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1. Introduction 
 
   Dohtani (2018) constructed an endogenous growth model that makes clear 

several important sources from which structural transitions occur. However, the 

endogenous growth model of Dohtani (2018) lacks any transitional dynamics. That is, 

per capita growth rates of the optimal paths obtained from the model is independent 

of the initial levels of macroeconomic variables. This result is inconsistent with the 

well-known empirical evidence on convergence. See Barro and Sala-i-Martin 

(Chapters 11 and 12, 1995). In the present paper, we will prove that a modified 

version of the growth model of Dohtani (2018) yields transitional dynamics. )) 

 We here briefly explain the method of proving the occurrence of transitional 

dynamics. Although the AK model lacks transitional dynamics, it has been some 

extended versions of the AK model possess transitional dynamics. One method is to 

modify the production function. Another natural method is to incorporate adjustment 

costs for investment. Investment requires adjustment costs. Eisner and Strotz (1963) 

tried to derive optimal paths in the growth model with adjustment costs that is given as 

a monotonously increasing function of investment. The realization of the importance of 

the adjustment costs in studying economic growth started with this study. It is, however, 

natural to assume that adjustment costs depend also on capital stock: Adjustment 

costs ),( KIV . Adjustment costs functions of this type are given by Uzawa (1968) and 

Barro and Sala-i-Martin (1995). Uzawa considered a model into which Penrose effect is 

incorporated. The Penrose effect implies that not all of investment is established as 

capital stock and the rate of establishment increases as investment increases. On the 

other hand, by incorporating adjustment costs that is required to set up capital stock, 

Barro and Sala-i-Martin (1995) derived transitional dynamics. By the same approach as 

of Barro and Sala-i-Martin (1995), we will derive transitional dynamics. 

 
2. Background of the Models 
 

The background of the models is almost the same as Dohtani (2018) and 

essentially Barro and Sala-i-Martin (1992), So we will briefly explain it.  

The models consist of a representative household and a representative 

investment-goods industry, and a representative consumption-goods industry. 

Although Dohtani (2018) considered the case where the number of consumption-
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goods industries is )1(n , for simplicity we here suppose 1n . It is not difficult 

to generalize the model of 1n  to that of .1n  Such a generalization, however, 

requires complicated calculations. For simplicity, we assume that the household owns 

the initial endowment of capital stock which can be used by any industry. The 

household distributes the endowment to all industries. Capital goods owned by the 

household are lent to the investment-goods sector. Without loss of generality, we 

assume that the depreciation rate of capital stock is zero. The consumption-goods 

industries rent capital goods from the investment-goods industry. The household has a 

claim on the consumption-goods sector's net cash flow. There is a competitive credit 

market in which the household can borrow and lend. To rule out Ponzi-game finance, 

we assume the credit market imposes a constraint on the amount of borrowing. The 

two forms of assets, capital and loans are assumed to be perfect substitutes as stores 

of value. Then, they must pay the same real rate of return, and the interest rate on debt 

must be equal to the rental rate on capital.  

The symbols used in this paper are: 

 
     0K initial endowment of capital stock (given),  

C consumption of the goods produced by the consumption-goods industry, 

     s rate of time preference (constant), 

     Q quantity produced by the consumption-goods industry. 

     K capital stock of the consumption-goods industry, 

      profit of the consumption-goods industry, 

     IK capital stock of the representative investment-goods industry, 

     r interest rate rental rate on capital (constant), 

     P price of the goods produced by the consumption-goods industry. 

     KP the rental price of capital stock (normalized) 1 . 

 

We denote by t  the value of   at time .t  For example, we denote by tK  the 

value of capital stock of the consumption-goods industry at time .t   

 

3. Brief Explanation of the Original Model  
without Transitional Dynamics 

 

 We first briefly explain an endogenous growth model of Dohtani (2018). We 
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first consider the investment-goods sector. The investment-goods sector is assumed to 

be perfectly competitive. We assume that the production function of the representative 

industry in the sector is of the AK type. The industry solves the optimization problem: 
 
          max )( II rKK  , 
 
where   is a positive constant. For the AK model, see Rebelo (1991) and Barro and 

Sala-i-Martin (Ch.4, 1995). The condition for profit maximization requires that the 

marginal product of capital equals .r  That is, r . 

