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1. Introduction

Dohtani (2018) constructed an endogenous growth model that makes clear
several important sources from which structural transitions occur. However, the
endogenous growth model of Dohtani (2018) lacks any transitional dynamics. That is,
per capita growth rates of the optimal paths obtained from the model is independent
of the initial levels of macroeconomic variables. This result is inconsistent with the
well-known empirical evidence on convergence. See Barro and Sala-i-Martin
(Chapters 11 and 12, 1995). In the present paper, we will prove that a modified
version of the growth model of Dohtani (2018) yields transitional dynamics. ))

We here briefly explain the method of proving the occurrence of transitional
dynamics. Although the AK model lacks transitional dynamics, it has been some
extended versions of the AK model possess transitional dynamics. One method is to
modify the production function. Another natural method is to incorporate adjustment
costs for investment. Investment requires adjustment costs. Eisner and Strotz (1963)
tried to derive optimal paths in the growth model with adjustment costs that is given as
a monotonously increasing function of investment. The realization of the importance of
the adjustment costs in studying economic growth started with this study. It is, however,
natural to assume that adjustment costs depend also on capital stock: Adjustment
costs=V (l,K). Adjustment costs functions of this type are given by Uzawa (1968) and
Barro and Sala-i-Martin (1995). Uzawa considered a model into which Penrose effect is
incorporated. The Penrose effect implies that not all of investment is established as
capital stock and the rate of establishment increases as investment increases. On the
other hand, by incorporating adjustment costs that is required to set up capital stock,
Barro and Sala-i-Martin (1995) derived transitional dynamics. By the same approach as

of Barro and Sala-i-Martin (1995), we will derive transitional dynamics.

2. Background of the Models

The background of the models is almost the same as Dohtani (2018) and
essentially Barro and Sala-i-Martin (1992), So we will briefly explain it.

The models consist of a representative household and a representative
investment-goods industry, and a representative consumption-goods industry.

Although Dohtani (2018) considered the case where the number of consumption-



goods industries is n (=1), for simplicity we here suppose n=1. It is not difficult
to generalize the model of n=1 to that of n>1. Such a generalization, however,
requires complicated calculations. For simplicity, we assume that the household owns
the initial endowment of capital stock which can be used by any industry. The
household distributes the endowment to all industries. Capital goods owned by the
household are lent to the investment-goods sector. Without loss of generality, we
assume that the depreciation rate of capital stock is zero. The consumption-goods
industries rent capital goods from the investment-goods industry. The household has a
claim on the consumption-goods sector's net cash flow. There is a competitive credit
market in which the household can borrow and lend. To rule out Ponzi-game finance,
we assume the credit market imposes a constraint on the amount of borrowing. The
two forms of assets, capital and loans are assumed to be perfect substitutes as stores
of value. Then, they must pay the same real rate of return, and the interest rate on debt
must be equal to the rental rate on capital.

The symbols used in this paper are:

K, =initial endowment of capital stock (given),

C = consumption of the goods produced by the consumption-goods industry,
s = rate of time preference (constant),

Q = quantity produced by the consumption-goods industry.

K = capital stock of the consumption-goods industry,

I1 =profit of the consumption-goods industry,

K, =capital stock of the representative investment-goods industry,

r = interest rate =rental rate on capital (constant),

P =price of the goods produced by the consumption-goods industry.

P, = the rental price of capital stock (normalized)=1.

We denote by e, the value of e at time t. For example, we denote by K, the

value of capital stock of the consumption-goods industry at time t.

3. Brief Explanation of the Original Model
without Transitional Dynamics

We first briefly explain an endogenous growth model of Dohtani (2018). We



first consider the investment-goods sector. The investment-goods sector is assumed to
be perfectly competitive. We assume that the production function of the representative

industry in the sector is of the AK type. The industry solves the optimization problem:
max (oK, —rK,),

where o 1is a positive constant. For the AK model, see Rebelo (1991) and Barro and
Sala-i-Martin (Ch.4, 1995). The condition for profit maximization requires that the
marginal product of capital equals r. Thatis, r=o.

