HETEROCYCLES, Vol. , No. , , pp. -. © The Japan Institute of Heterocyclic Chemistry Received, , Accepted, , Published online,
 DOI: 10.3987/COM- (Please do not delete.)
 REGIOSELECTIVITY OF THE PALLADIUM-MEDIATED INTRAMOLECULAR COUPLING REACTION OF HIGHLY OXYGENATED PHENYL BENZOATE DERIVATIVES AND APPLICATION TO THE SYNTHESIS OF ALTERTENUOL

Takuya Matsukihira, Shumpei Saga, Yoshikazu Horino, and Hitoshi Abe*

Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
abeh@eng.u-toyama.ac.jp

Abstract

The regioselectivity of the intramolecular biaryl coupling reaction of 3’,4’-dialkoxyphenyl 2,4-dimethoxybenzoates was investigated using a palladium reagent, and transition state models of the reaction are proposed. As an application of this study, a short-step synthesis of altertenuol is also performed.

INTRODUCTION

A palladium-mediated intramolecular biaryl coupling reaction of phenyl benzoate derivatives is a useful transformation for the preparation of the 6 H -dibenzo $[b, d]$ pyran-6-one skeleton. ${ }^{1}$ There have been many studies of the total syntheses of natural products possessing this type of heterocyclic system, using the intramolecular biaryl coupling reaction. ${ }^{2}$ In some cases, regioselectivity is a crucial concern in the inrtamolecular biaryl coupling, thus we recently reported several types of reactions involving the issue of regioselectivity. ${ }^{3}$ In this report, as a series of our study, regioselectivity is examined in the Pd-mediated intramolecular biaryl coupling reaction of $3^{\prime}, 4^{\prime}$-dialkoxyphenyl 2,4-dimethoxybenzoates, and the synthesis of a natural polyphenolic compound, altertenuol, ${ }^{4}$ is also described.

RESULTS AND DISCUSSION

As the substrates for the investigation, we prepared three kinds of phenyl benzoate derivatives $\mathbf{1 a} \mathbf{a} \mathbf{1 c}$, which were easily obtained by a simple esterification between the corresponding phenols 2a-2c and benzoic acid 3. Initially, the regioselectivity was investigated using $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ as the base (Table 1). For the ester 1a, when $\mathrm{Ph}_{3} \mathrm{P}$ was employed as the ligand, the ortho-product $5 \mathbf{5}$ mainly generated. However, a poor regioselectivity for para- and ortho-products, $\mathbf{4 a}$ and $\mathbf{5 a}$, was observed under no ligand condition (entries

1 and 2). On the contrary, for the substrates $\mathbf{1 b}$ and $\mathbf{1 c}$, a dramatic change was observed in the product ratio. Namely, when using $\mathrm{Ph}_{3} \mathrm{P}$, the regioselectivity exhibited 1.4-0.7:1, although when using no ligand, the para-isomers $\mathbf{4 b}$ and $\mathbf{4} \mathbf{c}$ were predominantly generated (7.9-8.8:1, entries 3-6).

1a

1b: $R=M e$
1c: $R=B n$

2a

2b: $R=M e$
2c: $\mathrm{R}=\mathrm{Bn}$

3

In contrast to the results above, employing $\mathrm{K}_{2} \mathrm{CO}_{3}$ as the base led to a different outcome for the product ratio. When several phosphine ligands ${ }^{5}$ were attempted with the ester 1a, the regioselectivity was almost identical to the result in entry 1 (entries 7-9). On the other hand, a slightly increased ratio was observed when using no phosphine ligand (entry 10). In the case of both $\mathbf{1 b}$ and $\mathbf{1 c}$, a moderate selectivity was observed in the range of 1.2-3.6:1 under the condition that the phosphine ligand was employed (entries 11, 13,14 , and 15). When no ligand was used for $\mathbf{1 b}$ and $\mathbf{1 c}$, the reaction proceeded with the product ratio of 4.4-4.5:1 (entries 12 and 16).