We next consider the represent household. The representative household is 

assumed to solve the following dynamic optimization problem:  
 

          




1

)(max
R

stdteCU   subject to  ,PCrKK II 


  

 
where 1

R  is the set of non-negative real numbers. In the present paper, we assume 

that the utility function of the representative household is given as 
 
          ,/)( aCCU a  
 

where ,10  a  and U  represents utility which is obtained by consuming the 

goods produced by the consumption-goods industry. 

   The first order condition of the above optimization problem is given by 
 

(1.1)      ,01   PeCH sta
C  

(1.2)      , rH
IK 


 

(1.3)      ,PCrKK II 


  

(1.4)      tlim .0)()( ttKI   
 

Equation (1.1) yields .1 astCeP  Equation (1.2) yields rte 0 , where 0  

is determined later. Then we have 
 

(2)        .
1

)(
0

a

tsr

C

e
P 





             

 
Equation (2) gives a dynamic version of static inverse demand equation. Following 

Dohtani (2018), Equation (2) is called the dynamic inverse demand equation.  

     Finally, we consider the consumption-goods sector. Although Dohtani (2018) 
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considered more-than-one consumption-goods industries, for simplicity we consider 

the case where the number of consumption-goods industry is only one. The 

production function of the industry is assumed to be 
 

,mKQ   .0,10  m  
 

Without loss of generality, we assume 1 . We consider the situation where the 

consumption-goods market is cleared, so that we have .mKQC   Then, 

substituting this equation into the dynamic inverse demand equation (2) yields 
 

(3)        ).;(
)1(

0

)(
tKD

K

e
P

ma

tsr
 




 

 

The consumption-goods industry solves the following static optimization problem 

under the dynamic inverse demand equation: 
 

(4)       )max( KPK m    subject to  );( tKDP  .  
 

This model generates endogenous growth. Dohtani (2018) constructed an 

extended version of the model and derived an optimal growth path of the extended 

version. The optimal path makes clear several important sources from which structural 

transitions occur. However, the endogenous growth model of Dohtani (2018) lacks any 

transitional dynamics. In the next section, by modifying the above-mentioned model, 

we will prove the occurrence of transitional dynamics. 

 

4. Transitional Dynamics and Adjustment Costs  
for Investment 

 

 Except for the optimization problem of the consumption-goods industry, we 

consider the same model as that of Section 3. We work under the following 

assumptions: 

 

Assumption 1: ;1 am  

Assumption 2: )}.1/()(,max{ amsrsr   

 

Assumptions 1 and 2 yield 
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          0
1






am

sr
G . 

 

We here define )(gr the growth rate of .  

In the following, we employ the adjustment costs function of Barro and Sala-i-

Martin (Ch.3.5, 1995):  
 

   )]/(1[),( KIIKIV  . 
 

We here assume the following: 

 

Assumption 3: 0)0(  ; 

Assumption 4: 0)(' x  for any 0x ; 

Assumption 5: 0)(  x  for any 0x . 

 

Using this adjustment function, we rewrite the optimization problem (4) by the 

following intertemporal optimization problem of the consumption-goods industry as 

follows: 
 

(5)       dteKbIIPK
R

rtm



1

)}/1({max ,  

subject to }./)1({, KIamsrPPIK 


 
 

The Hamiltonian of the optimization problem (5) is given by 
 

(6)       }/)1({)}/1({ KIamsrPIeKbIIPKH rtm     

 

Since the Hamiltonian is a concave function of the state and the control variables, the 

sufficient condition for optimization given by  
 

(7.1)      0/)1()/21(   KPameKbIH rt
I  , 

(7.2)      2221 /)1()/( KPIameKbImPKH rtm
K  

 , 

(7.3)      rtm
P eKKIamsrH 

 }/)1({ , 

(7.4)      IK 


, 

(7.5)      }/)1({ KIamsrPP 


, 
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(7.6)      0)()(lim  ttKt  , 

(7.7)      0)()(lim  ttPt  . 
 