We next consider the represent household. The representative household is

assumed to solve the following dynamic optimization problem:

max | U(C)e Stdt subjectto K, =7z +rK, —PC,
Rl
where R}r is the set of non-negative real numbers. In the present paper, we assume

that the utility function of the representative household is given as
U(C)=C?%/a,

where 0<a<l1, and U represents utility which is obtained by consuming the
goods produced by the consumption-goods industry.
The first order condition of the above optimization problem is given by

(1.1) He =Cc®le™t—py=o,

(12 p=-Hg, =1,

(1.3) K.| =r+rK, -PC,

(1.4) lim,_, , K, (t)n(t)=0.

Equation (1.1) yields Pp e Stcal, Equation (1.2) yields 7 =7,e", where 7,

is determined later. Then we have

(r—s)t
p=0® "~

@ -

Equation (2) gives a dynamic version of static inverse demand equation. Following
Dohtani (2018), Equation (2) is called the dynamic inverse demand equation.

Finally, we consider the consumption-goods sector. Although Dohtani (2018)



considered more-than-one consumption-goods industries, for simplicity we consider
the case where the number of consumption-goods industry is only one. The

production function of the industry is assumed to be
Q=¢K™, 0<m<l, 0<¢.

Without loss of generality, we assume ¢ =1. We consider the situation where the
consumption-goods market is cleared, so that we have C=Q=K™. Then,

substituting this equation into the dynamic inverse demand equation (2) yields

e(r—s)t
3 P=————=D(K;t).
3) e = DD
The consumption-goods industry solves the following static optimization problem

under the dynamic inverse demand equation:

(4) max(PK™ —K) subjectto P =D(K;t).

This model generates endogenous growth. Dohtani (2018) constructed an
extended version of the model and derived an optimal growth path of the extended
version. The optimal path makes clear several important sources from which structural
transitions occur. However, the endogenous growth model of Dohtani (2018) lacks any
transitional dynamics. In the next section, by modifying the above-mentioned model,

we will prove the occurrence of transitional dynamics.

4. Transitional Dynamics and Adjustment Costs
for Investment

Except for the optimization problem of the consumption-goods industry, we

consider the same model as that of Section 3. We work under the following

assumptions:

Assumption 1: 1>am;
Assumption 2: r >max{s, (r—s)/(1-am)}.

Assumptions 1 and 2 yield



r-s
1-am

G= >0.

We here define gr(e) =the growth rate of e.

In the following, we employ the adjustment costs function of Barro and Sala-i-
Martin (Ch.3.5, 1995):

V(LK) =11+ (1 /K)].

We here assume the following:

Assumption 3: #(0)=0;
Assumption 4: #'(X)>0 forany x>0;
Assumption 5: ¢"(X)>0 forany x>0.

Using this adjustment function, we rewrite the optimization problem (4) by the
following intertemporal optimization problem of the consumption-goods industry as

follows:

(5) maXI{PKm —1(1+bl/K)e "dt,
R

1
subjectto K=1, P=P{r—-s—-m(1-a)l/K}.
The Hamiltonian of the optimization problem (5) is given by

(6) H={PK™—1(1+bl /K)le™ + Al + gP{r—s—m(-a)l /K}

Since the Hamiltonian is a concave function of the state and the control variables, the

sufficient condition for optimization given by

(7.1) H, =—(1+2bl/K)e ™+ A—um(1-a)P/K =0,

(7.2) 2=—Hy =—mPK™ 1 1b12/K2)e™ 4 um(1-a)Pl /K2,
(7.3) f=—Hp = —ulr—s—m(1-a)l /K} —KMe ™,

(7.4) K=1,

(7.5) I;’:P{r—s—m(l—a)I/K},



(7.6) lim,_,,, K)A() =0,
(7.7) lim,_,., P(t)u(t) =0.

We now derive optimal paths that satisfy (7). Time derivative of (7.1) yields

) 2 =2b1(1/1—K/K)e ™ /K —r(1+2bl /K)e "
(1= a)uP(ul y+ PIP—K/K)/K

Substituting (7.3) and (7.4) for (8) implies

(9) 2=(2b1/K=2012 /K2 —r—2brl /K)e™™ —m(1—a)PKMle~"t
+m(l—a)uPl/K?