Table 1. Reaction of Phenyl Benzoate Derivatives 1a-1c

For the mechanistic aspect, we would be able to explain the regioselectivity by considering the transition state models. ${ }^{3 i}$ Based on Echavarren's intermolecular-assisted mechanism, ${ }^{6}$ the transition state of substrate 1a can be illustrated as Figure 1. A1 and A2 describe the models in the case of using $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ as the base. Strong affinity between the silver and the iodo atom causes a partial cationic character on the palladium. Therefore, the alkoxy oxygen can coordinate to the palladium atom (A2) leading to providing the ortho-products $\mathbf{5 a - 5 c}$, whereas the steric hindrance, which was generated between the alkoxy group and the ligand on the palladium atom, is also significant (A2; $\mathrm{L}=$ phosphine). Consequently, the product ratios are controlled by the balance of both the coordinating power and the steric factor. However, when using no phosphine ligand, the tight solvation of the DMA takes place to make the surrounding of the palladium to be bulkier (A1 and A2; L = DMA). Thus, no phosphine ligand condition leads to the severe steric repulsion between the alkoxy group and DMA, as shown in A2, so that the ratio of the para-products 4a-4c is increased.

Figure 1. Transition State Models under $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ Condition

Contrary to the above, B1-B3 illustrate the transition state models under the condition using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as the base (Figure 2). In these cases, the cationic property of the palladium atom may not be considered because of the hard character of the potassium ion. The coordinating effect of the alkoxy group to the palladium is not an important factor for the substrates $\mathbf{1 b}$ and $\mathbf{1 c}$, thus the para-isomers $\mathbf{4 b}$ and $\mathbf{4 c}$ are slightly predominant (B1 and B2). Since the coordinating ability of the methylenedioxy group of the substrate $\mathbf{1 a}$ is stronger than $\mathbf{1 b}$ and $\mathbf{1 c}$, the attractive interaction between the oxygen and the palladium can control and mainly produce the ortho-isomer 5a (B3).

Figure 2. Transition State Models under $\mathrm{K}_{2} \mathrm{CO}_{3}$ Condition

B1

B2

B3

Since the coupling product $\mathbf{4 c}$ was regioselectively obtained with the conditions of entry 6 in Table 1 , we attempted a further transformation toward the natural product, alternenuol 6, which was found from Alternaria tenuis in $1957 .{ }^{7}$ The selective demethylation of $\mathbf{4 c}$ by the Node's method ${ }^{8}$ was successful to afford 7, which was debenzylated by the conventional hydrogenolysis reaction leading to 6. As an alternative way, partial dealkylation with BBr_{3} proceeded effectively to produce $\mathbf{6}$ in a single step. The spectral data of synthetic $\mathbf{6}$ were in accordance with the reported data. ${ }^{4}$

Scheme 1. Transformation of 4c into Altertenuol (6)

CONCLUSION

The regioselectivity of the Pd-mediated biaryl coupling reaction of $3^{\prime}, 4^{\prime}$-dialkoxyphenyl 2,4-dimethoxybenzoates was intensively investigated. It was found that the combination of the ligand and the base influences the regioselectivity of the reaction. We also demonstrated the synthesis of altertenulol using the regioselective condition. This method would be utilized for further application to other syntheses of biaryl-type natural products.

EXPERIMENTAL

General Information

Melting points were measured using a Yanagimoto micro melting point hot-plate and are uncorrected. The IR spectra were recorded using a SHIMADZU FTIR-8400 spectrophotometer. The NMR spectra were obtained using a JEOL $\alpha-400(400 \mathrm{MHz})$ instrument. The chemical shifts are given in $\delta \mathrm{ppm}$ with TMS as an internal standard. The elemental analyses were performed using a Thermo Scientific FlashEA1112 analyzer. Silica gel column chromatography was carried out using a wakogel ${ }^{\circledR} \mathrm{C}-200$ or C-400HG (Wako).

