
Single Trace Attack Against RSA Key Generation in
Intel SGX SSL

Samuel Weiser
Graz University of Technology

Raphael Spreitzer
Graz University of Technology

Lukas Bodner
Graz University of Technology

ABSTRACT
Microarchitectural side-channel attacks have received significant
attention recently. However, while side-channel analyses on secret
key operations such as decryption and signature generation are well
established, the process of key generation did not receive particular
attention so far. Especially due to the fact that microarchitectural
attacks usually require multiple observations (more than one mea-
surement trace) to break an implementation, one-time operations
such as key generation routines are often considered as uncritical
and out of scope. However, this assumption is no longer valid for
shielded execution architectures, where sensitive code is executed—
in the realm of a potential attacker—inside hardware enclaves. In
such a setting, an untrusted operating system can conduct noiseless
controlled-channel attacks by exploiting page access patterns.

In this work, we identify a critical vulnerability in the RSA key
generation procedure of Intel SGX SSL (and the underlyingOpenSSL
library) that allows to recover secret keys from observations of
a single execution. In particular, we mount a controlled-channel
attack on the binary Euclidean algorithm (BEA), which is used for
checking the validity of the RSA key parameters generated within
an SGX enclave. Thereby, we recover all but 16 bits of one of the two
prime factors of the public modulus. For an 8 192-bit RSA modulus,
we recover the remaining 16 bits and thus the full key in less than
12 seconds on a commodity PC. In light of these results, we urge
for careful re-evaluation of cryptographic libraries with respect
to single trace attacks, especially if they are intended for shielded
execution environments such as Intel SGX.

KEYWORDS
Controlled-channel attack; side-channel attack; RSA key genera-
tion; Intel SGX; Intel SGX SSL; OpenSSL
ACM Reference Format:
Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. 2018. Single Trace
Attack Against RSA Key Generation in Intel SGX SSL. In ASIA CCS ’18:
2018 ACM Asia Conference on Computer and Communications Security, June
4–8, 2018, Incheon, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3196494.3196524

1 INTRODUCTION
Side-channel attacks represent a serious threat to cryptographic im-
plementations. Especially software-based side-channel attacks [23]
are particularly dangerous, as they can be performed purely by ex-
ecuting code on a targeted machine. These attacks typically exploit

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ASIA CCS ’18:
2018 ACM Asia Conference on Computer and Communications Security, June 4–8, 2018,
Incheon, Republic of Korea, https://doi.org/10.1145/3196494.3196524.

various optimizations on the software level, e.g., optimized imple-
mentations where executed code paths depend on the processed
data [30], and the hardware level, e.g., the cache hierarchy where
memory accesses depend on the processed data [47, 52]. In order to
prevent such attacks, implementations should favor constant-time
programming paradigms [15, 31] over performance optimizations.

Although cryptographic implementations (e.g., in OpenSSL [20])
are often hardened against side-channel attacks on secret key op-
erations such as decryption and signature generation of digital
signature schemes, the process of key generation has been mostly
neglected in these analyses. While power analysis attacks target-
ing the prime factor generation during RSA key generation have
been investigated [7, 19, 48], software-based side-channel attacks
have been considered out of scope for various side-channel attack
scenarios. On the one hand, key generation is usually a one-time
operation, limiting possible attack observations to a minimum. Es-
pecially in case of noisy side channels, e.g., timing attacks and cache
attacks, targeting one-time operations such as the key generation
procedure seems to be infeasible given only a single attack observa-
tion. On the other hand, key generation might be done in a trusted
execution environment inaccessible to an attacker.

The situation, however, has changed with the introduction of
shielded execution environments that aim to support secure soft-
ware execution in untrusted environments and a possibly compro-
mised operating system (OS). For example, Intel Software Guard
Extensions (SGX) [17] provide hardware support that allows soft-
ware to be executed isolated from the untrusted OS. While the OS
cannot access memory of enclaves directly, it is still responsible for
management tasks of enclaved programs such as virtual-to-physical
page mapping. These management tasks enable new attack tech-
niques such as controlled-channel attacks [12, 43, 51]. By monitor-
ing page faults of enclaved programs, the OS can gather noiseless
measurement traces of executed code paths and accessed data, al-
though only at page-size granularity (4 KB). Therefore, the Intel
SGX documentation demands side-channel security of code which
is to be executed inside enclaves, in particular, to avoid leaking
information through page access patterns [16, p. 35].

In light of this powerful attack technique, we investigated the
RSA key generation routine of Intel SGX SSL and identified a critical
vulnerability that allows to fully recover the generated private key
by observing page accesses. Different from other microarchitectural
attacks on RSA implementations that targeted the modular inver-
sion [2] or the exponentiation operations [1, 4, 11, 39], the attack
presented in this paper targets the RSA key generation routine and
can be performed with a single trace. The identified vulnerability
is due to an optimized version of the Euclidean algorithm (binary
Euclidean algorithm), which features input-dependent branches for
checking the correctness of the generated prime factors p and q,
i.e., whether p − 1 and q − 1 are coprime to the public exponent e ,
where e is usually fixed to 65 537.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TUGraz OPEN Library

https://core.ac.uk/display/154340414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3196494.3196524
https://doi.org/10.1145/3196494.3196524

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

By launching a controlled-channel attack, we recover the exe-
cuted branches of the binary Euclidean algorithm running inside
an enclave program and establish linear equations on the secret
input, i.e., the prime factors p or q. Based on these equations, we
factor the modulus N = pq with minor computational effort on a
commodity PC, i.e., in less than 12 seconds for a 8 192 bit modulus,
which trivially allows to recover the private key.

Contributions. The contributions of this work are as follows:
(1) We consider an SGX setting and identify a critical vulnera-

bility in the RSA key generation routine of OpenSSL, which
relies on the binary Euclidean algorithm (BEA) to check the
validity of generated parameters.

(2) We present an attack to recover most of the bits of one of
two RSA prime factors, which allows to factor N = pq and
to recover the generated private key.

(3) We implement a proof of concept attack that recovers gener-
ated RSA keys with a single observation only.

(4) We provide a patch to mitigate the vulnerability, which is
even faster than the original implementation.1

Outline. In Section 2, we discuss background information on
Intel SGX, and related work. In Section 3, we describe the RSA
key generation procedure and the binary Euclidean algorithm as
implemented in OpenSSL. In Section 4, we discuss the identified
vulnerability and our key recovery attack on RSA. In Section 5,
and Section 6, we outline our threat model and evaluate our attack
in a real-world setting. In Section 7, we discuss existing counter-
measures on an architectural level and we also propose a software
patch to fix the identified vulnerability. Finally, we discuss further
vulnerabilities in Section 8, and we conclude in Section 9.

2 BACKGROUND
In this section, we briefly introduce the concept of Intel SGX, andwe
discuss related work in terms of microarchitectural attacks against
the RSA cryptosystem, both in standard settings on general-purpose
computing platforms as well as in Intel SGX settings.

2.1 Intel SGX
Intel Software Guard Extensions (SGX) [17] provide hardware sup-
port for software to be executed isolated from the (untrusted) OS.
Thereby, SGX reduces the trust assumption to the hardware only.
Hardware-level encryption of memory ensures the confidentiality
and integrity of code as well as data within an enclave. Irrespective
of the privilege level, memory of enclaves cannot be accessed by
software external to the enclave, not even by the OS itself. This
policy is enforced by the CPU.

Although in case of Intel SGX the underlying OS need not be
trusted, it still performs (security) critical tasks for enclaved pro-
grams. Among these tasks are the memory management including
virtual-to-physical page mapping. To prevent misconfiguration of
a running enclave by the OS, the CPU validates all management
tasks that might affect enclave security [33]. Furthermore, enclaved

1The patch is already merged upstream by OpenSSL.

programs share other system resources, such as the underlying
hardware, with untrusted processes running on the same system.
This makes them vulnerable to various kinds of side-channel attacks
based on these shared resources.

2.2 Intel SGX SSL
The Intel SGX SSL library [18] is a cryptographic library for SGX
enclaves. It is built on top of OpenSSL [20], a widely used toolkit for
cryptographic purposes. Since Intel SGX SSL operates on OpenSSL,
it inherits all of OpenSSL’s side-channel properties including miti-
gation techniques but also potential vulnerabilities. In particular,
OpenSSL employs several side-channel countermeasures to thwart
traditional side-channel attacks such as cache attacks.

2.3 Microarchitectural Attacks on RSA
Aciiçmez [1] proposed the first attack exploiting the instruction
cache (I-cache) to infer executed instruction paths taken by square
and multiply operations in sliding window exponentiations. In a
subsequent work, Aciiçmez and Schindler [4] attacked the extra
reduction step of the Montgomery multiplication routine by ex-
ploiting the I-cache. Recently, Bernstein et al. [9] showed how to
use knowledge of performed sliding window operations to infer
private exponents.

