dqp�h;j;t�2+2k
dqp�i;j;t�2+2k

!
, (k = 1; : : : ; T ); (6.1.2)

(A2) Both the e¢ cient structure hypothesis from period t � 3 + 2k to
period t� 2+2k and the quiet-life hypothesis from period t� 2+2k to period
t� 1 + 2k are supported or unsupported; that is, one of the two pairs of the
following inequalities holds:

@qp�i;j;t�2+2k
@EFDi;t�3+2k

> 0 and
@EFDi;t�1+2k
@HIj;t�2+2k

< 0, or

@qp�i;j;t�2+2k
@EFDi;t�3+2k

< 0 and
@EFDi;t�1+2k
@HIj;t�2+2k

> 0, (k = 1; : : : ; T ); (6.1.3)

(B1) qp�i;j;t�2+2k (k = 1; : : : ; T ) are small; that is, the following inequalities

hold:

qp�i;j;t�2+2k <

P
i

�
qp�i;j;t�2+2k

�2P
k q

p�
k;j;t�2+2k

�
 
1 +

X
k 6=i

dqp�k;j;t�2+2k
dqp�i;j;t�2+2k

!

�
X
h 6=i

 
qp�h;j;t�2+2k �

dqp�h;j;t�2+2k
dqp�i;j;t�2+2k

!
, (k = 1; : : : ; T ); (6.1.4)

and (B2) Any one of the e¢ cient structure hypothesis from period t�3+2k
to period t � 2 + 2k and the quiet-life hypothesis from period t � 2 + 2k to
period t� 1+ 2k is supported or unsupported; that is, one of the two pairs of
the following inequalities holds:

@qp�i;j;t�2+2k
@EFDi;t�3+2k

> 0 and
@EFDi;t�1+2k
@HIj;t�2+2k

> 0, or

@qp�i;j;t�2+2k
@EFDi;t�3+2k

< 0 and
@EFDi;t�1+2k
@HIj;t�2+2k

< 0, (k = 1; : : : ; T ). (6.1.5)
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Proof. Assumption (A0) is the same as the �rst part of the de�nition of
the cyclical linkage of single-period dynamic cost e¢ ciencies (i.e., (E1) in

De�nition 20). The remainder of this de�nition is met as follows. From the

de�nition of the Her�ndahl index, the following equations hold:

dHIj;t�2+2k
dqp�i;j;t�2+2k

= 2�
 X

k

qp�k;j;t�2+2k

!�3
�
"(
qp�i;j;t�2+2k +

X
h 6=i

 
qp�h;j;t�2+2k �

dqp�h;j;t�2+2k
dqp�i;j;t�2+2k

!)

�
 X

k

qp�k;j;t�2+2k

!
�
(X

i

�
qp�i;j;t�2+2k

�2) � 1 +X
k 6=i

dqp�k;j;t�2+2k
dqp�i;j;t�2+2k

!#
,

(k = 1; : : : ; T ). (P16.1)

From these equations, the following relations are revealed:

dHIj;t�2+2k
dqp�i;j;t�2+2k

> ( = , < )0

() qp�i;j;t�2+2k > ( = , < )

P
i

�
qp�i;j;t�2+2k

�2P
k q

p�
k;j;t�2+2k

�
 
1 +

X
k 6=i

dqp�k;j;t�2+2k
dqp�i;j;t�2+2k

!

�
X
h 6=i

 
qp�h;j;t�2+2k �

dqp�h;j;t�2+2k
dqp�i;j;t�2+2k

!
, (k = 1; : : : ; T ). (P16.2)

From these relations and assumptions (A1) and (B1), the signs of dHIj;t�2+2k�
dqp�i;j;t�2+2k (k = 1; : : : ; T ) in Eq. (P16.1) are positive and negative, respec-

tively (i.e., dHIj;t�2+2k
�
dqp�i;j;t�2+2k > 0 and dHIj;t�2+2k

�
dqp�i;j;t�2+2k < 0,

respectively, for k = 1; : : : ; T ). In addition, from assumptions (A2) and

(B2), the following inequalities for Eq. (6.1.1) hold:

@EFDi;t�1+2k
@HIj;t�2+2k

� dHIj;t�2+2k
dqp�i;j;t�2+2k

�
@qp�i;j;t�2+2k
@EFDi;t�3+2k

< 0, (k = 1; : : : ; T ). (P16.3)

From these inequalities and Eq. (6.1.1), the sign of @EFDi;t�1+2T
�
@EFDi;t�1 is

positive if T is an even number or negative if T is an odd number.

Proposition 17 The monotonic trending linkage of single-period dynamic
cost e¢ ciencies occurs if one of two triplets of the four assumptions of Propo-
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sition 16 and assumption (C0) holds: (C0), (A1), and (B2); or (C0), (B1),

and (A2).

(C0) EFDi;t�2+2T is dependent on EF
D
i;t�3+2T , so @EF

D
i;t�2+2T

�
@EFDi;t�3+2T

is nonnegative (i.e., @EFDi;t�2+2T
�
@EFDi;t�3+2T � 0).

Proof. The proof of this proposition is similar to the proof of Proposition
16, so we omit the derivation.

Proposition 18 The terminal up-and-down volatile linkage of single-period
dynamic cost e¢ ciencies occurs if one of two triplets of the four assumptions

of Proposition 16 and assumption (D0) holds: (D0), (A1), and (B2); or

(D0), (B1), and (A2).

(D0) EFDi;t�2+2T is dependent on EF
D
i;t�3+2T , so the sign of @EF

D
i;t�2+2T�

@EFDi;t�3+2T is negative (i.e., @EF
D
i;t�2+2T

�
@EFDi;t�3+2T < 0).