We now derive optimal paths that satisfy (7). Time derivative of (7.1) yields 
 

(8)      rtrt eKbIrKeKKIIbI 
 )/21(/)//(2  

KKKPPPam /)///()1(


   
 

Substituting (7.3) and (7.4) for (8) implies  
 

(9)     rtmrt ePKameKbrIrKbIKIb 
 122 )1()/2/2/2(  

2/)1( KPIam   
 

Moreover, (7.3) and (7.4) yield 
 

(10)     122 /2//2 
 mmaPKrKbrIKbIKIb  

 

Substituting (1.1) for (10) implies 
 

(11)    0
1)(22 //2//2 

 matsr KmaerKbrIKbIKIb . 
 

For simplicity, we define 
 
     )2/( 0 bma . 
 

Equations (7.4) and (11) yields the following non-autonomous differential equations: 
 














.

,)2/(2/
:

)(2

IK

KebrKrIKII matsr  

 

We here consider the transformation: 
 

(12)      





























Ke

Ie

y

x

Gt

Gt

. 

 

Then, we have )),0(())0(),0(( 0KIyx  . By transformation (12), the non-autonomous 

differential equation   is transformed to the autonomous differential equations:  
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












.

,)2/()()2/(
:

2

Gyxy

ybryxGryxx ma  

 

The equilibrium point of system   is given by the following lemma. . 

 

Lemma 1: Denoting the equilibrium point of system   by ),( wv , we have 
 

0]/}2/)2/([{ )1/(12  maGbrGrGv  , 

0/]/}2/)2/([{ )1/(12   GvGbrGrw ma .■ 

 

Proof: The proof is direct.■ 

 

Using a solution of system  , we derive the optimal path. We start with the phase 

diagram analysis of system  . System   is not suitable for the phase diagram 

analysis. So, we transform system   into a more tractable system. We define  
 

         ).,(
/

yx
y

yx

y

x


















 

 
It is clear that the  function is diffeomorphic in }0,0:),{( 22  yxRyxR . 

Then, we have 
 

          
2

122

2
)2/()(2/

y

ybryxyGrx

y

yxyx
x

ma


 






 

,)2/()(2/ 12  maybrxGrx   

          yGyxGyyxyy 


. 
 
Thus, we obtain the following system: 
 














.)(

,)2/()(2/:
12

yGxy

ybrxGrxx ma  

 

In the following, we analyze system  .  

 

Lemma 2: Denoting the equilibrium point of system   by ),( wv , we have 
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0/  Gwvv , 

0]/}2/)2/([{ )1/(12  maGbrGrww  .■ 

 

Proof: The proof is direct.■ 

 

We now start with the phase diagram analysis of system  . 
 

         The 0

x  isocline: ),(}/)(2{ )1/(12 xfbrxGrxHy am    

         The 0

y  isocline: 0y  and ,Gx   

 

where .)2/( )1/(1 amH    From Assumption 2, we have 
 

(13.1)    0)/()0( )1/(1   ambrHf  

(13.2)    0}/)(2{)( )1/(12   ambrxGrxHxf , 

(13.3)    0}/)(2{)}(22)}{1/(1{)(' )1/(12   ambrxGrxHGrxamxf . 
 

Therefore, the phase diagram analysis of system   is given as in Figure 1. Thus, we 

obtain the result on the global existence of stable manifolds: 

 

Figure 1 about here. 

 

Lemma 3: In a neighborhood of w  there exists a function 11: RR   such that 
 

0)(' w  and )}(:),{(),( 2 yxRyxwvM S   , 
 

where ),( wvM S  is the stable manifold of ),( wv . Then, )),(( wvM S  is the stable 

manifold of ),( wv  for system  . We define ),()),(( wvMwvM SS  .■ 

 

Proof: The proof follows directly from (13) and the phase diagram of Figure 1.■ 

 

Before getting to the main subject, we prove the following lemma. 