Percival [37] proposed to monitor the square and multiply op-
erations during the modular exponentiation of RSA by means of
a technique that later became known as Prime+Probe [47]. In an
effort to thwart cache-based attacks on the modular exponentia-
tion, OpenSSL implemented a technique denoted as scatter-gather,
which has been improved in [24, 26]. The idea of scatter-gather is to
store fragments of sensitive data in multiple cache lines, such that
the same cache lines are fetched irrespective of the accessed data
elements. Yarom et al. [53] attacked the scatter-gather technique
by exploiting cache-bank conflicts [8, 47], resulting in a sub-cache-
line granularity attack. For a 4 096-bit RSA modulus they required
16 000 decryptions in order to recover the key.

Another procedure that has been attacked in the context of RSA
(as well as ECDSA) is the modular inversion operation, i.e., comput-
ing the inverse x of an element amodulon such that ax ≡ 1 mod n.
Modular inversion operations are central to public key cryptog-
raphy. Therefore, in the past, software implementations relied on
an optimized variant of the extended Euclidean algorithm (EEA),
namely the binary extended Euclidean algorithm (BEEA) [34, Algo-
rithm 14.57]. Based on the observation that this optimized variant
executes input-dependent (i.e., secret-dependent) branches, Aci-
içmez et al. [2] suggested to attack the modular inversion during
RSA computations by means of branch prediction analysis (cf. [3]).
They speculated that all branches of an attacked application can
be monitored precisely, but did not implement the attack. At the
same time, Aravamuthan and Thumparthy [5] pointed out that the
BEEA is vulnerable to simple power analysis (SPA) attacks. Both
attacks assumed the possibility to precisely distinguish between all
branches taken in order to attack the modular inversion operation.

Later on, García and Brumley [22] suggested a Flush+Reload at-
tack on the BEEA to attack the ECDSA implementation of OpenSSL.

Single Trace Attack Against RSA Key Generation in Intel SGX SSL ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

García and Brumley implemented the proposed attack and recov-
ered parts of the nonce values used in subsequent signature com-
putations, which allowed them to recover the secret key. In order
to mitigate these attacks, the OpenSSL procedure computing the
modular inverse has been rewritten such that it prevents branches
that leak sensitive information.

Side-Channel Attacks against RSA Key Generation. So far, side-
channel attacks against RSA key generation routines relied on
power analysis and targeted the prime generation procedure. For
example, Finke et al. [19] performed a simple power analysis at-
tack (SPA) on the prime generation procedure, i.e., the sieving
process, by assuming that the power consumption reveals the num-
ber of trial divisions before the Miller-Rabin [34, Algorithm 4.24]
primality test is applied. Assuming that the prime candidates are
incremented by a constant value in case of a failure, Finke et al.
establish equations that allow to factor the modulus. Similarly,
Vuillaume et al. [48] considered differential power analysis (DPA),
template attacks, and fault attacks to attack the prime generation
procedure. However, Vuillaume et al. consider the Fermat test [34,
Algorithm 4.9], which is rarely used in practice due to false posi-
tives (Carmichael numbers). Bauer et al. [7] also attacked the prime
sieve procedure during the prime number generation. All these
side-channel attacks either target the primality test or the prime
generation itself and cannot be executed by only running software
on the targeted machine. They all require physical access.

Differentiation from Existing Attacks on Key Generation. The at-
tack presented in this paper differs from previous attacks on RSA
key generation as follows. First, contrary to related work which tar-
get the prime generation itself [48] or the primality tests [7, 19], we
target the subsequent parameter checking routine. Second, previous
attacks rely on power analysis while we use a purely software-based
side channel. To the best of our knowledge, software-based microar-
chitectural attacks on the RSA key generation procedure have not
been analyzed so far.

2.4 Attacks in SGX Settings
Currently, three types of side-channel attacks have been investi-
gated against SGX enclaves, namely controlled-channel attacks,
cache attacks, and branch prediction attacks. Controlled-channel
attacks only allow monitoring data accesses and execution at page
granularity (4 KB), but in a noiseless manner. Contrary, cache at-
tacks enable a more fine-grained monitoring (e.g., 64 byte), but at
the cost of measurement noise. Hence, there is a trade-off between
granularity and measurement noise. Branch prediction attacks can
distinguish single code branches on an instruction granularity.

Controlled-Channel Attacks. Controlled-channel attacks [51] (also
referred to as pigeonhole attacks [43] or page-level attacks [50]) rely
on the fact that the OS manages the mapping between virtual and
physical pages for all processes, including processes executed inside
hardware enclaves. Hence, the OS can modify the present bit for
page table entries (PTEs), which allows the OS to cause page faults
and to precisely monitor these page faults for an enclaved process
that accesses the unmapped pages during its execution. Thus, the
OS can observe the memory accesses or executed code paths of an
enclave at page granularity. Instead of using the present bit, page

faults can also be triggered by making pages non-executable [50] us-
ing the non-executable (NX) bit, or by setting a reserved bit [50, 51].
As before, this allows precise monitoring of page accesses.

Xu et al. [51] used controlled-channel attacks to extract sensitive
data such as images and processed texts from enclaved programs.
Shinde et al. [43] studied known information leaks in cryptographic
primitives of OpenSSL and Libgcrypt with respect to page-level
attacks. However, Shinde et al. did not identify the information leak
exploited in this paper. Xiao et al. [50] used page-level attacks to
mount Bleichenbacher and padding oracle attacks on various TLS
implementations.

Previous page-fault based attacks could not monitor the execu-
tion of single instructions on a page. Hähnel et al. [27] and van
Bulck et al. [12] relied on frequent timer interrupts of the Advanced
Programmable Interrupt Controller (APIC) in order to read and
clear the accessed bit of the PTE. This allows to even single-step
page table accesses during enclave execution. As an example they
suggested to attack a string comparison function, where the APIC
interrupts the SGX enclave after every single memory access (byte
granularity). Thereby, they are able to determine the length of the
compared strings.

Cache Attacks. Since enclaves do not share memory with other
processes or even the OS, Flush+Reload attacks [52] are not directly
possible against enclaved programs. Nevertheless, other techniques
such as Prime+Probe [37, 47] can be applied on enclaves. For ex-
ample, Götzfried et al. [25] demonstrated a Prime+Probe attack by
relying on the performance monitoring unit (PMU)2 in order to
precisely observe the number of cache hits and cache misses. They
targeted an AES T-table implementation executed within an SGX
enclave. Similarly, Moghimi et al. [35] demonstrated a Prime+Probe
attack against AES T-table implementations running within SGX
enclaves. Even though both works [25, 35] consider an all-powerful
attacker who compromised the OS in order to minimize the influ-
ence of noise (e.g., scheduling the enclave on one specific core, etc.),
they suffer from false positives and false negatives.

Brasser et al. [11] relied on Prime+Probe to attack the decryption
process of an RSA implementation running inside an SGX enclave.
Schwarz et al. [39] considered a slightly different attack scenario,
where also the attack process runs inside an SGX enclave. They also
relied on Prime+Probe to attack an RSA implementation running in
a co-located SGX enclave. Although they extract 96% of a 4096-bit
RSA key within a single trace, the number of remaining bits is still
impractically high for a brute-force approach. Even worse, recovery
suffers from random bit insertions and deletions at unknown posi-
tions. Hence, due to the measurement noise of Prime+Probe, several
measurement traces need to be gathered in both attacks [11, 39].

Although Flush+Reload cannot be applied on enclaved programs
directly, van Bulck et al. [13] proposed to use Flush+Reload to
attack the page table entries (managed by the OS) in order to infer
what pages have been accessed by the enclave. Thereby, they defeat
countermeasures that aim to detect page faults [41, 43] or that mask
the accessed and dirty flags of page table entries. However, their
attack comes at the cost of an even coarser-grained granularity
(32 KB) since one cache line holds eight PTEs.

2The PMU does not monitor performance metrics inside enclaves, but Götzfried et
al. [25] probe their own memory accesses with the PMU.

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

Branch Prediction. Branch prediction represents a special type of
cache attack that exploits the branch target buffer (BTB) cache in or-
der to learn information about executed branches [2]. Lee et al. [32]
observed that SGX does not clear the branch history when switch-
ing between enclave and non-enclave mode, which enables branch
shadowing attacks. Branch shadowing represents an enhanced ver-
sion of branch prediction analysis (cf. [3]), which relies on the last
branch record (LBR) instead of RDTSC time measurements as well
as APIC timer interrupts to increase the precision.