Proof. The proof of this proposition is similar to the proof of Proposition
16, so we omit the derivation.

6.2 Intertemporal Regular Linkages of Single-Period

Optimal Planned Financial Goods

Similar to the intertemporal regular linkage (i.e., cyclical linkage, monotonic

trending linkage, or terminal up-and-down volatile linkage) of single-period

dynamic cost e¢ ciencies, the same intertemporal regular linkage of single-

period optimal planned �nancial goods is principally de�ned as the following

relations between the j-th optimal planned �nancial goods in period t and

period t+ 2T (i.e., qp�i;j;t and q
p�
i;j;t+2T ), where T is a natural number.

De�nition 21 (Intertemporal Regular Linkage of Financial Goods)
The intertemporal regular linkage of single-period optimal planned �nan-

cial goods exists if any one of the following linkages (i.e., cyclical linkage,

monotonic trending linkage, and terminal up-and-down volatile linkage) ex-

ists mainly between the j-th optimal planned �nancial goods in period t and

period t + 2T (i.e., qp�i;j;t and q
p�
i;j;t+2T ), where T is a natural number: (F1)

84



(Cyclical Linkage) The j-th optimal planned �nancial good in period t�1+2T
(i.e., qp�i;j;t�1+2T ) is dependent on the j-th optimal planned �nancial good in

period t � 2 + 2T (i.e., qp�i;j;t�2+2T ), so @q
p�
i;j;t�1+2T

�
@qp�i;j;t�2+2T is positive,

negative, or zero. The j-th optimal planned �nancial good in period t + 2T

(i.e., qp�i;j;t+2T ) is, moreover, dependent on the j-th optimal planned �nan-

cial good in period t (i.e., qp�i;j;t), so the sign of @q
p�
i;j;t+2T

�
@qp�i;j;t is positive if

T is an even number, whereas this sign is negative if T is an odd number;

(F2) (Monotonic Trending Linkage) qp�i;j;t�1+2T is dependent on q
p�
i;j;t�2+2T , so

@qp�i;j;t�1+2T
�
@qp�i;j;t�2+2T is nonnegative (i.e., @qp�i;j;t�1+2T

�
@qp�i;j;t�2+2T � 0).

qp�i;j;t+2T is, moreover, dependent on q
p�
i;j;t, so the sign of @q

p�
i;j;t+2T

�
@qp�i;j;t is pos-

itive (i.e., @qp�i;j;t+2T
�
@qp�i;j;t > 0); and (F3) (Terminal Up-and-Down Volatile

Linkage) qp�i;j;t�1+2T is dependent on qp�i;j;t�2+2T , so the sign of @q
p�
i;j;t�1+2T�

@qp�i;j;t�2+2T is negative (i.e., @q
p�
i;j;t�1+2T

�
@qp�i;j;t�2+2T < 0). q

p�
i;j;t+2T is, more-

over, dependent on qp�i;j;t, so the sign of @q
p�
i;j;t+2T

�
@qp�i;j;t is positive (i.e.,

@qp�i;j;t+2T
�
@qp�i;j;t > 0).

Similar to Proposition 15, the relations between this linkage and the

e¢ cient structure and quiet-life hypotheses are derived from the following

proposition.

Proposition 19 @qp�i;j;t+2T
�
@qp�i;j;t , where T is a natural number, is expressed

as follows:

@qp�i;j;t+2T
@qp�i;j;t

=
TY
k=1

"
@qp�i;j;t+2k
@EFDi;t�1+2k

�
@EFDi;t�1+2k
@HIj;t�2+2k

� dHIj;t�2+2k
dqp�i;j;t�2+2k

#
. (6.2.1)

Proof. @qp�i;j;t+2
�
@qp�i;j;t is expressed as follows:

@qp�i;j;t+2
@qp�i;j;t

=
@qp�i;j;t+2
@EFDi;t+1

�
@EFDi;t+1
@HIj;t

� dHIj;t
dqp�i;j;t

. (P19.1)

Similarly, @qp�i;j;t+4
�
@qp�i;j;t is expressed as follows:

@qp�i;j;t+4
@qp�i;j;t

=

"
@qp�i;j;t+4
@EFDi;t+3

�
@EFDi;t+3
@HIj;t+2

� dHIj;t+2
dqp�i;j;t+2

#
�
"
@qp�i;j;t+2
@EFDi;t+1

�
@EFDi;t+1
@HIj;t

� dHIj;t
dqp�i;j;t

#
.

(P19.2)
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Consequently, from Eqs. (P19.1) and (P19.2), @qp�i;j;t+2T
�
@qp�i;j;t , where T is a

natural number, is expressed as Eq. (6.2.1).

From Proposition 19 (Eq. (6.2.1)), the relations between the e¢ cient

structure and quiet-life hypotheses and the intertemporal regular linkages

(i.e., cyclical linkage, monotonic trending linkage, and terminal up-and-down

volatile linkage) of single-period optimal planned �nancial goods are distilled

as the following three propositions.

Proposition 20 The cyclical linkage of single-period optimal planned �nan-
cial goods occurs if one of two triplets of the two assumptions of Proposition

16 and assumptions (E0), (C2), and (D2) holds: (E0), (A1), and (C2); or

(E0), (B1), and (D2).

