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Abstract
In the present paper, the collapse behaviors of rectangular tubes subjected to pure bend-
ing are investigated using the finite element method. Such bending collapse has been
investigated extensively. These studies have revealed the existence of two types of col-
lapse. The first type is a collapse due to buckling at the compression flange, and the
second type is a collapse due to plastic yielding at the flanges. However, another type
of collapse may exist. For a rectangular tube in which the web is wider than the flange,
collapse due to buckling may occur at the compression web. Furthermore, an approx-
imate prediction method is proposed for estimating the maximum bending moment of
rectangular tubes in which web buckling is also taken into account. The validity of this
method is verified through comparison with the numerical results obtained by FEM
under various conditions.
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1. Introduction

Rectangular and square section tubes are widely used in mechanical equipment. There-
fore, a study of the collapse behaviour is important for both the design and analysis of weight-
efficient safety structures. Prediction of the maximum moment of square tubes subjected to
pure bending was proposed by Kecman(1), and Kecman’s method(2), as introduced in a book
entitled ”Energy absorption of structures and materials”(3), has been used until recently. Ac-
cording to Kecman’s study, there are two types of collapses. The first type is a collapse due to
buckling at the compression flange, and the second type is a collapse due to plastic yielding at
the flanges. However, when the web is wider than the flange, collapse due to buckling at the
compression web may occur, as has been reported in the bending of open-section beams(4). In
the present study, the effects of the material and geometrical properties of rectangular tubes
on bending collapse are investigated using the finite element method. Furthermore, based
on the obtained numerical results, a method for predicting the maximum bending moment of
rectangular tubes subjected to pure bending is proposed.

In addition, the validity of the FE analysis result under bending collapse has been already
verified by comparing the experimental results reported by Kyriakides(5) with the numerical
results obtained under pure bending with cylindrical tubes of aluminum alloy as reported
previously by the present authors(6).

2. Analytical method

The commercial FEM analysis package MSC.Marc(7) was used to analyze the large
elastoplastic bending of the rectangular tubes shown in Fig. 1. In the present calculation,
one end of the rectangular tube was fixed to a rigid wall. Pure bending was applied from
the other end by modeling a lid rotating about thez axis under rotary control. The effects of
various geometric parameters, such as tube thicknesst, tube flange widthc1, and tube web
width c2, on bending collapse were investigated. The lid thicknesst f was set to five times
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t, as suggested by Guarracino(8), because the lid must be stiff enough to prevent distortion.
The tube material used in the analysis was assumed to be a homogeneous and isotropic elastic
perfectly plastic material that conforms to von Mises yield conditions. In the present study,
the Young’s modulusE was assumed to be 72.4 GPa, and Poisson’s ratioν was assumed to be
0.3. The influence of the material properties on the bending collapse of the rectangular tube
was investigated in terms of the yield stressσY.

In the present study, the updated Lagrange method was used to formulate the geometric
nonlinear behavior, and the algorithm based on the Newton-Raphson method and the return-
mapping method were used to solve the nonlinear equation. The rectangular tubes were mod-
eled using four-node quadrilateral thickness shell elements (Element type 75). The elements
divided the flange and the web width into 20 sub-lengths and divided the axial length such
that the elements become almost square.

In addition, the rectangle length used in the analysis was assumed to be large enough to
neglect the influence of the boundary conditions. The ratio of the length and flange widthL/c1

was set toL/c1 > 6.
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Fig. 1 Analyzed model of a rectangular tube subjected to pure bending

3. Results and discussion

3.1. Comparison between the method proposed by Kecman and the results of the present
numerical analyses
First, we present Kecman’s method for predicting the maximum bending moment of

rectangular tubes subjected to pure bending. For a rectangular tube subjected to pure bending,
the buckling stressσbuc of the compression flange was derived as follows:

ae = a

(
0.7
σbuc

σY
+ 0.3

)
(1)

whereE, ν, a, b, andt are Young’s modulus, Poisson’s ratio, the flange width, the web width,
and tube thickness, respectively. In addition,a is c1 + t , andb is c2 + t.

Kecman proposed a method that considered three stress distribution cases using a com-
parison between the buckling stressσbuc and the yield stressσY.