3 RSA KEY GENERATION IN OPENSSL
The RSA public key cryptosystem [38] provides public key en-
cryption as well as digital signatures. The RSA key generation
routine of OpenSSL—implemented in rsa_gen.c—starts by gen-
erating two primes p and q, which are then used to compute the
public modulus N = pq. While p and q are chosen randomly dur-
ing the key generation procedure, it is common practice that the
public exponent is fixed to e = 65 53710 = 0x01000116 (cf. [10]).
The private key is later computed as d ≡ e−1 mod ϕ (N), with
ϕ being Euler’s totient function. For two prime numbers p and q,
ϕ (N) = ϕ (p) · ϕ (q) = (p − 1) (q − 1).

Among other checks, the key generation routine ensures that
(p − 1) and (q − 1) are coprime to e , i.e., that the greatest common
divisor (GCD) of the public exponent e and (p − 1) as well as (q − 1)
is one. These checks are performed by relying on a variant of the
Euclidean algorithm, which will be attacked in this paper.

3.1 Binary Euclidean Algorithm
A well-known algorithm to compute the GCD is the Euclidean al-
gorithm [34, Algorithm 2.104]. For two positive integers a > b, it
holds that gcd(a,b) = gcd(b,a mod b). Since this algorithm relies
on costly multi-precision divisions, a more efficient variant is usu-
ally implemented for architectures with no dedicated division unit,
using simple (and more efficient) shift operations and subtractions.

Listing 1 depicts an excerpt of the Euclidean algorithm as im-
plemented in OpenSSL, which is an optimized version denoted as
binary GCD [34, Algorithm 14.54] that has been introduced by
Stein [44]. As can be seen in Listing 1, OpenSSL uses the BIGNUM
implementation for arbitrary-precision arithmetic. The functional-
ity of each BIGNUM procedure is indicated with comments.

The binary GCD works as follows. If b is zero, a holds the GCD
and the algorithm terminates. Otherwise, the algorithm distin-
guishes the following cases in a loop.

(1) Branch 1 (Lines 7–10): If a and b are odd, the gcd(a,b) =
gcd((a − b)/2,b). The division by 2 (implemented as a right
shift) accounts for the fact that the difference of two odd
numbers is always even, but 2 does not divide odd numbers.

(2) Branch 2 (Lines 13–15) and 3 (Lines 20–22): If either a or b
is odd, then the even number is divided by 2 through a right
shift since 2 is not a common divisor.

(3) Branch 4 (Lines 25–27): If both a and b are even, then 2 is a
common divisor and, therefore, both a and b are divided by
2. In this case the resulting GCD is a multiple of 2 and the
variable s holds the number of times this branch is executed.

During the execution, the algorithm always ensures that a > b. It
swaps a and b as soon as this condition is not satisfied anymore.

Listing 1: Binary GCD (a.k.a. Stein’s algorithm) in OpenSSL.
1 BIGNUM * e u c l i d (BIGNUM *a , BIGNUM *b) {
2 BIGNUM * t ;
3 i n t s = 0 ;
4 whi l e (! BN_ i s_zero (b)) { / / b != 0
5 i f (BN_is_odd (a)) {
6 i f (BN_is_odd (b)) { / / a i s odd , b i s odd
7 BN_sub (a , a , b) ; / / a = a−b
8 BN_ r sh i f t 1 (a , a) ; / / a = a / 2
9 i f (BN_cmp (a , b) < 0) {
10 t = a ; a = b ; b = t ; / / swap a and b
11 }
12 } e l s e { / / a i s odd , b i s even
13 BN_ r sh i f t 1 (b , b) ; / / b = b / 2
14 i f (BN_cmp (a , b) < 0) {
15 t = a ; a = b ; b = t ; / / swap a and b
16 }
17 }
18 } e l s e {
19 i f (BN_is_odd (b)) { / / a i s even , b i s odd
20 BN_ r sh i f t 1 (a , a) ; / / a = a / 2
21 i f (BN_cmp (a , b) < 0) {
22 t = a ; a = b ; b = t ; / / swap a and b
23 }
24 } e l s e { / / a i s even , b i s even
25 BN_ r sh i f t 1 (a , a) ; / / a = a / 2
26 BN_ r sh i f t 1 (b , b) ; / / b = b / 2
27 s ++ ;
28 }
29 }
30 }
31
32 i f (s)
33 BN_ l s h i f t (a , a , s) ; / / a = a ∗ 2^ s ;
34 r e t u r n a ;
35 }

A Note on the Implementation. In the source code, the function
BN_gcd(...)—used to compute the GCD—calls the function euclid(...)
as depicted in Listing 1, but the compiler inlines the corresponding
function into BN_gcd(...). Hence, in the remainder of this paper, we
will refer to BN_gcd(...) when talking about the vulnerable code.

4 ATTACKING RSA KEY GENERATION
During RSA key generation, the binary GCD variant described in
Section 3 is used to ensure that p − 1 and e are coprime. In order to
do so, the algorithm depicted in Listing 1 is executed with a = p − 1
(with p being the secret prime) and b = e (the public exponent).
The crucial observation is that the binary GCD executes different
branches depending on the input parameters. An attacker who is
able to observe the executed branches can recover the secret input
value a = p − 1 and, hence, the secret prime factor p.

Without loss of generality, we describe the attack by targeting
the prime factor p, but the presented attack can also be applied to
recover the prime factor q. Once we recovered either of the two
prime factors, N can be factored trivially, which also allows to
compute the private exponent d .

4.1 Idealized Attacker
For the sake of completeness we first consider an attacker who
can precisely distinguish all executed branches of the binary GCD
algorithm, including the swapping operations in lines 10, 15, and
22. This, for example, accounts for branch shadowing attacks [32]
or the generalized attack described in Section 4.4.

Single Trace Attack Against RSA Key Generation in Intel SGX SSL ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

Let a be the unknown secret input to be recovered, b the known
input, and ai ,bi , i ≥ 0 all intermediate values calculated by the
algorithm. To recover the secret input a, we build a system of linear
equations, starting with a = a0 and b = b0. We then iteratively add
equations, depending on the executed branches, as follows.

First branch: ai+1 =
ai−bi

2
Second branch: bi+1 =

bi
2

Third branch: ai+1 =
ai
2

Fourth branch: ai+1 =
ai
2 and bi+1 = bi

2
We increment i by one before proceeding with the next iteration.
In addition, if a and b are swapped, i.e., BN_cmp(a, b) < 0 yields
true, we add the following two equations and increment i again:
ai+1 = bi and bi+1 = ai . The algorithm finishes after n steps
with an = gcd(a,b) and bn = 0. By recursively substituting all
equations one can express the unknown a as a linear equation
a = f (an ,bn) = f (gcd(a,b), 0), which is trivial to solve, given that
gcd(a,b) is known to be 1 in case of valid RSA parameters.

4.2 Page-level Attacker
Although considering a powerful attacker who is capable of dis-
tinguishing all branches is a realistic assumption [32], we resort
to a weaker assumption in the rest of this paper. We consider a
page-level attacker [43, 51], who recovers the secret input a from
even less observations (up to the point where the two variables are
swapped) and with a coarser-grained granularity (page level).

Figure 1 illustrates an excerpt of the control flow of the binary
GCD for the four important branches being executed and, for il-
lustration purposes, also the mapping of specific functions to their
corresponding code pages.3 If an attacker can distinguish executed
branches based on page-access observations, the Euclidean algo-
rithm can be reverted and the secret input a can be recovered.
Indeed, the functions BN_sub(...) and BN_rshift1(...) reside on differ-
ent pages within the memory, denoted as page 1 and page 4, while
BN_gcd(...) is on page 2.

Observations. If this algorithm is executed with RSA parameters
(a = p − 1 and b = e), we observe the following:

(1) Since p is a prime number, p − 1 is even. Hence, in the first
iteration, the first parameter (a = p − 1) is always even and
the second parameter (b = e) is always odd, as otherwise the
GCD of p − 1 and e cannot be 1 as required for valid RSA
parameters.

(2) The execution of the first branch can be observed by consec-
utive accesses to the corresponding code pages of BN_sub(...)
and BN_rshift1(...).

(3) The second or the third branch are executed if either a or b is
odd. These two branches, however, cannot be distinguished
based on code page accesses since both branches execute
the functions BN_rshift1(...) and BN_cmp(...) in the same
order. Nevertheless, recall that in our setting the algorithm
is always executed with an odd b = 65 537, which is much
smaller than a. Thus, in the beginning, the algorithm will
only execute the third (and the first) branch, reducing the
value of ai , but bi remains an unchanged odd value. This is

3The mapping depicts the actual offsets of the most recent commit 899e62d of OpenSSL
1.1.0g.

a=odd,
b=odd

BN_sub(a, a, b)
BN_rshift1(a, a)
BN_cmp(a, b)

yes

a=odd,
b=even

BN_rshift1(b, b)
BN_cmp(a, b)

yes

no

a=even,
b=odd

BN_rshift1(a, a)
BN_cmp(a, b)

yes

no

a=even,
b=even

BN_rshift1(a, a)
BN_rshift1(b, b)

yes

no

BN_sub(...)