(E0) The j-th optimal planned �nancial good in period t � 1 + 2T (i.e.,
qp�i;j;t�1+2T ) is dependent on the j-th optimal planned �nancial good in period

t� 2 + 2T (i.e., qp�i;j;t�2+2T ), so @q
p�
i;j;t�1+2T

�
@qp�i;j;t�2+2T is positive, negative,

or zero;

(C2) Both the quiet-life hypothesis from period t�2+2k to period t�1+2k
and the e¢ cient structure hypothesis from period t�1+2k to period t+2k are
supported or unsupported; that is, one of the following two pairs of inequalities

holds:

@EFDi;t�1+2k
@HIj;t�2+2k

< 0 and
@qp�i;j;t+2k
@EFDi;t�1+2k

> 0, or

@EFDi;t�1+2k
@HIj;t�2+2k

> 0 and
@qp�i;j;t+2k
@EFDi;t�1+2k

< 0, (k = 1; : : : ; T ); (6.2.2)

and (D2) Any one of the quiet-life hypothesis from period t � 2 + 2k to
period t� 1+ 2k and the e¢ cient structure hypothesis from period t� 1+ 2k
to period t+2k is supported or unsupported; that is, one of the following two

pairs of inequalities holds:

@EFDi;t�1+2k
@HIj;t�2+2k

< 0 and
@qp�i;j;t+2k
@EFDi;t�1+2k

< 0, or

@EFDi;t�1+2k
@HIj;t�2+2k

> 0 and
@qp�i;j;t+2k
@EFDi;t�1+2k

> 0, (k = 1; : : : ; T ). (6.2.3)
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Proof. Assumption (E0) is the same as the �rst part of the de�nition of the
cyclical linkage of single-period optimal planned �nancial goods (i.e., (F1) in

De�nition 21). The remainder of this de�nition is met as follows. From the

proof of Proposition 16, assumptions (A1) and (B1) dictate that the signs of

dHIj;t�2+2k
�
dqp�i;j;t�2+2k (k = 1; : : : ; T ) in Eq. (P16.1) are positive and nega-

tive, respectively (i.e., dHIj;t�2+2k
�
dqp�i;j;t�2+2k > 0 and dHIj;t�2+2k

�
dqp�i;j;t�2+2k

< 0, respectively, for k = 1; : : : ; T ). In addition, from assumptions (C2) and

(D2), the following inequalities for Eq. (6.2.1) hold:

@qp�i;j;t+2k
@EFDi;t�1+2k

�
@EFDi;t�1+2k
@HIj;t�2+2k

� dHIj;t�2+2k
dqp�i;j;t�2+2k

< 0, (k = 1; : : : ; T ). (P20.1)

From these inequalities and Eq. (6.2.1), the sign of @qp�i;j;t+2T
�
@qp�i;j;t is positive

if T is an even number, and negative if T is an odd number.

Proposition 21 The monotonic trending linkage of single-period optimal
planned �nancial goods occurs if one of two triplets of the four assumptions

of Propositions 16 and 20 and assumption (F0) holds: (F0), (A1), and (D2);

or (F0), (B1), and (C2).

(F0) qp�i;j;t�1+2T is dependent on q
p�
i;j;t�2+2T , so @q

p�
i;j;t�1+2T

�
@qp�i;j;t�2+2T is

nonnegative (i.e., @qp�i;j;t�1+2T
�
@qp�i;j;t�2+2T � 0).

Proof. The proof of this proposition is similar to the proof of Proposition
20, so we omit the derivation.

Proposition 22 The terminal up-and-down volatile linkage of single-period
optimal planned �nancial goods occurs if one of two triplets of the four as-

sumptions of Propositions 16 and 20 and assumption G0 holds: (G0), (A1),

and (D2); or (G0), (B1), and (C2).

(G0) qp�i;j;t�1+2T is dependent on q
p�
i;j;t�2+2T , so the sign of @q

p�
i;j;t�1+2T

�
@qp�i;j;t�2+2T

is negative (i.e., @qp�i;j;t�1+2T
�
@qp�i;j;t�2+2T < 0).

Proof. The proof of this proposition is similar to the proof of Proposition
20, so we omit the derivation.
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6.3 Intertemporal Regular Linkages of Single-Period

Her�ndahl Indices

Similar to the intertemporal regular linkages (i.e., cyclical linkages, monotonic

trending linkages, and terminal up-and-down volatile linkages) of single-

period dynamic cost e¢ ciencies and single-period optimal planned �nancial

goods, the same intertemporal regular linkage of single-period Her�ndahl

indices is mainly de�ned as the following relations between the Her�ndahl

indices in period t and period t+ 2T (i.e., HIj;t and HIj;t+2T ), where T is a

natural number.

De�nition 22 (Intertemporal Regular Linkage of Her�ndahl Indices)
The intertemporal regular linkage of single-period Her�ndahl indices exists if

any one of the following linkages (i.e., cyclical linkage, monotonic trending

linkage, and terminal up-and-down volatile linkage) mainly exists between the

Her�ndahl indices in period t and period t + 2T (i.e., HIj;t and HIj;t+2T ),

where T is a natural number. (H1) (Cyclical Linkage) The Her�ndahl index

in period t � 1 + 2T (i.e., HIj;t�1+2T ) is dependent on the Her�ndahl index
in period t � 2 + 2T (i.e., HIj;t�2+2T ), so @HIj;t�1+2T /@HIj;t�2+2T is posi-
tive, negative, or zero. The Her�ndahl index in period t+2T (i.e., HIj;t+2T )