(1) For the case in whichσbuc < σY

If the buckling stressσbuc is less than the yield stressσY, then the compression flange
buckles, and the edges stress increases to the yield stressσY. In order to consider this phe-
nomenon, the effective widthae is introduced to the following simplified equation:

ae = a

(
0.7
σbuc

σY
+ 0.3

)
(2)

As a result, the stress distribution in the maximum moment is shown in Fig. 2(a). In the figure,
y1 is the distance from the compression flange to the neutral axis as derived from the condition
of zero axial load. Therefore,y1 is given as follows:

y1
b
=

a+ b
ae + a+ 2b

(3)

2



JSME
Technical Journal

Vol.6, No.1, 2011

b

a
2
eaYσ

1y

1

1
Y
b y
yσ
−

( a )

b

Yσ

( b )

Yσ

2
b

a

Fig. 2 Schematic representation of the axial stress distribution proposed by Kecman(1):
(a)σbuc < σY; (b)σbuc ≥ 2σY

By summing the moments through the cross-section, the maximum bending moment is
derived as follows:

Mmax = σY · t · b2 ·
2a+ b+ ae ·

(
3

a
b
+ 2

)
3(a+ b)

(4)

(2) For the case in whichσbuc ≥ 2σY

In this case, the stress distribution in the maximum moment is shown in Fig. 2(b).
Namely, it is assumed that the maximum moment is equal to a fully plastic momentMp.
The maximum bending moment is derived as follows:

Mmax = Mp = σY · t
[
a (b− t) + 0.5(b− 2t)2

]
(5)

(3) For the case in whichσY ≤ σbuc < 2σY

First, if the buckling stressσbuc is equal to the yield stressσY, it is assumed that the
maximum moment is equal to an elastic momentMe, in which the stress of the flanges is
equal to the yield stressσY. This elastic momentMe is derived as follows:

Me = σY · t · b ·
(
a+

b
3

)
(6)

Finally, for the case in whichσY ≤ σbuc < 2σY, the maximum bending moment is derived by
linear interpolation:

Mmax = Me +
(
Mp − Me

) σbuc− σY

σY
(7)

Figure 3 compares the method proposed by Kecman and the results of the present numer-
ical analyses for high and low aspect ratiosc2/c1 with c1 = 50 mm,L = 300 mm, andσY/E
= 0.001. As shown in the figure, for high aspect ratios for which the web is wider than the
flange, the maximum moment obtained under various values oft/c1 using Kecman’s method
and the FEM results have the large error. In particular, the error increases with decreasingt/c1.
Basically, a region to which Kecman’s method does not apply is found to exist. Therefore, it
is important to reveal the bending collapse mechanism of rectangular tubes in order to predict
the maximum moment.

3.2. Two types of collapse mechanism reported by Kecman
The two types of collapse mechanisms reported by Kecman were investigated using

square tubes having an aspect ratioc2/c1 of 1. Figure 4 shows the relationship between tube
curvatureκ = θ/L and momentM for a square tube witht = 0.9 mm,c1 = 50 mm,c2 = 50 mm,
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Fig. 3 Comparison of Kecman’s results and the FEM results for the relationship
betweent/c1 andMmax/(σYc1c2t)

andσY/E = 0.001 (σbuc = 1.52σY). In addition, Fig. 4 shows the relationship between tube
curvatureκ = θ/L and axial stressσx at points B and C (refer to the schematic representation
of the tube cross-section in Fig. 4). As shown in the figure, the maximum moment is in good
agreement with the value obtained using Equation (7). The axial compression stressσx/σY

at point B in the middle of the compression flange increases until the moment becomes the
maximum moment andσx/σY becomes 1. In addition, the axial compression stressσx/σY at
point C at the quarter-web width increases until the moment becomes the maximum moment.
Figure 5 shows the axial stress distribution of the cross-section at phases (α) and (β) corre-
sponding toθ/L = 0.025m−1 and 0.065m−1 in Fig. 4. As shown in the figure, the absolute
value of the axial stress when the maximum moment occurs is greater than the value at phase
(α) for all cross-sectional positions. In addition, the axial stress distribution when the max-
imum moment occurs is in good agreement with the results obtained by Kecman’s method.
The above investigation confirms that, for the case in whichc2/c1 = 1 andσY ≤ σbuc, the col-
lapse is not due to buckling at the compression flange and the web, but rather plastic yielding
at the flanges. Therefore, the maximum moment can be predicted by Kecman’s theory in this
case.
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Fig. 4 Relationship betweenθ/L andM, σx/σY for a square tube witht = 0.9mm,c1