BN_gcd(...)

BN_cmp(...)

BN_rshift1(...)

Page 1:
0x00C4

Page 2:
0x00CA

Page 3:
0x00CE

Page 4:
0x00D8

Figure 1: Excerpt of relevant control flow of binary GCD
(left) and page layout (right)

true until ai and bi are swapped for the first time, which is
the case if ai < bi . Since each iteration reduces ai by one bit
(in general) due to the right shift operation, the first swap
will approximately occur after log2 (p−1)− log2 (e) iterations.
Until then, every time we observe a single access to code
page 4 we can be sure that branch 3 has been executed.

(4) The fourth branch will only be executed if the greatest com-
mon divisor of the parameters a and b is a multiple of 2.
Since the parameter a = p − 1 is even and b = e is odd, this
branch will never be executed (indicated as a red branch), as
otherwise we would have invalid RSA parameters.

(5) The end of a branch and the start of the next iteration can
be detected by monitoring accesses to BN_gcd(...) on page 2.

(6) Although a page-level attacker is able to observe when the
BN_cmp(...) function is executed, our restricted page-level
attacker cannot decide whether or not the variables are
swapped (i.e., whether or not the conditional branch depend-
ing on the result of BN_cmp(...) is executed).4 This is because
the corresponding code for swapping the two numbers is
on the same page as the binary GCD algorithm BN_gcd(...)
itself. More specifically, our page-level attacker cannot de-
cide whether BN_gcd(...) directly continues with the next
iteration, or whether a and b are being swapped first.

These observations combined with the fact that the public ex-
ponent e is known allow us to “revert” the computations for all
bits of a = p − 1, except about log2 (e) bits. As mentioned before,
the public exponent is fixed to e = 65 537.5 This means that about
log2 (65 537) ≈ 16 bits of a = p − 1 cannot be recovered based on
the accessed code pages. However, they can be easily determined
based on the relations established from these observations.

4See Section 4.4 for a more generalized page-level attacker.
5This choice of the public exponent has been widely established as quasi-standard
among RSA cryptosystems (cf. [10]).

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

Asmentioned, the functions BN_sub(...) and BN_rshift1(...) reside
on different pages within the memory. In our tested implementa-
tion, they are even 20 pages apart. Thus, it is very unlikely that a
different compiler setting would link them to the same page, which
would make them indistinguishable to a page-level attacker moni-
toring these functions only. Even if this would happen, one could
easily distinguish them by monitoring the sub-functions which are
called by BN_sub(...) but not by BN_rshift1(...), i.e., BN_wexpand(...),
BN_ucmp(...), BN_usub(...), etc.

4.3 Exploiting the Information Leak
We denote the sequence of page accesses observed by an attacker
as P = (p0, . . . ,pn). Without loss of generality, let us assume the
same mapping from functions to code pages as in the previous
example. For instance, the function BN_sub(...) resides on page 1
(0x00C4), BN_gcd(...) resides on page 2 (0x00CA), and the function
BN_rshift1(...) resides on page 4 (0x00D8). That is, the sequence of
page accesses consists of pages pi ∈ {P1, P2, P4} since we are only
interested in these page accesses.

In order to recover the prime factor p (or p − 1 respectively),
we observe a sequence of page accesses up to the point where the
two variables are swapped for the first time. All later page accesses
are discarded. We denote this number of iterations asm. Given the
modulus N or its bit size log2 (N), we denote the bit size of p and
q as K = log2 (N)/2. Thus,m is upper-bounded by ⌈K − log2 (e)⌉.
Similar as before, we build a system of linear equations based on ai ,
starting with the unknown input a = a0. Since i < m, b will remain
unchanged and we only need to distinguish two branches:

Access to page 1, and page 4: ai+1 = ai−b
2

Access to page 4: ai+1 = ai
2

Accesses to page 2 allow to distinguish iterations. Afterm iter-
ations, we express these equations by recursive substitution as a
linear equation a = f (am ,b), or, more precisely

a = am · ca + b · cb

with known constants ca and cb , which result from the substitution.
Both, a and am are unknown. However, we additionally know

that swapping occurred afterm iterations, i.e., am < b. Hence, we
can determine the correct a by iterating over values am ∈ [1, e)
and evaluating the above equation. We use the resulting values a to
check the GCD of (a + 1) and N . In case the GCD is greater than 1,
we recovered a as well as the corresponding prime factor p = a + 1.
We can then factor the modulus N by computing q = N /p.

As mentioned before, the iteration counterm is upper-bounded
by ⌈K − log2 (e)⌉ with K being the bit size of the prime numbers.
This is because each iteration reduces ai by at least one bit due
to the right shift operation. For example, a 4 096 bit RSA key will
have prime numbers of length K = 2 048 bits, yieldingm = 2 032
iterations to consider. However, a prime number which is closer to
2K−1 than to 2K combined with the subtraction in branch 1 could
reduce ai by one additional bit. This would make swapping occur
one iteration earlier. We would erroneously consider an incorrect
equation due to swapping and determining the correct a might fail.
In this case, we simply omit the last erroneous equation am from
the recursive substitution and try to determine a again by iterating
over values am−1 ∈ [1, e). As we will see in Section 6, this happens

in approximately 25% of all runs, meaning that about 75% of the
generated RSA keys can be recovered in the first run.

In case p − 1 is not coprime to e—which is the reason why the
binary GCD algorithm is executed—the RSA key generation will
discard this prime factor candidate p and re-generate another prime
factor candidatep. Nevertheless, by observing the page fault pattern,
an attacker is also able to detect this (extremely rare) case, and we
run the same attack on the newly generated p.

Example. For an illustrative example let us assume the following
hypothetical parameters. Let the public exponent be e = 17 =
0x1116 and let the two 14-bit primes be p = 11083 = 0x2B4B16, and
q = 9941 = 0x26D516, respectively, and N = pq. In the course of
validating the selected parameters, the OpenSSL implementation
calls the binary GCD function with a = 11082 and b = 17. Table 1
illustrates the executed operations for the given input parameters
a and b. In the first loop iteration, a is even and b is odd, which
means that the function BN_rshift1(...) will be called. In the second
loop iteration, a is odd and b is odd, which means that BN_sub(...)
followed by BN_rshift1(...) will be executed, and so on. Finally, the
algorithm returns 1 as the GCD of a = 11082 and b = 17.

Based on a controlled-channel attack, we are able to observe
accesses to pages P1, P2, and P4, and to precisely recover the exe-
cuted operations up to the point where a and b are swapped. We
recursively substitute the recovered operations on ai , which leads
to the equations shown in the last column of Table 1. Recall that
the first swap will happen at latest afterm = ⌈14 − log2 (17)⌉ = 10
iterations. In our example, swapping is done already in iteration
9 due to a smaller p and additional subtractions. This leads to the
erroneously recovered operation marked bold (and colored red) in
Table 1. To recover the secret a, we start with the m-th substituted
equation a10, not knowing that it is erroneous. If the attempt to
recover a based on a10 fails, we would need to fall back to equation
a9. However, in this particular case the error cancels out and we
already succeed with a10. Recall that a10 = a

1024 −
85b
512 . With b = 17,

we can rearrange it to
a = 1024 · a10 + 2890 (1)

The unknown variable a10 is bound by the parameter b. Since a
and b have been swapped, a10 must be smaller than b. We try to
solve this equation by iterating over a10 ∈ [1,b) and checking the
GCD of a + 1 and N . If the GCD is greater than 1, we are able to
factor N . Indeed, for a10 = 8 the equation yields a = 11 082 and
gcd(a + 1,N) > 1. Thus, we recovered the first prime p = 11 083,
which allows to factor N (q = N /p = 9941) and to recover the
secret exponent d ≡ e−1 mod (p − 1) (q − 1). To see why recovery
on the erroneous equation a10 works in this case, we compare it to
the valid equation a9 = a

512 −
85b
256 , which can be rewritten as

a = 512 · a9 + 2890 (2)
Here, recovering a succeeds for a9 = 16. Observe that in equations
(1) and (2) the first constants are only off by a factor of 2 because
the erroneous operation does not introduce a subtraction but only
a right shift. Hence, we hit the correct guess with a10 = a9/2 = 8.