is, moreover, dependent on the Her�ndahl index in period t (i.e., HIj;t), so

the sign of @HIj;t+2T /@HIj;t is positive if T is an even number and negative

if T is an odd number; (H2) (Monotonic Trending Linkage) HIj;t�1+2T is

dependent on HIj;t�2+2T , so @HIj;t�1+2T /@HIj;t�2+2T is nonnegative (i.e.,

@HIj;t�1+2T /@HIj;t�2+2T � 0). HIj;t+2T is, moreover, dependent on HIj;t,

so the sign of @HIj;t+2T /@HIj;t is positive (i.e., @HIj;t+2T /@HIj;t > 0);

and (H3) (Terminal Up-and-Down Volatile Linkage) HIj;t�1+2T is depen-

dent on HIj;t�2+2T , so the sign of @HIj;t�1+2T /@HIj;t�2+2T is negative (i.e.,

@HIj;t�1+2T /@HIj;t�2+2T < 0). HIj;t+2T is, moreover, dependent on HIj;t,

so the sign of @HIj;t+2T /@HIj;t is positive (i.e., @HIj;t+2T /@HIj;t > 0).

Similar to Propositions 15 and 19, the relations between this linkage and

the e¢ cient structure and quiet-life hypotheses are derived from the following

proposition.
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Proposition 23 @HIj;t+2T /@HIj;t , where T is a natural number, is ex-

pressed as follows:

@HIj;t+2T
@HIj;t

=

TY
k=1

"
dHIj;t+2k
dqp�i;j;t+2k

�
@qp�i;j;t+2k
@EFDi;t�1+2k

�
@EFDi;t�1+2k
@HIj;t�2+2k

#
. (6.3.1)

Proof. @HIj;t+2 /@HIj;t is expressed as follows:

@HIj;t+2
@HIj;t

=
dHIj;t+2
dqp�i;j;t+2

�
@qp�i;j;t+2
@EFDi;t+1

�
@EFDi;t+1
@HIj;t

. (P23.1)

Similarly, @HIj;t+4 /@HIj;t is expressed as follows:

@HIj;t+4
@HIj;t

=

"
dHIj;t+4
dqp�i;j;t+4

�
@qp�i;j;t+4
@EFDi;t+3

�
@EFDi;t+3
@HIj;t+2

#
�
"
dHIj;t+2
dqp�i;j;t+2

�
@qp�i;j;t+2
@EFDi;t+1

�
@EFDi;t+1
@HIj;t

#
.

(P23.2)

Consequently, from Eqs. (P23.1) and (P23.2), @HIj;t+2T /@HIj;t , where T is

a natural number, is expressed as Eq. (6.3.1).

From Proposition 23 (Eq. (6.3.1)), the relations between the e¢ cient

structure and quiet-life hypotheses and the intertemporal regular linkages

(i.e., cyclical linkage, monotonic trending linkage, and terminal up-and-down

volatile linkage) of single-period Her�ndahl indices are distilled as the follow-

ing three propositions.

Proposition 24 The cyclical linkage of single-period Her�ndahl indices oc-
curs if one of two triplets of the two assumptions of Proposition 20 and

assumption (H0) holds: (H0), (E1), and (C2); or (H0), (F1), and (D2).

(H0) The Her�ndahl index in period t � 1 + 2T (i.e., HIj;t�1+2T ) is de-
pendent on the Her�ndahl index in period t � 2 + 2T (i.e., HIj;t�2+2T ), so
@HIj;t�1+2T /@HIj;t�2+2T is positive, negative, or zero;

(E1) The j-th optimal planned �nancial goods in periods t + 2k, where
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k = 1; : : : ; T , (i.e., qp�i;j;t+2k) are large, that is, the following inequalities hold:

qp�i;j;t+2k >

P
i

�
qp�i;j;t+2k

�2P
k q

p�
k;j;t+2k

�
 
1 +

X
k 6=i

dqp�k;j;t+2k
dqp�i;j;t+2k

!

�
X
h 6=i

 
qp�h;j;t+2k �

dqp�h;j;t+2k
dqp�i;j;t+2k

!
, (k = 1; : : : ; T ); (6.3.2)

and (F1) qp�i;j;t+2k (k = 1; : : : ; T ) are small, that is, the following inequali-

ties hold:

qp�i;j;t+2k <

P
i

�
qp�i;j;t+2k

�2P
k q

p�
k;j;t+2k

�
 
1 +

X
k 6=i

dqp�k;j;t+2k
dqp�i;j;t+2k

!

�
X
h 6=i

 
qp�h;j;t+2k �

dqp�h;j;t+2k
dqp�i;j;t+2k

!
, (k = 1; : : : ; T ). (6.3.3)

Proof. Assumption (H0) is the same as the �rst part of the de�nition of
the cyclical linkage of single-period Her�ndahl indices (i.e., (H1) in De�ni-

tion 21). The remainder of this de�nition is met as follows. From relation

(P16.2) of Proposition 16 and replacing periods t � 2 + 2k (k = 1; : : : ; T )

with t+2k (k = 1; : : : ; T ), assumptions (E1) and (F1) mean that the signs of

dHIj;t+2k
�
dqp�i;j;t+2k (k = 1; : : : ; T ) in Eq. (P16.1) are positive and negative,

respectively (i.e., dHIj;t+2k
�
dqp�i;j;t+2k > 0 and dHIj;t+2k

�
dqp�i;j;t+2k < 0, re-

spectively, for k = 1; : : : ; T ). In addition, from assumptions (C2) and (D2),

the following inequalities for Eq. (6.3.1) hold:

dHIj;t+2k
dqp�i;j;t+2k

�
@qp�i;j;t+2k
@EFDi;t�1+2k

�
@EFDi;t�1+2k
@HIj;t�2+2k

< 0, (k = 1; : : : ; T ). (P24.1)

From these inequalities and Eq. (6.3.1), the sign of @HIj;t+2T /@HIj;t is

positive if T is an even number and negative if T is an odd number.