3,4-Dimethoxyphenol (2b) ${ }^{9}$

A mixture of THF (2 mL), $31 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.13 \mathrm{~mL}), \mathrm{H}_{3} \mathrm{BO}_{3}(189 \mathrm{mg}, 3.05 \mathrm{mmol})$, and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.06$ mL) was stirred for 30 min at rt . To the mixture was added a solution of 3,4-dimethoxybenzaldehyde (101 $\mathrm{mg}, 0.607 \mathrm{mmol}$) in THF (1 mL). The mixture was stirred for 19 h at rt , then a saturated NaHCO_{3} aqueous solution was added. The mixture was extracted with CHCl_{3} and the organic layer was washed with brine. After drying with MgSO_{4} and evaporation, a residue was subjected to silica gel column chromatography with hexane-AcOEt (4:1) to give $\mathbf{2 b}$ ($73.1 \mathrm{mg}, 78 \%$) as colorless prisms, mp 83.9-85.2 ${ }^{\circ} \mathrm{C}\left(\right.$ hexane- $\left.\mathrm{CHCl}_{3}\right)\left[\mathrm{lit} .{ }^{9} \mathrm{mp} 79{ }^{\circ} \mathrm{C}\right] .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{ArH}), 6.47$ (1H, d, $J=2.7 \mathrm{~Hz}, \mathrm{ArH}$), 6.35 ($1 \mathrm{H}, \mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, \mathrm{ArH}$), 5.39 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.79 (3H, s, ArOMe).

3,4-Dibenzyloxyphenol (2c)

A mixture of THF (2 mL), $31 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.07 \mathrm{~mL}), \mathrm{H}_{3} \mathrm{BO}_{3}(100 \mathrm{mg}, 1.62 \mathrm{mmol})$, and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.032$ mL) was stirred for 30 min at rt . To the mixture was added a solution of 3,4-dibenzyloxybenzaldehyde ($102 \mathrm{mg}, 0.320 \mathrm{mmol}$) in THF (1.5 mL). The mixture was stirred for 19 h at rt , then a saturated NaHCO_{3} aqueous solution was added. The mixture was extracted with CHCl_{3} and the organic layer was washed with brine. After drying with MgSO_{4} and evaporation, a residue was subjected to silica gel column chromatography with hexane-AcOEt (7:3) to give 2c ($86.8 \mathrm{mg}, 88 \%$) as a colorless solid, mp 117.4-118.8
${ }^{\circ} \mathrm{C}\left(\right.$ hexane- $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.44-7.28(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, ArH), 6.49 ($1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{ArH}$), 6.29 ($1 \mathrm{H}, \mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}, \mathrm{ArH}$), 5.09 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{2}$), 5.07 (2 H , $\left.\mathrm{s}, \mathrm{ArOCH}_{2}\right), 4.83(1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH})$.

3,4-Methylenedioxyphenyl 2-iodo-4,6-dimethoxybenzoate (1a)