4.4 Generalization
The proposed attack on RSA key generation is not limited to code
pages only. One could alsomonitor accesses to data pages, especially

Single Trace Attack Against RSA Key Generation in Intel SGX SSL ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

Table 1: Executed and recovered operations when calling BN_gcd(...) for a = 11082 and b = 17.

a b Performed a < b Page Recovered Substituted
operation swapping observation operation equation

0010 1011 0100 1010 0001 0001 ai+1 =
ai
2 no P4, P2 ai+1 =

ai
2 a1 = a

2
0001 0101 1010 0101 0001 0001 ai+1 =

ai−bi
2 no P1, P2, P4, P2 ai+1 =

ai−b
2 a2 = a

4 −
b
2

0000 1010 1100 1010 0001 0001 ai+1 =
ai
2 no P4, P2 ai+1 =

ai
2 a3 = a

8 −
b
4

0000 0101 0110 0101 0001 0001 ai+1 =
ai−bi

2 no P1, P2, P4, P2 ai+1 =
ai−b
2 a4 = a

16 −
5b
8

0000 0010 1010 1010 0001 0001 ai+1 =
ai
2 no P4, P2 ai+1 =

ai
2 a5 = a

32 −
5b
16

0000 0001 0101 0101 0001 0001 ai+1 =
ai−bi

2 no P1, P2, P4, P2 ai+1 =
ai−b
2 a6 = a

64 −
21b
32

0000 0000 1010 0010 0001 0001 ai+1 =
ai
2 no P4, P2 ai+1 =

ai
2 a7 = a

128 −
21b
64

0000 0000 0101 0001 0001 0001 ai+1 =
ai−bi

2 no P1, P2, P4, P2 ai+1 =
ai−b
2 a8 = a

256 −
85b
128

0000 0000 0010 0000 0001 0001 ai+1 =
ai
2 yes→ swap P4, P2 ai+1 =

ai
2 a9 = a

512 −
85b
256

0000 0000 0001 0001 0001 0000 bi+1 =
bi
2 no P4, P2 ai+1 =

ai
2 a10 = a

1024 −
85b
512

...
...

...
... discard

0000 0000 0000 0001 0000 0000 Return a as the GCD

those on which the heap buffers a and b reside. If a and b are
located on different heap data pages, we can distinguish which of
these buffers is accessed and, thus, which arguments are provided
to the BIGNUM functions. This allows to distinguish all relevant
branches, enabling the idealized attack described in Section 4.1. For
example, one can distinguish branch 2 and 3 based on the input of
BN_rshift1(...) in lines 13 (accessing b only) and line 20 (accessing a
only) of Listing 1. Also, one can detect swapping of a and b, after
which their pointers map to the opposite page, respectively. For
example, if BN_is_zero(...) in line 4 accesses buffer a instead of b,
or the call to BN_cmp(...) (line 9, 14 or 21) accesses b before a, one
can infer that swapping occurred in the previous iteration. Thus,
one could derive equations over all iterations and recover the key
without the need for guessing values for am ∈ [1, e).

Even if a and b are located on the same heap page, attacks might
still be possible by carefully crafted user input that also gets copied
onto the heap and, thus, shifts the targeted buffers a and b onto dif-
ferent heap pages. We did not investigate such generalized attacks
further, since our attack already recovers the full key by monitoring
page faults up to the point where a and b are being swapped.

5 THREAT MODEL AND ATTACK SCENARIO
In order to exploit the identified vulnerability, we consider an en-
clave that dynamically generates RSA keys, which are intended
to never leave the enclave. Dynamic key generation has already
broad applications in other trusted execution environments, such
as trusted platform modules and smart cards. In line with SGX’s
threat model, the operating system (OS) is considered untrusted
and compromised, trying to extract secret keys from the enclave.
Although, in general, attackers in SGX settings are considered to
be able to trigger enclave operations arbitrarily often by repeatedly
invoking the enclave with a fresh state,6 our attacker is naturally
limited to at most one observation of the enclave’s key generation,
as the next invocation will generate a different, independent key.

6SGX does not protect against rolling back to a fresh state. This would require external
persistent storage [45].

Using a noiseless controlled-channel attack [43, 50, 51], the attacker
can observe page access patterns of the executing enclave.

While this is sufficient for the attack presented in this paper,
we note that, without loss of generality, an attacker could also
resort to different techniques. Among them are side channels using
branch shadowing [32] or single-step approaches based on the
APIC timer interrupts [12, 27] or even attacks with fewer or no
page faults [13, 49], given that enough information can be extracted
from a single execution.

Attack Scenarios. Dynamic key generation is a fundamental oper-
ation for most SGX applications. For example, scenarios like audio
and video streaming with SGX [28] fall into our threat model. Here,
a streaming enclave dynamically generates an RSA key pair and
registers the public key at its streaming counterpart. Latter deliv-
ers all streaming content encrypted under this key, allowing the
enclave to securely decrypt it and to display it to the user, all in
the sphere of a possibly compromised OS. Another example is a
document signing enclave, generating its own signature keys inside
the enclave and issuing a certificate signing request to an external
certification authority. Thereby, the enclave protects the signing
key against malware. In any case, compromise of the private key
could lead to signature forgery, espionage or video piracy with all
its legal and financial consequences.

6 ATTACK EVALUATION
We evaluate the presented attack on an Intel Core i7-6700K 4.00 GHz
platform running Ubuntu 17.10 (Linux kernel 4.13.0-37). In order
to do so, we developed an SGX application that generates an RSA
key based on the latest version of Intel SSL SGX.7 We used the
Linux Intel SGX software stack v1.9, consisting of the Intel SGX
driver, the Intel SGX software development kit (SDK), and the Intel
SGX platform software (PSW).8 For controlling the page mapping,
we used the SGX-Step kernel module as well as the corresponding
SGX-Step library functions (cf. [12]). Note that we do not use the
7We relied on the most recent commit 654f94d of Intel SSL SGX, which in turn is based
on OpenSSL version 1.1.0g (https://www.openssl.org/source/openssl-1.1.0g.tar.gz).
8https://github.com/01org/linux-sgx.

https://www.openssl.org/source/openssl-1.1.0g.tar.gz

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

Attack application

Fault
handler

Victim enclaveToggle NX
call/resume SGX SSL

Operating system
Trap on access of
non-executable pageRe

po
rt
fa
ul
t

Figure 2: Basic principle of the performed attack.

single-stepping feature of SGX-Step but rather its page mapping
capability. Since Intel SGX considers an untrusted OS, the applica-
tion of SGX-Step is in line with the threat model. We describe the
implementation details below.

6.1 Implementation Details
We consider a victim enclave using the Intel SGX SSL library to
generate an RSA key pair. The enclave is hosted by a malicious
attack application that interacts with the OS to manipulate page
mappings and to record page accesses within the corresponding
fault handler. Figure 2 depicts the principle of the attack. After this
recording step, the collected trace of page accesses is evaluated to
recover the secret key.

SGX Enclave Application (Victim Enclave). We developed an en-
clave program that generates a single RSA key using the Intel SGX
SSL library and outputs the public parts only, i.e., the modulus N .
Therefore, we implemented an ECALL function for invoking key
generation and an OCALL function which prints the modulus of
the generated key to the standard output. Recall that the public
exponent is fixed to e = 65 537. The project is built in pre-release
hardware mode, i.e., it uses the same compiler optimizations as a
production enclave in release mode and yields the same memory
layout. Without loss of generality, the enclaved program does not
perform any other tasks apart from generating the RSA key.

Attack Application. Based on the SGX-Step framework [12], we
developed an attack application that enables and disables executable
regions (pages) of the enclave program. Therefore, it toggles the NX
bit of the page table entries belonging to the code pages to be traced.
Without loss of generality, one could also use the present bit or a
reserved bit [50, 51] for the same purpose. The application registers
a fault handler (via a sigaction standard library function call)
which is executed whenever the enclave encounters a segmentation
fault (due to a non-executable page). This fault handler conveniently
serves as the basis to monitor page faults, which later on allow to
recover the executed code paths.

6.2 Mounting the Attack
In order to determine the pages of interest, i.e., the ones where
the BN_gcd(...), BN_sub(...), and BN_rshift(...) functions are located,
we dissect the enclave binary by means of objdump. In our case,
objdump reveals the following page frame numbers: 0x00CA for
BN_gcd(...), 0x00C4 for BN_sub(...), and 0x00D8 for BN_rshift1(...).
When starting the victim enclave, the attack application disables the
execution of the BN_gcd(...) page by setting the non-executable (NX)

bit in the corresponding page table entry. This causes the enclave
to trap as soon as it attempts to execute this page.