Proposition 25 The monotonic trending linkage of single-period Her�ndahl
indices occurs if one of two triplets of the four assumptions of Propositions

20 and 24 and assumption (I0) hold: (I0), (E1), and (D2); or (I0), (F1),
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and (C2).

(I0) HIj;t�1+2T is dependent on HIj;t�2+2T , so @HIj;t�1+2T /@HIj;t�2+2T
is nonnegative (i.e., @HIj;t�1+2T /@HIj;t�2+2T � 0).

Proof. The proof of this proposition is similar to the proof of Proposition
24, so we omit the derivation.

Proposition 26 The terminal up-and-down volatile linkage of single-period
Her�ndahl indices occurs if one of two triplets of the four assumptions of

Propositions 20 and 24 and assumption (J0) hold: (J0), (E1), and (D2); or

(J0), (F1), and (C2).

(J0) HIj;t�1+2T is dependent on HIj;t�2+2T , so the sign of @HIj;t�1+2T
/@HIj;t�2+2T is negative (i.e., @HIj;t�1+2T /@HIj;t�2+2T < 0).

Proof. The proof of this proposition is similar to the proof of Proposition
24, so we omit the derivation.

6.4 Intertemporal Regular Linkages of Single-Period

EGLIs on the Cost Frontier

Similar to intertemporal regular linkages in the previous subsections of this

section, the same intertemporal regular linkage of single-period EGLIs on

the cost frontier is mainly de�ned as the following relations in period t and

period t+2T (i.e., EGLIFi;j;t and EGLI
F
i;j;t+2T ), where T is a natural number.

De�nition 23 (Intertemporal Regular Linkage of EGLIs on the Cost Frontier)
The intertemporal regular linkage of single-period EGLIs on the cost frontier

exists if any one of the following linkages (i.e., cyclical linkage, monotonic

trending linkage, and terminal up-and-down volatile linkage) mainly exists

between the EGLIs on the cost frontier in period t and period t + 2T (i.e.,

EGLIFi;j;t and EGLI
F
i;j;t+2T ), where T is a natural number. (L1) (Cyclical

Linkage) The EGLI on the cost frontier in period t�1+2T (i.e., EGLIFi;j;t�1+2T )
is dependent on the EGLI on the cost frontier in period t � 2 + 2T (i.e.,

EGLIFi;j;t�2+2T ), so @EGLI
F
i;j;t�1+2T

�
@EGLIFi;j;t�2+2T is positive, negative,
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or zero. The EGLI on the cost frontier in period t + 2T (i.e., EGLIFi;j;t+2T )

is, moreover, dependent on the EGLI on the cost frontier in period t (i.e.,

EGLIFi;j;t), so the sign of @EGLI
F
i;j;t+2T

�
@EGLIFi;j;t is positive (or negative)

if T is an even number, whereas this sign is negative (or positive) if T is

an odd number; (L2) (Monotonic Trending Linkage) EGLIFi;j;t�1+2T is de-

pendent on EGLIFi;j;t�2+2T , so @EGLI
F
i;j;t�1+2T

�
@EGLIFi;j;t�2+2T is nonneg-

ative (i.e., @EGLIFi;j;t�1+2T
�
@EGLIFi;j;t�2+2T � 0). EGLIFi;j;t+2T is, more-

over, dependent on EGLIFi;j;t, so the sign of @EGLI
F
i;j;t+2T

�
@EGLIFi;j;t is

positive (i.e., @EGLIFi;j;t+2T
�
@EGLIFi;j;t > 0); and (H3) (Terminal Up-and-

Down Volatile Linkage) EGLIFi;j;t�1+2T is dependent on EGLI
F
i;j;t�2+2T , so the

sign of @EGLIFi;j;t�1+2T
�
@EGLIFi;j;t�2+2T is negative (i.e., @EGLIFi;j;t�1+2T�

@EGLIFi;j;t�2+2T < 0). EGLI
F
i;j;t+2T is, moreover, dependent on EGLI

F
i;j;t,

so the sign of @EGLIFi;j;t+2T
�
@EGLIFi;j;t is positive (i.e., @EGLI

F
i;j;t+2T�

@EGLIFi;j;t > 0). Otherwise @EGLIFi;j;t�1+2T
�
@EGLIFi;j;t�2+2T > 0 and

@EGLIFi;j;t+2T
�
@EGLIFi;j;t < 0.

Similar to Propositions 15, 19, and 23, the relations between this linkage

and the e¢ cient structure and quiet-life hypotheses are derived from the

following proposition.

Proposition 27 @EGLIFi;j;t+2T
�
@EGLIFi;j;t , where T is a natural number,

is expressed as follows:

@EGLIFi;j;t+2T
@EGLIFi;j;t

=
@EGLIFi;j;t+2T
@EFDi;j;t�1+2T

�
@EFDi;j;t�1+2T
@EFDi;j;t�1

�
 
@EGLIFi;j;t
@EFDi;j;t�1

!�1

=
@EGLIFi;j;t+2T
@qp�i;j;t+2T

�
@qp�i;j;t+2T
@qp�i;j;t

�
 
@EGLIFi;j;t
@qp�i;j;t

!�1

=
@EGLIFi;j;t+2T
@HIj;t�1+2T

� @HIj;t�1+2T
@HIj;t�1

�
 
@EGLIFi;j;t
@HIj;t�1

!�1
.(6.4)
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Proof. @EGLIFi;j;t+2
�
@EGLIFi;j;t is expressed as follows:

@EGLIFi;j;t+2
@EGLIFi;j;t

=
@EGLIFi;j;t+2
@EFDi;j;t+1

�
@EFDi;j;t+1
@EFDi;j;t�1

�
 
@EGLIFi;j;t
@EFDi;j;t�1

!�1

=
@EGLIFi;j;t+2
@qp�i;j;t+2

�
@qp�i;j;t+2
@qp�i;j;t

�
 
@EGLIFi;j;t
@qp�i;j;t

!�1

=
@EGLIFi;j;t+2
@HIj;t+1

� @HIj;t+1
@HIj;t�1

�
 
@EGLIFi;j;t
@HIj;t�1

!�1
.(P27.1)

Similarly, @EGLIFi;j;t+4
�
@EGLIFi;j;t is expressed as follows:

@EGLIFi;j;t+4
@EGLIFi;j;t

=
@EGLIFi;j;t+4
@EFDi;j;t+3

�
@EFDi;j;t+3
@EFDi;j;t�1

�
 
@EGLIFi;j;t
@EFDi;j;t�1

!�1

=
@EGLIFi;j;t+4
@qp�i;j;t+4

�
@qp�i;j;t+4
@qp�i;j;t

�
 
@EGLIFi;j;t
@qp�i;j;t

!�1

=
@EGLIFi;j;t+4
@HIj;t+3

� @HIj;t+3
@HIj;t�1

�
 
@EGLIFi;j;t
@HIj;t�1

!�1
.(P27.2)

Consequently, from Eqs. (P27.1) and (P27.2), @EGLIFi;j;t+2T
�
@EGLIFi;j;t ,

where T is a natural number, is expressed as Eq. (6.4).

From Proposition 27 (Eq. (6.4)), the relations between the e¢ cient

structure and quiet-life hypotheses and the intertemporal regular linkages

(i.e., cyclical linkage, monotonic trending linkage, and terminal up-and-down

volatile linkage) of single-period EGLIs on the cost frontier are distilled as

the following three propositions.

Proposition 28 The cyclical linkage of single-period EGLIs on the cost
frontier occurs if one of six pairs of the following assumptions holds: (SA1)

and (SA2), (SB1) and (SB2), (SC1) and (SC2), (SD1) and (SA2), (SE1)

and (SB2), or (SF1) and (SC2).

(SA1) The signs of @EGLIFi;j;t
�
@EFDi;t�1 and @EGLI

F
i;j;t�2+2T

�
@EFDi;t�3+2T

are the same as the signs of @EGLIFi;j;t+2T
�
@EFDi;t�1+2T and @EGLI

F
i;j;t�1+2T�

@EFDi;t�2+2T , respectively;
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(SA2) One of two triplets of the assumptions of Proposition 16 holds:

(A0), (A1), and (A2); or (A0), (B1), and (B2);

(SB1) The signs of @EGLIFi;j;t
�
@qp�i;j;t and @EGLI

F
i;j;t�2+2T

�
@qp�i;j;t�2+2T

are the same as the signs of @EGLIFi;j;t+2T
�
@qp�i;j;t+2T and @EGLIFi;j;t�1+2T�

@qp�i;j;t�1+2T , respectively;

(SB2) One of two triplets of the assumptions of Proposition 20 holds:

(E0), (A1), and (C2); or (E0), (B1), and (D2);

(SC1) The signs of @EGLIFi;j;t /@HIj;t�1 and @EGLI
F
i;j;t�2+2T /@HIj;t�3+2T

are the same as the signs of @EGLIFi;j;t+2T /@HIj;t�1+2T and @EGLI
F
i;j;t�1+2T

/@HIj;t�2+2T , respectively;

(SC2) One of two triplets of the assumptions of Proposition 24 holds in

t� 1: (H0), (E1), and (C2); or (H0), (F1), and (D2);
(SD1) The signs of @EGLIFi;j;t

�
@EFDi;t�1 and @EGLI

F
i;j;t�2+2T

�
@EFDi;t�3+2T

are di¤erent from the signs of @EGLIFi;j;t+2T
�
@EFDi;t�1+2T and @EGLI

F
i;j;t�1+2T�

@EFDi;t�2+2T , respectively;

(SE1) The signs of @EGLIFi;j;t
�
@qp�i;j;t and @EGLI

F
i;j;t�2+2T

�
@qp�i;j;t�2+2T

are di¤erent from the signs of @EGLIFi;j;t+2T
�
@qp�i;j;t+2T and @EGLI

F
i;j;t�1+2T�

@qp�i;j;t�1+2T , respectively;

(SF1) The signs of @EGLIFi;j;t /@HIj;t�1 and @EGLI
F
i;j;t�2+2T /@HIj;t�3+2T

are di¤erent from the signs of @EGLIFi;j;t+2T /@HIj;t�1+2T and @EGLI
F
i;j;t�1+2T

/@HIj;t�2+2T , respectively.

Proof. From Propositions 16, 20, and 24, assumptions (SA2), (SB2), and

(SC2) mean that the cyclical linkages of single-period dynamic cost e¢ -

ciencies, single-period optimal planned �nancial goods, and single-period

Her�ndahl indices, respectively, occur. From De�nition L1 of De�nition 23

and Proposition 27 (Eq. (6.4)), assumptions (SA1), (SB1), and (SC1) mean

that the signs of these cyclical linkages are invariable, whereas assumptions

(SD1), (SE1), and (SF1) mean that the signs of these cyclical linkages are

inverse. From De�nition L1 of De�nition 23, the cyclical linkage of single-

period EGLIs on the cost frontier occurs.