Moreover, (7.3) and (7.4) yield
(10)  2b1/K=bI%/K2 +2brl /K +r —maPK™!
Substituting (1.1) for (10) implies
(11)  2b1/K =bl2 /K2 +2brl /K +r —mae(~Stkma-1,,
For simplicity, we define
A=ma/(2bn).
Equations (7.4) and (11) yields the following non-autonomous differential equations:

=12 /2K + 1l +rK /(2b) — Ae( Stk M3
=1.

e —e

We here consider the transformation:

X oGty
(12) = .

y e Gtk
Then, we have (Xx(0),y(0))=(1(0),K,). By transformation (12), the non-autonomous
differential equation 7~ is transformed to the autonomous differential equations:



X = X2 /2y) +(r = G)X + 1y /(2b) — Ay™.

y =x—-Gy.

Q0

The equilibrium point of system € is given by the following lemma. .

Lemma 1: Denoting the equilibrium point of system Q by (v,w), we have

V=G[{Gr+r/(2b)-G?/2}/ A](Ma=D 5 ¢
w=[{Gr+r/2b)-G2%/21/ A1 M=D —y/G > 0.m

Proof: The proof is direct.m

Using a solution of system (2, we derive the optimal path. We start with the phase
diagram analysis of system (2. System (2 is not suitable for the phase diagram

analysis. So, we transform system (2 into a more tractable system. We define

X /
ey
y y

It is clear that the ¥ — function is diffeomorphic in R% +={Xy)e RZ:x> 0,y >0}.
Then, we have

Xy—xXy x2/2+(r—G)xy+ry?/(2b)— Ayma+l

y? y?

=X /2+(r=G)X +r/(2b)— Ay™1,

[ ]
X =

y=y=Xy-Gy=xy-Gy.

Thus, we obtain the following system:

%2 /2+(r-G)X+r/(2b)— Aym1,
(X-G)V.

Q:

<o X o

In the following, we analyze system (2.

Lemma 2: Denoting the equilibrium point of system 2 by (V,W), we have



=v/w=G>0,
=W=[{Gr+r/(2b)-G2/2}/ A]""(M=D 5 o u

g <

Proof: The proof is direct.m

We now start with the phase diagram analysis of system (2.

The X=0 isocline: y=H{X>+2(r—G)x+r/b}y~1-a3m _ £ (x),

<o Xeo

The y=0 isocline: y=0 and X =G,

where H = (/1/2)_1/(1_am). From Assumption 2, we have

(13.1)  f(0)=H(r/b)y~1=am 5 o
(13.2) f(i) =H {Xz +2(r-G)X + r/b}—l/(l—am) >0,
(13.3) (%) =—{1/(1—am)} {2X +2(r —=G)}H {x* + 2(r —=G)x + r /by~ /17am o

Therefore, the phase diagram analysis of system (2 is given as in Figure 1. Thus, we

obtain the result on the global existence of stable manifolds:
Figure 1 about here.

Lemma 3: In a neighborhood of W there exists a function @: R' > R! such that
@' (W)<0 and M>(7,W)={(x,y) e R, : x=O(y)},

where M (V,W) is the stable manifold of (V,W). Then, ¥ (I\WS (V,w)) is the stable
manifold of (v,w) for system (2. We define 5”(!\7S (v,w)) =M S (Vv,w).m

Proof: The proof follows directly from (13) and the phase diagram of Figure 1.m

Before getting to the main subject, we prove the following lemma.

Lemma 4: Consider the differential equation:

(14) 2(t) = g(H)z(t) — h(t)e®,



where

(15.1) h(t)>0 forany t>0;
(15.2) h(t) is convergentas t — oo;
(15.3) g(t) isconvergentas t—> o and lim,, . g(t) > B.

Define
u()= J- h(u)exp[ | {B - g(w)}dw]du.
[

0,t] [o,u]

Then, U(t) is convergentas t— o.As a solution of equation (14) , we have

(16) 2(t) = {29 —U(t)}eXp{J‘ g(u)du},
[0,1]

where z, =lim, , U(t). Then, we have z(0)=2; and z(t)>0 forant t>0.m

Proof: In the following, we prove that U (t) is convergent as t — oo. From condition
(15.3), we see that there existsa T >0 such that

(17) ~V =sup{B-g(t):t>T}<0.