When the fault handler function is executed for the first time, i.e.,
when a page fault (segmentation fault) occurs, we start recording
subsequent page faults. On the one hand, we enable execution of
the current page which caused the page fault by clearing its NX
bit in order to allow the enclave to continue. On the other hand,
we also disable the other pages of interest by setting their NX
bits. Whenever the page fault handler is triggered, we record the
accessed page and toggle the non-executable bits accordingly. Thus,
we are able to precisely monitor each access to these pages.

Our practical evaluation confirmed that we observe the follow-
ing page fault patterns. Executing branch 1 leads to consecutive
page faults on 0x00C4 (BN_sub(...)) and 0x00D8 (BN_rshift1(...)),
interleaved with page faults on 0x00CA (BN_gcd(...)), whereas ex-
ecuting branch 3 leads to a page fault on 0x00D8 (BN_rshift1(...))
only. When the attack application finished gathering the page faults,
we process the page-fault sequence from left to right and build up
an equation system according to the rules established in Section 4.3.
That is, whenever we observe consecutive page accesses to page
0x00C4 and page 0x00D8, we add ai+1 = (ai − b)/2, while for a
single access to page 0x00D8 we add ai+1 = ai/2. Based on these
equations we run a SageMath script in order to recursively sub-
stitute the equations, recover the remaining bits by solving the
equation for am , and finally to recover the RSA private key.

The execution time of the whole attack including the gathering
of the page-fault trace as well as the parsing of the gathered trace
is negligible, even when attacking larger RSA keys. Causing page
faults on the above mentioned pages slightly increases runtime and
gathering the page-fault traces terminates immediately. Compared
to normal key generation, running the attack causes moderate
overall slowdowns of 65ms (15,5%) for 4,096 bit keys and 248ms
(5,87%) for 8,192 bit keys due to the intentionally induced page
faults. The biggest share of the execution time is consumed by
the generation of the two random primes, i.e., the random number
generation and the primality test, during RSA key generation.

6.3 Key Recovery Complexity
We developed a simple script for SageMath9 that iterates over all
possible values for 1 ≤ am < 65 537, evaluates a = f (am), and
checks the GCD of a + 1 and N . If it is not equal to 1, p can be
recovered.

Figure 3 illustrates the complexity for the task of recovering the
remaining bits. The complexity has been averaged over 100 runs per
modulus size and the computations are evaluated with SageMath
on an Intel Xeon E5-2660 v3 (2.60GHz). The area plot (right x-axis)
indicates that in about 75%–80% of all cases, the prime factors can
be recovered at the first attempt, consideringm = ⌈K − log2 (e)⌉
equations. In only about 20%–25% of all cases the first attempt fails
due to an early swapping in the binary GCD algorithm. In this case,
we need to remove the last equation am and restart the search in
the range 1 ≤ am−1 < 65 537. The asymptotic complexity of the key
recovery is O (1). This means that the number of iterations is bound
by the public exponent e , which is a constant value. In contrast,
the computation time of the GCD for candidates a increases due to

9http://www.sagemath.org/

Single Trace Attack Against RSA Key Generation in Intel SGX SSL ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

[%
]

Size of modulus [bits]

Ti
m
e
[s
]

0

20

40

60

80

100

1 024 2 048 4 096 8 192 15 360
0

5

10

15

20

25

Require two attempts [%]
Require one attempt [%]

Mean (two attempts) [s]
Mean (one attempt) [s]

Figure 3: Key recovery complexity for different bit sizes of
the modulus N.

the larger bit sizes of the modulus N . In 75% of all cases, a 8 192-bit
modulus can be factored in less than 5 seconds on average, after
gathering the measurement trace. In only 25% of all cases, we need
approximately 12 seconds on average. Although 15 360-bit RSA keys
(providing 256-bit security according to NIST [36]) are currently
not being used in practice, we provide the results here for the sake
of completeness.

7 COUNTERMEASURES
Architectural Countermeasures. In order to mitigate controlled-

channel attacks, various architectural countermeasures have been
proposed. Shinde et al. [43] introduced the notion of page-fault
obliviousness, which means that the OS is still able to observe page
faults, but the observable page-fault pattern is independent of the
input and the executed code paths. They proposed a software-based
approach incurring a significant performance overhead. This can be
reduced by additional hardware support which guarantees to deliver
page faults directly into the enclave [42]. Another proposal denoted
as SGX-LAPD [21] considers large pages (i.e., 2MB instead of the
usual 4 KB) in order to reduce the overall number of page faults. The
enclave relies on the EXINFO data structure, which tracks page fault
addresses of an enclave, to verify that the OS indeed provides large
pages. Their solution is based on a dedicated compiler as well as a
linker in order to generate the corresponding code for large-page
verification inside enclaves. Strackx et al. [46] propose hardware
modifications allowing to preload all critical page mappings in the
translation lookaside buffer (TLB) whenever entering the enclave.
Moreover, they protect the TLB mapping from being tampered
during enclave execution.

Detect Frequent Page Faults. Shih et al. [41] observed that trans-
actional synchronization extensions (TSX) can be used to detect

exceptions such as page faults and report them to enclave-internal
code only, rather than to the OS. They proposed T-SGX, in which
they execute blocks of enclave code inside TSX transactions. If an
exception is thrown, the transaction aborts and the enclave de-
cides whether or not to terminate its execution. Chen et al. [14]
proposed an alternative approach to detect side-channel attacks
within enclaves, i.e., detecting frequent page faults and aborting
the execution. In order to so, they rely on the execution time within
the enclave as an indicator of an ongoing side-channel attack. Since
timers are also accessed through the untrusted OS, they implement
a reference clock inside the enclave. The reference clock itself (a
timer variable) is protected by means of TSX.

Detecting page faults does not prevent stealthier attacks that
come without the need for page faults [13, 49]. These attacks de-
rive page access patterns either by monitoring the accessed and
dirty bits of page table entries or by mounting cache-attacks like
Flush+Reload attacks on page table entries.

Randomization. Seo et al. [40] propose SGX-Shield which ran-
domizes the memory layout of enclaves in a multi-stage loading
step.While primarily intended as a countermeasure against runtime
attacks, it also raises the bar for controlled-channel attacks.

Prevent Input-Dependent Code Paths. The most straightforward
approach to prevent the attack described in this work is to fix the
RSA key generation procedure at the implementation level. We
propose an appropriate patch in the following subsection.

7.1 Patching OpenSSL
Listing 2 shows our proposed patch for OpenSSL. Instead of rely-
ing on BN_gcd(...) to ensure that p − 1 and e are coprime, i.e., that
the GCD of p − 1 and e is one, we compute the modular inverse
of p − 1 modulo e using a side-channel protected modular inver-
sion algorithm (BN_mod_inverse(...)). The inverse only exists if
gcd(p − 1, e) = 1. Hence, if BN_mod_inverse(...) signals (through an
error) that the inverse does not exist, we know that gcd(p−1, e) , 1.

Listing 2: Patch for RSA key generation in OpenSSL.
diff --git a/crypto/rsa/rsa_gen.c b/crypto/rsa/rsa_gen.c
index 4ced965 ..4051933 100644
--- a/crypto/rsa/rsa_gen.c
+++ b/crypto/rsa/rsa_gen.c
@@ -41,6 +41,7 @@ static int \
rsa_builtin_keygen(RSA *rsa , int bits , BIGNUM *e_value ,
{

BIGNUM *r0 = NULL , *r1 = NULL , *r2 = NULL , \
*r3 = NULL , *tmp;

int bitsp , bitsq , ok = -1, n = 0;
+ unsigned long error = 0;

BN_CTX *ctx = NULL;

/*
@@ -88,16 +89,25 @@ static int \
rsa_builtin_keygen(RSA *rsa , int bits , BIGNUM *e_value ,

if (BN_copy(rsa ->e, e_value) == NULL)
goto err;

+ BN_set_flags(rsa ->e, BN_FLG_CONSTTIME);
+

/* generate p and q */
for (;;) {

if (! BN_generate_prime_ex(rsa ->p, bitsp , 0, \
NULL , NULL , cb))
goto err;

if (! BN_sub(r2, rsa ->p, BN_value_one ()))

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

goto err;
- if (! BN_gcd(r1 , r2, rsa ->e, ctx))
- goto err;
- if (BN_is_one(r1))
- break;
+ // Inverse only exists if GCD = 1
+ if (BN_mod_inverse(r1 , r2 , rsa ->e, ctx))
+ break; // GCD = 1
+ else {
+ error = ERR_peek_last_error ();
+ if (ERR_GET_LIB(error) == ERR_LIB_BN &&
+ ERR_GET_REASON(error) == BN_R_NO_INVERSE)
+ ERR_clear_error (); // GCD != 1
+ else
+ goto err; // Another error occurred
+ }

if (! BN_GENCB_call(cb, 2, n++))
goto err;

}
@@ -110,10 +120 ,17 @@ static int \
rsa_builtin_keygen(RSA *rsa , int bits , BIGNUM *e_value ,

} while (BN_cmp(rsa ->p, rsa ->q) == 0);
if (! BN_sub(r2 , rsa ->q, BN_value_one ()))

goto err;
- if (! BN_gcd(r1 , r2, rsa ->e, ctx))
- goto err;
- if (BN_is_one(r1))
- break;
+ // Inverse only exists if GCD = 1
+ if (BN_mod_inverse(r1 , r2 , rsa ->e, ctx))
+ break; // GCD is 1
+ else {
+ error = ERR_peek_last_error ();
+ if (ERR_GET_LIB(error) == ERR_LIB_BN &&
+ ERR_GET_REASON(error) == BN_R_NO_INVERSE)
+ ERR_clear_error (); // GCD != 1
+ else
+ goto err; // Another error occurred
+ }

if (! BN_GENCB_call(cb, 2, n++))
goto err;

}

In order to ensure that the side-channel protected implemen-
tation of the inversion algorithm is called, we need to set the
BN_FLG_CONSTTIME flag on the public modulus e . This ensures
that BN_mod_inverse(...) internally calls the protected function
BN_mod_inverse_no_branch(...), which does not contain branches
that leak sensitive information.