Proposition 29 The monotonic trending linkage of single-period EGLIs on
the cost frontier occurs if one of six pairs of the six assumptions of Proposition
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28 and assumptions (MA2), (MB2), and (MC2) holds: (SA1) and (MA2),

(SB1) and (MB2), (SC1) and (MC2), (SD1) and (MA2), (SE1) and (MB2),

or (SF1) and (MC2).

(MA2) One of two triplets of the assumptions of Propositions 16 and 17

holds: (C0), (A1), and (B2); or (C0), (B1), and (A2);

(MB2) One of two triplets of the assumptions of Propositions 16, 20, and

21 holds: (F0), (A1), and (D2); or (F0), (B1), and (C2);

(MC2) One of two triplets of the assumptions of Propositions 20, 24, and

25 holds in t� 1: (I0), (E1), and (D2); or (I0), (F1), and (C2).

Proof. The proof of this proposition is similar to the proof of Proposition
28 with the exception of replacing the cyclical linkage and so forth with the

monotonic trending linkage and so forth, so we omit the derivation.

Proposition 30 The terminal up-and-down volatile linkage of single-period
EGLIs on the cost frontier occurs if one of six pairs of the six assumptions

of Proposition 28 and assumptions (TA2), (TB2), and (TC2) holds: (SA1)

and (TA2), (SB1) and (TB2), (SC1) and (TC2), (SD1) and (TA2), (SE1)

and (TB2), or (SF1) and (TC2).

(TA2) One of two triplets of the assumptions of Propositions 16 and 18

holds: (D0), (A1), and (B2); or (D0), (B1), and (A2);

(TB2) One of two triplets of the assumptions of Propositions 16, 20, and

22 holds: (G0), (A1), and (D2); or (G0), (B1), and (C2);

(TC2) One of two triplets of the assumptions of Propositions 20, 24, and

26 holds in t� 1: (J0), (E1), and (D2); or (J0), (F1), and (C2).

Proof. The proof of this proposition is similar to the proof of Proposition
28 with the exception of replacing the cyclical linkage and so forth with the

terminal up-and-down volatile linkage and so forth, so we omit the derivation.

6.5 Policy Implications

According to the results in this section, where there is an intertemporal regu-

lar linkage of single-period EGLIs on the cost frontier, the EGLI can increase
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or decrease at least in the short term except for monotonic trending linkages.

Therefore, over the short term, it is di¢ cult to judge the need for industrial

organization policies for promoting competition. However, from a long-term

perspective, if the intertemporal regular linkage of single-period EGLIs on

the cost frontier does not exhibit a downward trend, then industrial organiza-

tion policies for promoting long-term competition are needed. If this linkage

shows an upward trend caused mainly by an upward trend of the intertem-

poral regular linkage of single-period Her�ndahl indices, then anti-monopoly

and anti-concentration policies are justi�ed from a long-term perspective. If

the upward trend of the intertemporal regular linkage of single-period EGLIs

on the cost frontier is, however, caused mainly by the intertemporal regu-

lar linkage of single-period dynamic cost e¢ ciencies or single-period optimal

planned �nancial goods, then other policies are desirable because, in this

case, anti-monopoly and anti-concentration interventions cause unnecessary

distortion in the economy. Speci�cally, if this upward trend is caused mainly

by the downward (upward) trend of the intertemporal regular linkage of

single-period dynamic cost e¢ ciencies, then industrial organization policies

for improving long-term dynamic cost e¢ ciency (industrial organization poli-

cies in which a long-term improvement in dynamic cost e¢ ciency increases

long-term competition) are needed. Similarly, if the upward trend of the

intertemporal regular linkage of single-period EGLIs on the cost frontier is

mainly caused by the downward (upward) trend of the intertemporal regu-

lar linkage of single-period optimal planned �nancial goods, then industrial

organization policies for stimulating long-term growth (industrial organiza-

tion policies in which long-term growth increases long-term competition) are

needed.

7 Conclusions

In this paper, on the basis of the GURM constructed by Homma (2009, 2012),

we explored the e¢ cient structure hypothesis proposed by Demsetz (1973)

and the quiet-life hypothesis put forward by Berger and Hannan (1998). We

clari�ed mathematical formulations and theoretical interpretations of both

96

http://jairo.nii.ac.jp/0053/00002428/en
http://jairo.nii.ac.jp/0053/00007236/en


hypotheses, the relative magnitude of the e¢ cient structure hypothesis to the

quiet-life hypothesis, the relation between both hypotheses and the EGLI on

the cost frontier proposed by Homma (2009, 2012), and the relation be-

tween both hypotheses and the existence of intertemporal regular linkages

of single-period dynamic cost e¢ ciencies, single-period optimal planned �-

nancial goods, single-period Her�ndahl indices, and single-period EGLIs on

the cost frontier. In the following, we summarize the major results and o¤er

conclusions.

7.1 Formulations

On the e¢ cient structure hypothesis, three formulations are possible. The

�rst formulation is that the e¢ cient structure hypothesis is expressed by

the e¤ect of improved dynamic cost e¢ ciency in the previous period on the

planned optimal �nancial good in the current period, so it is a direct de�ni-

tion of the e¢ cient structure hypothesis. The second formulation is that the

e¢ cient structure hypothesis is expressed by the ratio of the following two

sums, so it provides the foundation for rigorous theoretical interpretations:

the numerator is the sum of the net e¤ect of the improvement in dynamic

cost e¢ ciency in the previous period and the e¤ect of the same improvement.

