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PAPER Special Section on Cryptography and Information Security

Cryptanalysis of the Multivariate Signature Scheme Proposed in
PQCrypto 2013∗

Yasufumi HASHIMOTO†,††a), Member

SUMMARY In PQCrypto 2013, Yasuda, Takagi and Sakurai proposed
a new signature scheme as one of multivariate public key cryptosystems
(MPKCs). This scheme (called YTS) is based on the fact that there are
two isometry classes of non-degenerate quadratic forms on a vector space
with a prescribed dimension. The advantage of YTS is its efficiency. In
fact, its signature generation is eight or nine times faster than Rainbow of
similar size. For the security, it is known that the direct attack, the IP attack
and the min-rank attack are applicable on YTS, and the running times are
exponential time for the first and the second attacks and sub-exponential
time for the third attack. In the present paper, we give a new attack on YTS
whose approach is to use the diagonalization of matrices. Our attack works
in polynomial time and it actually recovers equivalent secret keys of YTS
having 140-bits security against min-rank attack in around fifteen seconds.
key words: multivariate public key cryptosystems, signature scheme,
quadratic forms, post-quantum cryptography

1. Introduction

A Multivariate Public Key Cryptosystem (MPKC) is a cryp-
tosystem whose public key is a set of multivariate quadratic
polynomials over a finite field. It is known that the prob-
lem of solving systems of randomly chosen multivariate
quadratic equations over a finite field is NP-hard [19]. Then
MPKC is considered as one of candidates of public key
cryptosystems which can resist against the quantum attacks.
MPKC also has advantage for efficiency compared with
RSA and ECC. In fact, Chen et al. [6] presented in CHES
2009 several MPKC implementations on modern x86 CPUs
which are more efficient than RSA and ECC. Until now, var-
ious MPKCs have been proposed, e.g. MI [30], HFE [33],
Sflash [1], l-IC [12], UOV [26], Rainbow [11], [34], TTS
[36]. On the other hand, various attacks on MPKCs (e.g.
the direct attacks [2], [5], [8], [10], [14], [15], the rank at-
tacks [7], [16], [22], [24], [27], [36], the differential attacks
[9], [13], [17], [18] and the UOV attacks [26], [28]) also
have been proposed, and some MPKCs were shown to be
insecure against (one of) these attacks [13], [14], [28], [32].

Recently in PQCrypto 2013, Yasuda, Takagi and Saku-
rai [37] proposed a new signature scheme as one of MPKCs.
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This scheme (called YTS) is based on the fact that there are
two isometry classes of non-degenerate quadratic forms on
a vector space with a prescribed dimension [35]. The ad-
vantage of YTS is that its signature generation is fast. In
fact, it is eight or nine times faster than Rainbow of sim-
ilar size. For the security, it is known that the direct at-
tack [2], [14], [15], the IP attack [33] and the min-rank at-
tack [36] are applicable on YTS and the running times are
exponential times for the first and the second attacks and
sub-exponential time for the third attack [37]. Then (at the
time of PQCrypto 2013), YTS was considered to be secure
enough under suitable parameter selections.

The aim in the present paper is to study the structure
of YTS in detail and propose a new attack on YTS. The co-
efficient matrices of the quadratic forms in the central map
of YTS are described by extensions of sparse smaller ma-
trices. Then, taking two linear sums of coefficient matrices
of quadratic forms in the public key and multiplying the one
and the inversion of the other, the attacker gets a matrix con-
jugate to a matrix extended from a smaller matrix. Then, by
using an approach similar to the diagonalization of this ma-
trix, the attacker can recover partial information of the secret
keys. After that, taking several elementary operations in lin-
ear algebra, the attacker can recover equivalent secret keys
in polynomial time. Actually, we experimentally succeed
to recover equivalent secret keys of YTS having 140-bits
security against the min-rank attacks [37] in around fifteen
seconds (see Sect. 5.5). This means that YTS is not secure
at all and it must be repaired for practical use.

2. Notations

Throughout in this paper, we use the following notations.

q: a power of odd prime.
k: a finite field of order q.