= 50mm andc2 = 50mm

Figure 6 shows the relationship between tube curvatureκ = θ/L and momentM for a
square tube witht = 0.4 mm,c1 = 50 mm,c2 = 50 mm, andσY/E = 0.001 (σbuc = 0.31σY).
In addition, Fig. 6 shows the relationship between tube curvatureκ = θ/L and axial stress
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Fig. 5 Axial stress distribution of the collapse cross-section of the square tube shown
in Fig.4
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in Fig.6
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σx at points B and C (refer to the schematic representation of the cross-section in Fig. 6).
As shown in the figure, the maximum moment is in good agreement with the value obtained
using Equation (4). The axial compression stressσx/σY at point B in the middle of the
compression flange decreases before the moment becomes the maximum moment, and the
maximum valueσx/σY is in good agreement with the elastic buckling stress given by Equation
(1). In addition, the axial compression stressσx/σY at point C at the quarter-web width
increases until the moment becomes the maximum moment. Figure 7 shows the axial stress
distribution of the cross-section at phases (α) and (β) corresponding toθ/L = 0.012m−1 and
0.038 m−1, respectively, in Fig. 6. As shown in the figure, although the axial compression
stress in the middle of the compression flange decreases due to buckling in the middle of the
compression flange, the axial compression stress increases at both edges of the compression
flange because buckling does not occur at the edges of the flange. Just after buckling, the stress
increment at both edges is greater than the stress decrement in the middle of the compression
flange. Therefore, the total force on the compression side increases and the moment increases.
In addition, the stress distribution of the web changes linearly because buckling does not occur
in the web. Therefore, the axial stress distribution when the maximum moment occurs is
in good agreement with that obtained by Kecman’s method using the effective width of the
compression flange. The above investigation confirms that for the case in whichc2/c1 = 1 and
σY > σbuc, collapse is due to buckling at the compression flange. Therefore, the maximum
moment can be predicted by Kecman’s theory in this case.

3.3. Collapse mechanism which is different from Kecman’s indication
In the case of a high aspect ratio, for which the web is wider than the flange, collapse

was confirmed to be due to buckling at the compression web. Figure 8 shows the relationship
between tube curvatureκ = θ/L and momentM for a rectangular tube witht = 0.5 mm,c1 =

20 mm,c2 = 100 mm, andσY/E = 0.001 (σbuc = 2.83σY, c2/c1 = 5). In addition, Fig. 8 also
shows the relationship between tube curvatureκ = θ/L and axial stressσx at points B and C
(refer to the schematic representation of the cross-section in Fig. 8). As shown in the figure,
the maximum moment is less than that obtained using Equation (5). In addition, the axial
compression stressσx/σY at point B in the middle of the compression flange increases until
the moment becomes the maximum moment and the valueσx/σY becomes 1. In addition,
the axial compression stressσx/σY at point C at the quarter-web width decreases before the
moment becomes the maximum moment. Figure 9 shows the axial stress distribution of the
cross-section at phases (α) and (β), corresponding toθ/L = 0.036m−1 and 0.048m−1 in Fig.
8. As shown in the figure, the axial stress distribution in the compression flange is constant,
and the absolute value is approximately 1 when the maximum moment occurs. In addition, the
axial stress distribution in the compression web does not increase linearly. Therefore, the sum
of the axial stresses when the maximum moment occurs is less than that obtained by Kecman’s
method, as indicated by the arrows in Fig. 9. The above investigation reveals that, in the case
of a high aspect ratio andσY < σbuc, collapse is not due to plastic yielding at the flanges, but
rather buckling at the compression web in a state of plastic yielding at the compression flange.
Therefore, the maximum moment cannot be predicted by Kecman’s theory in this case.