 

Lemma 4: Consider the differential equation: 
 

(14)      ,)()()()( Btethtztgtz 


 



 9

 

where 
 

(15.1)    0)( th  for any 0t ; 

(15.2)    )(th  is convergent as t ; 

(15.3)    )(tg  is convergent as t  and .)(lim Btgt   
 

Define 
 

      .])}({exp[)()(
],0[],0[  

ut

dudwwgBuhtU  

 
Then, )(tU  is convergent as t . As a solution of equation (14) , we have 
 

(16)      },)(exp{)}({)(
],0[

0 
t

duugtUztz   

 
where ).(lim0 tUz t   Then, we have 0)0( zz   and 0)( tz  for ant 0t .■ 

 

Proof: In the following, we prove that )(tU  is convergent as t . From condition 

(15.3), we see that there exists a 0T  such that 
 

(17)       0}:)(sup{  TttgBV . 
 

Now, define  
 

 
],0[

])}({exp[
T

dwwgBH . 

 

Then, it follows from (17) that for ant Tt   
 

(18)       
],0[],[

])}({exp[)()(
utT

dudwwgBuht  

dudwwgBdwwgBuh
TuTtT  

],0[],[],[

])}({exp[])}({exp[)(  

)()(
],[

)( tHdueuhH
tT

TuV    . 
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We first prove that )(t  is convergent as .t  Condition (15.1) shows that )(t  

is monotonously increasing. Noting condition (15.2), we define ).(lim thh t    

Then, for any 0  there exists a TT   such that  hth )(  for any Tt  . 

Therefore we have 
 

  
],[

)(

],0[

)( )()()(
tT

TuV

T

TuV dueuhdueuht  

}){()( )()(

],0[

)( TtVTTV

T

TuV eehdueuh 


     

 )(

],0[

)( )()( TTV

T

TuV ehdueuh 


    as t . 

 
This implies that )(t  is bounded from above. Since )(t  is monotonously 

increasing, )(t  is convergent as t . On the other hand, Condition (15.1) shows 

that )(t  is monotonously increasing. Therefore, from (18) and convergence of )(t  

we see that )(t  converges as t , so that as t  
 

         ],0[],[

])}({exp[)()(
utT

dudwwgBuhtU  
],0[],0[

])}({exp[)(
uT

dudwwgBuh  

                            .])}({exp[)()(lim
],0[],0[

dudwwgBuht
uT

t       

 
Therefore, we see that )(tU  is bounded from above convergent as t . On the 

other hand, it follows from condition (15.1) that )(tU  is monotonously increasing. 

Therefore we see that )(tU  is convergent as t . We next prove that 0)( tz  for 

any 0t . Condition (15.1) shows that )(tU  is a strictly monotone function. Therefore, 

from the definition of 0z , we see that )(0 tUz   for any 0t . This shows that 

0)( tz  for any 0t . Since ,0)0( U  it follows directly from equation (16) that 

.)0( 0zz   Finally, we prove that Equation (16) is a solution of Equation (14). We have 
 

    })(exp{)('})(exp{)()}({)(
],0[],0[

0  


tt

duugtUduugugtUztz  

 
],0[],0[],0[

0 })(exp{])}({exp[)(})(exp{)()}({
ttt

duugdwwgBthduugugtUz  
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)()()( tzugeth Bt  . 

 

This implies that Equation (16) is a solution of Equation (14). Thus we complete the 

proof.■ 

 

Definition 1: The solution (16) is called a characteristic solution of system (14).■ 

 

  We next prove the following lemma concerning the stability of the equilibrium: 

 

Lemma 5: The equilibrium point of system  , ),( wv  is a saddle point.■ 

 

Proof: The Jacobean matrix of system   is given by  
 


















G

wmabrGr
wvJ

ma

1

)2/(2/
),(

12 
. 

 

Assumption 1 yields 
 

(19)      0),(  GrwvTrJ . 
 
Lemma 1 yields 2/)2/( 21 GbrGrwma  , so that  
 

12 )2/(2/),(det  mawmabrGrGwvJ   

)2/)2/(()2/(2/ 22 GbrGrmabrGrG   

)}2/()2/(){1( brGrGma  . 
 