Now, define

H = expl I {B— g(w)}dw].
[

0,T]
Then, it follows from (17) that for ant t>T

(18) Q(t) = | h(wexp[ | {B-g(w)}dw]du
[T t] Jiou]

= | h(wexpl {B—g(W)}dW]GXp[J‘{B—Q(W)}dW]dU
[T,t] o[T,u] [0,T]

<H I h(we™ = Ddu = HA(t).
[T.1]



We first prove that A(t) is convergent as t — oo. Condition (15.1) shows that A(t)
is monotonously increasing. Noting condition (15.2), we define h, =lim,_, h(t).
Then, for any &3>0 there exists a T >T such that h(t)<h,+¢& for any t>T.
Therefore we have

At = | hw)e™V U Dy + jh(u)e‘v(“_T)du
JioT [T.t]

< | hye YO Dy + (hy, + &) eV T-T) _e VT,
J[0,T]

N j hweY “ Ddu+h, +2)e VT a5 t >0,
[0.T]

This implies that A(t) is bounded from above. Since A(t) is monotonously
increasing, A(t) is convergent as t — oo. On the other hand, Condition (15.1) shows
that Q(t) is monotonously increasing. Therefore, from (18) and convergence of A(t)

we see that Q(t) converges as t — oo, sothatas t— o

U= j h(u)exp[j {B —g(w)}dw]du + Jh(u)exp[j {B—g(w)}dw]du
[ [ [ [

T.t] 0,u] 0,7] 0,u]

—  limg_,,, .Q(t)+jh(u)exp[ {B —g(w)}dw]du.
[0,T] [0,u]

Therefore, we see that U(t) is bounded from above convergent as t — o. On the
other hand, it follows from condition (15.1) that U(t) is monotonously increasing.
Therefore we see that U(t) is convergent as t — oo. We next prove that z(t) >0 for
any t>0. Condition (15.1) shows that U (t) is a strictly monotone function. Therefore,
from the definition of 7y, we see that z, >U(t) for any t>0. This shows that
Z(t)>0 for any t>0. Since U(0)=0, it follows directly from equation (16) that
2(0) = z(. Finally, we prove that Equation (16) is a solution of Equation (14). We have

2(t) = {29 -U (t)}g(u)eXp{J. g(u)du} —U'(t) eXp{J. g(u)du}
[

[0,t] 0,t]

={zp-U (t)}g(u)exp{j g(u)du} —h(t) eXP[j {B—g(w)jdw]exp {j g(u)duj
[0.t] [0.4] [0.t]

10



= h(t)eBt +g(u)z(t).

This implies that Equation (16) is a solution of Equation (14). Thus we complete the
proof.m

Definition 1: The solution (16) is called a characteristic solution of system (14).m

We next prove the following lemma concerning the stability of the equilibrium:

Lemma 5: The equilibrium point of system €, (v,w) is a saddle point.m

Proof: The Jacobean matrix of system €2 is given by

r —G?2/2+r/(2b)—maAwm"!

J(v,w) =
1 -G
Assumption 1 yields
(19) TrI(v,w)=r-G>0.

Lemma 1 yields Aw™ =G4 r/(2b)- G2/2 , so that

det J(V,W) = —rG + G2 /2 — r /(2b) + maAw™ !
=—rG+G2/2—r/(2b)+ma(Gr+r/(2b)-G?2/2)
= —(1-ma){G(r—G/2)+r/(2b)}.

On the other hand, r>G/2 yields detJ(v,w)<0. From this fact and (19), we see
that the eigenvalues of J(v,w) are real and the signs of the eigenvalues are different

each others.m

We assume the following.
Assumption 6: (X (0),y" (0)) =(O(Kq),Kg) € M S (v,w).

We denote by (X (1),y" () the path of system Q with the initial value that

satisfies Assumption 6. Then, we have

11



T,y @) e M3, im0 (X (0, ()= (v, w).

Since (X** (t), y** (t)) converges to the equilibrium point,

. ok . Kok
limg o, X (D) =limg,0y (1)=0

is satisfied. Therefore, we have

(20) 0=1limg_yo, X (1)
= limg_y o (X ()2 /2y (O} +(r=G)x )41y ()/(2b) — Ay ()™}
=2 /2W) + (r —= GV + rw/(2b) — Aw™

From (3) and (20), we see that the following equation must be satisfied.
AWM = WM =lma b ny) = v /2w?) + (r—=G)v/w +r/(2b)
=-G2/2+1G +r1/(2b).