For an integer r ≥ 1,

Mr(k): the set of r × r matrices of k-entries.

SMr(k) ⊂ Mr(k): the set of symmetric matrices.

Ir ∈ Mr(k): the identity matrix.
For a matrix A,

At: the transpose of A.

For 1 ≤ i ≤ j ≤ r,

Ei j ∈ SMr(k): the symmetric matrix whose (i, j) and
( j, i) entries are 1 and other entries are 0, namely

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers
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E11 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠, E12 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠, . . . ,

. . . , Err :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠.
For L1 ∈ Mr1 (k), . . . , Lu ∈ Mru (k),

L1 ⊕ · · · ⊕ Lu :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
L1

. . .

Lu

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Mr1+···+ru (k),

L⊕u
1 := L1 ⊕ · · · ⊕ L1︸����������︷︷����������︸

u

∈ Mr1u(k).

For A =
(
ai j

)
1≤i, j≤r1

∈ Mr1 (k) and B ∈ Mr2 (k),

A ⊗ B :=
(
ai jB

)
1≤i, j≤r1

∈ Mr1r2 (k).

For a monic polynomial g(t) := c0 + c1t + · · · + cr−1tr−1 + tr

of degree r,

C(g) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−c0), (r = 1),⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 −c0

1 0 −c1

. . .
...

0 1 −cr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (r ≥ 2).

For matrices A =
(
ai j

)
1≤i, j≤r

∈ Mr(k) and B =
(
bi j

)
1≤i, j≤r

∈
SMr(k),

φ(A) :=(a11, . . . , ar1, a12, . . . , . . . , arr)
t ∈ kr2

,

ψ(B) :=(b11, . . . , br1, b22, . . . , . . . , brr)
t ∈ kr(r+1)/2.

3. The Signature Scheme YTS

In this section, we give a short survey of the signature
scheme YTS [37].

3.1 Construction of the Scheme

In a multivariate public key cryptosystem (MPKC), the pub-
lic key is a set of multivariate quadratic polynomials

f1(x1, · · · , xn) =
∑

1≤i≤ j≤n

a(1)
i j xix j +

∑
1≤i≤n

b(1)
i xi + c(1),

...

fm(x1, · · · , xn) =
∑

1≤i≤ j≤n

a(m)
i j xix j +

∑
1≤i≤n

b(m)
i xi + c(m),

over a finite field. Yasuda, Takagi and Sakurai [37] proposed
at PQCrypto 2013 a multivariate signature scheme using the
following two functions of matrices: For an integer r ≥ 1

and a matrix X ∈ Mr(k), let

U1(X) :=XtX, Uδ(X) := Xt

(
Ir−1

δ

)
X,

where δ ∈ k is chosen such that δ � α2 for any α ∈ k. For
these two functions, the following lemma holds.

Lemma 3.1: ([35], [37]) Let r ≥ 1 be an integer. For any
symmetric matrix Y ∈ SMr(k), there exists X ∈ Mr(k) satis-
fying either

U1(X) = Y or Uδ(X) = Y.

Furthermore, such a matrix X can be found in time O(r4).

See [37] for the detail algorithm finding X. This lemma
plays an important role in the process of the signature gener-
ation. The signature scheme (called YTS) of Yasuda, Takagi
and Sakurai is constructed as follows.

The signature scheme YTS
Let r ≥ 1 be an integer and put

n := r2, m := r(r + 1)/2.

Secret Keys: Two invertible affine transforms
S : kn → kn and T : km → km and an invertible matrix
B ∈ Mr(k). Note that, for x ∈ kn and y ∈ km, S (x) and
T (y) are given by

S (x) = S 0x + s, T (y) = T0y + t (1)

where S 0 ∈ Mn(k),T0 ∈ Mm(k) are invertible matrices
and s ∈ kn, t ∈ km are vectors.

Public Keys: Two quadratic maps
V1 := T ◦ ψ ◦ U1 ◦ φ−1 ◦ S
and Vδ := T ◦ ψ ◦ Uδ ◦ B ◦ φ−1 ◦ S .