Figure 10 shows the relationship between tube curvatureκ = θ/L and momentM for a
rectangular tube witht = 0.4 mm,c1 = 50 mm,c2 = 100 mm, andσY/E = 0.001 (σbuc =

0.30σY, c2/c1 = 2). In addition, Fig. 10 shows the relationship between tube curvature
κ = θ/L and axial stressσx at points B and C (refer to the schematic representation of the
cross-section in Fig. 10). As shown in the figure, the maximum moment is less than the value
obtained using Equation (4). The axial compression stressσx/σY at point B in the middle of
the compression flange decreases before the moment becomes the maximum moment, and the
maximum valueσx/σY is in good agreement with the elastic buckling stress given by Equation
(1). In addition, the axial compression stressσx/σY at point C at the quarter-web width
decreases before the moment becomes the maximum moment. Figure 11 shows the axial
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Fig. 11 Axial stress distribution of the collapse cross-section of the rectangular tube
shown in Fig.10

stress distribution of the cross-section at phases (α) and (β), corresponding toθ/L = 0.007
m−1 and 0.016 m−1 in Fig. 10. As shown in the figure, the axial stress in the compression
flange is concentrated at the edges when the maximum moment occurs. In addition, the axial
stress distribution in the compression web does not increase linearly. Therefore, the sum of
the axial stresses at the maximum moment is less than that obtained by Kecman’s method, as
indicted by the arrows in Fig. 11. The reason for this is that Equation (2) applies to the axial
stress distribution of the compression flange, and linearly approximation does not apply to the
axial stress distribution of the compression web in this case. The above investigation reveals
that, in the case of a high aspect ratio andσY ≥ σbuc, the collapse is not only due to buckling
at the compression flange but also due to buckling at the compression web. Therefore, the
maximum moment cannot be predicted by Kecman’s theory in this case.

3.4. Proposed method of maximum moment considering web buckling
Figure 12 shows a schematic representation of the axial stress distribution at the max-

imum moment when the compression flange buckles (σbuc < σY). Figure 12(a) shows the
distribution of Kecman’s method, which does not consider web buckling, and Fig. 12(b)
shows the distribution of the proposed method, which considers web buckling. As shown in
the figure, an effective widthae is applied to the compression web as well as the compression
flange. Referring to Karman’s theory(8), the effective widthae is assumed to be independent
of the initial web width. Equation (3) of Kecman is assumed to be applicable to the position
of the neutral axisy1 in the proposed method. The coefficientα, which represents the axial
tension stress, is derived under the condition in which the total force of the compression side
and the tension side is zero. Thus,

α =
2(ae − t)

a+ b− y1 − 2t
(8)

is derived from the total force of the compression side, 2σYt (ae − t), and the total force of the
tension side,ασYt (a− 2t) + ασYt (b− y1) .

Figure 13 compares the FEM results and the results obtained by Kecman’s method and
the proposed method for the axial stress distribution for a rectangular tube witht = 0.4 mm,c1

= 50 mm, andσY/E = 0.001. As shown in the figure, for the high aspect ratios, i.e.,c2/c1 = 2
andc2/c1 = 1.6, the results obtained by the proposed method, which considers web buckling,
are in good agreement with the FEM results. For the low aspect ratioc2/c1 = 0.6, the results
obtained by Kecman’s method, which does not consider web buckling, are in good agreement
with the FEM results.

Figure 14 shows a schematic representation of the axial stress distribution at the maxi-
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Fig. 13 Axial stress distribution obtained by the FEM, Kecman’s method, and the
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mum moment when the compression flange does not buckle (σbuc ≥ σY). Figure 14(a) shows
Kecman’s results, which do not consider web buckling, and Fig. 14(b) shows the results ob-
tained by the proposed method, which considers web buckling. As in the case of Fig. 12(b),
Equation (2) applies to the effective widthae in the compression web, and Equation (3) ap-
plies to the position of the neutral axisy1 in the proposed method. The coefficientβ, which
represents the axial tension stress, is derived under the condition in which the total force of
the compression side and the tension side is zero. Thus,

β =
a+ ae − 2t

a+ b− y1 − 2t
(9)

is derived from the total force of the compression side,σYt (a− 2t)+σYtae, and the total force
of the tension side,βσYt (a− 2t) + βσYt (b− y1).

b

aYσ

/ 2b

Yσ

(a)

b

/ 2ea Yσ

1y

Yβ σ

(b )

a

Fig. 14 Axial stress distribution in the range ofσbuc ≥ σY as obtained (a) by Kecman’s
method and (b) by the proposed method

Figures 15(a) and 15(b) compare the FEM results and the results obtained by Kecman’s
method and the proposed method for the axial stress distribution for a rectangular tube with
t = 0.5 mm,c1 = 20 mm, andσY/E = 0.001. As shown in the figures, at a high aspect ratio,
c2/c1 = 5, the results of the proposed method, which considers web buckling, are in good
agreement with the FEM results. At a low aspect ratio,c2/c1 = 2, the results obtained by
Kecman’s method, which does not consider web buckling, are in good agreement with the
FEM results.