On the other hand, 2/Gr   yields 0),(det wvJ . From this fact and (19), we see 

that the eigenvalues of ),( wvJ  are real and the signs of the eigenvalues are different 

each others.■ 

 

We assume the following. 

 

Assumption 6: ),()),(())0(),0(( 00
**** wvMKKyx S  . 

 

We denote by ))(),(( **** tytx  the path of system   with the initial value that 

satisfies Assumption 6. Then, we have  
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 SMtytx ))(),(( **** , ),())(),((lim **** wvtytxt  . 
 

Since ))(),(( **** tytx  converges to the equilibrium point,  
 

0)(lim)(lim **** 






 tytx tt   
 

is satisfied. Therefore, we have 
 

(20)      )(lim0 ** txt



  

         )2/()()()()}(2/{)({lim ******2** btrytxGrtytxt   })(** maty  
mawbrwvGrwv  )2/()()2/(2  

 

From (3) and (20), we see that the following equation must be satisfied. 
 

)2/(/)()2/()2/( 22
0

11 brwvGrwvbmaww mama     

                                  )2/(2/2 brrGG  . 
 

Therefore, we obtain  
 

(21)     
2

1

0
2 bGrbrG

mawma





 . 

 
Thus, 0  is given by (21). Moreover, it follows from (3) that 
 

(22)     
ma

ma

ma KbGrbrG

maw

K
P

)1(2

1

)1(
0

0
)0()2()0(

1




 



. 

 

We now obtain the following main theorem concerning the existence of the optimal 

growth path:  

 

Theorem 1: We assume Assumptions 1 to 5. We define 
 

(23)      


















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






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
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



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
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









 ],0[
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])(/)()1()exp[(
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where  
 

.
)()2( )1(**2

1

0 ma

ma

tybGrbrG

maw
P 




  

 

See equation (22). Then, we have );()(** tKDtP   and  
 

(24)      )}(/)(1){()()()( ********** tKtbItIrKtCtPrKtK III 


  
 

possesses a characteristic solution. Denoting it by )(** tKI , the optimal path is given by 

(23) and )(** tKI . Moreover, we have  
 

    ,)1()(,)()(,)( ******** GmPagrmGQagrCagrGKagr    

.)( ** GKagr I   
 

On the other hand, the growth rate of )(** tKI  is given by G . We also obtain that there 

exists a 0T  such that for any Tt  . 
 

0)}(/)(1){()()()( ************  tKtbItItQtPtC .■ 

 

Proof: The initial point of ,  0  is determined in this proof. We have 
 

)(

)(
)1(

)(

)(
)1(

)(

)(
**

**

**

**

**

**

tK

tK
amsr

ty

tx
amsr

tP

tP


  

 
This shows that  
 


 )}({log)1()}({log **** tKamsrtP . 

 
Therefore, we have ,})(log{)()}(log{ )1(**** AtKtsrtP am   where A  is the 

constant of integration. This implies matsrA tKeetP )1(**)(** )(/)(  . From (3), we 

have 0logA  and  
 

);(})(/{)( )1(**
0

)(** tKDtKetP matsr    .  
 
We next prove that the differential equation (24) possesses the characteristic equation. 

From a simple calculation, we see that conditions (1.2) satisfied. Defining rtg )(  

and ,GB   we have 
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)}(/)(1){( ****** tKtbItIrKK II 


 

.)}(/)(1){( ****** Gt
I etytbxtyrK   

 

We here define )}(/)(1){()( ****** tytbxtyth  . Then, 0)( th  for any .0t  

Since )(** ty  converges as t , )(th  converges as t . Thus, we see that 

conditions (15.1) to (15.3) are satisfied. Therefore, we see from Lemma 3 that defining 
 

 
],0[

)(
1 )()(

t

trG dueuhtU , 

)(1 tU  converges as t  and the differential equation (24) possesses the 

characteristic solution:  
 

(25)      rt
II etUKtK )}({)( 1

**
0

**  , 
 

where )(lim 1
**

0 tUK tI  . Then, we obtain from (1.2) that 
 

0)}({lim)()(lim 1
**

00
****   tUKttK ItIt  .  