V1 : kn S−→ kn φ−1

−−→ Mr(k)
U1−−→ SMr(k)

ψ−→ km T−→ km

Vδ : kn S−→ kn φ−1

−−→ Mr(k)
B−→ Mr(k)

Uδ−−→ SMr(k)
ψ−→ km T−→ km

Signature generation: For a message y ∈ km, the signa-
ture is generated as follows.

Step 1. Compute z := T−1(y). Let Z := ψ−1(z).

Step 2. Find X ∈ Mr(k) satisfying either

U1(X) = Z or Uδ(BX) = Z.

Step 3. Let x := φ(X) and compute w := S −1(x). The
signature for y ∈ km is w.

Signature verification: Check whether

V1(w) = y or Vδ(w) = y

holds.
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Thanks to Lemma 3.1, we see that Step 2 in the signa-
ture generation can be done in time O(r4) = O(n2).

3.2 Quadratic Forms in YTS

In this subsection, we explain the structure of quadratic
forms in V1.

For X = (xi j)1≤i, j≤r ∈ Mr(k), let

x j :=(x1 j, . . . , xr j)
t ∈ kr,

x :=φ(X) = (x11, . . . , xr1, x12, . . . , . . . , xrr)
t ∈ kn.

By the definition of U1, we have

U1(X) = XtX =
(
xt

i x j

)
1≤i, j≤r

,

namely the entries in U1(X) are as follows.

(1, 1)-entry: x11x11 + x21x21 + · · · + xr1xr1

= xt

⎛⎜⎜⎜⎜⎜⎝Ir
⎞⎟⎟⎟⎟⎟⎠x,

(1, 2)-entry: x11x12 + x21x22 + · · · + xr1xr2

= xt

⎛⎜⎜⎜⎜⎜⎝
1
2 Ir

1
2 Ir

⎞⎟⎟⎟⎟⎟⎠x,

...

(r, r)-entry: x1r x1r + x2r x2r + · · · + xrr xrr

= xt

⎛⎜⎜⎜⎜⎜⎝
Ir

⎞⎟⎟⎟⎟⎟⎠x,

Then the (i, j)-entry ui j(x) of U1(X) is given by

ui j(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xt(Ei j ⊗ Ir)x, (i = j),
1
2

xt(Ei j ⊗ Ir)x, (i � j).
(2)

Thus, by the construction of the public key, the quadratic
map

V1(x) = (v11(x), . . . , vrr(x))t

is described as follows.

vi j(x) =xtS t
0(Ti j ⊗ Ir)S 0x + st(Ti j ⊗ Ir)S 0x

+ xtS t
0(Ti j ⊗ Ir)s + st(Ti j ⊗ Ir)s + ti j, (3)

where S 0, s are given in (1) and Ti j ∈ SMr(k), ti j ∈ k are
respectively derived from T0, t.

3.3 Efficiency and Security of YTS

Based on the results in [37], we list the number of operations
for signature generation/verification, the size of keys and the
security against known attacks.

Signature generation: O(n2 · log q).

Signature verification: Almost same to other schemes in
MPKC with the same q,m, n.

Key size: O(n3 · log q).

Security against Min-Rank attack: O(q
√

n · n3) for recov-
ering T (see also [36]).

Security against IP attack: O(q2n/3) for recovering S ,T
(see also [33]).

Security against Gröbner basis attack:
O(2m(3.31−3.62/ log2 q)) for generating a dummy signature under
the assumption that log2 q  m and the quadratic forms in
V1(x)−y or Vδ(x)−y with the public keys V1,Vδ and a given
message y ∈ km is “semi-regular” (see [2], [3], [14], [15]).

4. Finding S Partially

In this section, we propose an algorithm to recover partial
information of S by using the diagonalization approach.

4.1 Diagonalization

In this subsection, we give the following lemma for conju-
gations of matrices to explain our attack on YTS.