Under an N_{2} atmosphere, a solution of 2-iodo-4,6-dimethoxybenzoic acid ${ }^{3 \mathrm{~d}}$ ($104 \mathrm{mg}, 0.337 \mathrm{mmol}$), sesamol ($50.7 \mathrm{mg}, 0.367 \mathrm{mmol}$), EDC ($90.9 \mathrm{mg}, 0.474 \mathrm{mmol}$), and DMAP ($40.7 \mathrm{mg}, 0.333 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred for 1 h at rt . The mixture was washed with water and brine, then the organic layer was dried over MgSO_{4}. After evaporation, the resulting residue was subjected to silica gel column chromatography with chloroform to give 1 ($90.2 \mathrm{mg}, 63 \%$). Colorless prisms, mp 110.2-110.9 ${ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KBr) $\mathrm{cm}^{-1}: 1742,1593,1562,1503,1478,1459,1438,1408,1309,1287,1243$, 1220, 1188, 1169, 1144, 1114, 1097, 1068, 1023, 938, 926, 881, 841, 828, 807, 791, 597. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.95(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 6.84-6.81(2 \mathrm{H}, \mathrm{t}, \mathrm{ArH}), 6.75(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}$, ArH), $6.48(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{ArH}) 6.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{2} \mathrm{OAr}\right), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 3.82(3 \mathrm{H}, \mathrm{s}$, ArOMe). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 166.3,162.0,158.2,148.1,145.7,145.2,122.4,115.4,114.2$, 108.1, 103.9, 101.8, 99.1, 92.9, 56.2, 55.9. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{IO}_{6}$: C, 44.88; H, 3.06. Found: C, 44.74; H, 2.94.

3,4-Dimethoxyphenyl 2-iodo-4,6-dimethoxybenzoate (1b)

In the same procedure mentioned above using $\mathbf{2 b}$ ($52.8 \mathrm{mg}, 0.343 \mathrm{mmol}$), $\mathbf{1 b}$ ($63.4 \mathrm{mg}, 44 \%$) was obtained. Colorless prisms, $\mathrm{mp} 80.2-80.5^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KBr) cm^{-1} : 1749, 1598, 1562, 1510, $1455,1255,1228,1182,1151,1124,1076,1030 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}$, ArH), $6.87(2 H, d, J=1.5 \mathrm{~Hz}, \quad \operatorname{ArH}), 6.84(1 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}) 3.88(3 \mathrm{H}, \mathrm{s}$, ArOMe), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 166.3,161.9,158.1,149.5,147.2,144.6,122.5,115.4,113.0,111.3,105.9,99.0,92.9,56.3,56.2,56.1$, 55.8. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{IO}_{6}$: C, 45.96; H, 3.86. Found: C, 45.84; H, 3.72.

3,4-Dibenzyloxyphenyl 2-iodo-4,6-dimethoxybenzoate (1c)

In the same procedure mentioned above using $2 \mathrm{c}(4.04 \mathrm{~g}, 13.2 \mathrm{mmol}), \mathbf{1 c}(4.87 \mathrm{~g}, 63 \%)$ was obtained. Colorless solid, mp 101.4-102.0 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (KBr) cm ${ }^{-1}$: 1751, 1603, 1560, 1510, 1454, 1435, 1421, 1400, 1387, 1331, 1315, 1277, 1250, 1236, 1215, 1184, 1153, 1119, 1074, 1030, 1001, 989, 922, 883, 818, 804, 787, 770, 750, 731, 702, 594. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.47-7.29(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 6.97-6.93 (3H, m, ArH), $6.84(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, \mathrm{ArH}), 6.47(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 5.18(2 \mathrm{H}, \mathrm{s}$, ArOCH_{2}), $5.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{2}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta: 166.1,161.9,158.2,149.6,147.0,145.1,137.3,137.0,128.6,128.6,128.0,127.9,127.5,127.5$, 122.5, 115.6, 115.4, 114.0, 109.1, 99.1, 93.0, 72.0, 71.5, 56.2, 55.8. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{IO}_{6}$: C, 58.40 ; H, 4.23. Found: C, 58.62; H, 4.15.

Typical Procedure for the Coupling Reaction (Table 1)

Under an N_{2} atmosphere, a mixture of $\mathbf{1 a}(100 \mathrm{mg}, 0.234 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.023 \mathrm{mmol})$, ligand (0.047 mmol), base (0.023 mmol), and DMA (7 mL) was heated under reflux for 1 h with stirring. Unsolved materials were filtered off, then water was added to the filtrate. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layer was washed with brine and dried over MgSO_{4}. Evaporation of the solvent gave a residue which was subjected to silica gel column chromatography with hexane-AcOEt-CH2Cl ${ }_{2}$ (1:1:3).