Therefore, we obtain

wha=Img

obrG+r—bG2

21) 0

Thus, 7 is given by (21). Moreover, it follows from (3) that

ma-1
(22) Py = 1 1 _ w 2ma | |
UOK(O)( a)m (2brG+r—-bG )K(O)( —a)m

We now obtain the following main theorem concerning the existence of the optimal

growth path:

Theorem 1: We assume Assumptions 1 to 5. We define

- y**(t)memGt
Q ® y(HMmemet
C X (t)eCt
(23) :( **((tt)) = Y™ (et ’
P | Poexplr—sit—ma-a) | X"/ y wdu]
I [0,t] ]

12



where

ma-—1
w ma
P

O 2brG +r—bG2)y ™ p-Am”

See equation (22). Then, we have p (t)=D(K;t) and
(24) K°, =x®)+rK; =P MCT M) =1k, — 1T ) {1+b1 T )/ KT ()

possesses a characteristic solution. Denoting it by K,**(t), the optimal path is given by
(23) and K|** (t). Moreover, we have

agr(K™) =G, agr(C™)=agr(Q")=mG, agr(P”)=(1-mG,
agr(K|**):G.

On the other hand, the growth rate of K, " (t) is given by G . We also obtain that there
existsa T >0 such that forany t>T .

7o =P Q) - 1" ®){1+bl"t)/K"®)}>0.m

Proof: The initial point of 7, 7, is determined in this proof. We have

P (t):r—s—m(l—a)x—(t):r—s—m(l—a)—K ®

kK ek

P™ (1) yo () K™ (t)

This shows that

flogP™ () =r—s—m(l-a){logK™ (t)!.

Therefore, we have log{P**(t)}:(r—S)t—log{K**(t)m(l_a)}+A, where A is the
constant of integration. This implies P**(t) = eRe(r9)t, K**(t)(l_a)m. From (3), we
have A=-logu, and

P (1) =¥ /iK™ ()™ = D(K; ).

We next prove that the differential equation (24) possesses the characteristic equation.
From a simple calculation, we see that conditions (1.2) satisfied. Defining g(t)=r

and B=G, we have

13



Ky =K, = 1™ +b1™ ) /K™ )}
=Ky -y O a+bx" )y (t)1e®h

We here define h(t)=y**(t){1+bx**(t)/y**(t)}. Then, h(t)>0 for any t>0.
Since Y (t) converges as t—oo, h(t) converges as t—oo. Thus, we see that

conditions (15.1) to (15.3) are satisfied. Therefore, we see from Lemma 3 that defining

Uy (t) = J.h(u)e(G‘r)tdu,
[

0,t]
U;(t) converges as t—>o and the differential equation (24) possesses the

characteristic solution:
(25) K" (1) ={K;, -Uie",
where K, 0** = lim;_,,, U, (t) . Then, we obtain from (1.2) that

. sk k3 . sk
limy_y Ky (O (1) =lim¢_,,, 79{Kj9 —U1(1)} =0.

This proves equation (1.4). Following (7.3), we here define the following differential

equation:

(26) f={—r+s+mi—a)l ™0/ K™ 01 u- K ®)Me "
={-r+s+md-a)x @®)/y Ou—y (®)meME-Nt,

We define g(t)=—r+s+m(—-a)x (t)/y (t), ht)=y" (t), B=mG-r.Then,

lim¢_,,, g(t)=—r+s+m(l—-a)v/w, h(t)>0 forany t>0, and
lim;_, ., h(t) =w.

This implies that conditions (15.1), (15.2) and the first part of condition (15.3) are

satisfied. Moreover, Lemma 1, Assumption 2, and the definition of G yield

limi ,, 9g(t)=-r+s+m(l-a)G =-r+s+m(l-a)G
=(r-s){-1+m(l—a)/(1-am)}
=(m-1)G>mG-r=B.

This proves the latter part of condition (15.3). Therefore, Lemma 3 shows that equation

(26) also possesses a characteristic solution. We define the characteristic solution by

14



4" (t). Then, Lemma 3 shows that defining

U, (t) = j y' () exp] j MG -s—-m(l-a)x (2)/y" (z)}dz]du
[0.t] [

0,u]

U,(t) converges as t — oo and the characteristic solution of (26) is given by

27) i) = {1y —Ug(®)}expi(—r+s)t+m(l-a) _[ X" )/ y"™" (uydu} .
[0,t]

It follows from the definition that (27) satisfies (7.3). Moreover, we define
(28) 2T ={1+20x" 1)/ y"(®)e " +m-a)u )P (R)/KT(1).