Lemma 4.1: Let r, d ≥ 1 be integers, G ∈ Md(k) and

g(t) := det(t · Id −G)

the characteristic polynomial of G. Suppose that g(t) is
square free and is factored by

g(t) = g1(t) · · · gl(t)

over k. Put d1 := deg g1(t), . . . , dl := deg gl(t). Then it holds
that
(i) there exists P ∈ Mrd(k) such that

P−1(G ⊗ Ir)P = (C(g1) ⊕ · · · ⊕C(gl)) ⊗ Ir, (4)

(ii) if P1, P2 ∈ Mrd(k) satisfy

P−1
1 (G ⊗ Ir)P1 = P−1

2 (G ⊗ Ir)P2

= (C(g1) ⊕ · · · ⊕C(gl)) ⊗ Ir,

there exist B1 ∈ Mrd1 (k), . . . , Bl ∈ Mrdl (k) such that

P−1
2 P1 = B1 ⊕ · · · ⊕ Bl. (5)

Proof. (i) Recall that the characteristic polynomial g(t) of G
is square free. It is known (see e.g. [23]) that, in this case,
there exists A1 ∈ Md(k) such that

A−1
1 GA1 = C(g).

Since C(g1) ⊕ · · · ⊕ C(gl) also has the same characteristic
polynomial g(t), there exists A2 ∈ Md(k) such that

A−1
2 (C(g1) ⊕ · · · ⊕C(gl))A2 = C(g).

Thus P := (A1A−1
2 ) ⊗ Ir satisfies (4).

(ii) It is easy to see that B := P−1
2 P1 satisfies

((C(g1) ⊕ · · · ⊕C(gl)) ⊗ Ir)B
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= B((C(g1) ⊕ · · · ⊕C(gl)) ⊗ Ir). (6)

Divide B by B = (Bab)1≤a,b≤l, where Bab is a dar×dbr matrix.
Then the equation (6) gives

(C(ga) ⊗ Ir)Bab = Bab(C(gb) ⊗ Ir), (7)

for 1 ≤ a, b ≤ l. We now describe the diagonalization of
C(ga) ⊗ Ir by

C(ga) = D−1
a (α(a)

1 Ir ⊕ · · · ⊕ α(a)
l Ir)Da, (8)

where α(a)
1 , . . . , α(a)

l are elements in an extension field of k
and Da is an invertible da×da matrix over an extension field
of k. Combining (7) and (8), we have

(α(a)
1 Ir ⊕ · · · ⊕ α(a)

da
Ir)(DaBabDb)

= (DaBabDb)(α(b)
1 Ir ⊕ · · · ⊕ α(b)

db
Ir).

Since g(t) is square free, the eigenvalues α(a)
1 , . . . , α(a)

da
,

α(b)
1 , . . . , α(b)

db
are distinct to each other if a � b. This means

that DaBabDb = 0 and then Bab = 0 for a � b. Thus (5)
holds with B1 = B11, . . . , Bl = Bll. �

4.2 Finding S Partially

Using Lemma 4.1, we propose the following algorithm to
recover partial information of S .

Algorithm 1.
Input: Integers r, d ≥ 1 and m = r(r + 1)/2 matrices
F11, . . . , Frr ∈ SMdr(k) given by

Fi j = S t
0(Gi j ⊗ Ir)S 0, (1 ≤ i ≤ j ≤ r)

for some Gi j ∈ SMr(k) and an invertible S 0 ∈ Mdr(k).

Output: An integer 1 ≤ l ≤ r, an l-tuple of positive
integers (d1, . . . , dl) with d1+· · ·+dl = d and an invertible
P ∈ Mdr(k) satisfying

S P = (Q ⊗ Ir)(S 1 ⊕ · · · ⊕ S l) (9)

for some invertible matrices Q ∈ Md(k), S 1 ∈
Md1r(k), . . . , S l ∈ Mdlr(k).

Step 1. If d = 1, output l = 1, d1 = 1 and P = Idr. If not,
go to the next step.

Step 2. Take two linear sums W1,W2 of {Fi j}i, j such that
W2 is invertible. Let W := W−1

2 W1.

Step 3. Find a monic polynomial w(t) of degree d such
that

w(W) = 0.

Step 4. Factor w(t) over k. If w(t) is irreducible or has a
square factor, go back to Step 2 and change W1 and W2.
If not, let

w(t) = w1(t) · · ·wl(t)

be the factorization of w(t) and go to the next step.