2,3-Methylenedioxy-7,9-dimethoxy-6H-benzo[c]chromen-6-one (4a)

Colorless needles, mp 240.5-241.0 ${ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.25(1 \mathrm{H}, \mathrm{s}$, ArH), $6.83(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 6.75(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 6.48(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 6.04(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{2} \mathrm{OAr}\right), 3.98$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.96 (3H, s, ArOMe). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 165.5,164.2$, 158.1, 150.0, 148.1, 145.0, 139.7, 111.1, 102.9, 102.2, 101.2, 98.6, 98.3, 96.8, 56.5, 55.8. IR (KBr) cm^{-1} : 1719, 1603, 1574, 1504, 1472, 1454, 1433, 1381, 1344, 1254, 1211, 1180, 1146, 1092, 1063, 1030, 1005, 827. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$: C, 64.00; H, 4.03. Found: C, 63.85; H, 3.84.

1,2-Methylenedioxy-7,9-dimethoxy-6H-benzo[c]chromen-6-one (5a)

Colorless needles, mp 254.8-256.5 ${ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $2.2 \mathrm{~Hz}, \mathrm{ArH}$), $6.91(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.80(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 6.56(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{ArH})$, $6.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{2} \mathrm{OAr}\right), 4.00(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 165.5, 163.8, 157.9, 146.8, 144.0, 143.7, 137.2, 109.8, 109.0, 105.3, 103.4, 102.3, 101.8, 99.4, 56.5, 55.8. IR (KBr) $\mathrm{cm}^{-1}: 1722,1641,1612,1597,1574,1504,1489,1456,1445,1418,1346,1265,1246,1205$, 1165, 1080, 1057, 1043, 1007, 986, 920, 839, 916. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$: C, 64.00; H, 4.03. Found: C, 63.92; H, 3.96.

2,3,7,9- Tetramethoxy-6H-benzo[c]chromen-6-one (4b)

Colorless solid, mp 180.8-181.7 ${ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.21(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $6.87(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 6.77(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.46(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe})$, 3.98 (3H, s, ArOMe), 3.97 (3H, s, ArOMe), 3.91 (3H, s, ArOMe). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8: 165.1, 163.8, 157.9, 151.4, 146.5, 145.7, 139.0, 109.3, 104.0, 102.5, 99.8, $97.5,96.2,56.3,56.0,56.0,55.5$. IR $(\mathrm{KBr}) \mathrm{cm}^{-1}: 3576,1686,1618,1597,1570,1520,1458,1439,1425,1408,1273,1238,1211,1198,1173$, 1159, 1123, 1070, 995, 824. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 64.55; H, 5.10. Found: C, 64.33; H, 4.98.

1,2,7,9- Tetramethoxy-6H-benzo[c]chromen-6-one (5b)

Colorless solid, mp 202.2-203. $5^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2$ $\mathrm{Hz}, \mathrm{ArH}), 7.07(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.61(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 3.99$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.92 (3H, s, ArOMe), 3.91 (3H, s, ArOMe). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 165.4,163.7,157.9,149.5$, $147.3,146.4,138.5,114.7,112.7,112.4,104.1,102.3,99.6,60.4,56.7,56.5,55.6$. IR (KBr) $\mathrm{cm}^{-1}: 1724$, 1601, 1587, 1570, 1497, 1474, 1456, 1443, 1414, 1337, 1298, 1267, 1246, 1229, 1213, 1204, 1163, 1090, 1072, 1059, 1024, 962, 837, 804. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 64.55; H, 5.10. Found: C, 64.45 ; H, 5.05.