 

This proves equation (1.4). Following (7.3), we here define the following differential 

equation: 
 

(26)      rtm etKtKtIamsr 
 )()}(/)()1({ ******   

trmGm etytytxamsr )(****** )()}(/)()1({   . 
 
We define ),()(),(/)()1()( ****** tythtytxamsrtg   rmGB  . Then,  
 

0)(,/)1()(lim  thwvamsrtgt  for any ,0t  and 

.)(lim wtht   
 
This implies that conditions (15.1), (15.2) and the first part of condition (15.3) are 

satisfied. Moreover, Lemma 1, Assumption 2, and the definition of G yield 
 

Gamsrtgt )1()(lim  Gamsr )1(   

)}1/()1(1){( amamsr   

BrmGGm  )1( . 
 

This proves the latter part of condition (15.3). Therefore, Lemma 3 shows that equation 

(26) also possesses a characteristic solution. We define the characteristic solution by 
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)(** t . Then, Lemma 3 shows that defining  
 

dudzzyzxamsmGuytU
ut

])}(/)()1({[exp)()(
],0[

****

],0[

**
2   , 

 
)(2 tU  converges as t  and the characteristic solution of (26) is given by 

 

(27)       })(/)()1()exp{()}({)( **

],0[

**
2

**
0

** duuyuxamtsrtUt
t  . 

 
It follows from the definition that (27) satisfies (7.3). Moreover, we define 
 

(28)      )(/)()()1()}(/)(21{)( ************ tKtPtametytbxt rt    . 
 

We prove that (28) satisfies condition (7.2). A simple calculation yields 
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


. 

 
Therefore we have 
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               rtma eyb
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)}({
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  
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)}({
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From (3), we here see that  
 

0
1**)(1**** /)()()(   amtsrm tKetKtP  

0
)1(1**)( /)( Gamamtsr etye  0

1** /)(  maty ,  

.)1(2 0 mamb   
 
Therefore, we have 
 

rtm etKtmP
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
 ])()(

)}({

)}({
[)( 1****
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)}({
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This implies that condition (7.2) is satisfied. We next prove the transversality condition. 

We have  

(29)    })(/)()1()exp{()}({)()( **
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0

**** duuyuxamtsrtUttP
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],0[

****
0 ])(/)()1()exp[(

t

duuyuxamtsrP  

)}({ 2
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Since we have )(lim 2

**
0 tUt  , we see that  )()(lim **** ttPt  0. This proves 

the transversality condition (7.6). Moreover, we have 
 

)(/)()()}(/)(21{)()()( **************** tKtPtmaetytbxetyttK rtGt     

)()()}(/)(21){( ****)(****** tPtmaetytbxty trG   . 
 
Therefore, since rG  , we see from (29) that 0)()(lim ****  ttKt  . This proves the 

transversality condition (7.7). Thus, the optimal path is given by (23) and )(** tKI .  

We next derive the growth rate. Using Lemma 2, we calculate the growth rate. In 

the following, we derive only the growth rates of )(** tP  and )(** tKI . The growth rate 

of the other optimal path can be calculated by the same method. We have 
 

GmtytyamdttPdtPtP )1()(/)()1(/)(log)(/)( ********** 


. 
 

Therefore, Lemma 2 yields  
 
     GmPgrPagr t )1()(lim)( ****   . 
 

On the other hand, we see from equation (24) that 
 

(30)       )}(log{)(log 1
**

0
** tUKrttK II  . 

 

Moreover, we have  

(31)       0)(lim)}()({lim)(lim  



 GwvtGytxty ttt . 
 

Using L’Hopital’s rule, we obtain from Equations (30) and (31) that  
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
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dueuyeK

etye
r




 

trGmaE
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

                       G . 
 
Noing ),())(),((lim **** wvtytxt  , we see that 
 

 trG
t

trG
Ct etKtbItItQtPet )(**********)(** /)}](/)(1){()()([lim/)(lim 




   
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Therefore, we obtain that there exists a 0T  such that 0)(** tC  for any Tt  .  
Thus, we complete the proof.■ 
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