Step 5. For 1 ≤ u ≤ l, choose a dr × r matrix Yu such
that wu(W)Yu = 0. Put

P :=(Y1,WY1, . . . ,W
d1−1Y1,

Y2,WY2, . . . ,W
d2−1Y2,

. . . ,

Yl,WYl, . . . ,W
dl−1Yl) ∈ Mdr(k),

where d1 := degw1(t), . . . , dl := degwl(t).
Step 6. If P is invertible, output

{l, (d1, . . . , dl), P}.
If not, go back to Step 5 and change Y1, . . . ,Yl.

Since both W1,W2 in Step 2 are in the form S t(G⊗ Ir)S
for some G ∈ Mr(k), the matrix W is given by

W = S −1(W0 ⊗ Ir)S (10)

for some W0 ∈ Md(k). Then there exists a polynomial w(t)
of degree d such that w(W) = 0 and it is the characteris-
tic polynomial of W0. It is known that the probability that
a randomly chosen polynomial over k of degree d is irre-
ducible is d−1+O(d−1q−d/2) (see e.g. [25]) and the probabil-
ity that a randomly chosen polynomial has a square factor
is q−1 (see [31]). Then the success probability of Step 4 is
considered to be about 1− d−1 −O(q−1). Remark that, since
{w(t)} for such W0 is not necessarily distributed uniformly in
a polynomial ring over k, we cannot conclude here that the
success probability is in this way. Table 1 shows the prob-
abilities by 10, 000 times experiments that the characteristic
polynomials of such W0’s satisfy the conditions in Step 4 for
q = 31, 257, 6781 and d ≤ 15. These probabilities are close
to

1 − d−1 − q−1

and we can consider that it is high enough in practice.
The matrix P in Step 5 is for the diagonalization of

W. To show it, we now compare WP with P((C(w1) ⊕ · · · ⊕
C(wl)) ⊗ Ir). It is easy to see that

WP =(WY1, . . . ,W
d1 Y1, . . . ,

. . . ,WYl, . . . ,W
dl Yl).

On the other hand, by the definition of C(wi) given in Sect. 2,

Table 1 Success probability (%) of Step 4 in Algorithm 1 by
experiments.

q\d 2 3 4 5 6 7 8

31 50.3 62.8 71.0 77.0 79.9 83.3 83.9
257 49.9 66.3 74.8 79.6 83.0 84.7 87.2

6781 50.2 67.3 75.4 80.5 84.1 85.5 87.9

9 10 11 12 13 14 15 · · ·
85.8 87.0 87.8 88.4 89.7 89.5 89.9 · · ·
88.1 89.5 91.2 91.2 91.6 91.9 93.4 · · ·
88.6 90.1 90.5 91.5 91.8 92.9 93.7 · · ·
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we have

P((C(w1) ⊕ · · · ⊕C(wl)) ⊗ Ir)

=

(
WY1, . . . ,W

d1−1Y1,

(−c0,1Ir − c1,1W − · · · − cd1−1,1Wd1−1)Y1,

. . .,

WYl, . . . ,W
dl−1Yl,

(−c0,lIr − c1,lW − · · · − cdl−1,lW
dl−1)Yl

)
,

where ci,u ∈ k is given by wu(t) = c0,u+c1,ut+· · ·+cdu−1tdu−1+

tdu . Since Yu satisfies

wu(W)Yu = 0,

two matrices WP and P((C(w1)⊕ · · ·⊕C(wl))⊗ Ir) coincides
with each other and then it holds

P−1WP = (C(w1) ⊕ · · · ⊕C(wl)) ⊗ Ir.

Since W = S −1(W0 ⊗ Ir)S , it is clear that

(Q−1 ⊗ Ir)S WS −1(Q ⊗ Ir)

= (C(w1) ⊕ · · · ⊕C(wl)) ⊗ Ir,

where Q ∈ Md(k) is an invertible matrix with

Q−1W0Q = C(w1) ⊕ · · · ⊕C(wl).