2,3-Dibenzyloxy-7,9-dimethoxy-6H-benzo[c]chromen-6-one (4c)

Colorless solid, mp 166.5-167.3 ${ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8: 7.49-7.30 $(11 \mathrm{H}, \mathrm{m}$, ArH), $6.81(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 6.72(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 6.42(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 5.20(2 \mathrm{H}, \mathrm{s}$, ArOCH_{2}), $5.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{2}\right), 3.95$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 165.4,164.2,158.2,152.0,147.4,145.4,139.4,137.2,136.2,128.8,128.7,128.3,128.1,127.6$, $127.3,110.2,109.9,103.0,102.5,98.1,96.6,72.8,71.0,56.4,55.7$. IR (KBr) $\mathrm{cm}^{-1}: 1738,1614,1593$, 1568, 1518, 1499, 1448, 1431, 1391, 1333, 1244, 1211, 1196, 1159, 1126, 1061, 1020, 1003, 924, 839, 824, 733, 694. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 74.35; H, 5.16. Found: C, 74.47; H, 5.22.

1,2-Dibenzyloxy-7,9-dimethoxy-6H-benzo[c]chromen-6-one (5c)

Colorless solid, mp 184.4-186.1 ${ }^{\circ} \mathrm{C}$ (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4$ $\mathrm{Hz}, \mathrm{ArH}), 7.47-7.31(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.14(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 7.06(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 6.55$ $(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 5.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{2}\right), 5.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{2}\right), 3.96$ (3H, s, ArOMe), 3.43 (3H, s, ArOMe). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 165.4,163.5,157.9,148.7,146.8,138.7,137.0,136.7,128.7$, 128.6, 128.5, 128.4, 128.3, 127.8, 117.0, 113.2, 112.6, 104.1, 102.2, 100.2, 75.2, 72.1, 56.4, 55.3. IR (KBr) $\mathrm{cm}^{-1}: 1742,1601,1572,1501,1474,1456,1443,1427,1371,1337,1290,1261,1252,1215,1196$, 1167, 1049, 1022, 959, 800, 752, 731, 696. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 74.35; H, 5.16. Found: C, 74.26; H, 5.13.

Altertenuol (2,3,7-Trihydroxy-9-methoxy-6H-benzo[c]chromen-6-one) (6)

Under N_{2} atmosphere, to a solution of $\mathbf{4 c}(50.1 \mathrm{mg}, 0.107 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ was added BBr_{3} $\left(1 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution, $0.320 \mathrm{~mL}, 0.320 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at rt , and quenched with water. After extraction with AcOEt, the organic layer was washed with brine and dried over MgSO_{4} to give a residue which was subjected to silica gel column chromatography with AcOEt. A colorless solid of 1 (27.9 mg, 95\%) was obtained, mp 283.9-285.8 ${ }^{\circ} \mathrm{C}$ (acetone) [lit. ${ }^{7} \mathrm{mp} 284-285{ }^{\circ} \mathrm{C}$]. ${ }^{1} \mathrm{H}$-NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 7.38(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \operatorname{ArH}), 6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.50(1 \mathrm{H}, \mathrm{d}, J=$ $2.2 \mathrm{~Hz}, \mathrm{ArH}$), 3.93 (3H, s, ArOMe). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$) $\delta: 166.8,165.1,163.8,149.3,144.4$, 143.8, 137.6, 109.1, 109.0, 103.5, 100.0, 98.6. 98.0, 56.1. IR (KBr) cm ${ }^{-1}: 3535,3285,3105,1647,1607$, 1568, 1528, 1510, 1456, 1431, 1279, 1227, 1202, 1165. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{6}$: C, 61.32; H, 3.68.

Found: C, 61.26; H, 3.69.