Performance Impact. An appealing benefit of our proposed patch
is that it is even faster than the vulnerable implementation.10 We
benchmarked 10 000 coprimality checks for a random number a and
e = 65 537, and provide the corresponding cumulative execution
times in Table 2. As can be seen in the table, our patch is by one to
two orders of magnitudes faster than the original implementation
on our test machine. On an Intel Core i7-5600U 2.6 GHz CPU (note-
book), the speedup exceeds even a factor of 500 for 8 192 bit numbers.
The reason for this massive speedup is that inversion, as imple-
mented in OpenSSL, uses the original Euclidean algorithm with
gcd(a,b) = gcd(b,a mod b). This algorithm requires far less loop
iterations (e.g., between 5 and 13 iterations for 8 192-bit numbers)
than the binary GCD (≈ 8192 iterations). The original Euclidean
algorithm relies on a costly modular reduction in each iteration,
which was the initial motivation to use the binary GCD instead,
which avoids these costly modular reductions. Yet, the original
Euclidean algorithm is in fact significantly faster because OpenSSL

10Note that we do not need to compute the GCD but only check whether or not it is 1.

Table 2: Performance comparison for 10 000 runs on an Intel
Core i7-6700K (upper half) and an i7-5600U (lower half).

Bit size of a BN_gcd(a, e) BN_mod_inverse(a, e)
1 024 0.25 s 0.02 s
2 048 0.69 s 0.03 s
4 096 2.07 s 0.03 s
8 192 6.97 s 0.05 s
1 024 1.18 s 0.03 s
2 048 3.78 s 0.04 s
4 096 14.04 s 0.06 s
8 192 54.64 s 0.10 s

leverages the x86 div instruction to perform the expensive modular
reductions directly in hardware.

Nevertheless, the performed check whether the gcd(p − 1, e) , 1
handles a corner case in RSA key generation, which is highly un-
likely to happen in practice. Hence, the corresponding check is in
general only executed once per generated prime factor and, thus,
two times during the RSA key generation.

8 FURTHER VULNERABILITIES
RSA X9.31. Further investigation of the OpenSSL source code

revealed that the prime derivation function based on the ANSI X9.31
standard [29] (BN_X931_derive_prime_ex(...)) is also vulnerable to
the presented attack. Similar as in the default RSA key generation
procedure implemented in rsa_gen.c, the generated primesp andq
are verified, i.e., thatp−1 andq−1 are coprime to the public modulus
e . Hence, the exact same attack technique also applies to the X9.31
implementation. Irrespective of whether or not this implementation
is actually used (ANSI X9.31 has already been withdrawn in [6]),
we suggest to patch this implementation. The patch presented in
Section 7 also applies here.

Furthermore, there are two additional usages of the vulnera-
ble BN_gcd(...) function, namely in RSA_X931_derive_ex(...) and
RSA_check_key_ex(...). In these cases, the GCD is not used as mere
security check but to factor out the GCD of the product (p−1) (q−1).
Since the calculated GCD is never 1, our patch using the inversion
algorithm cannot be applied here. Instead, we suggest to add a con-
stant time implementation of the GCD algorithm, which is resistant
against software side-channel attacks. Ideally, this implementa-
tion is even faster than the binary GCD implementation (cf. the
performance analysis of our proposed patch in Section 7).

RSA Blinding. While our attack highlights a critical vulnerability
in RSA key generation, other algorithms also need careful evalu-
ation with respect to single-trace attacks. For example, we found
a vulnerability in the generation of RSA blinding values used to
thwart side-channel attacks on sensitive RSA exponentiation. The
vulnerability causes preparation of the blinding value to fall back
to an exponentiation implementation vulnerable to side-channel
attacks. Similar to the attack presented in this paper, a controlled-
channel attacker could attempt to recover the blinding value from
a single trace and subsequently peel off the side-channel protection
offered by blinding. The OpenSSL team fixed this issue in response
to our findings by using the side-channel protected exponentiation
algorithm appropriately.

Single Trace Attack Against RSA Key Generation in Intel SGX SSL ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

8.1 Responsible Disclosure
We responsibly notified Intel as well as OpenSSL about our find-
ings and provided a patch to fix the RSA key generation, as shown
in Listing 2. In response, OpenSSL patched the RSA key gener-
ation vulnerability in commit 8db7946e. Also, the RSA blinding
vulnerability was fixed in commit e913d11f.11

9 CONCLUSION
In this paper, we investigated the RSA key generation routine exe-
cuted inside SGX enclaves under the aspect of microarchitectural
side-channel attacks. Our investigations revealed a critical vulnera-
bility inside Intel SGX SSL that allows to recover the generated RSA
secret key with a single observation using a controlled-channel
attack. More specifically, the observable page fault patterns during
the RSA key generation allow to recover the prime factor p and,
thus, to factor the modulus N . To the best of our knowledge, this
represents the first microarchitectural attack targeting the RSA key
generation process by means of a software-based attack.

Ironically, the vulnerability is due to an optimized binary GCD al-
gorithm that should improve the performance compared to the orig-
inal Euclidean algorithm but in fact is significantly slower on Intel
x86 platforms. Nevertheless, our work demonstrates that software-
based microarchitectural attacks on shielded execution environ-
ments such as Intel SGX represent a severe threat to key generation
routines and need further consideration.

ACKNOWLEDGMENTS
This work has been supported by the Austrian Research Promotion
Agency (FFG) via the K-project DeSSnet, which is funded in the con-
text of COMET — Competence Centers for Excellent Technologies
by BMVIT, BMWFW, Styria and Carinthia. This work was partially
supported by the TU Graz LEAD project "Dependable Internet of
Things in Adverse Environments". This project has received fund-
ing from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant
agreement No 681402).

REFERENCES
[1] Onur Aciiçmez. 2007. Yet Another MicroArchitectural Attack: : Exploiting I-

Cache. In Computer Security Architecture Workshop – CSAW. ACM, 11–18.
[2] Onur Aciiçmez, Shay Gueron, and Jean-Pierre Seifert. 2007. New Branch Predic-

tion Vulnerabilities in OpenSSL and Necessary Software Countermeasures. In
Cryptography and Coding – IMA 2007 (LNCS), Vol. 4887. Springer, 185–203.

[3] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the Power of
Simple Branch Prediction Analysis. In Asia Conference on Computer and Commu-
nications Security – AsiaCCS 2007. ACM, 312–320.

[4] Onur Aciiçmez and Werner Schindler. 2008. A Vulnerability in RSA Implementa-
tions Due to Instruction Cache Analysis and Its Demonstration on OpenSSL. In
Topics in Cryptology – CT-RSA 2008 (LNCS), Vol. 4964. Springer, 256–273.

[5] Sarang Aravamuthan and Viswanatha Rao Thumparthy. 2007. A Parallelization
of ECDSA Resistant to Simple Power Analysis Attacks. In Communication System
Software and Middleware – COMSWARE 2007. IEEE, 1–7.

[6] Elaine Barker and Allen Roginsky (NIST). 2015. Transitions: Recommendation
for Transitioning the Use of Cryptographic Algorithms and Key Lengths. http:
//doi.org/10.6028/NIST.SP.800-131Ar1. (2015). NIST Special Publication 800-131A,
Revision 1.

[7] Aurélie Bauer, Éliane Jaulmes, Victor Lomné, Emmanuel Prouff, and Thomas
Roche. 2014. Side-Channel Attack against RSA Key Generation Algorithms. In
Cryptographic Hardware and Embedded Systems – CHES 2014 (LNCS), Vol. 8731.
Springer, 223–241.