Thus, according to (ii) of Lemma 4.1, we get

S P = (Q ⊗ Ir)(S 1 ⊕ · · · ⊕ S l)

for some invertible matrices S 1 ∈ Md1r(k), . . . , S l ∈ Mdlr(k).
�

Complexity. Step 2 is for summations, inversions and prod-
ucts of matrices and checking invertibility. Then the com-
plexity of Step 2 is  d3r3. Step 3 is for computing
W2, . . . ,Wr and for finding d coefficients of w(t). Then the
complexity of Step 3 is  d3r4. Step 4 is for factoring a
polynomial w(t) of degree d. Its complexity is roughly d3

(see e.g. [20]). According to Table 1, we see that Step 4
is repeated less than three times on average. In Step 5, we
find kernel matrices and such computations requires at most
ld3r3  d4r3 operations. Step 6 is for checking the invert-
ibility of P. Thus we conclude that the total complexity of
Algorithm 4 is d4r3.

5. Proposed Attack on YTS

In this section, we propose our attack on YTS, which is to
recover invertible affine maps S ′ : kn → kn and T ′ : km →
km such that

T ′
(
V1(S ′x)

)
=(U1 ◦ φ−1)(x)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
xt(E11 ⊗ Ir)x

...
xt(Err ⊗ Ir)x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (11)

It is obvious that, once such S ′,T ′ are recovered, the at-
tacker can generate dummy signatures for arbitrary mes-
sages.

The algorithm is as follows.

Proposed attack on YTS
Input: The public key V1(x) of YTS.
Output: Invertible affine maps S ′ : kn → kn and T ′ :
km → km satisfying (11).

Step 1. Find vectors s′ ∈ kn and t′ ∈ km such that V1(x +
s′) + t′ is a set of homogeneous quadratic forms. For
1 ≤ i ≤ j ≤ r, let Vi j ∈ Mn(k) be a matrix such that
V1(x + s′) + t′ = {xtV11x, . . . , xtVrr x}.
Step 2. Let l = 1, d1 = r, P = In and Fi j = Vi j for
1 ≤ i ≤ j ≤ r.

Step 3. For 1 ≤ i ≤ j ≤ r and 1 ≤ u ≤ l, let F(u)
i j ∈

SMrdu (k) be the matrix given by

Fi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
F(1)

i j ∗
. . .

∗ F(l)
i j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Use Algorithm 1 for l inputs

{r, d1, (F
(1)
11 , . . . , F

(1)
rr )}, . . . , {r, dl, (F

(l)
11, . . . , F

(l)
rr )}

and get their outputs

{l1, (d1,1, . . . , d1,l1 ), P1}, . . . , {ll, (dl,1, . . . , dl,ll ), Pl}.
Step 4. Replace l with l1 + · · · + ll,
(d1, . . . , dl) with (d1,1, . . . , d1,l1 , d2,1, . . . , . . . , dl,ll ),
P with P(P1 ⊕ · · · ⊕ Pl)
and Fi j with (P1 ⊕ · · · ⊕ Pl)tFi j(P1 ⊕ · · · ⊕ Pl).

Step 5. If l = r, go to the next step. If not, go back to
Step 3

Step 6. Choose (i, j) arbitrary. For 1 ≤ a, b ≤ r, let
Mab ∈ Mr(k) be the matrix given by

Fi j = (Mab)1≤a,b≤r .

For 2 ≤ u ≤ r, choose 1 ≤ lu ≤ r such that both
Mlu1,Mluu are invertible. If there are no such a pair
(Mlu1,Mluu), try it again for another (i, j). Put

Ru := M−1
luuMlu1.

Replace Fi j with (Ir⊕R2⊕· · ·⊕Rr)tFi j(Ir⊕R2⊕· · ·⊕Rr).

Step 7. Find an invertible L ∈ Mr(k) such that

(L⊕r)tFi jL
⊕r = Di j ⊗ Ir

for some Di j ∈ SMr(k). Let

S̃ := P(Ir ⊕ R2 ⊕ · · · ⊕ Rr)L
⊕r.

Step 8. Find an invertible T̃ ∈ Mm(k) such that
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T̃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
D11
...