2,3-Dibenzyloxy-7-hydroxy-9-methoxy-6H-benzo[c]chromen-6-one (7) ${ }^{4 \mathrm{a}}$

Under N_{2} atmosphere, to a solution of $\mathbf{4 c}(102 \mathrm{mg}, 0.218 \mathrm{mmol})$ in a mixed solvent of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{CN}(1.4 \mathrm{~mL})$ was added $\mathrm{AlCl}_{3}(69.6 \mathrm{mg}, 0.522 \mathrm{mmol})$ and $\mathrm{NaI}(83.3 \mathrm{mg}, 0.556 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 4.5 h at rt, and quenched with water. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layer was washed with brine and dried over MgSO_{4} to give a residue which was subjected to silica gel column chromatography with hexane-AcOEt (4:3). Colorless solid of 7 ($69.9 \mathrm{mg}, 71 \%$) was obtained, mp 211.3-212.5 ${ }^{\circ} \mathrm{C}$ (AcOEt) [lit. $\left.{ }^{4 \mathrm{a}} \mathrm{mp} 199-200^{\circ} \mathrm{C}\right] .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 11.5$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArOH}$), 7.49-7.32 (11H, m, $\operatorname{ArH}), 6.88(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 6.75(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 6.50(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \operatorname{ArH}), 5.22(4 \mathrm{H}, \mathrm{s}$, ArOCH_{2}), 3.91 (3H, s, ArOMe).

Conversion of 7 into 6

Under H_{2} atmosphere, a mixture of 7 ($53.6 \mathrm{mg}, 0.118 \mathrm{mmol}$), $10 \% \mathrm{Pd} / \mathrm{C}(12.1 \mathrm{mg})$, and THF (4 mL) was vigorously stirred for 19 h at rt . After filtration and washing the filter paper with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)$, the filtrate was concentrated. An obtained residue was purified by silica gel column chromatography with AcOEt to give 6 ($31.6 \mathrm{mg}, 97 \%$).

ACKNOWLEDGMENT

A part of this work was financially supported by JSPS KAKENHI Grant No. 22590003 and the Tamura Science and Technology Foundation.

REFERENCES AND NOTES

1. (a) D. E. Ames and A. Opalko, Tetrahedron, 1984, 40, 1919; For reviews, see: (b) G. Bringmann, M. Breuning, and S. Tasler, Synthesis, 1999, 525; (c) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, and M. Lemaire, Chem. Rev., 2002, 102, 1359; (d) G. Bringmann, A. J. P. Mortimer, P. A. Keller, M. J. Gresser, J. Garner, and M. Breuning, Angew. Chem. Int. Ed., 2005, 44, 5384; (e) D. Alberico, M. E. Scott, and M. Lautens, Chem. Rev., 2007, 107, 174; (f) G. Bringmann, T. Gulder, T. A. M. Gulder, and M. Breuning, Chem. Rev., 2011, 111, 563; (g) J. Yamaguchi, A. D. Yamaguchi, and K. Itami, Angew. Chem. Int. Ed., 2012, 51, 8960.
2. (a) T. Matsumoto, T. Hosoya, and K. Suzuki, J. Am. Chem. Soc., 1992, 114, 3568; (b) T. Hosoya, E. Takashiro, T. Matsumoto, and K. Suzuki, J. Am. Chem. Soc., 1994, 116, 1004; (c) T. Harayama, H. Yasuda, T. Akiyama, Y. Takeuchi, and H. Abe, Chem. Pharm. Bull., 2000, 48, 861; (d) G. Bringmann and D. Menche, Acc. Chem. Res., 2001, 34, 615; (e) G. Bringmann, M. Breuning, R.-M. Pfeifer, W. A. Schenk, K. Kamikawa, and M. Uemura, J. Organomet. Chem., 2002, 661, 31; (f) G.