We prove that (28) satisfies condition (7.2). A simple calculation yields

u (1) P**(t)_K**(t) X <t>} y()MeMe—Nt

= {- r+s+m(1—a)

O PTm K NG **(t)
+{r—s— m(l—a)x (t) y (t) +G
yom oy
_ y**(t)me(mG—r)t ~ X**(t)
i) Yy ()

K"®Me™ 1)
LM KT

Therefore we have

f*(t)zzb[x Oy m-y e LU, 2bx (0,4

vy ‘v
e ay . OPT®) P’ W~ ) P (u” ()
K" K KTy
s O LT
2ty ) 0 “»
KO0 g G
y vy y" ()

15



)/l (t)P {0 ,U (t) P ) K (t)}
KTt u (t) P () KT

Hk 2
2{y (0}

+m(l-a

VIR, KT 17,
K™ () £ KT

—[- b{x (t)} 2bAy**ma—1]e—rt
()

“m1—a)P " OK O™ e ™ — 4 (tm(1 - 3)%
{K O}

[bix Etii +2bAy ™ (- )P (K™ )™
t

+m(l-a

— i (OM(1-a)———
K7}

From (3), we here see that

P (OK™ () =K 1)@/
= ey @M Te@DC /-y My,
2b7pA+m(1-a) =m.

Therefore, we have

B R e S B R LA L U]

ooy K"y
08 oy TP OKT O - - SLaNGIN()
K™ () K™ (o)

This implies that condition (7.2) is satisfied. We next prove the transversality condition.
We have

29  PTMu (M) ={uy ~Us®)}exp{(-r+s)t+m(-a) _[ X (u)/y"™" (u)duy
[0,t]

e Py exp[(r —s)t—m(l —a)J- X (U)/y (u)du]
[0.t]

=PRyiuy ~Us(0)}.

16



Since we have ,uo** =lim;_,,,U,(t), we see that lim;_,, P**(t),u**(t) =0. This proves

the transversality condition (7.6). Moreover, we have

K¥0A 0=y 0)eCtel+2bx" 1)/ y (t)e M +mau ()P 1)/ K™ (1)
=y O +2bx7 )y (©)1eC M may” (P ().

Therefore, since G <r, we see from (29) that lim,_, K™ (®)A™(t)=0. This proves the
transversality condition (7.7). Thus, the optimal path is given by (23) and K, " ).

We next derive the growth rate. Using Lemma 2, we calculate the growth rate. In
the following, we derive only the growth rates of P (t) and K,** (t). The growth rate
of the other optimal path can be calculated by the same method. We have

P.**(t)/ P*(t)=dlogP™ (t)/dt =m(a—1) y.**(t)/ y ) +(1-mG.
Therefore, Lemma 2 yields
agr(P™) =lim,_,,, gr(P™) =(1-m)G.
On the other hand, we see from equation (24) that
(30) logK, " (t)=rt+log{K,, —U,(t)}.
Moreover, we have
(31) lim,_, Q(t) =lim,_, {X(t) - Gy(t)} = lim,_, , (v-Gw) =0.

Using L’Hopital’s rule, we obtain from Equations (30) and (31) that

lim o Ky (0)/K; 7 (1) = F=limg o U (/1K —U;(D)}
OeEy**(t)mae(G—r)t

Ko - j oeEy™ (u)Me(G=Nugy
[0,t]

= r—limt_,oo

OEE y**(t)mae(G—r)t + (G _ r)OeEy**(t)mae(G—r)t

=r+ hmt_)w OeEy**(t)mae(G,r)t

=G.
Noing lim,_,,,(x" (t),y" (t)) = (V,W) , we see that

lim,_,., 7" (8)/e™" =lim,, [P"®Q" (1)~ 1" ®){1+bl ™ (t)/ K™ (t)}1/e ™"
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{ZbGr +r-bG?
—w

—G(1+bG)}>0.
ma

Therefore, we obtain that there exists a T >0 such that ﬂc**(t) >0 for any t>T.
Thus, we complete the proof.m
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