The former net e¤ect is on the GURP on the cost frontier (i.e., the dynamic

frontier marginal variable cost with respect to the planned optimal �nancial

good) in the current period and on dynamic actual marginal variable cost

with respect to the planned optimal �nancial good in the current period.

This net e¤ect is normalized by the same dynamic actual marginal variable

cost and accounts for the correction in dynamic marginal cost e¢ ciency in

the current period. The latter e¤ect is on the elasticity of dynamic actual

variable cost in the current period with respect to dynamic cost e¢ ciency

in the current period. This e¤ect is normalized by the square of the same

elasticity. Similarly, the denominator is the sum of the net e¤ect of an in-

crease in the planned optimal �nancial good in the current period and the

e¤ect of the same increase in the planned optimal �nancial good. Similar

to the numerator, the former net e¤ect is on the same GURP and the same
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dynamic actual marginal variable cost. This net e¤ect is normalized by the

same dynamic actual marginal variable cost and accounts for the correction

in dynamic marginal cost e¢ ciency in the current period. The latter e¤ect

is on the same elasticity of dynamic actual variable cost and is normalized

by the square of the same elasticity. The third formulation is that the net

e¤ect in the numerator of the second formulation is expressed by the sum

of the e¤ects of the improvement in dynamic cost e¢ ciency in the previous

period on the e¢ ciency di¤erence of the GURP of the planned optimal �-

nancial good in the current period, the pricing error of the same �nancial

good, and dynamic actual marginal variable cost with respect to the same �-

nancial good, which is corrected by dynamic marginal cost ine¢ ciency in the

current period, respectively. Similar to the numerator, the net e¤ect in the

denominator of the second formulation is expressed by the sum of the e¤ects

of an increase in the planned optimal �nancial good in the current period

on the same factors as the numerator. This formulation is, therefore, used

to thoroughly interpret the e¢ cient structure hypothesis with these e¤ects.

Similarly, regarding the quiet-life hypothesis, three formulations are also pos-

sible. The �rst formulation is that the quiet-life hypothesis is expressed by

the e¤ect of an increase in the Her�ndahl index in the previous period on

dynamic cost e¢ ciency in the current period, so it is a direct de�nition of the

quiet-life hypothesis. The second formulation is that the quiet-life hypothesis

is expressed by the following ratio, so it provides the foundation for rigorous

theoretical interpretations: the numerator is the sum of the net e¤ect of the

same increase in the Her�ndahl index and the e¤ect of the same increase.

Similar to the case of the e¢ cient structure hypothesis, the former net e¤ect

is on the same GURP and the same dynamic actual marginal variable cost.

This net e¤ect is normalized by the same dynamic actual marginal variable

cost and accounts for the same correction in dynamic marginal cost e¢ ciency.

The latter e¤ect is on the same elasticity of dynamic actual variable cost, and

is normalized by the same square of the same elasticity. The denominator

is the product of the same dynamic actual marginal variable cost as per the

e¢ cient structure hypothesis and the same square of the same elasticity. The

third formulation is that the same net e¤ect in the second formulation is ex-
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pressed by the sum of the e¤ects of the same increase in the Her�ndahl index

on the same e¢ ciency di¤erence of the GURP as per the e¢ cient structure

hypothesis, the same pricing error, and the same corrected dynamic actual

marginal variable cost, respectively, so it is the formulation that is used to

thoroughly interpret the quiet-life hypothesis with these e¤ects.

7.2 EGLI on the Cost Frontier

In terms of whether support for either or both of the hypotheses is desir-

able from the perspective of the EGLI on the cost frontier, the results of the

theoretical analysis herein suggest that both desirable and undesirable cases

exist, with the following two points being particularly noteworthy: 1) it is not

always possible to invoke support for the quiet life hypothesis to justify anti-

monopoly and anti-concentration policies; and 2) new industrial organization

policies are needed where support for the e¢ cient structure hypothesis is un-

desirable. Regarding the �rst point, support for the quiet-life hypothesis can

decrease the EGLI on the cost frontier (i.e., increase the degree of competi-

tion on the cost frontier), so that support for this hypothesis does not always

justify anti-monopoly and anti-concentration policies, even if an increase in

market concentration decreases dynamic cost e¢ ciency. Justi�cation of such

policies is restricted to the case that an increase in market concentration

increases the EGLI on the cost frontier (i.e., decreases the degree of compe-

tition on the cost frontier), so enactment and enforcement of these policies

requires careful consideration. In terms of the second point, so far, there is

no theoretical foundation for suggesting that support for the e¢ cient struc-

ture hypothesis is undesirable. At least theoretically, there are, however,

both cases where support for the e¢ cient structure hypothesis decreases the

EGLI on the cost frontier (i.e., increases the degree of competition on the

cost frontier) and increases the EGLI on the cost frontier (i.e., decreases the

degree of competition on the cost frontier). Regarding the latter, it is judged

that support for the e¢ cient structure hypothesis is undesirable. In this case,

new industrial organization policies which di¤er from existing anti-monopoly

and anti-concentration policies, and under which e¢ ciency improvements in-
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crease the degree of competition on the cost frontier, are required.

7.3 Trends in Intertemporal Regular Linkages

Where intertemporal regular linkage of single-period EGLIs exists on the cost

frontier, the need for industrial organization policies must be judged from a

long-term perspective. As discussed, policy implications di¤er depending on

the direction and cause of this linkage, and as such, careful consideration

is required to determine when and why anti-monopoly/anti-concentration

policies and policies designed to increase long-term competition via improving

dynamic cost e¢ ciency or long-term growth are needed.
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