Bringmann, S. Tasler, R.-M. Pfeifer, and M. Breuning, J. Organomet. Chem., 2002, 661, 49; (g) G. A. Molander, K. M. George, and L. G. Monovich, J. Org. Chem., 2003, 68, 9533; (h) H. Abe, S. Takeda, T. Fujita, K. Nishioka, Y. Takeuchi, and T. Harayama, Tetrahedron Lett., 2004, 45, 2327; (i) H. Abe, K. Nishioka, S. Takeda, M. Arai, Y. Takeuchi, and T. Harayama, Tetrahedron Lett., 2005, 46, 3197; (j) S. Takeda, H. Abe, Y. Takeuchi, and T. Harayama, Tetrahedron, 2007, 63, 396; (k) H. Abe, Y. Sahara, Y. Matsuzaki, Y. Takeuchi, and H. Abe, Tetrahedron Lett., 2008, 49, 605; (l) H. Abe and T. Harayama, Heterocycles, 2008, 75, 1305; (m) K. Shioe, Y. Takeuchi, T. Harayama, and H. Abe, Chem. Pharm. Bull., 2010, 58, 435; (n) K. Shioe, Y. Sahara, Y. Horino, T. Harayama, Y. Takeuchi, and H. Abe, Tetrahedron, 2011, 67, 1960.
3. (a) T. Harayama, Y. Kawata, C. Nagura, T. Sato, T. Miyagoe, H. Abe, and Y. Takeuchi, Tetrahedron Lett., 2005, 46, 6091; (b) T. Harayama, A. Hori, H. Abe, and Y. Takeuchi, Heterocycles, 2006, 67, 385; (c) H. Nishioka, C. Nagura, H. Abe, Y. Takeuchi, and T. Harayama, Heterocycles, 2006, 70, 549; (d) H. Abe, T. Fukumoto, Y. Takeuchi, and T. Harayama, Heterocycles, 2007, 74, 265; (e) T. Harayama, M. Asai, T. Miyagoe, H. Abe, Y. Takeuchi, A. Yamaguchi, and S. Fujii, Heterocycles, 2010, 81, 1881; (f) T. Harayama, C. Nagura, T. Miyagoe, Y. Kawata, H. Abe, and Y. Takeuchi, Heterocycles, 2010, 81, 2609; (g) H. Abe, T. Fukumoto, Y. Horino, T. Harayama, and Y. Takeuchi, Heterocycles, 2010, 82, 851; (h) H. Abe, T. Matsukihira, T. Fukumoto, Y. Horino, Y. Takeuchi, and T. Harayama, Heterocycles, 2012, 84, 323; (i) K. Maeda, T. Matsukihira, S. Saga, Y. Takeuchi, T. Harayama, Y. Horino, and H. Abe, Heterocycles, in press. DOI: 10.3987/COM-13-S(S)10.
4. (a) K. Kuramochi, K. Fukudome, I. Kuriyama, T. Takeuchi, Y. Sato, S. Kamisuki, K. Tsubaki, S. Sugawara, H. Yoshida, and Y. Mizushina, Bioorg. Med. Chem., 2009, 17, 7227; (b) G. Nemecek, J. Cudaj, and J. Podkech, Eur. J. Org. Chem., 2012, 3863.
5. For Xphos, see: K. Billingsley and S. L. Buchwald, J. Am. Chem. Soc., 2007, 129, 3358.
6. (a) D. Garcia-Cuadrado, A. A. C. Braga, F. Maseras, and A. M. Echavarren, J. Am. Chem. Soc., 2006, 128, 1066; (b) D. Garcia-Cuadrado, P. de Mendoza, A. A. C. Braga, F. Maseras, and A. M. Echavarren, J. Am. Chem. Soc., 2007, 129, 6880.
7. (a) T. Rosett, R. H. Sankhala, C. E. Stickings, M. E. U. Taylor, and R. Thomas, Biochem. J., 1957, 67, 390; (b) R. Thomas, Biochem. J., 1961, 80, 234.
8. M. Node, T. Kajimoto, K. Nishide, E. Fujita, and K. Fuji, Bull. Inst. Chem. Res., Kyoto Univ., 1992, 70, 308.
9. A. Roy, K. R. Reddy, P. K. Mohanta, H. Ila, and H. Junjappa, Synth. Commun., 1999, 29, 3781.