Drr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
E11
...

Err

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (12)

Step 9. Output affine maps S ′ : kn → kn and T ′ := km →
km given by

S ′x = S̃ (x + s′), T ′y = T̃ (y + t′).

We explain in Sects. 5.1–5.3 why this attack can re-
cover an equivalent secret key.

5.1 Step 1

Step 1 is for recovering the contributions of the vectors s
and t in the secret keys (1).

Due to (3), we have

Vi j(x + s′)
=xtS t

0(Ti j ⊗ Ir)S 0x + (s + S 0s′)t(Ti j ⊗ Ir)S 0x

+ xtS t
0(Ti j ⊗ Ir)(s + S 0s′)

+ (s + S 0s′)t(Ti j ⊗ Ir)(s + S 0s′) + ti j. (13)

Since S 0 is invertible and the linear terms of Vi j(x + s′) are
given by the second and the third terms in the right hand side
of (13), all linear terms of Vi j(x+ s′) vanish for any i, j if and
only if

s + S 0s′ ∈
⋂

1≤i, j≤r

Ker(Ti j ⊗ Ir).

Such a vector s′ can be found by the Gaussian elimination,
and once such s′ is recovered, we have

Vi j(x + s′) =xtS t
0(Ti j ⊗ Ir)S 0x + ti j.

Then t′ = −t. �

5.2 Step 2 – 5

Step 2 – 5 is for recovering P ∈ Mn(k) such that

S 0P = (Q ⊗ Ir)(L1 ⊕ · · · ⊕ Lr) (14)

for some invertible Q, L1, . . . , Lr ∈ Mr(k).
Due to (3), we see that the first input {r, r,

(V11, . . . ,Vrr)} is available as an input of Algorithm 1 and
its output {l, (d1, . . . , dl), P} satisfies that

S 0P = (Q ⊗ Ir)(S 1 ⊕ · · · ⊕ S l)

for some Q ∈ Mr(k), S 1 ∈ Md1r(k), . . . , S l ∈ Mdlr(k). Since

PtFi jP = (S 0P)t(Ti j ⊗ Ir)(S 0P)

= (S 1 ⊕ · · · ⊕ S l)
t((QtTi jQ) ⊗ Ir)(S 1 ⊕ · · · ⊕ S l),

the matrix F(u)
i j (1 ≤ u ≤ l) in Step 3 at the second time is

given by
S t

u(T ′i j ⊗ Ir)S u

for some T ′i j ∈ Mdur(k). Then {r, du, (F
(u)
11 , . . . , F

(u)
rr )} is

also available as an input of Algorithm 1 and its output
{lu, (du,1, . . . , du,lu ), Pu} satisfies that

S uPu = (Qu ⊗ Ir)(S u,1 ⊕ · · · ⊕ S u,lu )

for some Qu ∈ Mdu (k), S u,1 ∈ Mdu,1r(k), . . . , S u,lu ∈ Mdu,lu r(k).
Thus, repeating such operations until l becomes r, one can
get P with (14). �

5.3 Step 6 – 8

Step 6 – 8 is for recovering S̃ and T̃ such that

T̃ (V1(S̃ x)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
xt(E11 ⊗ Ir)x

...
xt(Err ⊗ Ir)x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (15)

Recall that the matrix Fi j in Step 6 is given by

Fi j = PtVi jP,

where the matrix P satisfies (14). Then we see that the ma-
trix Fi j in Step 6 is as follows.

Fi j =PtVi jP = (S 0P)t(Ti j ⊗ Ir)(S 0P)

=(L1 ⊕ · · · ⊕ Lr)
t((QtTi jQ) ⊗ Ir)

· (L1 ⊕ · · · ⊕ Lr).