11https://github.com/openssl/openssl.git

[8] Daniel J. Bernstein. 2005. Cache-Timing Attacks on AES. Available online at
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf. (April 2005).

[9] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruinderink,
Nadia Heninger, Tanja Lange, Christine van Vredendaal, and Yuval Yarom. 2017.
Sliding Right into Disaster: Left-to-Right SlidingWindows Leak. In Cryptographic
Hardware and Embedded Systems – CHES 2017 (LNCS), Vol. 10529. Springer, 555–
576.

[10] Dan Boneh. 1999. Twenty Years of Attacks on the RSA Cryptosystem. Notices of
the American Mathematical Society (AMS) 46 (1999), 203–213.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In Workshop on Offensive Technologies – WOOT 2017.
USENIX Association.

[12] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control. In System Software for
Trusted Execution – SysTEX 2017. ACM. In press.

[13] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-Based
Attacks on Enclaved Execution. In USENIX Security Symposium 2017. USENIX
Association, 1041–1056.

[14] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.
Detecting Privileged Side-Channel Attacks in Shielded Execution with Déjà Vu.
In Asia Conference on Computer and Communications Security – AsiaCCS. ACM,
7–18.

[15] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.
2009. Practical Mitigations for Timing-Based Side-Channel Attacks on Modern
x86 Processors. In IEEE Symposium on Security and Privacy – S&P 2009. IEEE
Computer Society, 45–60.

[16] Intel Corporation. 2017. Intel Software Guard Extensions Developer Guide.
https://software.intel.com/en-us/sgx-sdk/documentation. (2017).

[17] Intel Corporation. 2017. Intel Software Guard Extensions (Intel SGX). https:
//software.intel.com/en-us/sgx. (2017).

[18] Intel Corporation. 2017. Using the Intel Software Guard Extensions (Intel SGX)
SSL Library. https://software.intel.com/en-us/sgx/resource-library. (2017).

[19] Thomas Finke, Max Gebhardt, and Werner Schindler. 2009. A New Side-Channel
Attack on RSA Prime Generation. In Cryptographic Hardware and Embedded
Systems – CHES 2009 (LNCS), Vol. 5747. Springer, 141–155.

[20] OpenSSL Software Foundation. 2017. OpenSSL – Cryptography and SSL/TLS
Toolkit. https://www.openssl.org/. (2017).

[21] Yangchun Fu, Erick Bauman, Raul Quinonez, and Zhiqiang Lin. 2017. SGX-LAPD:
Thwarting Controlled Side Channel Attacks via Enclave Verifiable Page Faults. In
Recent Advances in Intrusion Detection – RAID 2017 (LNCS), Vol. 10453. Springer,
357–380.

[22] Cesar Pereida García and Billy Bob Brumley. 2017. Constant-Time Callees with
Variable-Time Callers. In USENIX Security Symposium 2017. USENIX Association,
83–98.

[23] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2016. A Survey of Mi-
croarchitectural Timing Attacks and Countermeasures on Contemporary Hard-
ware. Journal of Cryptographic Engineering (2016), 1–27. https://doi.org/10.1007/
s13389-016-0141-6

[24] Vinodh Gopal, James Guilford, Erdinc Ozturk, Wajdi Feghali, Gil Wolrich, and
Martin Dixon. 2009. Fast and Constant-Time Implementation of Modular Expo-
nentiation. In Embedded Systems and Communications Security – ECSC 2009.

[25] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache Attacks on Intel SGX. In EuropeanWorkshop on System Security – EUROSEC
2017. ACM, 2:1–2:6.

[26] Shay Gueron. 2012. Efficient Software Implementations of Modular Exponentia-
tion. J. Cryptographic Engineering 2 (2012), 31–43.

[27] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-Resolution
Side Channels for Untrusted Operating Systems. In USENIX Annual Technical
Conference – USENIX ATC 2017. USENIX Association, 299–312.

[28] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
del Cuvillo. 2013. Using Innovative Instructions to Create Trustworthy Software
Solutions. In Hardware and Architectural Support for Security and Privacy – HASP.
ACM, 11.

[29] American National Standards Institute. 1998. Digital Signatures Using Reversible
Public Key Cryptography for the Financial Services Industry (rDSA). (1998).

[30] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Advances in Cryptology – CRYPTO 1996 (LNCS),
Vol. 1109. Springer, 104–113.

[31] Robert Könighofer. 2008. A Fast and Cache-Timing Resistant Implementation
of the AES. In Topics in Cryptology – CT-RSA 2008 (LNCS), Vol. 4964. Springer,
187–202.

[32] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security Symposium 2017. USENIX Association,
557–574.

http://doi.org/10.6028/NIST.SP.800-131Ar1
http://doi.org/10.6028/NIST.SP.800-131Ar1
https://github.com/openssl/openssl.git
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx/resource-library
https://www.openssl.org/
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

[33] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. InHardware and Architectural Support
for Security and Privacy – HASP. ACM, 10.

[34] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. 1996. Handbook of
Applied Cryptography. CRC Press.

[35] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:
How SGX Amplifies the Power of Cache Attacks. In Cryptographic Hardware and
Embedded Systems – CHES 2017 (LNCS), Vol. 10529. Springer, 69–90.

[36] Elaine Barker (NIST). 2016. Recommendation for Key Management, Part 1:
General. http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4. (2016).

[37] Colin Percival. 2005. Cache Missing for Fun and Profit. http://daemonology.net/
hyperthreading-considered-harmful/. (2005).

[38] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. 1978. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 21
(1978), 120–126.

[39] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In Detection of Intrusions and Malware & Vulnerability Assessment – DIMVA 2017
(LNCS), Vol. 10327. Springer, 3–24.

[40] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs. In Network and Distributed System Security
Symposium – NDSS 2017. The Internet Society.

[41] Ming-Wi Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs. In Network
and Distributed System Security Symposium – NDSS 2017. In press.

[42] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
2015. Preventing Your Faults From Telling Your Secrets: Defenses Against Pi-
geonhole Attacks. arXiv ePrint Archive, Report 1506.04832 (2015).

[43] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
2016. Preventing Page Faults from Telling Your Secrets. In Asia Conference on

Computer and Communications Security – AsiaCCS. ACM, 317–328.
[44] J. Stein. 1967. Computational Problems Associated with Racah Algebra. J. Comput.

Phys. 1 (1967), 397–405.
[45] Raoul Strackx and Frank Piessens. 2016. Ariadne: A Minimal Approach to State

Continuity. In USENIX Security Symposium 2016. USENIX Association, 875–892.
[46] Raoul Strackx and Frank Piessens. 2017. The Heisenberg Defense: Proactively

Defending SGX Enclaves against Page-Table-Based Side-Channel Attacks. CoRR
abs/1712.08519 (2017).

[47] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on
AES, and Countermeasures. J. Cryptology 23 (2010), 37–71.

[48] Camille Vuillaume, Takashi Endo, and Paul Wooderson. 2012. RSA Key Gener-
ation: New Attacks. In Constructive Side-Channel Analysis and Secure Design –
COSADE 2012 (LNCS), Vol. 7275. Springer, 105–119.

[49] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017. Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. In
Conference on Computer and Communications Security – CCS 2017. ACM, 2421–
2434.

[50] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. 2017. STACCO:
Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabili-
ties in Secure Enclaves. In Conference on Computer and Communications Security
– CCS 2017. ACM, 859–874.

[51] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE
Symposium on Security and Privacy – S&P 2015. IEEE Computer Society, 640–656.

[52] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium 2014.
USENIX Association, 719–732.

[53] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed: A Tim-
ing Attack on OpenSSL Constant Time RSA. In Cryptographic Hardware and
Embedded Systems – CHES 2016 (LNCS), Vol. 9813. Springer, 346–367.

http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4
http://daemonology.net/hyperthreading-considered-harmful/
http://daemonology.net/hyperthreading-considered-harmful/

	Abstract
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 Intel SGX SSL
	2.3 Microarchitectural Attacks on RSA
	2.4 Attacks in SGX Settings

	3 RSA Key Generation in OpenSSL
	3.1 Binary Euclidean Algorithm

	4 Attacking RSA Key Generation
	4.1 Idealized Attacker
	4.2 Page-level Attacker
	4.3 Exploiting the Information Leak
	4.4 Generalization

	5 Threat Model and Attack Scenario
	6 Attack Evaluation
	6.1 Implementation Details
	6.2 Mounting the Attack
	6.3 Key Recovery Complexity

	7 Countermeasures
	7.1 Patching OpenSSL

	8 Further Vulnerabilities
	8.1 Responsible Disclosure

	9 Conclusion
	Acknowledgments
	References