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

FEM

Kecman

σ x
 / 

σ Y

s / (2c1+2c2 )

s

extension side

compression side

L = 300 mm
c1 = 20 mm
c2 = 100 mm
t = 0.5 mm

Proposal

(a)

0 0.5 1
−2

−1

0

1

2

FEM

Kecman

σ x
 / 

σ Y

s / (2c1+2c2 )

s

extension side

compression side

L = 200 mm
c1 = 20 mm
c2 = 40 mm
t = 0.5 mm

Proposal

(b)

Fig. 15 Axial stress distribution obtained by the FEM results, Kecman’s method, and
the proposed method for (a)c2/c1=5 and (b)c2/c1=2

Finally, we can present the proposed method for predicting the maximum bending mo-
ment of rectangular tubes subjected to pure bending, because the axial stress distributions
which consider web buckling have been presented. For the case in whichσbuc < σY, the
position of the center of gravity in the tension webG is derived as follows:

G =
1
3

(
1
2

b+ y1

)
(10)
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Therefore, for the case in whichσbuc < σY, the moments of the individual parts at the maxi-
mum moment are as follows. The moment of the tension web is1

2ασYt (b− y1)×G×2, and the
moment of the tension flange isασYt (a− 2t)× 1

2 (b− t). The moment of the compression web
isσY

ae

2 t ×
(

b
2 −

ae

4

)
× 2, and the moment of the compression flange isσY (ae − 2t) t × 1

2 (b− t).
Therefore, for the case in whichσbuc < σY, the maximum moment at which the compression
web buckles is derived as follows:

Mmax =
1
2 σYt { α (a− 2t) (b− t) + 2α (b− y1) G

+ (ae − 2t) (b− t) + 2ae

(
b
2
− ae

4

)
} (11)

wherey1, α, andG are obtained using Equations (3), (8), and (10), respectively. The above
investigation reveals that for the case in whichσbuc < σY, the maximum moment is derived
as follows:

Mmax = Min (eq.(4),eq.(11)) (12)

Moreover, for the case in whichσbuc ≥ σY, the maximum moment at which the com-
pression web buckles is derived as follows:

Mmax =
1
2 σYt { β (a− 2t) (b− t) + 2β (b− y1) G

+ (a− 2t) (b− t) + 2ae

(
b
2
− ae

4

)
} (13)

wherey1, β, andG are obtained using Equations (3), (9), and (10), respectively. The above
investigation reveals that for the case in whichσbuc ≥ σY, the maximum moment is derived
as follows:

Mmax = Min (eq.(5),eq.(7),eq.(13)) (14)

Figure 16 compares the FEM results and the results obtained by Kecman’s method and
the proposed method at the maximum moment fort = 0.5 mm and 0.4 mm. As shown in
the figure, the lower values obtained by Kecman’s method and the proposed method are in
good agreement with the FEM results. Figure 17 compares the FEM results and the results
obtained by Kecman’s method and the proposed method at the maximum moment forσY/E
= 1/1,000, and 1/500. As shown in the figure, the lower values obtained by Kecman’s method
and the proposed method are in good agreement with the FEM results. Figure 18 shows the
mode map for thet/c1 − c2/c1 relationship. The• points indicate that the maximum moment
obtained by FEM is closer to that obtained by the proposed method than that obtained by
Kecman’s method. The◦ plots indicate that the maximum moment obtained by FEM is closer
to that obtained by Kecman’s method than that obtained by the proposed method. Using
Kecman’s method and the proposed method, Fig. 18 also indicates whether web buckling
occurs. As shown in the figure, the boundary line is distributed almost exactly between the
collapse modes. Moreover, the maximum moment can be predicted by the• points using the
proposed method.

4. Conclusion

In the present paper, bending collapse of rectangular tubes was investigated using the
finite element method. The following results were obtained.

( 1 ) The maximum moment of a rectangular tube subjected to pure bending is associated
with buckling at the compression flange, plastic yielding at the flanges, and buckling at the
compression web.

( 2 ) Using the proposed method, which applies an effective width to the web, it is possible
to obtain the axial stress distribution for buckling at the compression web.

( 3 ) It is possible to predict the maximum moment and the collapse mode for various
materials and geometrical properties using the proposed method and Kecman’s method.
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