This means that Mab in Step 6 is a constant multiple of Lt
aLb

and then Ru is a constant multiple of L−1
u L1. We thus obtain

(Ir ⊕ R2 ⊕ · · · ⊕ Rr)
tFi j(Ir ⊕ R2 ⊕ · · · ⊕ Rr)

=
(
(1 ⊕ α2 ⊕ · · · ⊕ αr)Q

tTi jQ

· (1 ⊕ α2 ⊕ · · · ⊕ αr)
)
⊗ (Lt

1L1)

=(Q̂tTi jQ̂) ⊗ (Lt
1L1),

where α2, . . . , αr ∈ k and Q̂ := Q(1⊕α2⊕· · ·⊕αr). Any r×r
block of the matrix above is a constant multiple of Lt

1L1. It
is easy to see that L in Step 7 can be found by the algorithm
for Lemma 3.1.

Since Lt(Lt
1L1)L = βIr for some β ∈ k, the matrix Di j

in Step 7 is given by

Di j = βQ̂tTi jQ̂.

By the definition of Ti j, we see that

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
D11
...

Drr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = βT0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Q̂tE11Q̂

...

Q̂tE11Q̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The entries in the right hand side are r × r symmetric matri-
ces and any r × r symmetric matrix is expressed by a linear
combination of E11, . . . , Err. Then there exists T1 ∈ Mm(k)
such that
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Q̂tE11Q̂

...

Q̂tErrQ̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = T1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
E11
...

Err

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The matrix T1 is known as the “symmetric square” of Q̂ and
the determinant of T1 is a power of that of Q̂ (its proof is
complicated; see the discussions in Chap. 2 of [29]). Thus,
there always exists T̃ = (βT0T1)−1 satisfying (12) and such
T̃ can be found by the Gaussian elimination. �

5.4 Total Complexity of the Attack

Step 1 uses the Gaussian elimination for linear equation of
n = r2 variables. Then its complexity is r6. In Step 2–5,
we use Algorithm 1 at most r−1 times. Then its complexity
is  r · d4r3  r8. In Step 6, we take inversions and mul-
tiplications of r × r matrices r − 1 times for Ru’s and take
2m multiplications of special type n × n matrices for replac-
ing Fi j. Then the complexity of Step 6 is  r7. In Step 7,
we use the algorithm for Lemma 3.1 with O(r4) operations.
In Step 8, we take the Gaussian elimination for m variables.
Then its complexity is r6.

We thus conclude that the total complexity of our attack
is r8 = n4.

5.5 Experiments

In this subsection, we describe the results of experiments of
our attack for q = 6781 and r ≤ 15. These experiments
are done under Windows 7, Core-i7 2.67GHz and Magma
ver.2.15-10 [4]. For every experiments, we succeeded to re-
cover equivalent secret keys S ′,T ′. The results are given in
Table 2. In this table, “Sec. (bits)” means the security level
(bits) of YTS against the min-rank attack or the Gröbner
basis attack described in Sect. 3.3, and “Attack (s)” means
the average of the running times (seconds) of our attack to
recover S ′,T ′ by 100 times experiments.

According to Table 2, we see that running times in
practice seem around r7. The paper [37] claimed that YTS
of (q, r) := (6781, 11) was secure enough since it had more
than 140 bits security. However, Table 2 shows that it is not
secure at all.

Table 2 Experiments of our attack for q = 6781.

r 5 6 7 8 9

n 25 36 49 64 81
m 15 21 28 36 45

Sec. (bits) 45.4 63.5 84.7 108.9 133.6

Attack (s) 0.04 0.17 0.53 1.41 3.36

10 11 12 13 14 15

100 121 144 169 196 225
55 66 78 91 105 120

147.2 160.8 174.2 187.7 201.0 214.4

7.43 14.7 28.9 63.6 95.5 163

6. Conclusion

In PQCrypto 2013, a new multivariate signature scheme
YTS [37] was presented. Its signature generation is fast
enough and its structure is quite different to other known
MPKCs. Then YTS had been expected as a new idea to
build secure and efficient MPKCs. However, the present
paper shows that YTS is not secure at all. YTS must be
repaired for practical use.
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bases (F4),” J. Pure Appl. Algebra., vol.139, no.1-3, pp.61–88, 1999.

[15] J.-C. Faugère and A. Joux, “Algebraic cryptanalysis of hidden field
equation (HFE) cryptosystems using Gröbner bases,” Advances in
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